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ABSTRACT 

 

The study contributes to safety literature on transportation safety by employing copula 

based models for count frequency analysis at a macro-level. Most studies in the transportation 

safety area identify a single count variable (such as vehicular, pedestrian or bicycle crash counts) 

for a spatial unit and study the impact of exogenous variables. While the traditional count models 

perform adequately in the presence of a single count variable, it is necessary to modify these 

approaches to examine multiple dependent variables for each study unit. To that extent, the 

current research effort contributes to literature by developing two multivariate models based on 

copula methodology. First, a copula based bivariate negative binomial model for pedestrian and 

bicyclist crash frequency analysis is developed. Second, a multivariate negative binomial model 

for crashes involving non-motorized road users, passenger cars, vans, light trucks and heavy 

trucks is proposed. The proposed approaches also accommodate for potential heterogeneity 

(across zones) in the dependency structure. The formulated models are estimated using traffic 

crash count data at the Statewide Traffic Analysis Zone (STAZ) level for the state of Florida for 

the years 2010 through 2012. The STAZ level variables considered in our analysis include 

exposure measures, socio-economic characteristics, road network characteristics and land use 

attributes. A policy analysis is also conducted along with a representation of hotspot 

identification to illustrate the applicability of the proposed model for planning purposes. The 

development of such spatial profiles will allow planners to identify high risk zones for screening 

and treatment purposes.  
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CHAPTER ONE: INTRODUCTION 

 

Improving traffic safety was, is and will continue to be a high priority on the national 

transportation agenda due to the significant social and financial implications of motor vehicle 

crashes including injuries, deaths and economic losses among others. In the years 2010 and 2011 

the fatalities rate per 100,000 Population in the state of Florida due to traffic related crashes was 

(12.97) and (12.58) respectively, which is clearly higher than the national Fatalities rate of 

(10.67) and (10.39) respectively (1).Moreover, Urban regions in North America are encouraging 

the adoption of active modes of transportation by proactively developing infrastructure for these 

modes. 

 According to data from the 2009 National Household Travel Survey (NHTS), about 

37.6% of the trips by private vehicles in the United States (US) are less than 2 miles long. Even 

if a small proportion of the shorter private vehicle trips (around dense urban cores) are 

substituted with public transportation and active transportation trips, it offers substantial benefits 

to individuals, cities and the environment. However, a strong impediment to the increasing 

adoption of active modes of transportation is the risk associated with these modes. In fact, in the 

US between 2004 and 2013, bicycle and pedestrian fatalities as a percentage of total traffic crash 

related fatalities have increased from 1.7% to 2.3% and 11% to 14%, respectively (1). 

 For increasing the adoption of active transportation, there is a need to reduce the risk to 

pedestrians and bicyclists on roadways. The safety risk posed to active transportation users in 

Florida is exacerbated compared to active transportation users in the US. While the national 

average for pedestrian (bicyclist) fatalities per 100,000 population is 1.50 (2.35), the 
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corresponding number for Florida is 2.56 (6.80). The statistics present a clear picture of the 

challenge faced in the state of Florida.  

An important tool to identify the factors affecting occurrence of traffic related  crashes; and 

identifying vulnerable locations is the application of planning level crash prediction models. 

1.1 Thesis Structure   

The remainder of the thesis is organized as follows. Chapter 2 discusses the earlier 

studies on modeling crash count. Chapter 3 focuses on joint modeling of traffic related crashes at 

the macro-level crash frequency by employing a copula based bivariate NB and multivariate NB 

modeling framework. Chapter 4 discusses the data source used and sample formation techniques 

in detail. Chapter 5 summarizes the results of the empirical application of the bivariate NB, 

introduces policy analysis and Spatial Distribution of Hotspot. Chapter 6.discusses model 

estimation results for multivariate NB. Chapter 7 presents the conclusions and recommendations 

based on the empirical results of the study.  
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CHAPTER TWO: LITERATURE RIVEW 

Crash counts has been extensively researched in the safety analysis literature. This chapter 

reviews earlier crash counts studies that considered bivariate and multivariate analysis. 

2.1 Earlier Research  

 Traffic crashes aggregated at a certain spatial scale are non-negative integer valued 

random events. Naturally, these integer counts are examined employing count regression 

approaches that quantify the influence of exogenous factors on crash counts. Most studies in the 

transportation safety area identify a single count variable (such as vehicular, pedestrian or 

bicycle crash counts) for a spatial unit and study the impact of exogenous variables. In this 

context, the crash prediction model structures considered include Poisson (2),(3), Poisson-

Lognormal, Poisson-Gamma regression (also known as negative binomial (NB)), Poisson-

Weibull, and Generalized Waring models (4-10) . Among these model structures, the NB model 

offers a closed form expression while relaxing the equal mean variance equality constraint and 

serves as the workhorse for crash count modeling.  

While the above models perform adequately in the presence of a single count variable, it is 

necessary to modify these approaches to examine multiple dependent variables for each study 

unit. To elaborate, for a study unit, if multiple dependent variables are available it is plausible to 

imagine that common observed and unobserved factors that affect one dependent variable might 

also affect the second dependent variable. Accommodating for the impact of observed factors is 

relatively straightforward within count regression models by estimating distinct count models for 

every dependent variable. The process of incorporating the impact of unobserved factors poses 
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methodological challenges. Essentially, accommodating the impact of unobserved factors 

recognizes that the multiple dimensions of interest have common error terms that affect the 

dependent variables. In traditional discrete choice models, there are three ways that such joint 

processes are examined can be accommodated. The first approach considers the dependent 

variables being investigated as marginal distributions within a bivariate (or multivariate) 

distribution by developing a joint error distribution. The distribution parameters estimated will 

allow us to evaluate the dependency between the dependent variables. If permissible, the 

approach usually results in closed form parametric formulations. These formulations thus allow 

for analytical computation of log-likelihood and offer more stable inference conclusions. 

Examples of such approaches include bivariate normal or logistic distributions, bivariate 

negative binomial distributions or the flexible bivariate copula based approaches (for example 

see (11-13)). Of course, the flexibility of the approach is restricted by the potential parametric 

alternatives available. In the transportation safety area, to our best knowledge, no count 

frequency models have been developed employing this approach. 

