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ABSTRACT 

Coastal wetlands experience fluctuating productivity when subjected to various stressors. One of 

the most impactful stressors is sea level rise (SLR) associated with global warming. Research has 

shown that under SLR, salt marshes may not have time to establish an equilibrium with sea level 

and may migrate landward or become open water. Salt marsh systems play an important role in 

the coastal ecosystem by providing intertidal habitats and food for birds, fish, crabs, mussels, and 

other animals. They also protect shorelines by dissipating flow and damping wave energy through 

an increase in drag forces. Due to the serious consequences of losing coastal wetlands, evaluating 

the potential future changes in their structure and distribution is necessary in order for coastal 

resource managers to make informed decisions. The objective of this study was to develop a 

spatially-explicit model by connecting a hydrodynamic model and a parametric marsh model and 

using it to assess the dynamic effects of SLR on salt marsh systems within three National Estuarine 

Research Reserves (NERRs) in the Northern Gulf of Mexico.   

Coastal salt marsh systems are an excellent example of complex interrelations between physics 

and biology, and the resulting benefits to humanity. In order to investigate salt marsh productivity 

under projected SLR scenarios, a depth integrated hydrodynamic model was coupled to a 

parametric marsh model to capture the dynamic feedback loop between physics and biology. The 

hydrodynamic model calculates mean high water (MHW) and mean low water (MLW) within the 

river and tidal creeks by harmonic analysis of computed tidal constituents. The responses of MHW 

and MLW to SLR are nonlinear due to localized changes in the salt marsh platform elevation and 

biomass productivity (which influences bottom friction). Spatially-varying MHW and MLW are 
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utilized in a two-dimensional application of the parametric Marsh Equilibrium Model to capture 

the effects of the hydrodynamics on biomass productivity and salt marsh accretion, where 

accretion rates are dependent on the spatial distribution of sediment deposition in the marsh.  This 

model accounts both organic (decomposition of in-situ biomass) and inorganic (allochthonous) 

marsh platform accretion and the effects of spatial and temporal biomass density changes on tidal 

flows. The coupled hydro-marsh model, herein referred to as HYDRO-MEM, leverages an 

optimized coupling time step at which the two models exchange information and update the 

solution to capture the system’s response to projected linear and non-linear SLR rates. 

Including accurate marsh table elevations into the model is crucial to obtain meaningful biomass 

productivity projections. A lidar-derived Digital Elevation Model (DEM) was corrected by 

incorporating Real Time Kinematic (RTK) surveying elevation data. Additionally, salt marshes 

continually adapt in an effort to reach an equilibrium within the ideal range of relative SLR and 

depth of inundation. The inputs to the model, specifically topography and bottom roughness 

coefficient, are updated using the biomass productivity results at each coupling time step to capture 

the interaction between the marsh and hydrodynamic models. 

The coupled model was tested and validated in the Timucuan marsh system, located in northeastern 

Florida by computing projected biomass productivity and marsh platform elevation under two SLR 

scenarios. The HYDRO-MEM model coupling protocol was assessed using a sensitivity study of 

the influence of coupling time step on the biomass productivity results with a comparison to results 

generated using the MEM approach only. Subsequently, the dynamic effects of SLR were 

investigated on salt marsh productivity within the three National Estuarine Research Reserves 
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(NERRs) (Apalachicola, FL, Grand Bay, MS, and Weeks Bay, AL) in the Northern Gulf of Mexico 

(NGOM). These three NERRS are fluvial, marine and mixed estuarine systems, respectively. Each 

NERR has its own unique characteristics that influence the salt marsh ecosystems.  

The HYDRO-MEM model was used to assess the effects of four projections of low (0.2 m), 

intermediate-low (0.5 m), intermediate-high (1.2 m) and high (2.0 m) SLR on salt marsh 

productivity for the year 2100 for the fluvial dominated Apalachicola estuary, the marine 

dominated Grand Bay estuary, and the mixed Weeks Bay estuary. The results showed increased 

productivity under the low SLR scenario and decreased productivity under the intermediate-low, 

intermediate-high, and high SLR. In the intermediate-high and high SLR scenarios, most of the 

salt marshes drowned (converted to open water) or migrated to higher topography.   

These research presented herein advanced the spatial modeling and understanding of dynamic SLR 

effects on coastal wetland vulnerability. This tool can be used in any estuarine system to project 

salt marsh productivity and accretion under sea level change scenarios to better predict possible 

responses to projected SLR scenarios. The findings are not only beneficial to the scientific 

community, but also are useful to restoration, planning, and monitoring activities in the NERRs. 

Finally, the research outcomes can help policy makers and coastal managers to choose suitable 

approaches to meet the specific needs and address the vulnerabilities of these three estuaries, as 

well as other wetland systems in the NGOM and marsh systems anywhere in the world. 
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CHAPTER 1. INTRODUCTION 

Coastal wetlands can experience diminished productivity under various stressors. One of the most 

important is sea level rise (SLR) associated with global warming. Research has shown that under 

extreme conditions of SLR, salt marshes may not have time to establish an equilibrium with sea 

level and may migrate upland or convert to open water (Warren and Niering, 1993; Gabet, 1998; 

Donnelly and Bertness, 2001; Hughes, 2001; Castillo et al., 2002). Salt marsh systems play an 

important role in the coastal ecosystem by providing intertidal habitats, nurseries and food sources 

for birds, fish, shellfish, and other animals such as raccoons (Bertness, 1984; Halpin, 2000; 

Pennings and Bertness, 2001; Hughes, 2004). They also protect shorelines by dissipating flow and 

damping wave energy and increasing friction (Knutson, 1987; King and Lester, 1995; Leonard and 

Luther, 1995; Möller and Spencer, 2002; Costanza et al., 2008; Shepard et al., 2011). Due to the 

serious consequences of losing coastal wetlands, resource managers play an active role in the 

protection of estuaries and environmental systems by planning for future changes caused by global 

climate change, especially SLR (Nicholls et al., 1995). In fact, various restoration plans have been 

proposed and implemented in different parts of the world (Broome et al., 1988; Warren et al., 2002; 

Hughes and Paramor, 2004; Wolters et al., 2005).  

