

University of Central Florida

Electronic Theses and Dissertations, 2004-2019

2016

Bioremediation of a Trichloroethene DNAPL Source Zone Utilizing a Partitioning Electron Donor - Field Implementation

Joseph Bartlett University of Central Florida

Part of the Environmental Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Bartlett, Joseph, "Bioremediation of a Trichloroethene DNAPL Source Zone Utilizing a Partitioning Electron Donor - Field Implementation" (2016). *Electronic Theses and Dissertations, 2004-2019.* 5255. https://stars.library.ucf.edu/etd/5255

BIOREMEDIATION OF A TRICHLOROETHENE DNAPL SOURCE ZONE UTILIZING A PARTITIONING ELECTRON DONOR – FIELD IMPLEMENTATION

by

JOSEPH KINGSBERY BARTLETT III, E.I. B.S. in Environmental Engineering, University of Central Florida, 2010 B.S. in Civil Engineering, University of Central Florida, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering in the Department of Civil, Environmental, Construction Engineering in the College of Engineering & Computer Science at the University of Central Florida Orlando, Florida

Fall Term 2016

Major Professor: Andrew Randall

ABSTRACT

Trichloroethene (TCE) is a chlorinated volatile organic compound (CVOC) that can be found in industrial and household products. It is typically used as a solvent or degreaser. TCE can have detrimental health impacts and is known to be carcinogenic to humans. Federal and state regulatory drivers determine the need to assess and remediate soil and groundwater contaminated with CVOCs. There are many different methods for remediation; however, bioremediation has the ability to breakdown TCE all the way to harmless gasses (ethene and ethane).

Bioremediation requires dechlorinating microbes (indigenous or augmented), electron donor (food source), and an electron acceptor (CVOCs). Electron donors are typically injected into the target area and are distributed naturally throughout the subsurface. A partitioning electron donor (PED) has the ability to partition from the dissolved phase into low permeability zones and/or dense non-aqueous phase liquids (DNAPLs) (i.e. source zones), and then be slowly released and readily metabolized at the DNAPL:water interface.

This thesis summarizes the first field scale PED implementation with the main research objective of evaluating whether utilizing a PED for bioremediation of a TCE source zone is achievable. Based on laboratory studies, n-butyl acetate (nBA) was selected as the PED for application in a TCE source area, selected at Cape Canaveral Air Force Station's Launch Complex 34, identified as Hot Spot 1. Hot Spot 1 has a zone of high concentration TCE in a low permeability clay layer at a depth of approximately 40 feet below land surface (ft BLS). Implementation included the recirculation of groundwater above and below the clay layer without PED injection for comparative analysis (baseline flux), then with PED injection in, above, and below the clay layer (system operation phase). The groundwater was recirculated using a solar powered recirculation system, which consisted of a pair of extraction wells in the center of the treatment area, screened above and below the low permeability layer, and a set of five peripheral injection well pairs, similarly screened, used to create an inward hydraulic gradient and promote horizontal flow across the top and base of the clay layer. Groundwater concentrations in the treatment area were monitored using three monitoring well clusters (each with six depth intervals ranging from 23 to 61 ft BLS) and existing monitoring wells in the treatment area.

The groundwater recirculation system was operated, without addition of PED, for approximately four weeks to establish the baseline flux condition. PED was then introduced to the subsurface by injecting 34,000 gallons of a solution containing nBA (3,000 mg/L) and conservative tracers (bromide and/or iodide) using direct push technology (DPT) at 20 locations from approximately 23 to 62 ft BLS. Confirmation sampling (DPT groundwater and monitoring well sampling) was conducted to assess the PED distribution after injection activities. The recirculation system remained off after PED injection for approximately four weeks to allow the PED to partition into the DNAPL and to facilitate the acclimation and establishment of biomass within the treatment area. The recirculation system was then restarted and operated for approximately one year. Groundwater sampling was performed regularly to assess mass flux and microbial reductive dechlorination.

iii

PED amendment was successfully injected above, in, and below the low permeability layer, as evidenced by positive detections of nBA from soil and groundwater sampling within the treatment area immediately following the injection event. The implementation was also successful in reducing contaminant mass from both soil and groundwater.

CVOC mass removed during the baseline flux phase (pre-PED injection; 14 March 2011 to 18 April 2011) was calculated based on groundwater sampling data and totaled 14 pounds (lbs). All of the mass removed during the baseline flux phase was from the high permeability layer, indicating that mass removed was dissolved phase mass above and below the clay layer. Mass removal was likely a result of extraction and dilution from operation of the recirculation system. The mass removal rate during the baseline flux phase was approximately 0.40 pounds per day (lbs/day).

CVOC mass removed during the system operation phase (post-PED injection; 9 August 2011 to 11 September 2012) was calculated based on groundwater and soil sampling data and totaled 110 lbs. Of the 110 lbs removed, 78 lbs of CVOC mass was removed from the high permeability layer and 32 lbs was removed from the low permeability layer, indicating that not only dissolved phase mass in the high permeability layer was removed, but source zone material sorbed into the low permeability layer was removed as well. Mass removed from the low permeability layer was likely a result degredation (ie. reductive dechlorination) at and around the DNAPL:water interface. The mass removal rate during the system operation phase was approximately 0.28 lbs/day. The higher rate of removal during the baseline flux phase is likely due to the initial

iv

removal of a significant amount of dissolved phase CVOCs and not the mass sorbed into the low permeability layer.

In general, TCE and *cis*-1,2-dichloroethene (cDCE) concentrations decreased during the baseline flux phase with no increase in vinyl chloride (VC) concentration, indicating removal via extraction and dilution and not reductive dechlorination. Following the PED injection, TCE and cDCE concentrations generally decreased with increases observed in VC concentrations, indicative of reductive dechlorination.

Ethene concentration was monitored to assess complete dechlorination from TCE to ethene. Average ethene concentration detected in samples collected from treatment zone monitoring wells increased from 52.8 micrograms per liter (μ g/L) (pre-injection; April 2011) to 408 μ g/L (September 2012), indicating complete dechlorination of CVOCs was occurring.

In addition, dechlorinating microbial biomass increased significantly, as evidenced by increases in average *Dhc* (dechlorinating microbial culture) and *vcrA* (specific gene of culture responsible for breaking down VC through to ethene) concentrations detected in samples collected from treatment zone monitoring wells; *Dhc* increased from 8.5×10^6 gene copies/L (pre-injection; April 2011) to 5.0×10^7 gene copies/L (September 2012) and *vcrA* increased from 5.0×10^3 gene copies/L (April 2011) to 6.8×10^7 gene copies/L (September 2012).

TOC concentration was shown to generally increase following the injection activities, then decrease through the system operation period, indicating the electron donor was successfully

injected into the subsurface, and was being utilized by the indigenous dechlorinating microbial population. Remaining TOC at the site was minimal, with an average TOC concentration of 21 mg/L (September 2012) detected in samples collected from treatment zone monitoring wells, decreasing from 250 mg/L (August 2011) just following injection. If reductive dechlorination were to continue to occur, more electron donor would be needed.

The reduction of CVOC concentrations at the site are likely due to reductive dechlorination as a result of the PED amendment injection, as evidenced by: (i) the production of daughter products relative to the degradation of TCE; (ii) the production of ethene; (iii) the production of dechlorinating microbial mass; and (iv) the reduction of electron donor.

Although effective, nBA was utilized and depleted quicker than an industry electron donor would be expected to last, depleting within 12 months, as opposed to two to three years. Based on this alone, it appears that nBA would not be a good candidate for full scale implementation at this or other sites; however, to provide a true comparative analysis, side-by-side test plots would be recommended at the site, one utilizing nBA and one utilizing a standard substrate. This would ensure both electron donor options are being subjected to the same geophysical and geochemical settings and the same or similar contaminant concentrations.

vi

ACKNOWLEDGMENTS

I would like to thank Dr. Andrew Randall, Dr. Debra Reinhart, Dr. Dingbao Wang, and Dr. Rebecca Daprato for serving on my thesis defense committee and for their guidance through my graduate studies.

The data presented in this thesis was obtained from field activities carried out by Geosyntec Consultants in collaboration with National Aeronautics and Space Administration (NASA) at Cape Canaveral Air Force Station, Florida. I played a major role in the execution of the project field work, data analysis, and interpretation of results. Parts of this thesis have previously been presented in NASA's 2013 Report *Launch Complex 34, SWMU CC054, Hot Spot 1 Interim Measures Implementation Report: Partitioning Electron Donor Demonstration*; a report which I authored under the supervision of committee member Dr. Daprato.

Accordingly, I would like to thank Geosyntec Consultants for allowing me the opportunity and support to pursue higher education while maintaining a working career and NASA's Kennedy Space Center Remediation Team for allowing me and Geosyntec the opportunity to perform and share this pioneering work.

TABLE OF CONTENTS

ABSTRACTii
ACKNOWLEDGMENTS
TABLE OF CONTENTS viii
LIST OF FIGURES xv
LIST OF TABLES xvi
LIST OF ABBREVIATIONSxviii
CHAPTER 1: INTRODUCTION 1
Overview 1
Research Objectives
CHAPTER 2: BACKGROUND
Trichloroethene
Regulatory Drivers
Bioremediation
Reductive Dechlorination7
Dechlorinating Bacteria
Electron Donors
Partitioning Electron Donors

n-Butyl Acetate	11
Microcosm Study	11
Column Study	
Treatability Study	
Bioremediation of DNAPLs	
Site Selection	17
Summary of Site Geology and Hydrogeology	
CHAPTER 3: FIELD IMPLEMENTATION	
Overview	
Installation	
Baseline Soil Sampling	
Recirculation Extraction and Injection Well Installation	
Monitoring Bundle Well Installation	
Recirculation System Installation	
Baseline Groundwater Sampling	
Baseline Flux Measurement Phase	
Baseline Flux System O&M	
Baseline Flux Groundwater Sampling	
Baseline Flux GAC Effluent Sampling	

Post-Baseline Flux Groundwater Sampling	
PED Injection	
PED Injection Amendment Batch Sampling	
Post-PED Injection Groundwater Sampling	
Biomass Growth Phase	39
Biomass Growth Phase Groundwater Sampling	40
Biomass Growth Phase Soil Sampling	41
System Operation Phase	41
System O&M	
System Operation Phase Groundwater Sampling	
System Operation Phase Soil Sampling	47
Post System Operation Groundwater Sampling	47
Recirculation System Removal	47
CHAPTER 4: RESULTS	
Overview	
Baseline Sampling Results	
Baseline Soil Sampling Results	
Baseline Groundwater Sampling CVOC Results	50
Baseline Groundwater Sampling Field Geochemical Parameter Results	50

Baseline Flux Measurement Phase Results	51
Baseline Flux Measurement Groundwater Sampling CVOC Results	52
Baseline Flux Measurement Groundwater Sampling nBA, TOC, and VFA Results	53
Baseline Flux Measurement Groundwater Sampling Dhc and vcrA Results	55
Baseline Flux Measurement Groundwater Sampling Geochemical Results	55
Dissolved Gases Evaluation	56
Nitrate and Nitrite Evaluation	56
Sulfate and Sulfide Evaluation	56
Chloride and Alkalinity Evaluation	57
Bromide and Iodide (Tracers) Evaluation	57
Baseline Flux Measurement Groundwater Sampling Dissolved Metals Results	58
Baseline Flux Measurement Groundwater Sampling Field Geochemical Results	58
Baseline Flux Measurement GAC Effluent Results	59
Baseline Flux Measurement Recirculation System Operation Summary	59
PED Injection Sampling Results	60
PED Injection Amendment Batch Sampling Results	60
PED Injection DPT Groundwater Sampling Results	61
PED Injection Monitoring Well Groundwater Sampling Results	62
Biomass Growth Results	63

Biomass Growth Groundwater Sampling CVOC Results	
Biomass Growth Groundwater Sampling nBA, TOC, AND VFA Results	64
Biomass Growth Groundwater Sampling Tracer Results	65
Biomass Growth Groundwater Sampling Geochemical Results	65
Dissolved Gases Evaluation	65
Sulfate and Sulfide Evaluation	66
Chloride and Alkalinity Evaluation	67
Biomass Growth Groundwater Sampling Dissolved Metals Results	67
Biomass Growth Groundwater Sampling Field Geochemical Results	67
Biomass Growth Soil Sampling Results	68
System Operation Results	69
System Operation Groundwater Sampling CVOC Results	70
Extraction Well Sampling Results	70
Monitoring Well Sampling Results	72
System Operation Groundwater Sampling nBA, TOC, AND VFA Results	73
Recirculation Extraction Well Sampling	73
Monitoring Well Sampling	75
System Operation Groundwater Sampling Tracer Results	76
System Operation Groundwater Sampling Dhc and vcrA Results	76

Operation Groundwater Sampling Geochemical Results	77
Dissolved Gases Evaluation	77
Sulfate and Sulfide Evaluation	
Nitrate and Nitrite Evaluation	78
Chloride and Alkalinity Evaluation	79
System Operation Groundwater Sampling Dissolved Metals Results	79
System Operation Groundwater Sampling Field Geochemical Results	80
UIC Monitoring Well Sampling Results	80
System Operation Soil Sampling Results	
Recirculation System Operation Summary	
Post System Operation Groundwater Sampling Results	
CHAPTER 5: DISCUSSION AND CONCLUSIONS	130
Overview	130
Mass Removed and Mass Removal Rates	130
Mass Removed	130
Mass Removal Rates	132
Evidence of Reductive Dechlorination	133
Conclusions and Recommendations	135
APPENDIX A: nBA MSDS	137

APPENDIX B: DRILLING TECHNIQUES	144
APPENDIX C: PHOTOGRAPHIC RECORD	152
APPENDIX D: VIRONEX INJECTION SERVICES REPORT	161
APPENDIX E: O&M FORMS	180
APPENDIX F: CVOC MASS CALCULATIONS	225
APPENDIX G: TREND GRAPHS	228
REFERENCES	253

LIST OF FIGURES

Figure 1: Structure of TCE and Daughter Products
Figure 2: Conceptual Model of the Migration and Fate of DNAPL 4
Figure 3: Biodegredation Pathway for TCE Under Anaerobic Conditions
Figure 4: Conceptual Model of PED Partitioning Into and Out of DNAPL
Figure 5: Launch Complex 34 Location Map 19
Figure 6: Hot Spot 1 Location Map 20
Figure 7: Hot Spot 1 Generalized Lithology
Figure 8: Recirculation Extraction, Recirculation Injection, and Monitoring Well Locations 24
Figure 9: Bundle Monitoring Well Construction Details
Figure 10: Process and Instrumentation Diagram of Solar Powered Recirculation System 30
Figure 11: PED Injection and DPT Groundwater Sampling Locations
Figure 12: Biomass Growth Phase, Month 6, and Month 12 Soil Sampling Locations
Figure 13: Hollow Stem Auger Rig and Tooling 146
Figure 14: Mud Rotary Technique 148
Figure 15: Geoprobe DPT Rig 7822DT 150

LIST OF TABLES

Table 1: Properties of TCE and Daughter Products
Table 2: Regulatory Criteria for TCE and Daughter Products 6
Table 3: Baseline Flux Measurement Sampling Plan 32
Table 4: Post Baseline Mass Flux Measurement Sampling Plan
Table 5: Electron Donor Dosing and Injection Volume Calculations 36
Table 6: Radius of Influence Calculations for Individual Injection Intervals 36
Table 7: Biomass Growth Phase Sampling Plan
Table 8: System Operation Sampling Plan – Startup to Month 6
Table 9: System Operation Sampling Plan – Month 7 to Month 12
Table 10: Summary of Soil Sampling Results: Chlorinated Volatile Organic Compounds 87
Table 11: Summary of Soil Sampling Results: Total Organic Carbon and Fraction Organic
Carbon
Table 12: Summary of Groundwater Sampling Results: Chlorinated Volatile Organic
Compounds
Table 13: Summary of Groundwater Sampling Results: Field Geochemical Parameters
Table 14: Summary of Groundwater Sampling Results: TOC and VFAs
Table 15: Summary of Groundwater Sampling Results: Dehalococcoides and Vinyl Chloride
Reductase
Table 16: Summary of Groundwater Sampling Results: Geochemical Parameters 118
Table 17: Summary of Groundwater Sampling Results: Dissolved Metals 123

Fable 18: PED Injection Amendment Sampling Results
Table 19: Summary of DPT Groundwater Sampling Results: Chlorinated Volatile Organic
Compounds 128
Table 20: Summary of Soil Sampling Results: Dehalococcoides and Vinyl Chloride Reductase
Fable 21: Hollow Stem Auger Drilling Summary 147
Fable 22: Mud Rotary Drilling Summary
Fable 23: Direct Push Technology Drilling Summary 151

LIST OF ABBREVIATIONS

CCAFS	Cape Canaveral Air Force Station
CVOC	chlorinated volatile organic compound
cDCE	cis-1,2-dichloroethene
Dhc	dehalococcoides ethenogenes
DNAPL	dense non-aqueous phase liquid
DPT	direct push technology
EOS	Emulsified Oil Substrate
ESB	engineering support building
ft BLS	feet below land surface
ft/d	feet per day
F.A.C.	Florida Administrative Code
FDEP	Florida Department of Environmental Protection
f_{oc}	fraction of organic carbon
gene copies/L	gene copies per liter
gpm	gallons per minute
GAC	granular activated carbon
GCTL	groundwater cleanup target level
HDPE	high density polyethylene
HRC	Hydrogen Release Compound
HSA	hollow stem auger

Ι	associated result is between the laboratory MDL and PQL
in	inch
kg	kilogram
Koc	organic carbon-water partitioning coefficient
lbs	pounds
lbs/day	pounds per day
LC34	Launch Complex 34
IARC	International Agency for Research on Cancer
MCL	maximum contaminant level
MCLG	MCL goals
MDL	method detection limit
MEE	methane, ethane, and ethene
μg/L	micrograms per liter
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
mM	millimolar
mV	millivolt
NADC	natural attenuation default concentration
NASNI	Naval Air Station North Island
nBA	n-butyl acetate
nHEX	n-hexonal
O&M	operation and maintenance
PED	partitioning electron donor

PCE	tetrachloroethene			
PID	photoionization detector			
P&ID	process and instrumentation diagram			
ppb	parts per billion			
PQL	practical quantitation limit			
psi	pounds per square inch			
PVC	polyvinyl chloride			
ROI	radius of influence			
SABRE	Source Area Bioremediation			
SCTL	soil cleanup target level			
SRS TM	Slow Release Substrate			
SU	standard unit			
SWMU	Solid Waste Management Unit			
TCE	trichloroethene			
TOC	total organic carbon			
UIC	underground injection control			
U.S. EPA	United States Environmental Protection Agency			
VC	vinyl chloride			
vcrA	vinyl chloride reductase A			
VFA	volatile fatty acid			

CHAPTER 1: INTRODUCTION

Overview

Trichloroethene (TCE) is a material that can be found in industrial and household products, which if directly exposed to, can be have negative impacts on human health. Because of this, regulatory drivers have been established which drives the need to cleanup, or remediate, existing groundwater or soil impacts. Of the different remedial strategies available, bioremediation, utilizing microorganisms to breakdown targeted compounds, is capable of degrading TCE to a harmless gas (ethene). Bioremediation of high concentration TCE source areas is not typical; however, is achievable by utilizing the correct microorganisms and electron donor, or substrate. This project focuses on the utilization of a partitioning electron donor to facilitate the bioremediation of a TCE source zone as implemented in the field.

Research Objectives

The purpose of this project is to evaluate whether utilizing a partitioning electron donor (PED) for bioremediation of a TCE source zone is achievable. Success criteria is based on confirmation of successful injection of PED into the treatment area (above, in, and below a low-permeability zone), observable reduction in contaminant concentrations in both soil and groundwater, observable utilization of electron donor, and observable complete dechlorination of TCE to ethene.

CHAPTER 2: BACKGROUND

Trichloroethene

TCE is a chlorinated solvent that is a colorless liquid, at room temperature, and is characterized as having a sweet odor and sweet, burning taste. TCE was developed to replace its more flammable predecessors and is now mainly used as a degreasing agent for industrial metal parts, although it can be found in some household items such as paint removers, adhesives, and spot removers (ATSDR 1997). The structure of TCE and its daughter products is shown in Figure 1.

Figure 1: Structure of TCE and Daughter Products (Roberts 2008)

TCE can enter the environment through evaporation from factories that conduct degreasing activities, from chemical waste disposal sites, or from accidental spills. Total on and off site disposal and other releases reported to the United States Environmental Protection Agency (U.S. EPA) have decreased from greater than 57 million pounds (lbs) in 1988 to about 2.3 million lbs

reported in 2012 (U.S. EPA 2014a). The fate and transport of TCE and other chlorinated solvents is dependent upon physical and chemical characteristics of the compounds, including aqueous solubility, liquid density, and the soil organic carbon-water partitioning coefficient (K_{oc}) which determine how the compound reacts with the surrounding matrix. Physical properties of TCE and its daughter products are provided in Table 1.

Compound	Molecular Weight (g/mol)	Aqueous Solubility (mg/L)	Density (g/cm ³)	K _{oc} (L/kg)
Trichloroethene (TCE)	131.4	1,100	1.46	166
<i>cis</i> -1,2-dichloroethene (cDCE)	96.9	3,500	1.28	35.5
Vinyl Chloride (VC)	62.5	2,700	0.9	18.6

Table 1: Properties of TCE and Daughter Products (U.S. EPA 1996, Pankow and Cherry 1996)

The low aqueous solubility of TCE causes the compound to often serve as a recalcitrant source for dissolved phase groundwater contamination for many years in the form of a dense, nonaqueous-phase liquid (DNAPL) (ITRC 2003). DNAPL travels downward through the pore spaces of soil, moving more readily through a soil with high hydraulic conductivity, such as loose sands or gravels, and tending to pool on top of, or slowing partition into, soils with low hydraulic conductivity, such as silts or clay confining units, as presented in Figure 2. These pools serve as a DNAPL source zone where dissolved plumes can originate from. These pools contain DNAPL that can occupy up to 70 percent of the pore space (Keuper et al. 2003).

The distribution of DNAPL through the subsurface is not uniform due to the pore size distribution and other physical characteristics of the soil matrix. As it is traveling downward,

some DNAPL will be retained within pore spaces, held by capillary forces and interfacial tensions caused by the DNAPLs hydrophobic properties and groundwater interaction. This trapped DNAPL is known as ganglia or residual DNAPL and, much like the pools, can also be characterized as a source zone. However, unlike the DNAPL pools, residual DNAPL saturation typically ranges from 5 to 15 percent of the pore space (ITRC 2003).

Figure 2: Conceptual Model of the Migration and Fate of DNAPL (ITRC 2003)

Aqueous phase plumes originate from the source zones relatively readily due to the low K_{oc} of the chlorinated solvents. A low K_{oc} indicates that the compound will not strongly sorb to the soil matrix and are therefore, not significantly retard with respect to groundwater flow. The rapid

rate of chlorinated solvent DNAPL migration and low degree of sorption both contribute in creating a formidable groundwater contaminant issue in need of accurate assessment and proper remediation.

Regulatory Drivers

TCE has been shown to negatively affect the health of humans who have been exposed to it, either by inhalation, absorption, or ingestion, and thus is a cause for concern when discovered in the environment. As recent as 2012, the International Agency for Research on Cancer (IARC) has classified TCE as "carcinogenic to humans" (Chiu et al 2013). TCE is also a non-cancer toxicity health hazard. Exposure to skin can develop into rashes, inhalation of TCE may cause dizziness, or drowsiness, and headaches, and ingestion of TCE from contaminated drinking water may lead to birth defects and complications with the central nervous system, kidney, liver, immune system, and reproductive systems (ITRC 2003, Chiu et al 2013).

Because of the detrimental health affects TCE has, the U.S. EPA has set the maximum contaminant level goals (MCLG) for TCE at zero. The MCLG is a non-enforceable goal advised to prevent potential health problems. The enforceable regulation for TCE, the maximum contaminant level (MCL), is set at 5 micrograms per liter (μ g/L), or parts per billion (ppb). The MCL is a federal drinking water standard and is set as close to the MCLG as possible, while considering feasibility, cost of detection, and method of removal (U.S. EPA 2014b). Each state can impose its own regulatory standard equal or less than the federal MCL. The Florida Department of Environmental Protection (FDEP) has developed and implemented the

5

groundwater cleanup target levels (GCTLs), natural attenuation default concentration (NADC), and soil cleanup target levels (SCTLs) per Florida Administrative Code (F.A.C.) Chapter 66-777. The FDEP GCTLs, NADCs, and SCTLs for TCE and its daughter products are provided in Table 2.

Compound	MCL (U.S. EPA) (µg/L)	GCTL (µg/L)	NADC (µg/L)	SCTL (mg/kg)	
				Residential	Industrial
TCE	5	3	300	6.4	9.3
cDCE	70	70	700	33	180
VC	2	1	100	0.2	0.8

Table 2: Regulatory Criteria for TCE and Daughter Products (FDEP 2005)

Bioremediation

Although there are many options for remediating chlorinated solvent contaminants (e.g. pump and treat, chemical oxidation, air sparging, etc.), bioremediation has the potential to reduce chlorinated contaminants all the way to harmless gasses (ethane and ethane). Bioremediation utilizes microorganisms (i.e. bacteria) to degrade contaminants in groundwater and soil. If the proper microorganisms are indigenous to the site, electron donors and/or nutrients can be added (biostimulation) to enhance the rate of degradation. If the proper microorganisms are not present, they can be introduced to the subsurface to initiate treatment (bioaugmentation). Bioremediation can occur aerobically (requiring oxygen), anaerobically (absence of oxygen), or cometabolicaly (degradation through side reaction) depending on the type of contaminant and site conditions. Typically, bioremediation of chlorinated solvents is most effective in anaerobicreducing conditions (U.S. EPA 2014c).

Reductive Dechlorination

In an anaerobic-reducing environment, chlorinated solvents can be degraded through the reductive dechlorination process. This process follows a step-wise replacement of chlorine atoms with hydrogen atoms, as shown in Figure 3. In this process, TCE is dechlorinated to its daughter products: *cis*-1,2-dichloroethene (cDCE) and vinyl chloride (VC), then completing the chlorine replacement process as ethene and ethane. The dechlorination process was first demonstrated in the laboratory by Freedman and Gossett in 1989 (ESTCP 2005).

Reductive dechlorination can occur directly or co-metabolically. Direct reductive dechlorination occurs when chlorine atoms are replaced with hydrogen on a chlorinated ethene molecule and the bacteria gain energy and grow as a result, sometimes referred to as "dehalorespiration". In this instance, hydrogen is typically supplied by fermentation of organic substrates or can be introduced using direct injection techniques. Complete reductive dechlorination typically occurs under cometabolic reactions, in which chlorinated ethenes are reduced by enzymes produced by bacteria during metabolism of a substrate. In this instance, the bacteria do not gain any energy, only serving to mediate the reaction, and maintain energy for growth from the sufficient available substrate (ITRC 2008).

7

Figure 3: Biodegredation Pathway for TCE Under Anaerobic Conditions (U.S. EPA 2004)

Dechlorinating Bacteria

Not all dechlorinating bacteria are capable of dechlorinating TCE all the way to the non-toxic end product of ethene, typically stalling at cDCE. Complete dechlorination requires both the proper microbial population capable of completing each step and proper environmental conditions suitable to facilitate the dechlorination process (ITRC 2008). The only microorganisms that have demonstrated the ability to carry out dechlorination from cDCE completely to ethene belong to the genus *Dehalococcoides ethenogenes* (*Dhc*); however, not all *Dhc* species are capable of this, so it is important to know what type of *Dhc* strain is present at the site. Within the *Dhc* species, the strain containing the vinyl chloride reductase A gene (vcrA) was identified as producing the correct enzyme necessary to convert VC to ethene (Muller et al. 2004). A survey of 24 contaminated sites was conducted in 2002 by Hendrickson et al. which provided compelling evidence for the role of *Dhc* in the bioremediation of chlorinated solvents. *Dhc* microbes were discovered at all sites where dechlorination proceeded beyond cDCE to VC and ethene (21 of 24 sites) and the *Dhc* microbes were absent at sites that stalled at cDCE (3 of 24 sites) (ESTCP 2005).

Electron Donors

Hydrogen is recognized as the direct electron donor necessary for reductive dechlorination to occur. The hydrogen is typically generated by organisms that ferment organic substrates. The substrates most commonly used for anaerobic bioremediation include lactate, molasses, and vegetable oils (AFCEE et al. 2004). The type of electron donor to be selected depends on the application and site conditions. For example, a more soluble substrate, such as lactate, has improved dispersion qualities; however, it has to be reapplied more frequently (i.e. continuously or monthly). A more viscous substrate, such as vegetable oils, will not disperse as readily, and will provide a long-lasting source of organic carbon, only requiring reapplication every two to three years (ARCEE et al. 2004).

The production of hydrogen does not necessarily guarantee that it will be available to dechlorinating bacteria exclusively. For dechlorination to occur, dechlorinators must compete with other microbes that also utilize hydrogen as an electron donor, such as denitrifiers, iron-reducers, sulfate-reducers, methanogens, and other bacteria (ACREE et al. 2004). Substrate application is crucial because of this competition and it is important to try and reduce the amount of electron donor consumption by non-dechlorinating microbes.

Partitioning Electron Donors

Soluble electron donors that would partition directly into DNAPL source zones (ie. olive oil, pentanol, and oleate) were investigated further by Yang and McCarty (2002), which led to more focused investigation of partitioning electron donors (PEDs). The goal of a PED is to increase

the concentration of electron donor at or near the source zone (DNAPL), thereby promoting dechlorinating biomass growth within close proximity to the DNAPL. PEDs should be selected based on having similar physical and chemical properties (i.e. solubility, density, K_{ow}, etc.) as the contaminant of concern. This allows for a similar fate and transport of the PED toward and into the source zone. This increases the likelihood of the electron donor being utilized exclusively by dechlorinating bacteria. Traditionally, soluble electron donors are consumed as they travel towards the source zone, leaving low concentrations of electron donor near the DNAPL. Ideal PEDs, if effectively applied to the subsurface near the source zone, will partition directly into the DNAPL and decrease in aqueous phase concentration. The DNAPL-phase PED will then slowly, based on PED concentration gradient between the DNAPL and the surrounding groundwater, partition back into the aqueous phase, as shown in Figure 4, providing a much higher concentration of electron donor at the DNAPL:water interface than existing electron donor delivery methods (Cápiro et al. 2011).

Figure 4: Conceptual Model of PED Partitioning Into and Out of DNAPL (Lebron et al. 2011)

n-Butyl Acetate

The PED that was utilized in this demonstration is n-butyl acetate (nBA) ($C_6H_{12}O_2$). nBA is an industrial solvent mainly used in the production of lacquers. It is a clear, volatile, and flammable liquid that has a sweet odor. The material safety data sheet (MSDS) for nBA is provided in Appendix A. As an electron donor, once exposed to water, nBA hydrolizes to form n-butanol and acetic acid. The n-butanol is then utilized by fermenting organisms, forming butyric acid, acetic acid, and hydrogen (electron donor). nBA was chosen as the PED based on the results of the U.S. EPAs Remediation Technologies Development Forum Source Area Bioremediation (SABRE) program bench scale microcosm study, column test study, and a bench scale treatability study that were conducted with the goal of systematically attempting to quantify the effectiveness of bioremediation to treat TCE DNAPL by using slow release electron donors and PEDs. The solubility of nBA was determined to be approximately 6,000 milligrams per liter (mg/L) with an octonal-water partition coefficient (K_{ow}) of 1.82 (Roberts 2008).

Microcosm Study

A microcosm study was performed at four laboratories (DuPont, GE, Terra Systems, and SiREM) and evaluated six electron donors (lactate, acetate, methanol, slow release substrate [SRSTM - proprietary small droplet, emulsified vegetable soil substrate], n-hexanol [nHEX], and nBA). Reductive dechlorination from TCE to ethene was observed in all cases and at high concentrations (800 mg/L), which would be encountered at DNAPL source zones. Out of the six electron donors, SRS supported the fastest dechlorination and nBA supported the most complete dechlorination to ethene. nBA partitioned most readily into the TCE DNAPL, with an average partitioning coefficient calculated at $458 \pm - 32$. A toxicity experiment was also conducted with

11

nBA to determine the threshold of nBA that would inhibit successful dechlorination. Concentrations of nBA at 2,000 mg/L (approximately half of nBA solubility) and higher were observed to inhibit dechlorination (Roberts 2008).

Column Study

Column studies were performed to compare the partitioning behavior and mass transfer/dissolution rates of the DNAPL using SRSTM, nHEX, and nBA as PEDs. Studies were conduct at SiREM laboratories in Guelph, Canada (nBA and SRSTM) and at Georgia Institute of Technology (nBA and nHEX). For all tests, TCE DNAPL pore space saturation ranged from 9 to 14 percent. SRSTM demonstrated the largest amount of mass removed (68 percent); however, it did not exhibit favorable partitioning characteristics. Again, nBA demonstrated greater partitioning into the DNAPL and slower mass transfer back into the aqueous phase indicating it was a longer lasting source of electron donor (Roberts 2008, Cápiro et al. 2011, Lebron 2008).

Treatability Study

A treatability study was conducted at a TCE DNAPL site at Operable Unit – 11 test site at Naval Air Station North Island (NASNI), Coronado, California. The pilot test was conducted to ensure nBA partitioning behavior was consistent with laboratory observations prior to full scale implementation. The results of the test suggested adequate physical-chemical partitioning and verified that nBA was a suitable PED (Lebron 2008).

Bioremediation of DNAPLs

The goal of bioremediating a DNAPL source zone is to increase the concentration gradient at the DNAPL:water interface, which in turn increases the rate of DNAPL dissolution. The time it takes to remove the DNAPL is a function of how quickly the contaminant mass can be transferred to the aqueous phase. Bioremediation of DNAPL works by enhancing and accelerating dissolution rates through three mechanisms: (i) decreasing aqueous phase concentration near the DNAPL:water interface by encouraging a robust dechlorinating microbe population near the DNAPL, so parent contaminants are rapidly degraded after they dissolve into the groundwater, thus increasing the concentration gradient; (ii) increasing concentrations of reductive daughter products that are more soluble than parent compounds, producing more moles in aqueous phase when degradation is occurring, encouraging higher rates of dechlorination through dehalorespiration; and (iii) electron donors have the ability to abiotically increase effective solubility of DNAPL through reductions in interfacial tensions, encouraging increased dissolution rates (ITRC 2008).

Bioremediation is a proven technology for dissolved-phase plume treatment and is becoming more acceptable as a treatment technology for DNAPL source zones. It was previously thought that higher concentrations of contaminants, such as those found in DNAPL source zone areas, were toxic to the microorganisms necessary for dechlorination. Yang and McCarty (2000) observed that at a tetrachloroethene (PCE) concentration of 0.3 millimolar (mM) (PCE solubility is 0.9 mM) methanogenesis (methane production) and homoacetogenesis (acetate production) was inhibited. Another example of inhibition was demonstrated by Yu et al. (2005), observing

13

that higher concentrations in more chlorinated ethenes (i.e. PCE and TCE) was inhibitory to dechlorination of less chlorinated ethenes (i.e. cDCE and VC) due to competitive inhibitions.

Alternatively, there have been field and bench scale demonstrations with chlorinated solvent DNAPLs, or with concentrations close to solubility, that have been successfully remediated to ethene. One such case is at the Launch Complex 34 (LC34) site at Cape Canaveral Air Force Station (CCAFS), in close proximity to the site used in this thesis, where a test plot, containing TCE DNAPL under the former engineering support building (ESB), was bioaugmented (KB-1TM culture from SiREM Laboratories, Inc.) and biostimulated (ethanol) successfully. Pre-demonstration in-situ TCE mass (dissolved and free-phase) was calculated to be approximatley 25.5 kilograms (kg) and post-demonstration TCE mass was 0.4 kg (U.S. EPA 2004). In the Yang and McCarty (2000) study, PCE, at concentrations above solubility (0.9 mM) and TCE up to 2.26 mM (TCE solubility is 8.4 mM) were both successfully dechlorinated. There are a number of other field applications where bioremediation of source areas was successful, as summarized in examples listed below (ITRC 2007).

<u>Test Area North, Idaho</u> – A TCE plume with maximum concentrations greater than 20 mg/L was being contained by a pump and treat system. Five technologies were evaluated to enhance or replace the pump and treat system. A nine-month full scale field evaluation of bioremediation enhanced with electron donor (lactate) injections resulted in complete biodegradation of the TCE source area.

14

- <u>Dover National Test Site</u>, <u>Delaware</u> A test cell contained 100 L of PCE DNAPL in a porous media that was operated under different phases of investigation; (i) under enhanced extraction conditions; (ii) under biostimulation with sodium lactate and ethanol conditions; and (iii) under biostiumlation plus bioaugmentation (using KB-1TM) conditions. During the first phase, results indicated that the indigenous microbial community was not capable of dechlorinating the PCE DNAPL. During the second phase, high PCE concentrations continued to persist, making up 99 percent of the total ethenes. During the third phase, bioaugmentation coupled with biostimulation, after 20 months of operation, ethene represented 70 percent of total ethenes, demonstrating that the PCE DNAPL was successfully dechlorinated.
- <u>Portland, Oregon Dry Cleaner Site</u> A hydrogen release compound (HRC) was selected for a pilot test study to determine if the same approach could be used to treat both the PCE source area (maximum PCE concentration of 150 mg/L) and the dissolved plume. A year after injecting 1,900 lbs of HRC, PCE concentrations were reduced by 99.9 percent and TCE concentrations were reduced by 99.4 percent. Sampling three years later revealed parent compound concentrations remained low, indicating rebound has not occurred.
- <u>Tarheel Army Missile Plant, North Carolina</u> An emulsified oil substrate was used in a pilot test to remediate a TCE source area with a maximum concentration of 2,600 µg/L.
 Following injection, TCE and PCE concentrations dropped, subsequently followed by the
rise, then fall of cDCE and VC concentrations. VC concentrations remained higher than final remedial goals, possibly due to insufficient amount of available electron donor.

As enhanced bioremediation becomes increasingly applied to source zones, more innovative techniques are investigated. Adamson and Newell (2009) modeled and tested the use of biomass decay in and around the DNAPL as a source of electron donor recycling, long after the introduced electron donor has been exhausted. Such efficiencies in design are likely to be implemented as the use of bioremediation becomes an accepted treatment for DNAPL source zones.

The use of PEDs, nor the use of nBA as substrate, for bioremediation could not be found in literature, aside from the SABRE microcosm, column, and treatability studies previously mentioned.

There are several disadvantages that may complicate bioremediation of DNAPL using traditional electron donors (eg. emulsified oil substrate), including: (i) DNAPL typically exists as a separate phase, heterogeneously in the subsurface, in the form of non-uniform ganglia, so substrate delivery near the DNAPL surface can be difficult; (ii) microbial growth near the DNAPL surface can cause a quantifiable reduction in hydraulic conductivity over time, potentially causing microbial clogging; and (iii) gas production and entrapment, as a results of microbial activity, particularly methanogenesis, can result in clogging and flow dispersion around DNAPL (Yang and McCarty 2002). Utilizing PEDs can help successfully overcome many of these complications. PEDs readily partition into DNAPL, providing a steady flow of electron donor at

16

or near the DNAPL:water interface, thereby reducing the need for pinpoint application. The high contaminant concentrations near the DNAPL surface, where most of the dechlorinating processes will be taking place due to the PED, inhibit the growth of methanogens (Yang and McCarty 2000), therefore reducing the potential for methane gas production and entrapment. Other advantages of PEDs include: (i) they are water soluble, readily dispersing throughout the source area and into the DNAPL; (ii) they are relatively inexpensive, when compared to proprietary electron donors, such as SRSTM or HRCTM; and (iii) they are slowly metabolized, therefore they can be efficiently dispersed without premature losses due to microbial consumption (Roberts 2008, ESTCP 2011).

Site Selection

The site selected to perform the ESTCP PED demonstration/validation was at National Aeronautics and Space Administration's (NASA) LC34 site located at CCAFS on the east-central Atlantic coast of Florida in Brevard County (Figure 5), designated as Solid Waste Management Unit (SWMU) CC054. Hot Spot 1 (Figure 6) was selected as a suitable test site based on the following criteria (ESTCP 2011):

- A known TCE DNAPL source zone, or "hot spot", exists on site that is relatively shallow (<50 feet below land surface [ft BLS]);
- An extensive conceptual site model existed, including characterization data, delineation of the DNAPL source zone and donwgradient dissolved plume, site hydrogeology and lithology, and site groundwater geochemistry;

- A regulatory environment that will allow re-injection of amended groundwater still containing contaminants and the use of PEDs;
- Evidence that indigenous microbial population are present suitable for effective reductive dechlorination based on a successful pilot test at the ESB, located approximately 500 ft west of Hot Spot 1;
- Existing monitoring wells within the source area and downgradient areas to supplement the performance monitoring network;
- Availability of local support staff for monitoring and sampling events; and
- Reasonable site access.

Figure 5: Launch Complex 34 Location Map (NASA 2010)

Figure 6: Hot Spot 1 Location Map (NASA 2010)

Summary of Site Geology and Hydrogeology

Site geology and lithology were characterized during previous investigations. A description of the general site geology and lithology is provided below and presented on Figure 7.

- Land surface to 42 ft BLS: varying brown, tan, and gray fine sand with varying amount of shell fragments with a hydraulic conductivity of approximately 30 feet per day (ft/d);
- 42 to 48 ft BLS: Semi-confining unit composed of gray silty clay with minor amount of shell fragments with a hydraulic conductivity of approximately 1.7 x 10⁻⁴ ft/d;
- 48 to 54 ft BLS: gray fine sand with silt and varying amount of shell fragments with a hydraulic conductivity of approximately 2.8 ft/d;
- 54 to 55 ft BLS: gray silty clay lenses/stringers;
- 55 to 80 ft BLS: varying black and gray fine sand with silt and varying shell fragments with a hydraulic conductivity of approximately 2.8 ft/d.

Two large water bodies, the Atlantic Ocean and the Banana River, are located approximately 0.25 miles to the east and 1 mile to the west of the site, respectively. Groundwater flow at the site is generally sluggish (e.g. less than 5 ft/year) and is tidally influenced by the large surface water bodies near the site. The primary direction of groundwater flow is directed toward the coastal margins of the site.

Figure 7: Hot Spot 1 Generalized Lithology (NASA 2010)

CHAPTER 3: FIELD IMPLEMENTATION

Overview

This section summarizes the field activities that were performed to accomplish the research objectives, including: (i) installation; (ii) baseline groundwater sampling; (iii) baseline flux measurement phase; (iv) PED injection; (v) biomass growth phase; (vi) system operation phase; and (vii) post system operation groundwater sampling.

Installation

Installation activities for the LC34 PED demonstration commenced on 19 January 2011, which included installation of: (i) recirculation extraction and injection wells; (ii) performance monitoring bundle wells; and (iii) the recirculation system (recirculation equipment and piping). Locations of existing wells and the proposed well installations are provided in Figure 8. The various wells were installed using different drilling techniques, such as direct push technology (DPT), hollow stem auger (HSA), and mud rotary, which are described in further detail in Appendix B and referenced to in the following sections.

Figure 8: Recirculation Extraction, Recirculation Injection, and Monitoring Well Locations (NASA 2013)

Baseline Soil Sampling

Prior to installing the wells, four soil cores (SB1001 through SB1004) were collected using a direct push technology (DPT) drill rig and 5-ft macro-core[®] samplers at locations corresponding to performance monitoring bundle wells BW0001, BW0002, and BW0003 and recirculation extraction well RW0008. Soil cores were visually logged to document soil lithology and to confirm the depth of the semi-confining unit. Samples were collected from the soil cores based on lithology (i.e. more samples collected from clay semi-confining unit) and based on photoionization detector (PID) screening. PID response correlates directly to presence of chlorinated volatile organic compound (CVOC); therefore, samples were collected from locations that exhibited the highest PID responses and laboratory analyzed for CVOCs to verify presence, and for nBA to verify absence. Additionally, select soil samples were analyzed for total organic carbon (TOC) and the fraction of organic carbon (f_{oc}). Samples were analyzed by Columbia Analytical Services.

Recirculation Extraction and Injection Well Installation

Two recirculation extraction wells (RW0007 and RW0008) were installed close to the center of Hot Spot 1, as depicted in Figure 8. Extraction well RW0007 was installed using a hollow stem auger (HSA) drill rig to a total depth of 42 ft BLS (screen interval of 35 to 42 ft BLS), above the clay, semi-confining unit. For recirculation extraction well RW0008, HSA tooling was installed to 45 ft BLS, and set into the clay layer, as a temporary surface casing to seal off the aquifer above the clay, semi-confining unit, then used mud rotary drilling techniques to drill through the casing and install the well at a total depth of 57 ft BLS (screen interval of 47 to 57 ft BLS),

25

below the clay. The diameter of the borehole for both wells was 14-inch (in). Both wells were constructed of 6-in schedule 40 polyvinyl chloride (PVC) with a 0.020-in slotted screen. The 4-in annular space around the well screen was filled with a 6/20 sand filter pack, extending 1-ft above the top of the screen, followed by 5-ft of bentonite seal, followed by cement grout to surface. Both wells were completed with an 18-in by 18-in steel vault box and a 3-ft by 3-ft by 4-in thick concrete pad.

Five recirculation injection well clusters (a pair of injection wells per cluster) (IJ0013 to IJ0022) were installed around the periphery of Hot Spot 1, as depicted in Figure 8, using HSA techniques. Each cluster has one injection wells screened above the clay layer (32 to 42 ft BLS) and one injection well screened below the clay layer (47 to 57 ft BLS). Both injection wells were installed in the same 10-in diameter borehole. Injection wells were constructed of 2-in scheduled 40 PVC with a 0.020-in slotted screen. The 4-in annular space around the well was filled with a 6/20 sand filter pack, extending 1-ft above the top of the screen, followed by 2-ft of bentonite seal, followed by cement grout to the surface. All injection well clusters were completed with an 18-in by 18-in steel vault box and a 3-ft by 3-ft by 4-in thick concrete pad.

Monitoring Bundle Well Installation

Three bundle monitoring wells (BW0001A-F, BW0002A-F, and BW0003A-F) were installed using DPT techniques at the locations depicted on Figure 8. Each bundle well included six individual monitoring wells with the following screen intervals: 23 to 26 (A), 30 to 33 (B), 37 to 40 (C), 44 to 47 (D), 51-54 (E), and 58 to 61 (F) ft BLS. The wells were constructed of ³/₄-in

schedule 40 PVC with a 0.010-in slotted screen with a pre-packed 20/30 sand filter. Instead of filling the annular space around the well screen with a sand filer, pre-packed screens come from the manufacturer with a sand filter pack around the screen held in place by a porous mesh that is securely strapped to the screen material. Wells screened above the clay layer (A through C) received a 2-ft 30/45 sand seal above the pre-packed filter, followed by grout to surface. Wells screened in the clay layer (D) received a 2-ft bentonite seal above the screen, sealing off the clay layer between the upper and lower aquifers, followed by grout to the surface. Wells screened below the clay layer (E and F) received a 4-ft of bentonite seal at the clay layer, to seal off upper and lower units, followed by grout to surface. Each bundle well was completed with a 4-ft by 6-ft by 4-in thick concrete pad, containing six individual 8-in steel manhole covers for each monitoring well. Bundle monitoring well construction details, showing general lithology and hydraulic conductivity in relation to screened intervals, is provided on Figure 9.

Figure 9: Bundle Monitoring Well Construction Details (NASA 2013)

Recirculation System Installation

The recirculation system consisted of a solar powered recirculation pumping system, which was enclosed in a mobile utility trailer, and the recirculation system piping, which routed the groundwater from the extraction wells to the injection wells.

The equipment trailer housed two 12-volt batteries that were charged by solar panels mounted to the roof of the trailer. The batteries powered two 4.25-in diameter submersible pumps (one in each recirculation extraction well) that were capable of extracting groundwater at a rate of 2.5 gallons per minute (gpm). The pumps were placed at mid-screen depth and held in place with a steel cable connected to the vault box at grade. Timers were programed to operate the pumps on a 40 minutes on and 20 minutes off cycle. Other components housed in the equipment trailer included in-line sediment filters, flow totalizers for each extraction well, a piping manifold including individual flow meters for the ten injection wells, in-line sampling ports, and system operational hour meters. A process and instrumentation diagram (P&ID) of the equipment trailer and recirculation system is provided in Figure 10.

The recirculation system was piped above grade with ³/₄-in diameter high density polyethylene (HDPE) tubing run through 2-in diameter schedule 40 PVC, serving as secondary containment. Groundwater originated from the extraction well, traveling to the equipment trailer, through the in-line appurtenances, to the manifold, where the groundwater flow was split into ten individual flow streams. Flow from extraction well RW0007 (above the clay) was split evenly between the five injection wells screened above the clay layer and flow from extraction well RW0008 (below

the clay layer) was split evenly and distributed to the five injection wells screened below the clay layer. Flow rate to each injection well was designed to be approximately 0.5 gpm. The groundwater was discharged into the injection wells from system piping that was placed approximately 2-ft below the water table.

Figure 10: Process and Instrumentation Diagram of Solar Powered Recirculation System (NASA 2013)

Baseline Groundwater Sampling

Baseline groundwater sampling was performed from 1 through 3 February 2011 and included the collection of groundwater samples from 28 site monitoring wells, two recirculation extraction

wells, and four recirculation injection wells. Samples were laboratory analyzed for CVOCs and nBA, using EPA Method 8260C, to establish pre-demonstration conditions groundwater conditions and to confirm CVOC delineation within the treatment zone.

Baseline Flux Measurement Phase

The baseline flux measurement phase took place from 14 March to 18 April 2011, approximately four weeks. The recirculation system was operated with no electron donor injected in the subsurface, with the objective of observing the baseline mass flux prior to the PED injection. The extracted groundwater was treated with granular activated carbon (GAC) before being injected into the subsurface to ensure impacted water was not being re-injected. During this phase, operation and maintenance (O&M), groundwater sampling, and GAC effluent sampling activities were performed to assess operations.

Baseline Flux System O&M

The system was started on 14 March 2011 and ran for the four-week baseline flux measurement period. O&M events were conducted weekly for the four-week period and included the following activities:

- inspected wiring and piping for leaks/damages;
- cleaned sediment filters, solar panels, and flow meters as needed;
- measured flow rates and volume produced from recirculation extraction wells;
- measured flow rates, initial and adjusted, to recirculation injection wells;
- measured voltage and percent charged from batteries; and

• addressed any operational abnormalities with corrective action.

Baseline Flux Groundwater Sampling

Select site monitoring wells and the two recirculation extraction wells were sampled during the first three weeks of the baseline flux measurement phase (22, 28, and 29 March and 7 April 2011). The samples were analyzed for parameters listed in Table 3.

					Ana	lysis			
Sampling Location	Screen Interval (ft BLS)	VOCs by EPA Method 8260B	VFAs by EPA Method 300-modified	Bromide and Iodide by EPA Method 300.0	TOC by EPA Method 9060A	Sulfide by EPA Method 376.1	MEEs by EPA Method RSK 175	Anions by EPA Method 300.0	Alkalinity by EPA Method 310.1
Upper Treatment Zone									
RW0007	35 to 42	X	Х	Х	Х	Х	Х	Х	Х
IW0002I	25 to 30	X							
IW0002D	35 to 40	X							
BW0001A	23 to 26								
BW0001B	30 to 33								
BW0001C	37 to 40	Х							
BW0001D	44 to 47								
BW0002A	23 to 26								
BW0002B	30 to 33								
BW0002C	37 to 40	Х							
BW0002D	44 to 47								
BW0003A	23 to 26								
BW0003B	30 to 33								
BW0003C	37 to 40	Х							
BW0003D	44 to 47								
Lower Treatment Zone									
RW0008	47 to 57	X	Х	Х	Х	Х	Х	Х	Х
IW0002DI	50 to 55	Х							
BW0001E	51 to 54	Х							
BW0001F	58 to 61								
BW0002E	51 to 54								
BW0002F	58 to 61								
BW0003E	51 to 54	X							
BW0003F	58 to 61								

Table 3: Baseline Flux Measurement Sampling Plan (NASA 2013)

Notes:

1. ft BLS indicates feet below land surface.

2. VOCs indicate volatile organic compounds and includes analysis for n-butyl acetate and n-butanol.

3. EPA indicates Environmental Protection Agency.

4. VFAs indicate volatile fatty acids.

TOC indicates total organic carbon.
MEEs indicate methane, ethane, ethene.

MEES marcate methane, emane, emene.
Anions include analysis for chloride, sulfate, nitrate and nitrite.

Analysis of groundwater samples for VOCs, n-butanol, VFAs, bromide and TOC will occur weekly.

9. Analysis of groundwater samples for sulfide, MEEs, anions and alkalinity will occur bi-weekly.

Baseline Flux GAC Effluent Sampling

GAC effluent samples were collected from the system, prior to reinjection of the groundwater into the subsurface, to ensure that CVOCs were removed. Samples were collected from sampling ports located inside the recirculation trailer (post-GAC and pre-sediment filters) on 1, 7, and 18 April 2011 and were laboratory analyzed for CVOCs using EPA Method 8260C. After completion of this phase, the GAC vessels were removed from the system and staged onsite for proper offsite disposal.

Post-Baseline Flux Groundwater Sampling

The baseline flux measurement phase ended on 18 April 2011. The system was subsequently shutdown and a comprehensive post baseline flux measurement groundwater sampling event was conducted to serve as both a final assessment of the baseline flux measurement phase and a baseline event prior to the injection activities. The samples were collected and analyzed for the parameters presented in Table 4.

							Analysis					
Sampling Location	Screen Interval (ft BLS)	VOCs by EPA Method 8260B	VFAs by EPA Method 300- modified	Bromide and Iodide by EPA Method 300.0	TOC by EPA Method 9060A	Sulfide by EPA Method 376.1	MEEs by EPA Method RSK 175	Anions by EPA Method 300.0	Alkalinity by EPA Method 310.1	Dissolved Metals by EPA Method 6010B	<i>Dhc</i> by Gene- Trac [®] Dhc	<i>vcrA</i> by Gene- Trac [®] VC
Upper Treatment Zone			- -				-			-		•
RW0007	35 to 42	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
IW0002I	25 to 30	Х	Х	Х	Х	Х	X	Х	Х	Х		
IW0002D	35 to 40	Х	Х	Х	Х	Х	Х	Х	Х	Х		
BW0001A	23 to 26	Х	Х	Х	Х	Х	Х	Х	Х	Х		
BW0001B	30 to 33	Х	Х	Х	Х	Х	Х	Х	Х	Х		
BW0001C	37 to 40	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
BW0001D	44 to 47	Х	Х	Х	Х	Х	Х	Х	Х	Х		
BW0002A	23 to 26	Х	Х	Х	Х		Х					
BW0002B	30 to 33	Х	Х	Х	Х		Х					
BW0002C	37 to 40	Х	Х	Х	Х	Х	Х	Х	Х			
BW0002D	44 to 47	Х	Х	Х	Х		Х					
BW0003A	23 to 26	Х	Х	Х	Х		Х					
BW0003B	30 to 33	Х	Х	Х	Х		Х					
BW0003C	37 to 40	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х
BW0003D	44 to 47	Х	Х	Х	Х		Х					
Lower Treatment Zone												
RW0008	47 to 57	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
IW0002DI	50 to 55	Х	Х	Х	Х	Х	Х	Х	Х	Х		
BW0001E	51 to 54	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
BW0001F	58 to 61	Х	Х	Х	Х	Х	Х	Х	Х	Х		
BW0002E	51 to 54	Х	Х	Х	Х		Х					
BW0002F	58 to 61	Х	Х	Х	Х		Х					
BW0003E	51 to 54	Х	Х	Х	Х		Х				Х	Х
BW0003F	58 to 61	Х	Х	Х	Х		Х					
Outside Treatment Area												
IW0076 (below treatment area) 70 to 80	Х	Х	Х	Х		Х			Х		
IW0067D (UIC monitoring we	1 38 to 43	X			X							
IW0067D1 (UIC monitoring w	63 to 73	Х			X							
IW0070D (UIC monitoring we	1 38 to 43	X			X							
IW0070D1 (UIC monitoring w	65 to 75	Х			Х							
IW0071D (UIC monitoring we	1 38 to 43	X			X							
IW0071D1 (UIC monitoring w	65 to 75	Х			Х							

Table 4: Post Baseline Mass Flux Measurement Sampling Plan (NASA 2013)

Notes:

1. ft BLS indicates feet below land surface.

2. VOCs indicate volatile organic compounds and include analysis for n-butyl acetate and n-butanol.

3. EPA indicates Environmental Protection Agency.

4. VFAs indicate volatile fatty acids.

5. TOC indicates total organic carbon.

6. MEEs indicate methane, ethane, ethene.

7. Anions include analysis for chloride, sulfate, nitrate and nitrite.

8. Dissolved metals include analysis for iron, manganese and arsenic.

9. Dhc indicates Dehalococcoides and is the quantitative analysis for the 16S rRNA gene.

10. vcrA indicates the vinyl chloride reductase gene and is a quantitative analysis.

PED Injection

The PED injection was performed from 20 to 28 June 2011, utilizing the Vironex (contractor based out of Washington, D.C.) injection platform. The goal was to inject approximately 0.2 percent of the pore volume with nBA. Given the area of the target area was approximately 655 ft², the treatment interval was from 23 to 62 ft BLS, and an assumed porosity of 0.30, 115 gallons of nBA was required. The nBA was diluted to 3,000 mg/L (approximately half aqueous solubility), generating 34,000 gallons of nBA solution (Table 5). The nBA injection concentration was chosen close to the solubility to create a concentration gradient to force nBA to partition into the low permeability confining unit.

The 34,000 gallons of nBA solution was injected into 20 temporary DPT injection points (IP01 through IP20) at the locations depicted on Figure 11. The nBA solution was injected through a 2-foot injection tool at 2-foot intervals above, in, and below the low permeability confining unit. Therefore, approximately 1,700 gallons of nBA solution was injected per point and 85 gallons of nBA solution was injected per interval. Based on the injection interval volumes, a radius of influence (ROI) of approximately 4 ft was expected (Table 6). Injection flow rates ranged from 6 to 8 gpm at pressures ranging from 30 to 45 pounds per square inch (psi). Photographs of the injection activities are provided in Appendix C (NASA 2013). An Injection Services Report, prepared by Vironex, which outlines injection activities, is provided in Appendix D (NASA 2013).

					Volume of Injection Area	Pore Volume of Injection Area	Volume of nBA Based on 0.2% pore volume	Mass of nBA Reqired	Volume of nBA Solution (3,000 mg/L nBA concentration)	Volume of nBA Solution per Location	Volume nBA Solution per Injection Interval
Treatment Interval	Number of Injection Points	Porosity	Injection Interval	Number of Injection Intervals	Area (~655 ft ²) * Injection interval (BASED ON TARGET AREA)	Volume * Porosity * 7.480519 gal/ft ³	pore volume *0.002	Volume nBA * Density (882.5 g nBA/L)	Mass nBA / 3,000 mg /L * 3.7854 gal/L	Volume nBA Solution / Number of Injection Points	Volume of nBA Solution per Location / Number of Injection Intervals
(ft BLS)			(feet)		(ft ³)	(gal)	(gal)	(grams)	(gal)	(gal)	(gal)
23 to 62	20	0.3	2	20	25,545	57,327	115	383,015	34,000	1,700	85

Table 5: Electron Donor Dosing and Injection Volume Calculations (NASA 2013)

Notes:

1. ft BLS indicates feet below land surface.