The second approach to addressing multiple dependent variables involves the 

development of multivariate function as described in the first approach. However, as the 

estimation of the multivariate approach is computationally intractable, an approximation 

approach to evaluating the multivariate function is considered. The approach – referred to as the 

composite marginal likelihood approach - has received considerable attention in transportation 

literature in recent years (14-16) ;( 15). In terms of safety count modeling, the approach has been 

employed by (17) for bicycle and pedestrian crash counts by severity type. 
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The third approach to accommodate for the dependency between the dependent variables 

allows for stitching by considering unobserved error components that jointly affect the dependent 

variables. The approach, usually, partitions the error components of the dependent variables to 

accommodate for a common term and an independent term across dependent variables. The 

common error term across the dependent variables allows for the possible unobserved effects. Of 

course, the common term is considered with a distribution that has a zero mean. Thus, any 

computation of probability requires an integral across the error term distribution. The probability 

computation is dependent on the distributional assumption and no longer has a closed form 

expression. Thus, the estimation procedure requires the adoption of maximum simulated 

likelihood (MSL) approaches or Markov Chain Monte Carlo (MCMC) in the Bayesian realm. 

MSL and MCMC methods provide substantial flexibility in accommodating for unobserved 

heterogeneity. However, in MSL and MCMC methods, the probability computation is sensitive 

to number of draws as well as random number generation procedures. Further, these approaches 

are more prone to efficiency loss due to inaccuracy in retrieving the variance covariance 

parameters that is critical for inference (18) for more detailed discussion on issue with MSL 

approaches). A majority of the count modeling approaches employed in the safety area have 

adopted the third approach. Specifically, the model structures employed in literature include 

multivariate-poisson model (for example see (19), Poisson-lognormal models (for example see 

(20), (7), (21), (22) and simultaneous equation models (23), (24).  

 

From the above literature review it is evident that transportation safety literature of count 

modeling realm has predominantly focused on the third approach to examining multivariate 
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count frequency variables. The current research effort contributes to literature on the first 

approach – developing a multivariate model by First, a copula based bivariate negative binomial 

model for pedestrian and bicyclist crash frequency analysis is developed. Second, a multivariate 

negative binomial model for crashes involving non-motorized road users, passenger cars, vans, 

light trucks and heavy trucks is proposed. The approach proposed here has been employed in 

econometrics (25). To the best of the authors’ knowledge, this is the first attempt to employ such 

copula based bivariate and multivariate count models for safety literature. To be sure, copula 

models for ordered and unordered discrete outcome variables have been adopted in safety 

literature (see (26-29)). However, these approaches are not directly transferable to the count 

modeling. In this paper, we apply the copula based models for count frequency analysis. 

Empirically, the study examines the influence of several exogenous variables (exposure 

measures, socio-economic characteristics, road network characteristics and land use attributes) 

on pedestrian and bicycle crash count events at the Statewide Traffic Analysis Zone (STAZ) 

level for the state of Florida.  

2.2 Summary  

This chapter presented a summary of the existing bivariate and multivariate literature on 

traffic crash counts. This is the first attempt to employ such copula based bivariate or 

multivariate count models for safety literature. The next chapter presents the methodology 

adopted in this study. 
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CHAPTER THREE: METHODOLOGY 

The focus of our study is to jointly model the macro-level pedestrian crash frequency and 

bicycle crash frequency by employing a copula based bivariate NB modeling framework. Also 

jointly model the macro-level traffic related crashes frequency by employing a copula based 

multivariate NB modeling framework. The econometric framework for the joint model is 

presented in this section.  

Let us assume that 𝑖 be the index for STAZ (𝑖 = 1,2,3, … , 𝑁) and 𝑦𝑞𝑖 be the index for 

crashes occurring over a period of time in a STAZ 𝑖; where 𝑞 takes the value of 1 for pedestrian 

crashes and 2 for bicycle crashes. The NB probability expression for random variable 𝑦𝑞𝑖 can be 

written as: 

𝑃𝑞𝑖(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞) =  
Γ(𝑦𝑞𝑖+𝛼𝑞

−1)

Γ(𝑦𝑞𝑖 + 1)Γ(𝛼𝑞
−1)

(
1

1 + 𝛼𝑞𝜇𝑞𝑖
)

1
𝛼𝑞

(1 −
1

1 + 𝛼𝑞𝜇𝑞𝑖
)

𝑦𝑞𝑖

 (1)  

where, Γ(∙) is the Gamma function, 𝛼𝑞 is the NB dispersion parameter specific to road user 

group 𝑞 and 𝜇𝑞𝑖 is the expected number of crashes occurring in STAZ 𝑖 over a given period of 

time for vulnerable road user group 𝑞. We can express 𝜇𝑞𝑖 as a function of explanatory variable 

(𝒙𝑞𝑖) by using a log-link function as: 𝜇𝑞𝑖𝑠 = 𝐸(𝑦𝑞𝑖|𝒙𝑞𝑖) = 𝑒𝑥𝑝(𝜷𝑞𝒙𝑞𝑖), where 𝜷𝑞 is a vector of 

parameters to be estimated specific to road user group 𝑞.   

The correlation or joint behaviour of random variables 𝑦1𝑖 and 𝑦2𝑖 are explored in the 

current study by using a copula based approach. A copula is a mathematical device that identifies 

dependency among random variables with pre-specified marginal distribution (30) and 
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(31)provide a detailed description of the copula approach). In constructing the copula 

dependency, let us assume that 𝛬1(𝑦1𝑖) and 𝛬2(𝑦2𝑖) are the marginal distribution functions of the 

random variables 𝑦1𝑖 and 𝑦2𝑖, respectively; and 𝛬12(𝑦1𝑖, 𝑦2𝑖) is the joint distribution for the 

bivariate case with corresponding marginal distribution. Subsequently, the bivariate distribution 

𝛬12(𝑦1𝑖, 𝑦2𝑖) can be generated as a joint cumulative probability distribution of uniform [0, 1] 

marginal variables 𝑈1 and 𝑈2 as below:  

𝛬12(𝑦1𝑖, 𝑦2𝑖) = 𝑃𝑟( 𝑈1 ≤ 𝑦1𝑖,  𝑈2 ≤ 𝑦2𝑖) 

= 𝑃𝑟[𝛬1
−1(𝑈1) ≤ 𝑦1𝑖,  𝛬2

−1(𝑈2) ≤ 𝑦2𝑖 ]  

= 𝑃𝑟[𝑈1 < 𝛬1(𝑦1𝑖),  𝑈2 < 𝛬2(𝑦2𝑖) ] 

(2)  

The joint distribution (of uniform marginal variable) in equation 2 can be generated by a 

function 𝐶𝜃𝑖(. , . ) (32), such that: 