In addition to improving restoration and planning, predictive ecological models provide a tool for 

assessing the systems’ response to stressors. Coastal salt marsh systems are an excellent example 

of complex interrelations between physics, biology, and benefits to humanity (Townend et al., 

2011). These ecosystems need to be studied with a dynamic model that is able to capture feedback 

mechanisms (Reed, 1990; Jørgensen and Fath, 2011). Specifically, integrated models allow 
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researchers to investigate the response of a system to projected natural or anthropogenic changes 

in environmental conditions. Data from long-term tide gauges show that global mean sea level has 

increased 1.7 mm-yr-1 over the last century (Church and White, 2006). Additionally, data from 

satellite altimetry shows that mean sea level from 1993-2009 increased 3.4 ± 0.4 mm.yr-1 (Nerem 

et al., 2010).  As a result, many studies have focused on developing integrated models to simulate 

salt marsh response to SLR (Reed, 1995; Allen, 1997; Morris et al., 2002; Temmerman et al., 

2003; Mudd et al., 2004; Kirwan and Murray, 2007; Mariotti and Fagherazzi, 2010; Stralberg et 

al., 2011; Tambroni and Seminara, 2012; Hagen et al., 2013; Marani et al., 2013; Schile et al., 

2014). However, models that do not account for the spatial variability of salt marsh platform 

accretion may not be able to correctly project the changes in the system (Thorne et al., 2014). 

Therefore, there is a demonstrated need for a spatially-explicit model that includes the interaction 

between physical and biological processes in salt marshes. 

The future of the Northern Gulf of Mexico (NGOM) coastal environment relies on timely, accurate 

information regarding risks such as SLR to make informed decisions for managing human and 

natural communities. NERRs are designated by NOAA as protected regions with the mission of 

allowing for long-term research and monitoring, education, and resource management that provide 

a basis for more informed coastal management decisions (Edmiston et al., 2008a). The three 

NERRs selected for this study, namely Apalachicola, FL, Grand Bay, MS, and Weeks Bay, AL 

represent a variety of estuary types and contain an array of plant and animal species that support 

commercial fisheries. In addition, the coast attracts millions of residents, visitors and businesses. 

Due to the unique morphology and hydrodynamics in each NERR, it is likely that they will respond 

differently to SLR, with unique impacts to the coastal wetlands. 
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1.1 Hypothesis and Research Objective 

This study aims to assess the dynamic effects of SLR on fluvial, marine, and mixed estuary systems 

by developing a coupled physical-biological model. This dissertation intends to test the following 

hypothesis:  

Capturing more processes into an integrated physical-ecological model will better demonstrate 

the response of biomass productivity to SLR and its nonlinear dependence on tidal hydrodynamics, 

salt marsh platform topography, estuarine system characteristics and geometry, and climate 

change.  

Assessing the hypothesis introduces research questions that this study seeks to answer: 

At what SLR rates (mm.yr-1) will the salt marsh: increase/decrease productivity; migrate upland; 

or convert to open water? 

How does the estuary type (fluvial, marine, and mixed) affect salt marsh productivity under 

different SLR scenarios? 

What are the major factors that influence the vulnerability of a salt marsh system to SLR? 

Finally, this interdisciplinary project provides researchers with an integrated model to make 

reasonable predictions salt marsh productivity under different conditions. This research also 

enhances the understanding of the three different NGOM wetland systems and will aid restoration 

and planning efforts. Lastly, this research will also benefit coastal managers and NERR staff in 

monitoring and management planning. 
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1.2 Review of the Salt Marsh Evolution Models for Assessing Sea Level Rise Effects on 

Wetlands 

Salt marsh systems are complex regions within estuary ecosystems. They are habitats for many 

species and protect shorelines by increasing flow resistance and damping wave energy. These 

systems are an environment where physics and biology are interconnected. SLR significantly 

affects these systems and have been studied by researchers using hydrodynamic and biological 

models along with applying coupled models. Understanding SLR, in addition to implementing it 

in hydrodynamic and marsh models to study the effects of SLR on the estuarine systems is critical. 

A variety of hydrodynamic and salt marsh models have been used and developed to study SLR 

effects on coastal systems. Both low and high resolution models have been used for variety of 

purposes by researchers and coastal managers. These models have various levels of accuracy and 

specific limitations that need to be considered when used for developing a coupled model. 