2. ROI indicates radius of influence.

3. ft² indicates square feet.

4. ft³ indicates cubic feet.

5. gal indicates gallons.

Table 6: Radius of Influence Calculations for Individual Injection Interval	3 (NASAS 20)13)
---	-------------	------

Treatment Interval	23 to 26 ft BLS	Π					
V_{nBA}	85 gal	nBA Solution Inj Volume					
V _{water}	0 gal	Chase Water Volume					
V_{total}	85 gal	Total Inj. Volume					
V_{total}	11.4 ft^3	Total Inj. Volume					
h	2 ft	screen length					
π	3.14	pi BOL					
n	0.1	effective porosity					
ROI = sqrt	(V/π*n*h)						
ROI	4.3 ft						
			T				

Figure 11: PED Injection and DPT Groundwater Sampling Locations (NASA 2013)

In addition to the nBA, two conservative tracers (potassium bromide [KBr] and potassium iodide [KI]) were added to the nBA solution to evaluate overall amendment distribution, flow paths, and degree of hydraulic connection across the confining unit layer. Approximately 12 kgs of KBr and 12 kgs of KI was used. The amendment injected above the clay (23 to 42 ft BLS) consisted of dilution water, nBA, KBr, and KI and the amendment injected in and below the clay layer (42 to 62 ft BLS) consisted of water, nBA, and KBr. Batches of nBA solution were mixed for a minimum of 15 minutes prior to being injected.

PED Injection Amendment Batch Sampling

In order to ensure that batches of amendment were being properly prepared and mixed, batch samples were collected from a sample port located on the Vironex platform and were laboratory analyzed for CVOCs and nBA (EPA Method 8260C) and bromide and iodide (EPA Method 300.0). Batches were mixed in two 250-gallon poly-tanks that were staged inside of a spill barrier and were covered to prevent excessive heat due to direct sunlight exposure. A total of 155 batches were prepared and injected into the subsurface. Two to three batches a day were randomly sampled for quality assurance (a total of 17 batches were sampled).

Post-PED Injection Groundwater Sampling

Groundwater samples were collected following the injection event to aid in the evaluation of the amendment distribution and ROI. Groundwater samples were collected using both DPT and monitoring well sampling techniques.

Post injection DPT groundwater sampling activities occurred on 30 June 2011, one day after injection activities were completed. Two sample locations were within 2 feet of the nearest injection point (DPT330 and DPT331) and two sample locations were within 4 feet of the nearest injection point (DPT 328 and DPT329), as depicted on Figure 11. A total of 18 samples were collected (4 to 5 samples per location) from 8 to 59 ft BLS and were analyzed by a mobile laboratory for CVOCs and nBA (EPA Method 8260C).

Post injection monitoring well groundwater sampling activities occurred on 7 July 2011, one week after injection activities were completed. Eleven site monitoring wells and both recirculation extraction wells (BW0001C through D, BW0002C through D, BW0003C through D, RW0007, and RW0008) were sampled and laboratory analyzed for CVOCs, nBA, n-butanol (EPA Method 8260C), and bromide and iodide (EPA Method 300.0).

Biomass Growth Phase

Following the injection activities, the recirculation system remained off for four weeks to allow time for the nBA to partition into the DNAPL source zone and for biomass growth. After the four-week biomass growth phase, additional groundwater and soil samples were collected to further assess the distribution of nBA and CVOCs.

Biomass Growth Phase Groundwater Sampling

Biomass growth phase groundwater monitoring well sampling was performed from 1 through 2 August 2011 and included collecting samples from 24 site monitoring wells. Collected samples were laboratory analyzed for parameters listed in Table 7.

						Anal ysi s				
Sampling Location	Screen Interval (ft BLS)	VOCs by EPA Method 8260B	VFAs by EPA Method 300- modified	Bromide and Iodide by EPA Method 300.0	TOC by EPA Method 9060A	Sulfide by EPA Method 376.1	MEEs by EPA Method RSK 175	Anions by EPA Method 300.0	Al kali ni ty by EPA Method 310.1	Dissolved Metals by EPA Method 6010B
Upper Treatment Zone			1				1	1		1
RW0007	35 to 42	Х	Х	X	Х	Х	Х	Х	Х	Х
IW0002I	25 to 30	Х	Х	X	Х	Х	Х	Х	Х	Х
IW0002D	35 to 40	Х	X	X	Х	Х	Х	Х	Х	Х
BW0001A	23 to 26	Х	X	X	Х	Х	Х	Х	Х	Х
BW0001B	30 to 33	Х	Х	X	Х	Х	Х	Х	Х	Х
BW0001C	37 to 40	Х	X	X	Х	Х	Х	Х	Х	Х
BW0001D	44 to 47	Х	X	X	Х	Х	Х	Х	Х	Х
BW0002A	23 to 26	Х	X	Х	Х		Х			
BW0002B	30 to 33	Х	X	Х	Х		Х			
BW0002C	37 to 40	Х	X	Х	Х	Х	Х	Х	Х	
BW0002D	44 to 47	Х	X	Х	Х		Х			
BW0003A	23 to 26	Х	X	Х	Х		Х			
BW0003B	30 to 33	Х	X	Х	Х		Х			
BW0003C	37 to 40	Х	X	Х	Х	Х	Х	Х	Х	
BW0003D	44 to 47	Х	Х	X	Х		Х			
Lower Treatment Zone										
RW0008	47 to 57	Х	X	Х	Х	Х	Х	Х	Х	Х
IW0002DI	50 to 55	Х	X	Х	Х	Х	Х	Х	Х	Х
BW0001E	51 to 54	Х	X	Х	Х	Х	Х	Х	Х	Х
BW0001F	58 to 61	Х	X	Х	Х	Х	Х	Х	Х	Х
BW0002E	51 to 54	Х	X	Х	Х		Х			
BW0002F	58 to 61	Х	X	Х	Х		Х			
BW0003E	51 to 54	Х	Х	Х	Х		Х			
BW0003F	58 to 61	Х	Х	Х	Х		Х			
Outside Treatment Area										
IW0076 (below treatment area	70 to 80	Х	Х	Х	Х		Х			
IW0067D (UIC monitoring we	138 to 43									
IW0067D1 (UIC monitoring w	63 to 73									
IW0070D (UIC monitoring we	38 to 43									
IW0070D1 (UIC monitoring w	65 to 75									
IW0071D (UIC monitoring we	38 to 43									
IW0071D1 (UIC monitoring w	65 to 75		I							

Table 7: Biomass Growth Phase Sampling Plan (NASA 2013)

Notes: 1. ft BLS indicates feet below land surface.

2. VOCs indicate volatile organic compounds and include analysis for n-butyl acetate and n-butanol.

3. EPA indicates Environmental Protection Agency.

4. VFAs indicate volatile fatty acids.

5. TOC indicates total organic carbon.

6. MEEs indicate methane, ethane, ethene.

7. Anions include analysis for chloride, sulfate, nitrate and nitrite.

8. Dissolved metals include analysis for iron, manganese and arsenic.

Biomass Growth Phase Soil Sampling

Biomass growth phase soil sampling was performed on 3 August 2011 and included collection three soil cores (DPT0332, DPT0333, and DPT0334) using DPT techniques at the locations presented on Figure 12. A total of 17 soil samples were collected based on PID screening responses and based on lithology (i.e. more samples collected from clay layer). The samples were laboratory analyzed for CVOCs and nBA (EPA Method 8260C). In addition, the soil cores were logged to document soil lithology.

System Operation Phase

Following the biomass growth phase, the recirculation system was restarted on 9 August 2011. The system operated for a duration of approximately 12 months and was shut down on 11 September 2012. During system operation, frequent groundwater sampling events and semiannual soil sampling events were performed to monitor the effectiveness of the nBA field implementation demonstration. In addition, O&M activities were conducted regularly to ensure proper operation of the recirculation system.

Figure 12: Biomass Growth Phase, Month 6, and Month 12 Soil Sampling Locations (NASA 2013)

System O&M

O&M events were conducted weekly for the first six month of operation and were conducted biweekly thereafter. O&M events included the following activities:

- inspected wiring and piping for leaks/damages;
- cleaned sediment filters, solar panels, and flow meters as needed;
- measured flow rates and volume produced from recirculation extraction wells;
- measured flow rates, initial and adjusted, to recirculation injection wells;
- measured voltage and percent charged from batteries; and
- addressed any operational abnormalities with corrective action.

System Operation Phase Groundwater Sampling

Groundwater samples were collected from both recirculation extraction wells (RW0007 and RW0008) on a weekly basis for the first month of operation. The sampling frequency was reduced to biweekly sampling from month 2 to month 6 and monthly sampling from month 7 to month 12. Samples collected from month 1 to month 6 were laboratory analyzed for parameters listed in Table 8. Samples collected from month 7 to month 12 were laboratory analyzed for parameters listed in Table 9.

Groundwater samples were collected from select site monitoring wells on a quarterly basis (Month 3 – October 2011, Month 6 – February 2012, Month 9 – June 2012, and Month 12 – September 2012). During month 3 and month 6 sampling events, collected samples were

laboratory analyzed for the parameters listed in Table 8. During month 9 and month 12 sampling events, collected samples were laboratory analyzed for parameters listed in Table 9.

Underground injection control (UIC) sampling was performed during the baseline sampling event, at the end of the baseline flux phase, and during the first two quarterly system operation sampling events (month 3 and month 6). Groundwater samples were collected from the designated UIC monitoring wells (IW0067, IW0070, and IW0071) and were laboratory analyzed for the parameters listed in Table 8.

							Analysis					
Sampling Location	Screen Interval (ft BLS)	VOCs by EPA Method 8260B	VFAs by EPA Method 300- modified	Bromide and Iodide by EPA Method 300.0	TOC by EPA Method 9060A	Sulfide by EPA Method 376.1	MEEs by EPA Method RSK 175	Anions by EPA Method 300.0	Alkalinity by EPA Method 310.1	Dissol ved Metals by EPA Method 6010B	<i>Dhc</i> by Gene- Trac [®] Dhc	<i>vcrA</i> by Gene- Trac [®] VC
Upper Treatment Zone			•	•								
RW0007	35 to 42	Х	Х	X	Х	Х	Х	Х	Х	Х	X	Х
IW0002I	25 to 30	Х	Х	X	Х	X	Х	Х	Х	х		
IW0002D	35 to 40	Х	Х	X	Х	X	Х	Х	Х	х		
BW0001A	23 to 26	X	Х	Х	Х	Х	Х	Х	Х	Х		
BW0001B	30 to 33	X	Х	Х	Х	Х	Х	Х	Х	Х		
BW0001C	37 to 40	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
BW0001D	44 to 47	Х	Х	Х	Х		Х	Х	Х	Х		
BW0002A	23 to 26	X	Х	Х	Х		Х					
BW0002B	30 to 33	Х	Х	Х	Х		Х					
BW0002C	37 to 40	Х	Х	Х	Х	Х	Х	Х	Х			
BW0002D	44 to 47	Х	Х	Х	Х		Х					
BW0003A	23 to 26	Х	Х	Х	Х		Х					
BW0003B	30 to 33	Х	Х	Х	Х		Х					
BW0003C	37 to 40	Х	Х	Х	Х	Х	Х	Х	Х		X	Х
BW0003D	44 to 47	х	Х	Х	Х		х					
Lower Treatment Zone												
RW0008	47 to 57	Х	Х	X	Х	Х	Х	Х	Х	Х	X	Х
IW0002DI	50 to 55	Х	Х	Х	Х	Х	Х	Х	Х	Х		
BW0001E	51 to 54	Х	Х	X	Х	X	Х	Х	Х	Х	X	Х
BW0001F	58 to 61	Х	Х	X	Х	Х	Х	Х	Х	Х		
BW0002E	51 to 54	Х	Х	Х	Х		Х					
BW0002F	58 to 61	Х	Х	Х	Х		Х					
BW0003E	51 to 54	Х	Х	Х	Х		Х				X	Х
BW0003F	58 to 61	Х	Х	Х	Х		Х					
Outside Treatment Area												
IW0076 (below treatment area)	70 to 80	Х	Х	Х	Х		Х			Х		
IW0067D (UIC monitoring wel	38 to 43	X			X							
IW0067D1 (UIC monitoring w	63 to 73	X			X							
IW0070D (UIC monitoring wel	38 to 43	X			X							
IW0070D1 (UIC monitoring w	65 to 75	X			X							
IW0071D (UIC monitoring wel	38 to 43	X			X							
IW0071D1 (UIC monitoring w	65 to 75	Х			Х							

Table 8: System Operation Sampling Plan – Startup to Month 6 (NASA 2013)

Notes:

1. ft BLS indicates feet below land surface.

2. VOCs indicate volatile organic compounds and include analysis for n-butyl acetate and n-butanol.

3. EPA indicates Environmental Protection Agecny.

4. VFAs indicate volatile fatty acids.

5. TOC indicates total organic carbon.

6. MEEs indicate methane, ethane, ethene.

7. Anions include analysis for chloride, sulfate, nitrate and nitrite.

8. Dissolved metals include analysis for iron, manganese and arsenic.

9. Dhc indicates Dehalococcoides and is the quantitative analysis for the 16S rRNA gene.

10. vcrA indicates the vinyl chloride reductase gene and is a quantitative analysis.

11. Extraction wells (RW0007 and RW0008) were sampled weekly for the first month and bi-weekly for remaining five months. Analysis of samples for Dhc and vcrA occurred quarterly.

12. Monitoring wells were sampled at month 3 and month 6 of operation.

		Analysis								
	Screen	VOCs	TOC	MEEs	Dha					
Sampling Location	Interval	by EPA	by EPA	by EPA	Dnc	VCTA				
	(ft BLS)	Method	Method	Method RSK	by Gene-	by Gene-				
	` ´	8260B	9060A	147	Trac [™] Dhc	Trac [®] VC				
Upper Treatment Zone			•	•		•				
RW0007	35 to 42	Х	Х	Х	Х	Х				
IW0002I	25 to 30	Х	Х	Х						
IW0002D	35 to 40	Х	Х	Х						
BW0001A	23 to 26	Х	Х	Х						
BW0001B	30 to 33	Х	Х	Х						
BW0001C	37 to 40	Х	X	Х	Х	Х				
BW0001D	44 to 47	Х	X	Х						
BW0002A	23 to 26	Х	Х	Х						
BW0002B	30 to 33	Х	Х	Х						
BW0002C	37 to 40	Х	Х	Х						
BW0002D	44 to 47	Х	Х	Х						
BW0003A	23 to 26	Х	Х	Х						
BW0003B	30 to 33	Х	Х	Х						
BW0003C	37 to 40	Х	X	Х	Х	Х				
BW0003D	44 to 47	Х	X	X						
Lower Treatment Zone			•							
RW0008	47 to 57	Х	X	Х	Х	Х				
IW0002DI	50 to 55	Х	X	Х						
BW0001E	51 to 54	Х	X	Х	Х	Х				
BW0001F	58 to 61	Х	X	Х						
BW0002E	51 to 54	Х	X	Х						
BW0002F	58 to 61	Х	X	Х						
BW0003E	51 to 54	Х	X	Х	Х	Х				
BW0003F	58 to 61	Х	X	Х						
Outside Treatment Area			•							
IW0076 (below treatment area)	70 to 80	Х	X	Х						
IW0067D (UIC monitoring well)	38 to 43									
IW0067D1 (UIC monitoring well)	63 to 73									
IW0070D (UIC monitoring well)	38 to 43									
IW0070D1 (UIC monitoring well)	65 to 75									
IW0071D (UIC monitoring well)	38 to 43									
IW0071D1 (UIC monitoring well)	65 to 75									

Table 9: System Operation Sampling Plan – Month 7 to Month 12 (NASA 2013)

Notes:

1. ft BLS indicates feet below land surface.

2. VOCs indicate volatile organic compounds and include analysis for n-butyl acetate and n-butanol.

3. EPA indicates Environmental Protection Agency.

4. TOC indicates total organic carbon.

5. MEEs indicate methane, ethane, ethene.

6. Dhc indicates Dehalococcoides and is the quantitative analysis for the 16S rRNA gene.

7. vcrA indicates the vinyl chloride reductase gene and is a quantitative analysis.

8. Extraction wells (RW0007 and RW0008) were sampled monthly from month 7 to month 12 and samples were analyzed for

VOCs only and were sample quarterly for the constituents noted above.

9. Monitoring wells were sampled at month 9 and month 12 of operation.

System Operation Phase Soil Sampling

Three soil cores (DPT0346, DPT0347, and DPT0348) were collected during the month 6 sampling event and three soil cores (DPT0349, PDT0350, and DPT0351) were collected during the month 12 sampling event using DPT techniques at the locations presented on Figure 12. Sample intervals were selected based on PID screening responses and based on lithology. A total of 24 soil samples were collected during the month 6 event and 22 soil samples were collected from the month 12 event. Collected soil samples were laboratory analyzed for CVOCs and nBA (EPA Method 8260C and select soil samples were analyzed for *Dhc* and *vcrA*. In addition, the cores were visually logged to document soil lithology.

Post System Operation Groundwater Sampling

Six month following the recirculation system shutdown (i.e. through March 2013 [Month 18]), selected site monitoring wells were sampled to assess the availability of remaining electron donor and to evaluate CVOC concentrations. Samples were collected from monitoring wells BW0001B, BW0001C, and BW0001D and were laboratory analyzed for CVOCs and nBA (EPA Method 8260C) and methane, ethane, and ethene (EPA Method RSK 175).

Recirculation System Removal

Following the month 18 groundwater sampling event, the recirculation system and piping were removed on 20 May 2013. The temporary construction fencing, above ground secondary containment piping (2-in schedule 40 PVC), injection piping (3/4-in HDPE), submersible recirculation pumps, and the recirculation trailer were all removed from the site.

CHAPTER 4: RESULTS

<u>Overview</u>

This section summarizes the results from sampling activities associated with the PED injection demonstration. Sampling activities occurred from January 2011 (baseline sampling) through March 2013 (post system operation sampling) and included soil sampling, groundwater sampling, GAC effluent sampling, and PED injection batch sampling. Sampling was performed to assess the effectiveness of the PED injection as a viable bioremediation alternative. This section is organized by the phases of implementation operation, including: (i) baseline sampling; (ii) baseline flux measurement phase; (iii) injection phase; (iv) biomass growth phase; (v) system operation phase; and (vi) post system operation phase. All result tables are provided at the end of the section for coherence.

Baseline Sampling Results

Baseline sampling included collecting soil and groundwater samples from locations in and around the treatment area. Samples were collected to confirm constituent delineation and to establish pre-implementation groundwater conditions within the vicinity of the treatment area.

Baseline Soil Sampling Results

CVOC and nBA results for baseline soil sampling are presented in Table 10. A total of 19 soil samples were collected from four locations at intervals ranging from 24 to 55 ft BLS. The maximum TCE concentration detected at each location was as follows:

- 22 milligrams per kilogram (mg/kg) at soil boring location SB1003 (location of bundle well BW0001), at a depth of 44 ft BLS;
- 0.03 mg/kg at soil boring location SB1002 (location of bundle well BW0002) at a depth of 46.5 ft BLS;
- 5.4 mg/kg at soil boring location SB1004 (location of bundle well BW0003) at a depth of 45 ft BLS; and
- 5.7 mg/kg at SB1001 (location of recirculation extraction well RW0008) at a depth of 44.5 ft BLS.

The maximum TCE concentrations were all detected within the silty/clay layer (low hydraulic conductivity semi-confining layer). nBA was not detected in any soil samples collected, as expected.

TOC and f_{oc} results for baseline soil sampling are presented in Table 11. TOC and f_{oc} samples were collected from soil borings SB1002 (location of bundle well BW0002) and SB1003 (location of bundle well BW0001). The average values for the clay layer were 2,850 mg/kg TOC and 0.003 f_{oc} .

Baseline Groundwater Sampling CVOC Results

CVOC and nBA results for baseline groundwater sampling are presented in Table 12. Groundwater samples were collected from 28 monitoring wells, including six UIC wells, two recirculation extraction wells, and four injection wells. Maximum TCE concentration (150,000 μ g/L) was observed in the sample collected from monitoring well BW0001D, screened within the clay layer. The groundwater sampling results confirm the soil sampling results – the highest TCE concentrations are in the area of monitoring well BW0001 and within the clay layer. Maximum cDCE concentration (87,000 μ g/L) was observed in the sample collected from monitoring well BW0002C, just above the clay layer. Maximum VC concentration (13,000 μ g/L) was observed in the sample collected from monitoring well BW0003A (above the clay layer). No CVOCs were detected in samples collected from the UIC monitoring wells, which are located outside of the treatment zone. nBA was not detected in any of the samples collected, as expected. Freon 113 was detected in 13 of the 34 wells sampled and the maximum concentration detected (130,000 μ g/L) was observed in the sample collected from monitoring well BW0001B.

Baseline Groundwater Sampling Field Geochemical Parameter Results

Field geochemical parameters collected during the baseline groundwater sampling event were used to evaluate whether aquifer conditions are favorable for the reductive dechlorination of CVOCs and are presented in Table 13.

The optimal pH range for *Dhc* is between 6 and 8 standard units (SU). The pH reported within the treatment zone during the February 2011 baseline sampling event ranged from 7.3 SU to 8.8

SU, with an average of 7.6 SU. This indicates that the pH in the treatment area was generally within the optimum range for dechlorinating bacteria.

The absence of DO in groundwater is an indication that conditions are favorable for anaerobic reductive dechlorination of CVOCs. Negative ORP values indicate a reducing groundwater environment and are also indicative of groundwater conditions favorable for anaerobic reductive dechlorination of CVOCs. The DO reported from monitoring wells within the treatment zone during the February 2011 baseline sampling event ranged from 0.16 mg/L to 0.61 mg/L, with an average of 0.33 mg/L. The ORP reported during the February 2011 baseline sampling event ranged from negative 197 millivolts (mV) to 6.5 mV, with an average of negative 138 mV. The ORP of 6.5 mV was from the groundwater at recirculation extraction well RW0007, which was the only well in the treatment area with an ORP that was positive (all other values were less than negative 90 mV). The average DO and ORP concentrations presented are indicative of a reducing, anaerobic environment conducive to the reductive dechlorination of CVOCs.

Baseline Flux Measurement Phase Results

During the baseline flux phase, the recirculation system was operated for four weeks (March through April 2011) prior to injection of the PED with a goal of measuring mass removal without PED enhancement. The recirculation extraction wells, along with select site monitoring wells, were sampled weekly. The results from the recirculation extraction wells were mainly used to evaluate the effects of the recirculation system operation without PED enhancement. The post baseline flux sampling event occurred at the end of week 4, which serves as the baseline data for
all future sampling events. GAC effluent was sampled as well to monitor for breakthrough prior to reinjection.

Baseline Flux Measurement Groundwater Sampling CVOC Results

CVOC results for the baseline flux measurement phase are presented in Table 12. Data from the recirculation extraction wells indicate that TCE and cDCE concentrations in the area of the recirculation extraction wells decreased during the baseline flux measurement phase. A summary of the data is provided below.

Samples collected from recirculation extraction well RW0007 yielded a decrease in TCE concentration from 54,000 μ g/L to 12,000 μ g/L, a decrease in cDCE concentration from 50,000 μ g/L to 25,000 μ g/L, and an increase in VC concentration from non-detect to 990 I μ g/L (I indicates concentration detected between the method detection limit [MDL] and the practical quantitation limit [PQL]). Samples collected from recirculation extraction well RW0008 yielded a decrease in TCE concentration from 4,900 μ g/L to 1,000 μ g/L, a decrease in cDCE concentration from 3,300 μ g/L to 510 μ g/L, and stable VC concentrations that remained below detectable limits.

During the baseline flux phase, select monitoring wells were sampled which included wells screened above the clay (BW0001C, BW0002C, BW0003C, IW0002I, IW0002D) and wells screened below the clay (BW0001E, BW00003E, IW0002D1). The highest TCE, cDCE and VC concentrations were observed in samples collected from monitoring well BW0001C, BW0002C, and BW0003C, respectively. CVOC concentrations in the samples collected from the

monitoring wells were generally the same order of magnitude as the concentrations observed during the baseline sampling, with the following exceptions:

- TCE concentrations in samples collected from monitoring well IW0002D decreased from 17,000 µg/L to 490 I µg/L;
- cDCE concentrations in samples collected from monitoring well IW0002D decreased from 57,000 µg/L to 26,000 µg/L;
- cDCE concentrations in samples collected from monitoring well BW0003C decreased from 36,000 μg/L to 6,000 μg/L;
- and cDCE concentrations in samples collected from monitoring well BW0001C decreased from 47,000 µg/L to 25,000 µg/L.

In general, the data suggests that the operation of the recirculation system alone impacted groundwater within the treatment area, initially decreasing CVOC concentrations. The decreases observed from samples collected from treatment zone monitoring wells are likely attributed to dilution from recirculation system influences, as evidenced by the similar relative decreases observed in both TCE and daughter product concentrations. If concentration decreases were attributed to reductive dechlorination, an increase in daughter products would be expected following a decrease in TCE concentrations.

Baseline Flux Measurement Groundwater Sampling nBA, TOC, and VFA Results nBA results are presented in Table 12 and TOC and volatile fatty acids (VFAs) results are presented in Table 14. During the baseline flux measurement phase, groundwater collected from the recirculation extraction wells were analyzed for nBA, TOC, and VFAs weekly for four weeks and select site monitoring wells were sampled during the week four event (results to serve as baseline sampling event for next phase). Sample results from the recirculation extraction wells remained stable during the baseline flux measurement phase; therefore, the results below focus on the week four sampling event.

Groundwater samples were analyzed for nBA during the baseline flux measurement phase to ensure nBA was not present in the groundwater prior to its injection. There were no detections of nBA in any of the samples collected during the baseline flux measurement phase.

The purpose of analyzing groundwater samples for TOC and VFAs (including acetic acid, butanoic acid (ie. butyric acid), lactic acid, propionic acid, and pyruvic acid) during the baseline flux measurement phase was to obtain a baseline value of TOC and VFAs prior to PED injection. During the baseline flux measurement phase, acetic acid and lactic acid were the only VFAs detected. Average detected TOC, acetic acid, and lactic acid concentrations observed in samples collected from recirculation extraction wells and select site and UIC monitoring wells are summarized below:

- TOC ranged from 2.9 mg/L to 7.5 mg/L, with an average of 4.0 mg/L;
- acetic acid ranged from 1.0 μ g/L to 65 μ g/L, with an average of 11 μ g/L; and
- lactic acid concentrations ranged from $1.1 \,\mu$ g/L to $2.3 \,\mu$ g/L, with an average of $1.5 \,\mu$ g/L.

Baseline Flux Measurement Groundwater Sampling Dhc and vcrA Results

Results for *Dhc* and *vcrA* analyses are presented in Table 15. Samples were analyzed for *Dhc* and *vcrA* during the last week of the baseline flux measurement phase in order to establish a baseline concentration. *Dhc* was detected in 5 of the 6 wells sampled with a concentration that ranged from 1.0×10^3 J (estimated value between the detection limit and the quantitation limit) gene copies per liter (gene copies/L) to 5.0×10^7 gene copies/L. Analysis for *vcrA* was performed on the samples collected from the recirculation extraction wells (RW0007 and RW0008). A *vcrA* concentration of 5.0×10^3 gene copies/L was detected in samples collected from recirculation extraction well RW0007 and no *vcrA* was detected in samples collected from recirculation extraction well RW0008.

Baseline Flux Measurement Groundwater Sampling Geochemical Results

Results for geochemical parameters are presented in Table 16 and include concentrations of MEEs, nitrate, nitrite, sulfate, sulfide, chloride, alkalinity, and bromide and iodide (tracers). During the baseline flux measurement phase, groundwater collected from the recirculation extraction wells were analyzed for geochemical parameters during week two and week four and select site monitoring wells were sampled during the week four event (results to serve as baseline sampling event for next phase). Sample results from the recirculation extraction wells remained stable during the baseline flux measurement phase; therefore, the results below focus on the week four sampling event.

Dissolved Gases Evaluation

Methane is produced by methanogenic bacteria from the conversion of acetate or the reduction of carbon dioxide under anaerobic conditions. Methanogens and dechlorinating organisms thrive under similar conditions; therefore, the production of methane in groundwater is a good indicator that favorable conditions exist for reductive dechlorination. Methane concentrations detected in samples collected during the week four of the baseline flux measurement phase ranged from 5.8 μ g/L to 110 μ g/L, with an average of 45 μ g/L.

Ethene is the final dechlorination product of TCE, cDCE, and VC. Ethene concentrations ranged from 2.9 μ g/L to 260 μ g/L, with an average of 53 μ g/L. Ethane was not detected. This data suggests that complete dechlorination is naturally occurring.

Nitrate and Nitrite Evaluation

Nitrate is reduced to nitrite under anaerobic conditions by bacteria that contain nitrate reductase (enzyme responsible for nitrate reduction). The nitrate reducing bacteria can compete for electron donor with dechlorinating organisms (e.g., *Dhc*). Both nitrate and nitrite were not detected in any samples collected during the baseline flux phase. These results suggest that nitrate is not present in site groundwater and therefore, the bacteria responsible for nitrate reduction donor.

Sulfate and Sulfide Evaluation

Sulfate is transformed to sulfide under anaerobic conditions by sulfate reducers and these organisms can compete for electron donor with dechlorinating organisms (e.g., *Dhc*). Sulfate

concentrations have been observed as high as 960 mg/L without showing inhibitions, whereas sulfide inhibition to *Dhc* begins at concentrations between 32 and 160 mg/L (He 2005). Sulfate concentrations detected in samples collected during the baseline flux measurement phase ranged from 27 mg/L to 112 mg/L, with an average of 64 mg/L, which is below inhibitory concentrations. Sulfide was only detected in recirculation extraction well RW0007 at a concentration of 1.0 mg/L, which is below inhibitory concentrations.

Chloride and Alkalinity Evaluation

Chloride is produced during the reductive dechlorination of TCE, cDCE, and VC. Groundwater samples were analyzed for chloride during the last week of the baseline flux measurement phase to obtain baseline data for the remainder of the PED implementation. Chloride concentrations ranged from 73 mg/L to 780 mg/L, with an average of 464 mg/L.

Groundwater samples were analyzed for alkalinity during the baseline flux phase to evaluate the general groundwater geochemistry at the site prior to PED injection activities. The alkalinity ranged from 166 mg/L to 341 mg/L as CaCO₃, with an average of 245 mg/L as CaCO₃.

Bromide and Iodide (Tracers) Evaluation

The purpose of sampling for bromide and iodide during the baseline flux measurement phase was to obtain a baseline value for the tracer concentrations prior to injection event. During the four weeks of the baseline flux measurement phase, bromide concentration detected in samples collected from recirculation extraction wells and select site and UIC monitoring wells ranged from 1.1 mg/L to 2.1 mg/L, with an average of 1.5 mg/L. Iodide was not detected in any samples collected during the baseline flux measurement phase.

Baseline Flux Measurement Groundwater Sampling Dissolved Metals Results

Dissolved metals were monitored for mobilization during implementation. Groundwater samples were analyzed for dissolved metals, including arsenic, iron, and manganese, during the last week of the baseline flux measurement phase to obtain baseline values for the remainder of the PED implementation and results are presented in Table 17. Arsenic was not detected in samples collected during the baseline flux measurement phase. Iron concentrations detected (nine out of 12 wells sampled) in samples collected during the baseline flux measurement phase sampled (detected in all wells sampled) from 10 μ g/L to 34 μ g/L.

Baseline Flux Measurement Groundwater Sampling Field Geochemical Results

Field geochemical parameters collected during the baseline flux measurement phase were used to evaluate whether aquifer conditions remain favorable for the reductive dechlorination of CVOCs and are presented in Table 13.

The pH reported from monitoring wells within the treatment zone during the baseline flux measurement phase ranged from 7.3 SU to 7.8 SU, with an average of 7.6 SU. This indicates that the pH in the target area remains within the optimum range for reductive dechlorination. The DO reported from monitoring wells within the treatment zone during the baseline flux measurement phase ranged from 0.08 mg/L to 1.7 mg/L, with an average of 0.41 mg/L. The

ORP observed during the baseline flux measurement phase ranged from negative 211 mV to negative 53 mV, with an average of negative 143 mV. While it appears the site DO was occasionally above the levels where site groundwater is considered anaerobic (0.5 mg/L) [Wiedemeier 2005], the ORP concentrations observed are indicative of a reducing, anaerobic environment conducive to the reductive dechlorination of CVOCs.

Baseline Flux Measurement GAC Effluent Results

Effluent from the GAC vessels was sampled to assure that the CVOCs were removed from the groundwater prior to reinjection. CVOCs were not detected in any GAC effluent samples collected, indicating that all CVOCs were removed from the groundwater prior to reinjection.

Baseline Flux Measurement Recirculation System Operation Summary

The recirculation system operated for four weeks during the baseline flux measurement phase and a summary of recirculation system operation data collected during O&M activities (Appendix E) is provided below.

- Average flow rates
 - Approximately 2.3 gpm from recirculation extraction well RW0007, slightly less than design flow rate of 2.5 gpm;
 - approximately 2.4 gpm from recirculation extraction well RW0008, slightly less than design flow rate of 2.5 gpm; and
 - o approximately 0.4 gpm to 0.5 gpm to individual recirculation injection wells.
- Total groundwater recirculated

- o Approximately 58,700 gallons from recirculation extraction well RW0007; and
- o approximately 44,000 gallons from recirculation extraction well RW0008.
- Operational percentage
 - The system was designed to operate on for 40 minutes, then off for 20 minutes.
 Therefore, the system was anticipated to operate for 16 hours per day;
 - recirculation extraction well RW0007 operated for approximately 78 percent of the time; and
 - recirculation extraction well RW0008 operated for approximately 57 percent of the time.

No repairs or adjustments to the recirculation system were necessary during the baseline flux measurement phase. The reduced operational percentage was mainly due to the undersized solar panel recharging network and did not impact the baseline flux phase evaluation.

PED Injection Sampling Results

The PED injection took place from 20 through 28 June 2011. During the injection, PED solution batches were sampled to ensure proper preparation. Following the injection, DPT groundwater sampling and monitoring well sampling was conducted to ensure proper delivery of the PED to the subsurface.

PED Injection Amendment Batch Sampling Results

The PED amendment batches were sampled prior to injection to compare against design criteria. The PED amendment batch sampling results are presented in Table 18. The nBA concentration observed in samples collected from random batches during the June 2011 injection event ranged from 1,100 mg/L to 7,700 mg/L, with an average of 3,000 mg/L, which was the same as the design concentration (3,000 mg/L). The bromide concentration observed in samples collected from batches during the injection event ranged from 17 mg/L to 111 mg/L, with an average of 72 mg/L, which was slightly higher than the design concentration of 60 mg/L. The iodide concentration observed in samples collected from batches during the injection event ranged from batches during the injection event ranged from 27 mg/L to 150 mg/L, with an average of 107 mg/L, which was less than the design concentration of 140 mg/L.

PED Injection DPT Groundwater Sampling Results

Post-injection DPT groundwater sampling results are presented in Table 19 and were collected at the locations presented on Figure 11 to aid in the evaluation of the ROI obtained during injection activities. The DPT groundwater sampling was conducted one day after completion of the PED injection activities. Two feet away from the nearest injection point, the maximum nBA concentration detected from samples collected during the post-injection DPT groundwater sampling was 1,700 mg/L (DPT0329), approximately half of the design concentration of 3,000 mg/L. Four feet away from the nearest injection point, the maximum nBA concentration detected was 490 mg/L. It is likely that the nBA hydrolyzed into n-butanol and acetate more quickly than anticipated. The collected samples were analyzed using an on-site mobile laboratory; therefore, n-butanol data was not available to verify if hydrolysis of nBA occurred.

PED Injection Monitoring Well Groundwater Sampling Results

Post-injection monitoring well groundwater sampling, which occurred on 7 July 2011, was conducted to aid in the evaluation of the ROI obtained during injection activities. CVOC, nBA, and n-butanol results are presented in Table 12 and tracer results are presented in Table 16. Maximum TCE concentration detected during the post-injection monitoring well groundwater sampling event during July 2011 was 170,000 μ g/L in samples collected from monitoring well BW0001D. Maximum cDCE concentration detected was 51,000 μ g/L in samples collected from monitoring well BW0002C, and maximum VC concentration detected was 2,400 I μ g/L in samples collected from monitoring well BW0003C.

nBA concentrations detected in samples collected during the post-injection monitoring well groundwater sampling (detected at all wells sampled) ranged from 49 I µg/L to 1,500 mg/L (maximum concentration detected at BW0003E; approximately four feet from nearest injection point), with an average of 403 mg/L. n-butanol concentrations detected (detected in 10 of 11 wells sampled) in samples collected during the sampling event ranged from 1.5 I mg/L to 520 mg/L (maximum concentration detected at BW0003E), with an average of 168 mg/L. The detection of n-butanol suggests that the nBA is undergoing hydrolysis in the subsurface.

Bromide was detected in all samples collected during the July 2011 post-injection monitoring well groundwater sampling. Iodide was detected in samples collected from wells screened above the clay layer (BW0001C, BW0002C, BW0003C, and RW0007) as expected since iodide was only injected above the clay. Bromide and iodide detections indicate that the nBA solution was successfully delivered to the subsurface within the treatment area.

Recirculation extraction well RW0007 is the location that is furthest away from the injection points and nBA, bromide, and iodide were observed in samples collected from recirculation extraction well RW0007. Therefore, the estimated achieved ROI was up to 5 ft.

Biomass Growth Results

During the biomass growth phase, the recirculation system remained off for approximately four weeks to allow the nBA to partition into the DNAPL and to allow time for biomass growth. Groundwater sampling occurred on 1 and 2 August 2011 and soil sampling occurred on 3 August 2011 to evaluate site conditions after biomass growth phase.

Biomass Growth Groundwater Sampling CVOC Results

Biomass growth phase CVOC results are presented in Table 12. TCE concentrations in samples collected during the biomass growth phase in August 2011 ranged from 1.3 I μ g/L to 120,000 μ g/L (BW0001D), cDCE concentrations ranged from 4.0 I μ g/L to 43,000 μ g/L (BW0002C), and VC concentrations ranged from 1.3 I μ g/L to 14,000 μ g/L (BW0003B). When compared to results from week four of the baseline flux measurement phase (April 2011), maximum TCE and cDCE concentrations were within the same order of magnitude, with the maximum concentrations occurring in samples collected from the same monitoring wells (BW0001D and BW0002C, respectively), while the maximum VC concentration was observed to increase from 5,700 μ g/L (April 2011; BW0003A) to 14,000 μ g/L (August 2011; BW0003B). The increase in VC concentration can be attributed to the degradation of TCE into daughter products.

Biomass Growth Groundwater Sampling nBA, TOC, AND VFA Results

nBA results are presented in Table 12 and TOC and VFA results are presented in Table 14. A summary of the results collected during the biomass growth phase in August 2011 is provided below.

- nBA concentrations detected averaged 71 mg/L, decreasing from average nBA concentration observed in July 2011 (403 mg/L);
- n-butanol concentrations detected averaged 157 mg/L, remaining stable from average nbutanol concentration observed in July 2011 (168 mg/L);
- TOC concentrations detected ranged from 3.7 mg/L to 1,130 mg/L, with an average of 250 mg/L, increasing from the average concentration observed in April 2011 (4.0 mg/L);
- acetic acid concentrations detected ranged from 2.8 μg/L to 1,100 μg/L, with an average of 272 μg/L, increasing from the average concentration observed in April 2011 (11 μg/L);
- butanoic acid concentrations detected ranged from 3.7 μg/L to 1,200 μg/L, with an average of 143 μg/L, increasing from non-detect (April 2011);
- lactic acid concentrations ranged from 1.1 μ g/L to 1.7 μ g/L, with an average of 1.3 μ g/L, which is similar to concentration observed in April 2011 (1.5 μ g/L); and
- propionic acid concentrations ranged from 1.1 µg/L to 21 µg/L, with an average of 9.8 µg/L, increasing from non-detect (April 2011).

n-butanol detection indicated that nBA is being hydrolyzed in the subsurface. The increase in acetic and butanoic acid indicates n-butanol is being broken down in the subsurface and providing essential electron donor.

Biomass Growth Groundwater Sampling Tracer Results

Bromide and iodide results are presented in Table 16. Bromide concentrations detected in samples collected during the biomass growth phase in August 2011 ranged from 1.0 mg/L to 58 mg/L and iodide concentrations ranged from 2.3 mg/L to 64 mg/L. No iodide was detected below the semi-confining unit, as expected, since no iodide was injection below it.

Biomass Growth Groundwater Sampling Geochemical Results

Results for geochemical parameters are presented in Table 16 and are summarized below.

Dissolved Gases Evaluation

A summary of the results is provided below.

- Methane concentrations detected in samples collected during the biomass growth phase ranged from 4.3 µg/L to 5,600 µg/L, with an average of 361 µg/L;
- ethane concentrations detected ranged from 1.3 μg/L to 140 μg/L, with an average of 41 μg/L;
- ethene concentrations detected ranged from 1.5 μg/L to 410 μg/L, with an average of 67 μg/L; and

• methane and ethane average concentrations increased from concentrations detected in April 2011, which were 45 μ g/L and non-detect, respectively, while the ethene concentration was similar to the concentration observed in April 2011 (53 μ g/L).

The increase in the average concentration of methane indicates that the injection of PED has created an environment that is suitable for the reductive dechlorination of CVOCs. The increase in ethane concentrations indicates that ethene is being reduced to ethane. The observed stable concentration of ethene is likely due to conversion to ethane.

Sulfate and Sulfide Evaluation

Sulfate concentrations detected in samples collected during the biomass growth phase ranged from 2.3 mg/L to 79 mg/L, with an average of 23 mg/L, decreasing from the average concentrations detected in April 2011 (64 mg/L). Sulfide concentrations detected in samples collected ranged from 1.2 mg/L to 15 mg/L, with an average of 5.0 mg/L. Sulfide was detected in samples collected from 12 monitoring wells, which is an increase from the one well detected in during April 2011 sampling; however, sulfide concentrations remain below inhibitory concentrations.

Nitrate and Nitrite Evaluation

Nitrate and nitrite were not detected in any samples collected during the biomass growth phase, similar to results from April 2011.

Chloride and Alkalinity Evaluation

Chloride concentrations ranged from 137 mg/L to 670 mg/L, with an average of 428 mg/L, which is similar to the concentration observed in April 2011 (464 mg/L). Alkalinity ranged from 183 mg/L as CaCO₃ to 1,150 mg/L as CaCO₃ with an average of 497 mg/L as CaCO₃, which is the similar to the concentration observed in April 2011 (245 mg/L as CaCO₃).

Biomass Growth Groundwater Sampling Dissolved Metals Results

Results for dissolved metals are presented in Table 17. Arsenic was not detected in samples collected during the biomass growth phase, which is consistent with the results from April 2011. Iron concentrations detected (six of 12 wells) in samples collected during the biomass growth phase ranged from 120 μ g/L to 3,500 μ g/L (IW0002I). Four of the iron detections were greater than the FDEP GCTLs (BW0001F, IW0002D, RW0007 and RW0008) and one iron detection was greater than the FDEP NADC (IW0002I). Manganese concentrations detected (11 of 12 wells) ranged from 17 μ g/L to 198 μ g/L (IW0002D). Five of the detections were greater than the FDEP GCTL (IW0002I, IW0002D, IW0002D1, RW0007, RW0008). The detection of metal concentrations suggest that metals were mobilized during injection or recirculation activities within the treatment zone.

Biomass Growth Groundwater Sampling Field Geochemical Results

Field geochemical parameters collected during the biomass growth phase are presented in Table 13 and are summarized below.

The pH reported from monitoring wells located within the treatment zone during the biomass growth phase ranged from 6.6 SU to 7.9 SU, with an average of 7.4 SU, similar to April 2011 (7.6 SU). This indicates that the pH in the treatment area remains within the optimum range for reductive dechlorination.

The DO reported from monitoring wells within the treatment zone during the biomass growth phase ranged from 0.23 mg/L to 1.25 mg/L, with an average of 0.64 mg/L, increasing from April 2011 (0.41 mg/L). The ORP observed during the biomass growth phase ranged from negative 275 mV to negative 2.9 mV, with an average of negative 119 mV, increasing slightly from April 2011 (negative 143 mV).

The pH, DO and ORP are all the same order of magnitude as those reported in April 2011 (prior to injection). This was expected, since this data was collected only approximately four weeks after injection activities.

Biomass Growth Soil Sampling Results

CVOC and nBA results for biomass growth phase soil sampling are presented in Table 10 and the results for the TCE and nBA are summarized below.

 DPT0332 – TCE concentration detected in soil samples collected during the biomass growth phase ranged from 0.0098 mg/kg to 70 mg/kg (43.5 ft BLS). nBA concentration detected in collected soil samples ranged from 0.0047 I mg/kg to 38 mg/kg (43.5 ft BLS).

- DPT0333 TCE concentration detected in soil samples collected during the biomass growth phase ranged from 0.0095 mg/kg to 65 mg/kg (44 ft BLS). nBA concentration detected in collected soil samples ranged from 0.00087 I mg/kg to 24 mg/kg (37 ft BLS).
- DPT0334 TCE concentration detected in soil samples collected during the biomass growth phase ranged from 0.006 J (estimated value) mg/kg to 31 mg/kg (47 ft BLS).
 nBA concentration detected in collected soil samples ranged from 0.056 I mg/kg to 7.0 mg/kg (53 ft BLS).

Based on soil samples collected during the biomass growth phase, the highest TCE concentrations were detected in the clay layer (as expected) and the TCE concentrations were higher than those observed in the baseline soil sampling. These results suggest that the CVOC mass distribution is heterogeneous within the clay layer. nBA was observed in all soil samples collected and the highest concentrations were observed in the clay layer, which indicates that the nBA was distributed within the low permeability zone. The CVOC and nBA concentrations detected from samples collected during the biomass growth phase serve as a comparative baseline for later soil sampling events occurring at the same locations.

System Operation Results

Following the biomass growth phase, the recirculation system was restarted on 9 August 2011 and the system operated for approximately twelve months. During system operation, regular groundwater sampling was conducted to monitor effectiveness of the PED. Site wide sampling events took place quarterly during month 3, month 6, month 9, and month 12 of operation. In addition, O&M activities were performed regularly to ensure proper operation of the recirculation system.

System Operation Groundwater Sampling CVOC Results

CVOC results for the system operation phase are presented in Table 12 and are summarized below.

Extraction Well Sampling Results

The recirculation extraction wells were sampled weekly the first month of operation, biweekly from month 2 to month 6 and monthly from month 6 to month 12. A summary of the results is provided below (August 2011 to September 2012).

- <u>Recirculation Extraction Well RW0007</u>
 - TCE concentration ranged from 120 I μg/L to 10,000 μg/L, with an average of 3,188 μg/L;
 - the maximum TCE concentration (10,000 µg/L) was observed in August
 2011 and decreased through September 2012 (210 µg/L);
 - cDCE concentration ranged from 2,300 μg/L to 26,000 μg/L, with an average of 12,281 μg/L;
 - the maximum cDCE concentration (26,000 µg/L) was observed in August
 2011 and concentrations decreased through September 2012 (2,300 µg/L);

- VC concentration ranged from 1,400 μg/L to 10,000 μg/L, with an average of 5,305 μg/L; and
 - the maximum VC concentration (10,000 µg/L) was observed in January
 2012 and concentrations decreased through September 2012 (2,000 µg/L).

<u>Recirculation Extraction Well RW0008</u>

- TCE concentration ranged from 56 μ g/L to 2,000 μ g/L, with an average of 1,015 μ g/L;
 - the maximum TCE concentration $(2,000 \ \mu g/L)$ was observed in November 2011 and the concentration decreased through September 2012 (56 $\mu g/L$);
- $\circ~$ cDCE concentration ranged from 610 μ g/L to 2,300 μ g/L, with an average of 1,210 μ g/L;
 - the maximum cDCE concentration (2,300 µg/L) was observed in
 December 2011 and concentrations decreased through September 2012 (750 µg/L);
- $\circ~$ VC concentration ranged from 94 $\mu g/L$ to 1,100 $\mu g/L,$ with an average of 633 $\mu g/L;$ and
 - the maximum VC concentration (1,100 μg/L) was observed in April 2012 and concentrations decreased through September 2012 (710 μg/L).

A decrease in concentrations of CVOCs indicates that reductive dechlorination was occurring and mass was being removed from the treatment area.

Monitoring Well Sampling Results

Monitoring wells were sampled quarterly during the system operations phase and a summary of the data is provided below (October 2011 to September 2012).

- <u>Treatment Zone Monitoring Wells</u>
 - TCE concentration ranged from 0.35 I µg/L to 150,000 µg/L, with an average of 6,746 µg/L;
 - the maximum TCE concentration (150,000 µg/L; BW0001D) was observed in October 2011 and the concentration decreased through September 2012 (43,000 µg/L);
 - cDCE concentration ranged from 0.34 I μ g/L to 66,000 μ g/L, with an average of 8,823 μ g/L;
 - the maximum cDCE concentration (66,000 µg/L; BW0002C) was observed in October 2011 and concentrations decreased through September 2012 (11,000 µg/L);
 - VC concentration ranged from 0.91 I μ g/L to 14,000 μ g/L, with an average of 2,353 μ g/L; and
 - the maximum VC concentration (14,000 µg/L; BW0003C) was observed in February 2012 and concentrations decreased through September 2012 (5,100 µg/L).
- <u>Vertical Extent Monitoring well (IW0076)</u>
 - The TCE concentrations were below the FDEP GCTL in all sampling events;

- o cDCE detected concentration ranged from 110 μ g/L to 5,000 μ g/L, with an average of 1,763 μ g/L;
 - the maximum cDCE concentration (5,000 µg/L) was observed in June
 2012 and concentrations decreased through September 2012 (non-detect);
- VC concentration ranged from 3.5 I μ g/L to 170 μ g/L, with an average of 47 μ g/L; and
 - the maximum VC concentration (170 µg/L) was observed in June 2012 and concentrations decreased through September 2012 (3.5 I µg/L).

The results suggest that cDCE and VC were pushed below the treatment area during the PED implementation or were mobilized during drilling activities; however, during the last sampling event, only VC was above the GCTL ($3.5 I \mu g/L$).

System Operation Groundwater Sampling nBA, TOC, AND VFA Results

nBA and n-butanol results for the system operation phase are presented in Table 12 and TOC and VFA concentrations are presented in Table 14 and are summarized below.

Recirculation Extraction Well Sampling

nBA was detected in samples collected from both recirculation extraction wells during initial sampling of the system operation phase (12 August 2011) with concentrations of 33 mg/L (RW0007) and 8.1 mg/L (RW0008) and n-butanol was detected with concentrations of 230 mg/L (RW0007) and 120 mg/L (RW0008). No nBA was detected in samples collected from RW0007 after 12 August 2011 and no n-butanol was detected after 26 October 2011. No nBA was

detected in samples collected from RW0008 after 12 August 2011 and no n-butanol was detected after 18 August 2011.

TOC concentration increased after injection and remained elevated (above baseline concentrations) throughout system operation. TOC concentration detected in samples collected from RW0007 during initial sampling of the system operation phase (12 August 2011) was 191 mg/L, decreasing to 9.6 mg/L (13 September 2012) and TOC concentration in RW0008 decreased from 203 mg/L (12 August 2011) to 27 mg/L (13 September 2012), all the while, remaining above the baseline (April 2011) average (4.0 mg/L).

The only VFAs detected in samples collected from recirculation extraction wells RW0007 and RW0008 were acetic, butanoic, and propionic acids. Acetic acid detected in samples collected from both recirculation extraction wells ranged from 91 μ g/L to 380 μ g/L, with an average of 203 μ g /L, which is similar to the average concentration (310 μ g/L) observed during the biomass growth phase (August 2011). Butanoic acid detected in samples collected from both recirculation extraction wells ranged from 4.8 μ g/L to 350 μ g/L, with an average of 123 μ g/L, which is similar to the average concentration (256 μ g/L) observed during the biomass growth phase (August 2011). Propionic acid detected in samples collected from both recirculation extraction wells ranged from 1.2 μ g/L to 22 μ g/L, with an average of 8.7 μ g/L, which is similar to the average concentration (9.8 μ g/L) observed during the biomass growth phase (August 2011).

Monitoring Well Sampling

nBA and n-butanol concentrations in samples collected from monitoring wells generally remained non-detect after the month 3 sampling event (October 2011), with the exception of samples collected from BW0001D (non-detect after month 6 sampling event [February 2012]) and BW0003E (concentrations detected through month 12 sampling event [September 2012; nBA detected at 30 µg/L]).

TOC concentration detected in samples collected from monitoring wells during the system operation phase ranged from 2.3 mg/L to 760 mg/L, with an average of 63 mg/L, decreasing from the average observed during the biomass growth phase (275 mg/L; August 2011). A majority of the remaining TOC detected during the month 12 sampling event was observed in the monitoring wells with a designation of D, which are screened within the clay layer.

The VFAs detected in samples collected during the system operation phase (VFA data only collected during month 3 and month 6 sampling events) were acetic, butanoic, lactic (only detected once during once during month 3 sampling event at a low concentration [1.1 μ g/L; BW0002C]), and propionic acids. Acetic acid concentration detected in samples collected during the system operation phase ranged from 1.6 μ g/L to 970 μ g/L, with an average of 147 μ g/L, decreasing from an average of 310 μ g/L observed during the biomass growth phase (August 2011). Butanoic acid concentration detected in samples collected during the system operation phase ranged from 2.7 μ g/L to 810 μ g/L, with an average of 114 μ g/L, decreasing from an average during the biomass growth phase (August 2011). Propionic acid concentration detected in samples collected during the system operation phase ranged from 2.56 μ g/L, observed during the biomass growth phase (August 2011).

ranged from 1.5 μ g/L to 49 μ g/L, with an average of 10 μ g/L, which is similar to the concentration observed (9.8 μ g/L) during the biomass growth phase (August 2011).

System Operation Groundwater Sampling Tracer Results

Results for tracer concentrations, including bromide and iodide, are presented in Table 16. Bromide concentrations detected in samples collected during the system operation phase (data collected during month 3 and month 6 sampling events) from the monitoring wells and the recovery wells ranged from 1.5 mg/L to 51 mg/L and iodide concentrations ranged from 2.2 mg/L to 89 mg/L. Bromide was detected in samples collected from above, in, and below the semi-confining unit. Iodide, injected above the semi-confining unit only, was detected in one sample collected below the semi-confining unit from monitoring well IW0002D1 at a concentration of 2.2 mg/L during the month 6 (February 2012) event. Because this is the only detection of iodide in the deep zone, it can be concluded that no, or very little, mixing occurred between the shallow and deep zones.

System Operation Groundwater Sampling Dhc and vcrA Results

Results for *Dhc* and *vcrA* analyses are presented in Table 15 and are summarized for the system operation phase below.

Select samples collected from monitoring wells above and below the clay layer and from the recirculation extraction wells were analyzed for *Dhc* and *vcrA*. *Dhc* concentrations observed in samples collected during the system operation phase ranged from 1×10^6 gene copies/L to 5×10^8

gene copies/L, with an average of 9.5×10^7 gene copies/L, increasing from the average observed during the baseline flux phase (April 2011; 8.5×10^6 gene copies/L). *vcrA* concentrations observed in samples collected during the system operation phase ranged from 2×10^6 gene copies/L to 2×10^8 gene copies/L, with an average of 4.5×10^7 gene copies/L. This average concentration is higher than the single detection of *vcrA* observed in April 2011 (5.0×10^3 gene copies/L). Samples collected from wells screened above the clay layer were observed to generally have higher *Dhc* and *vcrA* concentrations (within 10^8 gene copies/L order of magnitude) as expected since CVOC concentrations were higher above the clay layer.

Operation Groundwater Sampling Geochemical Results

Results for geochemical parameters are presented in Table 13 and summarized below.

Dissolved Gases Evaluation

A summary of the results is provided below.

- Methane concentrations detected in samples collected during the system operation phase ranged from 8.2 μ g/L to 2,700 μ g/L, with an average of 511 μ g/L;
- ethane concentrations detected ranged from 1.1 μg/L to 110 μg/L, with an average of 18 μg/L;
- ethene concentrations detected ranged from 3.1 μ g/L to 1,600 μ g/L, with an average of 265 μ g/L; and

• methane and ethene average concentrations increased from concentrations detected in August 2011, which were 361 μ g/L and 67 μ g/L, respectively, and ethane average concentration decreased from concentration detected in August 2011 (41 μ g/L).

The increase in average concentration of methane indicates that the treatment area remained a suitable environment for the reductive dechlorination of CVOCs during system operation. The increase in ethene concentrations indicates that CVOCs are being completely reduced and the decrease in ethane concentrations suggest that the rate of ethene to ethane reduction has slowed.

Sulfate and Sulfide Evaluation

Sulfate concentrations detected in samples collected during the system operation phase ranged from 2.1 mg/L to 103 mg/L, with an average of 25 mg/L, which is similar to the concentrations detected in August 2011 (23 mg/L). Sulfide concentrations detected in samples collected ranged from 1.1 mg/L to 17 mg/L, with an average of 7.4 mg/L, which is similar to the concentration observed in August 2011 (5.0 mg/L). Sulfide concentrations remained below inhibitory concentrations.

Nitrate and Nitrite Evaluation

Both nitrate and nitrite were not detected in any samples collected during the system operation phase, similar to results from August 2011 (biomass growth phase).

Chloride and Alkalinity Evaluation

Chloride concentrations detected in samples collected during the system operation phase ranged from 51 mg/L to 751 mg/L, with an average of 370 mg/L, which is similar to the average concentration observed in August 2011 (428 mg/L). Alkalinity ranged from 169 mg/L as CaCO₃ to 880 mg/L as CaCO₃, with an average of 368 mg/L as CaCO₃, which is similar to the average concentration observed in August 2011 (497 mg/L as CaCO₃).

System Operation Groundwater Sampling Dissolved Metals Results

Results for dissolved metals are presented in Table 17. The results presented in this section are for both the monitoring wells and the recirculation extraction wells. Arsenic was not detected in samples collected during the system operation phase. Iron concentrations detected in samples collected ranged from $120 \ \mu g/L$ to $550 \ \mu g/L$ (IW0002I). Manganese concentrations detected in collected samples ranged from $12 \ \mu g/L$ to $100 \ \mu g/L$ (IW0002I). During the final sampling event (February 2012; dissolved metals not analyzed for after month 6 sampling event) all metal concentrations were below their GCTLs, with the exception of the manganese concentration detected in the samples collected from monitoring wells (IW0002I [69 $\ \mu g/L$], IW0002D [57 $\ \mu g/L$], and BW0001C [57 $\ \mu g/L$]). The results suggest that iron and arsenic were not mobilized during the PED implementation, but that the potential exists for manganese mobilization, which should be considered during future implementation.

System Operation Groundwater Sampling Field Geochemical Results

Field geochemical parameters collected during the system operation phase are presented in Table 13 and summarized below.

The pH reported from monitoring wells located within the treatment zone during the system operation phase ranged from 6.4 SU to 7.9 SU, with an average of 7.3 SU, similar to average pH during August 2011 (7.4 SU). This indicates that the pH within the treatment zone was within the optimum range for reductive dechlorination.

The DO reported from monitoring wells within the treatment zone during the system operation phase ranged from 0.07 mg/L to 1.67 mg/L, with an average of 0.38 mg/L, decreasing from August 2011 (0.64 mg/L). The ORP observed during the system operation phase ranged from negative 538 mV to 72 mV, with an average of negative 248 mV, decreasing from August 2011 (negative 119 mV). The average DO and ORP concentrations observed suggest conditions were favorable for reductive dechlorination for the duration of system operation.