𝛬12(𝑦1𝑖, 𝑦2𝑖) = 𝐶𝜃𝑖(𝑈1 = 𝛬1(𝑦1𝑖), 𝑈2 = 𝛬2(𝑦2𝑖)) (3)  

where, 𝐶𝜃𝑖(. , . ) is a copula function and 𝜃𝑖 is the dependence parameter defining the link 

between 𝑦1𝑖 and 𝑦2𝑖. In the case of two continuous random variables, the bivariate density (or 

joint density) can be derived from partial derivatives for the continuous case. However, in our 

study, 𝑦1𝑖 and 𝑦2𝑖 are nonnegative integer valued events. For such count data, following (25), the 

probability mass function (𝜁𝜃𝑖) is presented (instead of continuous derivatives) by using finite 

differences of the copula representation as follows: 
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𝜁𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖)) = 𝐶𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖); 𝜃𝑖) 

 −𝐶𝜃𝑖(𝛬1(𝑦1𝑖 − 1), 𝛬2(𝑦2𝑖); 𝜃𝑖) 

 −𝐶𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖 − 1); 𝜃𝑖) 

+𝐶𝜃𝑖(𝛬1(𝑦1𝑖 − 1), 𝛬2(𝑦2𝑖 − 1); 𝜃𝑖) 

(4)  

Given the above setup, we specify 𝛬1(𝑦1𝑖) and 𝛬2(𝑦2𝑖) as the cumulative distribution 

function (cdf) of the NB distribution. The cdf of NB probability expression (as presented in 

equation 1) for 𝑦𝑞𝑖 can be written as: 

𝛬𝑞(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞) = ∑ 𝑃𝑞𝑖(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞)

𝑦𝑞𝑖

𝑘=0

 (5)  

Thus, the log-likelihood function (𝐿𝐿) with the joint probability expression in equation 4 

can be written as: 

𝐿𝐿 = ∑ 𝜁𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖))

𝑁

𝑖=1

 (6)  

It is important to note here that, the level of dependence between the random variables 

can vary across STAZs. Therefore, in the current study, the dependence parameter 𝜃𝑖 is 

parameterized as a function of observed attributes as follows: 
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𝜃𝑖 = 𝑓𝑛(𝜸𝑞𝒔𝑞𝑖) (7)  

where, 𝒔𝑞𝑖 is a column vector of exogenous variable, 𝜸𝑞 is a row vector of unknown parameters 

(including a constant) specific to road user group 𝑞 and 𝑓𝑛 represents the functional form of 

parameterization. Based on the dependency parameter permissible ranges, alternate 

parameterization forms for the six copulas are considered in our analysis. For Normal, Farlie-

Gumbel-Morgenstern (FGM) and Frank Copulas we use 𝜃𝑖 = 𝜸𝑞𝒔𝑞𝑖, for the Clayton copula we 

employ 𝜃𝑖 = 𝑒𝑥𝑝(𝜸𝑞𝒔𝑞𝑖), and for Joe and Gumbel copulas we employ 𝜃𝑖 = 1 + 𝑒𝑥𝑝(𝜸𝑞𝒔𝑞𝑖). 

The parameters to be estimated in the model of Equation 6 are: 𝜷𝑞, 𝛼𝑞 and 𝜸𝑞. The parameters 

are estimated using maximum likelihood approaches. The model estimation is achieved through 

the log-likelihood functions programmed in Gauss. 

3.1 Summary  

The present chapter described in detail the econometric framework employed in modeling traffic 

related crash counts in the present study. Next Chapter will discuss how the data was collected in 

detail  
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CHAPTER FOUR: DATA DESCRIPTION 

           In the previous chapter the econometric framework employed in the current study for 

modeling traffic related crashes is described in detail. In the present chapter, the data source 

employed for the empirical analysis of traffic related crashes is discussed. The section also 

explains how the data is aggregated to the STAZ level  

4.1 Data Source 

         This study is focused on traffic related crashes at the STAZ level. There are 8,518 STAZs 

in the State of Florida (Figure 4.1). Data for the empirical study is sourced from Florida for the 

year 2010 through 2012. The pedestrian and bicycle crash records are collected and compiled 

from Florida Department of Transportation CAR (Crash Analysis Reporting) and Signal Four 

Analytics (S4A) databases. Florida Department of Transportation CAR and S4A are long and 

short forms of crash reports in the State of Florida, respectively. The long form crash report 

includes higher injury severity level or crash related to criminal activities (such as hit-and-run or 

Driving Under Influence). Crash data records from short and long form databases are compiled 

in order to have more complete information on road crashes and hence is used for the purpose of 

analysis in the current study context.  

In addition to the crash database, the explanatory attributes considered in the empirical 

study are also aggregated at the STAZ level accordingly. For the empirical analysis, the selected 

explanatory variables can be grouped into four broad categories: exposure measures, socio-

economic characteristics, road network characteristics and land use attributes. The exposure 

measures, socio-economic characteristics, and land use attributes are obtained from the US 

Census Bureau and FDOT District Offices/MPOs (or FDOT Central Office). Moreover, the road 
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network characteristics and traffic related attributes are collected from FDOT Transportation 

Statistics Office (TRANSTAT). STAZ data are collected from Florida Department of 

Transportation District Offices/MPOs (or Florida Department of Transportation Central Office), 

U.S. Census Bureau, and Florida Geographic Data Library (FGDL). Table 4.1 offers a summary 

of the sample characteristics of the count and exogenous variables. Table 4.1 also represents the 

definition of variables
1
 considered for final model estimation along with the zonal minimum, 

maximum and average values for Florida. From Table 4.1, we can see that for the three years the 

state of Florida has a record of 16,240 pedestrian crashes with an average of 1.90 crashes 

(ranging from 0 to 39 crashes) per STAZ. On the other hand, the state has an average of 1.79 

crashes (ranging from 0 to 88) per TAZ with a total record of 15,307 bicycle crashes for the three 

years period.   

4.2 Summary  

       In the present chapter, the data source employed for the empirical analysis of traffic related 

crashes is discussed. The section also explains how the data is aggregated to the STAZ level. The 

results of the empirical application of the modeling framework are presented in the subsequent 

chapter.  