1.3 Methods and Validation of the Model 

A spatially-explicit model (HYDRO-MEM) that couples astronomic tides and salt marsh dynamics 

was developed to investigate the effects of SLR on salt marsh productivity. The hydrodynamic 

component of the model simulates the hydroperiod of the marsh surface driven by astronomic tides 

and the marsh platform topography, and demonstrates biophysical feedback that non-uniformly 

modifies marsh platform accretion, plant biomass, and water levels across the estuarine landscape, 

forming a complex geometry. The marsh platform accretes organic and inorganic matter depending 

on the sediment load and biomass density which are simulated by the ecological-marsh component 

(MEM) of the model and are, in turn, functions of the hydroperiod. In order to validate the model 
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in the Timucuan marsh system in northeast Florida, two sea-level rise projections for the year 2050 

were simulated: 11 cm (low) and 48 cm (high). The biomass-driven topographic and bottom 

friction parameter updates were assessed by demonstrating numerical convergence (the state where 

the difference between biomass densities for two different coupling time steps approaches a small 

number). The maximum effective coupling time steps for low and high sea-level rise cases were 

determined to be 10 and 5 years, respectively. A comparison of the HYDRO-MEM model with a 

stand-alone parametric marsh equilibrium model (MEM) showed improvement in terms of spatial 

pattern of biomass distribution due to the coupling and dynamic sea-level rise approaches. This 

integrated HYDRO-MEM model provides an innovative method by which to assess the complex 

spatial dynamics of salt marsh grasses and predict the impacts of possible future sea level 

conditions.  

1.4 Application of the Model in a Fluvial Estuarine System 

The HYDRO-MEM model was applied to assess Apalachicola fluvial estuarine salt marsh system 

under four projected SLR scenarios. The HYDRO-MEM model incorporates the dynamics of sea-

level rise and captures the effect of SLR rate in the simulations. Additionally, the model uses the 

parameters derived from a two year bio-assay in the Apalachicola marsh system. In order to 

increase accuracy, the marsh platform topography lidar DEM was adjusted using Real Time 

Kinematic topographic surveying data and a river inflow (flux) boundary condition was imposed. 

The biomass density results generated by the HYDRO-MEM model were validated using remotely 

sensed biomass densities.  
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The SLR scenario simulations showed higher water levels (as expected) but also more water level 

variability under the low and intermediate-low SLR scenarios. The intermediate-high and high 

scenarios displayed lower variability with a greatly extended bay. In terms of biomass density 

patterns, the model results showed more uniform biomass density with higher productivity in some 

areas and lower productivity in others under the low SLR scenario. Under the intermediate-low 

SLR scenario, more areas in the no productivity regions of the islands between the Apalachicola 

River and East Bay were flooded. However, lower productivity, marsh loss, and movement to 

higher lands for other marsh lands were projected. The higher sea-level rise scenarios 

(intermediate-high and high) demonstrated massive inundation of marsh areas (effectively 

extending bay) and showed the generation of a thin band of new wetland in the higher lands. 

Overall, the study results showed that HYDRO-MEM is capable of making reasonable projections 

in a large estuarine system and that it can be extended to other estuarine systems for assessing 

possible SLR impacts to guiding restoration and management planning.  

1.5 Salt Marsh System Response to Sea Level Rise in Marine and Mixed Estuarine Systems 

In order to assess the response of different salt marsh systems to SLR, specifically marine and 

mixed estuarine systems in Grand Bay, MS, and Weeks Bay, AL, were compared and contrasted 

using the HYDRO-MEM model. The Grand Bay estuary is a marine dominant estuary located 

along the border of Alabama and Mississippi with dominant salt marsh species including Juncus 

roemerianus and Spartina alterniflora (Eleuterius and Criss, 1991). Sediment transport in this 

estuary is driven by wave forces from the Gulf of Mexico and SLR that cause salt marshes to 

migrate landward (Schmid, 2000). Therefore, with no fluvial sediment source, Grand Bay is 
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particularly vulnerable to SLR under extreme scenarios. The Weeks Bay estuary, located along the 

southeastern shore of Mobile Bay in Baldwin County, AL is categorized as a tributary estuary. 

This estuary is driven by the fresh water inflow from the Magnolia and Fish Rivers, as well as 

Mobile Bay, which is the estuary’s coastal ocean salt source. Weeks Bay has a fluvial source like 

Apalachicola, but is also significantly influenced by Mobile Bay. The estuary is getting shallower 

due to sedimentation from the river, Mobile Bay, and coastline erosion (Miller-Way et al., 1996). 

In fact, it has already lost marsh land because of both SLR and forest encroachment into the marsh 

(Shirley and Battaglia, 2006).  

Under future SLR scenarios, Weeks Bay benefitted from more protection from SLR provided by 

its unique topography to allow marsh migration and creation of new marsh systems, whereas Grand 

Bay is more vulnerable to SLR demonstrated by the conversion of its marsh lands to open water. 
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CHAPTER 2. REVIEW OF SALT MARSH EVOLUTION MODELS FOR 

ASSESSING SEA LEVEL RISE EFFECTS ON WETLANDS 

2.1 Sea Level Rise Effects on Wetlands 

Coastal wetlands are in danger of losing productivity and density under future scenarios; 

investigating the various parameters impacting these systems provides insight into potential future 

changes (Nicholls, 2004). It is expected that one of the prominent variables governing future 

wetland loss will be SLR (Nicholls et al., 1999). The effects of SLR on coastal wetland loss have 

been studied extensively by a diverse group of researchers. For example, a study on 

Wequetequock-Pawcatuck tidal marshes in New England over four decades showed that 

vegetation type and density change as a result of wetland loss in those areas (Warren and Niering, 

1993). Another study found that vegetation type change and migration of high-marsh communities 

will be replaced by cordgrass or inundated if SLR increases significantly (Donnelly and Bertness, 

2001). However, other factors and conditions such as removal of sediment by dredging, and sea 

walls and groyne construction were shown to be influential in the salt marsh productivity variations 

in southern England (Hughes, 2001). Therefore, it is critical to study an array of variables, 

including SLR, when assessing the past, present and future productivity of salt marsh systems. 