UIC Monitoring Well Sampling Results

nBA was not detected in any samples collected from UIC monitoring wells during all sampling events (February 2011 [baseline], April 2011 [baseline flux], October 2011 [month 3], February 2012 [month 6], and June 2012 [month 9]). Sampling of UIC monitoring wells was discontinued after month 9 sampling event since nBA concentrations were below FDEP GCTLs for at least two consecutive sampling events.

System Operation Soil Sampling Results

CVOC and nBA results for system operation phase soil sampling are presented in Table 10. *Dhc* and *vcrA* results for the month 12 sampling event are presented in Table 20. System operation soil sampling results, which are focused on the parent compound (TCE) and nBA, are summarized below.

- Month 6 (13 February 2012)
 - DPT0346 (same location as DPT0332) TCE detected in soil samples collected during month 6 of operation ranged from 0.0024 I mg/kg to 8.0 mg/kg (48 ft BLS), decreasing from the maximum detected in August 2011 (70 mg/kg at 43.5 ft BLS). nBA was only detected at a sample depth of 46.5 ft BLS at 0.00087 I mg/kg, decreasing from the maximum detected in August 2011 (38 mg/kg at 43.5 ft BLS).
 - DPT0347 (same location as DPT0333) TCE detected in soil samples collected during month 6 of operation ranged from 0.0016 I mg/kg to 73 mg/kg (47 ft BLS), increasing slightly and at a deeper depth interval from the maximum detected in August 2011 (65 mg/kg at 44 ft BLS). nBA was only detected at a sample depth of 45.5 ft BLS at 0.0011 I mg/kg, decreasing from the maximum detected in August 2011 (24 mg/kg at 37 ft BLS).
 - DPT0348 (same location as DPT0334) TCE detected in soil samples collected during month 6 of operation ranged from 0.001 I mg/kg to 75 mg/kg (48.5 ft BLS), increasing and at a slightly deeper sample depth from the maximum detected in August 2011 (31 mg/kg at 47 ft BLS). nBA detected in collected soil

samples ranged from 0.00071 I mg/kg to 0.0025 I (45.4 ft BLS), decreasing from the maximum detected in August 2011 (7.0 mg/kg at 53 ft BLS).

• Month 12 (10 September 2012)

DPT0349 (same as location DPT0346) – TCE detected in soil samples collected during month 12 of operation ranged from 0.0018 I mg/kg to 30 mg/kg (46.5 ft BLS), increasing and at a shallower sample depth from the maximum detected in February 2012 (8.0 mg/kg at 48 ft BLS). nBA was not detected in any collected soil samples during month 12 of operation. *Dhc* concentration detected in samples collected during month 12 of operation ranged from 2.0 X 10³ I gene copies per gram (gene copies/g) to 3.0 x 10³ I gene copies/g (48 ft BLS), and *vcrA* was not detected in collected samples.

- DPT0350 (same as location DPT0347) TCE detected in soil samples collected during month 12 of operation ranged from 0.0049 I mg/kg to 75 mg/kg (45.5 ft BLS), increasing slightly and at a shallower depth interval from the maximum detected in February 2012 (73 mg/kg at 47 ft BLS). nBA was not detected in any collected soil samples during month 12 of operation. *Dhc* detected in samples collected during month 12 of operation ranged from 4.0 X 10³ I gene copies/g to 1.0 x 10⁶ gene copies/g (50 ft BLS), and *vcrA* was only detected at a depth interval of 50 ft BLS at 1.0 x 10⁶ gene copies/g.
- DPT0351 (same as location DPT0348) TCE detected in soil samples collected during month 12 of operation ranged from 0.01 mg/kg to 6.4 mg/kg (45.5 ft BLS), decreasing and at a shallower sample depth from the maximum detected in February 2012 (75 mg/kg at 48.5 ft BLS). nBA was detected in only one

collected soil sample at 0.00078 I mg/kg at a sample depth of 53 ft BLS. *Dhc* detected in samples collected during month 12 of operation ranged from 3.0×10^4 gene copies/g to 7.0 x 10^5 gene copies/g (45.5 ft BLS), and *vcrA* detected in collected samples ranged from 6.0×10^4 gene copies/g to 1.0×10^6 gene copies/g (45.5 ft BLS).

Recirculation System Operation Summary

The recirculation system operated for approximately twelve months during the system operation phase. O&M activities (Appendix E) are summarized below.

- Average flow rates
 - Approximately 2.5 gpm from recirculation extraction well RW0007, similar to design flow rate of 2.5 gpm;
 - approximately 2.6 gpm from recirculation extraction well RW0008, slightly more than design flow rate of 2.5 gpm; and
 - o approximately 0.4 gpm to 0.5 gpm to recirculation injection wells.
- Total groundwater recirculated
 - o Approximately 543,000 gallons from recirculation extraction well RW0007; and
 - o approximately 505,000 gallons from recirculation extraction well RW0008.
- Operational percentage
 - The system was designed to operate on for 40 minutes, then off for 20 minutes.
 Therefore, the system was anticipated to operate for 16 hours per day;

- recirculation extraction well RW0007 operated for approximately 53 percent of the time; and
- recirculation extraction well RW0008 operated for approximately 50 percent of the time.

Loss of operational time was due to undersized solar panel recharging network and downed pumps. The pumps reached the end of their useful life most likely due to biofouling/biomass accumulation from reductive dechlorination reactions and/or biofilm build up in the pipe system and the pumps themselves. The pump for recirculation extraction well RW0007 was replaced, under manufacturer's warranty, on 5 January 2012, 15 March 2012, and again on 21 June 2012. The pump for recirculation extraction well RW0008 was replaced on 21 June 2012.

The total volume of groundwater recirculated represents approximately 4.2 pore volumes of the treatment area. Due to the reduced operational time, the initial goal of recirculating at least 6 pore volumes was not achieved; however, treatment area groundwater was still sufficiently mixed and PED injection amendments distributed.

Post System Operation Groundwater Sampling Results

Select site monitoring wells (the well with the highest TCE concentration [BW0001D] and select wells screened above the clay in that cluster [BW0001B and BW0001C]) were sampled six months after the recirculation system was turned off. CVOC and nBA results are presented in Table 12 and MEE results are presented in Table 16. Results are summarized below.

• Monitoring Well BW0001B

- The TCE concentration (370 I µg/L) was similar to the concentration observed in September 2012 (month 12) (350 I µg/L). cDCE concentration (16,000 µg/L) was the same order of magnitude as the concentration detected in the September 2012 sampling event (19,000 µg/L) and the VC concentration remained the same at 1,100 I µg/L. TCE concentration was reduced by 99 percent since baseline sampling (February 2011).
- nBA and n-butanol were not detected in samples collected during month 18 sampling event.
- Methane (63 μ g/L), ethane (18 μ g/L), and ethene (26 μ g/L) concentrations detected in the sample collected during month 18 were relatively stable when compared to MEEs collected during the September 2012 (month 12) sampling event (71 μ g/L, 6.3 μ g/L, and 31 μ g/L, respectively).

• Monitoring Well BW0001C

- The TCE concentration (400 I μ g/L) was similar to concentration observed in September 2012 (month 12) (130 I μ g/L). The cDCE concentration (24,000 μ g/L) and the VC concentration (1,600 I μ g/L) were the same order of magnitude as the concentration observed in the September 2012 sampling event (cDCE = 20,000 μ g/L; VC = 1,900 μ g/L).
- nBA and n-butanol were not detected in samples collected during month 18 sampling event.

Methane (120 µg/L) and ethane (61 µg/L) concentrations remained stable compared to the month 12 sampling event (methane 180 µg/L; ethane 61 µg/L). The ethene concentration (60 µg/L) decreased compared to month 12 sampling event (200 µg/L).

<u>Monitoring Well BW0001D</u>

- The TCE concentration (41,000 μg/L) was similar to concentration observed in September 2012 (month 12) (43,000 μg/L). The cDCE concentration (24,000 μg/L) and the VC concentration (1,900 I μg/L) were the same order of magnitude as the concentrations observed in September 2012 (cDCE 12,000 μg/L; VC 990 I μg/L.
- nBA and n-butanol were not detected in samples collected during month 18 sampling event.
- Methane (310 μg/L), ethane (98 μg/L), and ethene (98 μg/L) concentrations were similar to those observed during the September 2012 sampling event (160 μg/L, 93 μg/L, and 43 μg/L, respectively).

The absence of nBA and n-butanol and the relatively stable CVOC concentrations suggest that the electron donor within the treatment area has likely been utilized.

Location	Sample Date	Sample Depth	Concentration (mg/kg)				
		(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate
LC34-SB1001	01/19/2011	24.0	0.02	1.4 L	0.03	0.05	0.05 U
		35.5	3.2	2.0	0.10 U	0.10 U	0.50 U
		41.0	2.6	4.2	0.10 U	0.10 U	0.50 U
		44.5	5.7	1.4	0.10 U	0.10 U	0.50 U
LC34-SB1002	01/19/2011	44.5	0.01 U	0.06	0.01 U	0.01 U	0.05 U
		46.5	0.03	0.55	0.01 U	0.01 U	0.05 U
		49.5	0.01 U	0.02	0.01 U	0.01 U	0.05 U
		55.0	0.01 U	0.01 U	0.01 U	0.01 U	0.05 U
LC34-SB1003	01/19/2011	37.5	3.7	7.0	0.10 U	0.10 U	0.50 U
		43.0	7.3	0.36 I	0.50 U	0.50 U	2.5 U
		44.0	22	0.76	0.50 U	0.50 U	2.5 U
		46.0	6.8	1.1	0.10 U	0.10 U	0.50 U
		49.5	7.2	2.0	0.10 U	0.10 U	0.50 U
LC34-SB1004	01/19/2011	34.5	0.77	2.0	0.10	0.05 I	0.50 U
		37.0	0.50 U	15	0.50 U	0.22 I	2.5 U
		43.0	3.4	0.98	0.10 U	0.10 U	0.50 U
		45.0	5.4	3.8	0.10 U	0.10 U	0.50 U
		46.5	0.35	2.0	0.10 U	0.10 U	0.50 U
		50.0	0.01 U	0.02	0.01 U	0.01 U	0.05 U
LC34-DPT0332	08/03/2011	37.0	15	6.8	0.055 I	0.16 I	8.3
		43.5	70	4.5	0.11 U	0.13 U	38
		45.0	3.4	1.8	0.04 U	0.048 U	7.7
		48.0	1.8	1.5	0.037 U	0.046 U	1.1
		53.0	0.0098	0.0042 I	0.00042 U	0.00052 U	0.0047 I
LC34-DPT0333	08/03/2011	37.0	46	6.5	0.083 I	0.075 U	24
		44.0	65	1.1 I	0.24 U	0.29 U	6.4
		45.5	64	3.3	0.064 I	0.062 U	4.9
		47.0	37	2.0	0.049 U	0.059 U	0.29 I
		48.5	5.7 L	0.73 L	0.0042 I	0.0015 I	0.16
		53.0	0.0095	0.002 I	0.00044 U	0.00054 U	0.00087 I

Table10: Summary of Soil Sampling Results: Chlorinated Volatile Organic Compounds (NASA 2013)
Location	Samula Data	Sample Depth			Concentration (mg/kg)		
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate
		34.5	4.8	2.7	0.05 I	0.033 U	0.490 I
		37.0	6.8	7.1	0.042 I	0.30 I	0.057 I
L C24 DDT0224	09/02/2011	45.5	5.7 L	4.0 L	0.078	0.0028 I	1.7 L
LC34-DP10334	08/03/2011	47.0	31	5.7	0.093 I	0.065 U	0.056 I
		48.5	5.3	1.4	0.034 U	0.041 U	0.03 U
		53.0	0.006 J	0.003	0.00032 U	0.00039 U	7.0
		37.0	0.62 I	6.1	0.099 I	1.7	0.032 U
		40.0	0.42 I	14	0.34 I	0.67 I	0.071 U
		43.5	4.9	6.3	0.053 I	1.6	0.038 U
LC24 DDT0246	02/12/2012	45.0	4.3	6.2	0.071 U	1.7	0.0062 U
LC34-DP10340	02/13/2012	46.5	0.0024 I	0.0075	0.00089 I	0.0065	0.00087 I
		48.0	8.0	23	0.13 I	0.11 I	0.043 U
		53.0	0.00063 U	0.00059 I	0.00077 I	0.0098	0.00056 U
		55.0	0.0005 U	0.001 I	0.0006 I	0.0033 I	0.00044 U
		37.0	4.4	0.84	0.034 U	0.85	0.029 U
		40.0	2.6	0.68	0.030 U	0.69	0.026 U
		45.5	0.17	0.13	0.0023 I	0.022	0.0011 I
LC34-DPT0347	02/13/2012	47.0	73	7.5	0.12 U	0.17 I	0.11 U
		50.0	69	3.6 I	0.17 U	0.21 U	0.15 U
		50.5	0.0016 I	0.0017 I	0.00042 U	0.013	0.00049 U
		53.0	0.0016 I	0.0014 I	0.00052 I	0.012	0.00047 U
		34.5	0.062 I	5.8	0.12 I	0.29 I	0.026 U
		37.0	0.030 I	0.26 I	0.052 I	3.7	0.023 U
		40.0	0.670 I	2.5	0.033 U	0.90	0.028 U
		45.4	0.19	0.031	0.00062 U	0.00091 I	0.0025 I
LC34-DPT0348	02/13/2012	45.5	0.16 I	0.56 I	0.056 U	0.59 I	0.067 U
		45.6	3.4 L	1.3 L	0.014	0.39 L	0.0011 I
		47.0	41	23	0.27 I	0.14 U	0.098 U
		48.5	75	27	0.24 I	0.093 U	0.067 U
		53.0	0.001 I	0.0039 I	0.00041 U	0.0032 I	0.00071 I

Location	Samula Data	Sample Depth			Concentration (mg/kg)		
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate
		37.0	2.9	7.2	0.16 I	1.7	0.047 U
		40.0	0.11 I	0.67 I	0.057 U	0.73 I	0.035 U
		43.5	1.5	1.2	0.042 U	1.3	0.026 U
LC34 DDT0340	00/10/2012	45.0	1.5	3.7	0.074 I	2.1	0.029 U
LC34-DI 10349		46.5	30	11	0.09 U	0.20 I	0.055 U
		47.0	10	14	0.061 I	0.17 I	0.029 U
		48.0	0.59 I	19	0.092 I	0.19 I	0.029 U
		53.0	0.0018 I	0.0025 I	0.0016 I	0.067	0.00091 U
		37.0	5.0	4.2	0.11 I	2.1	0.026 U
	09/10/2012	40.0	1.1	0.73	0.047 U	0.96	0.028 U
		44.0	4.8	3.3	0.07 I	2.2	0.033 U
LC34-DPT0350		45.5	75	2.7	0.17 U	0.14 U	0.11 U
		47.0	48	5.1	0.11 U	0.092 U	0.066 U
		48.5	38	4.7	0.12 U	0.094 U	0.067 U
		53.0	0.0049 I	0.0072	0.00095 U	0.011	0.00091 U
		34.5	0.021 U	0.85	0.04 U	0.05 I	0.024 U
		37.0	0.01	0.03	0.03	0.65	0.00067 U
		40.0	0.01	0.10	0.043	0.033	0.00085 U
LC34-DPT0351	09/10/2012	45.5	6.4	8.9	0.061 I	1.2	0.03 U
		47.0	0.12 I	21	0.094 I	0.61 I	0.049 U
		48.5	0.13 I	17	0.079 I	1.3	0.04 U
		53.0	0.0009 U	0.0015	0.00077 U	0.0027 I	0.00078 I

1. ft BLS indicates feet below land surface.

2. mg/kg indicates milligrams per kilogram.

3. U indicates result not detected above method detection limit (MDL).

4. I indicates the result is between the MDL and the practical quantitation limit.

5. J indicates estimated value.

6. L indicates concentration exceeded upper limit of calibration range, estimated value.

Location	Sample Date	Sample Depth (ft BLS)	Total Organic Carbon (mg/kg)	Fraction Organic Carbon
LC34-SB1002	01/19/2011	28	1,110	0.00111
LC34-SB1002	01/19/2011	34	990	0.00099
LC34-SB1002	01/19/2011	47	2630	0.00263
LC34-SB1002	01/19/2011	53	860	0.00086
LC34-SB1003	01/19/2011	28	1,410	0.00141
LC34-SB1003	01/19/2011	34	440	0.00044
LC34-SB1003	01/19/2011	47	3,070	0.00307
LC34-SB1003	01/19/2011	53	650	0.00065

Table 11: Summary of Soil Sampling Results: Total Organic Carbon and Fraction Organic Carbon (NASA 2013)

1. ft BLS indicates feet below land surface.

2. mg/kg indicates milligram per kilogram.

Location	Samula Data	Screen Interval	en Interval Concentration (μg/L)					
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup 7	Farget Level (µg/L)	3	70	100	1	43	700
Natur	al Attenuation Default Co	oncentration (µg/L)	300	700	1,000	100	430	7,000
	02/01/2011		300 I	31,000	640	4,700	30 U	670 U
	04/18/2011		150 U	39,000	830 I	2,200 I	150 U	3,400 U
	08/01/2011		300 I	36,000	690 I	4,000	340 I	5,300 U
LC34 BW0001A	08/01/2011*	23 to 26	470 I	39,000	680 I	5,200	670 I	49,000 I
LC34-D W0001A	10/25/2011	23 10 20	130 I	45,000	1,100 I	2,400	53 U	2,700 U
	02/16/2012		120 U	11,000	290 I	840 I	110 U	5,300 U
	06/26/2012		120 U	6,200	220 I	770 I	110 U	5,300 U
	09/13/2012		500 U	1,700	60 I	200 I	39 U	1,800 U
	02/01/2011		27,000	6,600	150 I	160 I	60 U	1,400 U
	04/18/2011		14,000	28,000	470 I	1,800 I	300 U	6,700 U
	08/01/2011	30 to 33	19,000	14,000	270 I	600 I	1,000 I	11,000 U
LC24 DW0001D	10/25/2011		3,200	12,000	260 I	1,100 I	56,000	1,400,000
LC34-DW0001D	02/16/2012		1,400 I	38,000	920 I	2,200 I	210 U	11,000 U
	06/26/2012		720 I	28,000	750 I	1,500 I	210 U	11,000 U
	09/13/2012		350 I	19,000	510 I	1,100 I	98 U	4,400 U
	03/19/2013		370 I	16,000	480 I	1,100 I	390 U	18,000 U
	02/01/2011		53,000	47,000	280 I	150 U	150 U	3,400 U
	03/22/2011		48,000	28,000	240 I	420 I	75 U	1,700 U
	03/29/2011		48,000	26,000	290 I	380 I	60 U	1,400 U
	04/07/2011		54,000	29,000	280 I	570 I	75 U	1,700 U
	04/18/2011		45,000	25,000	260 I	630 I	150 U	3,400 U
LC24 DW0001C	07/07/2011	27 to 40	52,000	21,000	270 I	510 I	420,000	320,000
LC34-DW0001C	08/01/2011	571040	27,000	31,000	210 I	480 I	95,000	280,000
	10/25/2011		12,000	22,000	270 I	1,300 I	110 U	200,000
	02/16/2012		1,400	26,000	390 I	3,700	53 U	2,700 U
	06/26/2012]	370 I	22,000	460 I	3,800	53 U	2,700 U
	09/13/2012		130 I	20,000	420 I	1,900	98 U	4,400 U
	03/19/2013		400 I	24,000	630 I	1,600 I	200 U	8,700 U

Table 12: Summary of Groundwater Sampling Results: Chlorinated Volatile Organic Compounds (NASA 2013)

Location	Samula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup T	Target Level (µg/L)	3	70	100	1	43	700
Natura	al Attenuation Default Co	oncentration (µg/L)	300	700	1,000	100	430	7,000
	02/01/2011		150,000	5,200	150 U	150 U	150 U	3,400 U
	04/18/2011		180,000	6,100	300 U	300 U	300 U	6,700 U
	07/07/2011		170,000	5,600	200 U	230 U	60,000	23,000 I
	08/01/2011		120,000	4,300 I	200 U	230 U	71,000	15,000 I
LC24 PW0001D	08/01/2011*	11 to 17	170,000	5,900	200 U	230 U	84,000	22,000 I
LC34-BW0001D	10/25/2011	44 10 47	150,000	3,000 I	200 U	230 U	270,000	310,000
	02/16/2012		110,000	5,100	200 U	230 U	210 U	36,000 I
	06/26/2012		64,000	7,400	200 U	990 I	210 U	11,000 U
	09/13/2012		43,000	12,000	170 U	990 I	200 U	8,700 U
	03/19/2013		41,000	24,000	170 U	1,900 I	200 U	8,700 U
	02/01/2011		1,600	220	3.0 U	3.0 U	3.0 U	67 U
	03/22/2011		590	79	1.5 U	1.5 U	1.5 U	34 U
	03/29/2011		400	71	0.75 U	0.83 I	0.75 U	17 U
	04/07/2011		380	60	0.75 U	0.75 U	0.75 U	17 U
	04/18/2011	51 to 54	490	74	0.60 U	0.86 I	0.60 U	14 U
LC34-BW0001E	07/07/2011		330	1,500	11 I	4.7 U	3,500	1,500 I
	08/01/2011		32 I	1,400	8.9 I	23 I	4.6 I	730 I
	10/25/2011		230	470	3.6 I	110	1.1 U	53 U
	02/16/2012		1.2 I	2.5 I	1.0 I	27	0.21 U	11 U
	06/26/2012		0.50 I	59	12	600	0.21 U	11 U
	09/13/2012		2.4 I	13	2.5 I	23	0.98 U	44 U
	02/01/2011		3.5 I	0.79 I	0.30 U	0.30 U	0.30 U	6.7 U
	04/18/2011		1.1 I	0.41 I	0.30 U	0.30 U	0.30 U	6.7 U
	08/01/2011		1,200 U	1,000 U	1,000 U	1,200 U	900,000	620,000 I
LC34-BW0001F	10/25/2011	58 to 61	1.1 I	0.34 I	0.20 U	0.23 U	0.21 U	150 I
	02/16/2012		5.1	53	0.20 U	81	0.21 U	11 U
	06/26/2012		1.2 I	0.99 I	0.20 U	13	0.21 U	11 U
	09/13/2012		1.4 I	0.50 I	0.33 U	3.8 I	0.40 I	18 U
	02/01/2011		530 I	36,000	690 I	110 I	60 U	1,400 U
	04/19/2011		140 I	41,000	820 I	1,900	75 U	1,700 U
I C24 DW0002 A	04/19/2011*		140 I	38,000	790 I	1,800	75 U	1,700 U
	08/02/2011	23 to 26	300 I	32,000	610 I	820 I	150 I	11,000 I
LC34-D W 0002A	10/26/2011	25 10 20	31 I	13,000	330 I	850	21 U	1,100 U
	02/15/2012		51 I	46,000	380 I	7,800	21 U	1,100 U
	06/26/2012		4.7 I	260	34	410	0.53 U	27 U
	09/11/2012		5.6	49	13	130	0.39 U	18 U

Location	Samula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup T	arget Level (µg/L)	3	70	100	1	43	700
Natural Attenuation Default Concentration (µg/L)		oncentration (µg/L)	300	700	1,000	100	430	7,000
	02/01/2011		17,000	44,000	390 I	230 I	75 U	1,700 U
	04/19/2011		1,100 I	48,000	850 I	750 I	75 U	1,700 U
	08/02/2011		2,500	42,000	580 I	470 I	130 I	2,700 U
LC34-BW0002B	10/26/2011	30 to 33	320 I	36,000	720 I	1,300	53 U	2,700 U
	02/15/2012		41 I	4,900	170	1,800	5.3 U	270 U
	06/26/2012		16 I	1,100	67	820	2.1 U	110 U
	09/11/2012		9.8 I	170	23	330	0.98 U	44 U
	02/01/2011		620 I	87,000	510 I	700 I	75 U	1,700 U
	03/22/2011		2,900	66,000	430 I	2,500	75 U	1,700 U
	03/29/2011		5,300	75,000	460 I	2,300 I	150 U	3,400 U
	04/07/2011		3,000	79,000	450 I	2,300 I	150 U	3,400 U
	04/19/2011		1,800 I	74,000	490 I	2,100 I	150 U	3,400 U
LC34-BW0002C	07/07/2011	37 to 40	2,000 I	51,000	360 I	2,200 I	490,000	120,000 I
	08/02/2011		380 I	43,000	280 I	6,100	42,000	210,000
	10/26/2011		530 I	66,000	320 I	3,800	53 U	2,700 U
	02/14/2012		2.1 I	580	54	620	1.1 U	53 U
	06/26/2012		5.7 I	30,000	250	13,000	1.1 U	53 U
	09/11/2012		22 U	11,000	280 I	11,000	39 U	1,800 U
	02/01/2011		39 I	4,200	29 I	52 I	7.5 U	170 U
	04/19/2011		38 I	7,500	49 I	410	7.5 U	170 U
	04/19/2011*		44 I	7,900	49 I	360	7.5 U	170 U
	07/07/2011		41 I	8,000	58 I	1,300	49 I	530 U
LC34 BW0002D	08/02/2011	11 to 17	43 I	8,800	59 I	1,500	86 I	530 U
LC34-D W 0002D	08/02/2011 *	++ 10 +/	41 I	8,100	63 I	1,100	81 I	4,300 I
	10/26/2011		29 I	16,000	110 I	3,900	11 U	530 U
	02/14/2012		29 I	13,000	120 I	6,500	21 U	1,100 U
	06/26/2012		23 U	5,100	110 I	12,000	21 U	1,100 U
	09/11/2012		11 U	40 I	79 I	9,100	20 U	870 U
	02/01/2011		0.78 I	9.3	0.30 U	0.30 U	0.30 U	6.7 U
	04/19/2011		0.64 I	19	0.30 U	2.0 I	0.30 U	6.7 U
	07/07/2011		4.7 U	62 I	4.0 U	4.7 U	3,300	2,000 I
LC24 DW0002E	08/02/2011	51 to 54	1.3 I	51	0.29 I	3.4 I	43	150 I
LC34-DW0002E	10/26/2011	51 10 54	0.35 I	15	0.64 I	69	0.21 U	11 U
	02/14/2012		0.23 U	2.3 I	0.62 I	22	0.21 U	11 U
	06/26/2012		0.23 U	0.71 I	0.75 I	15	0.21 U	11 U
	09/11/2012		2.6 I	8.1	1.2 I	23	0.39 U	18 U

Location	Samula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup T	arget Level (µg/L)	3	70	100	1	43	700
Natural Attenuation Default Concentration (µg/L)		oncentration (µg/L)	300	700	1,000	100	430	7,000
	02/01/2011		10 I	880	5.0 I	28	1.5 U	34 U
	04/19/2011		4.7 I	80	2.1 I	67	0.30 U	6.7 U
	04/19/2011*		5.3	58	1.4 I	38	0.30 U	6.7 U
	08/02/2011		5.1	150	4.6 I	440	0.41 I	11 U
LC34-BW0002F	08/02/2011*	58 to 61	2.1 I	100	2.7 I	370	0.53 U	27 U
	10/26/2011		0.50 I	8.2	0.63 I	35	0.21 U	11 U
	02/14/2012		0.23 U	0.84 I	0.40 I	6.3	0.21 U	11 U
	06/26/2012		0.23 U	1.6 I	4.6 I	160	0.21 U	11 U
	09/11/2012		6.4	40	5.1	130	0.39 U	18 U
	02/01/2011		60 U	37,000	60 U	13,000	60 U	1,400 U
	04/19/2011		60 U	45,000	970 I	5,700	60 U	1,400 U
	08/02/2011		58 U	33,000	760 I	12,000	53 U	2,700 U
LC34-BW0003A	10/26/2011	23 to 26	58 U	30,000	790 I	2,100	53 U	2,700 U
	02/15/2012		12 U	6,800	220 I	1,100	11 U	530 U
	06/27/2012		12 U	5,200	220 I	560	11 U	530 U
	09/11/2012		2.4 I	1,600	55	210	4.0 U	180 U
	02/01/2011		30 U	16,000	30 U	5,300	30 U	670 U
	04/19/2011		30 U	46,000	600	5,500	30 U	670 U
	04/19/2011 *		30 U	52,000	1,000	9,500	30 U	670 U
LC34 BW0003B	08/02/2011	30 to 33	23 U	6,700	310 I	14,000	88 I	1,100 U
LC34-D W0003D	10/27/2011	50 10 55	120 U	48,000	1,300 I	6,900	110 U	5,300 U
	02/15/2012		12 U	8,600	360	1,900	11 U	530 U
	06/27/2012		12 U	6,600	270	1,000	11 U	530 U
	09/11/2012		4.4 U	2,100	82 I	350	7.9 U	350 U
	02/02/2011		140 I	36,000	240 I	2,900	30 U	670 U
	03/22/2011		65 I	12,000	110 I	3,200	30 U	670 U
	03/29/2011		36 I	12,000	160 I	3,500	30 U	670 U
	04/07/2011		32 I	9,800	150 I	4,700	15 U	340 U
	04/19/2011		15 U	6,000	120 I	4,500	15 U	340 U
LC34-BW0003C	07/07/2011	37 to 40	230 U	4,300 I	200 U	2,400 I	640,000	360,000
	08/02/2011		21 I	2,500	67 I	3,100	290	190,000
	10/27/2011		12 U	1,800	180 I	9,400	11 U	530 U
	02/15/2012		12 U	16,000	600	14,000	11 U	530 U
	06/27/2012		23 U	22,000	840	8,600	21 U	1,100 U
	09/13/2012		22 U	17,000	560	5,100	39 U	1,800 U

Location	Sample Date	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup T	arget Level (µg/L)	3	70	100	1	43	700
Natura	al Attenuation Default Co	ncentration (µg/L)	300	700	1,000	100	430	7,000
	02/02/2011		7,800	17,000	79 I	410 I	30 U	670 U
	04/19/2011		650	6,800	33 I	400	15 U	340 U
	04/19/2011 *		500	5,700	27 I	340	15 U	340 U
	07/07/2011		1,300 I	7,700	200 U	400 I	830,000	350,000
LC34-BW0003D	08/02/2011	44 to 47	1,100 I	7,500	200 U	740 I	170,000	510,000
	10/26/2011		96 I	3,500	27 I	1,900	6.5 I	270 U
	02/15/2012		28 I	3,200	51 I	2,900	5.3 U	270 U
	06/27/2012		5.8 U	360	65 I	4,000	5.3 U	270 U
	09/13/2012		4.4 U	86 I	61 I	2,600	7.9 U	350 U
	02/01/2011		0.30 U	23	0.30 U	0.30 U	0.30 U	6.7 U
	03/22/2011		0.30 U	0.62 I	0.30 U	0.30 U	0.30 U	6.7 U
	03/22/2011*		0.30 U	1.5 I	0.3 U	0.3 U	0.30 U	6.7 U
	03/29/2011		0.43 I	1.2 I	0.30 U	0.30 U	0.30 U	6.7 U
	04/07/2011		0.30 U	0.56 I	0.30 U	0.30 U	0.30 U	6.7 U
LC34 BW0003E	04/19/2011	51 to 54	0.30 U	0.72 I	0.30 U	0.30 U	0.30 U	6.7 U
LC34-D W0003L	07/07/2011	51 10 54	980 I	1,300 I	200 U	230 U	1,500,000	520,000
	08/02/2011		13,000 U	1,700 I	500 U	580 U	420,000	890,000
	10/27/2011		2.9 I	20	0.41 I	110	0.40 I	70 I
	02/15/2012		0.48 I	40	1.7 I	61	7.4	11 U
	06/27/2012		0.23 U	4.2 I	4.8 I	66	27	11 U
	09/13/2012		3.1 I	58	9.4 I	270	30	44 U
	02/01/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
	04/19/2011		0.30 U	0.94 I	0.30 U	0.39 I	0.30 U	6.7 U
	08/02/2011		2.7 I	13 I	0.50 U	1.3 I	93	18,000
LC34-BW0003F	10/27/2011	58 to 61	0.50 I	210	1.1 I	190	0.21 U	11 U
	02/15/2012		0.23 U	0.81 I	4.3 I	190	0.21 U	11 U
	06/27/2012		26	15	0.43 I	0.91 I	0.21 U	11 U
	09/13/2012		0.82 I	3.6 I	2.7 I	90	0.39 U	18 U

Lengting	Samula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup T	farget Level (µg/L)	3	70	100	1	43	700
Natura	al Attenuation Default Co	oncentration (µg/L)	300	700	1,000	100	430	7,000
	02/03/2011		370 I	27,000	510	630	30 U	670 U
	03/22/2011		200 I	27,000	550 I	1,100 I	150 U	3,400 U
	03/29/2011		110 I	23,000	500	980	15 U	340 U
	04/07/2011		150 U	23,000	510 I	1,100 I	150 U	3,400 U
	04/18/2011		180 I	21,000	430 I	1,000 I	150 U	3,400 U
LC34-IW0002I	08/01/2011	25 to 30	280 I	13,000	220 I	270 I	11,000	630,000
	08/01/2011 *		310 I	14,000	260 I	370 I	33,000	590,000
	10/26/2011		57 I	15,000	320 I	930	21 U	1,100 U
	02/15/2012		46 U	3,500	140 I	300 I	42 U	2,100 U
	06/26/2012		46 U	970 I	40 I	110 I	42 U	2,100 U
	09/13/2012		5.5 I	500	17 I	43	2.0 U	87 U
	02/02/2011		17,000	57,000	390 I	170 I	30 U	670 U
	03/22/2011		3,100	25,000	260 I	1,300 I	75 U	1,700 U
	03/28/2011		1,600	28,000	320 I	1,900	60 U	1,400 U
	04/07/2011		1,100 I	28,000	360 I	2,800	75 U	1,700 U
LC34-IW0002D	04/18/2011	35 to 40	490 I	26,000	370 I	3,500	75 U	1,700 U
LC34-1W0002D	08/01/2011	55 10 40	74 I	22,000	170 I	2,200	110 I	200,000
	10/26/2011		73 I	16,000	290 I	4,000	21 U	2,700 I
	02/16/2012		26 I	4,700	300	9,400	11 U	530 U
	06/26/2012		12 I	3,400	190	3,800	5.3 U	270 U
	09/13/2012		5.6 I	1,300	110	2,400	7.9 U	350 U
	02/02/2011		760	1,200	6.3 I	6.4 I	3.0 U	67 U
	03/22/2011		260	380	2.5 I	3.3 I	0.75 U	17 U
	03/28/2011		75	350	3.0 I	1.9 I	0.75 U	17 U
	04/07/2011		59	770	5.7 I	3.5 I	0.75 U	17 U
LC34 IW0002D1	04/18/2011	50 to 55	7.7	24	0.30 U	0.98 I	0.30 U	6.7 U
LC34-1W0002D1	08/01/2011	50 10 55	1,300	7,500	81	1,900	31	2,600
	10/26/2011		0.81 I	4.3 I	1.5 I	60	0.36 I	11 U
	02/16/2012		4.1 I	250	35	2,000	0.21 U	11 U
	06/26/2012		4.7 U	9.8 I	58 I	2,000	4.2 U	210 U
	09/13/2012		4.4 U	48 I	57 I	2,000	7.9 U	350 U
	02/02/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
	04/18/2011		0.30 U	0.30 U	0.30 U	1.1 I	0.30 U	6.7 U
LC34-IW0067D	10/25/2011	38 to 43	0.23 U	0.74 I	0.20 U	7.4	0.21 U	11 U
	02/14/2012]	0.23 U	0.68 I	0.20 U	8.4	0.21 U	11 U
	06/26/2012		0.23 U	1.2 I	0.20 U	18	0.21 U	11 U

Location	Samula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup 7	Target Level (µg/L)	3	70	100	1	43	700
Natura	al Attenuation Default Co	oncentration (µg/L)	300	700	1,000	100	430	7,000
	02/03/2011		0.30 U	0.88 I	0.30 U	0.30 U	0.30 U	6.7 U
	04/18/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
LC34-IW0067D1	10/25/2011	63 to 73	0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/14/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	06/26/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/02/2011		0.30 U	0.30 U	0.30 U	0.3 U	0.3 U	6.7 U
	04/18/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
LC34-IW0070D	10/25/2011	38 to 43	0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/15/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	06/26/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/02/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
	04/18/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
LC34-IW0070D1	10/25/2011	65 to 75	0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
LC34-1W0070D1	02/15/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	06/26/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/02/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
	04/18/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
LC34-IW0071D	10/25/2011	38 to 43	0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/15/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	06/26/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/02/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
	04/18/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
LC34-IW0071D1	10/25/2011	65 to 75	0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/14/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	06/26/2012		0.23 U	0.20 U	0.20 U	0.23 U	0.21 U	11 U
	02/02/2011		0.30 U	0.40 I	0.30 U	0.30 U	0.30 U	6.7 U
	04/18/2011		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	6.7 U
	08/01/2011		0.46 U	4.0 I	0.40 U	0.46 U	550	200 I
LC34-IW0076	10/25/2011	70 to 80	0.27 I	110	4.0 I	5.0	0.21 U	90 I
	02/15/2012		0.75 I	180	8.1	8.4	0.21 U	11 U
	06/26/2012		2.7 I	5,000	81	170	0.21 U	960
	09/13/2012		0.49 I	5.0 U	3.9 I	3.5 1	0.39 U	18 U

Leastian	Semula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup T	Target Level (µg/L)	3	70	100	1	43	700
Natur	Natural Attenuation Default Concentration (µg/		300	700	1,000	100	430	7,000
	02/02/2011		54,000	50,000	300 I	60 U	60 U	1,400 U
	03/22/2011	1	14,000	27,000	210 I	610 I	75 U	1,700 U
	03/28/2011	1	17,000	31,000	200 I	740 I	60 U	1,400 U
	03/28/2011*		16,000	32,000	200 I	810 I	60 U	1,400 U
	04/07/2011		14,000	33,000	290 I	1,000 I	75 U	1,700 U
	04/19/2011		12,000	25,000	170 I	990 I	75 U	1,700 U
	04/19/2011 *		12,000	23,000	160 I	900 I	60 U	1,400 U
	07/07/2011		21,000	20,000	150 I	690 I	410,000	140,000
	08/01/2011		2,400	31,000	130 I	770 I	53 U	180,000
	08/01/2011 *		3,300	36,000	130 I	850 I	130 I	230,000
	08/12/2011		3,300	26,000	50 U	58 U	33,000	230,000
	08/18/2011		7,100	23,000	50 U	1,400	53 U	130,000
	08/24/2011		10,000	21,000	130 I	1,700	42 U	26,000 I
	08/31/2011	25 to 42	10,000	20,000	150 I	2,000	21 U	29,000
	09/15/2011		8,400	19,000	150 I	3,100	21 U	1,100 U
LC24 DW0007	09/28/2011		5,700	15,000	140 I	3,700	21 U	2,700 I
LC34-KW0007	10/13/2011	55 10 42	4,300	15,000	190 I	4,300	21 U	2,900 I
	10/26/2011		3,900	16,000	170 I	4,800	21 U	1,800 I
	11/10/2011	1	3,500	16,000	200 I	6,400	21 U	1,100 U
	11/22/2011		3,200	14,000	160 I	4,900	21 U	1,100 U
	12/15/2011	1	1,500	11,000	180 I	6,000	21 U	1,100 U
	01/05/2012	1	160 I	4,500	200 I	6,200	11 U	530 U
	01/26/2012	1	1,700	15,000	250 I	10,000	0.21 U	11 U
	02/14/2012		560	8,900	250 I	6,400	11 U	530 U
	02/14/2012 *	1	1,100	9,100	210 I	7,600	11 U	530 U
	03/15/2012		120 I	3,600	160	3,000	5.3 U	270 U
	04/19/2012	1	650	7,200	200	8,100	5.3 U	270 U
	05/17/2012	1	520	6,000	190 I	8,700	11 U	530 U
	06/26/2012]	820	5,500	250	8,100	11 U	530 U
	07/19/2012]	640	4,600	260 I	7,900	21 U	1,100 U
	08/16/2012]	660	4,300	190 I	7,400	20 U	870 U
	09/13/2012		210	2,300	100	2,000	7.9 U	350 U

Location	Samula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup 7	Farget Level (µg/L)	3	70	100	1	43	700
Natur	al Attenuation Default Co	oncentration (µg/L)	300	700	1,000	100	430	7,000
	02/02/2011		4,900	3,300	20 I	18 I	7.5 U	170 U
	03/22/2011		1,300	450	3.0 I	34 I	3.0 U	67 U
	03/28/2011		840	280	1.9 I	14 I	1.5 U	34 U
	04/07/2011		790	360	1.9 I	13 I	1.5 U	34 U
	04/19/2011		1,000	510	3.0 I	24 I	3.0 U	67 U
	04/19/2011 *		1,100	500	3.3 I	23 I	3.0 U	67 U
	07/07/2011		1,100	4,000	40 U	140 I	81,000	8,700 I
	08/01/2011		3.5 I	55	19	2,600	4.0 I	63 B,J
	08/01/2011*		3.2 I	47	17	2,900	4.3 I	220 I
	08/12/2011		1,900	1,700	4.0 U	4.7 U	8,100	120,000
	08/18/2011		1,700	890	2.0 U	94	2.1 U	9,300
	08/24/2011		1,500	830	3.9 I	160	2.1 U	110 U
	08/31/2011	17 4- 57	940	610	3.2 I	150	1.1 U	53 U
	09/15/2011		970	860	5.4 I	310	1.1 U	53 U
LC24 DW0008	09/28/2011		1,100	1,100	7.6 I	410	1.1 U	53 U
LC34-IX W 0008	10/13/2011	4/10/	1,300	1,300	10 I	610	2.1 U	110 U
	10/26/2011		1,900	1,700	12 I	630	2.1 U	110 U
	11/10/2011		2,000	2,000	14 I	640	2.1 U	110 U
	11/22/2011		1,100	1,600	12 I	580	2.1 U	110 U
	12/15/2011		1,500	2,300	17 I	820	4.2 U	210 U
	01/05/2012		1,100	1,400	12 I	560	2.1 U	110 U
	01/26/2012		940	1,700	22 I	1,000	2.1 U	110 U
	02/14/2012		570	1,100	14 I	670	2.1 U	110 U
	03/15/2012		620	1,100	17 I	900	2.1 U	110 U
	04/19/2012		290	870	17 I	1,100	2.1 U	110 U
	05/17/2012]	300	1,300	18 I	870	2.1 U	110 U
	06/26/2012]	620	970	21 I	990	1.1 U	53 U
	07/19/2012		450	640	23 I	870	1.1 U	53 U
	08/16/2012]	460	700	13 I	600	2.0 U	87 U
	09/13/2012		56	750	14 I	710	2.0 U	87 U

Location	Samula Data	Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	n-Butanol
	Groundwater Cleanup 7	Target Level (µg/L)	3	70	100	1	43	700
Natura	al Attenuation Default Co	oncentration (µg/L)	300	700	1,000	100	430	7,000
LC34-IJ0015	02/03/2011	32 to 42	3,400	70,000	320 I	3,300	150 U	3,400 U
LC34-IJ0016	02/03/2011	47 to 57	600 I	37,000	180 I	400 I	60 U	1,400 U
LC34-IJ0019	02/03/2011	32 to 42	15 U	6,400	180 I	5,500	15 U	340 U
LC34-IJ0020	02/03/2011	47 to 57	3.0 U	1,400	30 I	410	3.0 U	67 U

1. ft BLS indicates feet below land surface.

2. µg/L indicates micrograms per liter.

3. * indicates duplicate sample.

4. U indicates result not detected above method detection limit (MDL).

5. I indicates the result is between the MDL and the practical quantitation limit.

6. Bold text indicates an exceedance of the FDEP Groundwater Cleanup Target Level.

7. Shaded cell indicates an exceedance of the FDEP Natural Attenuation Default Concentration.

8. B indicates detected in associated method blank.

9. J indicates estimated value.

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
	02/01/2011		23.8	7.45	1.20	5.7	-154	0.40	0.80	Clear
	04/18/2011		24.2	7.43	0.78	1.9	-156	0.38	0.51	Clear
	08/01/2011		26.9	7.67	1.16	2.0	-30.9	0.41	0.75	Clear
LC34-BW0001A	10/25/2011	23 to 26	25.5	7.26	0.86	1.7	-146	0.46	0.56	Clear
	02/16/2012		24.2	7.75	0.77	2.8	-111	0.45	0.50	Clear
	06/26/2012		24.0	6.91	0.70	1.1	-116	0.60	0.45	Clear
	09/13/2012		26.2	7.41	0.89	0.5	-141	1.36*	0.58	Clear
	02/01/2011		24.0	7.49	2.31	9.9	-146	0.33	1.53	Clear
	04/18/2011		24.8	7.55	1.39	2.3	-159	0.24	0.91	Clear
	08/01/2011		26.4	7.62	1.81	6.5	-48.2	0.28	1.17	Clear
LC24 DW0001D	10/25/2011	20 4- 22	25.8	7.03	2.37	0.70	-175	0.39	1.54	Clear
LC34-BW0001B	02/16/2012	30 10 33	24.8	7.60	0.99	2.5	-254	0.23	0.64	Clear
	06/26/2012		24.2	7.06	0.82	0.72	-119	0.24	0.53	Clear
	09/13/2012		26.3	7.59	1.06	0.60	-164	1.21*	0.69	Clear
	03/19/2013		23.5	7.59	0.76	4.2	-200	1.13	0.49	Clear
	02/01/2011		24.4	7.52	2.88	8.2	-150	0.28	1.90	Clear
	03/22/2011		24.6	7.34	2.59	4.8	-163	0.53	1.69	Clear
	03/29/2011		24.6	7.50	2.09	4.9	-59.0	0.49	1.34	Clear
	04/07/2011		25.3	7.47	2.47	2.2	-141	0.17	1.61	Clear
	04/18/2011		24.9	7.43	2.06	12	-146	0.54	1.35	Clear
LC24 PW0001C	07/07/2011	37 to 10	26.1	7.15	2.59	1.6	-125	0.23	1.68	Clear
LC34-DW0001C	08/01/2011	371040	26.3	7.81	2.14	1.3	-52.7	0.23	1.38	Clear
	10/25/2011		25.7	7.07	2.38	0.82	-274	0.10	1.55	Clear
	02/16/2012		24.2	7.25	1.03	3.9	-229	0.30	0.89	Clear
	06/26/2012		24.5	6.72	1.45	0.62	-167	0.16	0.95	Clear
	09/13/2012		26.4	7.61	0.99	5.6	-16.0	0.41	0.65	Clear
	03/19/2013		23.7	7.39	1.00	1.0	-227	1.03	0.65	Clear
	02/01/2011		25.2	7.36	3.19	4.9	-122	0.36	2.07	Clear
	04/18/2011		25.6	7.37	2.75	3.9	-123	0.32	1.79	Clear
	07/07/2011		25.6	7.33	2.96	4.5	-101	0.24	1.92	Clear
	08/01/2011		27.0	7.64	2.00	4.2	-37.1	0.24	1.32	Clear
LC34-BW0001D	10/25/2011	44 to 47	25.7	7.10	2.76	4.4	-302	0.35	1.79	Clear
LC34-BW0001D	02/16/2012		25.4	6.73	2.92	7.9	-251	0.36	1.90	Clear
	06/26/2012		24.5	6.85	2.67	0.97	-223	0.16	1.73	Clear
	09/13/2012		25.7	6.99	3.79	17	-283	1.62*	2.46	Cloudy
	03/19/2013		23.6	7.16	2.38	2.9	-325	1.28	1.55	Clear

Table 13: Summary of Groundwater Sampling Results: Field Geochemical Parameters (NASA 2013)

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
	02/01/2011		24.9	7.69	2.71	9.7	-150	0.37	1.76	Clear
	03/22/2011		24.5	7.60	2.39	5.7	-155	0.35	1.55	Clear
	03/29/2011		25.1	7.64	2.57	8.7	-65.0	0.41	1.61	Clear
	04/07/2011		24.8	7.71	2.51	5.1	-139	0.15	1.63	Clear
	04/18/2011		24.7	7.69	2.37	12	-154	0.33	1.54	Clear
LC34-BW0001E	07/07/2011	51 to 54	25.6	7.60	2.58	3.9	-145	0.17	1.68	Clear
	08/01/2011		27.4	7.32	1.99	4.5	-32.0	1.25	1.25	Clear
	10/25/2011		25.8	7.48	2.69	0.48	-281	0.20	1.75	Clear
	02/16/2012		25.2	7.47	2.52	2.3	-300	0.26	1.64	Clear
	06/26/2012		24.7	7.13	2.39	1.4	-215	0.21	1.55	Clear
	09/13/2012		26.2	7.54	3.34	7.1	-274	1.43*	2.17	Cloudy
	02/01/2011		24.9	7.64	2.81	8.6	-152	0.37	1.83	Clear
	04/18/2011		25.0	7.65	2.47	3.9	-119	0.49	1.61	Clear
	08/01/2011		26.0	7.80	2.05	4.2	-43.2	0.89	1.32	Clear
LC34-BW0001F	10/25/2011	58 to 61	25.6	7.49	2.67	1.4	-188	0.30	1.74	Clear
	02/16/2012		25.1	7.25	2.53	0.93	-287	0.30	1.64	Clear
	06/26/2012		24.7	7.05	2.44	0.62	-167	0.27	1.53	Clear
	09/13/2012		26.2	7.15	2.52	6.6	-175	0.47	1.65	Clear
	02/01/2011		24.7	7.44	1.28	1.4	-170	0.19	0.84	Clear
	04/19/2011		24.5	7.49	0.67	8.4	-175	0.20	0.43	Clear
	08/02/2011		26.4	7.87	1.00	4.7	-11.0	0.65	0.65	Clear
LC34-BW0002A	10/26/2011	23 to 26	25.8	7.18	1.30	2.5	-184	0.31	0.85	Clear
F	02/15/2012		25.4	7.37	2.11	4.5	-299	0.17	1.39	Clear
	06/26/2012		25.1	7.35	0.68	2.7	-189	0.23	0.44	Clear
F	09/11/2012		26.2	7.13	0.96	0.56	72.2	0.70*	0.63	Clear
	02/01/2011		24.7	7.56	2.11	3.7	-183	0.30	1.38	Clear
F	04/19/2011		25.0	7.50	0.90	5.8	-186	0.20	0.59	Clear
F	08/02/2011		26.5	7.50	1.61	9.7	-13.0	1.04	1.04	Clear
LC34-BW0002B	10/26/2011	30 to 33	25.5	7.34	1.19	3.2	-237	0.35	0.77	Clear
	02/15/2012	1	25.4	7.26	0.79	6.5	-213	0.22	0.48	Clear
	06/26/2012	1	25.2	7.46	0.70	2.0	-253	0.20	0.46	Clear
	09/11/2012		26.0	7.23	0.95	1.0	-19.6	0.30	0.61	Cloudy

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
	02/01/2011		24.7	7.69	2.62	0.0	-197	0.37	1.71	Clear
	03/22/2011	1	24.6	7.71	2.56	7.5	-210	0.36	1.66	Clear
	03/29/2011	1	23.6	7.31	2.49	5.1	-60.2	0.62	1.62	Clear
	04/07/2011	1	24.8	7.75	2.48	12	-149	0.25	1.62	Clear
	04/19/2011		25.2	7.60	2.10	5.3	-203	0.27	1.37	Clear
LC34-BW0002C	07/07/2011	37 to 40	26.5	7.53	2.42	6.1	-255	0.16	1.58	Clear
	08/02/2011	1	26.2	7.24	2.61	4.3	-15.3	0.97	1.77	Clear
	10/26/2011		25.4	7.38	2.52	0.80	-330	0.15	1.64	Clear
	02/14/2012	1	25.2	7.45	0.66	1.2	-161	0.10	0.43	Clear
-	06/26/2012	1	26.0	7.28	2.11	2.4	-364	0.19	1.35	Clear
	09/11/2012	1	25.9	7.44	2.49	0.94	-251	0.30	1.62	Clear
	02/01/2011		24.3	7.61	2.68	0.0	-154	0.35	1.77	Clear
	04/19/2011	1	25.1	7.68	2.05	2.6	-211	0.24	1.33	Clear
	07/07/2011	7	26.4	7.39	2.43	12	-161	0.20	1.58	Clear
L C24 DW0002D	08/02/2011	11 40 17	26.4	7.68	2.37	1.2	-12.8	0.24	1.21	Clear
LC34-BW0002D	10/26/2011	44 10 4 /	25.3	7.56	2.76	0.72	-338	0.77	1.80	Clear
	02/14/2012	7	25.2	7.41	2.67	1.4	-288	0.09	1.74	Clear
-	06/26/2012		26.0	7.30	2.58	4.3	-361	0.10	1.65	Clear
-	09/11/2012		26.9	7.69	3.31	5.5	-325	1.77*	2.19	Cloudy
	02/01/2011		23.7	7.58	2.60	7.5	-154	0.41	1.74	Clear
[04/19/2011		25.3	7.66	2.06	19	-187	0.08	1.34	Clear
	07/07/2011	7	25.6	7.77	2.58	5.6	-229	0.12	1.68	Clear
LC34 RW0002E	08/02/2011	51 to 54	26.9	7.61	2.04	13	-2.90	0.33	1.34	Clear
LC34-B W 0002E	10/26/2011	51 10 54	26.1	7.77	2.66	1.8	-251	0.20	1.73	Clear
	02/14/2012		25.4	7.65	2.55	1.0	-266	0.09	1.66	Clear
	06/26/2012		25.1	7.61	2.40	1.3	-274	0.15	1.60	Clear
	09/11/2012		26.2	7.74	3.21	2.7	-236	1.44*	2.09	Cloudy
	02/01/2011		22.9	7.37	2.68	2.2	-109	0.52	1.82	Clear
	04/19/2011		25.2	7.63	2.14	2.2	-155	0.16	1.39	Clear
	08/02/2011		26.6	7.71	2.19	7.0	-15.5	0.54	1.45	Clear
LC34-BW0002F	10/26/2011	58 to 61	26.3	7.69	2.73	0.4	-220	0.24	1.78	Clear
	02/14/2012		25.0	7.71	2.59	0.75	-204	0.11	1.68	Clear
	06/26/2012		24.9	7.57	2.53	1.4	-258	0.12	1.64	Clear
	09/11/2012		26.2	7.82	3.30	1.9	-286	0.71*	2.15	Clear
	02/01/2011		24.3	7.43	1.44	10	-152	0.35	0.95	Clear
	04/19/2011		24.4	7.43	0.72	0.5	-180	1.16	0.47	Clear
	08/02/2011		25.8	7.86	1.30	2.9	-170	2.13*	0.85	Clear
LC34-BW0003A	10/26/2011	23 to 26	26.4	7.23	0.85	1.8	-252	0.80	0.56	Clear
	02/15/2012		24.8	7.47	0.76	2.1	-150	0.18	0.49	Clear
	06/27/2012		24.5	7.52	0.71	0.36	-175	0.61	0.46	Clear
-	09/11/2012		26.6	7.41	0.90	0.4	-87.1	2.32*	0.58	Clear

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
	02/01/2011		24.4	7.66	1.89	13	-196	0.22	1.25	Clear
	04/19/2011		24.5	7.48	0.82	3.8	-176	0.34	0.53	Clear
	08/02/2011		25.8	7.53	1.83	1.0	-167	2.35*	1.19	Clear
LC34-BW0003B	10/27/2011	30 to 33	25.2	7.30	0.95	1.4	-238	0.78	0.61	Clear
	02/15/2012	1	25.2	7.52	0.80	2.4	-161	0.21	0.52	Clear
	06/27/2012		24.4	7.54	0.73	0.49	-169	0.21	0.47	Clear
	09/11/2012		26.0	7.28	0.89	0.62	-104	1.49*	0.58	Clear
	02/02/2011		23.9	7.73	2.42	7.0	-143	0.20	1.60	Clear
	03/22/2011	1	24.2	7.56	2.20	2.7	-181	0.24	1.43	Clear
	03/29/2011	1	23.6	7.50	2.50	8.9	-92.3	0.42	1.62	Clear
	04/07/2011	1	24.7	7.70	2.16	2.8	-168	0.12	1.40	Clear
	04/19/2011	1	24.8	7.56	1.60	6.1	-177	0.19	1.04	Clear
LC34-BW0003C	07/07/2011	37 to 40	25.2	7.26	2.02	18	-123	0.21	1.31	Clear
	08/02/2011		26.2	6.88	3.07	3.2	-276	1.26*	1.99	Clear
	10/27/2011		25.6	7.32	1.75	2.7	-282	0.36	1.14	Clear
	02/15/2012	1	25.0	7.50	1.19	7.9	-199	0.17	0.84	Clear
	06/27/2012		24.6	7.61	1.09	0.48	-248	0.30	0.71	Clear
	09/13/2012		25.6	7.65	1.16	1.6	-141	3.09*	0.76	Clear
	02/02/2011		24.0	7.71	2.59	5.1	-115	0.21	1.71	Clear
	04/19/2011		24.8	7.51	1.86	11	-177	0.31	1.21	Clear
	07/07/2011		25.7	5.74	2.12	13	13.2	0.42	1.41	Clear
LC34 RW0002D	08/02/2011	14 to 17	27.1	6.95	2.98	5.0	-268	1.24*	1.94	Clear
LC34-D W 0003D	10/26/2011	44 10 47	25.8	6.43	2.61	6.8	-292	0.60	1.70	Clear
	02/15/2012		25.0	6.90	2.53	5.1	-314	0.19	1.65	Clear
	06/27/2012		25.1	7.28	2.42	7.8	-346	0.56	1.57	Clear
	09/13/2012		25.8	7.28	3.13	1.3	-268	1.35*	2.03	Cloudy
	02/01/2011		24.2	7.65	2.63	2.9	-149	0.32	1.74	Clear
	03/22/2011		24.4	7.56	2.37	5.9	-159	0.25	1.54	Clear
	03/29/2011		24.0	7.71	2.12	6.6	-94.0	0.65	1.41	Clear
	04/07/2011		25.0	7.74	2.48	4.9	-136	0.17	1.61	Clear
LC34-BW0003E	04/19/2011		24.6	7.59	1.87	5.0	-158	0.25	1.22	Clear
	07/07/2011	51 to 54	25.0	6.94	1.97	7.0	-128	0.22	1.28	Clear
	08/02/2011		25.6	7.10	2.94	1.2	-265	0.97	1.90	Clear
	10/26/2011		25.8	6.43	2.61	6.8	-292	0.60	1.70	Clear
	02/15/2012]	25.1	6.84	2.56	2.3	-300	0.19	1.67	Clear
	06/27/2012		25.0	7.37	2.60	0.95	-289	0.70	1.69	Clear
	09/13/2012		25.7	7.33	3.36	0.92	-238	1.73*	2.18	Cloudy