                                                 
1
 In estimating the models, several functional forms and variable specifications are explored. The functional form 

that gave the best result is used for final model specifications and, in Table 2, the variable definitions are presented 

based on these final functional form of variables. 
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Table 4.1 Sample Statistics for the State of Florida 

Variable Names Variables Descriptions Minimum Maximum Average 

Dependent variable         

Pedestrian crashes per STAZ Total number of pedestrian crashes per STAZ 0 39 1.907 

Bicycle crashes per STAZ Total number of bicycle crashes per STAZ 0 88 1.797 

Non- Motor crashes per STAZ Total number of Non- Motor crashes per STAZ 0 89 2.931 

Car crashes per STAZ Total number of Car crashes per STAZ 0 1063 49.279 

Van crashes per STAZ Total number of Van crashes per STAZ 0 139 7.016 

Light Trucks crashes per STAZ Total number of Light Trucks crashes per STAZ 0 505 22.861 

Med Trucks crashes per STAZ Total number of Med Trucks crashes per STAZ 0 57 2.352 

Exposure measures         

VMT Natural Log of vehicle miles travel (VMT) in STAZ  0 13.437 9.039 

Proportion of heavy vehicles Total heavy vehicle VMT in STAZ /Total vehicles VMT in STAZ 0 0.519 0.067 

Total population Natural log of total population in STAZ 0 10.571 6.437 

Proportion of families with no 

vehicle 
Total number of families with no vehicle in STAZ/Total number of families in STAZ 0 1 0.095 

Socio-economic characteristics       

Bicycle commuters Natural log of total bicycle commuters in STAZ 0 6.654 0.847 

Public transit commuters Natural log of total commuters using public transportation in STAZ 0 6.841 1.416 

Walk commuters Natural log of total walk commuters in STAZ 0 7.162 1.629 

Total employment Natural log of total employment in STAZ 0 10.371 5.857 

Proportion of industrial 

employment 
Total number of industrial employment in STAZ/Total number of employment in STAZ 0 1 0.176 

School enrollment density Natural Log of total school enrollment per square miles in STAZ 0 12.45 2.715 

Road network characteristics       

Proportion of urban area Total urban area in STAZ/Total area in STAZ 0 1 0.722 

Proportion of local roads Total length of local roads in STAZ/Total length of all roads in STAZ 0 1 0.572 

Proportion of arterial roads Total length of arterial roads in STAZ/Total length of all roads in STAZ 0 1 0.221 

Traffic signal density Natural log of total number of traffic signals per miles of road in STAZ 0 8.756 0.227 

Sidewalk length Natural log of total length of sidewalk miles in STAZ 0 3.284 0.477 

Land use attributes         

Density of hotel/ motel/timeshare 

room 
Natural log of total number of hotel, motel, timeshare room per square mile in STAZ 0 10.392 1.549 

Distance to nearest urban area Distance of the STAZ to the nearest urban area in miles  0 44.101 2.14 
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CHAPTER FIVE: EMPIRICAL ANALYSIS AND BIVARIATE 

RESUALTS 

The results of the empirical analysis carried out on the data described on the previous chapter 

are presented in this chapter for the bivariate model. In addition this chapter provide policy 

analysis and Spatial Distribution of Hotspot.Two models are estimated in the present study. The 

first model is a bivariate NB model (pedestrian and bicyclist) is discussed in this chapter and the 

second model is a multivariate NB is discussed in the following chapter. 

 

5.1 Model Specification and Overall Measures of Fit 

The empirical analysis involves the estimation of models by using six different copula 

structures: 1) Gaussian, 2) FGM, 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe (a detailed 

discussion of these copulas is available in (30). The empirical analysis involved a series of model 

estimations. First, an independent copula model (separate NB models for pedestrian and bicycle 

crash counts) were estimated to establish a benchmark for comparison. Second, six different 

models were estimated by considering the dependency parameter in the copula model to be the 

same across all STAZs. Third, different copula models were also estimated by considering the 

parameterization for copula dependency profile. Finally, to determine the most suitable copula 

model (including the independent copula model), a comparison exercise was undertaken. The 

alternative copula models estimated are non-nested and hence, cannot be tested using traditional 

log-likelihood ratio test. We employ the Bayesian Information Criterion (BIC) to determine the 

best model among all copula models (see (31), (33), and (26)). The BIC for a given empirical 

model is equal to: 
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𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (8)  

where LL is the log-likelihood value at convergence, K is the number of parameters, and Q is the 

number of observations. The model with the lower BIC is the preferred copula model. The BIC 

value for independent copula model was 48747.45. The following copula models (BIC) without 

parameterization offered improved data fit: Clayton (48343.15), FGM (48388.16) and Frank 

(48340.05). Gaussian, Gumbel and Joe copulas collapsed to independent copula model. For 

copula dependency profile parameterization, the variables effects were significant only for 

Clayton copula. Overall, Clayton copula with dependency profile parameterization (48271.85) 

outperformed all other copula models as well the independent model. The copula model BIC 

comparisons confirm the importance of accommodating dependence between pedestrian and 

bicycle crash count events in the macro-level analysis. 

 

5.2 Estimation Results 

In presenting the effects of exogenous variables in the joint model specification, we will 

restrict ourselves to the discussion of the Clayton Copula specification. Table 5.2 presents the 

estimation results of the joint model. For the ease of presentation, the pedestrian crash count 

component (3
rd

 and 4
th

 columns of Table 5.2) and bicycle crash count component (5
rd

 and 6
th

 

columns of Table 5.2) results are discussed together in the following section by variable groups. 

The copula parameters are presented in the last row panel of Table 5.2. 

 

Exposure measures: In terms of exposure measures, the estimates indicate that both 

pedestrian and bicycle crashes are positively associated with higher vehicle-miles traveled 
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(VMT) at the zonal level. The result related to VMT is represents the higher crash risk faced by 

non-motorized (pedestrian and bicyclist) road user groups with increasing VMT (34). Further, 

the results in Table 5.2 indicate reduced crash propensity for both pedestrian and bicyclists with 

higher proportion of heavy vehicle VMT at the zonal level. With respect to total population, the 

joint model estimation results reveal that both pedestrian and bicycle crashes are positively 

associated with higher zonal population (see (35-37)). 

As expected, both pedestrian and bicycle crash risk are found to be higher for the STAZs 

with higher proportion of households without access to private vehicles (see 38, 39), but the 

magnitude of the impact is more pronounced for pedestrian crashes relative to bicycle crashes. 

The results can be explained by the fact that members of the households with access to no private 

vehicles would use alternate mode of transportation for daily activities resulting in higher 

pedestrian and bicycling exposure in these STAZs. The variable is also surrogate indicator for 

low-income level of zone, where people are less likely to receive safety education and hence are 

exposed to higher potential crash risk (40). 

 

Socio-economic characteristics: The results for the number of commuters based on 

different commute modes are also found to significantly influence pedestrian and bicycle crash 

risk in the current study context. An increase in the number of transit commuters increases the 

likelihood of pedestrian and bicycle crashes at the STAZ level. The result in pedestrian crash 

model intuitively suggests higher demand and supply of public transit in zones with higher 

number of transit commuters which are determinants of pedestrian activities (41). The variable 

indicating transit commuters in bicycle crash model is possibly representing greater bicycle 

exposure from higher cycle-transit integrated mode share (popularly known as “bike-and-ride”) 
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for access and egress at transit stations (42). In terms of walk and bicycle commuters, the results 

reveal that STAZs with higher number of walk and bike commuters increase the likelihoods of 

both pedestrian and bicycle crashes. These variables can be considered as proxy measures for 

pedestrian and bicycle exposure in the zones. It is interesting to note that both non-motorized 

commute variables have larger impact in bicycle crash count event relative to pedestrian crash 

count events. As found in previous studies (38, 40), our study also found that more employment 

within a TAZ leads to higher probability of bicycle crashes. However, increasing proportion of 

industrial employment has negative association with pedestrian and bicycle crashes at the STAZ 

level. Also, an increase in school enrollment density in a STAZ increases the likelihoods of crash 

risk in count model components for both non-motorized road user group. 