2.2 Importance of Salt Marshes 

Salt marshes play an important ecosystem-services role by providing intertidal habitats for many 

species. These species can be categorized in different ways (Teal, 1962); animals that visit marshes 

to feed and animals that use marshes as a habitat (Nicol, 1935). Some species are observed in the 

low tide regions and within the creeks, who travel from regions elsewhere in the estuarine 
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environment, while others are terrestrial animals that intermittently live in the marsh system. Other 

species such as crabs live in the marsh surface (Daiber, 1977). Salt marshes protect these animals 

by providing shelter and acting as a potential growth resource (Halpin, 2000); many of these 

species have great commercial and economic importance. Marshes also protect shorelines and 

reduce erosion by dissipating wave energy and increasing friction, both of which subsequently 

decreases flow energy (Möller and Spencer, 2002). Salt marshes effectively attenuate wave energy 

by decreasing wave heights per unit distance across salt marsh system, and also significantly affect 

the mechanical stabilization of shorelines. These processes depend heavily on vegetation density, 

biomass production, and marsh size (Shepard et al., 2011). Moreover, Knutson (1987) mentioned 

that the dissipation of energy by salt marsh roots and rhizomes increases the opportunity for 

sediment deposition and decreases marsh erodibility. During periods of sea level rise, salt marsh 

systems play an important role in protecting shorelines by both generating and dissipating turbulent 

eddies at different scales which helps transport and trap fine materials in the marshes (Seginer et 

al., 1976; Leonard and Luther, 1995; Moller et al., 2014). As a result, understanding changes in 

vegetation can provide productive restoration planning and coastal management guidance (Bakker 

et al., 1993). 

2.3 Sea Level Rise 

Projections of global SLR are important for analyzing coastal vulnerabilities (Parris et al., 2012). 

Based on studies of historic sea level changes, there were periods of rise, standstill, and fall 

(Donoghue and White, 1995). Globally, relative SLR is mainly influenced by eustatic sea-level 

change, which is primarily a function of total water volume in the ocean, and the isostatic 
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movement of the earth’s surface generated by ice sheet mass increase or decrease (Gornitz, 1982). 

Satellite altimetry data have shown that mean sea level from 1993-2000 increased at a rate of 3.4 

± 0.4 mm.yr-1 (Nerem et al., 2010). The total climate related SLR from 1993-2007 is 2.85 ± 0.35 

mm.yr-1 (Cazenave and Llovel, 2010).  Data from long-term tide gauges show that global mean 

sea level has increased by 1.7 mm.yr-1 in the last century (Church and White, 2006). Furthermore, 

global sea level rise rate has accelerated at 0.01 mm.yr-2 in the past 300 years, and if it continues 

at this rate, SLR with respect to the present will be 34 cm in the year 2100 (Jevrejeva et al., 2008). 

Additionally, using multiple scenarios for future global SLR while considering different levels of 

uncertainty can be used develop different potential coastal responses (Walton Jr, 2007).  

Unfortunately, there is no universally accepted method for probabilistic projection of global SLR 

(Parris et al., 2012). However, the four global SLR scenarios for 2100 presented in a National 

Oceanic and Atmospheric Administration (NOAA) report are considered reasonable and are 

categorized as low (0.2 m), intermediate-low (0.5 m), intermediate-high (1.2 m) and high (2.0 m). 

The low scenario is derived from the linear extrapolation of global tide gauge data, beginning in 

1900. The intermediate-low projection is developed using the Intergovernmental Panel on Climate 

Change (IPCC) Fourth Assessment Report (AR4) on SLR. The intermediate-high scenario uses 

the average of the high statistical projections of SLR from observed data. The high scenario is 

calculated using projected values of ocean warming and ice sheet melt projection (Parris et al., 

2012).  

Globally, the acceleration of SLR is not spatially constant (Sallenger et al., 2012). There is no 

generally accepted method to project SLR at the local scale (Parris et al., 2012); however, a tide 



14 

 

gauge analysis performed in Florida using three different methods forecasted a rise between 0.11 

to 0.36 m from present day to the year 2080 (Walton Jr, 2007). The absolute value of the increase 

of the vertical distance between land and mean sea level is called relative sea level rise (RSLR), 

and can be defined in marshes as the total value of eustatic SLR, considering deep and shallow 

subsidence (Rybczyk and Callaway, 2009). The NGOM has generally followed the global eustatic 

SLR but exceeds the global average rate of RSLR; regional gauges showed RSLR to be about 2 

mm.yr-1, which varies by location and is higher in Louisiana and Texas because of local subsidence 

(Donoghue, 2011). RSLR in the western Gulf of Mexico (Texas and Louisiana coasts) is reported 

to be 5 to 10 mm.yr-1 faster than global RSLR because of multi-decadal changes or large basin 

oceanographic effects (Parris et al., 2012). Concurrently, the U.S. Army Corps of Engineers 

(USACE) developed three projections of low, intermediate, and high SLR at the local scale. The 

low curve follows the historic trend of SLR and the intermediate and high curves use NRC curves 

(United States Army Corps of Engineers (USACE), 2011). These projections are fused with local 

variations such as subsidence to project local SLR for application in the design of infrastructure 

(http://www.corpsclimate.us/ccaceslcurves_nn.cfm). 