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
	02/01/2011		24.3	7.61	2.80	2.4	-142	0.24	1.85	Clear
	04/19/2011		24.6	7.56	2.01	2.2	-133	0.22	1.30	Clear
	08/02/2011		25.6	7.80	2.78	1.3	-248	1.25	1.80	Clear
LC34-BW0003F	10/27/2011	58 to 61	26.0	7.32	2.73	1.4	-287	0.34	1.78	Clear
	02/15/2012		24.9	6.88	2.61	0.96	-270	0.18	1.7	Clear
	06/27/2012		25.1	7.54	2.59	1.1	-285	0.33	1.69	Clear
	09/13/2012		25.8	7.54	3.46	5.3	-262	1.63*	2.25	Cloudy
	02/03/2011		24.0	7.30	1.25	10	-137	0.61	0.83	Clear
	03/22/2011		25.2	7.26	0.88	3.7	-146	0.61	0.57	Clear
	03/29/2011		24.8	7.63	2.35	4.7	-52.9	0.45	1.31	Clear
	04/07/2011		24.5	7.40	0.85	6.1	-138	0.35	0.55	Clear
1 C24 1000001	04/18/2011	25 4 20	24.4	7.44	0.73	5.1	-141	0.29	0.48	Clear
LC34-1W00021	08/01/2011	25 to 30	27.0	6.57	1.95	4.3	-143	0.91	1.27	Clear
	10/26/2011		26.0	6.99	0.78	9.5	-291	0.52	0.51	Clear
	02/15/2012		24.8	7.32	0.66	4.1	-729	0.86	0.43	Clear
	06/26/2012		25.3	6.86	0.60	3.2	-80.4	0.32	0.39	Clear
	09/13/2012		26.4	7.63	0.51	11	-118	0.77	0.33	Clear
	02/02/2011		24.6	7.38	2.81	6.0	-95	0.42	1.84	Clear
	03/22/2011		24.8	7.40	1.96	7.2	-144	0.48	1.28	Clear
	03/28/2011		23.3	7.46	1.90	5.5	-149	0.69	1.23	Clear
	04/07/2011		24.6	7.58	1.81	1.7	-153	0.27	1.18	Clear
LC34 IW0002D	04/18/2011	35 to 40	25.9	7.80	1.24	3.8	-162	0.36	0.81	Clear
LC34-1W0002D	08/01/2011	351040	26.9	6.83	3.66	4.7	-211	0.76	2.38	Clear
	10/26/2011		26.5	6.92	2.29	1.6	-312	0.61	1.40	Clear
	2/16/2012]	25.4	6.99	1.25	4.0	-243	0.33	0.81	Clear
	06/26/2012		25.3	7.32	0.88	1.5	-307	0.29	0.60	Clear
	09/13/2012		26.1	7.76	0.72	6.6	-157	0.56	0.50	Clear
	02/02/2011		24.6	7.70	2.94	6.2	-90.0	0.49	1.93	Clear
	03/22/2011		24.6	7.56	2.50	8.3	-121	0.39	1.62	Clear
	03/28/2011		23.8	7.59	2.63	7.5	-109	0.43	1.71	Clear
	04/07/2011		24.1	7.68	2.59	5.2	-127	0.29	1.69	Clear
LC34-	04/18/2011	50 to 55	25.2	7.83	1.97	6.8	-119	0.39	1.28	Clear
IW0002D1	08/01/2011	501055	26.5	7.11	2.90	15	-250	0.53	1.89	Clear
	10/26/2011		26.6	7.57	2.73	7.1	-302	0.27	1.77	Clear
	02/16/2012		25.1	7.07	2.59	3.8	-308	0.31	1.69	Clear
	06/26/2012		25.5	7.29	2.37	2.3	-364	0.27	1.56	Clear
	09/13/2012		26.0	7.77	2.34	2.9	-276	0.23	1.59	Clear
	02/02/2011		25.0	7.74	3.00	4.1	-249	0.32	1.95	Clear
[04/18/2011		25.8	7.89	1.94	5.4	-272	0.35	1.26	Clear
LC34-IW0067D	10/25/2011	38 to 43	26.0	7.51	2.61	7.3	-245	0.09	1.70	Clear
[02/14/2012		24.3	8.52 *	2.54	1.6	-240	0.33	1.65	Clear
	06/26/2012		25.5	7.52	2.66	3.0	-298	0.17	1.73	Clear

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
	02/03/2011		24.6	7.53	2.73	14	-98.8	0.30	1.79	Clear
L C24	04/18/2011		25.9	7.76	1.96	17	-154	0.38	1.28	Clear
LC34-	10/25/2011	63 to 73	25.9	7.50	2.66	75	-142	0.13	1.73	Cloudy
1W0007D1	02/14/2012		24.1	7.63 *	2.58	9.7	-60.2	0.39	1.67	Clear
	06/26/2012		25.2	7.41	2.67	125	-146	0.14	1.74	White and cloudy
	02/02/2011		25.1	7.74	3.08	2.4	-242	0.46	2.00	Clear
	04/18/2011		25.3	7.83	1.90	6.0	-220	0.43	1.24	Clear
LC34-IW0070D	10/25/2011	38 to 43	26.2	7.64	2.67	4.3	-281	0.08	1.74	Clear
	02/15/2012		25.2	7.73	2.54	5.7	-170	0.30	1.65	Clear
	06/26/2012		25.4	7.49	2.71	3.8	-281	0.42	1.77	Clear
	02/02/2011		24.7	7.69	3.10	3.5	-151	0.38	2.03	Clear
I C34-	04/18/2011		25.7	7.80	2.02	14	-123	0.47	1.31	Clear
IW0070D1	10/25/2011	65 to 75	26.1	7.56	2.69	8.0	-185	0.10	1.75	Clear
1000/001	02/15/2012		25.0	7.67	2.57	3.0	-24.4	0.31	1.67	Clear
	06/26/2012		25.0	7.42	2.69	3.1	-90.1	0.42	1.75	Clear
	02/02/2011		23.1	7.54	2.33	1.0	-137	0.17	1.57	Clear
	04/18/2011		24.7	7.91	1.84	0.7	-172	0.68	1.19	Clear
LC34-IW0071D	10/25/2011	38 to 43	24.3	7.54	2.39	1.1	-222	0.12	1.56	Clear
	02/15/2012		23.4	7.66	2.28	0.57	-87.9	0.31	1.48	Clear
	06/26/2012		24.0	7.42	2.49	1.6	-242	0.13	1.62	Clear
	02/02/2011		23.0	7.65	2.47	0.7	-112	0.19	1.67	Clear
LC34-	04/18/2011		25.0	7.82	1.92	7.6	-124	0.34	1.25	Clear
IW0071D1	10/25/2011	65 to 75	24.5	7.58	2.55	4.2	-161	0.09	1.66	Clear
1000/101	02/14/2012		23.2	7.63	2.49	1.8	-73.4	0.27	1.62	Clear
	06/26/2012		24.0	7.42	2.63	1.6	-151	0.15	1.71	Clear
	02/02/2011		24.3	7.69	2.95	16	0.40	1.95	1.95	Clear
	04/18/2011		25.2	7.83	2.38	7.9	-182	0.22	1.55	Clear
	08/01/2011		25.9	7.78	2.53	14	-152	1.79	1.64	Clear
LC34-IW0076	10/25/2011	70 to 80	27.0	7.43	2.60	39	-200	0.07	1.69	Cloudy
	02/15/2012		24.6	7.12	2.39	16	-62.8	0.51	1.56	Clear
	06/26/2012		28.2	6.60	2.34	5.9	-207	0.48	1.55	Clear
	09/13/2012		26.3	7.80	2.54	6.9	-140	0.49	1.67	Clear

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color						
	02/02/2011		24.1	7.90	2.69	10	6.5	0.16	1.78	Clear						
	03/22/2011		24.2	7.40	2.28	3.0	-109	2.34*	1.48	Clear						
	03/28/2011		23.2	7.43	2.60	3.7	-136	1.69	1.69	Clear						
	04/07/2011		24.2	7.57	2.35	0.79	-154	0.38	1.52	Clear						
	04/19/2011		24.7	7.42	1.90	1.4	-166	0.41	1.24	Clear						
	07/07/2011	-	25.3	7.22	2.20	4.3	-124	0.27	1.43	Clear						
	08/01/2011		26.6	6.98	2.74	3.6	-208	0.39	1.78	Clear						
	08/12/2011		26.5	8.21*	1.83	4.8	-238	0.14	1.16	Clear						
	08/18/2011		26.5	6.80	2.39	7.8	-280	0.49	1.55	Clear						
	08/24/2011		26.7	6.75	2.73	1.8	-252	0.63	1.77	Clear						
	08/31/2011		26.5	7.34	2.58	1.6	-290	0.17	1.63	Clear						
	09/15/2011		27.1	7.06	2.66	0.8	-303	1.67	1.73	Clear						
	09/28/2011		26.4	7.11	2.45	1.6	-284	0.66	1.60	Clear						
LC34-RW0007	10/13/2011	35 to 42	25.7	7.15	2.49	2.3	-315	0.20	1.62	Clear						
LC34-ICW0007	10/26/2011	55 10 42	25.3	7.04	1.22	0.62	-314	1.19	0.79	Clear						
	11/10/2011		25.3	7.26	2.45	1.5	-333	0.21	1.59	Clear						
	11/22/2011		25.6	7.19	2.46	0.77	-539	0.15	1.60	Clear						
	12/15/2011		25.0	7.18	2.06	0.99	-320	0.12	1.34	Clear						
	01/05/2012	l l					-	ŀ	23.2	7.11	1.40	3.0	-255	0.50	0.91	Clear
	01/26/2012		24.5	7.23	1.99	0.83	-260	1.06	1.29	Clear						
	02/14/2012		24.0	8.84*	2.03	0.69	-252	0.53	1.32	Clear						
	03/15/2012		25.7	7.78	0.79	5.6	-222	0.32	0.52	Clear						
	04/19/2012		24.7	7.46	2.04	3.6	-234	1.10	1.33	Clear						
	05/17/2012		24.1	10.54*	2.09	1.3	-312	1.58*	1.36	Clear						
	06/26/2012]	26.7	7.12	2.07	3.1	-286	0.33	1.35	Clear						
	07/19/2012		25.6	7.39	1.94	0.08	-324	0.38	1.26	Clear						
1 F-	08/16/2012		26.2	7.42	2.81	1.2	-324	0.09	1.83	Clear						
	09/13/2012		26.5	7.85	0.92	2.9	-241	0.25	0.60	Clear						

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
	02/02/2011		24.5	8.76	2.30	11	-91.1	0.16	1.51	Clear
	03/22/2011		24.5	7.56	2.40	4.1	-102	1.02	1.56	Clear
	03/28/2011		23.2	7.60	2.56	7.9	-117	0.55	1.66	Clear
	04/07/2011		24.2	7.68	2.46	0.8	-113	0.61	1.60	Clear
	04/19/2011		25.2	7.68	1.93	1.9	-156	0.40	1.25	Clear
	07/07/2011	-	25.2	7.35	2.35	8.7	-209	0.27	1.53	Clear
	08/01/2011		26.3	7.32	2.53	3.3	-226	0.25	1.64	Clear
-	08/12/2011		26.2	8.11*	2.87	8.3	-262	0.26	1.82	Clear
	08/18/2011		26.5	6.98	2.66	3.7	-246	0.34	1.73	Clear
	08/24/2011		27.3	7.01	2.73	3.1	-250	0.52	1.78	Clear
	08/31/2011		26.6	7.80	2.65	2.5	-294	0.07	1.67	Clear
	09/15/2011		26.8	7.21	2.66	0.9	-320	1.03	1.73	Clear
	09/28/2011		26.4	7.21	2.47	1.3	-275	0.59	1.61	Clear
LC34-RW0008	10/13/2011	47 to 57	25.6	7.34	2.65	1.7	-305	0.21	1.72	Clear
LC34-ICW0000	10/26/2011	4/10/5/	24.9	7.20	2.66	1.7	-323	0.31	1.73	Clear
	11/10/2011		35.1	7.42	2.59	1.4	-349	0.21	1.68	Clear
	11/22/2011		25.7	7.31	2.58	0.79	-346	0.14	1.68	Clear
	12/15/2011		24.6	7.42	2.55	1.4	-329	0.15	1.66	Clear Grey
	01/05/2012		23.0	7.26	2.42	0.80	-284	0.50	1.57	Clear
	01/26/2012		24.5	7.36	2.35	0.59	-293	0.80	1.53	Clear
	02/14/2012		24.0	8.82*	2.54	0.64	-255	0.49	1.65	Clear
	03/15/2012		25.9	7.52	2.49	0.76	-232	0.38	1.62	Clear
	04/19/2012		24.5	7.65	2.42	0.96	-220	1.08	1.57	Clear
	05/17/2012		23.8	10.69*	2.47	2.4	-320	1.55*	1.60	Clear
	06/26/2012		25.5	7.07	2.70	2.5	-270	0.38	1.75	Clear
	07/19/2012		25.8	7.51	2.51	0.09	-306	0.32	1.63	Clear
	08/16/2012		25.7	7.64	3.64	1.6	-341	0.36	2.37	Clear
	09/13/2012		26.7	7.77	2.56	5.2	-240	0.40	1.67	Clear

Location	Sample Date	Screen Interval (ft BLS)	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
LC34-IJ0015	02/03/2011	32 to 42	24.1	7.56	2.65	15	-162	0.26	1.76	Clear
LC34-IJ0016	02/03/2011	47 to 57	24.2	7.63	2.78	14	-133	0.28	1.84	Clear
LC34-IJ0019	02/03/2011	32 to 42	24.1	7.64	1.97	12	-160	0.31	1.30	Clear
LC34-IJ0020	02/03/2011	47 to 57	23.4	7.68	2.36	13	-121	0.35	1.58	Clear

1. ft BLS indicates feet below land surface.

2. °C indicates degree Celsius.

3. pH indicates hydrogen ion concentration.

4. S.U. indicates standard units.

5. mS/cm indicates milliSiemens per centimeter.

6. NTU indicates Nephelometric Turbidity Unit.

7. mV indicates millivolts.

8. mg/L indicates milligram per liter.

9. g/L indicates gram per liter.

10. * indicates malfunctioning of probe.

		Screen	Concentration (mg/L)			Concentration (µg/L)	
Location	Sample Date	Interval (ft BLS)	TOC	Acetic Acid	Butanoic Acid	Lactic Acid	Propionic Acid	Pyruvic Acid
	04/18/2011		3.2	1.7	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011		4.2	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	10/25/2011		7.2	11	0.56 U	0.072 U	0.13 U	0.018 U
LC34-BW0001A	02/16/2012	23 to 26	2.8	1.6	0.56 U	0.072 U	0.13 U	0.018 U
	02/16/2012 *		3.0	NA	NA	NA	NA	NA
	06/26/2012		2.6	NA	NA	NA	NA	NA
	09/13/2012		2.3	NA	NA	NA	NA	NA
	04/18/2011		5.7	27	0.56 U	2.3	0.13 U	0.018 U
	08/01/2011		8.0	0.073 U	0.56 U	1.7	0.13 U	0.018 U
LC24 DW0001D	10/25/2011	20 4- 22	760	970	180	0.72 U	1.3 U	0.18 U
LC34-BW0001B	02/16/2012	30 to 33	32	47	17	0.072 U	0.13 U	0.018 U
	06/26/2012		4.9	NA	NA	NA	NA	NA
	09/13/2012		3.4	NA	NA	NA	NA	NA
	04/18/2011		7.3	65	0.56 U	1.2	0.13 U	0.018 U
	08/01/2011		301	370	120	0.15 U	0.26 U	0.036 U
	08/01/2011*		304	NA	NA	NA	NA	NA
LC34-BW0001C	10/25/2011	37 to 40	511	480	530	0.36 U	12	0.09 U
	02/16/2012		504	390	440	0.36 U	13	0.09 U
	06/26/2012		120	NA	NA	NA	NA	NA
	09/13/2012		10	NA	NA	NA	NA	NA
	04/18/2011		7.5	50	0.56 U	1.1	0.13 U	0.018 U
	08/01/2011		37	21	4.0	1.2	0.13 U	0.018 U
LC34-BW0001D	10/25/2011	44 to 47	241	340	29	0.15 U	0.26 U	0.036 U
Beer Britter	02/16/2012		176	200	140	0.15 U	0.26 U	0.036 U
	06/26/2012		99	NA	NA	NA	NA	NA
	09/13/2012		92	NA	NA	NA	NA	NA
	04/18/2011	-	3.3	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011	-	8.3	10	0.56 U	0.072 U	0.13 U	0.018 U
LC34-BW0001E	10/25/2011	51 to 54	79	140	34	0.072 U	3.5	0.018 U
	02/16/2012		11	17	0.56 U	0.072 U	0.13 U	0.018 U
	06/26/2012		21	NA	NA	NA	NA	NA
	09/13/2012		9.0	NA	NA	NA	NA	NA
	04/18/2011	4	3.3	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011	4	606	590	30	0.36 U	0.64 U	0.09 U
LC34-BW0001F	10/25/2011	58 to 61	4.4	1.7	0.56 U	0.072 U	0.13 U	0.018 U
	02/16/2012	4	17	32	0.56 U	0.072 U	0.13 U	0.018 U
	06/26/2012	4	3.9	NA	NA	NA	NA	NA
	09/13/2012		3.5	NA	NA	NA	NA	NA

Table 14: Summary of Groundwater Sampling Results: TOC and VFAs (NASA 2013)

		Screen	Concentration (mg/L)			Concentration (µg/L)	
Location	Sample Date	Interval (ft BLS)	TOC	Acetic Acid	Butanoic Acid	Lactic Acid	Propionic Acid	Pyruvic Acid
	04/19/2011		3.0	2.4	0.56 U	0.072 U	0.13 U	0.018 U
	04/19/2011*	1	NA	2.4	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011	1	3.7	13	0.56 U	0.072 U	0.13 U	0.018 U
LC34-BW0002A	10/26/2011	23 to 26	178	370	57	0.15 U	0.26 U	0.036 U
	02/15/2012	1	41	100	0.56 U	0.072 U	0.13 U	0.018 U
	06/26/2012	7	2.7	NA	NA	NA	NA	NA
	09/11/2012	7	2.5	NA	NA	NA	NA	NA
	04/19/2011		4.1	18	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011	7	13	48	3.7	1.1	0.13 U	0.018 U
	08/02/2011*	7	14	NA	NA	NA	NA	NA
LC34-BW0002B	10/26/2011	30 to 33	107	230	30	0.15 U	2.4	0.036 U
	02/15/2012		11	19	0.56 U	0.072 U	0.13 U	0.018 U
	06/26/2012	7	3.0	NA	NA	NA	NA	NA
	09/11/2012		2.7	NA	NA	NA	NA	NA
	04/19/2011		4.3	36	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011	7	354	350	290	0.36 U	0.64 U	0.09 U
LC24 DW0002C	10/26/2011	27 4= 40	78	160	43	1.1	2	0.018 U
LC34-BW0002C	02/14/2012	371040	2.5	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	06/26/2012	7	49	NA	NA	NA	NA	NA
	09/11/2012	7	78	NA	NA	NA	NA	NA
	04/19/2011		4.0	3.3	0.56 U	0.072 U	0.13 U	0.018 U
	04/19/2011*	7	4.0	3.3	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011		4.1	3.3	0.56 U	0.072 U	0.13 U	0.018 U
LC34-BW0002D	10/26/2011	44 to 47	102	130	61	0.072 U	13	0.018 U
	02/14/2012	7	88	190	20	0.072 U	2.1	0.018 U
	06/26/2012		104	NA	NA	NA	NA	NA
	09/11/2012		87	NA	NA	NA	NA	NA
	04/19/2011		3.2	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011		4.4	2.8	0.56 U	0.072 U	0.13 U	0.018 U
LC24 DW0002E	10/26/2011	51 to 54	4.0	1.8	0.56 U	0.072 U	0.13 U	0.018 U
LC34-DW0002E	02/14/2012	51 10 54	4.6	4.3	0.56 U	0.072 U	0.13 U	0.018 U
	06/26/2012		5.3	NA	NA	NA	NA	NA
	09/11/2012		4.9	NA	NA	NA	NA	NA
	04/19/2011		3.1	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011		7.1	11	0.56 U	0.072 U	0.13 U	0.018 U
LC34-BW0002F	10/26/2011	58 to 61	3.5	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
LC34-D W 0002F	02/14/2012	50 10 01	3.1	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	06/26/2012		3.4	NA	NA	NA	NA	NA
	09/11/2012	7	3.3	NA	NA	NA	NA	NA

		Screen	Concentration (mg/L)			Concentration (µg/L)	
Location	Sample Date	Interval (ft BLS)	TOC	Acetic Acid	Butanoic Acid	Lactic Acid	Propionic Acid	Pyruvic Acid
	04/19/2011		2.9	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011		7.2	12	0.56 U	0.072 U	0.13 U	0.018 U
LC24 DW0002 A	10/26/2011	22 to 26	5.7	9.0	0.56 U	0.072 U	0.13 U	0.018 U
LC34-D W0003A	02/15/2012	25 10 20	2.6	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	06/27/2012		2.4	NA	NA	NA	NA	NA
	09/11/2012		2.3	NA	NA	NA	NA	NA
	04/19/2011		3.3	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	04/19/2011*		3.2	NA	NA	NA	NA	NA
	08/02/2011		89	120	95	0.072 U	2.1	0.018 U
LC34-BW0003B	08/02/2011*	30 to 33	99	NA	NA	NA	NA	NA
LC34-D W0003D	10/27/2011	30 10 33	11	16	2.7	0.072 U	0.13 U	0.018 U
	02/15/2012		2.7	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	06/27/2012		2.6	NA	NA	NA	NA	NA
	09/11/2012		2.3	NA	NA	NA	NA	NA
	04/19/2011		3.8	8.1	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011		671	680	630	0.36 U	15	0.09 U
LC34-BW0003C	10/27/2011	37 to 40	15	25	0.56 U	0.072 U	0.13 U	0.018 U
EC34-B (10003C	02/15/2012	57 10 40	6.2	6.8	0.56 U	0.072 U	0.13 U	0.018 U
	06/27/2012		4.2	NA	NA	NA	NA	NA
	09/13/2012		3.2	NA	NA	NA	NA	NA
	04/19/2011		4.1	4.8	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011		603	640	320	0.36 U	0.64 U	0.09 U
	08/02/2011*		NA	620	310	0.36 U	0.64 U	0.09 U
LC34-BW0003D	10/26/2011	44 to 47	169	250	99	0.36 U	24	0.09 U
	02/15/2012		98	190	17	0.072 U	5.0	0.018 U
	06/27/2012		59	NA	NA	NA	NA	NA
	09/13/2012		50	NA	NA	NA	NA	NA
	04/19/2011		3.4	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011		905	870	360	0.36 U	0.64 U	0.09 U
LC34-BW0003E	10/27/2011	51 to 54	56	57	29	0.072 U	2.7	0.018 U
LCSTENCOUSE	02/15/2012	51 10 51	34	73	2.9	0.072 U	0.13 U	0.018 U
	06/27/2012		42	NA	NA	NA	NA	NA
	09/13/2012		38	NA	NA	NA	NA	NA
	04/19/2011		3.2	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/02/2011	_	107	140	58	0.072 U	13	0.018 U
LC34-BW0003F	10/27/2011	58 to 61	30	65	4.6	0.072 U	0.13 U	0.018 U
	02/15/2012	2010 01	20	39	0.56 U	0.072 U	0.13 U	0.018 U
	06/27/2012	_	4.5	NA	NA	NA	NA	NA
	09/13/2012		4.9	NA	NA	NA	NA	NA

		Screen	Concentration (mg/L)			Concentration (µg/L)	
Location	Sample Date	Interval (ft BLS)	TOC	Acetic Acid	Butanoic Acid	Lactic Acid	Propionic Acid	Pyruvic Acid
	04/18/2011		3.3	2.3	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011		487	610	210	0.36 U	0.64 U	0.09 U
	08/01/2011*		NA	620	200	0.36 U	0.64 U	0.09 U
1 C24 1000001	10/26/2011	25 4 20	31	55	13	0.072 U	2.7	0.018 U
LC34-1W00021	02/15/2012	25 to 30	4.0	3.6	0.56 U	0.072 U	0.13 U	0.018 U
	02/15/2012 *		NA	3.7	2 U	0.072 U	0.13 U	0.018 U
	06/26/2012		3.0	NA	NA	NA	NA	NA
	09/13/2012		2.3	NA	NA	NA	NA	NA
	04/18/2011		5.1	24	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011		1,130	1,100	1,200	0.72 U	11	0.18 U
	08/01/2011*		NA	1,100	1,200	0.72 U	1.3 U	0.18 U
LC34-IW0002D	10/26/2011	35 to 40	590	390	810	0.36 U	49	0.09 U
	02/16/2012		124	230	38	0.15 U	7.7	0.036 U
	06/26/2012		23	NA	NA	NA	NA	NA
	09/13/2012		8.7	NA	NA	NA	NA	NA
	04/18/2011		3.1	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011		587	450	2.8 U	0.36 U	21	0.09 U
L C24 IW0002D1	10/26/2011	50 to 55	43	93	5.0	0.072 U	0.13 U	0.018 U
LC34-1W0002D1	02/16/2012	50 10 55	58	110	9.9	0.072 U	1.5	0.018 U
	06/26/2012		49	NA	NA	NA	NA	NA
	09/13/2012		37	NA	NA	NA	NA	NA
LC34 IW0067D	04/18/2011	28 to 12	3.6	NA	NA	NA	NA	NA
LC34-1W0007D	02/14/2012	38 10 43	3.6	NA	NA	NA	NA	NA
LC24 IW0067D1	04/18/2011	63 to 73	3.3	NA	NA	NA	NA	NA
LC34-1W0007D1	02/14/2012	03 10 73	3.0	NA	NA	NA	NA	NA
LC34 IW0070D	04/18/2011	28 to 12	4.1	NA	NA	NA	NA	NA
LC34-1W0070D	02/15/2012	58 10 45	4.1	NA	NA	NA	NA	NA
LC34-IW0070D1	04/18/2011	65 to 75	3.2	NA	NA	NA	NA	NA
EC34-100070D1	02/15/2012	05 10 75	3.1	NA	NA	NA	NA	NA
LC34-IW0071D	04/18/2011	38 to 13	3.6	NA	NA	NA	NA	NA
LC34-1W0071D	02/15/2012	58 10 45	3.4	NA	NA	NA	NA	NA
LC34-IW0071D1	04/18/2011	65 to 75	3.3	NA	NA	NA	NA	NA
LC34-1W0071D1	02/14/2012	05 10 75	3.1	NA	NA	NA	NA	NA
	04/18/2011		3.3	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011		3.7	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
LC34-IW0076	10/25/2011	70 to 80	4.7	12	13	0.072 U	0.13 U	0.018 U
2034-100070	02/15/2012	/01000	7.3	2.8	3.3	0.072 U	0.13 U	0.018 U
	06/26/2012		3.3	NA	NA	NA	NA	NA
	09/13/2012		3.1	NA	NA	NA	NA	NA

		Screen	Concentration (mg/L)			Concentration (µg/L)	
Location	Sample Date	Interval (ft BLS)	TOC	Acetic Acid	Butanoic Acid	Lactic Acid	Propionic Acid	Pyruvic Acid
	03/22/2011		5.3	33	0.56 U	1.2	0.13 U	0.018 U
	03/28/2011		4.9	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	04/07/2011		5.3	24	0.56 U	0.072 U	0.13 U	0.018 U
	04/19/2011		4.4	22	0.56 U	0.072 U	0.13 U	0.018 U
	04/19/2011*		4.5	22	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011		327	350	230	0.15 U	5.2	0.036 U
	08/12/2011		191	260	68	0.36 U	0.64 U	0.09 U
	08/18/2011		363	380	320	0.36 U	11	0.09 U
	08/18/2011*		358	NA	NA	NA	NA	NA
	08/24/2011		322	320	350	0.36 U	18	0.09 U
	08/31/2011		280	290	310	0.36 U	17	0.09 U
LC34-RW0007	09/15/2011	35 to 42	219	250	250	0.36 U	16	0.09 U
	09/28/2011		242	260	250	0.36 U	18	0.09 U
	10/13/2011		262	280	300	0.36 U	22	0.09 U
	10/26/2011		246	270	270	0.36 U	17	0.09 U
	11/10/2011		222	270	240	0.36 U	16	0.09 U
	11/22/2011		174	240	170	0.15 U	12	0.036 U
	12/15/2011		172	230	130	0.15 U	9.7	0.036 U
	01/05/2012		153	220	54	0.36 U	8.9	0.09 U
	01/26/2012		113	170	50	0.36 U	5.3	0.09 U
	02/14/2012		108	170	49	0.072 U	4.9	0.018 U
	06/26/2012		63	NA	NA	NA	NA	NA
	09/13/2012		9.6	NA	NA	NA	NA	NA

		Screen	Concentration (mg/L)			Concentration (µg/L)	
Location	Sample Date	Interval (ft BLS)	TOC	Acetic Acid	Butanoic Acid	Lactic Acid	Propionic Acid	Pyruvic Acid
	03/22/2011		3.6	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	03/28/2011		3.5	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	04/07/2011		3.5	0.073 U	0.56 U	0.072 U	0.13 U	0.018 U
	04/19/2011		3.4	1.0	0.56 U	0.072 U	0.13 U	0.018 U
	08/01/2011		73.1	130	28	0.072 U	1.1	0.018 U
	08/12/2011		203	220	150	0.15 U	5.5	0.036 U
	08/18/2011		177	230	150	0.36 U	12	0.09 U
	08/24/2011		147	220	100	0.36 U	NA	0.09 U
	08/31/2011		122	210	72	0.36 U	15	0.09 U
	09/15/2011		80	140	34	0.072 U	5.1	0.018 U
LC34-RW0008	09/28/2011	47 to 57	64	140	12	0.072 U	2.2	0.018 U
	10/13/2011		61	130	16	0.072 U	1.8	0.018 U
	10/26/2011		65	130	19	0.072 U	1.4	0.018 U
	11/10/2011		59	120	22	0.072 U	1.4	0.018 U
	11/22/2011		56	120	18	0.072 U	1.6	0.018 U
	12/15/2011		56	120	13	0.072 U	1.6	0.018 U
	01/05/2012		51	96	8.5	0.072 U	1.4	0.018 U
	01/26/2012		48	100	7.1	0.072 U	1.2	0.018 U
	02/14/2012		44	91	4.8	0.072 U	1.2	0.018 U
	06/26/2012		37	NA	NA	NA	NA	NA
	09/13/2012		27	NA	NA	NA	NA	NA

1. ft BLS indicates feet below land surface.

2. µg/L indicates micrograms per liter.

3. mg/L indicates milligrams per liter.

4. U indicates result not detected above method detection limit (MDL).

5. TOC indicates total organic carbon.

6. VFA indicates volatile fatty acid.

7. NA indicates not analyzed.

Location	Sample Date	Screen Interval (ft BLS)	Dehalococcoides (gene copies/L)	Vinyl Chloride Reductase (gene copies/L)
	04/18/2011		7.0E+05	NA
	10/25/2011		6.0E+06	NA
LC34-BW0001C	02/16/2012	37 to 40	6.0E+06	NA
	06/26/2012		1.0E+08	1.0E+08
	09/13/2012		1.0E+08	2.0E+08
	04/18/2011		4.0E+03 U	NA
	10/25/2011		7.0E+06	NA
LC34-BW0001E	02/16/2012	51 to 54	3.0E+07	NA
	06/26/2012		2.0E+07	2.0E+07
	09/13/2012		2.0E+07	3.0E+07
	04/19/2011		5.0E+07	NA
	10/27/2011		5.0E+08	NA
LC34-BW0003C	02/15/2012	37 to 40	3.0E+08	NA
	06/27/2012		2.0E+08	9.0E+07
	09/13/2012		1.0E+08	1.0E+08
	04/19/2011		1.0E+03 J	NA
	10/27/2011		2.0E+06	NA
LC34-BW0003E	02/15/2012	51 to 54	1.0E+06	NA
	06/27/2012		3.0E+06	8.0E+06
	09/13/2012		2.0E+06	5.0E+06
	04/19/2011		1.0E+05	5.0E+03
	10/26/2011		1.0E+08	2.0E+06
LC34-RW0007	02/14/2012	35 to 42	2.0E+08	3.0E+07
	06/26/2012		2.0E+07	2.0E+07
	09/13/2012		2.0E+07	1.0E+07
	04/19/2011		3.0E+04	4.0E+03 U
	10/26/2011]	3.0E+08	5.0E+07
LC34-RW0008	02/14/2012	47 to 57	1.0E+08	3.0E+07
	06/26/2012]	9.0E+07	1.0E+08
	09/13/2012		6.0E+07	6.0E+07

 Table 15: Summary of Groundwater Sampling Results: Dehalococcoides and Vinyl

 Chloride Reductase (NASA 2013)

- 1. ft BLS indicates feet below land surface.
- 2. Gene copies/L indicates gene copies per liter.
- 3. U indicates not detected above method detection limit.
- 4. J indicates values is between the method detection limit and the quantitation limit.

		Screen Interval		Concentration (µg/L)		Concentration (mg/L)							
Location	Sample Date	(ft BLS)	Ethane	Ethene	Methane	Nitrate-N	Nitrite-N	Sulfate	Sulfide	Chloride	Alkalinity	Bromide	Iodide
	04/18/2011	()	0.29 U	30	76	0.07 U	0.05 U	49	0.48 U	84	2.70	0.30 U	0.20 U
	08/01/2011	1 I	15	27	92	0.20 U	0.30 U	54	0.20 U	137	293	0.60 U	0.20 U
	10/25/2011	- · · · · ·	3.9	35	83	0.20 U	0.10 U	50	0.20 U	76	299	0.60 U	0.20 U
LC34-BW0001A	02/16/2012	23 to 26	3.0	26	64	0.20 U	0.004 U	56	0.20 U	66	241	0.60 U	0.20 U
	06/26/2012		3.2	25	89	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		1.2	12	46	NA	NA	NA	NA	NA	NA	NA	NA
	04/18/2011		0.29 U	17	85	0.07 U	0.30 U	44	0.48 U	258	329	0.30 U	0.20 U
	08/01/2011	1 1	51	30	100	0.20 U	1.0 U	38	4.5	322	350	0.60 U	0.20 U
	10/25/2011	1 1	6.5	12	23	0.20 U	0.20 U	20	2.1	119	880	51	89
	02/16/2012	20 / 22	16	30	83	0.20 U	0.004 U	32	3.4	96	328	3.2	0.20 U
LC34-BW0001B	02/16/2012 *	30 to 33	NA	NA	NA	NA	NA	NA	3.2	NA	NA	NA	NA
	06/26/2012	1 1	7.3	30	70	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012	1 1	6.3	31	71	NA	NA	NA	NA	NA	NA	NA	NA
	03/19/2013	1 1	18	26	63	NA	NA	NA	NA	NA	NA	NA	NA
	04/18/2011		1.0 U	9.5	62	0.07 U	0.50 U	27	0.50 U	570	341	0.30 U	0.20 U
	07/07/2011	1 [NA	NA	NA	NA	NA	NA	NA	NA	NA	15	22
	08/01/2011	1 [130	16	47	0.20 U	2.0 U	2.3	6.2	500	408	23	18
	10/25/2011] [57	10	64	0.20 U	0.50 U	0.50 U	9.0	287	718	40	40
LC34-BW0001C	02/16/2012	37 to 40	59	53	600	0.20 U	0.004 U	0.50 U	5.8	247	760	29	41
	02/16/2012 *] [NA	NA	NA	NA	NA	NA	NA	NA	NA	37	0.20 U
	06/26/2012] [50	660	1,600	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012] [23	200	180	NA	NA	NA	NA	NA	NA	NA	NA
	03/19/2013		61	60	120	NA	NA	NA	NA	NA	NA	NA	NA
	04/18/2011		0.29 U	5.3	14	0.07 U	0.50 U	76	0.50 U	780	251	0.30 U	0.20 U
	07/07/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	3.6	0.20 U
	08/01/2011	4 1	140	5.4	19	0.20 U	2.0 U	79	1.2	670	250	2.9	0.20 U
	08/01/2011*	┥ ┣	NA	NA	NA	NA	NA	NA	NA	NA	245	NA	NA
LC34-BW0001D	10/25/2011	44 to 47	99	3.5	13	0.20 U	1.0 U	69	2.8	568	436	13	0.20 U
	02/16/2012	4	100	4.6	27	0.20 U	0.004 U	16	16	751	465	8.9	0.20 U
	06/26/2012	-	89	25	110	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012	4 1	93	43	160	NA	NA	NA	NA	NA	NA	NA	NA
	03/19/2013		98	98	310	NA	NA	NA	NA	NA	NA	NA	NA
	04/18/2011	4 1	0.29 U	0.30 U	6.8	0.07 U	0.90 U	95	0.50 U	600	167	1.2	0.20 U
	0//0//2011	4 6	<u>NA</u>	NA	NA	NA	NA	NA	NA 1.5	NA 505	NA 192	2.2	0.20 U
·	08/01/2011		10	2.1 NA	9.9	0.20 U	2.0 U	//	1.5	595 NA	183	1.4 NA	0.20 U
LC34-BW0001E	10/25/2011	51 to 54	INA (0	NA 110	NA 05		INA 1.0.U	17	1.5	NA (25	NA 200	INA 4.9	0.20 U
	02/16/2012	4 1	0.9	110	95	0.20 U	1.0 U	25	9.3	623	299	4.8	0.20 U
	02/10/2012	4 1	12	610	2 200	0.20 U	0.004 U	23 NA	0.9 NA	NA	239 NA	2.9 NA	0.20 U
	00/20/2012		7.2 II	200	2,200	INA NA	INA NA	NA NA	NA	NA NA	NA NA	INA NA	NA NA
	07/15/2012	+	0.2011	0.30 U	2,700			1NA 112	0.50 U	1NA 626	166	1 NA	0.20 U
	08/01/2011	4 k	0.29 0	0.30 U	<u> </u>	0.07.0	2011	46	5.200	400	504	26.0	0.20 U
	08/01/2011*		<u>0.29 U</u> ΝΔ	NA		0.20 U	2.00	40	5.0 NA	405	- 504 ΝΔ	20.9	0.20 U
LC34-BW0001F	10/25/2011	58 to 61	0.29 11	03011	51	0.20 U	1.0 U	103	11	670	160	1.6	0.20 U
2001 2000011	02/16/2012	501001	1.8	58	270	0.20 U	0.004 U	37	6.7	619	250	3.0	0.20 U
	06/26/2012	1 ł	1.5 U	56	440	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012	1 1	1.5 U	99	300	NA	NA	NA	NA	NA	NA	NA	NA

 Table 16: Summary of Groundwater Sampling Results: Geochemical Parameters (NASA 2013)

Leasting	Samula Data	Screen Interval		Concentration (µg/L)					Concentration (mg/	L)			
Location	Sample Date	(ft BLS)	Ethane	Ethene	Methane	Nitrate-N	Nitrite-N	Sulfate	Sulfide	Chloride	Alkalinity	Bromide	Iodide
	04/19/2011		0.29 U	33	75	NA	NA	NA	NA	NA	NA	0.30 U	0.20 U
	04/19/2011*	- 1	0.29 U	32	80	NA	NA	NA	NA	NA	NA	NA	NA
	08/02/2011	- 1	32	18	86	NA	NA	NA	NA	NA	NA	0.60 U	0.20 U
L C24 DW00024	10/26/2011	22 4 26	3.0	46	660	NA	NA	NA	NA	NA	NA	12	14
LC34-BW0002A	02/15/2012	23 to 26	98	140	410	NA	NA	NA	NA	NA	NA	2.7	2.6
	02/15/2012 *	- 1	96	150	410	NA	NA	NA	NA	NA	NA	NA	NA
	06/26/2012	- 1	0.58 U	97	92	NA	NA	NA	NA	NA	NA	NA	NA
	09/11/2012		0.29 U	42	39	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011		0.29 U	12	93	NA	NA	NA	NA	NA	NA	0.30 U	0.20 U
	08/02/2011	- 1	82	14	130	NA	NA	NA	NA	NA	NA	0.60 U	0.20 U
L C24 DW0002D	10/26/2011	20 (22	15	27	82	NA	NA	NA	NA	NA	NA	6.8	7.4
LC34-BW0002B	02/15/2012	30 to 33	4.5	110	150	NA	NA	NA	NA	NA	NA	0.60 U	0.20 U
	06/26/2012	-	0.58 U	100	230	NA	NA	NA	NA	NA	NA	NA	NA
	09/11/2012		0.58 U	44	140	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011		0.29 U	8.0	58	0.07 U	0.90 U	48	0.48 U	687	247	0.30 U	0.20 U
	07/07/2011	- 1	NA	NA	NA	NA	NA	NA	NA	NA	NA	24	14
	08/02/2011		69	21	52	0.20 U	1.0 U	0.50 U	11	539	480	7.6	13
	08/02/2011*	-	NA	NA	NA	0.20 U	0.10 U	0.50 U	NA	53	NA	8.6	NA
LC34-BW0002C	10/26/2011	37 to 40	110	31	170	0.20 U	1.0 U	4.2	11	548	366	2.9	6.6
	02/14/2012	-	0.58 U	170	140	0.20 U	0.004 U	26	2.4	51	233	0.60 U	0.20 U
	02/14/2012 *	-	NA	NA	NA	0.20 U	0.004 U	26	NA	47	NA	NA	NA
	06/26/2012	-	65	430	690	NA	NA	NA	NA	NA	NA	NA	NA
	09/11/2012	-	52	890	1.800	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011		0.29 U	2.9	9.0	NA	NA	NA	NA	NA	NA	1.3	0.20 U
	07/07/2011	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.2	0.20 U
	08/02/2011	-	17	14	290	NA	NA	NA	NA	NA	NA	11	0.20 U
	08/02/2011*	-	NΔ	NΔ	NA	NA	ΝΔ	NA	NA	NΔ	NA	1.0	0.20 U
LC34-BW0002D	10/26/2011	44 to 47	27	21	65	NA	NA	NA	NA	NA	NA	11.7	0.20 U
	02/14/2012	-	41	180	110	NA	NA	NA	NA	NA	NA	6.5	2.8
	06/26/2012	-	41	560	1 400	NA	NA	NA	NA	NA	NA	NA	NA
	00/20/2012	-	36	1,000	1,400	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011		0.29 []	0.30 U	6.8	NΔ	NΔ	NΔ	NΔ	NA	NA	0.30 U	0.20 II
	07/07/2011	-	0.27 O	0.30 U	0.0 NA	NA	NA	NA	NA	NA	NA	0.50 0	0.20 U
	08/02/2011	-	0.20 11	0.30 U	8 /	NA	NA	NA	NA	NA	NA	1.4	0.20 U
LC34-BW0002F	10/26/2011	51 to 54	0.29 U	0.30 0	17	NA	NA	NA NA	NA NA	NA	NA	2.2	0.20 U
LC34-D W0002L	02/14/2012	5110 54	17	90	17	NA	NA NA	NA	NA NA	NA	NA	2.2	0.20 U
	06/26/2012	-	3.2	160	78	NA	NA	NA	NA	NA	NA	NA	0.20 C
	00/20/2012	-	3.5	160	78	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
	04/19/2011		0.29 []	0.30 U	6.4	ΝΔ	NΔ	ΝA	ΝΔ	NΔ	NA	0.30 U	0.20 II
	08/02/2011	-	13	1.5	14	ΝΔ	NA	ΝΔ	NA	NΔ	NA	2.3	0.20 U
	10/26/2011	-	0.29 []	7.2	86	NA	NA	NΔ	ΝΔ	ΝΔ	NA	2.3	0.20 U
LC34-BW0002F	02/14/2012	58 to 61	0.29 U	6.9	8.0	NA	NA	NΔ	NA	NΔ	NA	2.0	0.20 U
	06/26/2012	-	1.2	65	10	NA	NA	NA	NA	NA	NA	NA	0.20 U
	09/11/2012	-	1.2	110	22	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	04/10/2011		0.2011	110	<u> </u>	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.30 IT	0.20 II
	08/02/2011	-	127 0	2/0	110	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.50 U	0.20 U
	08/02/2011	-	12	240	110	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA
LC34-BW0003A	10/26/2011	23 to 26	12	53	ΩΛ	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.60 U	0.20 II
LCJT-D W000JA	02/15/2012	23 10 20	0.2011	5.0	15	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.60 U	0.20 U
	06/27/2012	-	1 1	2.4	82	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
	00/2//2012	-	0.2011	11	02	INA NA	NA NA	INA NA	INA NA	INA NA	NA NA	NA NA	NA NA
	07/11/2012		0.29 0	11	110	INA	INA	INA	INA	INA	INA	$\square \mathbf{A}$	INA

Lessting	Samula Data	Screen Interval		Concentration (µg/L)					Concentration (mg/l	L)			
Location	Sample Date	(ft BLS)	Ethane	Ethene	Methane	Nitrate-N	Nitrite-N	Sulfate	Sulfide	Chloride	Alkalinity	Bromide	Iodide
	04/19/2011		0.29 U	160	97	NA	NA	NA	NA	NA	NA	0.30 U	0.20 U
	08/02/2011		24	410	85	NA	NA	NA	NA	NA	NA	7.7	9.6
LC24 DW0002D	10/27/2011	20 to 22	2.3	99	95	NA	NA	NA	NA	NA	NA	1.2	0.20 U
LC34-BW0003B	02/15/2012	30 to 33	0.29 U	11	24	NA	NA	NA	NA	NA	NA	0.60 U	0.20 U
	06/27/2012		0.29 U	20	76	NA	NA	NA	NA	NA	NA	NA	NA
	09/11/2012		0.29 U	12	99	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011		0.29 U	260	96	0.07 U	0.90 U	34	0.48 U	490	279	0.30 U	0.20 U
	07/07/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	36	58
	08/02/2011		15	150	710	0.20 U	0.80 U	3.4	14.6	329	760	52	64.1
	08/02/2011*		NA	NA	NA	NA	NA	NA	14.7	NA	746	NA	NA
LC34-BW0003C	10/27/2011	37 to 40	12	770	300	0.20 U	0.80 U	13	4.9	360	313	1.5	0.20 U
	02/15/2012		2.9 U	640	240	0.20 U	0.004 U	35	4.2	237	308	0.60 U	0.20 U
	02/15/2012 *		NA	NA	NA	NA	NA	NA	NA	NA	310	NA	NA
	06/27/2012		13	620	210	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		9.6	410	180	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011		0.29 U	4.5	44	NA	NA	NA	NA	NA	NA	1.3	0.20 U
	04/19/2011*		1.0 U	4.3	43	NA	NA	NA	NA	NA	NA	NA	NA
	07/07/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	24	0.20 U
LC34-BW0003D	08/02/2011	44 to 47	20	5.5	18	NA	NA	NA	NA	NA	NA	38	0.20 U
Lest Bit 0005D	10/26/2011	1110 17	11	35	1,800	NA	NA	NA	NA	NA	NA	11	0.20 U
	02/15/2012		7.3 U	310	1,700	NA	NA	NA	NA	NA	NA	5.7	3.3
	06/27/2012		26	910	1,400	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		26	1,200	1,400	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011		0.29 U	0.30 U	6.5	NA	NA	NA	NA	NA	NA	1.3	0.20 U
	07/07/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	45	0.20 U
	08/02/2011		0.29 U	1.7	30	NA	NA	NA	NA	NA	NA	58	0.20 U
LC34-BW0003E	10/27/2011	51 to 54	0.29 U	4.1	2,000	NA	NA	NA	NA	NA	NA	8.8	0.20 U
	02/15/2012	_	6.1	310	390	NA	NA	NA	NA	NA	NA	3.2	0.20 U
	06/27/2012	_	18	850	680	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		21	1,000	920	NA	NA	NA	NA	NA	NA	NA	NA
	04/19/2011	-	0.29 U	0.03 U	7.0	NA	NA	NA	NA	NA	NA	1.4	0.20 U
	08/02/2011	_	0.29 U	0.30 U	750	NA	NA	NA	NA	NA	NA	2.5	0.20 U
L C24 DW0002E	08/02/2011*	59 ((1	0.29 U	0.30 U	850	NA	NA	NA	NA	NA	NA	NA	NA
LC34-BW0003F	10/27/2011	58 to 61	1.5	5.1	170	NA	NA	NA	NA	NA	NA	3.1	0.20 U
	02/15/2012	_	7.8	450	570	NA	NA	NA	NA	NA	NA	2.7	0.20 U
	06/27/2012	_	10 U	85	1,300	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		20 U	290	1,100	NA	NA 0.05 U	NA 51	NA 0.50 U	NA 72	NA 250	NA	NA 0.20 U
	04/18/2011	_	0.29 0	19	61	0.07 U	0.05 U	51 0.50 U	0.50 U	/3	250	0.30 U	0.20 0
	10/26/2011	_	23	/.1	44	0.20 U	0.30 U	0.50 U	1.3	138	032	35	45
LC34-IW0002I	10/26/2011	25 to 30	0.2	29	69	0.20 U	0.10 U	31	2.7	65	285	2./	2.5
	02/15/2012	_	3.8	9.2	51	0.20 U	0.004 U	44	0.20 U	52	228	0.60 U	0.20 U
	00/20/2012	-	1.0	3.3	30	INA NA	INA NA	INA NA	INA NTA	INA N A	INA NA	INA NA	INA NA
	09/13/2012		1.0	3.1	24			NA 22		NA 201	1NA 219	INA 0.20 U	
	08/01/2011	-	0.29 U 10	110	110	0.070	1.011	3Z	0.48 U	252	31ð 1 150	0.50 U	0.20 0
	10/26/2011	-	48	28	43	0.20 U	1.0 U	0.30 0	5.4 11	202	1,150	9.1 20	42 10
LC34-IW0002D	02/16/2012	35 to 40	12	120	230	0.20 U	0.00 U	0.0	11 7.6	07	420	20	10
	06/26/2012	-	15	914 020	000	0.20 U	0.004 U NA	0.50 U	/.0 NA	۶/ NA	420 NA	11 NA	11 NA
	00/20/2012	-	24	670	310	INA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	07/13/2012		24	0/0	510	INA	INA	INA	INA	INA	INA	INA	INA

Location	Sampla Data	Screen Interval		Concentration (µg/L)					Concentration (mg/	L)			
Location	Sample Date	(ft BLS)	Ethane	Ethene	Methane	Nitrate-N	Nitrite-N	Sulfate	Sulfide	Chloride	Alkalinity	Bromide	Iodide
	04/18/2011		0.29 U	0.30 U	8.6	0.07 U	0.90 U	105	0.48 U	628	167	1.6	0.20 U
	08/01/2011	1	20	29	5,600	0.20 U	2.0 U	0.50 U	6.2	451	660	9.0	5.1
	08/01/2011*	1	22	31	5,800	NA	NA	NA	NA	NA	NA	NA	NA
LC34-IW0002D1	10/26/2011	50 to 55	2.9	140	390	0.20 U	1.0 U	43	9.1	650	244	3.5	0.20 U
	02/16/2012		7.6	370	240	0.20 U	0.004 U	5.1	14.4	572	301	4.7	2.2
	06/26/2012		32	1,400	1,300	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		30	1,600	2,700	NA	NA	NA	NA	NA	NA	NA	NA
	04/18/2011		0.29 U	0.30 U	5.8	NA	NA	NA	NA	NA	NA	0.30 U	0.20 U
	08/01/2011		0.29 U	0.30 U	7.7	NA	NA	NA	NA	NA	NA	1.2	0.20 U
LC34-IW0076	10/25/2011	70 to 80	0.29 U	0.30 U	790	NA	NA	NA	NA	NA	NA	2.5	0.20 U
LC34-1W0070	02/15/2012	701030	2.9 U	3.0 U	780	NA	NA	NA	NA	NA	NA	1.9	0.20 U
	06/26/2012		2.9 U	3.0 U	980	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		0.73 U	6.7	210	NA	NA	NA	NA	NA	NA	NA	NA
	03/22/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	1.7	0.20 U
	03/28/2011		80	8.6	40	0.07 U	0.50 U	59	1.1	664	227	0.30 U	0.20 U
	04/07/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	1.3	0.20 U
	04/19/2011		0.29 U	11	47	0.07 U	0.90 U	61	1.0	642	223	1.5	0.20 U
	04/19/2011*		0.29 U	11	47	0.07 U	0.90 U	61	0.48 U	645	221	NA	NA
	07/07/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	17	2.1
	08/01/2011		61	9.8	35	0.20 U	1.0 U	0.50 U	1.7	519	510	28	2.3
	08/12/2011		55	14	93	0.05 U	0.004 U	18	9.2	264	460	12	15
	08/18/2011		53	14	76	0.20 U	1.0 U	0.50 U	15	421	510	26	17
	08/18/2011*		NA	NA	NA	0.20 U	NA	0.50 U	NA	NA	NA	25	NA
	08/24/2011		50	12	100	0.20 U	1.0 U	0.50 U	25	516	498	20	11
LC34-RW0007	08/31/2011	35 to 42	49	15	150	0.20 U	1.0 U	2.3	23	487	472	18	11
Lesticuout	09/15/2011	55 10 12	48	33	290	0.20 U	1.0 U	0.50 U	21	512	445	13	10
	09/28/2011		46	53	380	0.20 U	1.0 U	0.50 U	20	509	440	16	12
	10/13/2011		48	86	420	0.20 U	1.0 U	0.50 U	17	433	468	18	15
	10/26/2011		39	110	330	0.20 U	1.0 U	2.1	17	437	468	14	14
	11/10/2011		44	150	520	0.20 U	0.004 U	0.50 U	16	472	470	21	13
	11/22/2011		41	190	510	0.20 U	0.004 U	2.1	18	469	430	14	11
	12/15/2011		46	300	1,100	0.20 U	0.004 U	4.3	14	384	455	13	11
	01/05/2012		30	740	3,200	0.20 U	0.004 U	3.7	14	199	460	7.3	12
	01/26/2012		45	480	1,300	0.20 U	0.004 U	2.2	15	431	368	7.8	7.9
	02/14/2012		37	500	1,100	0.20 U	0.004 U	4.2	15	409	390	8.0	7.2
	06/26/2012		41	1,200	1,700	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		11	370	360	NA	NA	NA	NA	NA	NA	NA	NA

Location Sample Date		Screen Interval		Concentration (µg/L)		Concentration (mg/L)							
Location	Sample Date	(ft BLS)	Ethane	Ethene	Methane	Nitrate-N	Nitrite-N	Sulfate	Sulfide	Chloride	Alkalinity	Bromide	Iodide
	03/22/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA	2.1	0.20 U
	03/28/2011	1 1	3.1	0.30 U	7.7	0.07 U	0.50 U	91	0.50 U	665	168	1.8	0.20 U
	04/07/2011	1 1	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.4	0.20 U
	04/19/2011	7 I	0.29 U	0.30 U	8.8	0.07 U	0.90 U	92	0.50 U	675	173	1.7	0.20 U
	04/19/2011*	1 1	0.29 U	11	47	0.07 U	0.90 U	61	0.48 U	645	221	NA	NA
	07/07/2011	1 1	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.8	0.20 U
	08/01/2011	1 1	16	310	30	0.20 U	2.0 U	0.50 U	2.9	602	279	4.8	0.20 U
	08/01/2011*	1 1	NA	NA	NA	0.20 U	1.0 U	0.50 U	NA	629	NA	NA	NA
	08/12/2011	1 1	7.8	2.0	120	0.05 U	0.004 U	23	10	594	378	17	0.20 U
	08/18/2011	1 1	5.2	7.8	300	0.20 U	1.0 U	3.2	16	641	369	8.4	0.20 U
	08/24/2011	1 1	4.3	9.3	370	0.20 U	1.0 U	0.50 U	20	604	368	8.2	0.20 U
L C24 DW0000	08/31/2011	17 += 57	3.8	23	520	0.20 U	1.0 U	3.7	19	590	329	5.6	0.20 U
LC34-KW0008	09/15/2011	4/105/	4.4	26	430	0.20 U	1.0 U	17	15	609	299	4.8	0.20 U
	09/28/2011	1 1	5.6	28	410	0.20 U	1.0 U	13	14	633	271	2.8	0.20 U
	10/13/2011	1 1	7.4	71	460	0.20 U	1.0 U	16	15	624	287	4.2	0.20 U
	10/26/2011	1 1	8.8	95	400	0.20 U	1.0 U	14	15	632	288	4.5	0.20 U
	11/10/2011	1 1	10	140	450	0.20 U	0.004 U	7.3	14	652	300	4.5	0.20 U
	11/22/2011	1 1	10	190	450	0.20 U	0.004 U	7.3	15	620	294	4.0	0.20 U
	12/15/2011	1 1	13	270	600	0.20 U	0.004 U	7.0	14	605	321	5.3	0.20 U
	01/05/2012	7 I	13	320	670	0.20 U	0.004 U	3.9	14	679	314	4.5	0.20 U
	01/26/2012	1 1	13	370	490	0.20 U	0.004 U	3.5	13	622	288	4.8	0.20 U
	02/14/2012	1 1	13	450	510	0.20 U	0.004 U	2.9	13	621	300	4.3	0.20 U
	06/26/2012	7 I	23	910	620	NA	NA	NA	NA	NA	NA	NA	NA
	09/13/2012		30	940	760	NA	NA	NA	NA	NA	NA	NA	NA

1. ft BLS indicates feet below land surface.

2. μ g/L indicates micrograms per liter.

mg/L indicates milligrams per liter.
 U indicates result not detected above method detection limit (MDL).

5. NA indicates not analyzed.

6. * indicates duplicate sample.