 

Road network characteristics: Proportion of urban area, a proxy for non-motorized 

activity, reflects that an increase in the proportion of urban area in a zone increases the likelihood 

of both pedestrian and bicycle crash risk. The results associated with functional class of 

roadways show that pedestrian and bicycle crash risk are positively correlated with higher 

proportion of arterial and local roads. Consistent with several previous studies (43, 44), our study 

results also show that higher density of signalized intersections are positively associated with 

more pedestrian- and bicycle-motor vehicle crashes. With respect to sidewalk length, the model 

estimation results indicate higher likelihood of pedestrian and bicycle crashes with increasing 

length of sidewalk in a zone. 

 

Land use attributes: The result associated with hotel/motel/timeshare room density in 

STAZ reflects that an increase in hotel/motel/timeshare room density increases the likelihood of 
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both pedestrian and bicycle crash risk, presumably indicating higher level of non-motorized road 

user activity in the proximity of these facilities in a zone (45, 46). Moreover, tourists/visitors 

might be unfamiliar/less familiar with local driver behavior and road regulations (47), which 

might further exacerbate crash risk for these non-motorized road user groups. The possibilities of 

pedestrian and bicycle crash risk increase with increasing distance to the nearest urban area from 

the STAZ. STAZs close to urban area are associated with shorter, more walkable and/or cyclable 

travel distances which in turn increase the exposure of non-motorized road user groups resulting 

in increased likelihood of crash risks. 

 

Dependence Effects: As indicated earlier, the estimated Clayton copula based bivariate NB 

model provides the best fit in incorporating the correlation between the pedestrian and bicycle 

crash count events. An examination of the copula parameters presented in the last row panel of 

Table 5.2 highlights the presence of common unobserved factors affecting pedestrian and bicycle 

crash frequency. The various exogenous variables that contribute to the dependency include 

school enrollment density and public transit commuters. This provides support to our hypothesis 

that the dependency structures are not constant across all STAZs. For the Clayton copula, the 

dependency is entirely positive and the coefficient sign and magnitude reflects whether a 

variable increases or reduces the dependency and by how much. The proposed framework by 

allowing for such parameterizations allows us to improve data fit. 
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5.3 Policy Analysis  

5.4 Elasticity Effects and Implications 

The parameter effects of exogenous variables in Table 5.2 do not provide the magnitude of the 

effects on zonal level crash counts. For this purpose, we compute aggregate level “elasticity 

effects” of exogenous variables for both pedestrian and bicycle crash events. We investigate the 

effect as the percentage change in the expected total zonal crash counts due to the change in 

exogenous variable for pedestrian and bicycle separately to identify the policy measures based 

on most critical contributory factors. The computed elasticities are presented in Table 5.3 (see 

(48) for a discussion on the methodology for computing elasticities). 

The following observations can be made based on the elasticity effects presented in Table 

3. First, the results in Table 5.3 indicate that there are differences in the elasticity effects across 

the expected number of pedestrian and bicycle crash counts. Second, the most significant 

variable in terms of increase in the expected number of both pedestrian and bicycle crash counts 

include: VMT, total population and total employment. Third, pedestrian crashes have higher 

elasticities relative to bicycle crashes for total population, total employment, public transit 

commuters, proportion of families with no vehicle, traffic signal density and density of 

hotel/motel/timeshare room.  

These results have important implications in improving the safety situation for non-

motorized road users and promoting active mode of transportation. For instance, results 

indicating auto-oriented (VMT) and public transit-oriented (public transit commuters) 

neighborhoods have important implications in terms of engineering measures. Traffic calming 

measures should be provided in these zones to reduce road crashes involving pedestrians and 

bicyclists. Engineering infrastructure (such as overpasses, shaded walkways for pedestrian traffic 

and bike box at intersections, bike paths for bicycle traffic) that separate non-motorized traffic 
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flow from motorized traffic flow in the road network system should be installed and regulated in 

the zones with more population and more employment. Public awareness efforts and traffic 

education for safe walking and cycling are needed for both non-motorists and motorists of zones 

with more transit, bike and walk commuters. Moreover, education campaigns in the communities 

with less access to private vehicles are needed to improve non-motorists’ safety situation. 

Further, targeted enforcement strategies should be regulated in the zones with more local roads 

and sidewalks to make the neighborhoods more walkable and bikeable. Overall, the elasticity 

analysis conducted provides an illustration on how the proposed model can be applied to 

determine the critical factors contributing to increase in pedestrian and bicycle crash counts. 

 

5.5 Spatial Distribution of HotSpot 

The model findings have also important implications in terms of identifying hotspot at the 

zonal level for non-motorized road user safety planning. To identify the hotspots, the Highway 

Safety Manual approach that computes the Excess Predicted Average Crash Frequency defined 

as observed frequency minus predicted crash frequency. Based on the measure the 10% of the 

zones are labelled as hot zones and others are labelled Normal.  

We present the identified hotspot in Figure 5.2. From the spatial hotspot distribution we can 

see that hotspots for both pedestrian and bicycle crashes are dispersed throughout Florida. Also 

we can see that risk of getting involved in pedestrian-motor vehicle or bicycle-motor vehicle 

crashes is higher in most urban zones. This spatial illustration can be used to prioritize STAZs 

based on for enhancing non-motorized road user’s safety features of these high crash risk zones. 
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Table 5.1 Pedestrian-Bicycle Joint Model Estimation Results – Clayton Copula 

 