It is very important to consider a dynamic approach when applying SLR scenarios for coastal 

vulnerability assessments to capture nonlinearities that are unaccounted for by the static or 

“bathtub” approach (Bacopoulos et al., 2012; Bilskie et al., 2014; Passeri et al., 2014). The static 

or “bathtub” approach simply elevates the water surface by a given SLR and extrapolates 

inundation based on the land elevations. A dynamic approach captures the nonlinear feedbacks of 

the system by considering the interactions between impacted topography and inundation that may 

lead to an increase or decrease in future tide levels (Hagen and Bacopoulos, 2012; Atkinson et al., 

http://www.corpsclimate.us/ccaceslcurves_nn.cfm
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2013; Bilskie et al., 2014). The static approach also does not consider any future changes in 

landscape (Murdukhayeva et al., 2013). Additionally, some of the areas that are projected to 

become inundated using the bathtub approach are not correctly predicted due to the complexities 

in coastal processes and the changes in coastline and vulnerable areas (Gesch, 2013). Therefore, it 

is critical to use a dynamic approach that considers these complexities and also includes future 

changes to these systems such as shoreline morphology. 

Estuarine circulation is dominated by tidal and river inflow; understanding the variation in velocity 

residuals under SLR scenarios can help to understand the potential effects to coastal ecosystems 

(Valentim et al., 2013). Some estuaries respond to SLR by rapidly filling with more sediment and 

or by flushing and losing sediment; these responses vary according to the estuary’s geometry 

(Friedrichs et al., 1990). Sediment accumulation in estuaries changes with sediment input, 

geomorphology, fresh water inflow, tidal condition, and the rate of RSLR (Nichols, 1981). Two 

parameters that affect an estuary’s sediment accumulation status are the potential sediment 

trapping index and the degree of mixing.  The potential sediment trapping index is defined as the 

ratio of volumetric capacity to the total mean annual inflow (Biggs and Howell, 1984) and the 

degree of mixing is described as the ratio of mean annual fresh water inflow (during half a tidal 

cycle) to the tidal prism (the volume of water leaving an estuary between mean high tide and mean 

low tide) (Nichols, 1989). 

2.4 Hydrodynamic Modeling of Sea Level Rise 

SLR can alter circulation patterns and sediment transport, which affect the ecosystem and wetlands 

(Nichols, 1989). The hydrodynamic parameters that SLR can change are tidal range, tidal prism, 
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surge heights, and inundation of shorelines (National Research Council, 1987). The amount of 

change for the tidal prism depends on the characteristics of the bay (Passeri et al., 2014). An 

increase in tidal prism often causes stronger tidal flows in the bays (Boon Iii and Byrne, 1981). 

Research on the effects of sea level change on hydrodynamic parameters has been investigated 

using various hydrodynamic models. Reviewing this work accelerates our understanding of how 

the models that can be applied in coupled hydrodynamic and marsh assessments.  

Wolanski and Chappell (1996) applied a calibrated hydrodynamic model to examine the effects of 

0.1 m and 0.5 m SLR in three rivers in Australia. Their hydrodynamic model is a one-dimensional, 

finite difference, implicit, depth-averaged model that solves the full non-linear equations of 

motion. Results showed changes in channel dimensions under future SLR. In addition, they 

connected the hydrodynamic model to a sediment transport model and showed that some sediment 

was transported seaward by two rivers because of the SLR effect resulting in channel widening. 

The results also indicated transportation of more sediment to the floodplain by another river as a 

result of SLR. 

Liu (1997) used a three-dimensional hydrodynamic model for the China Sea to investigate the 

effects of one meter sea level rise in near-shore tidal flow patterns and storm surge. The results 

showed more inundation farther inland due to storm surge. The results also indicated the 

importance of the dynamic and nonlinear effects of momentum transfer in simulating astronomical 

tides under SLR and their impact on storm surge modeling. The near-shore transport mechanisms 

also changed because of nonlinear dynamics and altered depth distribution in shallow near-shore 

areas. These mechanisms also impact near-shore ecology.  
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Hearn and Atkinson (2001) studied the effects of local RSLR on Kaneohe Bay in Hawaii using a 

hydrodynamic model. The model was applied to show the sensitivity of different forcing 

mechanisms to a SLR of 60 cm. They found circulation pattern changes particularly over the reef 

which improved the lagoon flushing mechanisms. 

French (2008) investigated a managed realignment of an estuarine response to a 0.3 m SLR using 

a two-dimensional hydrodynamic model (Telemac 2D). The study was done on the Blyth estuary 

in England, which has hypsometric characteristics (vast intertidal area and a small inlet) that make 

it vulnerable to SLR. The results showed that the maximum tidal velocity and flow increased by 

20% and 28%, respectively under the SLR using present day bathymetry. This research 

demonstrated the key role of sea wall realignment in protecting the estuary from local flooding. 

However, the outer estuary hydrodynamics and sediment fluxes were also altered, which could 

have more unexpected consequences for wetlands.   

Leorri et al. (2011) simulated pre-historic water levels and flows in Delaware Bay under SLR 

during the late Holecene using the Delft3D hydrodynamic model. Sea level was lowered to the 

level circa 4000 years ago, with present day bathymetry. The authors found that the geometry of 

the bay changed, which affected the tidal range. The local tidal range changed nonlinearly by 50 

cm. They concluded that when projecting sea level rise, coastal amplification (or deamplification) 

of tides should be considered. 