Lestin	Camarla Data	te Screen Interval (ft BLS) Concentration (Concentration (µ	g/L)	
Location	Sample Date	Screen Interval (It BLS)	Arsenic	Concentration (μ g/L)ArsenicIron103001003,0004.0 U2302.0 U20 U2.0 U20 U2.0 U30 U4.0 U1302.0 U30 U4.0 U1102.0 U30 U4.0 U1102.0 U30 U4.0 U1102.0 U30 U2.0 U30 U4.0 U1102.0 U1202.0 U1202.0 U1202.0 U20 U2.0 U20 U2.0 U30 U4.0 U1102.0 U30 U4.0 U60 U2.0 U30 U4.0 U1102.0 U30 U4.0 U1102.0 U30 U4.0 U1102.0 U30 U2.0 U30 U2.0 U30 U4.0 U1102.0 U30 U4.0 U1102.0 U30 U	Manganese
	Groundwater C	leanup Target Level (µg/L)	10	300	50
	Natural Attenuation De	efault Concentration (µg/L)	100	3,000	500
	04/18/2011		4.0 U	230	31
LC24 DW0001A	08/01/2011	23 to 26	2.0 U	20 U	29
LC34-D W0001A	10/25/2011	25 to 20	2.0 U	130	24
	02/16/2012	Ι Γ	2.0 U	30 U	18
	04/18/2011		4.0 U	110	25
LC24 DW0001D	08/01/2011	20 to 22	2.0 U	20 U	28
LC34-DW0001D	10/25/2011	50 10 55	2.0 U	380	43
	02/16/2012		2.0 U	30 U	17
	04/18/2011		4.0 U	110	17
LC24 DW0001C	08/01/2011	27 to 40	2.0 U	120	30
LC34-DW0001C	10/25/2011	37 10 40	2.0 U	120	39
	02/16/2012		2.0 U	140	57
	04/18/2011		4.0 U	110	34
LC24 DW0001D	08/01/2011	11 to 17	2.0 U	20 U	29
LC34-D W 0001D	10/25/2011	44 10 47	2.0 U	230	41
	02/16/2012		2.0 U	30 U	47
	04/18/2011		4.0 U	60 U	16
LC24 DW0001E	08/01/2011	51 to 54	2.0 U	20 U	17
LC34-DW0001E	10/25/2011	51 to 54	2.0 U	30 U	18
	02/16/2012	1 Γ	2.0 U	30 U	13
	04/18/2011		4.0 U	110	13
LC24 DW0001E	08/01/2011	59 to 61	2.0 U	350	36
LC34-BW0001F	10/25/2011	381001	2.0 U	130	13
	02/16/2012		2.0 U	30 U	12

 Table 17: Summary of Groundwater Sampling Results: Dissolved Metals (NASA 2013)

Location	Sampla Data	Saraan Internal (ft DI S)		Concentration (µ	g/L)	
Location	Sample Date	Screen interval (it BLS)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Manganese		
	Groundwater Cl	eanup Target Level (µg/L)	10	300	50	
	Natural Attenuation De	efault Concentration (µg/L)	100	3,000	500	
	04/18/2011		4.0 U	60 U	31	
LC34_IW0002I	08/01/2011	25 to 30	2.0 U	3,500	126	
LC34-IW0002I	10/26/2011	25 10 50	2.0 U	550	100	
	02/15/2012		2.0 U	30 U	69	
	04/18/2011		4.0 U	110	11	
	08/01/2011	25 to 10	2.0 U	1,590	198	
LC34-1 W 0002D	10/26/2011	33 10 40	2.0 U	30 U	98	
	02/16/2012		2.0 U	30 U	57	
	04/18/2011		4.0 U	110	13	
	08/01/2011		2.0 U	20 U	60	
LC34-IW0002D1	08/01/2011*	50 to 55	2.0 U	20 U	59	
	10/26/2011		2.0 U	30 U	13	
	02/16/2012		2.0 U	30 U	14	
	04/18/2011		4.0 U	60 U	11	
	08/01/2011		2.0 U	20 U	2.0 U	
LC34-IW0076	08/01/2011*	70 to 80	2.0 U	20 U	10	
	10/25/2011		2.0 U	30 U	13	
	02/15/2012		2.0 U	30 U	14	
Lastian	Sample Date	Samaan Internal (ADIS)		Concentration (µg/L)		
--	---------------	----------------------------	---------	----------------------	---------------	--
Location	Sample Date	Screen Interval (IT BLS)	Arsenic	Iron	ron Manganese	
	Groundwater C	leanup Target Level (µg/L)	10	300	50	
Natural Attenuation Default Concentration (µg/L)			100	3,000	500	
	04/19/2011		4.0 U	120	10	
	04/19/2011*		4.0 U	60 U	2 U	
	08/01/2011		2.0 U	880	91	
	08/12/2011		2.0 U	20 U	12 B	
	08/18/2011		2.0 U	20 U	19	
	08/24/2011		2.0 U	20 U	25	
	08/31/2011	35 to 42	2.0 U	200	23	
	09/15/2011		2.0 U	20 U	23	
LC34-RW0007	09/28/2011		2.0 U	140	21	
	10/13/2011		2.0 U	20 U	23	
	10/26/2011		2.0 U	30 U	20	
	11/10/2011		2.0 U	30 U	22	
	11/22/2011		2.0 U	30 U	22	
	12/15/2011		2.0 U	30 U	15	
	01/05/2012		2.0 U	30 U	19	
	01/26/2012		2.0 U	30 U	25	
	02/14/2012		10 U	100 U	15	

Location	Samula Data	Saraan Internal (A DI S)	Concentration (µg/L)			
Location	Sample Date	Screen Interval (It BLS)	Arsenic	Iron	Manganese	
Groundwater Cleanup Target Level (µg/L)			10	300	50	
Natural Attenuation Default Concentration (µg/L)		100	3,000	500		
	04/19/2011		4.0 U	120	15	
	04/19/2011*	47 to 57	4.0 U	60 U	14	
	08/01/2011		2.0 U	690	86	
	08/12/2011		2.0 U	180 B	23 B	
	08/18/2011		2.0 U	120	20	
LC34-RW0008	08/24/2011		2.0 U	20 U	22	
	08/31/2011		2.0 U	190	21	
	09/15/2011		2.0 U	20 U	16	
	09/28/2011		2.0 U	140	16	
	10/13/2011		2.0 U	20 U	15	
	10/26/2011		2.0 U	30 U	15	
	11/10/2011		2.0 U	30 U	16	
	11/22/2011		2.0 U	30 U	16	
	12/15/2011		2.0 U	30 U	12	
	01/05/2012		2.0 U	30 U	15	
	01/26/2012		2.0 U	30 U	15	
	02/14/2012		10 U	100 U	12	
	02/14/2012 *		10 U	100 U	12	

- 1. ft BLS indicates feet below land surface.
- 2. μ g/L indicates micrograms per liter.
- 3. B indicates constituent detected in associated method blank.
- 4. U indicates result not detected above method detection limit (MDL).
- 5. Bold text indicates an exceedance of the Florida Department of Environmental Protection (FDEP) Groundwater Cleanup Target Level
- 6. Shaded cell indicates an exceedance of the FDEP Natural Attenuation Default Concentration.
- 7. *indicates duplicate sample.

			Concentration	
Batch Number	Sample Date	µg/L	mg	g/L
		n-Butyl Acetate	Bromide	Iodide
BATCH 10	06/21/2011	2,500,000	65	NA
BATCH 17	06/21/2011	1,900,000	111	70
BATCH 26	06/21/2011	2,200,000	109	150
BATCH 29	06/22/2011	2,500,000	71	NA
BATCH 39	06/22/2011	7,700,000	88	NA
BATCH 40	06/22/2011	4,700,000	86	115
BATCH 49	06/22/2011	6,600,000	72	146
BATCH 54	06/23/2011	3,400,000	65	NA
BATCH 57	06/23/2011	2,400,000	65	NA
BATCH 67	06/23/2011	1,700,000	71	102
BATCH 112	06/27/2011	3,800,000	76	100
BATCH 117	06/27/2011	1,800,000	69	145
BATCH 127	06/27/2011	1,100,000	68	NA
BATCH 134	06/27/2011	2,300,000	69	NA
BATCH 136	06/28/2011	2,500,000	63	105
BATCH 144	06/28/2011	1,800,000	17	27
BATCH 152	06/28/2011	2,100,000	64	NA

Table 18: PED Injection Amendment Sampling Results (NASA 2013)

1. μ g/L indicates micrograms per liter.

2. mg/L indicates milligrams per liter.

3. NA indicates not analyzed.

T (Sample interval (ft	Concentration (µg/L)					
Location	Sample Date	BLS)	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	n-Butyl Acetate	
Grou	ndwater Cleanup	Target Level (µg/L)	3	70	100	1	43	
Natural Atte	nuation Default C	Concentration (µg/L)	300	700	1,000	100	430	
	06/30/2011	28 (4,100	45,000	500 I	240 U,I	1,500 J	
	06/30/2011*	28 to 32	3,800	48,000	440 I	250 I	110 U	
	06/30/2011	27 to 41	1,400	52,000	330 I	1,600	19,000	
L C24 DDT229	06/30/2011*	5/1041	1,200 I	56,000	260 I	2,000 I	15,000	
LC34-DP1328	06/30/2011	12 to 17	2,100	34,000	210 I	120 U,I	640 J	
	06/30/2011*	45 10 47	1,900	35,000	190 I	58 U	55 I	
	06/30/2011	49 to 53	4.5 I	250	10 U	4.4 I	26 J	
	06/30/2011	55 to 59	1.3	65	1.0 U	1.0 U	440	
	06/30/2011	28 to 32	2,900 U,I	4,800 I	10,000 U	2,400 U,I	1,300,000	
	06/30/2011	37 to 41	11,000	11,000	1,000 U	240 U,I	1,200,000	
LC34-DPT329	06/30/2011*		10,000 I	14,000 I	2,000 U	2,300 U	1,100,000	
	06/30/2011	43 to 47	34,000	4,900	2,000 U	480 U,I	1,300,000	
	06/30/2011	49 to 53	9,000	5,000 U	5,000 U	1,200 U,I	1,700,000	
	06/30/2011	8 to 12	3.8 I	230	7.0	12	1,600	
	06/30/2011	28 to 32	1,700	38,000	510	240 I	19,000	
	06/30/2011	27 to 41	640	50,000	290 I	2,300	20,000	
L C24 DDT220	06/30/2011*	57 10 41	530 I	59,000	340 I	2,500	15,000	
LC34-DF1330	06/30/2011	13 to 17	3,800	20,000	2,000 U	480 U,I	860,000	
	06/30/2011*	43 10 47	3,500	20,000	130 I	120 U	690,000	
	06/30/2011	40 to 52	58 U,I	1,200	200 U	48 U,I	97,000	
	06/30/2011*	49 10 55	58 U	510 I	50 U	58 U	76,000	
	06/30/2011	14 to 18	58 U,I	14,000	390	1,000	1,700	
	06/30/2011	28 to 32	24,000	15,000	2,000 U	960 I	24,000	
L C24 DDT221	06/30/2011	27 to 41	72,000	20,000	1,000 U	240 U,I	490,000	
LC34-DF1331	06/30/2011*	57 10 41	76,000	20,000	500 U	580 U	360,000	
	06/30/2011	12 to 17	190,000	4,700	2,000 U	480 U,I	55,000	
	06/30/2011*	43 10 47	180,000	3,700 I	200 U	230 U	820 I	

Table 19: Summary of DPT Groundwater Sampling Results: Chlorinated Volatile Organic Compounds (NASA 2013)

1. ft BLS indicates feet below land surface.

2. µg/L indicates micrograms per liter.

3. * indicates duplicate sample. All duplicate samples analyzed by fixed base laboratory (CAS), all other samples by mobile laboratory (KB Labs).

4. U indicates result not detected above method detection limit (MDL).

5. I indicates the result is between the MDL and the practical quantitation limit (PQL).

6. J indicates an estimated value; for n-butyl acetate values below PQL are all qualified with J.

7. Bold text indicates an exceedance of the FDEP Groundwater Cleanup Target Level.

8. Shaded cell indicates an exceedance of the FDEP Natural Attenuation Default Concentration.

Location	Sample Date	Sample Depth (ft BLS)	Dehalococcoides (gene copies/g)	Vinyl Chloride Reductase (gene copies/g)
LC24 DDT0240	09/10/2012	43.5	2.0E+03 I	6.0E+03 U
LC34-DI 10349	09/10/2012	48	3.0E+03 I	7.0E+03 U
	09/10/2012	37	4.0E+03 I	6.0E+03 U
LC34-DPT0350	09/10/2012	47	7.0E+05 U,I	NA
	09/10/2012	50	1.0E+06	1.0E+06
	09/11/2012	45.5	7.0E+05	1.0E+06
LC34-DPT0351	09/11/2012	47	8.0E+03 U, I	NA
	09/11/2012	48.5	3.0E+04	6.0E+04

Table 20: Summary of Soil Sampling Results: Dehalococcoides and Vinyl ChlorideReductase (NASA 2013)

- 1. ft BLS indicates feet below land surface.
- 2. gene copies/g indicates gene copies per gram.
- 3. U indicates not detected above method detection limit (MDL).
- 4. I indicates the result is between the MDL and the practical quantitation limit.
- 5. NA indicates not analyzed.

CHAPTER 5: DISCUSSION AND CONCLUSIONS

Overview

This section summarizes milestones that were achieved as a result of the enhanced bioremediation field implementation, including mass removed and evidence of reductive dechlorination. Additionally, conclusions and recommendations for a path forward for the site and for utilization of nBA as a PED at other sites are provided in the following sections.

Mass Removed and Mass Removal Rates

Mass removal for implementation of enhanced bioremediation using PED was calculated based on groundwater and soil samples collected within the treatment area during the Baseline Flux Phase (pre-PED injection) and System Operation Phase (post-PED injection) to evaluate mass removal and removal rates pre and post PED injection. Furthermore, contaminant mass removal was calculated for the high permeability zone and the low permeability zone separately to compare removal of dissolved phase contaminants in the high permeability zone versus removal of DNAPL source material sorbed in the low permeability zones. Calculations are presented in Appendix F and are summarized in the following sections.

Mass Removed

Baseline Flux Phase (pre-PED Injection; 14 March 2011 to 18 April 2011) – Soil sampling was not conducted pre and post baseline flux phase, per the proposed work plan (NASA 2010);

therefore, mass removal during the baseline flux phase was calculated using groundwater sampling results only. The total CVOC mass present in groundwater in February 2011 (prebaseline flux) was 112 pounds (lbs) and in April 2011 (post-baseline flux) was 98 lbs; therefore, approximately 14 lbs of CVOCs were removed from the groundwater during the baseline flux phase (12 percent reduction). Of the mass removed, 17 lbs of CVOC mass was calculated to have been removed from the high permeability layer and an increase of 3 lbs was calculated in the low permeability layer, indicating that the mass removed during the baseline flux phase was dissolved phase mass in the high permeability layers above and below the clay. Mass removal was likely a result of extraction and dilution from operation of the recirculation system.

System Operation (post-PED Injection; 9 August 2011 to 11 September 2012) – Groundwater and soil sampling was conducted before and after the system operation phase and the results were used to calculate mass removal during the system operation phase. The total CVOC mass present within the treatment area in August 2011 (pre-system operation) was 248 lbs and in September 2012 (post-system operation) was 138 lbs; therefore, 110 lbs of CVOCs were removed during the system operation phase (44 percent reduction). Of the 110 lbs removed, 78 lbs of CVOC mass was calculated to have been removed from the high permeability layer and 32 lbs was removed from the low permeability layer, indicating that not only dissolved phase mass in the high permeability layer was removed, but source zone material sorbed in the low permeable clay layer was removed as well. Mass removed from the low permeability layer during the system operation phase represented approximately 29 percent of the total mass removed during that phase. Mass removal was likely a result of reductive dechlorination occurring within the treatment area.

Mass Removal Rates

The mass removal rates from the baseline flux and the system operation phases were estimated to compare the mass removal between the system with no PED and with PED (Appendix F). The estimated mass removal rate from the baseline flux phase (recirculation with GAC and no PED injection) was, on average, approximately 0.40 pounds per day (lbs/day) based on mass removed from the baseline sampling to post baseline flux groundwater sampling (February 2011 to April 2011). The estimated mass removal rate for the system operation phase (August 2011 to September 2012) was, on average, approximately 0.28 lbs/day based on groundwater and soil sampling data.

Mass removal rates pre-PED injection (0.40 lbs/day) was greater than that observed during the post-PED injection system operational phase (0.28 lbs/day). The higher mass removal rate observed during baseline flux activities is likely due to the large dissolved CVOC flux available in the subsurface to be immediately extracted by the recirculation system (CVOC mass removal by in-line GAC). Additionally, the baseline flux period was approximately 35 days, versus the system operational period of approximately 399 days. If the baseline flux phase was a longer duration, the removal rate would likely have been less, as the readily available dissolved CVOC mass would be removed and the sorbed mass in the low permeability layers would very slowly desorb. This was demonstrated by the lack of mass removal from the low permeability layer during the baseline flux phase.

Evidence of Reductive Dechlorination

Reductions in CVOC concentrations are likely attributed to complete reductive dechlorination as a result of the PED injection, as evidenced by: (i) the production of daughter products relative to the degradation of TCE; (ii) the production of ethene; (iii) the production of dechlorinating microbial mass; and (iv) and reduction of electron donor.

Trend graphs were created for recirculation extraction wells RW0007 and RW0008 and for bundle wells BW0001, BW0002, and BW0003 at depth intervals above, in, and below the clay layer and are provided in Appendix G. These trend graphs were generated showing CVOC concentrations in μ g/L to show degradation of TCE and corresponding increases, then degradation, of daughter products as a result of reductive dechlorination.

In general, the baseline sampling results indicated that TCE and cDCE were the CVOCs with the highest concentrations in the monitoring wells and the recirculation extraction wells. In general, TCE and cDCE concentrations decreased during the baseline flux phase (operation of the recirculation system with no electron donor) with no increase in VC concentration (indicating removal via extraction and dilution and not reductive dechlorination). After PED injection and the startup of the recirculation system, TCE and cDCE concentrations generally decreased with an increase in VC concentrations as the degradation process moved forward and increased daughter product production. The highest concentration of TCE was observed in the area around monitoring well BW0001D, which is screened in the clay layer. The trend graph for monitoring well BW0001D shows that TCE decreased throughout the system operation period.

Graphs were also prepared using data from the same wells to demonstrate trends observed between CVOC (molar basis) and TOC concentration reductions and ethene (molar basis) production, indicative of reductive dechlorination (Appendix G).

Average ethene concentration detected in samples collected from treatment zone monitoring wells increased from 52.8 μ g/L (pre-injection baseline flux; April 2011) to 408 μ g/L (September 2012), indicating complete dechlorination of CVOCs is occurring. In addition, biomass concentration increased significantly, as evidenced by increases in average *Dhc* and *vcrA* concentrations detected in samples collected from treatment zone monitoring wells; *Dhc* increased from 8.5x10⁶ gene copies/L (pre-injection; April 2011) to 5.0x10⁷ gene copies/L (September 2012) and *vcrA* increased from 5.0x10³ gene copies/L (April 2011) to 6.8x10⁷ gene copies/L (September 2012).

TOC concentration is shown to generally increase following the injection activities, then decrease through the system operation period, indicating the electron donor was successfully injected into the subsurface, and was being utilized by the indigenous dechlorinating microbial population. Remaining TOC at the site was minimal, with an average TOC concentration of 21 mg/L (September 2012) detected in samples collected from treatment zone monitoring wells, decreasing from 250 mg/L (August 2011) just following injection.

Conclusions and Recommendations

This was the first enhanced bioremediation field implementation using nBA as a PED. nBA was successfully utilized as a PED for bioremediation of the TCE source zone. In reference to the success criteria of the research objective:

- the PED amendment was successfully injected and distributed above, in, and below the low permeability zone, as documented by nBA detections from sampling results (groundwater monitoring well samples, DPT groundwater samples, and DPT soil samples);
- the implementation was successful in reducing contaminant mass in both groundwater and soil, as evidenced by the observed mass removal;
- electron donor was successfully utilized, as evidenced by the observed reductions in TOC; and
- reductions are likely attributed to enhanced reductive dechlorination, as evidenced by corresponding increases in daughter product concentrations, increase in ethene concentration, increase in dechlorinating microbial concentrations, and decreases in TOC.

If reductive dechlorination were to continue to occur at the site on a long term basis, more electron donor would be needed. Based on the low average TOC concentrations at the site following the system operation phase (21 mg/L in September 2012), recommendations were made to perform a second nBA injection in the area where higher concentrations remained (vicinity of bundle well BW0001). Unfortunately, following the conclusion of the PED implementation, Geosyntec no longer performed work at the LC34 site, so it is unknown whether or not a second injection was performed.

This thesis project demonstrated that nBA could successfully be used as a PED to bioremediate a TCE source zone. When compared to other industry electron donors, although effective, nBA was utilized rather quickly, depleting within 12 months, as opposed to two to three years as expected from an electron donor such as a vegetable oil (ARCEE et al. 2004). Based on this alone, it appears that nBA would not be a good candidate for full scale implementation at this or other sites. However, there are many site specific uncertainties that could affect the distribution and utilization rate of electron donor, such as hydraulic conductivity, porosity, and mass distribution (i.e. concentration gradients). To conclude whether or not nBA would be the better option than other industry substrates and provide a true comparative analysis, side-by-side test plots would be recommended at the site, one utilizing nBA and one utilizing a standard substrate. This would ensure both electron donor options are being subjected to the same geophysical and geochemical settings and the same or similar contaminant concentrations.

APPENDIX A: NBA MSDS

For non-emergency assistance, call: 1-281-441-4400

Material Safety Data Sheet n-Butyl acetate MSDS

Section 1: Chemical Product and Company Identification			
Product Name: n-Butyl acetate	Contact Information:		
Catalog Codes: SLB1183	Sciencelab.com, Inc.		
CAS#: 123-86-4	Houston, Texas 77396		
RTECS: AF7350000	US Sales: 1-800-901-7247		
TSCA: TSCA 8(b) inventory: n-Butyl acetate	International Sales: 1-281-441-4400		
Cl#: Not available.	Order Online: ScienceLab.com		
Synonym:	1-800-424-9300		
Chemical Formula: CH3COO(CH2)CH3	International CHEMTREC, call: 1-703-527-3887		

mposition:		
Name	CAS#	% by Weight
{n-}Butyl acetate	123-86-4	100

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of ingestion. Hazardous in case of skin contact (irritant), of eye contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator).

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to lungs, the nervous system, mucous membranes. Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention.

Skin Contact:

In case of contact, immediately flush skin with plenty of water. Cover the irritated skin with an emollient. Remove contaminated clothing and shoes. Cold water may be used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention.

Serious Skin Contact:

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek immediate medical attention.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation: Not available.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Flammable.

Auto-Ignition Temperature: 421°C (789.8°F)

Flash Points: CLOSED CUP: 23.9°C (75°F). (TAG) OPEN CUP: 37°C (98.6°F) (Cleveland).

Flammable Limits: LOWER: 1.7% UPPER: 7.6%

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances:

Flammable in presence of open flames and sparks. Slightly flammable to flammable in presence of oxidizing materials, of acids, of alkalis.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available. Slightly explosive in presence of oxidizing materials, of acids, of alkalis.

Fire Fighting Media and Instructions:

Flammable liquid, soluble or dispersed in water. SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use alcohol foam, water spray or fog. Cool containing vessels with water jet in order to prevent pressure build-up, autoignition or explosion.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Flammable liquid. Keep away from heat. Keep away from sources of ignition. Stop leak if without risk. Absorb with DRY earth, sand or other non-combustible material. Do not touch spilled material. Prevent entry into sewers, basements or confined

areas; dike if needed. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Ground all equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapor/spray. Wear suitable protective clothing. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes.

Storage:

Store in a segregated and approved area. Keep container in a cool, well-ventilated area. Keep container tightly closed and sealed until ready for use. Avoid all possible sources of ignition (spark or flame).

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection:

Splash goggles. Lab coat. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

TWA: 150 CEIL: 200 TWA: 710 CEIL: 950 Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid.

Odor: Not available.

Taste: Not available.

Molecular Weight: 116.16 g/mole

Color: Not available.

pH (1% soln/water): Not available.

Boiling Point: 126.5°C (259.7°F)

Melting Point: -77.9 (-108.2°F)

Critical Temperature: Not available.

Specific Gravity: 0.9 (Water = 1)

Vapor Pressure: 1.3 kPa (@ 20°C)

Vapor Density: 4.01 (Air = 1)

Volatility: Not available.

Odor Threshold: 0.31 ppm

Water/Oil Dist. Coeff.: The product is equally soluble in oil and water; log(oil/water) = 0

Ionicity (in Water): Not available.

Dispersion Properties: See solubility in water.

Solubility: Partially soluble in cold water.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Not available.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Eye contact. Inhalation. Ingestion.

Toxicity to Animals:

WARNING: THE LC50 VALUES HEREUNDER ARE ESTIMATED ON THE BASIS OF A 4-HOUR EXPOSURE. Acute oral toxicity (LD50): 10768 mg/kg [Rat]. Acute dermal toxicity (LD50): 17601 mg/kg [Rabbit]. Acute toxicity of the vapor (LC50): 2000 4 hours [Rat].

Chronic Effects on Humans: Causes damage to the following organs: lungs, the nervous system, mucous membranes.

Other Toxic Effects on Humans:

Very hazardous in case of ingestion. Hazardous in case of skin contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator).

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are more toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification: CLASS 3: Flammable liquid.

Identification: : Butyl acetate UNNA: UN1123 PG: III

Special Provisions for Transport: Not available.

Section 15: Other Regulatory Information

Federal and State Regulations:

Pennsylvania RTK: n-Butyl acetate Massachusetts RTK: n-Butyl acetate TSCA 8(b) inventory: n-Butyl acetate CERCLA: Hazardous substances.: n-Butyl acetate

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada):

CLASS B-2: Flammable liquid with a flash point lower than 37.8°C (100°F). CLASS D-2B: Material causing other toxic effects (TOXIC).

DSCL (EEC):

R10- Flammable. R20- Harmful by inhalation. R36/38- Irritating to eyes and skin.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 3

Reactivity: 0

Personal Protection: h

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 3

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Lab coat. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:15 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume

no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

APPENDIX B: DRILLING TECHNIQUES

DRILLING TECHNIQUES

Overview

As a part of the partitioning electron donor (PED) injection field implementation, recirculation extraction, recirculation injection, and monitoring wells were installed using three different drilling techniques: (i) hollow stem auger (HSA); (ii) mud rotary; and (iii) direct push technology (DPT). These drilling techniques are described in more detail below.

Hollow Stem Auger

As part of the PED injection implementation, HSA drilling was used to install the recirculation extraction and injection wells. HSA drilling involves using hollow drill stems with spiral-shaped flights that are rotated into the ground, using purely mechanical means, for borehole advancement. The tooling typically comes in 5-foot sections which are bolted together above the surface prior to advancing to depth. Soil cuttings are returned to surface as the tooling is advanced and have to be stockpiled and/or containerized as part of drilling activities. Once at depth, the annular space inside of the hollow stem can be utilized for soil or groundwater collection and monitoring well installations. A typical HSA drill rig and tooling is shown in Figure 13.

Figure 13: Hollow Stem Auger Rig and Tooling (DSE 2016)

HSA drilling techniques utilize rather simple mechanical components and are relatively cheap rigs to operate, although they generally have a large foot print and tooling can be large and cumbersome (RGC 2016, FDEP 2008). A summary of HSA drilling techniques and advantages and disadvantages is provided in Table 21 below.

Method and ASTM Standard	Drilling Principle	Depth Limitation Feet (meters)	Advantages	Disadvantages
Auger, Hollow- Stem and Solid- Stem ASTM D5784, ASTM D1452	Successive 5-foot (1.5m) flights of spiral-shaped drill stem are rotated into the ground to create a borehole. Cuttings are brought to the surface by the rotation of the auger flights	150 (45)	 May be inexpensive Fairly simple, quick setup time and moderately fast operation Rigs are highly mobile and can reach most drilling sites No drilling fluid or lubricants used, eliminating contamination from additives Can be used to avoid hole caving Hollow-stem allows formation water to be sampled during drilling via screened auger or advancing a well point ahead of the augers Small-diameter wells can be built inside hollow-stem flights Hollow-stem flights Hollow-stem glows the collection of split-spoon samples, continuous sampling possible Natural gamma-ray logging can be done inside hollow-stem flights 	 Limited to unconsolidated or semiconsolidated (weathered rock) materials Compact, gravelly materials may be hard to penetrate Possible problems controlling heaving sands Rips and smears borehole wall, creating problems with connecting to the aquifer during well development Well points yields low rates of water Small diameter well screen may be hard to develop. Screen may become clogged if thick clays are penetrated May not be able to run a complete suite of geophysical logs

Table 21: Hollow Stem Auger Drilling Summary (FDEP 2008)

Mud Rotary

As part of the PED injection implementation, mud rotary drilling was used to install the deep recirculation extraction well (RW0008). HSA tooling was drilled to depth, keying into a semiconfining unit (ie clay layer), as a temporary surface casing, then mud rotary was used to drill through the surface casing to total depth and install the well. Mud rotary drilling involves using a rotating bit to advance tooling while having the soil cuttings removed from the borehole with continuous circulation of a drilling fluid. The drilling fluid is pumped down into the bottom of the borehole through the tooling and out of the bit, then flows upward to surface through the annular space, carrying the soil cuttings with it in suspension. At the surface, the fluids flow through a settling/mud pit, where the soil cutting drop out, and the clean drilling fluids are recirculated into the borehole. The drilling fluid typically consists of a bentonite slurry solution which helps suspend the soil cuttings and maintain borehole integrity during drilling activities (Ruda and Bosscher 2005, FDEP 2008). A typical mud rotary drill rig set up is shown in Figure 14.

Figure 14: Mud Rotary Technique (Ruda and Bosscher 2005)

Once at depth, the tooling is removed from the uncased, stabilized borehole and can be utilized for soil sampling or well installation. When installing monitoring wells, it is necessary to develop the well until clear to ensure all drilling fluids have been removed (FDEP 2008). A summary of mud rotary drilling techniques and advantages and disadvantages is provided in Table 22 below.

Method and ASTM Standard	Drilling Principle	Depth Limitation Feet (meters)	Advantages	Disadvantages
Water/Mud Rotary (Hydraulic Rotary) ASTM D5783	Rotating bit breaks formation; cuttings are brought to the surface by a circulation fluid (mud). Mud (which should be contaminant-free water and bentonite without additives) is forced down the interior of the drill stem, out the bit, and up the annulus between the drill stem and borehole wall. Cuttings are removed by settling in a mud pit at the ground surface and the mud is circulated back down the drill stem.	5,000+ (1,500+)	 Drilling is fairly rapid in all types of geologic materials, unconsolidated and consolidated Borehole may stay open from formation of a mud wall on the sides of borehole by the circulating mud Geologic cores can be collected A complete suite of geophysical logs can be obtained in the open borehole Many options for well construction. Can use casing-advancement drilling method, or casing may not be required Smaller rigs can reach most drilling sites Borehole can be gravel packed and easily grouted 	 May be expensive, requires experienced driller and a fair amount of peripheral equipment; overburden casing required Drilling fluids mix with formation water, may contaminate and can be difficult to remove. Completed well may be difficult to remove. Completed well may be difficult to develop, especially small diameter wells, due to mud cake invading the formation and is difficult to remove Geological logging by visual inspection is only fair, can miss strata and composition Location of water-bearing zones during drilling may be difficult to detect Drilling fluid circulation is often lost and difficult to maintain in fractured rock, and gravel or cavernous zones Difficult drilling in boulder and cobble zones Circulation of drilling mud through a contaminated zone can create a hazard a ground surface and cross-contaminate clean zones Organic drilling fluids can interfere with bacterial and/or organic-related analyses and are not allowed; bentonitic fluids with metal analyses, but may be necessary.

Table 22: Mud Rotary Drilling Summary (FDEP 2008)

Direct Push Technology

As part of the PED injection implementation, DPT drilling was used to collect soil and groundwater samples and install the monitoring bundle wells. DPT drilling involves pushing tooling (steel rods) into the ground, without the use of drilling to remove soils, to make a path for the tooling. The driving force used to push the tooling into the ground is the static weight of the vehicle combined with percussive blows from a front mounted hydraulic "hammer", as shown in Figure 15.

Figure 15: Geoprobe DPT Rig 7822DT (Geoprobe 2016)

DPT drilling can be used for a variety of activities, such as collection of groundwater samples using screens that can be exposed at discrete depths for sampling, collection of continuous soil cores using Geoprobe Macro-cores[®] (5-foot long by 1.25-inch diameter acetate sleeves that are pushed to depth to collect relatively undisturbed, discrete cores of soil), collection of real-time contaminant and/or hydro-geologic data using specialized probes that can be attached and advanced to depth with the tooling, and installation of wells using hollow casing advanced to depth. Well depth (maximum ~100 feet) and diameter (maximum of 4.5-inch diameter tooling) are limited by DPT rigs' ability to overcome compressive and/or friction forces when advancing tooling into the subsurface, but their small footprint make the machines easy to mobilize and efficient to operate (Geoprobe 2016, FDEP 2008). A table summarizing DPT drilling techniques and advantages and disadvantages is provided in Table 23 below.

Method and Drilling Depth Advantages Disadvantages ASTM Limitation Principle Standard Feet (meters) 100 (30) Direct Push Advances a Avoids use of drilling fluids and Limited to fairly soft materials such as clay, . . ASTM D6724. sampling device lubricants during drilling silt, sand and gravel ASTM D6725 into the subsurface Compact, gravelly materials may be hard to Equipment is highly mobile by applying static penetrate Disturbance of geochemical pressure, impacts conditions during installation is Small diameter well screen may be hard to or vibrations or any develop. Screen may become clogged if minimized combination thereof Drilling and well screen installation thick clays are penetrated to the above is fast, considerably less labor The small diameter drive pipe generally ground portion of precluded conventional borehole intensive the sampler Does not produce drill cuttings, geophysical logging extensions until the The drive points yield relatively low rates of reduction of investigation-derived samples has been wastes water advanced its full length into the soil strata.

Table 23: Direct Push Technology Drilling Summary (FDEP 2008)

APPENDIX C: PHOTOGRAPHIC RECORD

	Geosyntec Consultants Photographic Record	
Client:	NASA	Project Number: FO0552B
Site Name: LC34	Site Location: CCAFS	
Photograph 1	dim main	the second
Date: 1/19/11		
Direction: North		
Comments: Macro-core soil samples were collected, via DPT, prior to installing wells.		
Photograph 2	- 145	K
Date: 1/19/11		MEL .
Direction: East	A DA HE	
Comments: Recovery wells (6" Sch. 40 PVC) were installed via HSA and bundle wells (3/4" Sch. 40 PVC) were installed via DPT.		

	Geosyntec Consultants Photographic Record	
Client:	NASA	Project Number: FO0552B
Site Name: LC34	Site Location: CCAFS	
Photograph 3		The second
Date: 1/25/11		
Direction: N/A		
Comments: Recovery wells were completed with an 18"x18"x10" vault box set in a 36"x36"x4" concrete pad. Stub outs were installed in the vault box for system piping and electrical conduit.		
Photograph 4		F
Date: 1/25/11		
Direction: N/A	1 Martin	
Comments: Injection wells were completed with an 18"x18"x10" well vault boxes set in a 36"x36"x4" concrete pad. A stub out was installed in the vault box for system piping.		

	Geosyntec Consultants Photographic Record	
Client:	NASA	Project Number: FO0552B
Site Name: LC34	Site Location: CCAFS	
Photograph 5		O F S
Date: 1/25/11		
Direction: N/A		
Comments: Bundle wells were completed with individual 8" diameter steel manhole covers (6 per bundle well) set in a 6'x6'x4" concrete pad.		
Photograph 6		
Date: 3/3/11		2 S
Direction: East		PL OL
Comments: System piping (3/4" diameter HDPE) was encased in 2" diameter Sch. 40 PVC and connected the recovery and injection wells to the solar powered recirculation trailer.		

	Geosyntec Consultants Photographic Record	
Client:	NASA	Project Number: FO0552B
Site Name: LC34	Site Location: CCAFS	
Photograph 7	and the second second	Europa Santa
Date: 3/3/11		
Direction: N/A		
Comments: From the recovery wells, the flow is directed through sediment filters and into flow totalizers, one for each recovery well.		
Photograph 8		
Date: 3/3/11	1239 ISSING MALLS Margine Town Malls Di of 17 (5 23)	
Direction: N/A		
Comments: From the flow totalizers, the flow is directed into a manifold, splitting it into10 flow streams, 5 to the shallow injection wells and 5 to the deep injection wells.		

Geosyntec Consultants Photographic Record		
Client:	NASA	Project Number: FO0552B
Site Name: LC34	Site Location: CCAFS	
Photograph 9		
Date: 6/24/11		
Direction: South		
Comments: 20 injection points were marked with ~5 foot spacing within the treatment zone.		
Photograph 10		
Date: 6/20/11		
Direction: North		The Dillary
Comments: Vironex injection platform was utilized for mixing and injecting the PED amendment.		

Geosyntec Consultants Photographic Record			
Client:	NASA	Project Number: FO0552B	
Site Name: LC34	Site Location: CCAFS		
Photograph 11			
Date: 6/20/11			
Direction: West			
Comments: n-butyl acetate was added to the PED solution by using a hand crank flow meter for accuracy. All metal components were grounded to reduce the risk of a fire by electrical spark.			
Photograph 12			
Date: 6/20/11		Environmental F 1-800-VIRO	
Direction: East	MAN		
Comments: The PED solution was mixed, by closed loop recirculation, in batches in 2, 250 gallon totes for 15 minutes each before injection.			

Geosyntec Consultants Photographic Record		
Client:	NASA	Project Number: FO0552B
Site Name: LC34	Site Location: CCAFS	
Photograph 13		
Date: 6/24/11	- Chinese	
Direction: North		
Comments: The Vironex injection platform was equipped with the necessary pumps, meters, and gauges for injection. The platform was constructed of metal grating over a catch basin to serve as secondary containment in case of a spill.		
Photograph 14		
Date: 6/24/11		
Direction: East		
Comments: The injection pressure and flow was metered in real-time to ensure proper distribution of the amendment.		

Geosyntec Consultants Photographic Record			
Client:	NASA	Project Number: FO0552B	
Site Name: LC34	Site Location: CCAFS		
Photograph 15			
Date: 6/21/11			
Direction: North			
Comments: From the injection platform, the injection hose was threaded through the DPT tooling prior to drilling.			
Photograph 16			
Date: 6/21/11			
Direction: N/A		2	
Comments: The 2 foot injection tool was demonstrated above grade with water to ensure proper functionality and to measure injection pressure at atmospheric pressure.			
APPENDIX D: VIRONEX INJECTION SERVICES REPORT

Injection Services Report

Prepared for:

Geosyntec^D consultants

Prepared by:

LC-34

Cape Canaveral, FL

June 20, 2011 - June 28, 2011

Reproduction and distribution of this document without the express written consent of Vironex is strictly prohibited. The methodology and approaches presented herein are proprietary to Vironex.

Wilmington, DE • Washington, DC • Denver, CO • Los Angeles, CA • San Francisco, CA <u>www.vironex.com</u>

Contents

Project Summary	1
Injection Summary	2
Project Photographs	3
Project Photographs	4
Project Photographs	5
Injection Logs	Appendix A

Project Summary

Project Name: LC-34

Project Dates: June 20, 2011 - June 28, 2011

Manpower: Mike Mazzarese (Project Manager); Austin Hittinger (Field Tech); Jacob Haldiman (Field Tech); George Lujan (National Director of Safety)

Equipment: One (1) Custom Vironex Remediation Platform, One (1) Support Truck and Trailer

Proposed SOW: Vironex will inject 34,000 gallons of n-Butyl Acetate solution (3,000 mg/L) into 20 locations over a 40 ft injection interval (23 ft to 63 ft bgs). Potassium Bromide (60 mg/L) and Potassium lodide (140 mg/L) will be added to the injection solutions as specified in the RFP (Bromide in all injection solutions, lodide in injection solution below the clay layer only).

Project Summary: Injection services were initiated on Monday June 20, 2011. Upon arrival to the site Vironex set up a containment pad and ran hoses for the remediation platform. The platform and mixing totes were grounded due to the explosiveness of the reagent that was being injected. Prior to the injections, a water test was performed to check the line pressure and ensure that there were no leaks in the remediation system. Vironex sustained flow rates between 6 and 8 gpm while averaging 30 to 45 psi throughout the injection process. During this event there was one location IP – 0018 that had to be slowed down due to rising water levels in a nearby monitoring well (RW - 8). This injection event was successfully completed on Tuesday June 28, 2011 one day ahead of schedule.

Injection Summary

		S	ite LC34 Injec	- Cape Ca ction Sum	maveral, H mary	TL	
	Date	Total nBA Injected (Gal)	Total KBr Injected (g)	Total KI Injected (g)	Total H2O Injected (Gal)	Total Volume Injected (Gal)	Points Completed
Monday	6/20/11	5.8	578.0	1173.0	1694.0	1700.0	1.0
Tuesday	6/21/11	14.4	1445.0	1760.0	4236.0	4250.0	2.5
Wednesday	6/22/11	17.4	1734.0	1759.0	5082.5	5100.0	3.0
Thursday	6/23/11	17.4	1734.0	1759.5	5082.5	5100.0	3.0
Friday	6/24/11	23.1	2318.8	1759.5	6797.0	6820.0	4.0
Monday	6/27/11	20.2	2016.2	1759.0	5910.0	5930.0	3.5
Tuesday	6/28/11	16.7	1734.0	1760.0	5082.0	5100.0	3.0
-							
	Design	115.0	11560.0	11730.0	33885.0	34000.0	20.0
	Injected	115.0	11560.0	11730.0	33884.0	34000.0	20.0
					<u> </u>		<u> </u>
	Daily Average	16.4	1651.4	1675.7	4840.6	4857.1	2.7

_

Project Photographs

Site Set-up and Tailgate meeting

2 ft Injection tool during water test

Mixing totes and transfer pumps

n Butyl Acetate drum pump in protective vapor shield

Well box locations in the injection area

Injection area

Project Photographs

Injection Rig

Rig Platform

Transfer Line Manifold on top of Progressive Cavity Pump

5 Point Injection Manifold

Gram scale for tracer measurements

Gram Scale

Project Photographs

Copper spike for injection rig grounding wire

Bonding location on injection Rig

Bonding locations on mixing totes

Bonding locations on drum pump and transfer pump

Transfer Pump bonding location

n Butyl Acetate 5 gal. steel drums

Appendix A – Injection Logs

Hot Spot Area One, Launch Complex 34

Cape Canaveral Air Force Station

										1	/ironex Fie	ld Data S	heet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
1P-0001	6/20/11	2:06 PM	6/20/11	2:20 PM	2.0	23-25	85	85	20	6.0	0.289	28.9	58.7	84.7	85	
HE-MAGT	6/20/11	2:20 PM	6/20/11	2:35 PM	2.0	25-27	85	170	20	6.0	0.289	28.9	58.7	84.7	85	
	6/20/11	2:35 PM	6/20/11	2:50 PM	2.0	27-29	85	255	20	6.0	0.289	28.9	58.7	B4.7	85	
	6/20/11	3:35 PM	6/20/11	3:50 PM	2.0	29'-31'	85	340	25	6.0	0.289	28.9	58.7	84,7	85	
	6/20/11	3:50 PM	6/20/11	4:05 PM	2.0	31'-33'	85	425	25	6.0	0.289	28.9	58.7	84.7	85	
Total nBA (gal)	6/20/11	4:05 PM	6/20/11	4:20 PM	2.0	33'-35'	85	510	30	6.0	0,289	28.9	58.7	84.7	85	
5.8	6/20/11	4:20 PM	6/20/11	4:35 PM	2.0	35-37	85	595	30	6.0	0,289	28.9	58.7	84.7	85	
	6/20/11	4:35 PM	6/20/201	4:50 PM	2.0	36.5'-38.5'	85	680	30	6.0	0.289	28.9	58.7	84.7	85	Correct the depth error by completing three 1.5 ft pushes to bring the final depth of the day
Total KBr (g)	6/20/11	4:50 PM	6/20/11	5:05 PM	2.0	38'-41'	85	765	35	6.0	0.289	28.9	58.7	84.7	85	to 41.5 feet bgs.
578.0	6/20/11	5:05 PM	6/20/11	5:08 PM	2.0	39.5'-41.5	85	850	35	6.0	0.289	28.9	58.7	84.7	85	
	6/21/11	7:50 AM	6/21/11	8:05 AM	2.0	42'-44'	85	935	30	5.8	0.289	28.9		84.7	85	First interval with no Potassium lodide. First push of the day was 2.5ft to get back
Total KI (g)	6/21/11	8:05 AM	6/21/11	8:20 AM	2.0	44'-46'	85	1,020	38	6.0	0.289	28.9		84.7	85	onto the target depth.
586.5	6/21/11	8:20 AM	6/21/11	8:35 AM	2.0	46'-48'	85	1,105	40	6.0	0.289	28.9		84.7	85	
	6/21/11	8:35 AM	6/21/11	8:50 AM	2.0	48'-50'	85	1,190	40	6.0	0.289	28.9		84.7	85	
Total H2O (gal)	6/21/11	8:50 AM	6/21/11	9:05 AM	2.0	50'-52"	85	1,275	50	8.0	0.289	28.9		84.7	85	Increased flow rates.
1694.2	6/21/11	9:05 AM	6/21/11	9:15 AM	2.0	52'-54'	85	1,360	48	8.2	0.289	28.9		84.7	85	
	6/21/11	9:15 AM	6/21/11	9:25 AM	2.0	54'-56'	85	1,445	45	8.0	0.289	28.9		84.7	85	
Total Volume	6/21/11	9:25 AM	6/21/11	9:35 AM	2.0	56'-58'	85	1,530	45	8.0	0.289	28.9		84.7	85	
4700	6/21/11	9:35 AM	6/21/11	9:45 AM	2.0	58'-60'	85	1,615	50	8.0	0,289	28.9		84.7	85	
	6/21/11	9:45 AM	6/21/11	9:55 AM	2.0	60'-62'	85	1,700	40	8.0	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.
1P-0002	6/20/11	2:40 PM	6/20/11	3:00 PM	2.0	23'-25'	85	85	18	6.0	0.289	28.9	58.7	84.7	85	
110002	6/20/11	3:00 PM	6/20/11	3:15 PM	2.0	25'-2T	85	170	20	6.0	0.289	28.9	58.7	84.7	85	
	6/20/11	3:15 PM	6/20/11	3:30 PM	2.0	27-29	85	255	20	6.0	0.289	28.9	58.7	84.7	85	
	6/20/11	3:30 PM	6/20/11	3:45 PM	2.0	29'-31'	85	340	20	6.0	0.289	28.9	58,7	84.7	85	
	6/20/11	3:45 PM	6/20/11	4:00 PM	2.0	31'-33'	85	425	22	6.0	0.289	28.9	58.7	84.7	85	
Total nBA (gal)	6/20/11	4:00 PM	6/20/11	4:15 PM	2.0	33'-35'	85	510	25	6.0	0.289	28,9	58.7	84.7	85	
5.8	6/20/11	4:15 PM	6/20/11	4:30 PM	2.0	35'-37"	85	595	30	6.0	0.289	28.9	58.7	84.7	85	
	6/20/11	4:30 PM	6/20/11	4:45 PM	2.0	36.5'-38.5'	85	680	30	6.0	0.289	28.9	58.7	84.7	85	Correct the depth error by completing three 1.5 ft pushes to bring the final depth of the day
Total KBr (g)	6/20/11	4:45 PM	6/20/11	5:00 PM	2.0	38'41'	85	765	40	6.0	0.289	28.9	58.7	84.7	85	to 41.5 feet bgs.
578.0	6/20/11	5:00 PM	6/20/11	5:08 PM	2.0	395'41.5	85	850	40	6.0	0.289	28.9	58.7	84.7	85	
	6/21/11	7:50 AM	6/21/11	8:05 AM	2.0	42'-44'	85	935	20	6.0	0.289	28.9		84.7	85	First interval with no Potassium lodide. First push of the day was 2.5ft to get back
Total KI (g)	6/21/11	8:05 AM	6/21/11	8:20 AM	2.0	44'-46'	85	1,020	15	6.0	0.289	28.9		84.7	85	onto the target depth.
586.5	6/21/11	8:20 AM	6/21/11	8:35 AM	2.0	46'-48'	85	1,105	18	6.0	0.289	28.9		84.7	85	
	6/21/11	8:35 AM	6/21/11	8:50 AM	2.0	48'-50'	85	1,190	20	6.0	0.289	28.9		84.7	85	
Total H2O (gal)	6/21/11	8:50 AM	6/21/11	9:05 AM	2.0	50'-52'	85	1,275	30	8.0	0.289	28.9		84.7	85	Increased flow rates.
1694.2	6/21/11	9:05 AM	6/21/11	9.15 AM	2.0	52'-54'	85	1,360	45	8.3	0.289	28.9		84.7	85	
	6/21/11	9:15 AM	6/21/11	9.25 AM	2.0	54'-56"	85	1,445	45	8.0	0.289	28.9		84.7	85	
Total Volume	6/21/11	9:25 AM	6/21/11	9:35 AM	2.0	56'-58'	85	1,530	40	8.0	0.289	28.9		84.7	85	
1700	6/21/11	9:35 AM	6/21/11	9:45 AM	2.0	58'-60'	85	1.615	45	8.0	0.289	28.9		84.7	85	
1700	6/21/11	9:45 AM	6/21/11	9:55 AM	2.0	60'-62'	85	1,700	40	8.0	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.

											/ironex Fie	ld Data S	heet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
IP-0003	6/21/11	11.35 AM	6/21/11	11:50 AM	2.0	23'-25'	85	85	22	6.0	0.289	28.9	58.7	84.7	85	
M SOUCE	6/21/11	11:50 AM	6/21/11	12:05 PM	2.0	25-27	85	170	25	6.0	0.289	28.9	58.7	84.7	85	
	6/21/11	12:05 PM	6/21/11	12:20 PM	2.0	27-29	85	255	25	6.0	0.289	28.9	58.7	84.7	85	Took lunch after this interval.
	6/21/11	1:00 PM	6/21/11	1:10 PM	2.0	29'-31'	85	340	35	8.0	0.289	28.9	58.7	84.7	85	
	6/21/11	1:10 PM	6/21/11	1:20 PM	2.0	31'-33'	85	425	35	8.0	0,289	28.9	58.7	84.7	85	
Total nBA (gal)	6/21/11	1:20 PM	6/21/11	1:30 PM	2.0	33'-35'	85	510	40	8.0	0.289	28.9	58.7	84.7	85	
5.8	6/21/11	1:30 PM	6/21/11	1:40 PM	2.0	35'-37"	85	595	38	8.0	0.289	28.9	58.7	84.7	85	
	6/21/11	1:40 PM	6/21/11	1:50 PM	2.0	37-39	85	680	38	8.0	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/21/11	1:55 PM	6/21/11	3:00 PM	20	39'-41'	85	765	35	8.0	0.289	28.9	58.7	84.7	85	
578.0	6/21/11	3:00 PM	6/21/11	3.10 PM	2.0	40~42	85	850	35	8.0	0.289	28.9	58.7	84.7	85	1 ft. push to inject in the foot above the clay layer.
	6/22/11	7:40 AM	6/22/11	8:10 AM	2.0	42'-44'	85	935	55	7.5	0.289	28.9		84.7	85	
Total KI (g)	6/22/11	8:10 AM	6/22/11	8:35 AM	2.0	44'-46'	85	1,020	35	5.8	0.289	28.9		84.7	85	
586.5	6/22/11	8:35 AM	6/22/11	8:55 AM	2.0	46'-48'	85	1,105	40	6.0	0.289	28.9		84.7	85	
	6/22/11	8:55 AM	6/22/11	9:20 AM	2.0	48'-50'	85	1,190	40	6.0	0.289	28.9		84.7	85	
Total H2O (gal)	6/22/11	9:20 AM	6/22/11	9.50 AM	2.0	50'-52'	85	1,275	40	6.0	0.289	28.9		84.7	85	
1694.2	6/22/11	9:50 AM	6/22/11	10:25 AM	2.0	52'-54"	85	1,360	40	6.0	0.289	28.9		84.7	85	
	6/22/11	10:25 AM	6/22/11	10:50 AM	2.0	54'-56'	85	1,445	40	6.0	0.289	28.9	3	84.7	85	
Total Volume	6/22/11	10:50 AM	6/22/11	11:15 AM	20	56'-58'	85	1.530	42	6.5	0.289	28.9		84.7	85	
1700	6/22/11	11:15 AM	6/22/11	11:35 AM	20	58'-60'	85	1,615	40	6.0	0.289	28.9		84,7	85	
1700	6/22/11	11:35 AM	6/22/11	12:00 PM	2.0	60'-62'	85	1,700	45	6.0	0,289	28.9	Ť	84.7	85	Successfully completed location. Chased with 10 gal. Flush water.
1000000	6/21/11	11:35 AM	6/21/11	11:50 AM	2.0	23'-25'	85	85	22	6.0	0.289	28.9	58.7	84.7	85	
IP-0004	6/21/11	11:50 AM	6/21/11	12:05 PM	2.0	25-27	85	170	25	6.0	0.289	28.9	58.7	84.7	85	
	6/21/11	12:05 PM	6/21/11	12:20 PM	2.0	27-29	85	255	25	6.0	0,289	28.9	58.7	84.7	85	Took lunch between these intervals.
	6/21/11	1.00 PM	6/21/11	1:10 PM	2.0	29'-31'	85	340	35	8.0	0.289	28.9	58.7	84.7	85	
	6/21/11	1:10 PM	6/21/11	1:20 PM	2.0	31'-33'	85	425	35	8.0	0.289	28.9	58.7	84.7	85	
Total nBA (gal)	6/21/11	1:20 PM	6/21/11	1-30 PM	2.0	33'-35'	85	510	40	8.0	0.289	28.9	58.7	84.7	85	
5.8	6/21/11	1:30 PM	6/21/11	1:40 PM	2.0	35'-37'	85	595	38	8.0	0.289	28.9	58.7	84.7	85	
	6/21/11	1:40 PM	6/21/11	1:50 PM	2.0	37-39	85	680	38	8.0	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/21/11	1:55 PM	6/21/11	3:00 PM	2.0	39:41	85	765	35	80	0,289	28.9	58,7	84.7	85	
578.0	6/21/11	3:00 PM	6/21/11	3.10 PM	2.0	40-42	85	850	35	8.0	0.289	28.9	58.7	84.7	85	1 ft. push to inject in the foot above the clay layer.
	6/22/11	7:40 AM	6/22/11	8:10 AM	2.0	42'-44'	85	935	60	7.0	0.289	28.9		84.7	85	
Total KI (g)	6/22/11	8:10 AM	6/22/11	8-35 AM	20	44'-46'	85	1.020	40	55	0.289	28.9	1	84.7	85	
586.5	6/22/11	8:35 AM	6/22/11	8:55 AM	2.0	46'-48'	85	1 105	40	60	0.289	28.9	1	84.7	85	
	6/22/11	8-55 AM	6/22/11	9-20 AM	20	48'-50'	85	1 190	40	6.0	0.289	28.9	1	84.7	85	
Total H2O (cal)	6/22/11	9-20 AM	6/22/11	9.50 AM	2.0	50'-52'	85	1275	40	60	0.289	28.9	8	84.7	85	
1694.2	6/22/11	9.50 AM	6/22/11	10-25 AM	20	52'-54"	85	1360	40	60	0.289	28.9		84.7	85	
1.0007180	6/22/11	10.25 AM	6/22/11	10.50 414	20	54'-56'	85	1 445	40	63	0.289	28.9		84.7	85	
Total Volume	6/22/11	10:50 AM	6/22/11	11:15 414	20	56'-58'	85	1,530	40	63	0.289	28.9		84.7	85	
Translation and the	6/22/11	11-15 AM	6/22/11	11:35 AM	20	58'-60'	28	1,000	40	6.0	0.289	28.9		84.7	85	
1700	6/22/11	11:35 AM	6/22/11	12:00 PM	2.0	60'-62'	85	1,010	40	6.0	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.

											Vironex Fie	Id Data Si	heet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
10.0005	6/21/11	3:45 PM	6/21/11	4:30 PM	5.0	23'-28'	213	213	40	8.0	0.724	72.4	147.0	212.3	213	5 ft. injection tool.
1P-0005	6/21/11	4:30 PM	6/21/11	5:15 PM	5.0	28'-33'	212	425	40	8.0	0.721	72.1	146.3	211.3	212	
	6/21/11	5:15 PM	6/21/11	6:00 PM	5.0	33'-38'	213	637	40	8.0	0.724	72.4	147.0	212.3	213	
	6/21/11	6:00 PM	6/21/11	6:45 PM	5.0	37-42	212	850	40	8.0	0.721	72.1	146.3	211.3	212	4 ft. push to inject in the interval above the clay layer.
	6/22/11	7:35 AM	6/22/11	8:35 AM	5.0	42-47	213	1,062	55	6.0	0.721	72.1		211,3	212	
Total nBA (gal)	6/22/11	8:35 AM	6/22/11	9:50 AM	5.0	47'-52'	212	1,275	45	6.5	0.724	72.4	1 (212.3	213	
5.8	6/22/11	9:50 AM	6/22/11	10:50 AM	5.0	52-57	213	1,487	50	6.5	0.721	72.1		211.3	212	
	6/22/11	10:50 AM	6/22/11	11:50 AM	5.0	57-62	212	1,700	45	6.5	0.724	72.4		212.3	213	Successfully completed location. Chased with 10 gal. Flush water.
Total KBr (g) 578.0 Total KI (g)																
586.5 Total H2O (gal) 1694.2																
1700																
IP-0006	6/22/11	2:50 PM	6/22/11	3:25 PM	20	23-25	85	85	10	3.0	0.289	28.9	58.7	84.7	85	Pumped slow to allow the other location to catch up.
	6/22/11	3:25 PM	6/22/11	3:35 PM	20	25-21	85	170	35	8.0	0.289	28.9	58.7	84.7	85	
	6/22/11	3:35 PM	6/22/11	3:45 PM	2.0	21-29	85	255	40	8.0	0.289	28.9	58.7	64.7	85	
	6/22/11	3:45 PM	6/22/11	3:55 PM	2.0	29-31	85	340	50	8.0	0.289	28.9	58.7	84.7	85	
Concernment of the local sectors of the local secto	6/22/11	3:55 PM	6/22/11	4:05 PM	20	31-33	85	425	45	8.0	0.289	28.9	58.7	84.7	85	-
Total nBA (gal)	6/22/11	4:05 PM	6/22/11	4:25 PM	2.0	33-35	85	510	40	6.0	0.289	26.9	50.7	04.7	85	· · · · · · · · · · · · · · · · · · ·
5.8	0/22/11	4.25 PM	6/22/11	4:40 PM	2.0	33-37	85	595	40	6.0	0.289	28.9	58.7	84.7	85	
and the second second	6/22/11	4:40 PM	6/22/11	4.55 PM	2.0	37-39	65	080	35	6.0	0.203	28.9	58.7	84.7	85	
Total KBr (g)	6/22/11	4:55 PM	6/22/11	5:10 PM	2.0	40.47	65	/65	55	8.0	0,203	20.3	59.7	94.7	85	1.0 quality to injust in the feet above the day layer
578.0	6/22/11	5:10 PM	6/22/11	5.25 PM	2.0	12 14	05	850	55	0.6	0.200	20.5	50.7	94.7	85	The push to lifetr in the loot above the day layer.
	6/23/11	7:40 AM	6/23/11	7.5U AM	2.0	42-44	85	935	45	8.5	0.209	20.5		84.7	85	
FOR E	6/23/11	7.50 AM	6/23/11	0.05 AM	20	46'48'	00	1,020	20	7.0	0.289	28.9		84.7	00	
.000,07	6/23/11	11-60 AM	6/23/11	12:00 014	20	48.50	20	1,100	50	9.6	0.289	28.9		84.7	85	
Total M20 Jose	6/23/11	12:00 PM	6/23/11	12:15 PM	20	50.52	28	1,150	AE	7.0	0.289	28.9		84.7	95	
1694.2	6/23/11	12:15 PM	6/23/11	12.15 PM	20	57-54	85	1 360	40	85	0.289	28.9		84.7	85	
1004.5	6/23/11	12:25 PM	6/23/11	12:35 PM	20	54'-56'	85	1445	50	85	0.289	28.9		84.7	85	
Total Volume	6/23/11	12-35 PM	6/23/11	12:45 PM	20	56'-58'	85	1.530	50	85	0.289	28.9		84.7	85	
	6/23/11	12:45 PM	6/23/11	12:55 PM	2.0	58'-60'	85	1.615	50	85	0.289	28.9		84.7	85	
1700	6/23/11	12:55 PM	6/23/11	1:10 PM	2.0	60'-62'	85	1,700	50	8.0	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.