Variable Names 
Pedestrian Bicycle 

Estimate t-stat Estimate t-stat 

Constants -4.238 -38.738 -4.272 -41.469 

Exposure measures     

VMT 0.118 20.646 0.128 20.775 

Proportion of heavy vehicles -0.902 -2.444 -3.145 -8.786 

Total population 0.137 17.447 0.138 15.339 

Proportion of families with no vehicle 1.323 12.040 0.244 1.976 

Socio-economic characteristics     

Bicycle commuters 0.036 3.841 0.144 16.754 

Public transit commuters 0.171 21.750 0.097 11.480 

Walk commuters 0.070 7.286 0.081 8.129 

Total employment 0.172 16.812 0.136 14.087 

Proportion of industrial employment -0.242 -3.632 -0.191 -2.794 

School enrollment density 0.012 3.022 0.011 2.638 

Road network characteristics     

Proportion of urban area 0.272 5.146 0.658 11.170 

Proportion of local roads 0.564 8.752 0.565 8.157 

Proportion of arterial roads 0.306 3.949 0.422 5.040 

Traffic signal density 0.289 12.716 0.184 7.281 

Sidewalk length 0.272 12.963 0.309 14.754 

Land use attributes     

Density of hotel/motel/timeshare room 0.029 5.943 0.018 3.429 

Distance to nearest urban area -0.039 -7.031 -0.084 -9.363 

Copula Parameters 

Variable Names Estimate t-stat 

Constant -0.973 -- 

Public transit commuters 0.141 4.373 

School enrollment density 0.049 2.728 
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Table 5.2 Elasticity Effects 

 

Variable Names Pedestrian Bicycle 

Exposure measures     

VMT 25.076 26.318 

Proportion of heavy vehicles -0.938 -2.887 

Total population 22.014 21.407 

Proportion of families with no vehicle 2.973 0.442 

Socio-economic characteristics     

Bicycle commuters 1.147 5.097 

Public transit commuters 9.831 5.018 

Walk commuters 3.760 4.257 

Total employment 25.730 19.239 

Proportion of industrial employment -0.582 -0.421 

School enrollment density 1.034 0.916 

Road network characteristics     

Proportion of urban area 0.208 0.505 

Proportion of local roads 7.198 7.016 

Proportion of arterial roads 0.944 1.214 

Traffic signal density 1.809 0.922 

Sidewalk length 4.840 5.538 

Land use attributes     

Density of hotel/motel/timeshare room 1.207 0.691 

Distance to nearest urban area -0.224 -0.210 
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Figure 5.1 State Traffic Analysis Zones (STAZs) for the state of Florida 
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Figure 5.2 Spatial distribution of Hotspots for Pedestrian and Bicycle Crash Risk of Florida 
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CHPTER SIX: MULTIVARIATE RESULTS 

Model estimation results of the bivariate NB model was introduced in the previous chapter 

along with some policy analysis and spatial distribution of Hotspots. In this chapter the model 

estimation of the multivariate model is presented  

6.1Estimation Results 

  In presenting the effects of exogenous variables in the joint model specification, we will 

restrict ourselves to the discussion of the Frank Copula specification. Table 6.1 presents the 

estimation results of the joint model. For the ease of presentation, the non-motorized crash count 

component (3
rd

 and 4
th

 columns of Table 6.1), car crash count component (5
rd

 and 6
th

 columns of 

Table 6.1), van crash count component (7
rd

 and 8
th

 columns of Table 6.1), light truck crash count 

component (9
rd

 and 10
th

 columns of Table 6.1), and heavy truck crash count component (11
rd

 and 

12
th

 columns of Table 6.1). Results are discussed together in the following section by variable 

groups.  

Exposure measures: In terms of exposure measures, the estimates indicate that traffic 

related crashes are positively associated with higher vehicle-miles traveled (VMT) at the zonal 

level. The result related to VMT represents the higher crash risk faced by non-motorized 

(pedestrian and bicyclist) road user groups with increasing VMT (34). Further, the results in 

Table 7 indicate reduced crash propensity for all road users (motorized and non-motorized) with 

higher proportion of heavy vehicle VMT at the zonal level. With respect to total population, the 

joint model estimation results reveal that traffic related crashes are positively associated with 

higher zonal population (see 35-37). Also the model estimations show a positive correlation 
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between population density and crashes involving both vans and cars. In terms of square miles 

the results reveal a higher probability for cars, vans heavy trucks, and light trucks crashes in the 

STAZs with higher square mileage. 

Socio-economic characteristics: The results for the number of commuters based on 

different commute modes are also found to be significantly influencing the traffic related crash 

risk in current study context. An increase in number of transit and walk commuters increases the 

likelihood of traffic related crashes at the STAZ level. The result in non- motor crash model 

intuitively suggests higher demand and supply of public transit in zones with higher number of 

transit commuters which are determinants of pedestrian activities (41). Moreover, bicycle 

exposure from higher cycle-transit integrated mode share (popularly known as “bike-and-ride”) 

for access and egress at transit stations (42). For non-motorized, the results can be related to the 

frequent stops made by public transit especially when there is no designated public transit lane. It 

is interesting to note that non-motorized commute variable has a larger impact on both the 

number of transit and walk commuter count events relative to non-motorized crash count events. 

The result associated with bicycle commuters is positively correlated with crashes for non- motor 

users. However, it is negatively correlated with vans and heavy trucks. Our study also found that 

more employment within a TAZ leads to a higher probability of non-motor, van and heavy 

trucks. However, increasing proportion of industrial employment has negative association with 

non-motor crashes at the STAZ level but not on heavy trucks. Also, an increase in school 

enrollment density in a STAZ increases the likelihoods of crash risk in count model components 

for both non-motorized and motorized road user group. 
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Road network characteristics: Proportion of urban area, reflects that an increase in the 

proportion of urban area in a zone increases the likelihood of traffic related crash risk. The 

results associated with functional class of roadways show that pedestrian, bicycle, and vans’ 

crash risk are positively correlated with higher proportion of arterial and local roads while both 

light and heavy trucks are negatively correlated. Consistent with several previous studies (43, 

44), our study results also show that higher density of signalized intersections is positively 

associated with more traffic related crashes. With respect to bike lane length, the model 

estimation results indicate higher likelihood of non-motorized and car crashes with increasing 

length of bike lane in a zone. In terms of sidewalk length the results shows that an increase of the 

sidewalk length will increase the probability of car and heavy trucks.   