Hagen and Bacopoulos (2012) assessed inundation of Florida’s Big Bend Region using a two-

dimensional ADCIRC model by comparing maximum envelopes of water against inundated 
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surfaces. Both static and dynamic approaches were used to demonstrate the nonlinearity of SLR. 

The results showed an underestimation of the flooded area by 2/3 in comparison with dynamic 

approach. The authors concluded that it is imperative to implement a dynamic approach when 

investigating the effects of SLR. 

Valentim et al. (2013) employed a two-dimensional hydrodynamic model (MOHID) to study the 

effects of SLR on tidal circulation patterns in two Portuguese coastal systems. Their results 

indicated the importance of river inflow in long-term hydrodynamic analysis. Although the 

difference in residual flow intensity varied between 80 to 100% at the river mouth under a rise of 

42 cm based on local projections, it decreased discharge in the bay by 30%. These changes in 

circulation patterns could affect both biotic and abiotic processes. They concluded that low lying 

wetlands will be affected by inundation and erosion, making these habitats vulnerable to SLR. 

Hagen et al. (2013) studied the effects of SLR on mean low water (MLW) and mean high water 

(MHW) in a marsh system (particularly tidal creeks) in northeast Florida using an ADCIRC 

hydrodynamic model. The results showed a higher increase in MHW than the amount of SLR and 

lower increase in MLW than the amount of SLR.  The spatial variability in both of the tidal datums 

illustrated the nonlinearity in tidal flow and further justified using a dynamic approach in SLR 

assessments. 

2.5 Marsh Response to Sea Level Rise 

Research has shown that under extreme conditions, salt marshes will not have time to establish an 

equilibrium and may migrate landward or convert to open water (Warren and Niering, 1993; Gabet, 
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1998; Donnelly and Bertness, 2001; Hughes, 2001; Castillo et al., 2002). One method for 

projecting salt marsh response under different stressors (i.e. SLR) is utilizing ecological models. 

The dynamics of salt marshes, which are characterized by complex inter-relationships between 

physics and biology (Townend et al., 2011), requires the coupling of seemingly disparate models 

to capture sensitivity and feedback processes (Reed, 1990). In particular, these coupled model 

systems allow researchers to examine marsh response to a projected natural or anthropogenic 

change in environmental conditions such as SLR. The models can be divided into two groups based 

on the simulation spatial scales in projecting vegetation productivity: landscape scale models and 

small scale models with appropriate resolution. Although most studies are categorized based on 

these scales, the focus on their grouping is more on morphodynamic processes (Rybczyk and 

Callaway, 2009; Fagherazzi et al., 2012). 

2.5.1 Landscape Scale Models 

Ecosystem-based landscape models are designed to lower the computational expense by lowering 

the resolution and simplifying physical processes between ecosystem units (Fagherazzi et al., 

2012). These models connect different parameters such as hydrology, hydrodynamics, water 

nutrients, and environmental inputs, integrating them into a large scale model. Although these 

models are often criticized for their uncertainty, inaccurate estimation and simplification in their 

approach (Kirwan and Guntenspergen, 2009), they are frequently used for projecting future 

wetland states under SLR due to their low computational expense and simple user interface. A few 

of these models will be discussed herein. 
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General Ecosystem Model (GEM) is a landscape scale model that directly simulates the hydrologic 

processes in a grid-cell spatial simulation with a minimum one day time step, and connects 

processes with water quality parameters to target macrophyte productivity (Fitz et al., 1996). 

Another direct calculation model is the Coastal Ecological Landscape Spatial Simulation (CELSS) 

model that interconnects each one square kilometer cell to its four nearest neighbors by exchanging 

water and suspended sediments using the mass-balance approach and applying other hydrologic 

forcing like river discharge, sea level, runoff, temperature, and winds. Each cell is checked for a 

changing ecosystem type until the model reaches the final time (Sklar et al., 1985; Costanza et al., 

1990). This model has been implemented in projects to aid in management systems (Costanza and 

Ruth, 1998).  

Reyes et al. (2000) investigated the Barataria and Terrebonne basins of coastal Louisiana for 

historical land loss and developed Barataria–Terrebonne ecological landscape spatial simulation 

(BTELSS) model, which is a direct-calculation landscape model. This model framework is similar 

to CELSS but with interconnections between the hydrodynamic, plant-production, and soil-

dynamics modules. Forcing parameters include subsidence, sedimentation, and sea-level rise. 

After the model was calibrated and validated, it was used to simulate 30 years into the future 

starting in 1988. They showed that weather variability has more of an impact on land loss than 

extreme weather. This model was also used for management planning (Martin et al., 2000).  

Another landscape model, presented by Martin (2000), was also designed for the Mississippi delta. 

The Mississippi Delta Model (MDM) is similar to BTELSS, as it transfers data between modules 

that are working in different time steps. However, it also includes a variable time-step 
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hydrodynamic element, and mass-balance sediment and marsh modules. This model has  higher 

resolution than BTELSS, which allows river channels to be captured, and results in the building 

the delta via sediment deposition (Martin et al., 2002). 