-											/ironex Fie	ld Data S	heet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Longth (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
IP-0007	6/22/11	3:00 PM	6/22/11	3:25 PM	2.0	23'-25'	85	85	35	8.0	0.289	28.9	58,7	84.7	85	
	6/22/11	3:25 PM	6/22/11	3:35 PM	2.0	25-27	85	170	35	8.0	0.289	28.9	58,7	84.7	85	
	6/22/11	3:35 PM	6/22/11	3:45 PM	2.0	27-29	85	255	40	8.0	0.289	28.9	58.7	84.7	85	
	6/22/11	3:45 PM	6/22/11	3:55 PM	2.0	29-31	85	340	45	8.0	0.289	28.9	58.7	84.7	85	
	6/22/11	3:55 PM	6/22/11	4:05 PM	2.0	31-33	85	425	45	8.0	0.289	28.9	58.7	84.7	85	
Total nBA (gal)	6/22/11	4:05 PM	6/22/11	4:25 PM	2.0	33-35	85	510	40	6.0	0.289	28.9	58.7	84.7	85	
5.8	6/22/11	4:25 PM	6/22/11	4:40 PM	2.0	35-37	85	595	40	6.0	0.289	28.9	58.7	84.7	85	
	6/22/11	4:40 PM	6/22/11	4:55 PM	2.0	37-39	85	680	35	6.0	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/22/11	4:55 PM	6/22/11	5:10 PM	2.0	39-41	85	765	55	8.0	0.289	28.9	58,7	84.7	85	
578.0	6/22/11	5:10 PM	6/22/11	5:25 PM	2.0	40-42	85	850	55	8.0	0.289	28.9	58,7	84.7	85	1 ft. push to inject in the foot above the clay layer.
	6/23/11	7:40 AM	6/23/11	7:50 AM	2.0	4Z-44	85	935	38	8.0	0.289	28.9		84.7	85	
Total KI (g)	6/23/11	7:50 AM	6/23/11	8:05 AM	2.0	44'-46'	85	1,020	45	7.0	0.289	28.9		84.7	85	
586.5	6/23/11	8:05 AM	6/23/11	11:50 AM	2.0	46'-48'	85	1,105	35	5.0	0.289	28.9		84.7	85	
	6/23/11	11:50 AM	6/23/11	12:00 PM	2.0	48'-50'	85	1,190	50	8.5	0,289	28.9	8	84.7	85	
Total H2O (gal)	6/23/11	12:00 PM	6/23/11	12:15 PM	2.0	50'-52'	85	1,275	45	7.0	0,289	28.9		84.7	85	
1694.2	6/23/11	12-15 PM	6/23/11	12:25 PM	2.0	52'-54"	85	1,360	50	8.5	0,289	28.9		84.7	85	
	6/23/11	12:25 PM	6/23/11	12:35 PM	2,0	54'-56'	85	1,445	50	8.5	0.289	28.9		84.7	85	
Total Volume	6/23/11	12:35 PM	6/23/11	12:45 PM	2.0	56'-58'	85	1,530	50	8.5	0.289	28.9		84.7	85	
1700	6/23/11	12:45 PM	6/23/11	12:55 PM	2.0	58'-60'	85	1,615	50	8.5	0.289	28.9		84.7	85	
	6/23/11	12:55 PM	6/23/11	1:10 PM	2.0	60'-62'	85	1,700	50	8.0	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.
IP-0008	6/22/11	2:40 PM	6/22/11	3:25 PM	5.0	23'-28'	213	213	35	8.0	0.724	72.4	147.0	212.3	213	5 ft. injection tool.
	6/22/11	3:25 PM	6/22/11	3:50 PM	5.0	28'-33'	212	426	45	8.5	0,721	72.1	146.3	211.3	212	
	6/22/11	3:50 PM	6/22/11	4:05 PM	5.0	33'-38'	213	638	50	8.5	0,724	72.4	147.0	212.3	213	
	6/22/11	4:05 PM	6/22/11	4:45 PM	5.0	37-42	212	851	50	8.5	0.721	721	146.3	211.3	212	4 ft. push to inject in the interval above the clay layer.
-	6/23/11	7:40 AM	6/23/11	8:05 AM	5.0	42-47	213	1,063	40	8.0	0.721	72.1		211.3	212	2
Total nBA (gal)	6/23/11	8:05 AM	6/23/11	12:05 PM	5.0	47'-52'	212	1,276	40	8.5	0.724	72.4		212.3	213	
5.8	6/23/11	12:05 PM	6/23/11	1:00 PM	5.0	52-57	212	1,488	8	3.5	0.724	72.4		212.3	213	
	6/23/11	1:00 PM	6/23/11	1:30 PM	5.0	57-62	212	1,700	35	7.0	0.721	72.1		211.3	212	Successfully completed location. Chased with 10 gal. Flush water.
Total KBr (g) 578.0																
Total KJ (g) 586.5																
Total H2O (gal) 1694.2																
Total Volume 1700																

											Vironex Fie	Id Data SI	heet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
IP-0009	6/23/11	3:15 PM	6/23/11	3:40 PM	2.0	23'-25'	85	85	40	7.5	0.289	28.9	58.7	84.7	85	
AND THE REAL	6/23/11	3:40 PM	6/23/11	3:50 PM	2.0	25'-27'	85	170	38	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	3:50 PM	6/23/11	4:00 PM	2.0	27-29	85	255	42	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	4:00 PM	6/23/11	4:10 PM	2.0	29'-31'	85	340	50	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	4:10 PM	6/23/11	4:20 PM	2.0	31'-33'	85	425	45	8.0	0.289	28.9	58.7	84.7	85	
Total nBA (gal)	6/23/11	4:20 PM	6/23/11	4:30 PM	2.0	33'-35'	85	510	45	8.0	0.289	28.9	58.7	84.7	85	
5.8	6/23/11	4:30 PM	6/23/11	4:40 PM	2.0	35'-37'	85	595	45	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	4:40 PM	6/23/11	4:50 PM	2.0	37-39'	85	680	45	8.0	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/23/11	4:50 PM	6/23/11	5:00 PM	2.0	39-41	85	765	45	8.0	0.289	28.9	58.7	84.7	85	
578.0	6/23/11	5:00 PM	6/23/11	5:10 PM	2.0	40-42	85	850	45	8.0	0.289	28.9	58.7	84.7	85	1 ft. push to inject in the foot above the clay layer.
	6/24/11	7:20 AM	6/24/11	7:35 AM	2.0	42-44	85	935	38	6.0	0.289	28.9		84.7	85	
Total KI (g)	6/24/11	7:35 AM	6/24/11	7:50 AM	2.0	44'-46'	85	1,020	40	6.0	0.289	28.9	l ji	84.7	85	
586.5	6/24/11	7:50 AM	6/24/11	8:00 AM	2.0	46'-48'	85	1,105	40	6.5	0.289	28.9	1 1	84.7	85	
	6/24/11	8:00 AM	6/24/11	8:10 AM	2.0	48'-50'	85	1,190	45	6.0	0.289	28.9	1	84.7	85	
Total H2O (gal)	6/24/11	8:10 AM	6/24/11	8:20 AM	2.0	50'-52'	85	1,275	50	8.4	0.289	28.9		84.7	85	
1694.2	6/24/11	8:20 AM	6/24/11	8:30 AM	2.0	52'-54'	85	1.360	50	8.5	0.289	28.9	1 1	84.7	85	
	6/24/11	8 30 AM	6/24/11	8:40 AM	20	54'-56'	85	1.445	50	85	0.289	28.9		84.7	85	
Total Volume	6/24/11	8:40 AM	6/24/11	8:50 AM	20	56'-58'	85	1.530	45	85	0.289	28.9		84.7	85	
And and a second second	6/24/11	8:50 AM	6/24/11	9-00-AM	2.0	58'-60'	85	1.615	45	85	0.289	28.9		84.7	85	
1700	6/24/11	9:00 AM	6/24/11	9:20 AM	2.0	60'-62'	85	1,700	45	8.5	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.
	6/23/11	3:05 PM	6/23/11	3:45 PM	2.0	23'-25'	85	85	40	7.5	0.289	28.9	58.7	84.7	85	
IP-0010	6/23/11	3:45 PM	6/23/11	3:55 PM	2.0	25-27	85	170	40	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	3:55 PM	6/23/11	4:05 PM	2.0	27'-29'	85	255	50	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	4:05 PM	6/23/11	4:15 PM	2.0	29'-31'	85	340	40	80	0.289	28.9	58.7	84.7	85	
	6/23/11	4.15 PM	6/23/11	4:25 PM	2.0	31'-33'	85	425	40	80	0.289	28.9	58.7	84.7	85	
Total oBA (oal)	6/23/11	4.25 PM	6/23/11	4:35 PM	2.0	33'-35'	85	510	40	80	0.289	28.9	58.7	84.7	85	
5.8	6/23/11	4 35 PM	6/23/11	4:45 PM	2.0	35-37	85	595	45	80	0.289	28.9	58.7	84.7	85	
0.0	6/23/11	A-45 DM	6/23/11	4-55 PM	2.0	37-39	85	680	45	80	0.289	28.9	58.7	84.7	85	
Total KBr (m)	6/23/11	4-55 PM	6/23/11	5-05 PM	20	39-41	85	765	45	80	0.289	28.9	58.7	84.7	85	
578.0	6/23/11	5-05 PM	6/23/11	5.15 PM	2.0	48-42	85	850	45	80	0.289	28.9	58.7	84.7	85	1 ft push to inject in the foot above the clav laver
	6/24/11	7:20 AM	6/24/11	7.39 444	2.0	47.44	96	036	28	6.0	0.289	28.9		84.7	28	
Total ICI (a)	6/24/11	7.20 AM	6/24/11	5-50 AM	20	44'-46'	00	1.000		6.0	0.289	28.9	i i	84.7	00	
EDC E	6/24/11	7.52 AM	6/24/11	0.02 AM	2.0	45-48'	20	1,020	40	6.0	0.200	20.0	6	84.7	20	
000.0	6/24/11	0-02 AM	6DAI11	0.02 AM	20	48'-50'	00	1,105	40	6.0	0.200	28.9		84.7	03	
T-LOUGH C	6/24/11	0.02 AM	6/24/11	0.12 AM	2.0	10-04	05	1,190	40	0.0	0.203	20.5		94.7	00	
100a H2O (gal)	6/24/11	8:12 AM	6/24/11	0:22 AM	20	57.54	65	1,2/5	52	8.5	0.209	20.9		947	05 07	
1094.2	6/24/11	8:22 AM	G/04/11	8:32 AM	2.0	54-54	65	1,360	50	8.5	0.209	20.3	1	04.7	85	
Total Links	0/24/11	8:32 AM	6/24/11	8:42 AM	2.0	00-90	85	1,445	50	8.5	0.209	20.9	1	04.7	85	
rotal volume	6/24/11	8:42 AM	6/24/11	8:52 AM	2.0	56-58	85	1,530	50	8.5	0.289	28.9		84.7	85	
1700	6/24/11	8:52 AM	6/24/11	9:02 AM	20	58-60	85	1,615	45	8.5	0.289	28.9		84.7	85	
Minises.	6/24/11	9:02 AM	6/24/11	9:20 AM	2.0	60-62	85	1,700	40	8.5	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.

-)	Vironex Fie	Id Data SI	heet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
IP-0011	6/23/11	3:20 PM	6/23/11	3:50 PM	2.0	23'-25'	85	85	40	7.5	0.289	28,9	58.7	84.7	85	
AND ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS ADDRE ADDRESS ADDRESS ADD	6/23/11	3:50 PM	6/23/11	4:00 PM	2.0	25-27	85	170	35	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	4:00 PM	6/23/11	4:10 PM	2.0	27'-29'	85	255	32	8.0	0.289	28.9	58,7	84.7	85	
	6/23/11	4:10 PM	6/23/11	4:20 PM	2.0	29'-31'	85	340	40	8.0	0,289	28.9	58.7	84.7	85	
	6/23/11	4:20 PM	6/23/11	4:30 PM	2.0	31'-33'	85	425	40	8.0	0,289	28.9	58.7	84.7	85	
Total nBA (gal)	6/23/11	4:30 PM	6/23/11	4:40 PM	2.0	33'-35'	85	510	40	8.0	0.289	28.9	58.7	84.7	85	
5.8	6/23/11	4:40 PM	6/23/11	4:50 PM	2.0	35'-37'	85	595	45	8.0	0.289	28.9	58.7	84.7	85	
	6/23/11	4:50 PM	6/23/11	5:00 PM	2.0	37-39	85	680	45	8.0	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/23/11	5:00 PM	6/23/11	5:10 PM	2.0	39-41	85	765	45	8.0	0.289	28.9	58.7	B4.7	85	
578.0	6/23/11	5:10 PM	6/23/11	5:35 PM	2.0	40'-42'	85	850	45	8.0	0.289	28.9	58.7	84.7	85	1 ft. push to inject in the foot above the clay layer.
	6/24/11	7:25 AM	6/24/11	7:40 AM	2.0	42'-44'	85	935	38	6.0	0.289	28.9		84.7	85	
Total KI (g)	6/24/11	7:40 AM	6/24/11	7:55 AM	2.0	44'-46'	85	1,020	40	6.0	0.289	28.9	l i	84.7	85	
586.5	6724/11	7:55 AM	6/24/11	8:05 AM	2.0	46'-48'	85	1,105	40	7.0	0.289	28.9		84.7	85	
	6/24/11	8:05 AM	6/24/11	8-20 AM	2.0	48'-50'	85	1,190	30	4.5	0.289	28.9		84.7	85	Slowed down to avoid surfacing from a well 1.5 ft away screened at the same depth.
Total H2O (gal)	6/24/11	8:20 AM	6/24/11	8:30 AM	2.0	50'-52'	85	1.275	50	8.3	0.289	28.9		84.7	85	
1694.2	6/24/11	8:30 AM	6/24/11	8:40 AM	2.0	5Z-54'	85	1.360	50	8.5	0.289	28.9		84.7	85	
	6/24/11	8:40 AM	6/24/11	8:50 AM	2.0	54'-56'	85	1.445	45	85	0.289	28.9		84.7	85	
Total Volume	6/24/11	8:50 AM	6/24/11	9-00 AM	2.0	56'-58'	85	1.530	45	85	0.289	28.9		84.7	85	
	6/24/11	9-00 AM	6/24/11	9-10 AM	20	58'-60'	85	1.615	40	85	0.289	28.9		847	85	
1700	6/24/11	9:10 AM	6/24/11	9:20 AM	2.0	60'-62'	85	1,700	40	8.5	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. Flush water.
10.0010	6/24/11	11:00 AM	6/24/11	11:15 AM	2.0	23'-25'	85	85	40	8.0	0.289	28.9	58.7	84.7	85	
IP-0012	6/24/11	11:20 AM	6/24/11	11:30 AM	2.0	25'-27'	85	170	40	7.5	0.289	28.9	58.7	84.7	85	
	6/24/11	11:30 AM	6/24/11	11:40 AM	2.0	27'-29'	85	255	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	11:40 AM	6/24/11	12-15 PM	2.0	29'-31'	85	340	40	80	0,289	28.9	58.7	84.7	85	
	6/24/11	12 15 PM	6/24/11	12:25 PM	20	31'-33'	85	425	40	80	0.289	28.9	587	84.7	85	Took lunch during this interval.
Total oBA Jost	6/24/11	12-25 PM	6/24/11	12-35 PM	2.0	33'-35'	85	510	40	85	0.289	28.9	58.7	84.7	85	
58	6/24/11	12:35 PM	6/24/11	12:45 PM	2.0	35-37	85	595	40	8.5	0.289	28.9	58.7	84.7	85	
	6/24/11	12-45 PM	6/24/11	12-55 PM	20	37-39	85	680	40	85	0.289	28.9	587	847	85	
Total KBr (a)	6/24/11	12-55 PM	6/24/11	1-05 PM	20	39'-41'	85	765	40	80	0.289	28.9	587	847	85	
578.0	6/24/11	1:05 PM	6/24/11	1-15 DM	20	40'-42'	85	850	40	80	0.289	28.9	58.7	84.7	85	
510.0	6/24/11	1.40 DM	6/24/11	1.50 DM	20	47.44	20	000	26	6.0	0.289	28.9		RA 7	95	
Total STAN	6/24/11	1.50 014	6/2//11	2.47 DM	20	18.46	00	1,000	20	6.6	0.289	28.9		RA 7	90	Stonned numning to repair a leak in the system
EDC C	6/24/11	2.47 DM	6/24/11	2.47 FM	20	46'-48'	00	1,020	20	0.5	0.200	78.9	Ē	84.7	00	otopped pumping to epair a reak in the system.
000.0	6/24/11	2.47 110	6/24/11	-2.07 PW	20	48' 50'	20	1,100	20	0.5	0.200	20.0		847	20	
THURSDAY	6/24/11	2:57 PM	6/24/11	3.07 PM	20	50' 52'	00	1,190	30	7.0	0.203	20.5		847	00	
total H2O (gal)	6/24/11	3:07 PM	6/24/11	3:17 PM	2.0	57 57	65	1,275	35	7.0	0.209	20.5		84.7	65	
1694.2	6/24/11	3:17 PM	6/24/11	3.27 PM	2.0	52-54	85	1,360	45	8.0	0.203	20.9		04.7	85	Ended the day early due to Dhese 2 Johtning warning
Total & Column	0/24/11	3:27 PM	0/2//11	7.20 AM	20	06-90	85	1,445	45	0.8	0.209	20.9		04./	85	Ended the day early due to Phase 2 lightning warning.
rotar volume	6/21/11	7:20 AM	6/2//11	7:30 AM	20	56-58	85	1,530	35	8.0	0.289	28.9		84.7	85	
1700	6/2//11	7:30 AM	6/2//11	7:40 AM	2.0	58-60	85	1,615	40	7.8	0.289	28.9		84.7	85	
The second second	6/27/11	7:40 AM	6/27/11	3:25 PM	2.0	60'-62'	85	1,700	40	7.8	0.289	28.9		84.7	85	[Hit Refusal at 61 ft bgs. Successfully completed location. Chased with 10 gal. flush water.

										1	/ironex Fie	ld Data S	neet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
IP-0013	6/24/11	11:05 AM	6/24/11	11:20 AM	2.0	23-25	85	85	40	7.0	0.289	28.9	58.7	84.7	85	
M-SOUNDS	6/24/11	11:20 AM	6/24/11	11:33 AM	2.0	25-27	85	170	40	7.5	0.289	28.9	58.7	84.7	85	
	6/24/11	11:33 AM	6/24/11	11:43 AM	2.0	27-29	85	255	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	11:43 AM	6/24/11	11:53 AM	2.0	29-31	85	340	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	12-15 PM	6/24/11	12:25 PM	2.0	31'-33'	85	425	40	8.0	0,289	28.9	58.7	84.7	85	Took lunch during this interval.
Total nBA (gal)	6/24/11	12:25 PM	6/24/11	12:35 PM	2.0	33'-35'	85	510	40	8.0	0,289	28.9	58.7	84.7	85	
5.8	6/24/11	12:35 PM	6/24/11	12:45 PM	2.0	35'-37'	85	595	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	12:45 PM	6/24/11	12:55 PM	2.0	37-39	85	680	40	8.0	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/24/11	12:55 PM	6/24/11	1:05 PM	2.0	39'-41'	85	765	40	8.0	0,289	28.9	58.7	84.7	85	
578.0	6/24/11	1:05 PM	6/24/11	1:15 PM	2.0	40'-42'	85	850	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	1:40 PM	6/24/11	1:50 PM	2.0	42-44	85	935	40	6.0	0.289	28.9		84.7	85	
Total KI (g)	6/24/11	1:50 PM	6/24/11	2:50 PM	2.0	44'-46'	85	1,020	40	6.0	0.289	28.9	1	84.7	85	Stopped pumping to repair a leak in the system.
586.5	6/24/11	2:50 PM	6/24/11	3:00 PM	2.0	46'-48'	85	1,105	40	6.0	0.289	28.9		84.7	85	
	6/24/11	3:00 PM	6/24/11	3:10 PM	2.0	48'-50'	85	1,190	45	7.0	0.289	28.9		84.7	85	
Total H2O (gal)	6/24/11	3:10 PM	6/24/11	3:20 PM	2.0	50'-52'	85	1,275	45	7.0	0.289	28.9	1	84.7	85	
1694.2	6/24/11	3:20 PM	6/24/11	3:30 PM	2.0	5Z'-54'	85	1,360	45	7.0	0.289	28.9		84.7	85	
	6/24/11	3:30 PM	6/27/11	7:22 AM	2.0	54'-56'	85	1,445	45	7.8	0.289	28.9		84.7	85	Ended the day early due to Phase 2 lightning warning.
Total Volume	6/27/11	7:22 AM	6/27/11	7:32 AM	2.0	56'-58'	85	1,530	45	8.0	0,289	28.9		84.7	85	
1000	6/27/11	7:32 AM	6/27/11	7:45 AM	2.0	58'-60'	85	1,615	45	7.8	0,289	28.9		84.7	85	
1700	6/27/11	7:45 AM	6/27/11	8:00 AM	2.0	60'-62'	85	1,700	45	8.0	0.289	28.9	1	84.7	85	Successfully completed location. Chased with 10 gal. flush water.
	6/24/11	11:15 AM	6/24/11	11:27 AM	2.0	23'-25'	85	85	40	7.6	0.289	28.9	58.7	84.7	85	
IP-0014	6/24/11	11:27 AM	6/24/11	11:37 AM	2.0	25-27	85	170	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	11:37 AM	6/24/11	11:47 AM	2.0	27-29	85	255	40	8.0	0.289	28.9	58.7	84.7	85	Took lunch during this interval.
	6/24/11	12:15 PM	6/24/11	12:25 PM	2.0	29-31	85	340	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	12:25 PM	6/24/11	12:35 PM	2.0	31'-33'	85	425	40	8.0	0.289	28.9	58.7	84.7	85	
Total nBA (gal)	6/24/11	12:35 PM	6/24/11	12:45 PM	2.0	33'-35'	85	510	40	8.0	0.289	28,9	58.7	84.7	85	
5.8	6/24/11	12:45 PM	6/24/11	12:55 PM	2.0	35'-37'	85	595	40	8.0	0.289	28,9	58.7	84.7	85	
	6/24/11	12:55 PM	6/24/11	1:05 PM	2.0	37-39'	85	680	40	8.0	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/24/11	1.05 PM	6/24/11	1:15 PM	2.0	39'41'	85	765	40	8.5	0.289	28.9	58.7	84.7	85	
578.0	6/24/11	1:15 PM	6/24/11	1:25 PM	2.0	40'-42'	85	850	40	8.0	0.289	28.9	58.7	84.7	85	
	6/24/11	1:25 PM	6/24/11	1:50 PM	2.0	4Z-44'	85	935	40	6.0	0.289	28.9		84.7	85	
Total KI (g)	6/24/11	1:50 PM	6/24/11	2:55 PM	2.0	44'-46'	85	1.020	40	6.0	0.289	28.9		84.7	85	Stopped pumping to fix a leak in the injection system.
586.5	6/24/11	2:55 PM	6/24/11	3:05 PM	2.0	46'-48'	85	1,105	40	65	0.289	28.9	1	84.7	85	
	6/24/11	3:05 PM	6/24/11	3:15 PM	2.0	48'-50'	85	1,190	40	6.5	0.289	28.9	1	84.7	85	
Total H2O (onl)	6/24/11	3:15 PM	6/24/11	3-25 PM	2.0	50'-52'	85	1.275	45	7.0	0.289	28.9		84.7	85	
1694.2	6/24/11	3-25 PM	6/24/11	3-35 PM	2.0	52-54	85	1.360	45	7.0	0.289	28.9		84.7	85	
100-10	6/24/11	3:35 PM	6/24/11	7.25 AM	20	54'-56'	85	1.445	45	75	0.289	28.9	1	84.7	85	Ended the day early due to Phase 2 lightning warning
Total Volume	6/27/11	7.25 AM	6/27/11	735 AM	20	56'-58'	85	1.530	45	78	0.289	28.9	1	84.7	85	
Sector Manual P	6/27/11	7.35 AM	6/27/11	7.48 AM	2.0	58'-60'	85	1.615	45	7.8	0.289	28.9		84.7	85	
1700	6/27/11	7:48 AM	6/27/11	8:00 AM	2.0	60'-62'	85	1,700	45	8.0	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. flush water.

										1	Vironex Fie	d Data SI	heet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
IP-0015	6/27/11	9:55 AM	6/27/11	10:20 AM	2,0	23'-25'	85	85	15	4.0	0.289	28.9	58.7	84.7	85	
11-100-10	6/27/11	10:20 AM	6/27/11	10:31 AM	2.0	25-27	85	170	30	7,8	0.289	28.9	58.7	84.7	85	
	6/27/11	10:31 AM	6/27/11	10:43 AM	2.0	27-29	85	255	35	8.3	0.289	28.9	58.7	84.7	85	
	6/27/11	10:43 AM	6/27/11	10:53 AM	2.0	29'-31'	85	340	40	8.5	0.289	28.9	58.7	84.7	85	
	6/27/11	10:53 AM	6/27/11	11:12 AM	2.0	31'-33'	85	425	40	8.5	0.289	28.9	58.7	84.7	85	Paused to change out an electrical cable.
Total nBA (gai)	6/27/11	11:12 AM	6/27/11	11:22 AM	2.0	33'-35'	85	510	40	8.5	0.289	28.9	58.7	84.7	85	
5.8	6/27/11	11:22 AM	6/27/11	11:32 AM	2.0	35-37	85	595	40	8.5	0.289	28.9	58.7	84.7	85	
	6/27/11	11:32 AM	6/27/11	11:42 AM	2.0	37'-39'	85	680	40	8.5	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/27/11	11:42 AM	6/27/11	11:52 AM	2.0	39'-41'	85	765	45	8.5	0.289	28.9	58.7	84.7	85	
578.0	6/27/11	11:52 AM	6/27/11	12:02 PM	2.0	40'-42'	85	850	45	8.5	0.289	28.9	58.7	84.7	85	Paused after this interval to take lunch.
	6/27/11	12:40 PM	6/27/11	12:53 PM	2.0	4Z-44'	85	935	40	7.2	0.289	28.9		84.7	85	
Total K3 (g)	6/27/11	12:53 PM	6/27/11	1:05 PM	2.0	44'-46'	85	1,020	30	6.0	0.289	28.9		84.7	85	
586.5	6/27/11	1:05 PM	6/27/11	1:18 PM	2.0	46-48'	85	1,105	35	5.8	0.289	28.9		84.7	85	
	6/27/11	1:18 PM	6/27/11	1:30 PM	2.0	48'-50'	85	1,190	35	6.0	0.289	28.9		84.7	85	
Total H2O (gai)	6/27/11	1:32 PM	6/27/11	1:43 PM	2.0	50'-52'	85	1,275	35	5.3	0.289	28.9	8	84.7	85	
1694.2	6/27/11	1:43 PM	6/27/11	2:05 PM	2.0	52-54	85	1,360	35	4.0	0.289	28.9		84.7	85	
	6/27/11	2:05 PM	6/27/11	2:20 PM	2.0	54'-56'	85	1,445	35	4.3	0.289	28.9	2	84.7	85	
Total Volume	6/27/11	2:20 PM	6/27/11	2:32 PM	2.0	56'-58'	85	1,530	35	4.2	0.289	28.9		84.7	85	
4700	6/27/11	2:32 PM	6/27/11	2:43 PM	2.0	58'-60'	85	1,615	45	7.6	0.289	28.9		84.7	85	
1100	6/27/11	2:43 PM	6/27/11	2:57 PM	20	60'-62'	85	1,700	45	7.7	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. flush water.
10:0016	6/27/11	10:00 AM	6/27/11	10:25 AM	2.0	23-25	85	85	15	4.0	0.289	28.9	58,7	84.7	85	
10010	6/27/11	10:25 AM	6/27/11	10:36 AM	2.0	25-27	85	170	40	7.5	0.289	28.9	58.7	84.7	85	
	6/27/11	10:36 AM	6/27/11	10:46 AM	2.0	27-29	85	255	40	8.2	0.289	28.9	58.7	84.7	85	
	6/27/11	10:46 AM	6/27/11	11:05 AM	2.0	29'-31'	85	340	40	8.5	0.289	28.9	58.7	84.7	85	
	6/27/11	10:56 AM	6/27/11	11:13 AM	2.0	31'-33'	85	425	40	82	0.289	28.9	58.7	84,7	85	Paused to change out an electrical cable.
Total nBA (gal)	6/27/11	11:13 AM	6/27/11	11:24 AM	2.0	33'-35'	85	510	40	8.4	0.289	28.9	58.7	84.7	85	
5.8	6/27/11	11:24 AM	6/27/11	11:34 AM	2.0	35'-37"	85	595	40	8.4	0.289	28.9	58.7	84.7	85	
	6/27/11	11:34 AM	6/27/11	11:44 AM	2.0	37-39	85	680	40	8.5	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/27/11	11:44 AM	6/27/11	11:54 AM	2.0	39-41	85	765	45	8.5	0.289	28.9	58.7	84.7	85	
578.0	6/27/11	11:54 AM	6/27/11	12:04 PM	2.0	40'-42	85	850	45	8.5	0.289	28.9	58.7	84.7	85	Paused for lunch after this interval.
	6/27/11	12:45 PM	6/27/11	12:58 PM	2.0	42-44	85	935	40	7.2	0.289	28.9		84.7	85	
Total KI (g)	6/27/11	12:58 PM	6/27/11	1:10 PM	2.0	44'-46'	85	1,020	40	6.0	0.289	28.9	1	84.7	85	
586.5	6/27/11	1:10 PM	6/27/11	1.23 PM	2.0	46'-48'	85	1,105	40	5.5	0.289	28.9		84.7	85	
	6/27/11	1:23 PM	6/27/11	1:35 PM	2.0	48'-50"	85	1,190	40	6,1	0.289	28.9		84.7	85	
Total H2O (gal)	6/27/11	1:35 PM	6/27/11	1:55 PM	2.0	50'-52'	85	1,275	45	5.3	0.289	28.9		84.7	85	
1694.2	6/27/11	1:55 PM	6/27/11	2:10 PM	2.0	52'-54'	85	1,360	35	4.0	0.289	28.9	1 1	84.7	85	
	6/27/11	2:10 PM	6/27/11	2:25 PM	2.0	54'-56'	85	1,445	30	4.0	0.289	28.9	1 1	84.7	85	
Total Volume	6/27/11	2:25 PM	6/27/11	2:37 PM	2.0	56'-58'	85	1,530	30	43	0.289	28.9		84.7	85	
Second Second Second	6/27/11	2:37 PM	6/27/11	2:50 PM	2.0	58'-60'	85	1.615	45	7.5	0.289	28.9		84.7	85	
1700	6/27/11	2:50 PM	6/27/11	3:04 PM	20	60'-62'	85	1,700	45	7.7	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. flush water.

	7			0	-)	/ironex Fie	ld Data S	neet			
Injection Point ID	Start Date	Start Time	End Date	End Time	Tool Length (ft)	Injection Interval	Gal per Interval	Running Total	Average PSI	Average Flow Rate	nBA Injected (gal)	KBr Injected (grams)	KI Injected (grams)	H2O Injected (gal)	Amended Total Gal	Notes
IP-0017	6/27/11	10:10 AM	6/27/11	10:28 AM	2.0	23'-25'	85	85	15	4.0	0.289	28.9	58.7	84.7	85	
ME-QOMO	6/27/11	10:28 AM	6/27/11	10:39 AM	2.0	25'-27	85	170	40	7.7	0.289	28.9	58.7	84.7	85	
	6/27/11	10:39 AM	6/27/11	10:49 AM	2.0	27-29	85	255	40	8.5	0.289	28.9	58.7	84.7	85	
	6/27/11	10:49 AM	6/27/11	11:08 AM	2.0	29'-31'	85	340	40	8.5	0.289	28.9	58.7	84.7	85	Paused to change out an electrical cable.
	6/27/11	11:08 AM	6/27/11	11:20 AM	2.0	31'-33'	85	425	40	8.5	0.289	28.9	58.7	84.7	85	
Total nBA (gal)	6/27/11	11:20 AM	6/27/11	11:30 AM	2.0	33'-35'	85	510	40	8.5	0,289	28.9	58.7	84.7	85	
5.8	6/27/11	11:30 AM	6/27/11	11:40 AM	2.0	35'-37'	85	595	40	8.5	0,289	28.9	58.7	84.7	85	
	6/27/11	11:40 AM	6/27/11	11:50 AM	2.0	37-39	85	680	40	8.5	0.289	28.9	58.7	84.7	85	
Total KBr (g)	6/27/11	11:50 AM	6/27/11	12:00 PM	2.0	39-41	85	765	40	8.5	0.289	28.9	58.7	84.7	85	
578.0	6/27/11	12:00 PM	6/27/11	12:10 PM	2.0	40-42	85	850	40	8.5	0.289	28.9	58.7	84.7	85	Paused for lunch after this interval.
	6/27/11	12:00 AM	6/27/11	1:05 PM	2.0	42-44	85	935	40	7.1	0.289	28.9		84.7	85	
Total KI (g)	6/27/11	1:05 PM	6/27/11	1:18 PM	2.0	44'-46'	85	1,020	35	6.0	0.289	28.9	l i	84.7	85	
586.5	6/27/11	1:18 PM	6/27/11	1:30 PM	2.0	46'-48'	85	1,105	40	6.0	0.289	28.9	l i	84.7	85	
	6/27/11	1:30 PM	6/27/11	1:43 PM	2.0	48'-50'	85	1,190	40	6.3	0.289	28.9	l i	84.7	85	
Total H2O (gal)	6/27/11	1:43 PM	6/27/11	1:53 PM	2.0	50'-52'	85	1,275	45	8.5	0.289	28.9		84.7	85	
1694.2	6/27/11	1:53 PM	6/27/11	2:03 PM	2.0	52-54	85	1,360	45	8.5	0.289	28.9	1	84.7	85	
	6/27/11	2:03 PM	6/27/11	2:13 PM	2.0	54'-56'	85	1,445	45	8.5	0.289	28.9		84.7	85	
Total Volume	6/27/11	2:13 PM	6/27/11	2:23 PM	2.0	56'-58'	85	1,530	45	8.5	0.289	28.9	1	84.7	85	
4700	6/27/11	2:23 PM	6/27/11	2:33 PM	2.0	58'-60'	85	1,615	45	8.5	0.289	28.9	l j	84.7	85	8
1100	6/27/11	2:33 PM	6/27/11	2:43 PM	2.0	60'-62'	85	1,700	45	8.5	0.289	28.9		84.7	85	Successfully completed location. Chased with 10 gal. flush water.
10.0049	6/28/11	8:55 AM	6/28/11	9:10 AM	2.0	23'-25'	85	85	25	6.0	0.280	28.9	58.7	84.7	85	
19-0010	6/28/11	9:10 AM	6/28/11	9:28 AM	2.0	25'-27'	85	170	30	7.0	0.280	28.9	58.7	84.7	85	
	6/28/11	9:28 AM	6/28/11	9.38 AM	2.0	27-29	85	255	32	8.5	0.280	28.9	58.7	84.7	85	
	6/28/11	9:38 AM	6/28/11	9.48 AM	2.0	29'-31'	85	340	35	8.5	0.280	28.9	58.7	84.7	85	
	6/28/11	9:48 AM	6/28/11	9:58 AM	2.0	31'-33'	85	425	40	8.5	0.280	28.9	58.7	84.7	85	[
Total nBA (gal)	6/28/11	9:58 AM	6/28/11	10:10 AM	2.0	33'-35'	85	510	38	8.0	0.280	28.9	58.7	84.7	85	
5.6	6/28/11	10:10 AM	6/28/11	10:22 AM	2.0	35'-37"	85	595	35	8.0	0.280	28.9	58.7	84.7	85	
	6/28/11	10-22 AM	6/28/11	10:34 AM	2.0	37-39	85	680	40	8.1	0.280	28.9	58.7	84.7	85	
Total KBr (g)	6/28/11	10:34 AM	6/28/11	10:45 AM	2.0	3941	85	765	45	8.5	0.280	28.9	58.7	84.7	85	
578.0	6/28/11	10:45 AM	6/28/11	10.55 AM	2.0	40-42	85	850	45	8.5	0.280	28.9	58.7	84.7	85	Took Lunch after this interval
	6/28/11	11:30 AM	6/28/11	11:43 AM	2.0	42-44	85	935	40	6.0	0.280	28.9		84.7	85	
Total KJ (g)	6/28/11	11:43 AM	6/28/11	11:57 AM	2.0	44'-46'	85	1,020	40	6.0	0.280	28.9		84.7	85	
586.5	6/28/11	11.57 AM	6/28/11	12:11 PM	20	46-48	85	1,105	40	6.0	0.280	28.9		84.7	85	
	6/28/11	12:11 PM	6/28/11	12:21 PM	2.0	48'-50'	85	1,190	45	8.5	0.280	28.9		84.7	85	
Total H2O (gal)	6/28/11	12:21 PM	6/28/11	12:35 PM	2.0	50'-52'	85	1,275	40	6.0	0.280	28.9		84.7	85	Lowered the gpm to slow the rise in water on a well. (RW-8)
1694.4	6/28/11	12:35 PM	6/28/11	12:49 PM	2.0	52'-54'	85	1,360	40	6.3	0.280	28.9		84.7	85	n na an an an an Theorem an Anna an Anna Anna an Anna an Anna an Anna an
	6/28/11	12:49 PM	6/28/11	1:00 PM	2.0	54'-56'	85	1,445	43	6.5	0.280	28.9		84.7	85	
Total Volume	6/28/11	1:00 PM	6/28/11	1-13 PM	2.0	56'-58'	85	1,530	40	60	0.280	28.9	i i	84.7	85	
Service in a strength of the	6/28/11	1:13 PM	6/28/11	1:26 PM	2.0	58'-60'	85	1.615	35	6.0	0.280	28.9	l i	84.7	85	
1700	6/28/11	1:26 PM	6/28/11	1.50 PM	2.0	60'-62'	85	1,700	40	6.3	0.280	28.9	l í	84.7	85	Successfully completed location. Chased with 35 gal. chase water.

										1	/ironex Fie	ld Data Sh	heet			
Injection Point ID	Start Date	Start Time	End Date	End	Tool Length	Injection	Gal per Interval	Running Total	Average	Average Flow	nBA Injected	KBr Injected	KI Injected	H2O Injected	Amended Total Gal	Notes
0.0070400	12022	22222			(fr)			1.0041101	10000	Rate	(gal)	(grams)	(grams)	(gal)		
IP-0019	6/28/11	9:00 AM	6/28/11	9:15 AM	2.0	23'-25'	85	85	23	6.0	0.280	28.9	58.7	84.7	85	
	6/28/11	9:15 AM	6/28/11	9:29 AM	2.0	25'-27'	85	170	35	7.2	0.280	28.9	58.7	84.7	85	
	6/28/11	9:29 AM	6/28/11	9:40 AM	2.0	27'-29'	85	255	35	8.2	0.280	28.9	58.7	84.7	85	()
	6/28/11	9:40 AM	6/28/11	9:50 AM	2.0	29'-31'	85	340	40	8.5	0.280	28.9	58.7	84.7	85	
	6/28/11	9:50 AM	6/28/11	10:03 AM	2.0	31'-33'	85	425	40	8.0	0.280	28.9	58.7	84.7	85	
Total nBA (gal)	6/28/11	10:03 AM	6/28/11	10:15 AM	2.0	33'-35'	85	510	38	8.0	0,280	28.9	58.7	84.7	85	
5.6	6/28/11	10:15 AM	6/28/11	10:27 AM	2.0	35-37	85	595	40	8.0	0.280	28.9	58.7	84.7	85	
	6/28/11	10:27 AM	6/28/11	10:38 AM	2.0	37'-39'	85	680	30	7.8	0.280	28.9	58.7	84.7	85	
Total KBr (g)	6/28/11	10:38 AM	6/28/11	10:48 AM	2.0	39-41	85	765	40	8.5	0.280	28.9	58.7	84.7	85	
578.0	6/28/11	10:48 AM	6/28/11	10:58 AM	2.0	40'-42'	85	850	45	8.5	0.280	28.9	58.7	84.7	85	Took lunch after this interval.
	6/28/11	11:32 AM	6/28/11	11:45 AM	2.0	42'-44'	85	935	43	6.0	0.280	28.9		84.7	85	
Total KI (g)	6/28/11	11:45 AM	6/28/11	11:59 AM	2.0	44'-46'	85	1,020	40	6.0	0.280	28.9		84.7	85	
586.5	6/28/11	11:59 AM	6/28/11	12:13 PM	2.0	46'-48"	85	1,105	38	6.0	0.280	28,9	1	84.7	85	
Î Î	6/28/11	12:13 PM	6/28/11	12:23 PM	2.0	48'-50"	85	1,190	45	8.5	0.280	28.9	1	84.7	85	
Total H2O (gal)	6/28/11	12:23 PM	6/28/11	12:33 PM	2.0	50'-52'	85	1,275	45	8.5	0.280	28.9	1	84.7	85	
1694.4	6/28/11	12:33 PM	6/28/11	12:43 PM	2.0	52-54	85	1,360	45	8.5	0.280	28.9		84.7	85	
	6/28/11	12:43 PM	6/28/11	12:54 PM	2.0	54'-56'	85	1,445	45	8.5	0.280	28.9		84.7	85	
Total Volume	6/28/11	12:54 PM	6/28/11	1:04 PM	2.0	56'-58'	85	1,530	45	8.5	0.280	28.9	9	84.7	85	
100000000	6/28/11	1:06 PM	6/28/11	1:17 PM	2.0	58'-60'	85	1,615	45	8.5	0.280	28.9		84.7	85	
1700	6/28/11	1:17 PM	6/28/11	1:27 PM	2.0	60'-62'	85	1,700	45	8.5	0.280	28.9		84.7	85	Successfully completed location. Chased with 35 gal. chase water.
	6/28/11	9:05 AM	6/28/11	9-25 AM	2.0	23'-25'	85	85	30	70	0.280	28.9	58.7	84.7	85	
IP-0020	6/28/11	9:25 AM	6/28/11	9:35 AM	2.0	25'-27'	85	170	35	85	0.280	28.9	58.7	84.7	85	
	6/28/11	9-35 AM	6/28/11	9-45 AM	2.0	27'-29'	85	255	40	85	0.280	28.9	58.7	84.7	85	
	6/28/11	0:45 AM	6/28/11	G-55 AM	20	29'-31'	85	340	45	8.5	0.280	28.9	587	84.7	95	
	6/28/11	D-55 AM	6/28/11	10.07 444	20	31'-33'	05	435	45	6.0	0.280	28.9	58.7	R4 7	95	
Transford A course	6/28/11	10-07 AM	6/28/11	10.07 700	2.0	32,35	05	E40	40	0.2	0.280	78.9	587	BA 7	05	
FORMER (QMI)	6/20/11	10.07 AM	E/28/11	10.10 MM	2.0	35'-37	00	510	43	0.0	0.200	20.0	58.7	84.7	00	
20	6/20/11	10.19 AM	6/20/11	10.30 AM	2.0	37 204	00	595	40	0.5	0.200	20.0	60.7	04.7	80	
-	6/20/11	10.30 AM	6/30/11	10.40 AM	2.0	31-33	00	705	40	8.0	0.200	20.0	50.7	94.7	00	
total Kbr (g)	6/20/11	10:40 AM	6/20/11	10.50 AM	2.0	407-407	85	001	45	0.5	0.200	20.8	50.7	04.7	08	Took longh after this intend
578.0	0/20/11	10:50 AM	0/20/11	11.00 AM	2.0	47.46	85	850	45	8.5	0.200	20.9	00.7	04.7	85	rook lunch alter uns interval.
	0/28/11	11:34 AM	0/28/11	11:47 AM	2.0	42-44	85	935	38	6.0	0.280	28.9	8	84.7	85	
Total KI (g)	6/28/11	11:47 AM	6/28/11	12:00 PM	2.0	44-40	85	1,020	40	0.0	0,280	28.9		64.7	85	
586.5	6/28/11	12:00 PM	6/28/11	12:14 PM	2.0	46-48	85	1,105	40	6.0	0.280	28.9		84.7	85	
	6/28/11	12:14 PM	6/28/11	12:24 PM	2.0	48-50	85	1,190	45	8.0	0.280	28.9		84.7	85	
Total H2O (gal)	6/28/11	12:24 PM	6/28/11	12:34 PM	2.0	50'-52'	85	1,275	45	8.0	0.280	28.9		84.7	85	
1694.4	6/28/11	12:34 PM	6/28/11	12:44 PM	2.0	52-54	85	1,360	45	8.0	0.280	28.9	1	84.7	85	
i i i i i i i i i i i i i i i i i i i	6/28/11	12:44 PM	6/28/11	12:54 PM	2.0	54'-56'	85	1,445	45	8.0	0.280	28.9		84,7	85	
Total Volume	6/28/11	12:54 PM	6/28/11	1:04 PM	2.0	56'-58'	85	1,530	45	8.5	0,280	28.9		84.7	85	
1700	6/28/11	1:04 PM	6/28/11	1:14 PM	2.0	58'-60'	85	1,615	45	8.5	0.280	28.9	l i	84.7	85	
	6/28/11	1:14 PM	6/28/201	1:30 PM	2.0	60'-62'	85	1,700	45	7.7	0.280	28.9	i	84.7	85	Successfully completed location. Chased with 35 gal. chase water.
2									Ava	Ava	nBA	KBr	KI	H2O	Total Gal	Points Completed
									39.7	7.3	115.0	11,560.0	11,730.0	33,885.0	34,000.0	20.0

APPENDIX E: O&M FORMS

			I	Launch Complex	nplex 34 O& x 34. SWMU CC0	2 M 154			
			C	ape Canaveral Ai	r Force Station, Fl	lorida			
Technician:		Joe Bartlett		Date:	3/14/	2011	Time:	1040	
10000000		ove Burtlett		Maintenance	e & Monitorin	g	1	1010	
Item			Frequency	Completed		· <u>8</u>	Comments or Note	s	
System operational	on arrival (ves/	$\left[n_{0}\right)^{1}$	Weekly	(yes/no)					
System operational	on departure (yes	/es/no)	Weekly	Yes					
Inspect wiring and o	connection	,	Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	NA					
Collect water levels	from injection	wells	Monthly	NA					
Clean solar panels			As Needed	NA					
Clean flow meters			As Needed	NA					
F	straction W	ells	1			Inicatio	n Walla ²		
L7	Elow Poto	Volumo Broducod		Shallow	Flow Pote (mb)	Flow Pata (aph)	Deep	Flow Pata (mb)	Flow Pata (mb)
	(gpm)	(gallons)		(32-42 ft BLS)	Initial	Final	(47-57 ft BLS)	Initial	Final
RW0007	2.1	87		(32 12 x BLB) LJ0013	27	27	LI0014	26	27
RW0008	2.3	87	•	10015	26	27	10016	27	27
1 System on a real	vala timor cat fa	$r 40 \min/20 \min off$	If gratem is off	100017	26	27	10018	27	27
make sure system is	not in 20 min	off period.	n system is on,	100019	28	27	10020	22	27
2 11 9				130017	28	27	130020	28	27
 Use now meters [divide total flow rational flow rationa flow rational flow rationa flow rational flow rational flow	to distribute no ite by 5 for rate	for each well.]	jection wells.	130021	28	21	130022	28	21
Battery	Voltage (V) 14.28	Percent Charge (%)		Task that	need to be cor	npleted durir	ng the next sch	neduled visit	
1b	13.63	100.00	replace PVC car	bon bung connector	r with galvanized cas	st iron X3			
2a	13.52	100.00	1 1/4" male threa	ad - 3/4" female thre	ead				
2b	14.48	100.00							
			-						
				Con	nments				
Recycle Timer - red	l LED - slow st	eady blink - system C	N; quick, short b	link - system OFF					
hide-a-key under rig	ght side of traile	er door.							
Geosy	mtec nsultants	D							

			1	Launch Complex	n plex 34 O& x 34. SWMU CC0	2 M 054			
			C	ape Canaveral Ai	r Force Station, F	lorida			
Technician:		Joe Bartlett		Date:	3/21/2011		Time:	1700	
				Maintenanco	e & Monitorin	ıg	1		
Item			Frequency	Completed (yes/no)		-5	Comments or Note	s	
System operational	on arrival (yes/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes					
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	NA					
Clean flow meters			As Needed	NA					
Ex	traction W	ells	1			Injectio	n Wells ²		
134	Elow Rate	Volume Produced	-	Shallow	Flow Rate (gph)	Flow Rate (gph)	Deen	Flow Rate (gph)	Flow Rate (mb)
	(gpm)	(gallons)		(32-42 ft BLS)	Initial	Final	(47-57 ft BLS)	Initial	Final
RW0007	2.3	16252		IJ0013	24	27	IJ0014	30	28
RW0008	2.6	14251		LJ0015	26	27	LJ0016	28	28
1 System on a real	role timer cet fe	$r 40 \min/20 \min off$	If gratem is off	10017	26	26	100018	20	20
make sure system is	not in 20 min o	off period	II system is on,	130017	20	20	10020	21	27
			· .• •	130019	25	27	130020	31	28
 Use flow meters [divide total flow ration] 	to distribute fic te by 5 for rate	for each well.]	jection wells.	130021	20	27	130022	20	28
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be con	mpleted durin	ng the next sch	neduled visit	
1a	12.54	94.00							
1b	12.52	94.00							
2a	12.54	96.00							
2b	12.57	96.00							
			-						
				Cor	nments				
Geosy	/mtec	D							
COL	sultants								

Maintenance & Monitoring Maintenance & Monitoring Item Frequency Comments System operational on arrival (yes/to) Weekly Yes System operational on departure (yes/to) Weekly Yes Import pring and connection for lasks Weekly Yes Consider water keeld in on nipocion wells Monitoring Monitoring Colse water keeld in on nipocion wells Monitoring No Colse water keeld in on nipocion wells As Needed No Colse water keeld in on nipocion wells Monitoring The Keeld in on nipocion wells RW0007 2.5 31048 Needed BW0007 2.5 31048 Plov Rate (grih) Plov Rate (grih) Flow Rate (grih) Flow Rate (grih) Flow Rate (grih) Plov Rate (grih) <td< th=""><th>Technician:</th><th></th><th>Joseph Bartlet</th><th>t</th><th>Date:</th><th>4/1/2011</th><th></th><th>Time:</th><th>1436</th><th>j</th></td<>	Technician:		Joseph Bartlet	t	Date:	4/1/2011		Time:	1436	j	
Item Frequency Completed (weight) Comments or Notes System operational on arival (vsiots) ¹ Weskly Yes					Maintenanc	e & Monitorii	ng				
System operational maring (usystem) Weddy Yes Insert withing and connection Bit weddy Yes Caller frame Weeddy No Caller frame Monthly No Caller frame As Needed No Fitter for the low Refer for Influence No Influence Fitter for the low Refer for Influence No Influence Influence Fitter for the low Refer for Influence No Influence Influence Influence Statem operational on a recycle fitter set for 40 min20 min off. If system is off. D0017 2.8 2.8 D0018 2.8 2.8 Used tow refers to iffarither flow evely between injection wells. D0010 2.7 2.8 D0021 2.8 D0022 2.6 2.8 Uset we refers to iffarither flow refers Change (%0	Item			Frequency	Completed (yes/no)			Comments or Note	25		
System operational on departure (system) Weekly Yes Inspect pring and connection for lass Weekly Yes Cland New models As Needel No Cland water levels from injection wells Monthly No Cland water levels from injection wells Monthly No Extraction Wells No Injection Wells ² Extraction Wells Injection Wells ² Injection Wells ² RW0007 2.5 31648 No 1: System on a recycle timer set for 40 mu20 minoft. If system is oft, instem on the 30 mon flop repold. 2.8 100015 2.8 2.8 100014 2.7 2.8 2.8 100014 2.8 2.8 2.8 100014 2.8 2.8 2.8 100014 2.8 2.8 2.8 100014 2.8 2.8 100014 2.8 2.8 100015 2.8 2.8 100014 2.8 2.8 100012 2.8 2.8 100012 2.8 2.8 100012 2.8 2.8 100022 2.6 2.8 100021	System operational	on arrival (yes/i	no) ¹	Weekly	Yes						
Bit weekly Yes Clean filers Weekly No Clean weekly No Image: Clean filers No Clean weekly No Image: Clean filers No Extraction Wells An Needed No Image: Clean filer No Extraction Wells Image: Clean filer No Image: Clean filer Flow Rate (gph)	System operational	on departure (y	ves/no)	Weekly	Yes						
Impect pring and connection for lack Uncelly Yes Collect water levels from ignicion wells Monthly No Clan abar panels As Needed No Clan abar panel As Needed No Extraction Wells Shallow Injection Wells ² Equation 1 Flow Rate (gph) Deep (gmm) (gmbon) 1 RW0007 2.5 31048 DU013 Using provide 12 28078 D0016 28 28 10013 28 28 D0016 28 28 1. System on a recycle time set for 40 min 20 min 07. If system is off. D0017 28 28 D0016 28 28 1. System on a recycle time set for 40 min 20 min 07. If system is off. D0017 28 D002 28 28 1. System on a recycle time set for 40 min 20 min 07. If system is off. D0017 28 D0018 28 28 1. 12.57 92.00 Percent Task that need to be completed during the next scheduled visit 1a 12.56 96.00 D001	Inspect wiring and c	connection		Bi-weekly	Yes						
Use in large Weekly No Clear water levels from injection wells As Needed No Extraction Wells As Needed No Extraction Wells Injection Wells ² Image: State of the set of reformed on a recycle time set for 40 min20 min 20	Inspect piping and c	onnections for	leaks	Weekly	Yes						
Once: Non As Needed No Claim alar paids As Needed No No Extraction Wells Injection Wells ² Image: Status Flow Rate (grhph) Flow Rate (grhph) <td< td=""><td>Clean filters</td><td>c</td><td></td><td>Weekly</td><td>No</td><td></td><td></td><td></td><td></td><td></td></td<>	Clean filters	c		Weekly	No						
Chain Jourde Carlos A N Needed No A N Needed No Extraction Wells Injection Wells ² Extraction Wells Stallow RW0007 2.5 10013 2.8 10013 2.8 10013 2.8 10013 2.8 10013 2.8 10013 2.8 10013 2.8 10013 2.8 10013 2.8 10013 2.8 10019 2.7 2.8 100016 2.8 100017 2.8 100018 2.9 10019 2.1 2.8 10019 2.7 2.8 10020 2.9 2.8 10014 2.7 2.0 1.8 10019 2.7 2.8 10020 2.9 2.0 1.0 2.5.6 9.00	Collect water levels	from injection	wells	As Needed	No	-					
Extraction Wells Injection Wells ² Extraction Wells Injection Wells ² RW0007 2.3 31048 Injection Wells Final (47-57 ft BLS) 10013 28 28 10013 28 28 10013 28 28 10014 27 28 20016 28 28 10017 28 28 10019 27 28 10019 27 28 10019 27 28 10021 29 28 10021 29 28 10021 29 28 110021 29 28 12.49 92.00 26 25 12.49 92.00 26 12.49 92.00	Clean flow meters			As Needed	No						
Injection Wells ² RW0007 Injection Wells ² <td></td> <td></td> <td></td> <td>na recucu</td> <td>110</td> <td></td> <td></td> <td></td> <td></td> <td></td>				na recucu	110						
Flow Rate (gallows) Yohme Produced (gallows) Shallow	Ex	traction W	ells				Injectio	n Wells ²			
Image: New constraints Image: New constraints<		Flow Rate	Volume Produced		Shallow	Flow Rate (gph)	Flow Rate (gph)	Deep	Flow Rate (gph)	Flow Rate (gph)	
Kithold 2.3 3.1048 D0013 2.8 2.8 D0014 2/7 2.8 1. System on a recycle time set for 40 min/20 min off. If system is off. D0017 2.8 2.8 D0018 2.8 2.8 2. Use flow meets to advintion flow evenly between injection wells. D0019 2.7 2.8 D0020 2.8 2.8 2. Use flow meets to distribut flow evenly between injection wells. D0021 2.9 2.8 D0022 2.6 2.8 Gaide total flow rate by 5 for rate for each well. Task that need to be completed during the next scheduled visit 1 1 2.5.6 9.6.00 2	(gpm) (gallons) (32-42 ft BLS) Initial Final (47-57 ft BLS) Initial F DW0007 2.5 21048 10012 28 28 10014 27 27									Final	
Revolution Comments 22 22 22 2078 10013 28 28 10016 28 28 28 10018 28 28 10018 28 28 10019 27 28 10019 28 28 10019 28 28 10019 27 28 10019 28 28 10019 28 28 10019 27 28 10020 28 28 10019 27 28 10020 28 28 10019 27 28 10022 26 28 10019 27 28 10022 26 28 10019 10 12 12 10021 29 28 10022 26 28 10019 10 12 12 10021 29 28 10022 12 12 12 12 12 12 10022 12 12 12 12 12 12 12 12 12 12	RW0007	2.5	31048	1	1J0013	28	28	1J0014	27	28	
1. System on a recycle ture set for 40 mm 20 mm oft. If system is off. 10017 28 28 10018 28 28 28 20. Use flow meters to distribute flow evenly between injection wells. 10019 27 28 100020 28 28 20. Use flow meters to distribute flow evenly between injection wells. 10019 27 28 100022 26 28 12. Use flow meters to distribute flow evenly between injection wells. 10019 27 28 100022 26 28 13. 12.57 92.00 Percent Charge (%) Task that need to be completed during the next scheduled visit 16. 12.56 96.00 2a 12.49 92.00 20 28 2b. 12.49 92.00 20.00 20 20 28 28 Comments Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 Seconcerete	R W0008	2.2	28078		IJ0015	28	28	10016	28	28	
During systems to 20 mile the period. During 1/2/2/2/8 During 2/2/2/8 During 2/2/2/8 Z8 2. Use flow meters to distribute flow evenly between injection wells. 100021 2.9 2.8 During 2/2 2.8 2.8 Battery Voltage Percent (V) Charge (%) Task that need to be completed during the next scheduled visit 1a 12.57 92.00 10002 2.8 2.8 2b 12.49 92.00 2.00 2.8 2.8 2b 12.49 92.00 2.00 2.8 2.8 Comments Comments <td colspan<="" td=""><td> System on a recy make sure system is </td><td>cle timer set fo</td><td>r 40 min/20 min off.</td><td>If system is off,</td><td>1J0017</td><td>28</td><td>28</td><td>10018</td><td>28</td><td>28</td></td>	<td> System on a recy make sure system is </td> <td>cle timer set fo</td> <td>r 40 min/20 min off.</td> <td>If system is off,</td> <td>1J0017</td> <td>28</td> <td>28</td> <td>10018</td> <td>28</td> <td>28</td>	 System on a recy make sure system is 	cle timer set fo	r 40 min/20 min off.	If system is off,	1J0017	28	28	10018	28	28
2. Use flow meters to distribute flow evently between injection wells. D0021 29 28 D0022 26 28 Battery Voltage (V) Percent Charge (%) Task that need to be completed during the next scheduled visit	Index Site System is not in 20 min on period. 10019 27 2 1/2 1/2 1/2 1/2 2 1/2 1/2 1/2 1/2						28	1J0020	28	28	
Battery Voltage (V) Percent Charge (%) Task that need to be completed during the next scheduled visit 1a 12.57 92.00	 Use flow meters [divide total flow ra 	to distribute flo te by 5 for rate	w evenly between in for each well.]	jection wells.	1J0021	29	28	1J0022	26	28	
1a 12.57 92.00 1b 12.56 96.00 2a 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00 2c 12.49 12.49 2c 12.49 12.00 Comments Carbon Ef	Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durin	ng the next sch	neduled visit		
1b 12.56 96.00 2a 12.49 92.00 2b 12.49 92.00 Comments Carbon Effluent Samples collected at 1450 EW007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.	1a	12.57	92.00								
2a 12.49 92.00 2b 12.49 92.00 2b 12.49 92.00	1b	12.56	96.00								
2b 12.49 92.00	2a	12.49	92.00								
Comments Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.	2b	12.49	92.00								
Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal. Geosyntec											
Comments Carbon Effluent Samples collected at 1450 EW007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
Comments Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
Comments Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
Comments Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
Carbon Effluent Samples collected at 1450 EW0007 - EF001, EW0008 - EF002 D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.					Сог	nments					
D&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.	Carbon Effluent Sar	nples collected	at 1450 EW000	07 - EF001, EW0	008 - EF002						
O&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
O&M not performed on 28 March due to weather (thunderstorms all week). Flow totalizer reading collected on 3/29/2011: EW0007 - 30723 gal., EW0008 - 27842 gal.											
Geosyntec	O&M not performe	d on 28 March	due to weather (thun	derstorms all wee	k). Flow totalizer	reading collected or	n 3/29/2011: EW00	07 - 30723 gal., EV	W0008 - 27842 gal.		
Geosyntec ^D											
Geosyntec ^D											
Geosyntec	0	-	0								
consultants	Geos	/ntec									
		cultonte									

			l	Launch Con Launch Complex	n plex 34 O& x 34, SWMU CC0	2 M 054			
			С	ape Canaveral Ai	r Force Station, Fl	lorida			
Technician:		Joseph Bartle	tt	Date:	4/7/2011		Time:	1442	
				Maintenance	e & Monitorin	ıg	•		
Item			Frequency	Completed (ves/no)			Comments or Note	es	
System operational	on arrival (yes/	no) ¹	Weekly	Yes					
System operational	on departure (y	res/no)	Weekly	Yes					
Inspect wiring and	connection		Bi-weekly	Yes					
Inspect piping and	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes					
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean now meters			As Needed	INO					
E	straction W	ells	1			Injectio	n Wells ²		
	Flow Rate	Volume Produced		Shallow	Flow Rate (gph)	Flow Rate (gph)	Deep	Flow Rate (gph)	Flow Rate (gph)
	(gpm)	(gallons)		(32-42 ft BLS)	Initial	Final	(47-57 ft BLS)	Initial	Final
RW0007	2.5	40970		IJ0013	28	28	IJ0014	30	30
RW0008	2.5	35456	1	IJ0015	28	28	IJ0016	30	30
1. System on a rec	ycle timer set fo	r 40 min/20 min off.	If system is off,	IJ0017	28	28	IJ0018	30	30
make sure system is	s not in 20 min o	off period.		IJ0019	28	28	IJ0020	30	30
2. Use flow meters	to distribute flo	w evenly between in	jection wells.	IJ0021	28	28	IJ0022	30	30
[divide total flow ra	te by 5 for rate	for each well.]	,				L		
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be cor	mpleted durir	ng the next sch	neduled visit	
1a	12.48	92.00							
1b	12.46	92.00							
2a	13.34	100.00							
2b	13.20	100.00							
				Cor	nments				
carbon changed				001					
Geos	ntec	D							