Land use attributes: The result associated with hotel/motel/timeshare room density in STAZ 

reflects that an increase in hotel/motel/timeshare room density increases the likelihood of non-

motorized, cars and vans’ crash risk, presumably indicating higher level of non-motorized road 

user activity in the proximity of these facilities in a zone (45, 46). Moreover, tourists/visitors 

might be less familiar with local driver behavior and road regulations (47), which might further 

exacerbate crash risk for these road user groups. The possibilities of traffic related crash risk 

decreases with increasing distance to the nearest urban area from the STAZ. STAZs close to 

urban area are associated with shorter, more walkable and/or cyclable travel distances which in 

turn increases the exposure of non-motorized road user groups resulting in increased likelihood 

of crash risks.
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Table 6.1 Traffic related crashes Joint Model Estimation Results – Frank Copula 

 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Constants -6.3627 -31.56 0.7475 22.916 -2.3967 -38.249 0.7475 22.916 -0.3777 -3.856

Alpha 0.4571 35.396 0.6326 63.923 0.6066 46.362 0.6657 55.556 0.6708 39.558

VMT 2.57 54.149 2.174 77.258 2.2562 61.04 2.174 77.258 2.267 45.497

Square Miles - - 0.3608 8.608 0.2539 6.006 0.3608 8.608 0.402 8.832

Proportion of heavy vehicles -2.1472 -9.22 -2.1008 -13.662 -1.1739 -6.258 -2.1008 -13.662 - -

Population density 0.1534 25.596 - - 0.0435 8.055 - - - -

Total population 0.4258 10.281 - - 0.3896 7.712 - - - -

Proportion of families with no vehicle - - - - - - - - 0.6549 8

Bicycle commuters 3.6352 12.079 - - -0.0358 -4.444 - - -0.0453 -4.939

Public transit commuters 3.5891 17.295 0.1351 24.351 0.0909 13.626 0.1351 24.351 0.0599 8.283

Walk commuters 1.4997 7.293 0.0977 16.843 0.0461 6.288 0.0977 16.843 - -

Total employment 0.1434 20.319 - - 0.1165 20.613 - - 0.1061 16.105

Proportion of service employment - - - - - - - - - -

Proportion of commercial employment -0.0726 -2.053 0.2537 7.545 - - 0.2537 7.545 -0.2152 -4.666

Proportion of industrial employment -0.0924 -2.1 - - - - - - 0.6553 15.661

School enrollment density 0.0136 4.669 0.035 12.341 0.0162 5.235 0.035 12.341 - -

Proportion of urban area 0.3913 10.875 0.4885 18.57 0.4178 13.752 0.4885 18.57 0.0905 3.024

Proportion of local roads - - - - - - - - - -

Proportion of collector roads 1.9697 10.463 -0.3913 -14.552 - - -0.3913 -14.552 -2.0915 -23.262

Proportion of arterial roads 2.3191 12.29 - - 0.6474 15.38 - - -1.7359 -20.164

Traffic signal density 0.1789 10.113 0.1713 8.736 0.2212 12.041 0.1713 8.736 0.0986 4.432

Bike Lane length 0.0927 4.093 0.0328 1.274 - - 0.0328 1.274 - -

Sidewalk length - - 0.0951 5.713 - - 0.0951 5.713 0.0206 1.135

Density of hotel/motel/timeshare room 0.023 6.251 0.0185 5.394 - - 0.0185 5.394 - -

Distance to nearest urban area -0.0535 -1.764 -0.3403 -18.812 -0.2745 -11.236 -0.3403 -18.812 -0.173 -6.988

over desperstion 

Exposure measures

Socio-economic characteristics

Road network characteristics

Land use attributes

7.3159

Variable Names
Non-Motor Car Van Light Trucks Heavy Trucks
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CHAPTER SEVEN: CONCLUSIONS 

This thesis formulated and estimated a multivariate count model by developing two multivariate 

models based on copula methodology. First, a copula based bivariate negative binomial model for 

pedestrian and bicyclist crash frequency analysis is developed. Second, a multivariate negative binomial 

model for crashes involving non-motorized road users, passenger cars, vans, light trucks and heavy 

trucks is proposed. To the best of the authors’ knowledge, this is the first attempt to employ such copula 

based bivariate count models for safety literature. Moreover, the study contributes to safety literature by 

examining the influence of several exogenous variables (exposure measures, socio-economic 

characteristics, road network characteristics and land use attributes) on traffic related crash count events 

at the Statewide Traffic Analysis Zone (STAZ) level for the state of Florida. The empirical analysis 

involves estimation of models by using six different copula structures: 1) Gaussian, 2) FGM, 3) Clayton, 

4) Gumbel, 5) Frank and 6) Joe. The comparison between copula and the independent models, based on 

information criterion metrics, confirmed the importance of accommodating dependence between 

pedestrian and bicycle crash count events in the macro-level analysis.  

The most suitable copula model is obtained for Clayton copula with parametrization for dependence 

profile. The model estimates were also augmented by conducting policy analysis including elasticity 

analysis and a spatial representation of hotspots for pedestrian and bicycle separately. Elasticity effects 

indicated that exogenous variables exhibit differences for the expected number of pedestrian and bicycle 

crash counts. Moreover, the most significant variable in terms of increase in the expected number of 

both pedestrian and bicycle crash counts included: VMT, total population and total employment.  

The spatial distribution of hotspots indicated that higher pedestrian and bicycle crash prone zones 

are dispersed throughout Florida with evidence of clustering along the urban zones. Overall, the policy 
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analysis conducted provided an illustration on how the proposed model can be applied to determine the 

critical factors contributing to increase in pedestrian and bicycle crash counts.  
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APPENDIX: TABLES   
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APPENDIX 5.3 Pedestrian-Bicycle Poisson Model Estimation Results 

Variable Names 
Pedestrian Bicycle 

Estimate t-stat Estimate t-stat 

Constants 
-4.000 

-

41.921 -4.017 

-

40.978 

Exposure measures         

VMT 0.193 26.525 0.219 28.173 

Proportion of heavy vehicles 
-0.934 -3.410 -3.474 

-

10.914 

Proportion of families with no 

vehicle 1.385 19.281 0.477 5.577 

Socio-economic characteristics         

Bicycle commuters 0.023 4.008 0.140 23.455 

Public transit commuters 0.208 37.945 0.110 19.813 

Walk commuters 0.082 12.133 0.104 14.914 

Total employment 0.166 19.817 0.141 16.437 

Proportion of industrial 

employment -0.278 -6.039 -0.234 -4.884 

School enrollment density 0.016 5.527 0.010 3.507 

Road network characteristics         

Proportion of urban area 0.185 4.288 0.562 11.040 

Proportion of local roads 0.723 14.333 0.562 14.197 

Proportion of arterial roads 0.155 2.460 - - 

Traffic signal density 0.226 13.251 0.178 9.749 

Sidewalk length 0.264 19.260 0.254 18.431 

Land use attributes         

Density of hotel/motel/timeshare 

room 0.020 5.783 - - 

Distance to nearest urban area 
-0.049 -8.718 -0.096 

-

10.258 

 

 

 

 

 

 

 

 

 

 



33 

 

 