Reyes et al. (2003) and Reyes et al. (2004) presented two landscape models to simulate land loss 

and marsh migration in two watersheds in Louisiana. The models include coupled hydrodynamic, 

biological, and soil dynamic modules. The results from the hydrodynamic and biological modules 

are fed into the soil dynamic module. The outputs are assessed using a habitat switching module 

for different time and space scales. The Barataria Basin Model (BBM) and Western Basin Model 

(WBM) were calibrated to explore SLR effects and river diversion at the Mississippi Delta for  30 

and 70-year predictions. The results showed the importance of increasing river inflow to the basins. 

They also showed that a restriction in water delivery resulted in land loss with a nonlinear trend 

(Reyes et al., 2003; Reyes et al., 2004).  

The same approach as BBM and WBM was applied to develop the Caernarvon Watershed Model 

in Louisiana, and the Centla Watershed Model for the Biosphere Reserve Centla Swamps in the 

state of Tabasco in Mexico (Reyes et al., 2004). The first model includes 14,000 cells ranging from 

0.25 to 1 km2 in size used to forecast habitat conditions in 50 years to aid in management planning. 

The second model illustrated a total habitat loss of 16% in the watershed within 10 years, resulting 

from increased oil extraction and lack of monitoring (Reyes et al., 2004).  

Lastly, the Sea Level Affecting Marshes Model (SLAMM), is a spatial model for projecting sea 

level rise effects on coastal systems. It implements decision rules to predict the transformation of 
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different categories of wetlands in each cell of the model (Park et al., 1986). This model assumes 

each one square-kilometer is covered with one category of wetlands and one elevation, ignoring 

the development for residential area. In addition, no freshwater inflow is considered where 

saltwater and freshwater wetlands are distinguishable, and salt marshes in different regions are 

parameterized with the same characteristics.  

The SLAMM model was partially validated in a study where high salt marsh replaced low salt 

marsh by the year 2075 under low SLR (2.5 ft) in Tuckerton, NJ (Kana et al., 1985). The model 

input includes a digital elevation model (DEM), SLR, land use land cover (LULC) map, and tidal 

data (Clough et al., 2010). In the main study using SLAMM in 1986, 57 coastal wetland sites 

(485,000 ha) were selected for simulation. Results indicated 56% and 22% loss of these wetlands 

under high and low SLR scenarios, respectively by the year 2100. Most of these losses occurred 

in the Gulf Coast and in the Mississippi delta (Park et al., 1986). In a more comprehensive study 

of 93 sites, results showed 17%, 48%, 63%, and 76% of coastal wetland loss for 0.5 m, 1 m, 2 m, 

and 3 m SLR, respectively (Park et al., 1989).  

Another study used measurements, geographic data and SLR in conjunction with simulations from 

SLAMM to study the effects of SLR on salt marshes along Georgia coast for the year 2100 (Craft 

et al., 2008). Six sites were selected, including two salt marshes, two brackish marshes, and two 

fresh water marshes. In the SLAMM version used in this study, salt water intrusion was considered. 

The results indicated 20% and 45% of salt marshes loss under mean and high SLR, respectively. 

However, freshwater marshes increased by 2% under mean SLR and decreased by 39% under the 

maximum SLR scenario. Results showed that marshes in the lower and higher bounds of salinity 
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are more affected by accelerated SLR, except the ones that have enough accretion or ones that 

were able to migrate. This model is also applied in other parts of the world (Udo et al., 2013; Wang 

et al., 2014) and modified to investigate the effects of SLR on other species like Submerged 

Aquatic Vegetation (SAV) (Lee II et al., 2014). 

2.5.2 High Resolution Models 

Models with higher resolution, feedback between different parameters in small scales (e.g., salinity 

level (Spalding and Hester, 2007), CO2 concentration (Langley et al., 2009), temperature (McKee 

and Patrick, 1988), tidal range (Morris et al., 2002), location (Morris et al., 2002), and marsh 

platform elevation (Redfield, 1972; Orson et al., 1985)) play an important role in determining salt 

marsh productivity (Morris et al., 2002; Spalding and Hester, 2007). One of the most significant 

factors in the ability of salt marshes to maintain equilibrium under accelerated SLR (Morris et al., 

2002) is maintaining platform elevation through organic (Turner et al., 2000; Nyman et al., 2006; 

Neubauer, 2008; Langley et al., 2009) and inorganic (Gleason et al., 1979; Leonard and Luther, 

1995; Li and Yang, 2009) sedimentation (Krone, 1987; Morris and Haskin, 1990; Reed, 1995; 

Turner et al., 2000; Morris et al., 2002). Models with high resolution that investigate marsh 

vegetation and platform response to SLR are explained herein. 

In terms of the seminal work on this topic, Redfield and Rubin (1962) investigated marsh 

development in New England in response to sea level rise. They showed the dependency of high 

marshes to sediment deposition and vertical accretion in response to SLR. Randerson (1979) used 

a holistic approach to build a time-stepping model calibrated by observed data. The model is able 

to simulate the development of salt marshes considering feedbacks between the biotic and abiotic 
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elements of the model. However, the author insisted on the dependency of the models on long-

term measurements and data. Krone (1985) presented a method for calculating salt marsh platform 

rise under tidal effects and sea level change, including sediment and organic matter accumulation. 

Results showed that SLR can have a significant effect on marsh platform elevation. Krone (1987) 

applied this method to South San Francisco Bay by using historic mean tide measurements, and 

measuring marsh surface elevation. His results indicated that marsh surface elevation increases in 

response to SLR and maintains the same rate of increasing, even if the SLR rate becomes constant.  