			1	Launch Con	nplex 34 O&	: M			
			С	ape Canaveral Ai	r Force Station, Fl	lorida			
T				D			-		
Technician:		Joe Bartlett		Date:	4/18/2011		Time:	900	
				Maintenanc	e & Monitorin	Ig			
Item			Frequency	Completed (ves/no)		•	Comments or Note	s	
System operational	on arrival (ves/	10)1	Weekly	Yes					
System operational	on departure (y	es/no)	Weekly	No	System turned off a	at 0915 - baseline fl	ux phase complete		
Inspect wiring and o	connection	,	Bi-weekly	Yes			1 1		
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	No					
Collect water levels	from injection	wells	Monthly	Yes					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
			_						
Ех	traction W	ells				Iniectio	n Wells ²		
	Flow Rate	Volume Produced	-	Shallow	Flow Rate (gph)	Flow Rate (gph)	Deep	Flow Rate (gph)	Flow Rate (gph)
	(gpm)	(gallons)		(32-42 ft BLS)	Initial	Final	(47-57 ft BLS)	Initial	Final
RW0007	2.4	58731		IJ0013	27	27	IJ0014	24	26
RW0008	2.2	44085		IJ0015	27	27	IJ0016	24	26
1. System on a recy	cle timer set fo	r 40 min/20 min off.	If system is off.	IJ0017	28	27	IJ0018	25	26
make sure system is	not in 20 min d	off period.		LJ0019	28	27	10020	25	26
2 Use flow meters	to distribute fle	w evenly between ir	viection wells	110021	25	27	110022	23	26
[divide total flow ra	te by 5 for rate	for each well.]	jection wens.	100021	25	27	100022	21	20
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be cor	npleted durir	ng the next sch	neduled visit	
1a	11.76	93.00	Install hour meter	ers					
1b	11.74	92.00							
2a	12.48	92.00							
2b	12.54	94.00							
				Cor	nments				
					initents				
Geosy	mtec	D							

			I	Launch Com Launch Complex	nplex 34 O& x 34, SWMU CC	kM 054			
			C	ape Canaveral Ai	r Force Station, F	lorida			
Technician:		Joseph Bartle	tt	Date:	8/9/2011		Time:	1100	
				Maintenanc	e & Monitoriı	ng			
Item			Frequency	Completed			Comments or Note	es	
Suctom operational	on arrival (yas	no) ¹	Weekhy	(yes/no)	system restarted at	fter being shut dowr	for injection activi	tes	
System operational	on departure (yes/	res/no)	Weekly	Ves	system restarted a	iter being shut down	r tor injection activi	105	
Inspect wiring and c	connection	eta 110)	Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	new filters installed	d			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Injectio	n Wells ²		
	Flow Rate (gpm) Volume Produced Hour Meter Reading (hours) (32-42 ft BLS) Flow Rate (gph) Initial Flow Rate (gph) (47-57 ft BLS) Flow Rate (gph) Initial Flow Rate (gph) (47-57 ft BLS) Fl								
RW0007	26	58 771	0	LI0012	26	20	110014	20	20
RW0007	2.0	36,771	0	130015	20	28	IJ0014	28	30
RW0008	2.8	44,113	0	130015	30	28	10016	26	30
 System on a recy make sure system is 	cle timer set fo	or 40 min/20 min off.	If system is off,	1J0017	30	28	10018	32	30
make sure system is	not in 20 min (on period.		IJ0019	26	28	1J0020	36	30
 Use flow meters [multiply total flow] 	to distribute flo rate (gpm) by 1	ow evenly between ir 12 for rate for each w	ijection wells. vell (gph).]	1J0021	28	28	1J0022	32	30
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	13.98	100							
1b	13.56	100							
2a	13.69	100							
2b	13.85	100							
				~					
				Cor	nments				
installed hour meter	s								
Coost	mtoc	D							
cor	sultants								

			Ι	Launch Con Launch Complex	nplex 34 O& x 34, SWMU CC	2 M 054			
			C	ape Canaveral Ai	r Force Station, F	lorida			
Technician: Jo	seph Bartle	tt		Date: 08/12/2	011		Time: 0913		
	<u> </u>			Maintenanc	e & Monitorii	ng			
Item			Frequency	Completed		-8	Comments or Note	es	
System operational	on arrival (ves/	$(no)^1$	Weekly	Yes					
System operational	on departure (v	/es/no)	Weekly	Yes					
Inspect wiring and c	onnection	,	Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	installed new filters	s, cleaned used filte	rs off-site (hose bib	previously used has	been
Collect water levels	from injection	wells	Monthly	No	removed)				
Clean solar panels	v		As Needed	No					
Clean flow meters			As Needed	Yes	used DI water and	pipe cleaner (left or	n-site)		
	Extract	ion Wells			•	Iniectio	n Wells ²		
	Flow Rate	Volume Produced	Hour Meter	Shallow	Flow Rate (gph)	Flow Rate (gph)	Deen	Flow Rate (gph)	Flow Rate (gph)
	(gpm)	(gallons)	Reading (hours)	(32-42 ft BLS)	Initial	Final	(47-57 ft BLS)	Initial	Final
RW0007	2.5	65561	42.7	IJ0013	29	26	IJ0014	26	26
RW0008	2.6	51232	45.6	IJ0015	26	26	IJ0016	25	26
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	IJ0017	24	26	IJ0018	28	26
make sure system is	not in 20 min o	off period.	11 0 0 0 0 0 1 0	110019	26	26	110020	26	26
Ĩ				10021	26	26	110020	20	26
2. Use flow meters [multiply total flow :	to distribute flo rate (gpm) by 1	bw evenly between in 2 for rate for each w	ijection wells. rell (gph).]	130021	20	20	130022	25	20
Battery	Voltage (V)	Percent Charge (%)) Task that need to be completed during the next scheduled visit						
1a	11.92	0.00	- 0% charge rea	ding, however pum	ps are still operation	n. May be indicatio	n of problem with b	pattery meter.	
1b	11.92	0.00							
2a	11.79	0.00							
2b	11.80	0.00							
				Cor	nments				
- significant biofoul	ing (black/smo	key colored groundw	ater) in RW0007	pipe lines					
- minor biofouling i	n RW0008 pip	e lines							
Geosy	mtec/ sultants	D							

			I	Launch Con	nplex 34 O&	κM			
			C	Launch Comple ape Canaveral Ai	x 34, SWMU CC0 r Force Station. F	054 Iorida			
				1	,				
Technician: Jo	seph Bartle	tt		Date: 08/18/20)11		Time: 0916		
				Maintenanc	e & Monitoriı	ng			
Item			Frequency	Completed			Comments or Note	es	
Syntam anomational	an amirral (reas)	1	Waakhy	(yes/no)	"load disconnect"	light on charge cont	roller suggesting by	attery charge reache	d 0%
System operational	on departure (yes/	110) /es/no)	Weekly	Vac	causing the system	to shut off until 10	0% charge reached	ittery charge reache	a 070,
Inspect wiring and a	connection	(es no)	Bi-weekly	Ves	eausing the system	to shut off until 10	ovo enarge reached	•	
Inspect piping and o	connections for	leaks	Weekly	Yes	system forced ON	by turning system of	off, then on using to	ggle switches and	
Clean filters			Weekly	Yes	disconnecting/reco	nnecting battery ter	minals		
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	Yes					
	Extract	tion Wells				Injectio	n Wells ²		
	Extract			<i>a</i> 1 <i>n</i>		Injectio			
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.3	74258	103.4	IJ0013	24	24	IJ0014	27	28
RW0008	2.6	59187	98.9	IJ0015	24	24	IJ0016	30	28
1. System on a recy	vcle timer set fo	or 40 min/20 min off.	If system is off.	IJ0017	26	24	IJ0018	27	28
make sure system is	not in 20 min	off period.	,	IJ0019	27	24	IJ0020	28	28
				LJ0021	20	24	LJ0022	26	28
 Use flow meters [multiply total flow 	to distribute flo rate (gpm) by 1	ow evenly between in 12 for rate for each w	jection wells. /ell (gph).]		<u> </u>			. <u> </u>	
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durii	ng the next scl	neduled visit	
1a	12.08	25.00	charge read at 1	130 to observe char	ging rate:				
1b	12.08	25.00	1a - 12.30 V, 61	%					
2a	11.96	6.00	1b - 12.24 V, 51	%					
2b	11.96	6.00	2a - 12.04 V, 18	%					
			2b - 12.04 V, 18	%					
				~					
				Cor	nments				
IDW - pallet #: 183	809, drum #: 1	83866							
C	(i)	D							
Geosy	ntec								
COI	isultants								

			I Ca	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC(r Force Station, F	2 M 054 Iorida			
Technician: Io	senh Bartle	tt		Date: 08/24/2	011		Time: 1040		
reenneian. 50	sepii Dartie	tt.		Maintenanc	e & Monitorii	ησ	11mc. 1040		
			_	Completed		-5			
Item			Frequency	(yes/no)			Comments or Note	rs	
System operational	on arrival (yes/	no) ¹	Weekly	No	load disconnect lig	ht on			
System operational	on departure (y	/es/no)	Weekly	Yes	forced on by dicon	necting/reconnectin	g battery terminals		
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes					
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells			1	Injectio	n Wells ²		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.4	82434	161.5	IJ0013	24	24	IJ0014	30	28
RW0008	2.6	67015	151.5	IJ0015	24	24	IJ0016	28	28
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	IJ0017	20	24	IJ0018	28	28
make sure system is	not in 20 min	off period.	n system is on,	LJ0019	26	24	10020	30	28
				110021	28	24	110022	26	28
2. Use flow meters to distribute flow evenly between injection wells. [multiply total flow rate (gpm) by 12 for rate for each well (gph).]							100022		20
Battery	Voltage (V)	Percent Charge (%)	(6) Task that need to be completed during the next scheduled visit						
1a	12.27	56.00							
1b	12.24	51.00							
2a	12.19	45.00							
2b	12.20	45.00							
				Cor	nments				
Geosy	mtec	D							

			Ι	Launch Con Launch Complex	nplex 34 O& x 34, SWMU CC	2 M 054			
			C	ape Canaveral Ai	r Force Station, F	lorida			
Technician: Jo	seph Bartle	tt		Date: 08/31/2	011		Time: 0930		
				Maintenanc	e & Monitoriı	ng			
Item			Frequency	Completed		-8(Comments or Note	es	
System operational	on arrival (ves/	$(no)^1$	Weekly	No	load disconnect lig	ht on - Forced syste	em on		
System operational	on departure (yes	/es/no)	Weekly	Yes		, ,			
Inspect wiring and o	connection	,	Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes					
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	Yes					
	Extract	ion Wells				Injectio	n Wells ²		
	Flow Rate	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
DIVIGOR	(or)	,	3 (
RW0007	2.4	90012	214.3	IJ0013	26	25	IJ0014	27	27
RW0008	2.5	74235	199.6	IJ0015	25	25	IJ0016	27	27
 System on a recy 	ycle timer set fo	or 40 min/20 min off.	If system is off,	IJ0017	26	25	IJ0018	29	27
make sure system is	not in 20 min o	off period.		IJ0019	26	25	IJ0020	23	27
 Use flow meters [multiply total flow 	to distribute flo rate (gpm) by 1	ow evenly between in 12 for rate for each w	ijection wells. vell (gph).]	IJ0021	24	25	IJ0022	30	27
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	12.33	66.00							
1b	12.33	66.00							
2a	12.33	66.00							
2b	12.35	66.00							
20	12.00	00.00							
				Cor	nments				
- collected data log	ger data								
- data logger in RW	V0008 gone, mo	ost likely fell to botto	m of well						
- pulled R	W0008_pump_c	ut data logger attac	hed						
- puice K	woods pump c	fut, data logger attac	licu						
- repaired fencing									
Geosy	ntec	D							

			I C:	Launch Con Launch Complex ape Canaveral Ai	nplex 34 O& x 34, SWMU CC(r Force Station, F	z M 054 Iorida			
Technician [.] Jo	senh Bartlei	Hf		Date: 09/08/20)11		Time: 0940		
Teennenan. 90	sepir Durtie			Maintenanc	e & Monitorii	ıσ	1 mie: 07 10		
T			Б	Completed		-5	C	-	
Item			Frequency	(yes/no)			Comments or Note	-5	
System operational	on arrival (yes/	no) ¹	Weekly	No	Load disconnect li	ght on - forced on			
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and	connection		Bi-weekly	Yes	-				
Inspect piping and of Clean filters	connections for	leaks	Weekly	Yes					
Ciean inters	from injustion	walla	Monthly	Yes	-				
Clean solar nanels	i totti injection	wells	As Needed	No					
Clean flow meters			As Needed	No					
citan non meters			Astreeded	110			2		
	Extract	tion Wells	1		1	Injectio	n Wells ²	1	1
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.6	101352	288.8	IJ0013	27	26	IJ0014	28	27
RW0008	2.6	84039	265.7	IJ0015	26	26	IJ0016	27	27
1. System on a rec	vcle timer set fo	r 40 min/20 min off.	If system is off.	IJ0017	30	26	IJ0018	26	27
make sure system is	not in 20 min o	off period.	, , , , , , , , , , , , , , , , , , ,	IJ0019	26	26	IJ0020	26	27
o 11 o 1				IJ0021	22	26	IJ0022	28	27
 Use flow meters [multiply total flow 	rate (gpm) by 1	by evenly between in 2 for rate for each w	jection wells. /ell (gph).]						
Battery	Voltage (V)	Percent Charge (%)	t %) Task that need to be completed during the next scheduled visit						
1a	12.17	39.00	need to order mo	ore filters soon: Flo	ow max pleated filte	r cartridge. 2 3/4"	dia., 20 micron		
1b	12.14	32.00							
2a	12.16	39.00							
2b	12.17	39.00							
			<u> </u>						
				Cor	nments				
Battery Analyzer:	Argus Analyzer	, model # AA350.							
Geos	ntec	D							
COL	isultants								

			I Ci	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC(r Force Station, F	2M 054 Iorida			
Technician: Jos	seph Bartle	tt		Date: 09/15/20)11		Time: 1422		
				Maintenanc	e & Monitoriı	19			
Item			Frequency	Completed			Comments or Note	es	
System operational	on arrival (ves/	$(no)^1$	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	onnection	,	Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters.			
Collect water levels	from injection	wells	Monthly	No	*				
Clean solar panels	2		As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				T			
	Extract		н. м.	CI 11		Injectio	n wells		
	(gpm)	(gallons)	Hour Meter Reading (hours)	(32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	(47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.5	112997	365.1	IJ0013	25	28	IJ0014	27	26
RW0008	2.4	94424	335.7	IJ0015	26	28	IJ0016	25	26
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	110017	26	28	110018	27	26
make sure system is	not in 20 min o	off period.	n system is on,	10019	20	20	10020	29	26
				130019	23	27	130020	29	20
2. Use flow meters [multiply total flow :	to distribute flo rate (gpm) by 1	bw evenly between in 2 for rate for each w	ijection wells. /ell (gph).]	130021	38	28	130022	24	20
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	12.67	94.00							
1b	12.73	96.00							
2a	12.70	96.00							
2h	12 73	98.00							
20	12:10	20100							
				Cor	nments				
Geosy	/ntec	D							

			Ι	Launch Con	nplex 34 O&	kМ					
			C	Launch Comple	x 34, SWMU CC	054 Ilorida					
			C.	ape Canaverar Ai	i Force Station, F	lonua					
Technician: Jos	senh Bartlei	Ht		Date: 09/22/11	11 Time: 0052						
reennenn. oo	seph Durtie			Maintenanc	e & Monitorii	ng	Time: 0702				
.			_	Completed		"5					
Item			Frequency	(yes/no)	Comments or Notes						
System operational	on arrival (yes/	no) ¹	Weekly	No	load disconnect light on						
System operational	on departure (y	/es/no)	Weekly	Yes	forced on						
Inspect wiring and c	connection		Bi-weekly	Yes	8						
Inspect piping and connections for leaks Weekly			Weekly	Yes							
Clean filters			Weekly	Yes replaced with cleaned filters							
Collect water levels	from injection	wells	Monthly	No							
Clean solar panels			As Needed	No							
Clean now meters			As Needed	Yes							
	Extract	ion Wells			T	Injectio	n Wells ²	1	1		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final		
RW0007	2.5	123841	436.4	IJ0013	28	27	IJ0014	26	27		
RW0008	2.6	103828	400	IJ0015	27	27	IJ0016	27	27		
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	LJ0017	24	26	LJ0018	23	27		
make sure system is	not in 20 min o	off period.	n system is on,	110019	26	20	110020	28	27		
				100013	28	27	110022	20	27		
2. Use flow meters [multiply total flow :	to distribute flo rate (gpm) by 1	ow evenly between ir 2 for rate for each w	ijection wells. /ell (gph).]	130021	20	27	130022	27	27		
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durin	ng the next sch	neduled visit			
1a	12.08	25.00									
1b	12.11	25.00									
29	12.08	25.00									
24 2h	12.00	25.00	1								
20	12.11	25.00									
				Сог	nments						
0		D									
Geosy	/mtec	U									
COL	isultants										

			I Ca	Launch Con Launch Comple ape Canaveral Ai	nplex 34 O& x 34, SWMU CCC r Force Station, F	2 M 054 Vlorida					
Technician: Jo	seph Bartle	tt		Date: 09/28/11	1		Time: 1236				
				Maintenanc	e & Monitorii	ng					
Item			Frequency	Completed			Comments or Note	25			
System operational	on arrival (ves/	$\left(n_{0}\right)^{1}$	Weekly	(yes/ho) Yes							
System operational	on departure (yes)	/es/no)	Weekly	Yes							
Inspect wiring and	connection	,	Bi-weekly	Yes							
Inspect piping and o	connections for	leaks	Weekly	Yes							
Clean filters Weekly			Weekly	Yes	Yes replaced with cleaned filters						
Collect water levels	from injection	wells	Monthly	No							
Clean solar panels			As Needed	No							
Clean flow meters			As Needed	No	No						
	Extract	tion Wells				Injection	n Wells ²				
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final		
RW0007	2.5	132387	492.5	IJ0013	25	27	IJ0014	27	27		
RW0008	2.6	111063	449.5	LJ0015	30	27	LJ0016	27	27		
1 System on a root	vala timor cat fa	$r 40 \min/20 \min off$	If sustan is off	10017	26	27	10018	28	27		
make sure system is	not in 20 min	off period.	II system is on,	10019	32	27	10020	26	27		
				10021	22	27	110020	28	27		
 Use flow meters [multiply total flow 	to distribute flo rate (gpm) by 1	ow evenly between ir 12 for rate for each w	njection wells. vell (gph).]	130021		21	130022	20	21		
Battery	Voltage (V)	Percent Charge (%)	Task that need to be completed during the next scheduled visit								
1a	12.48	71.00									
1b	12.48	84.00									
2a	12.43	76.00									
2b	12.46	80.00									
				Сог	nments						
collected data from	data loggers, re	edeployed									
Geos	ntec	D									

			Ι	Launch Con	nplex 34 O&	kМ					
			G	Launch Comple	x 34, SWMU CC	054					
			C.	ape Canaveral Al	r Force Station, F	Iorida					
Tashaisiana Ia	and Davida			Data: 10/05/11	1		T: 0025				
Technician: Jos	sepii bartie			Maintonana	a & Manitaria	ng	Time: 0955				
				Completed		ng					
Item Frequency				(ves/no)	Comments or Notes						
System operational	on arrival (yes/	no) ¹	Weekly	No	Load disconnect light on						
System operational	on departure (y	/es/no)	Weekly	Yes	Forced on						
Inspect wiring and c	connection		Bi-weekly	Yes	Yes						
Inspect piping and connections for leaks Wee			Weekly	Yes	es						
Clean filters			Weekly	Yes	Yes Replaced with cleaned filters						
Collect water levels	from injection	wells	Monthly	No							
Clean solar panels			As Needed	No							
Clean flow meters			As Needed	No	No						
	Extract	ion Wells				Injectio	n Wells ²				
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final		
RW0007	2.5	144138	569.8	IJ0013	28	27	IJ0014	27	27		
RW0008	2.6	121025	518	10015	20	27	U0016	26	27		
1 Symtem on a near	ula timon ant fa	n 40 min/20 min off	If any is off	10017	26	26	10018	26	27		
make sure system is	not in 20 min	off period.	11 system is on,	130017	20	20	130018	20	27		
5		1		130015	20	27	130020	26	27		
 Use flow meters [multiply total flow 	to distribute flo rate (gpm) by 1	ow evenly between ir 2 for rate for each w	njection wells. /ell (gph).]	130021	27	21	130022	20	27		
Battery	Voltage (V)	Percent Charge (%)	Task that need to be completed during the next scheduled visit								
1a	11.96	6.00									
1b	11.96	6.00									
2a	11.95	2.00									
2b	11.95	2.00									
				Cor	nments						
0	191	D									
Geosy	mtec	U									
COL	isultants										

			I Ci	Launch Com Launch Complex ape Canaveral Ai	nplex 34 O& x 34, SWMU CCO r Force Station, F	z M 054 Iorida						
Technician [.] Jo	senh Bartlei	it .		Date: 10/13/11			Time: 1046					
reennetan. 50	sepii Dartie			Maintenanc	e & Monitorii	ισ	11mc. 1040					
			_	Completed		15						
Item			Frequency	(yes/no)			Comments or Note	25				
System operational	on arrival (yes/	no) ¹	Weekly	Yes								
System operational	on departure (y	/es/no)	Weekly	Yes	Yes							
Inspect wiring and o	connection		Bi-weekly	Yes								
Inspect piping and c	connections for	leaks	Weekly	Yes								
Clean filters			Weekly	No								
Collect water levels from injection wells			Monthly	No								
Clean solar panels			As Needed	No								
Clean flow meters			As Needed	No								
	Extract	ion Wells			T	Injectio	n Wells ²	I	I			
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final			
RW0007	2.5	153299	629.2	IJ0013	27	27	IJ0014	26	28			
RW0008	2.6	129060	571.8	IJ0015	30	27	IJ0016	28	27			
1 System on a recy	vele timer set fo	r 40 min/20 min off	If system is off	IJ0017	24	26	IJ0018	28	28			
make sure system is	not in 20 min	off period.	n system is on,	110019	27	27	110020	27	28			
				110021	25	27	110022	28	28			
 Use flow meters [multiply total flow 	to distribute flo rate (gpm) by 1	ow evenly between ir 2 for rate for each w	ijection wells. /ell (gph).]	130021	20	27	130022	20	20			
Battery	Voltage (V)	Percent Charge (%)	Task that need to be completed during the next scheduled visit									
1a	12.11	32.00										
1b	12.08	25.00										
2a	12.20	45.00										
2b	12.22	51.00										
				Cor	nments							
Fence repaired												
overcast weather du	iring week											
Geosy	ntec	D										
cor	in and a second											
			I Ci	Launch Con Launch Complex ape Canaveral Ai	nplex 34 O& x 34, SWMU CCG r Force Station, F	z M 054 Iorida						
--	--------------------	------------------------------	---	--	---	-----------------------------	------------------------	----------------------------	--------------------------			
Technician: Jo	seph Bartlet	tt		Date: 10/20/11	1		Time: 1219					
				Maintenanc	e & Monitorii	ng						
Item			Frequency	Completed			Comments or Note	es				
C			Weekky	(yes/no)								
System operational	on arrival (yes/	no)	Weekly	Yes								
Inspect wiring and c	connection	(cs/no)	Bi-weekly	Yes								
Inspect piping and c	connections for	leaks	Weekly	Yes								
Clean filters			Weekly	Yes	replaced with clear	ned filters						
Collect water levels	from injection	wells	Monthly	No								
Clean solar panels	,		As Needed	No								
Clean flow meters			As Needed	No								
	Extract	ion Wells				Inicatio	n Walla ²					
						injectio						
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final			
RW0007	2.6	160697	676.7	IJ0013	30	29	IJ0014	28	27			
RW0008	2.6	135468	612.7	IJ0015	26	29	IJ0016	26	26			
1. System on a recy	vele timer set fo	r 40 min/20 min off.	If system is off.	IJ0017	28	28	IJ0018	27	27			
make sure system is	not in 20 min o	off period.	, i i i i i i i i i i i i i i i i i i i	IJ0019	27	29	IJ0020	27	27			
				IJ0021	31	29	IJ0022	26	27			
2. Use flow meters [multiply total flow	rate (gpm) by 1	2 for rate for each w	ell (gph).]									
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit				
1a	12.84	100.00										
1b	12.81	100.00										
2a	12.75	98.00										
2b	12.78	100.00										
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
				Cor	nments							
overcast weather du	iring week											
Geosy	ntec	D										

			I Ci	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	<b>2M</b> 054 Iorida			
Technician: Jos	seph Bartle	tt		Date: 10/27/11			Time: 1233		
				Maintenanc	e & Monitoriı	ng			
Item			Frequency	Completed (ves/no)			Comments or Note	25	
System operational	on arrival (yes/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	Replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels	v		As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Iniectio	n Wells ²		
	Flow Rate	Volume Produced	Hour Meter	Shallow	Flow Rate (gph)	Flow Rate (gph)	Deep	Flow Rate (gph)	Flow Rate (gph)
	(gpm)	(gailons)	Reading (hours)	(32-42 ft BLS)	Initial	rinal	(4/-3/ IT BLS)	Initial	Final
RW0007	2.6	172662	754.6	IJ0013	26	28	IJ0014	26	27
RW0008	2.6	145857	678.4	IJ0015	30	28	IJ0016	26	27
1. System on a recy	cle timer set fo	or 40 min/20 min off.	If system is off,	IJ0017	24	28	IJ0018	28	27
make sure system is	not in 20 min o	off period.	, j	IJ0019	28	28	IJ0020	28	27
				110021	28	28	110022	28	27
2. Use flow meters [multiply total flow	to distribute flo rate (gpm) by 1	ow evenly between in 12 for rate for each w	ijection wells. vell (gph).]			20	100022	20	2,
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next scl	heduled visit	
1a	12.35	66.00							
1b	12.35	71.00							
2a	12.62	92.00							
2h	12.65	94.00							
20	12.00	94.00							
				Cor	nments				
				Con	mients				
0		P							
Geosy	mtec	U							

			Ι	Launch Con	nplex 34 O&	kМ			
			G	Launch Comple	x 34, SWMU CC	054			
			Ca	ape Canaveral Ai	r Force Station, F	lorida			
Tachnician: Io	onh Partla	"		Data: 11/03/11	1		Time: 1408		
reclinician. Jos	sepii Dartie			Maintonano	o & Monitorii	ng	11iiic. 1400		
				Completed		ng			
Item			Frequency	(yes/no)			Comments or Note	es	
System operational	on arrival (yes/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with new	filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	tion Wells				Injectio	n Wells ²		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.5	180418	805.1	IJ0013	30	28	IJ0014	26	27
RW0008	2.6	153165	726.5	LJ0015	27	28	U0016	26	27
1 System on a rear	role timer cet fe	$r = 40 \min/20 \min off$	If gratem is off	110017	26	28	110018	20	27
make sure system is	not in 20 min	off period.	II system is on,	10019	30	28	110020	25	27
				10021	30	28	10020	23	27
2. Use flow meters [multiply total flow :	to distribute flo rate (gpm) by 1	ow evenly between in 12 for rate for each w	njection wells. vell (gph).]	130021	20	20	130022	20	21
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durii	ng the next scl	neduled visit	
1a	12.16	51.00							
1b	12.24	51.00							
29	12.27	56.00							
24 2h	12.27	56.00							
20	12.27	50.00							
			L						
			<u> </u>						
			L						
				Cor	nments				
Water accumulation	in IJ17 &18 v	ault box. Leaking w	ater funneled into	vault box through s	secondary containm	ent tubing. Approx	. 5 gallons from vau	It box poured	
into IDW drum # 18	35539. Repaire	ed leak at male-male	connector by apply	ying additional hos	e clamps.				
Renaired leaking ma	mifold tubing		7 11 .		Ĩ				
	innold tubilig.								
Collected Datalogge	er data.								
Geosy	/ntec	D							

			I Ca	Launch Con Launch Complex ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	z <b>M</b> 054 Iorida				
Technician: Jos	seph Bartle	tt		Date: 11/10/11	1		Time: 1155			
100111010100	Jeph Durtie			Maintenanc	e & Monitoriı	19	111100			
Item			Frequency	Completed (ves/no)		-8(	Comments or Note	es		
System operational	on arrival (yes/	no) ¹	Weekly	Yes						
System operational	on departure (y	/es/no)	Weekly	Yes						
Inspect wiring and c	connection		Bi-weekly	Yes						
Inspect piping and c	onnections for	leaks	Weekly	Yes						
Clean filters			Weekly	No						
Collect water levels	from injection	wells	Monthly	No						
Clean solar panels			As Needed	No						
Clean flow meters			As Needed	No						
	Extract	ion Wells				Injectio	n Wells ²	1		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	
RW0007	2.5	188701	859.9	IJ0013	26	26	IJ0014	28	27	
RW0008	2.6	160793	776.7	IJ0015	26	26	IJ0016	26	27	
1. System on a recy	cle timer set fo	r 40 min/20 min off.	If system is off.	IJ0017	30	26	IJ0018	28	27	
make sure system is	not in 20 min	off period.	,	IJ0019	24	26	IJ0020	27	27	
				IJ0021	26	26	IJ0022	26	27	
2. Use flow meters [multiply total flow:	to distribute flo rate (gpm) by 1	ow evenly between in 12 for rate for each w	jection wells. /ell (gph).]							
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durin	ng the next scl	heduled visit		
1a	12.86	100.00								
1b	12.89	100.00								
2a	12.81	100.00								
2b	12.81	100.00								
			L	6						
				Cor	nments					
Geosy	/ntec	D								

			I Ci	Launch Con Launch Comple ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	<b>2M</b> 054 Ilorida			
Technician: Jos	seph Bartle	tt		Date: 11/17/11			Time: 0857		
				Maintenanc	e & Monitorii	ng			
Item			Frequency	Completed			Comments or Note	es	
System operational	on arrival (yes/	no) ¹	Weekly	(yes/no)	Load Disconnect' 1	ight on			
System operational	on departure (yes)	res/no)	Weekly	Yes	Forced on	ight on			
Inspect wiring and c	connection	)	Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	New filters installe	d			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels	v		As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Injectio	n Wells ²		
	Extract					injectio			
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.5	199088	928.0	IJ0013	28	27	IJ0014	28	27
RW0008	2.6	170200	838.7	IJ0015	29	27	IJ0016	28	27
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	LJ0017	26	27	LJ0018	28	27
make sure system is	not in 20 min	off period.	II system is on,	10019	26	27	10020	25	27
				10021	26	27	110020	30	27
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	bw evenly between ir 2 for rate for each w	ijection wells. /ell (gph).]	130021	20	21	130022	50	21
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	12.28	56.00							
1b	12.28	56.00							
2a	12.08	25.00							
2b	12.08	25.00							
	1								
			L						
				Cor	nments				
Geosy	ntec	D							
cor	sultants	2 9							

			I Ci	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	<b>2M</b> 054 Iorida			
Technician: Jos	seph Bartle	tt		Date: 11/22/11			Time: 1232		
				Maintenanc	e & Monitoriı	ng			
Item			Frequency	Completed		-8(	Comments or Note	es	
System operational of	on arrival (ves/	$(no)^1$	Weekly	Yes					
System operational of	on departure (v	/es/no)	Weekly	Yes					
Inspect wiring and c	onnection	,	Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No	*				
Clean solar panels	,		As Needed	No					
Clean flow meters			As Needed	Yes					
	Extract	ion Wells				Inicatio	n Walla ²		
	Elaw Pata	Volumo Produced	Hour Motor	Shallow	Flow Pata (mh)	Flow Pata (mh)	Deen	Flow Pata (mb)	Flow Pote (mb)
	(gpm)	(gallons)	Reading (hours)	(32-42 ft BLS)	Initial	Final	(47-57 ft BLS)	Initial	Final
RW0007	2.5	205617	970.2	IJ0013	28	27	IJ0014	27	26
RW0008	2.5	175870	876.3	IJ0015	26	27	IJ0016	28	26
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	110017	25	26	110018	30	26
make sure system is	not in 20 min o	off period.	n system is on,	10019	25	20	10020	24	26
				130019	20	27	130020	24	20
2. Use flow meters [multiply total flow r	to distribute flo rate (gpm) by 1	bw evenly between in 2 for rate for each w	ijection wells. vell (gph).]	130021	28	21	130022	24	20
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	12.94	100.00							
1b	12.67	94.00							
2a	12.52	87.00							
2h	12 52	84.00							
20	12.02	01100							
				Cor	nments				
Geosy	/ntec	D							

			I Ci	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	<b>2M</b> 054 Iorida			
Technician: Jos	seph Bartle	tt		Date: 12/1/11			Time: 0920		
				Maintenanc	e & Monitoriı	19	•		
Item			Frequency	Completed (ves/no)			Comments or Note	25	
System operational	on arrival (yes/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Injectio	n Wells ²		
	Flow Rate	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
DUIGGOS	(or)	,	3 (	(			,		
RW0007	2.5	216612	1043.1	IJ0013	26	27	IJ0014	25	26
RW0008	2.6	185735	940.6	IJ0015	26	27	IJ0016	28	26
1. System on a recy	cle timer set fo	r 40 min/20 min off.	If system is off,	IJ0017	30	27	IJ0018	26	26
make sure system is	not in 20 min o	off period.		IJ0019	27	27	IJ0020	26	26
2 Use flow motors	to distributo fl	w avanly batwaan in	vigation walls	IJ0021	26	27	IJ0022	26	26
[multiply total flow	rate (gpm) by	2 for rate for each w	/ell (gph).]						
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next scl	heduled visit	
1a	12.04	11.00							
1b	12.03	11.00							
2a	12.48	84.00							
2b	12.48	84.00							
	-								
				Cor	nments				
Geosy	ntec	D							
COL	isuitants								

			I Ca	Launch Con Launch Complex ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	2 <b>M</b> 054 Iorida			
Technician: Jo	senh Bartlei	"		Date: 12/7/11			Time: 1007		
10011101010	sepin Durtie			Maintenanc	e & Monitoriı	19	1111011007		
Item			Frequency	Completed (ves/no)		- <del>8</del> -()	Comments or Note	es	
System operational	on arrival (ves/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	No					
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells			_	Injectio	n Wells ²	-	-
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.5	225042	1097.6	IJ0013	27	28	IJ0014	26	27
RW0008	2.6	193040	987.3	IJ0015	30	28	IJ0016	26	26
1 System on a recy	cle timer set fo	or 40 min/20 min off	If system is off	IJ0017	24	27	IJ0018	27	27
make sure system is	not in 20 min	off period.	,	IJ0019	26	28	IJ0020	27	27
				LJ0021	29	28	LJ0022	28	27
2. Use flow meters [multiply total flow	to distribute flo rate (gpm) by 1	ow evenly between ir 12 for rate for each w	ijection wells. /ell (gph).]						
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	12.14	39.00							
1b	12.14	39.00							
2a	12.46	80.00							
2b	12.48	80.00							
		•							
				Car	nmonts				
				COL	minents				
Geosy	/ntec	D							
COL	isuitantis	9							

			I Ca	Launch Con Launch Complex ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	2 <b>M</b> 054 Iorida			
Technician: Jos	senh Bartlet	it .		Date: 12/15/11	1		Time: 1202		
Teenmenan. oo	sepir Durtie			Maintenanc	e & Monitoriı	ıσ	111110: 1202		
Item			Frequency	Completed		- <u>-</u>	Comments or Note	s	
		1	W	(yes/no)	III	11.1.4			
System operational	on arrival (yes/	no)	Weekly	No	"Load Disconnect"	light on			
Inspect wiring and c	connection	(es/110)	Bi-weekly	Ves					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	Replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels	2		As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Injectio	n Wells ²		
			н. м.	C1 11			n wens		
	Flow Rate (gpm)	(gallons)	Hour Meter Reading (hours)	(32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.6	232700	1147.3	IJ0013	26	26	IJ0014	27	27
RW0008	2.6	199720	1030.0	IJ0015	26	26	IJ0016	26	26
1. System on a recy	cle timer set fo	r 40 min/20 min off.	If system is off,	IJ0017	25	26	IJ0018	27	27
make sure system is	not in 20 min o	off period.		IJ0019	27	26	IJ0020	27	27
			· .·	IJ0021	27	26	IJ0022	26	27
2. Use flow meters [multiply total flow	to distribute flo rate (gpm) by 1	2 for rate for each w	yetion wells. vell (gph).]						
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	12.28	56.00							
1b	12.27	56.00							
2a	12.27	51.00							
2b	12.28	56.00							
				C					
				Cor	nments				
Weather - 70s, ovec	ast								
Geosy	/ntec	D							

			I Ci	Launch Con Launch Comple ape Canaveral Ai	nplex 34 O& x 34, SWMU CCC r Force Station, F	z <b>M</b> 054 Iorida			
				1	,		1		
Technician: Jo	seph Bartlet	tt		Date: 12/22/11			Time: 1040		
				Maintenanc	e & Monitorii	ng			
Item			Frequency	Completed (ves/no)			Comments or Note	s	
System operational	on arrival (ves/	$\left[n_{0}\right]^{1}$	Weekly	No	"load disconnect"	light on			
System operational	on departure (y	/es/no)	Weekly	Yes		0			
Inspect wiring and o	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No	-				
Clean flow meters			As Needed	No					
	Extract	tion Wells	1		T	Injectio	n Wells ²	r	1
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.5	240538	1198.6	IJ0013	28	26	IJ0014	26	27
RW0008	2.5	206694	1074.8	IJ0015	25	26	IJ0016	28	26
1. System on a recy	cle timer set fo	or 40 min/20 min off.	If system is off,	IJ0017	26	26	IJ0018	26	27
make sure system is	not in 20 min o	off period.		IJ0019	26	26	IJ0020	26	27
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between ir 12 for rate for each w	njection wells. vell (gph).]	IJ0021	26	26	IJ0022	26	27
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ig the next sch	neduled visit	
1a	12.27	56.00							
1b	12.28	56.00							
2a	12.22	51.00							
2b	12.28	56.00							
				Cor	nments				
data logger data col	llected				linents				
weather 70a arrest	t								
weather: /0s, overc	ası								
Coor	mtos	D							
Geosy	sultants								

			I Ca	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	z <b>M</b> )54 lorida			
Technician: Jo	seph Bartle	tt		Date: 1/5/12			Time: 1534		
				Maintenanc	e & Monitorii	ıg			
Item			Frequency	Completed (ves/no)		•	Comments or Note	es	
System operational	on arrival (yes/	no) ¹	Weekly	No	RW7 not running;	RW8 running			
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and o	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	tion Wells				Injectio	n Wells ²		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	26	249543	1298.4	110013	30	28	110014	28	27
RW0008	2.6	213313	1175.3	100015	28	28	100014 100016	25	26
1 Center	2.0	40 min (20 min 40	1175.5	130013	28	28	10018	25	20
<ol> <li>System on a recy make sure system is</li> </ol>	not in 20 min	off period	11 system is on,	130017	20	28	130018	27	27
marce sure system is		on periodi		130019	27	28	130020	20	27
2. Use flow meters to distribute flow evenly between injection wells. [multiply total flow rate (gpm) by 12 for rate for each well (gph).]								21	
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durin	ng the next scl	neduled visit	
1a	13.21	100.00							
1b	13.26	100.00							
2a	12.56	90.00							
2b	12.59	90.00							
		•							
				Cor	nments				
- Upon arrival, RW	7 pump was no	t running. Inspected	wiring - ok. Swit	ched source wiring	, pump was not resp	oonsive.			
The pump has rea	ched The end o	of its useful life. Repl	aced pump for RV	W7 with spare.					
- Repaired construc	tion fencing.								
*									
Geosy	mtec nsultants	D							

			I Ci	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	<b>2M</b> 054 Iorida			
Technician: Jos	seph Bartle	tt		Date: 1/16/12			Time: 0953		
	•			Maintenanc	e & Monitoriı	าย	•		
Item			Frequency	Completed		-8(	Comments or Note	es	
System operational	on arrival (ves/	$\left( n_{0}\right) ^{1}$	Weekly	Yes					
System operational	on departure (v	/es/no)	Weekly	Yes					
Inspect wiring and c	connection	)	Bi-weekly	Yes					
Inspect piping and c	onnections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No	*				
Clean solar panels	v		As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells			•	Injectio	n Wells ²		
	Flow Rate	Volume Produced	Hour Meter	Shallow	Flow Rate (onh)	Flow Rate (gph)	Deen	Flow Rate (onh)	Flow Rate (gnh)
	(gpm)	(gallons)	Reading (hours)	(32-42 ft BLS)	Initial	Final	(47-57 ft BLS)	Initial	Final
RW0007	2.5	265098	1398.5	IJ0013	25	28	IJ0014	26	26
RW0008	2.5	234235	1252.6	IJ0015	29	28	IJ0016	25	24
1. System on a recy	cle timer set fo	r 40 min/20 min off.	If system is off.	IJ0017	26	27	IJ0018	26	26
make sure system is	not in 20 min o	off period.	, j	IJ0019	28	28	IJ0020	26	26
				LJ0021	26	28	LJ0022	25	26
2. Use flow meters [multiply total flow :	to distribute flo rate (gpm) by 1	ow evenly between in 2 for rate for each w	jection wells. ell (gph).]						
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durin	ng the next sch	neduled visit	
1a	12.11	25.00							
1b	12.09	25.00							
2a	12.01	11.00							
2b	12.03	11.00							
				Cor	nments				
Geosy	mtec sultants	D							

			I	Launch Con	nplex 34 O&	kΜ			
				Launch Comple	x 34, SWMU CC	054			
			C	ape Canaveral Ai	r Force Station, F	lorida			
Technician: J.	Bartlett			Date: 1/26/12	0.34		Time: 1230		
				Maintenanc	e & Monitorii	ng			
Item			Frequency	Completed (ves/no)			Comments or Note	es -	
System operational	on arrival (ves/	$\left[n_{0}\right]^{1}$	Weekly	Yes					
System operational	on departure (yes)	/es/no)	Weekly	Yes					
Inspect wiring and	connection	,	Bi-weekly	Yes					
Inspect piping and o	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	Yes	see below				
Clean solar panels	-		As Needed	Yes					
Clean flow meters			As Needed	No					
	Extract	tion Wells				Injectio	n Wells ²		
	Enduce		-			Injectio			
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.6	279302	1489.8	IJ0013	32	28	IJ0014	27	27
RW0008	2.6	246358	1332.2	IJ0015	27	28	IJ0016	26	27
1 System on a rect	vele timer set fo	or 40 min/20 min off	If system is off	110017	26	28	110018	27	27
make sure system is	s not in 20 min o	off period.	n system is on,	110019	28	28	110020	28	27
		1		10021	30	28	110020	20	27
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between in 12 for rate for each w	ijection wells. vell (gph).]	130021	50	20	130022	27	21
D. II	Voltage	Percent		<b>T</b> 14 4	14.1				
Battery	(V)	Charge (%)		Task that	need to be co	mpleted durir	ig the next sci	ieduled visit	
1a	12.46	80.00							
1b	12.46	80.00							
2a	12.72	96.00							
2b	12.72	96.00	l .						
	<u> </u>								
				Сог	nments				
Collected data logg	er levels. Colle	ected groundwater lev	els manually at ti	me of data logger c	ollection (system w	as on during time of	f collection):		
RW07: 12.78 ft BT	OC @ 1259; R	2W08: 23.12 ft BTO	C @1311; IW2D	l: 6.21 ft BTOC @	1318; IW2D: 5.85	ft BTOC @ 1325;	IJ17: 4.67 ft BTOC	@1335	
IJ18: 3.77 ft BTOC	@ 1342; IJ13	: 3.67 ft BTOC @ 13	49; IJ14: 5.96 ft	BTOC @1400					
Coor	mtoo	D							
Geos	sultants								
COL	istituitts								

			I Ca	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	2 <b>M</b> 054 Iorida			
Technician• I F	Rartlett			Date: 2/6/12			Time: 1407		
reenneian. 5 r	Jartiett			Maintenanc	e & Monitorii	na	11iiie: 1407		
			1	Completed		ig			
Item			Frequency	(ves/no)		•	Comments or Note	es	
System operational	on arrival (yes/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				I			
	Extract					Injectio	n wells		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.6	293427	1580.5	IJ0013	26	28	IJ0014	26	27
RW0008	2.6	258227	1411.1	LJ0015	30	28	LJ0016	26	27
1 Crustern en e near	ula timon ant fa	n 40 min/20 min off	If anotam is aff	110017	20	20	110018	20	27
make sure system is	not in 20 min	off period	II system is on,	130017	23	29	130010	27	27
mane sare system is	100 11 20 1111	in periodi		130019	31	20	130020	27	27
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between in 2 for rate for each w	ijection wells. /ell (gph).]	IJ0021	26	28	1J0022	27	27
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next scl	neduled visit	
1a	12.54	87.00							
1b	12.54	87.00							
2a	12.64	92.00							
2h	12.67	94.00							
20	12.07	54.00							
				Cor	nments				
Geosy	mtec sultants	D							

			Ι	Launch Con	nplex 34 O&	kΜ					
				Launch Comple	x 34, SWMU CCO	054					
			Ca	ape Canaveral Ai	r Force Station, F	lorida					
Technician: J I	Rartlett			Date: 2/14/12			Time: 0923				
reennenni or	buittett			Maintenanc	e & Monitorii	ıσ	1 mile: 0/20				
<b>T</b> .				Completed		*5					
Item			Frequency	(yes/no)			Comments or Note	25			
System operational	on arrival (yes/	no) ¹	Weekly	Yes							
System operational	on departure (y	/es/no)	Weekly	No	system will be resta	arted 2/17/12					
Inspect wiring and o	connection		Bi-weekly	Yes							
Inspect piping and c	connections for	leaks	Weekly	Yes							
Clean filters			Weekly	No							
Collect water levels	from injection	wells	Monthly	No							
Clean solar panels			As Needed	No							
Clean flow meters			As Needed	No	No						
	Extract	tion Wells				Injectio	n Wells ²				
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final		
RW0007	2.6	302185	1636.7	110013	30	27	110014	26	26		
PW0008	2.0	265760	1461.2	130015	24	27	130014	20	26		
KW0008	2.5	203700	1401.2	130013	24	27	10010	20	20		
<ol> <li>System on a recy</li> </ol>	ycle timer set fo	or 40 min/20 min off.	If system is off,	1J0017	28	27	1J0018	26	26		
make sure system is	s not in 20 min o	on period.		IJ0019	24	27	IJ0020	26	26		
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between ir 12 for rate for each w	njection wells. vell (gph).]	IJ0021	28	27	IJ0022	26	26		
D. //	Voltage	Percent		T							
Battery	(V)	Charge (%)		Task that	need to be co	inpleted durit	ig the next sci	leuuleu visit			
1a	12.12	32.00									
1b	12.11	32.00									
2a	12.08	25.00									
2b	12.09	25.00									
				Cor	nments						
Data logger data co	ollected 2/16/20	12.									
Water levels - 1113:	5 85 # BTOC	@ 0021 (unable to c	ollect data logger	data - connection t	imed out): 1114: 61	0 ft BTOC @ 1223	2. IW2D1. 6 28 # I	BTOC @ 1231			
water levels - 1315.	5.85 11 BTOC				inied out), 1314. 0.1	10 It BTOC @ 1222	., 1w2D1: 0.28 it 1				
IW2D: 6.14 ft BTC	DC @ 1239; RV	W7: 5.47 ft BTOC @	0) 1245; RW8: 5.3	3 ft BTOC @ 1253	3; IJ17: 5.43 ft BTC	DC @ 1302; IJ18: 5	5.70 ft BTOC @130	)7			
Geos	mtec	D									
cor	isultants										

			I	Launch Con Launch Complex	<b>nplex 34 O&amp;</b> x 34, SWMU CC	<b>2M</b> 054					
			C	ape Canaveral Ai	r Force Station, F	lorida					
Technician: J B	Bartlett			Date: 3/2/12			Time: 1030				
10011101110				Maintenanc	e & Monitoriı	19	1111101 1000				
Item			Frequency	Completed		-8	Comments or Note	•c			
item		,	Frequency	(yes/no)			comments of 1.0tt	.3			
System operational of	on arrival (yes/	no) ¹	Weekly	Yes							
System operational of	on departure (y	/es/no)	Weekly	Yes							
Inspect wiring and c	onnection		Bi-weekly	Yes							
Inspect piping and c	onnections for	leaks	Weekly	Yes	<b>B</b> 1 1 11 1	Desile a deside al consta d'Itana					
Clean filters			Weekly	Yes	Replaced with clea	ined filters					
Collect water levels	from injection	wells	Monthly	No							
Clean solar panels			As Needed	No							
Clean flow meters			As Needed	No							
	Extract	ion Wells			1	Injectio	n Wells ²				
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final		
RW0007	2.6	322727	1768.6	IJ0013	26	28	IJ0014	26	27		
RW0008	2.6	283067	1574.2	LJ0015	30	28	LJ0016	26	27		
1 Syntam on a near	ala timon act fa	n 40 min/20 min off.	If anotam is aff	110017	27	28	110018	26	27		
make sure system is	not in 20 min	off period	II system is on,	10010	20	20	10020	20	27		
nanc sale system is	100 11 20 1111	in periodi		130019	29	20	130020	28	27		
<ol> <li>Use flow meters [multiply total flow reads)</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between ir 2 for rate for each w	ijection wells. /ell (gph).]	1J0021	21	28	130022	28	27		
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next scl	neduled visit			
1a	12.44	76.00									
1b	12.46	80.00									
2a	12.56	87.00									
24 2h	12.50	90.00									
20	12.39	90.00									
				Car	nmonte						
				Cu	minents						
Geosy	/ntec	D									

			I Ca	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	<b>2M</b> 054 Ilorida			
Tashnisian, L	Doutlott			Data, 2/15/12			Time, 1300		
Technician: J.	Dartiett			Maintonana	o & Monitoria		11me: 1500		
				Completed	e & Montorn	ig			
Item			Frequency	(ves/no)		•	Comments or Note	s	
System operational	on arrival (ves/	no) ¹	Weekly	No	RW7 not running,	RW8 running			
System operational	on departure (y	/es/no)	Weekly	Yes		· · · · ·			
Inspect wiring and o	connection	,	Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Injectio	n Wells ²		
	El Dt.	Mahara Barahara I	H	Cl 11	Elem Dete (col)	Elem Data (cal)	Dur	E1	Eleme Deter (end)
	(gpm)	(gallons)	Hour Meter Reading (hours)	(32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.8	328054	1957.4	IJ0013	29	30	IJ0014	28	28
RW0008	2.6	299640	1681.9	IJ0015	32	30	IJ0016	28	28
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	IJ0017	30	30	IJ0018	28	28
make sure system is	not in 20 min o	off period.	n system is on,	110019	30	30	110020	28	28
		î		10021	32	30	10022	28	28
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between in 2 for rate for each w	ijection wells. /ell (gph).]	130021	52	50	130022	20	20
Battery	Voltage (V)	Percent Charge (%)	Task that need to be completed during the next scheduled visit						
1a	14.06	100.00							
1b	13.72	100.00							
2a	12.60	90.00							
2b	12.64	92.00							
				Cor	nments				
D 1	DW0007			001	linents				
Replaced pump for	K W 000 /								
Geosy	mtec	D							

			I	Launch Comple	nplex 34 O&	<b>2M</b> 054				
			Ca	ape Canaveral Ai	r Force Station, F	lorida				
Technician: J.	Bartlett			Date: 4/5/12			Time: 1300			
				Maintenanc	e & Monitoriı	ng				
<b>T</b> .			-	Completed						
Item			Frequency	(yes/no)			Comments or Note	25		
System operational	on arrival (yes/	no) ¹	Weekly	No	RW8 pumping; RV	W7 off				
System operational	on departure (y	/es/no)	Weekly	Yes						
Inspect wiring and	connection		Bi-weekly	Yes						
Inspect piping and	connections for	leaks	Weekly	Yes						
Clean filters			Weekly	Yes Replaced with cleaned filters						
Collect water levels	from injection	wells	Monthly	No						
Clean solar panels			As Needed	No	-					
Clean flow meters			As Needed	No						
	Extract	ion Wells	I		I	Injectio	n Wells ²	I	I	
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	
RW0007	2.7	347393	2210.5	IJ0013	30	30	IJ0014	28	28	
RW0008	2.6	330755	1881.4	IJ0015	28	30	IJ0016	28	28	
1 System on a rec	vele timer set fo	r 40 min/20 min off	If system is off	LJ0017	30	29	LJ0018	28	28	
make sure system is	s not in 20 min o	off period.	n system is on,	110019	30	30	110020	28	28	
		î		10021	28	30	110022	28	28	
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between ir 12 for rate for each w	jection wells. rell (gph).]	130021	20	50	130022	20	20	
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit		
1a	13.69	100.00								
1b	13.71	100.00								
2a	12.76	98.00								
2b	12.75	98.00								
		,								
			L							
				Сог	nments					
Tubing for RW7 ha	d slipped off of	90° located at well top	of casing. Will cale	culate operating time	using flow. When rec	onnected, observed p	umping rate to be very	у		
slow. Pulled pump, n	oticed thick cake	layer on sediment sock	on pump. Washed	off and redeployed pu	mp. Flow observed to	o be normal after clear	ning.			
Leaking for manifo	ld, replaced crad	cked tubing segments	3.							
Collected data logg	er data and rem	oved all data loggers	except 2 remainin	ng in RW7 and RW	78.					
Repaired constructi	ion fencing.									
-	-									
Geos	yntec nsultants	D								

			I Ci	Launch Con Launch Comple: ape Canaveral Ai	nplex 34 O& x 34, SWMU CCO r Force Station, F	<b>2 M</b> 054 Iorida			
Tochnician: L	Dortlatt			Data: 1/10/12			Time: 1025		
rechincian. 5.	Dartiett			Maintenanc	e & Monitorii	na	Time. 1025		
				Completed		ig			
Item			Frequency	(ves/no)			Comments or Note	es	
System operational	on arrival (yes/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and c	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes	replaced with clear	ned filters			
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Inicatio	n Walls ²		
	LAHdet			~ 4		injectio			
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.6	368404	2346	IJ0013	26	26	IJ0014	25	26
RW0008	2.5	349626	2001	IJ0015	27	26	IJ0016	25	26
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	LJ0017	26	26	LJ0018	25	26
make sure system is	not in 20 min	off period.	ii system is on,	110019	20	26	110020	26	26
				10021	24	26	10020	26	26
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	bw evenly between in 2 for rate for each w	njection wells. /ell (gph).]	130021	24	20	130022	20	20
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next sch	neduled visit	
1a	12.16	39.00							
1b	12.12	25.00							
2a	12.56	87.00							
2b	12.60	90.00							
		,							
				Cor	nments				
Geosy	mtec sultants	D							

			I Ci	Launch Con Launch Complex ape Canaveral Ai	nplex 34 O& x 34, SWMU CC( r Force Station, F	<b>zM</b> 054 Iorida			
Taskaisian I	D =41 = 44			Data: 5/4/12			T: 1055		
Technician: J.	Bartiett			Date: 5/4/12	o fo Monitoria		11me: 1055		
				Completed	e & Montorn	ig			
Item			Frequency	(ves/no)			Comments or Note	s	
System operational	on arrival (ves/	no) ¹	Weekly	Yes					
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and o	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters			Weekly	Yes replaced with cleaned filters					
Collect water levels	from injection	wells	Monthly	No					
Clean solar panels			As Needed	No					
Clean flow meters			As Needed	No					
	Extract	ion Wells				Injectio	n Wells ²		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	26	391657	2496.5	110013	26	27	110014	28	27
PW0008	2.0	370668	2135.4	10015	20	27	130014	28	27
KW0008	2.0	370008	2133.4	10017	28	27	10010	23	20
<ol> <li>System on a recy make sure system is</li> </ol>	ycle timer set to	or 40 min/20 min off.	If system is off,	IJ0017	26	27	10018	28	27
make sure system is	101 11 20 1111	on period.		130019	30	27	1J0020	28	27
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between in 2 for rate for each w	jection wells. rell (gph).]	1J0021	28	27	1J0022	27	27
Battery	Voltage (V)	Percent Charge (%)	Task that need to be completed during the next scheduled visit						
1a	12.43	80.00							
1b	12.43	76.00							
2a	12.52	84.00							
2b	12.56	87.00	1						
				Cor	nments				
renaired cracked ma	anifold hose								
repaired cracked m	uniola nose.								
Geosy	ntec nsultants	D							