APPENDIX 5.4 Pedestrian-Bicycle Negative Binomial Model Estimation Results 

Variable Names 
Pedestrian Bicycle 

Estimate t-stat Estimate t-stat 

Constants -4.350 -35.553 -4.274 -32.588 

Exposure measures 
    

VMT 0.124 15.002 0.136 15.292 

Proportion of heavy vehicles -0.892 -2.389 -3.275 -7.556 

Total population 0.141 11.986 0.146 11.587 

Proportion of families with no 

vehicle 1.337 11.713 0.360 2.806 

Socio-economic characteristics 
    

Bicycle commuters 0.029 3.015 0.138 13.595 

Public transit commuters 0.171 20.149 0.098 10.634 

Walk commuters 0.062 5.984 0.081 7.371 

Total employment 0.178 15.208 0.124 10.171 

Proportion of industrial 

employment -0.238 -3.499 -0.169 -2.304 

School enrollment density 0.012 2.889 0.012 2.644 

Road network characteristics 
    

Proportion of urban area 0.265 4.748 0.637 9.763 

Proportion of local roads 0.572 8.317 0.545 7.332 

Proportion of arterial roads 0.314 3.720 0.337 3.708 

Traffic signal density 0.289 10.828 0.189 6.388 

Sidewalk length 0.269 12.332 0.297 12.807 

Land use attributes 
    

Density of hotel/motel/timeshare 

room 0.029 5.288 0.016 2.735 

Distance to nearest urban area -0.038 -6.309 -0.085 -8.556 
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APPENDIX 6.2 Traffic related crashes Poisson Model Estimation Results 

 
 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Constants -7.152 -31.995 1.990 236.299 -4.402 0.056 -1.479 -51.953 -3.749 -32.430

VMT 2.818 39.179 - - 4.339 0.042 4.313 177.075 3.677 44.709

Square Miles 0.210 4.540 - - 0.405 0.022 - - 0.106 4.592

Proportion of heavy vehicles -2.079 -8.520 - - - - -2.001 -27.189 4.388 27.429

Population density 0.165 19.580 0.117 85.647 0.229 0.005 - - - -

Total population 0.146 8.022 - - 0.465 0.010 - - 0.079 3.495

Proportion of families with no vehicle 0.916 13.698 -1.335 -69.472 - - - - 0.900 11.838

Bicycle commuters - - 0.054 33.275 0.031 0.003 - - -0.020 -3.378

Public transit commuters 0.119 25.099 0.159 109.805 - - - - 0.064 12.731

Walk commuters 0.084 15.522 0.140 83.972 - - 0.117 64.856 0.027 4.554

Total employment 0.153 21.567 - - - - - - 0.184 27.000

Proportion of service employment - - - - - - -0.053 -5.058 - -

Proportion of commercial employment -0.169 -5.003 0.218 24.531 - - - - -0.310 -7.955

Proportion of industrial employment -0.156 -3.843 - - - - - - 0.507 14.482

School enrollment density - - 0.044 65.414 - - 0.026 29.892 - -

Proportion of urban area 0.180 4.339 - - 0.268 0.022 0.155 15.351 - -

Proportion of local roads - - - - - - - - - -

Proportion of collector roads 1.973 10.028 - - -0.535 0.027 -0.764 -50.416 -1.260 -16.754

Proportion of arterial roads 2.186 11.226 - - - - -0.453 -36.514 -0.957 -13.484

Traffic signal density 0.256 19.249 0.227 79.678 0.225 0.006 0.275 64.679 0.214 14.347

Bike Lane length -0.069 -4.860 - - - - 0.021 3.926 - -

Sidewalk length 0.319 26.943 - - - - 0.175 40.485 0.145 11.603

Density of hotel/motel/timeshare room 0.021 7.562 -0.007 -8.601 - - - - - -

Distance to nearest urban area -0.406 -7.593 - - -0.367 0.027 -0.295 -26.723 -0.270 -10.576

Exposure measures

Socio-economic characteristics

Road network characteristics

Land use attributes

Variable Names
Non-Motor Car Van Light Trucks Heavy Trucks
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APPENDIX 6.3 Traffic related crashes Negative Binomial Model Estimation Results 

 
 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Constants -7.0446 -25.201 0.5666 11.225 -3.1542 -34.44 -0.0998 -1.726 -1.047 -5.563

VMT 2.4728 29.227 2.0442 53.117 2.1779 38.609 2.5286 59.338 2.2102 24.559

Square Miles - - 0.4159 7.532 0.2322 4.431 0.4668 8.178 0.337 6.043

Proportion of heavy vehicles -2.1951 -5.881 -2.1703 -9.205 -1.2117 -4.277 -2.1916 -8.787 - -

Population density 0.1564 15.181 - - 0.0584 7.45 - - - -

Total population 0.7792 16.608 - - 0.6686 14.186 1.3936 28.097 0.296 5.676

Proportion of families with no vehicle - - - - - - - - 0.5992 4.694

Bicycle commuters 3.6506 7.703 - - -0.0295 -3.135 - - -0.0317 -2.915

Public transit commuters 3.6235 12.408 0.1862 26.8 0.1275 16.028 - - 0.0884 9.69

Walk commuters 1.4721 4.46 0.1185 15.404 0.0538 5.837 - - - -

Total employment 0.2564 23.616 - - 0.2102 25.496 - - 0.2236 21.87

Proportion of service employment - - - - - - - - - -

Proportion of commercial employment -0.2523 -4.038 0.2316 5.073 - - 0.1397 2.84 -0.3588 -5.351

Proportion of industrial employment -0.2527 -3.552 - - - - - - 0.6623 10.391

School enrollment density 0.0162 3.857 0.0395 11.542 0.0162 4.186 0.0338 9.126 - -

Proportion of urban area 0.2329 4.004 0.3719 10.277 0.1836 4.115 0.2788 7.302 -0.2767 -5.984

Proportion of local roads - - - - - - - - - -

Proportion of collector roads 1.6779 6.623 -0.5081 -11.544 - - -0.6926 -13.804 -2.4044 -14.599

Proportion of arterial roads 2.1038 8.39 - - 0.5214 8.104 -0.1561 -3.151 -1.8959 -11.993

Traffic signal density 0.3357 12.959 0.1774 9.305 0.3391 13.945 0.3734 14.002 0.203 7.142

Bike Lane length 0.1262 4.596 0.0764 2.794 - - - - - -

Sidewalk length - - 0.2538 12.576 - - - - 0.2059 8.554

Density of hotel/motel/timeshare room 0.0266 4.997 0.0206 4.718 - - 0.0301 6.429 - -

Distance to nearest urban area -0.2574 -4.497 -0.468 -18.276 -0.3743 -9.601 -0.3282 -12.103 -0.2765 -6.892

over desperstion 0.5257 30.568 0.7197 59.472 0.6487 43.629 0.7783 56.812 0.7085 32.511

Heavy Trucks

Exposure measures

Socio-economic characteristics

Road network characteristics

Land use attributes

Variable Names
Non-Motor Car Van Light Trucks
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