			I	Launch Con Launch Comple	nplex 34 O& x 34, SWMU CC	<b>kM</b> 054			
			C	ape Canaveral Ai	r Force Station, F	lorida			
Technician: J. ]	Bartlett			Date: 5/17/12			Time: 0936		
				Maintenanc	e & Monitori	ng			
Item			Frequency	Completed		<u></u>	Comments or Note	es	
C			Waalshy	(yes/no)					
System operational	on arrival (yes/	no)	Weekly	Yes					
System operational	on departure ()	(65/110)	Di waaluku	I es	-				
Inspect wiring and o	connections for	laaka	BI-weekiy Waaldky	I es	-				
Clean filters	onnections for	ICAKS	Weekly	I es	raplaced with aleas	and filters			
Collect water levels	from injustion	walls	Monthly	I es	replaced with clear	neu miters			
Clean solar papels	II OIII IIJectioii	wells	As Needed	No					
Clean flow maters			As Needed	No					
Clean now meters			As Needed	INO					
	Extract	ion Wells			T	Injectio	n Wells ²	1	1
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.6	407750	2601.8	IJ0013	26	28	IJ0014	27	27
RW0008	2.5	386050	2234.7	LJ0015	26	28	LJ0016	25	26
1 Symtem on a near	ula timan aat fa	n 40 min/20 min off	If anotam is off	10017	20	20	10018	25	20
<ol> <li>System on a recy make sure system is</li> </ol>	not in 20 min	of 40 min/20 min off.	11 system is on,	130017	25	27	10018	27	27
make sure system is	not in 20 min v	on period.		1J0019	26	28	1J0020	26	27
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between ir 2 for rate for each w	ijection wells. vell (gph).]	1J0021	28	28	130022	28	27
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next scl	neduled visit	
1a	12.17	45.00							
1b	12.17	39.00							
2a	12.30	66.00							
2h	12.36	71.00							
20	12.50	/1.00							
				Car	monto				
					nments				
- cleaned sediment	sock for RW00	007 after observing lo	ower than normal i	low.					
- measurements we	re collected aft	er cleaning of the sec	liment sock for RV	W07					
C		D							
Geosy	sultants	~							
		2							

			I Ca	Launch Con Launch Comple ape Canaveral Ai	nplex 34 O& x 34, SWMU CCC ir Force Station, F	<b>2M</b> 054 Ilorida			
Technician: I	Dartlatt			Data: 6/7/12			Time: 0851		
rechnician. 5.	Dartiett			Maintenanc	e & Monitori	na	1 mie. 0051		
				Completed		ig			
Item			Frequency	(yes/no)			Comments or Note	es	
System operational	on arrival (yes/	no) ¹	Weekly	No	Load disconnect li	ght on			
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and o	connection		Bi-weekly	Yes					
Inspect piping and c	connections for	leaks	Weekly	Yes					
Clean filters	c		Weekly	No					
Collect water levels	s from injection	wells	As Needed	No					
Clean flow meters			As Needed	No					
clean now meters			Astreeded	140					
	Extract	tion Wells			T	Injectio	n Wells ²	T	
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.5	434684	2778.9	IJ0013	22	27	IJ0014	26	26
RW0008	2.5	411500	2400.1	IJ0015	26	27	IJ0016	26	26
1. System on a recy	vele timer set fo	or 40 min/20 min off.	If system is off,	IJ0017	24	26	IJ0018	26	27
make sure system is	s not in 20 min o	off period.		IJ0019	28	26	IJ0020	28	26
o 11 o .			· .·	IJ0021	26	26	IJ0022	28	26
2. Use flow meters [multiply total flow	rate (gpm) by 1	12 for rate for each w	ell (gph).]						
Battery	Voltage (V)	Percent Charge (%)		Task that need to be completed during the next scheduled visit					
1a	12.27	56.00							
1b	12.24	51.00							
2a	12.30	66.00							
2b	12.33	66.00							
				Car	4				
					nments				
- weather overcast,	, 70s								
- repaired leaking s	segment of man	ifold							
Geosy	yntec nsultants	D							

			I	Launch Com Launch Comple	nplex 34 O& x 34, SWMU CC	<b>&amp;M</b> 054			
			Ca	ape Canaveral Ai	ir Force Station, F	Florida			
Technician: J.	Bartlett			Date: 6/21/12			Time: 1230		
				Maintenanc	e & Monitorii	ng			
Item			Frequency	Completed			Commonts or Note	26	
nem			Frequency	(yes/no)			Comments of Note	:8	
System operational	on arrival (yes/	no) ¹	Weekly	No	Both pumps down	upon arrival			
System operational	on departure (y	/es/no)	Weekly	Yes					
Inspect wiring and	connection		Bi-weekly	Yes					
Inspect piping and o	connections for	leaks	Weekly	Yes	1 1 51 1	1.61			
Clean filters	c	11 -	Weekly	Yes	replaced with clear	ned niters			
Collect water levels	from injection	wells	Monthly	No					
Clean flow maters			As Needed	No					
Clean now meters			As Needed	NO					
	Extract	tion Wells	•		1	Injectio	n Wells ²	1	1
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final
RW0007	2.6	445425	2932.7	IJ0013	26	26	IJ0014	32	28
RW0008	2.6	420846	2517.7	IJ0015	28	26	IJ0016	30	28
1 System on a recy	vele timer set fo	or 40 min/20 min off	If system is off	IJ0017	28	27	IJ0018	32	28
make sure system is	not in 20 min	off period.	,	LJ0019	26	26	LJ0020	26	28
				110021	29	26	110022	28	28
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between in 12 for rate for each w	jection wells. rell (gph).]					-	
Battery	Voltage (V)	Percent Charge (%)		Task that	<b>x</b> that need to be completed during the next scheduled visit				
1a	12.89	100.00							
1b	13.05	100.00							
2a	13.61	100.00							
2b	13.68	100.00							
				Col	nments				
- checked wiring for	or pump RW7, j	pulled pumps and tes	ted by hooking dir	ectly to battery - n	oise like motor is tr	ying to turn, but jan	nmed. Replaced pu	mp for RW7.	
- checked wiring for	or pump RW8, j	pulled pump and test	ed - unresponsive.	Replaced pump for	or RW8				
- repaired leaking r	nanifold tubing.								
- readings colleced	at 1555.								
Geosy	ntec	D							

			Ι	Launch Con	nplex 34 O&	kΜ				
				Launch Comple	x 34, SWMU CCO	054				
			Ca	ape Canaveral Ai	r Force Station, F	lorida				
<b></b>	D (1) (1)			D /			T: 1007			
Technician: J.	Bartlett			Date: //10/12	0 M · · ·		Time: 1005			
				Maintenanc	e & Monitorii	ng				
Item			Frequency	(ves/no)			Comments or Note	25		
System operational	on arrival (yes/	no) ¹	Weekly	No	RW7 running, RW	8 not running.				
System operational	on departure (y	/es/no)	Weekly	Yes		-				
Inspect wiring and c	connection		Bi-weekly	Yes						
Inspect piping and c	onnections for	leaks	Weekly	Yes						
Clean filters			Weekly	No						
Collect water levels	from injection	wells	Monthly	No						
Clean solar panels			As Needed	No						
Clean flow meters			As Needed	No						
	Extract	tion Wells			•	Injectio	n Wells ²		•	
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	
RW0007	2.5	471.010	3106.7	IJ0013	32	26	IJ0014	28	28	
RW0008	2.6	434,550	2681.1	IJ0015	26	26	IJ0016	28	28	
1 System on a recy	cle timer set fo	$r 40 \min/20 \min off$	If system is off	LJ0017	24	25	LJ0018	28	28	
make sure system is	not in 20 min o	off period.	ii system is on,	110019	25	26	110020	28	28	
		-		10021	25	26	110022	28	28	
2. Use flow meters to distribute flow evenly between injection wells. [multiply total flow rate (gpm) by 12 for rate for each well (gph).]										
Battery	Voltage (V)	Percent Charge (%)	Task that need to be completed during the next scheduled visit							
1a	12.27	61.00								
1b	12.28	56.00								
2a	12.88	100.00								
2b	12.89	100.00	1							
				2						
	DUVO :		TOC (D)		nments	1 101 00 0	. 1			
- Inspected piping i	n Kw8, pipe w	as disconnected at el	bow at TOC of R	w. Hose clamp m	ist have rusted throu	ugn and tell off. Re	connected piping a	nd replaced		
hose clamp. Syste	m operated nor	rmally.								
- Cleared tall grass	and weeds fror	n wells and piping ru	ns.							
C		D								
Geosy	/ntec	-								
COL	isultants	9								

			Ι	Launch Con Launch Comple	nplex 34 O& x 34, SWMU CC	<b>2M</b> 054				
			C	ape Canaveral Ai	r Force Station, F	lorida				
Technician: I	Rartlett			Data: 7/10/12 Time: 0026						
reennetan. 9.	Dartiett			Maintenanc	e & Monitorii	ng	Time: 0)20			
T.t			Б	Completed			C			
Item			Frequency	(yes/no)			Comments or Note			
System operational on arrival (yes/no) ¹ Weekly			Yes							
System operational on departure (yes/no) Weekly			Yes							
Inspect wiring and c	connection		Bi-weekly	Yes						
Inspect piping and c	connections for	leaks	Weekly	Yes						
Clean filters			Weekly	Yes	replaced with clear	ned filters				
Collect water levels	from injection	wells	Monthly	No						
Clean solar panels			As Needed	No	-					
Clean flow meters			As Needed	Yes						
	Extract	ion Wells				Injectio	n Wells ²		1	
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	
RW0007	2.4	481880	3180.9	IJ0013	25	25	IJ0014	25	26	
RW0008	2.5	445710	2753.0	IJ0015	24	25	IJ0016	24	26	
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	LJ0017	26	25	LJ0018	26	26	
make sure system is	not in 20 min	off period.	ii system is on,	110019	20	25	110020	20	26	
		î		100013	22	25	10020	25	26	
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between ir 2 for rate for each w	ijection wells. /ell (gph).]	130021	21	20	130022	20	20	
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durin	ng the next sch	neduled visit		
1a	12.38	71.00								
1b	12.36	71.00								
2a	12.59	90.00								
2b	12.62	92.00								
				Сог	nments					
0		D								
Geosy	ntec	U								
COL	istitiants									

			I	Launch Con	nplex 34 O&	kΜ				
			0	Launch Comple	x 34, SWMU CC	054				
			C;	ape Canaveral Ai	ir Force Station, F	lorida				
Taskaisian I	D									
Technician: J.	Bartlett			Date: 8/2/12	- 9 M		1 ime: 0920			
				Completed	e & Monitorii	ng				
Item			Frequency	(ves/no)			Comments or Note	es -		
System operational	on arrival (yes/	no) ¹	Weekly	No	"load disconnect"	light on				
System operational	on departure (y	/es/no)	Weekly	Yes	forced on by disco	nnecting/reconnecti	ng battery terminals	ŝ		
Inspect wiring and connection Bi-week			Bi-weekly	Yes						
Inspect piping and connections for leaks W			Weekly	Yes		1.01				
Clean filters	e	11	Weekly	Yes	replaced with clear	ned filters				
Collect water levels	from injection	wells	Ac Needed	No						
Clean flow meters			As Needed	No						
	_		Astreeded	110			2			
	Extract	tion Wells	-			Injectio	n Wells ²		1	
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	
RW0007	2.4	500950	3311.7	IJ0013	26	25	IJ0014	27	26	
RW0008	2.5	464280	2870.3	IJ0015	25	25	IJ0016	25	26	
1. System on a recy	ycle timer set fo	or 40 min/20 min off.	If system is off,	IJ0017	22	25	IJ0018	26	26	
make sure system is	not in 20 min o	off period.		IJ0019	26	25	IJ0020	26	26	
2 Use flow motors	to distributo fl	aw ayanly batwaan ir	viaction walls	IJ0021	26	25	IJ0022	26	26	
[multiply total flow	rate (gpm) by 1	12 for rate for each w	/ell (gph).]							
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next scl	neduled visit		
1a	12.32	51.00								
1b	12.25	45.00								
2a	12.64	66.00								
2b	12.64	90.00								
				C	4					
				Cor	nments					
Drums remaining or	nsite: Pallet 183	3805 - Drums 183808	3, 183807; Pallet 1	85408 - Drums 19	0485, 188680					
0		D								
Geosy	ntec									
COL	isultants									

			Ι	Launch Com	nplex 34 O&	2 <b>M</b>				
			C	ape Canaveral Ai	r Force Station, F	lorida				
Technician: J.	Bartlett			Date: 8/16/12 Time: 1350						
				Maintenanc	e & Monitoriı	19	•			
Item			Frequency	Completed (ves/no)			Comments or Note	es		
System operational	on arrival (yes/	no) ¹	Weekly	Yes						
System operational	on departure (y	/es/no)	Weekly	Yes						
Inspect wiring and o	connection		Bi-weekly	Yes						
Inspect piping and c	connections for	leaks	Weekly	Yes						
Clean filters			Weekly	Yes	Replaced with clear	ned filters				
Collect water levels	from injection	wells	Monthly	No						
Clean solar panels			As Needed	No						
Clean flow meters			As Needed	No						
	Extract	tion Wells				Injectio	n Wells ²			
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	
P.W0007	2.5	510204	3/20 5	LI0012	25	26	110014	20	20	
RW0007	2.5	482120	2081.1	130015	23	20	130014	30	29	
RW0008	2.6	482120	2981.1	1J0015	26	26	1J0016	30	29	
<ol> <li>System on a recy</li> </ol>	ycle timer set fo	or 40 min/20 min off.	If system is off,	IJ0017	26	26	IJ0018	28	29	
make sure system is	not in 20 min o	off period.		IJ0019	24	26	IJ0020	28	29	
<ol> <li>Use flow meters [multiply total flow</li> </ol>	to distribute flo rate (gpm) by 1	ow evenly between ir 12 for rate for each w	ijection wells. /ell (gph).]	IJ0021	24	26	IJ0022	28	29	
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ng the next scl	neduled visit		
1a	12.65	94.00								
1b	12.65	92.00								
2a	13.02	100.00								
2b	12.94	92.00								
				Cor	nments					
				COL	minents					
Repaired leaking ma	anifold tubing.									
Geosy	ntec	D								
COL	isultants									

			I	Launch Con	nplex 34 O&	λM				
			C	Launch Comple ape Canaveral Ai	x 34, SWMU CC r Force Station, F	054 Iorida				
Technician: J. J	Bartlett			Date: 09/06/12 Time: 1000						
				Maintenanc	e & Monitori	ng				
τ.			-	Completed		-5				
Item			Frequency	(yes/no)			Comments or Note	-5		
System operational	on arrival (yes/	no) ¹	Weekly	Yes						
System operational on departure (yes/no) Weekly			Weekly	Yes						
Inspect wiring and connection B			Bi-weekly	Yes						
Inspect piping and connections for leaks			Weekly	Yes		A . 400 A				
Clean filters			Weekly	Yes	replaced with clear	ned filters				
Collect water levels	from injection	wells	Monthly	No	-					
Clean solar panels			As Needed	No						
Clean flow meters			As Needed	No						
	Extract	ion Wells				Injectio	n Wells ²	1		
	Flow Rate (gpm)	Volume Produced (gallons)	Hour Meter Reading (hours)	Shallow (32-42 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	Deep (47-57 ft BLS)	Flow Rate (gph) Initial	Flow Rate (gph) Final	
RW0007	2.4	543077	3605.6	IJ0013	22	24	IJ0014	28	27	
RW0008	2.6	504939	3120.5	IJ0015	25	24	IJ0016	26	27	
1 System on a recy	cle timer set fo	r 40 min/20 min off	If system is off	110017	23	24	110018	28	27	
make sure system is	not in 20 min o	off period.	n system is on,	10019	23	24	10020	28	27	
, , , , , , , , , , , , , , , , , , ,		1		130015	24	24	130020	20	27	
2. Use flow meters [multiply total flow :	to distribute flo rate (gpm) by 1	w evenly between in 2 for rate for each w	ijection wells. rell (gph).]	130021	24	24	130022	21	21	
Battery	Voltage (V)	Percent Charge (%)		Task that	need to be co	mpleted durir	ig the next sch	neduled visit		
1a	12.28	56.00								
1b	12.24	51.00								
2a	12.59	90.00								
2b	12.59	90.00								
				Cor	nments					
repaired leaking man	nifold tubing									
marked locations for	r 12 mth DPT s	oil sampling								
utility locate with Se	ean O'Brien and	Eddie Crayton								
C		D								
Geosy	/ntec									

## **APPENDIX F: CVOC MASS CALCULATIONS**

Standard Area         Standard Area         Constraints Area         Constra         Constra         Constr			Hi	gh Permeability Layer				L	ow Permeability Layer	
Internet Nation         3, 700         6 at         Bood are aff CE preter           Name         12,00         cols h         Add St Encodel         Constrained         Add St Encodel         Name         Constrained         Add St Encodel         Name         Add St Encode         Name         Nam	Groundwater Pore Volun	ne				Groundwater Pore Volu	me	-	D 1 amon	
Status         Status         Status         Constant Merch         Status         Constant Merch         Status         Constant Merch         Status         Status<	Treatment Area	3,700	sq ft	Based on area of TCE greater than 300 $\mu$ g/L		Treatment Area	3,700	sq ft	Based area of TCE greater t	
Display         Control         Asex X latered (work)         Asex X latered (work) </td <td>Freatment Interval</td> <td>33</td> <td>ft</td> <td>23 to 42 and 48 to 62 ft BLS for entire treatment are</td> <td>a</td> <td>Treatment Interval</td> <td>6</td> <td>ft</td> <td>42 to 48 ft BLS for entire tro</td>	Freatment Interval	33	ft	23 to 42 and 48 to 62 ft BLS for entire treatment are	a	Treatment Interval	6	ft	42 to 48 ft BLS for entire tro	
Tanking         0.3         Provide of SARD (intermed Web Value)         Provide of SARD (intermed Web Value)         Provide of SARD (inter Web Value)         Provide SARD (inter Web Value)         Provid	Freatment Volume	122,100	cubic ft	Area X Interval		Treatment Volume	22,200	cubic ft	Area X Interval	
Simulation by Volum         36.00 Large Large	Porosity	0.3		Porosity of Sand (Freeze and Cherry 1979)		Porosity	0.4		Porosity of Clay (Freeze and	
Neght         1,01/241         Less         Call Might         Call Might         Call Might         Call Might           Noncer, 6 as         3,00         op         Based marce of TCE groater fam 300 gpL.         Transver fam         3,00         op         Based marce of TCE groater           Nameer, Value         5,00         op         Based marce of TCE groater         State of the state of TCE groater         State of the state of th	Groundwater Pore Volume	36,630	cubic ft	Volume X Porosity		Groundwater Pore Volume	e 8,880	cubic ft	Volume X Porosity	
March 20, 200         Status         March 200         Status         March 200	ail Waight	1,037,244	liters			Soil Weight	251,453	liters		
Name         Name <th< td=""><td>Freetment Area</td><td>3 700</td><td>sa ft</td><td>Based on area of TCE greater than 300 µg/I</td><td></td><td>Son weight</td><td>3 700</td><td>sa ft</td><td>Based area of TCE greater t</td></th<>	Freetment Area	3 700	sa ft	Based on area of TCE greater than 300 µg/I		Son weight	3 700	sa ft	Based area of TCE greater t	
Sommer         Object         Area X Interval         Training Volume         22,00         offs fig         Area X Interval           100         Density         30         Boold off.         Karea Volume         22,00         Area fig         Area X Interval           101         Density         30         Boold off.         Sait Density         Sait Density         Boold Volume         22,00         off. fig         Area X Interval           100         Weight         318.577         Kg         Sait Density X Trainment Volume         Sait Density X Trainment Volume<	Treatment Interval	3,700	sq n ft	34.5 to $42$ and $48$ to $55$ ft BLS for treatment area (sa	mpled interval)	Treatment Interval	5,700	sq n ft	42 to 48 ft BI S for entire tre	
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	reatment Volume	53 650	cubic ft	Area X Interval	impled interval)	Treatment Volume	22 200	cubic ft	Area X Interval	
No.         No. <td>reatment volume</td> <td>130</td> <td>lbs/cubic ft_saturated</td> <td>Saturated unit weight of Sand dense and uniform (I.</td> <td>indeburg 2001)</td> <td>Treatment volume</td> <td>110</td> <td>lbs/cubic ft</td> <td>Saturated unit weight of Cla</td>	reatment volume	130	lbs/cubic ft_saturated	Saturated unit weight of Sand dense and uniform (I.	indeburg 2001)	Treatment volume	110	lbs/cubic ft	Saturated unit weight of Cla	
isid Wogkl         3,13,377         isid         Soli Density X Treamont Volume         Soli Wogkl         1,107,23         isid Density X Treamont Volume           March, 2011         Sengle Dare         Average Conservation on Concentration on Concontration on Concentration	Soil Density	59	kg/cubic ft, saturated	Sutarated and weight of Sana, dense and annorm (E	indebulg 2001)	Soil Density	50	kg/cubic ft	Suturated unit weight of Cia	
BASELINE FLUX PHASE (14 March 2011 to 14 April 2011)           March 2011         Sample Date Concentration Concentration         Mases           1-bebell         (agrL)         (fiba)         Final Biomass Growth         March 2011         Sample Date Concentration         March 2011           1-bebell         (agrL)         (fiba)         Final Biomass Growth         March 2011         Sample Date Concentration         March 2011	Soil Weight	3,163,577	kg cubic it, suturated	Soil Density X Treatment Volume		Soil Weight	1,107,423	kg	Soil Density X Treatment V	
Sample Date         Average Councertation         Marsh. 2011         Sample Date         Average Councertation         Marsh. 2011           IVER.         8.884         20         Average Councertation         Marsh. 2011         Sample Date         Concertation         Marsh. 2011         IVER.         Sample Date         Concertation         Marsh. 2011         IVER.         Sample Date         Concertation         Marsh. 2011         IVER.         IVER.         Average Soll         Marsh. 2011         IVER.         Average Soll         Marsh. 2011         IVER.         IVER.<	8	- , - ,	8		BASELINE FLUX PHASE (1	4 March 2011 to 18 April	2011)	8	J.	
March 2011         Sample Date Concentration         Mass           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1			Average Groundwater				. ,	Average Groundwater		
Links         Links         (ug1)         (they)         Final Biomass Growth         (Feb-11         (ug1)         (they)	March 2011	Sample Date	Concentration	Mass		March 2011	Sample Date	Concentration	М	
TCE         8.864         20           aVC         2.403         3           CROUNDWATER MASS SUBTOTAL         78           Sumple Date         Average Soil Concontation         Mass           na         (mgk2)         (bb)           TCE         s.800         Concontation           na         (mgk2)         (bb)           TCE         no data         no data           aCDL MASS SUBTOTAL         no data         Average Soil Concontation         Mass           Sumple Date         Average Soil Concontation         Mass         Average Soil         Mass           aCDL MASS SUBTOTAL         no data         and data         Average Soil         Mass           aCDL MASS SUBTOTAL         no data         Average Conc. X Soil Wi         TCE         no data           April_2011         78         Concentration         Mass         Concentration         Mass           Concentration         Mass         Concentration         Mass         Concentration         Mass           Concentration         Mass         Concentration         Mass         Concentration         Mass           Concentration         Mass         Concentration         Mass         Concentration         Masit <td></td> <td>1-Feb-11</td> <td>(ug/L)</td> <td>(lbs)</td> <td>Final Biomass Growth</td> <td></td> <td>1-Feb-11</td> <td>(ug/L)</td> <td>a.</td>		1-Feb-11	(ug/L)	(lbs)	Final Biomass Growth		1-Feb-11	(ug/L)	a.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TCE	8.864	20			TCE	52.613	2	
VC         1.403         3         VC         179         C0           GROUNDWATE MASS SUBTOTAL         73         GROUNDWATE MASS SUBTOTAL         73         GROUNDWATE MASS SUBTOTAL         73           na         (mg/g)         (bb)         Find Biomas Growth         Average Suit         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70 </td <td></td> <td>cDCE</td> <td>24.012</td> <td>55</td> <td>Average Conc. X Pore Vol.</td> <td></td> <td>cDCE</td> <td>8.800</td> <td></td>		cDCE	24.012	55	Average Conc. X Pore Vol.		cDCE	8.800		
GROUNDWATER MASS SUBTOTAL     78       Sample Date     Average Soil Concentration     Mass       né     (mpkg)     (fbs)       TCE     no data     no data       no data     no data     Average Conc. X Soil W1       CCE     no data     no data       nOCCE     no data     no data       NIGH PERMEABILITY MASS SUBTOTAL     no data     no       April_2011     Sample Date     Average Groundwater     no       April_2011     Sample Date     Average Groundwater     Mass       April_2011     Sample Date     Average Groundwater     Mass       (ROUNDWATER MASS SUBTOTAL     6     18-Ape-16     (ggL)     0       VCC     1.23.5     49     Average Conc. X Due Vol.     4     Concentration     Mass       Sample Date     Average Soil     Mass     Sample Date     Average Soil     Mass       Sample Date     Average Soil     Mass     Average Soil     Mass       Sample Date     Nersege Soil     Mass     Norage Conc. X Soil W1     Concentration       CROUNDWAT		VC	1,403	3	6		VC	179	0	
Sample Date         Average Soil Concentration         Mass           no         min         no data         Average Soil         Mass           TCE         no data         no data         Average Conc. X Soil WL         no           HIGH PERMEABILITY MASS SUBTOTAL         no data         Average Conc. X Soil WL         No         Soil, MASS SUBTOTAL         no           April_2011         Average Groundwater Concentration         Mass         TOTAL MASS SUBTOTAL         no           April_2011         Average Groundwater Concentration         Mass         Final Biomass Growth Concentration         Mass           April_2011         Sample Date         Average Groundwater Concentration         Mass         April_2011         Sample Date         Average Groundwater Concentration         Mass           April_2011         Sample Date         Average Groundwater Concentration         Mass         April_2011         Sample Date         Average Soil         Mass           April_2012         Sample Date         Average Soil         Mass         April_2011         Sample Date         Average Soil         Mass           April_2011         Sample Date         Average Soil         Mass         Average Soil         Mass           April_2011         Sample Date         Average Soil <t< td=""><td></td><td>GROUNDWAT</td><td>ER MASS SUBTOTAL</td><td>78</td><td></td><td></td><td>GROUNDWATE</td><td>ER MASS SUBTOTAI</td><td>3</td></t<>		GROUNDWAT	ER MASS SUBTOTAL	78			GROUNDWATE	ER MASS SUBTOTAI	3	
Sample Date         Average Soil         Mass           ni         (ng/kg)         (lbs)         Final Biomass Growth         n/d         n/d         (ng/kg)         (lb)           ni         (ng/kg)         (lbs)         Final Biomass Growth         n/d         n/d         (ng/kg)         (lb)           no data         no data         no data         no data         no         no         no           SOIL MASS SUBTOTAL         (lbs)         Final Biomass Growth         no         no         no           HICH PERMEABILITY MASS SUBTOTAL         (lbs)         Final Biomass Growth         no         no         no           April_2011         Sample Data         Average Concurston         Mass         Average Concurston         Mass           April_2011         Sample Data         Average Concurston         Mass         Average Concurston         Mass           April_2011         Sample Data         Average Concurston         Mass         Average Concurston         Mass           April_2011         Sample Data         Average Soil         Mass         Average Concurston         Mass           april_2011         GROUNDWATER MASS SUBTOTAL         61         GROUNDWATER MASS SUBTOTAL         Concentration         Mass			4 9 1			_				
Name         Concentration         Instance		Sample Date	Average Soil	Mass			Sample Date	Average Soil	М	
India         (India Lage)		<b>n</b> /a	(ma/ka)	(lhc)	Final Diamage Growth		<b>n</b> /a	(ma/ka)		
Induit     Induit     Average Cone. X Suil Wi.     Induit     Induit     Induit     Induit     Induit       INCE     and data     no data     no data     no data     no     no <td></td> <td></td> <td>(mg/kg)</td> <td>(IDS)</td> <td>rinai Biomass Growin</td> <td></td> <td></td> <td>(mg/kg)</td> <td>(10</td>			(mg/kg)	(IDS)	rinai Biomass Growin			(mg/kg)	(10	
LCA.F.     Initial     Initial     Initial       SOIL MASS SUBTOTAL     initial     SOIL MASS SUBTOTAL     Initial     Initial <t< td=""><td></td><td>aDCE</td><td>no data</td><td>no data</td><td>Average Conc. X Soil Wt.</td><td></td><td>aDCE</td><td>no data</td><td>lio</td></t<>		aDCE	no data	no data	Average Conc. X Soil Wt.		aDCE	no data	lio	
HIGH PERMEABILITY MASS SUBTOTAL (March 2011) 78 LOW PERMEABILITY MASS SUBTOTAL (March 2011) 79 LOW PERMEABILITY MASS SUBTOTAL (March 2011) 70 LOW PERMEABILITY MASS SU		SC	DIL MASS SUBTOTAL	no data			SOL	L MASS SUBTOTAL	no	
HIGH PERMEABILITY MASS SUBTOTAL (March 2011) 78 LOW PERMEABILITY MASS SUBTOTAL (April 2011) 78 LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 78 LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 70 MASS REMOVED FROM HIGH PERMEABILITY LAYER SUBTOTAL (April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011) 70 NET TOTAL MASS REMOVED (Baseline F										
TOTAL MASS (March 2011)     1       TOTAL MASS (March 2011)     TOTAL MASS (March 2011)       TOTAL MASS (March 2011)     TOTAL MASS (March 2011)       TOTAL MASS (March 2011)       TOTAL MASS (March 2011)       TOTAL MASS (March 2011)       TOTAL MASS SUBTOTAL <th colsp<="" td=""><td>HIGH PERMEABII</td><td>LITY MASS SU</td><td>BTOTAL (March 2011)</td><td>78</td><td></td><td>LOW PERMEABL</td><td>LITY MASS SUB</td><td>TOTAL (March 2011)</td><td>3</td></th>	<td>HIGH PERMEABII</td> <td>LITY MASS SU</td> <td>BTOTAL (March 2011)</td> <td>78</td> <td></td> <td>LOW PERMEABL</td> <td>LITY MASS SUB</td> <td>TOTAL (March 2011)</td> <td>3</td>	HIGH PERMEABII	LITY MASS SU	BTOTAL (March 2011)	78		LOW PERMEABL	LITY MASS SUB	TOTAL (March 2011)	3
April_2011     Sample Date     Average Groundwater Concentration     Mass       18-Apri-6     (µgL)     (lbs)     Final Biomass Growth     18-Apri-6     (µgL)     (l)       1000000000000000000000000000000000000							TOTAL M	ASS (March 2011)	1	
Sample Date     Average Groundwater (geb Che coentration     Mass     Sample Date     Concentration     Mass       18-Apr-16     (gg L)     (lbs)     Final Biomass Growth     April_2011     Is-Apr-16     (gg L)     (lg L)     (lbs)       CE     3,817     9     CE     60.29     CE     CE     60.29     CE       VC     15.33     4     CE     60.29     CE     CE     60.29     CE       GROUNDWATER MASS SUBTOTAL     61     CE     CE     6.00     CE     CE     CE       main     (mg/kg)     (lbs)     Final Biomass Growth     VC     32.0     CE     Cencentration       main     (mg/kg)     (lbs)     Final Biomass Growth     VC     VC     32.0       TCE     no data     no data     Average Conc. X Soil Wt.     Na     Sample Date     Average Soil     Mass       CDCE     no data     no data     Average Conc. X Soil Wt.     Na     SoilL MASS SUBTOTAL (April 2011)     CE     no data     no       HIGH PERMEABILITY MASS SUBTOTAL (April 2011)     61     LOW PERMEABILITY MASS SUBTOTAL (April 2011)     CE     CE       MASS REMOVED FROM HIGH PERMEABILITY LAYER     Na     Na     SUBTOTAL (April 2011)     CE     CE       MASS REMOVED FR			A					A		
April 2011     Concentration     Concentration       18-Apr-16     (µgL)     (lbs)     Final Biomass Growth       TCE     3,817     9       cBCCE     21,235     49       VC     1,533     4       GROUNDWATER MASS SUBTOTAL     61       Sample Date     Average Soil       Concentration     Mass <u>na</u> (mg/kg)       (bbs)     Final Biomass Growth <u>no</u> Average Soil       CDE     no data       DOEL     no data       SOIL MASS SUBTOTAL     no data       SOIL MASS SUBTOTAL (April 2011)     61       HIGH PERMEABILITY MASS SUBTOTAL (April 2011)     61       MASS REMOVED FROM HIGH PERMEABILITY LAYER       SUBTOTAL (April 2011)     1       MASS REMOVED FROM HIGH PERMEABILITY LAYER	Amril 2011	Sample Date	Average Groundwater	Mass		Annil 2011	Sample Date	Average Groundwater	М	
Inder Bolines Growth       Inder Bolines Growth       Inder Bolines Growth       Inder Bolines Growth         CE       3,817       9       Average Conc. X Pore Vol.       C       6,202       C         VC       1,533       4       Concentration       GROUNDWATER MASS SUBTOTAL       61       Concentration       Mass         Mass       Average Soil       Mass       Mass       Final Biomass Growth       Concentration       M         TCE       no data       no data       Average Conc. X Soil Wt.       Sample Date       Average Soil       M         Mass       Concentration       Mass       Final Biomass Growth       N       N       N       N         TCE       no data       no data       Average Conc. X Soil Wt.       N       N       N       N       N         MASS REMOVED FROM HIGH PERMEABILITY MASS SUBTOTAL (April 2011)       61       COAL (April 2011)       C       COAL (April 2011)       C       COAL (April 2011)       C       COAL (April 2011)       C         MASS REMOVED FROM HIGH PERMEABILITY LAYER       17       Ibs       MASS REMOVED FROM LOW PERMEABILITY LAYER       COTAL MASS REMOVED FROM LOW PERM	April_2011	18 Apr 16	(ug/L)	(lbs)	Final Riomass Growth	Aprii_2011	18 Apr 16	(ug/L)	(11	
ICL     JOC     21,235     49     Average Conc. X Pore Vol.     ICL     0,600       VC     1,533     4     ICL     0,600     ICL     0,600       Sample Date     Average Soil     Mass     Mass     ICL     0,600     ICL       n/a     (mg/kg)     (lbs)     Final Biomass Growth     n/a     mg/kg)     (l     ICL       TCE     no data     no data     Average Conc. X Soil Wt.     n/a     mg/kg)     (l       ICCE     no data     no data     Average Conc. X Soil Wt.     ICL     no       HIGH PERMEABILITY MASS SUBTOTAL (April 2011)     61     ICOV PERMEABILITY MASS SUBTOTAL (April 2011)     ICOV PERMEABILITY MASS SUBTOTAL (April 2011)     ICOV PERMEABILITY LAYER       SUBTOTAL (April 2011)     17     Ibs     MASS REMOVED FROM LOW PERMEABILITY LAYER     ICOV PERMEABILITY LAYER       SUBTOTAL (April 2011)     17     Ibs     ICOV PERMEABILITY LAYER     ICOV PERMEABILITY LAY			(µg/L) 3.817	(105)				<u>(μg/L)</u> 60.229	(1)	
VC     1,53     4       GROUNDWATER MASS SUBTOTAL     61       Sample Date     Average Soil Concentration     Mass       1/2     Average Soil Concentration     Mass       1/2     1/2     Average Soil Concentration     Mass       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2       1/2     1/2     1/2		CDCE	21 235	49	Average Conc. X Pore Vol		CDCE	6 800		
GROUNDWATER MASS SUBTOTAL     61     GROUNDWATER MASS SUBTOTAL     5       Sample Date     Average Soil Concentration     Mass     Sample Date     Average Soil Concentration     Mass       n/a     (mg/kg)     (lbs)     Final Biomass Growth     n/a     (mg/kg)     (l       TCE     no data     no data     Average Cone. X Soil Wt.     n/a     (mg/kg)     (l       GOUNDWASS SUBTOTAL     no data     Average Cone. X Soil Wt.     n/a     (mg/kg)     (l       TCE     no data     no data     Average Cone. X Soil Wt.     n/a     (mg/kg)     (l       BIGH PERMEABILITY MASS SUBTOTAL     no data     Average Cone. X Soil Wt.     Notass SUBTOTAL (April 2011)     Image Cone. X Soil Wt.     Image Cone. X Soil Wt. <td></td> <td>VC</td> <td>1.533</td> <td>4</td> <td>Average cone. A Fore voi.</td> <td rowspan="2"></td> <td>VC</td> <td>320</td> <td></td>		VC	1.533	4	Average cone. A Fore voi.		VC	320		
Image: Sample Date     Average Soil Concentration     Mass       n/a     (mg/kg)     (lbs)     Final Biomass Growth     n/a     (mg/kg)     (ll       TCE     no data     no data     Average Conc. X Soil Wt.     n/a     (mg/kg)     (ll       CDC     no data     no data     Average Conc. X Soil Wt.     n/a     (mg/kg)     (ll       SOIL MASS SUBTOTAL     no data     Average Conc. X Soil Wt.     n/a     (mg/kg)     (ll       HIGH PERMEABILITY MASS SUBTOTAL (April 2011)     61     LOW PERMEABILITY MASS SUBTOTAL (April 2011)     Image: Conc. X Soil Wt.     Image: Conc. X Soil Wt. <td></td> <td>GROUNDWAT</td> <td>ER MASS SUBTOTAL</td> <td>61</td> <td></td> <td>GROUNDWATE</td> <td>ER MASS SUBTOTAL</td> <td>3</td>		GROUNDWAT	ER MASS SUBTOTAL	61			GROUNDWATE	ER MASS SUBTOTAL	3	
Sample Date     Average Soil Concentration     Mass       n/a     (mg/kg)     (lbs)     Final Bionass Growth       n/a     (mg/kg)     (lbs)     Final Bionass Growth       DEE     no data     no data       SOIL     no data     no data       SOIL     no data     no data       HIGH PERMEABILITY MASS SUBTOTAL     61     COVE       Low PERMEABILITY MASS SUBTOTAL (April 2011)     61										
Image: Concentration       Concentration       Concentration         image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration         image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration       image: Concentration       ima		Sample Date	Average Soil	Mass			Sample Date	Average Soil	М	
na     (mg/kg)     (bs)     Fmal Biomass Growth       TCE     no data     no data     Average Conc. X Soil Wt.     TCE     no data     no       GDCE     no data     no data     Average Conc. X Soil Wt.     CDCE     no data     no       SOIL MASS SUBTOTAL     no data     no     ano     CDCE     no data     no       HIGH PERMEABILITY MASS SUBTOTAL (April 2011)     61     LOW PERMEABILITY MASS SUBTOTAL (April 2011)     1       MASS REMOVED FROM HIGH PERMEABILITY LAYER     17     Ibs     MASS REMOVED FROM LOW PERMEABILITY LAYER     1       SUBTOTAL (April 2011)     17     Ibs     MASS REMOVED FROM LOW PERMEABILITY LAYER     1       Growth High PERMEABILITY LAYER     17     Ibs     Mass REMOVED FROM LOW PERMEABILITY LAYER     1       SUBTOTAL (April 2011)     17     Ibs     Mass REMOVED FROM LOW PERMEABILITY LAYER     1       SUBTOTAL (April 2011)     17     Ibs     Mass REMOVED FROM LOW PERMEABILITY LAYER     1       SUBTOTAL (April 2011)     10     1     1     1     1		, ,	Concentration	<i></i>			1	Concentration		
IDE     no data     no data     no data     no <u>cDCE</u> no data     no data     no       SOIL MASS SUBTOTAL     no data     no       HIGH PERMEABILITY MASS SUBTOTAL (April 2011)     61     IDE MASS SUBTOTAL (April 2011)     IDE MASS SUBTOTAL (April 2011)     IDE MASS SUBTOTAL (April 2011)       MASS REMOVED FROM HIGH PERMEABILITY LAYER     17     Ibs     MASS REMOVED FROM LOW PERMEABILITY LAYER       SUBTOTAL (April 2011)     17     Ibs     TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER       Control Cont		n/a	(mg/kg)	(lbs)	Final Biomass Growth		n/a	(mg/kg)	(11	
cDCE     no data     no data     no       SOIL MASS SUBTOTAL     no data     No     SOIL MASS SUBTOTAL (April 2011)     no       HIGH PERMEABILITY MASS SUBTOTAL (April 2011)     61     LOW PERMEABILITY MASS SUBTOTAL (April 2011)     1       MASS REMOVED FROM HIGH PERMEABILITY LAYER     17     Ibs     MASS REMOVED FROM LOW PERMEABILITY LAYER     1       SUBTOTAL (April 2011)     17     Ibs     MASS REMOVED FROM LOW PERMEABILITY LAYER     1       Gaseline Flux Phase - 14 March 2011 to 18 April 2011)     1     1     1       No     12     35     0		TCE	no data	no data	Average Conc. X Soil Wt.		TCE	no data	no	
HIGH PERMEABILITY MASS SUBTOTAL (April 2011) 61 LOW PERMEABILITY MASS SUBTOTAL (April 2011) 51 LOW PERMEABILITY MASS SUBTOTAL (April 2011) 52 LOW PERMEABILITY MASS SUBTOTAL (April 2011) 52 LOW PERMEABILITY LAYER SUBTOTAL (		cDCE	no data	no data			CDCE	no data	no	
HIGH PERMEABILITY MASS SUBTOTAL (April 2011) 61 LOW PERMEABILITY MASS SUBTOTAL (April 2011) 5 TOTAL MASS (April 2011) 9 MASS REMOVED FROM HIGH PERMEABILITY LAYER SUBTOTAL (April 2011) 17 MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011) 7 TOTAL MASS REMOVED FROM LOW PERMEABILITY APPRIL APPRI		50	JE MASS SOBTOTAL	no data			501	L MASS SUBTOTAL	nov	
TOTAL MASS (April 2011)       TOTAL MASS (April 2011)         MASS REMOVED FROM HIGH PERMEABILITY LAYER SUBTOTAL (April 2011)       If       Mass REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011)       Image: Comparison of the comparis	HIGH PERMEAB	ILITY MASS SU	JBTOTAL (April 2011)	61		LOW PERMEAB	ILITY MASS SU	BTOTAL (April 2011)	3	
MASS REMOVED FROM HIGH PERMEABILITY LAYER SUBTOTAL (April 2011)  ID MASS REMOVED FROM LOW PERMEABILITY LAYER SUBTOTAL (April 2011)  TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011)  Network Netw							TOTAL M	[ASS (Amril 2011)	0	
MASS REMOVED FROM HIGH PERMEABILITY LAYER SUBTOTAL (April 2011)  In the second state of the second state							IUIALM	1A00 (APTII 2011)	9	
SUBTOTAL (April 2011)     I//     IOS     SUBTOTAL (April 2011)       TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011)       % Reduction     Days     Removed 12       12     35     0	MASS REMOVED FRO	OM HIGH PERN	MEABILITY LAYER	17	lbs	MASS REMOVED FR	OM LOW PERMI	EABILITY LAYER		
TOTAL MASS REMOVED (Baseline Flux Phase - 14 March 2011 to 18 April 2011)     Removed       % Reduction     Days     Removed       12     35     0	SUBT	TOTAL (April 20	011)	1 /	105	SUB	TOTAL (April 201	1)	-	
IOTAL MASS REMOVED         (Baseline Flux Phase - 14 March 2011 to 18 April 2011)         % Reduction         Days       Removed         12       35       0								TED		
% ReductionDaysRemov12350						(Baseline Flux Phase	L MASS REMOV e - 14 March 2011	to 18 April 2011)	1	
12 35 0						````	% Reduction	Days	Remov	
							12	35	0.	

an 300 μg/L atment area	
Cherry 1979)	
an 300 µg/L atment area dense and uniform (Lindet	ourg 2001)
lume	
55	
ss s)	Final Biomass Growth
1	Average Conc. X Pore Vol.
ss	Final Biomass Growth
ata ata ata	Average Conc. X Pore Vol.
4	-
2	
ss s)	Final Biomass Growth
3	Average Conc. X Pore Vol.
7	_
SS	
s) ata	Final Biomass Growth
ata ata	Average Conc. X Pore Vol.
7	-
3	
	lbs _
1	lbs
al Rate	lbs removed/day

		Hi	gh Permeability Layer				L	ow Permeability Layer
Groundwater Pore Volun	ne	2			Groundwater Pore Volu	me	2	D 1 CTCT
Treatment Area	3,700	sq ft	Based on area of TCE greater than 300 $\mu$ g/L		Treatment Area	3,700	sq ft	Based area of TCE greater the
Freatment Interval	33	ft	23 to 42 and 48 to 62 ft BLS for entire treatment are	ea	Treatment Interval	6	ft	42 to 48 ft BLS for entire tre
Treatment Volume	122,100	cubic ft	Area X Interval		Treatment Volume	22,200	cubic ft	Area X Interval
Porosity	0.3		Porosity of Sand (Freeze and Cherry 1979)		Porosity	0.4		Porosity of Clay (Freeze and
Groundwater Pore Volume	36,630	cubic ft liters	Volume X Porosity		Groundwater Pore Volume	e 8,880 251 453	cubic ft	Volume X Porosity
Soil Weight	1,057,244	liters			Soil Weight	251,455	liters	
Freatment Area	3,700	sa ft	Based on area of TCE greater than $300 \mu g/L$		Treatment Area	3,700	sa ft	Based area of TCE greater the
Freatment Interval	14.5	ft	34.5 to 42 and 48 to 55 ft BLS for treatment area (s	ampled interval)	Treatment Interval	6	ft	42 to 48 ft BLS for entire tre
Freatment Volume	53.650	cubic ft	Area X Interval		Treatment Volume	22.200	cubic ft	Area X Interval
	130	lbs/cubic ft, saturated	Saturated unit weight of Sand, dense and uniform ()	Lindeburg 2001)		110	lbs/cubic ft	Saturated unit weight of Cla
Soil Density	59	kg/cubic ft, saturated	8 , (	8 /	Soil Density	50	kg/cubic ft	6
Soil Weight	3,163,577	kg	Soil Density X Treatment Volume		Soil Weight	1,107,423	kg	Soil Density X Treatment V
			S	YSTEM OPERATION PHASE (9	9 August 2011 to 11 Septem	nber 2012)		
	Sample Date	Average Groundwater	Mass			Sample Date	Average Groundwater	М
August_2011	Sample Date	Concentration	191455		August_2011	Sample Date	Concentration	141
	1-Aug-11	(µg/L)	(lbs)	Final Biomass Growth		1-Aug-11	(µg/L)	(1)
	TCE	3,037	7			TCE	40,381	2
	cDCE	15,878	36	Average Conc. X Pore Vol.		cDCE	6,867	
	VC	2,533	6			VC	785	0
	GROUNDWAT	ER MASS SUBTOTAL	49			GROUNDWATE	ER MASS SUBTOTAL	- 2
	Sample Date	Average Soil	Mass			Sample Date	Average Soil	М
	Sample Date	Concentration				Sumple Suite	Concentration	
	3-Aug-11	(mg/kg)	(lbs)	Final Biomass Growth		3-Aug-11	(mg/kg)	(1
	TCE	10	68	Average Conc. X Soil Wt.		TCE	32	7
	CDCE	3	21			CDCE	3	
	50	JIL MASS SUBIUTAL	89			501	L MASS SUBIOTAL	5
HIGH PERMEABIL	ITY MASS SUE	BTOTAL (August 2011)	138		LOW PERMEABIL	LITY MASS SUB	TOTAL (August 2011)	1
						TOTAL N	ASS (Aug. 2011)	2.
	Sample Date	Average Groundwater	Mass		September 2012	Sample Date	Average Groundwater	М
September 2012	11-Sen-12	(ug/L)	(lbs)	Final Biomass Growth	September_2012	11-Sep-12	(ug/L)	(1
September_2012	TCE	53	0.1			TCE	14.336	(1
	cDCE	3.882	9	Average Conc. X Pore Vol.		cDCE	4.042	
	VC	1.401	3			VC	4.230	
	GROUNDWAT	ER MASS SUBTOTAL	12			GROUNDWATH	ER MASS SUBTOTAL	1
		Average Soil			_		Average Soil	
	Sample Date	Concentration	Mass			Sample Date	Concentration	М
	10-Sep-12	(mg/kg)	(lbs)	Final Biomass Growth		10-Sep-12	(mg/kg)	(1
	TCE	4	27			TCE	18	4
	cDCE	3	21	Average Conc. X Soil Wt.		cDCE	9	2
	SC	DIL MASS SUBTOTAL	48			SOI	L MASS SUBTOTAL	6
HIGH PERMEABILITY	MASS SUBTO	OTAL (September 2012)	60		LOW PERMEABILIT	Y MASS SUBTO	TAL (September 2012)	7
						TOTAL MA		
						IOTAL MA	SS (September 2012)	I.
MASS REMOVED FRO	OM HIGH PERM	AEABILITY LAYER	78	lbs	MASS REMOVED FR	OM LOW PERM	EABILITY LAYER	3
SUBT	ΟΤΑL (April 20	911)			SUB	TOTAL (April 201	11)	
					ТОТА	L MASS REMOV	/ED	
					(System Operation P	hase - 9 Aug. 2011	to 11 Sept. 2012)	1
						% Reduction	Days	Remov
						44	399	0.

an 300 μg/L atment area	
Cherry 1979)	
an 300 μg/L atment area	
dense and uniform (Lindel	burg 2001)
lume	
ss	Final Biomass Growth
2	Average Conc. X Pore Vol.
4	-
1	
SS	
s) 7	Final Biomass Growth
	Average Conc. X Pore Vol.
4	_
0	_
8	
ss -)	Einel Diaman Crowth
s)	Final Blomass Growth
	Average Conc. X Pore Vol.
3	_
ss	
s)	Final Biomass Growth
3	Average Conc. X Pore Vol.
5	_
3	_
8	
2	lbs
0	lbs
al Rate	
28	lbs removed/day

## **APPENDIX G: TREND GRAPHS**

## TREND GRAPHS

## **CVOC** Concentrations






















## TREND GRAPHS

## Total CVOCs and Ethene in Molar Basis and TOC Concentration























## REFERENCES

Adamson, David T., and Charles Newell J. "Support of Source Zone Bioremediation through Endogenous Biomass Decay and Electron Donor Recycling." *Bioremediation Journal* 13.1 (2009): 29-40.

AFCEE (Air Force Center for Environmental Excellence). Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. Rep. Brooks City-Base, Texas: n.p., 2004. Web. < https://frtr.gov/costperformance/pdf/remediation/principles_and_practices_ bioremediation.pdf>.

ATSDR (Agency for Toxic Substances and Disease Registry. *Toxicological Profile for Trichloroethylene*. Rep. Atlanta, Georgia: n.p., 1997.
Web. < https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=173&tid=30>.

- Cápiro, N.L., E.K. Granbery, C.A. Lebrón, D.W. Major, M.L. McMaster, M.J. Pound, F.E. Löffler, and K.D. Pennell. "Liquid–Liquid Mass Transfer of Partitioning Electron Donors in Chlorinated Solvent Source Zones." *Environmental Science & Technology Environ. Sci. Technol.* 45.4 (2011): 1547-554.
- Chiu, W. A., J. Jinot, C. Scott-Siegel, S.L. Makris, G.S. Cooper, R.C. Dzubow, A.S. Bale, M.V. Evans, K.Z. Guyton, N. Keshava, J.C. Lipscomb, S. Barone, J.F. Fox, M.R. Gwinn, J. Schaum, and J.C. Caldwell. "Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues." *Environ. Health Perspect. Environmental Health Perspectives* 121.3 (2012): 303-11.
- DSE (Denich Soil Engineering Co. Ltd.). "Soil Boring with Auger Apparatus." *DSE Soil Testing and Soil Investigation*. DSE, 2016. Web. 18 Sept. 2016. <a href="http://www.denichsoiltest.com/apparatus/augering.html">http://www.denichsoiltest.com/apparatus/augering.html</a>.
- ESTCP (Environmental Security Technology Certification Program). *Bioaugmentation for Remediation of Chlorinated Solvents: Technology Development, Status, and Research Needs.* Rep. Alexandria, Virginia: n.p., 2005. Web. < https://www.serdp-estcp.org/Tools-and-Training/Environmental-Restoration/Groundwater-Plume-Treatment/Bioaugmentation-for-Remediation-of-Chlorinated-Solvents-Technology-Development-Status-and-Research-Needs>.
- ESTCP (Environmental Security Technology Certification Program). *Technology Demonstration Plan: Improving Effectiveness of Bioremediation at DNAPL Source Zone Sites by Applying Partitioning Electron Donors.* Rep. no. ER-0716. Port Hueneme, California: n.p., 2011.

- FDEP (Florida Department of Environmental Protection). Contaminant Cleanup Target Levels. Florida Administrative Code (FAC) 62-777. 2005. Web < https://www.flrules.org/gateway/ChapterHome.asp?Chapter=62-777>.
- FDEP (Florida Department of Environmental Protection). Monitoring Well Design and Construction Guidance Manual. Tech. FDEP, 2008. Web. 18 Sept. 2016. <a href="https://www.dep.state.fl.us/water/groundwater/docs/monitoring-well-manual-formatted-final.pdf">https://www.dep.state.fl.us/water/groundwater/docs/monitoring-well-manual-formatted-final.pdf</a>>.

Freeze, R. Allan., and John A. Cherry. Groundwater. Englewood Cliffs, NJ: Prentice-Hall, 1979.

- He, J., Y. Sung, R. Krajmalnik-Brown, K.M. Ritalahti, and F.E. Loffler. "Isolation and Characterization of Dehalococcoides Sp. Strain FL2, a Trichloroethene (TCE)- and 1,2dichloroethene-respiring Anaerobe." *Environ Microbiol Environmental Microbiology* 7.9 (2005): 1442-450.
- Geoprobe. "Direct Push Technology." *Geoprobe Direct Push Technology*. Geoprobe, 2016. Web. 18 Sept. 2016. <a href="http://geoprobe.com/direct-push-technology">http://geoprobe.com/direct-push-technology</a>.
- Hendrickson, E.R, J.A. Payne, R.M. Young, M.G. Starr, M.P. Perry, J.A. Payne, and L.W. Buonamici. "Molecular analysis of Dehalococcoides 16s ribosomal DNA from chloroethenecontaminated sites throughout North America and Europe." *Applied and Environmental Microbiology*. 68 (2002): 485-495.
- ITRC (Interstate Technology & Regulatory Council). An Introduction to Characterizing Sites Contaminated with DNAPLs. Rep. Washington D.C.: n.p., 2003. Web. <http://www.itrcweb.org/Guidance/GetDocument?documentID=21>.
- ITRC (Interstate Technology & Regulatory Council). *In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones: Case Studies*. Rep. Washington D.C.: n.p., 2007. Web. <http://www.itrcweb.org/Guidance/GetDocument?documentID=11>.
- ITRC (Interstate Technology & Regulatory Council). *In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones*. Rep. Washington D.C.: n.p., 2008. Web. <http://www.itrcweb.org/Guidance/GetDocument?documentID=12>.
- Keuper, B., G.P. Wealthall, J.W.N. Smith, S.A. Leharne, and D.N. Lerner. "An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface." *R&D Publication*. Bristol, England. Web. < https://www.shef.ac.uk/polopoly_fs/1.75662!/file/dnapl_handbook_final.pdf>

- Lebrón, C.A., D.W. Major, M.L. McMaster, C. Repta, M.J. Pound, F.E. Löffler, and K.D. Pennell, and N.L. Capiro. Poster Presentation for Environmental Restoration: Chlorinated Solvents DNAPL Source Zone Remediation Section: *Improving Effectiveness of Bioremediation at DNAPL Source Zone Sites by Applying Partitioning Electron Donor*. Proc. of The Partners in Environmental Technology Technical Symposium & Workshop, Washington D.C.: n.p., #32, 2008.
- Lindeburg, Michael R. *Civil Engineering Reference Manual for the PE Exam.* Belmont, CA: Professional Publications, 2001.
- Muller, J.A., B.M. Rosner, G. Von Abendroth, G. Meshulam-Simon, P.L. Mccarty L., and A.M. Spormann. "Molecular Identification of the Catabolic Vinyl Chloride Reductase from Dehalococcoides Sp. Strain VS and Its Environmental Distribution." *Applied and Environmental Microbiology* 70.8 (2004): 4880-888.
- NASA (National Aeronautics and Space Administration. *Launch Complex 34, SWMU CC054, Hot Spot 1 Interim Measures Work Plan: Partitioning Electron Donor Demonstration.* Rep. no. KSC-TA-11288. Kennedy Space Center, Florida: NASA, 2010.
- NASA (National Aeronautics and Space Administration. *Launch Complex 34, SWMU CC054, Hot Spot 1 Interim Measures Implementation Report: Partitioning Electron Donor Demonstration.* Rep. no. LC34 IMWP. Kennedy Space Center, Florida: NASA, 2013.
- Pankow, J.F., and J.A. Cherry. *Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behavior, and Remediation.* Portland, OR: Waterloo, 1996.
- RGC (Robertson GeoConsultants Inc.). "Description of Drilling Methods." *Robertson GeoConsultants Inc. (RGC): Consulting Engineers and Scientists for the Mining Industry.* RGC, 2016. Web. 18 Sept. 2016. <a href="https://www.rgc.ca/?page=page&id=92">https://www.rgc.ca/?page=page&id=92</a>>.
- Roberts, J.D. Bench Scale Performance of Partitioning Electron Donors for TCE DNAPL Bioremediation. Thesis. University of Waterloo, Ontario, Canada. 2008.
- Ruda, Thomas C., and Peter Bosscher J., eds. *National Drilling Association Driller's Manual*. Tech. N.p.: n.p., n.d. NDA, 2005. Web. 18 Sept. 2016. <a href="https://www.nda4u.com/wp-content/uploads/2016/01/DrillersManual-Chapters-1-12.pdf">https://www.nda4u.com/wp-content/uploads/2016/01/DrillersManual-Chapters-1-12.pdf</a>>.
- U.S. EPA (United States Environmental Protection Agency. *Soil Screening Guidance: Technical Background Document (2nd Edition).* Tech. no. EPA/540/R95/128. Washington D.C.: Office of Emergency and Remedial Response, 1996.

- U.S. EPA (U.S. Environmental Protection Agency). Demonstration of Biodegradation of Dense, Nonaqueous-Phase Liquids (DNAPL) through Biostimulation and Bioaugmentation at Launch Complex 34 in Cape Canaveral Air Force Station, Florida. Tech. no. EPA/540/R-07/007. Washington D.C.: National Risk Management Research Laboratory (NRMRL), 2004.
- U.S. EPA (United States Environmental Protection Agency. "Release Reports." *EPA*. Environmental Protection Agency, n.d. Web. 21 May 2014a. <a href="https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/tri_release.trends>">https://iaspub.epa.gov/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexplorer/triexp
- U.S. EPA (United States Environmental Protection Agency. "Drinking Water Contaminants Standards and Regulations." *EPA*. Environmental Protection Agency, n.d. Web. 21 May 2014b. <a href="http://water.epa.gov/drink/contaminants/basicinformation/trichloroethylene.cfm#four">http://water.epa.gov/drink/contaminants/basicinformation/trichloroethylene.cfm#four</a>>.
- U.S. EPA (United States Environmental Protection Agency. "CLU-IN | Technologies Remediation About Remediation Technologies Bioremediation Overview." *CLUIN News* -*Bioremediation Overview*. Contaminated Site Cleanup Information, n.d. Web. 22 May 2014c. <a href="http://clu-in.org/techfocus/default.focus/sec/Bioremediation/cat/Overview/">http://clu-in.org/techfocus/default.focus/sec/Bioremediation/cat/Overview/</a>.
- Wiedemeier, T., W.Z. Dickson, P. Haas, and M. Barden. "Designing Monitoring Programs to Effectively Evaluate the Performance of Natural Attenuation." *Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring, Second Edition* (2005): 573-637.
- Yang, Y., and P.L. Mccarty. "Biologically Enhanced Dissolution of Tetrachloroethene DNAPL." *Environmental Science & Technology Environ. Sci. Technol.* 34.14 (2000): 2979-984.
- Yang, Y., and P.L. Mccarty. "Comparison between Donor Substrates for Biologically Enhanced Tetrachloroethene DNAPL Dissolution." *Environmental Science & Technology Environ. Sci. Technol.* 36.15 (2002): 3400-404.
- Yu, S., M.E. Dolan, and L. Semprini. "Kinetics and Inhibition of Reductive Dechlorination of Chlorinated Ethylenes by Two Different Mixed Cultures." *Environmental Science & Technology Environ. Sci. Technol.* 39.1 (2005): 195-205.