As the study of this topic shifted towards computer modeling, Orr et al. (2003) modified the Krone 

(1987)’s model  by adding a constant organic accretion rate, consistent with French (1993)’s 

approach. The model was run for SLR scenarios and results indicated that under low SLR, high 

marshes were projected to keep their elevation, but under higher rates of SLR, the elevation would 

decrease in 100 years and reach the elevation of low/high marsh. Stralberg et al. (2011) presented 

a hybrid model that included marsh accretion (sediment and organic), first developed by Krone 

(1987), and its spatial variation. The model was applied to San Francisco Bay over a 100 year 

period with SLR assumptions. They concluded that under a high rate of SLR, for minimizing marsh 

loss, the adjacent upland area should be protected for marsh migration and adding sediments to 

raise the land and focus more on restoration of the rich-sediment regions. 

Allen (1990) presented a numerical model for mudflat-marsh growth that includes minerorganic 

and organogenic sedimentation rate, sea level rise, sediment compaction parameters and support 

the model with some published data (Kirby and Britain, 1986; Allen and Rae, 1987; Allen and 
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Rae, 1988) from Severn estuary in southwest Britain. His results demonstrated a rise in marsh 

platform elevation, which flattens off afterward in response to the applied SLR scenario. 

Chmura et al. (1992) constructed a model for connecting SLR, compaction, sedimentation and 

platform accretion, and submergence of the marshes. The model was calibrated with long term 

sedimentation data. The model showed that an equilibrium between the rate of accretion and the 

rate of SLR can theoretically be reached in Louisiana marshes. 

French (1993) applied a one-dimensional model that was based on a simple mass balance to predict 

marsh growth and marsh platform accretion rate as a function of sedimentation, tidal range, and 

local subsidence. The model was also applied to assess historical marsh growth and marsh response 

to nonlinear SLR in Norfolk, UK. His model projected marsh drowning under a dramatic SLR 

scenario by the year 2100. Allen (1997) also developed a conceptual qualitative model to describe 

the three-dimensional character of marshes to assess morphostratigraphic evolution of marshes 

under sea level change. He showed that creek networks grow in cross-section and number in 

response to SLR, but shrink afterward. He also investigated the effects of great earthquakes on the 

coastal land and creeks.  

van Wijnen and Bakker (2001) studied 100 years of marsh development by developing a simple 

predictive model that connects changes in surface elevation with SLR. The model was tested in 

several sites in the Netherlands. Results showed that marsh surface elevation is dependent on 

accretion rate and continuously increases but with different rates. Their results also indicated that 

old marshes may subside due to shrinkage of the clay layer in summer. 
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The Marsh Equilibrium Model (MEM) is a parametric marsh model that showed that there is an 

optimum range for salt marsh elevation in the tidal frame in order to have the highest biomass 

productivity (Morris et al., 2002). Based on long-term measurements, Morris et al. (2002) 

proposed a parabolic function for defining biomass density with respect to nondimensional depth 

D and parameters a, b, and c that are determined by measurements, differ regionally and depend 

on salinity, climate, and tide range (Morris, 2007). The accretion rate in this model is a positive 

function based on organic and inorganic sediment accumulation. The two accretion sources, 

organic and inorganic, are necessary to maintain marsh productivity under SLR; otherwise marshes 

might become submerged (Nyman et al., 2006; Blum and Roberts, 2009; Baustian et al., 2012). 

Organic accretion is a function of the biomass density in the marsh. Inorganic accretion (i.e., 

mineral sedimentation) also is influenced by the biomass density, which affects the ability of the 

marsh to ‘trap’ sediments. Inorganic sedimentation occurs as salt marshes impede flow by 

increasing friction and the sediments’ time of travel, which allows for sediment deposition on the 

marsh platform (Leonard and Luther, 1995; Leonard and Croft, 2006). The linear function 

developed by Morris et al. (2002) for the rate of total accretion is a function of nondimensional 

depth, biomass density and constants q and k. q represents the inorganic portion of accretion that 

is from the sediment loading rate and k represents the organic and inorganic contributions resulting 

from the presence of vegetation. The values of the constants q and k differ based on the estuarine 

system, marsh type, land slope, and other factors (Morris et al., 2002). The accretion rate is positive 

for salt marshes below MHW; when D > 0 no accumulation of sediments will occur for salt 

marshes above MHW (Morris, 2007). The parameters for this model were derived at North Inlet, 
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South Carolina where Spartina Alterniflora is the dominant species. However, these constants can 

be derived for other estuaries. 

Temmerman et al. (2003) also generated a zero-dimensional time stepping model using the mass 

balance approaches from Krone (1987), Allen (1990), and French (1993) . The model was tested 

and calibrated with historical marsh platform accretion rates in the Scheldt estuary in Belgium. 

They authors recognize the significance of accounting for long-term elevation change of tidal 

marshes. 

The model developed by Morris et al. (2002) has been utilized in other models for salt marsh 

evolution (Mudd et al., 2004; D' Alpaos et al., 2006; Kirwan and Murray, 2007). Mudd et al. (2004) 

suggested a one-dimensional model with hydrodynamic, biomass, and sediment transport 

(sediment settling and trapping) components. The biomass component is the salt marsh model of 

Morris et al. (2002) and calculates the evolution of the marsh platform through a transect 

perpendicular to a tidal creek. The model neglects erosion and the neap-spring tide cycle, models 

a single marsh species at a time, and only estimates above ground biomass. The hydrodynamic 

module derives water velocity and level from tidal flow, which serve as inputs for biomass 

calculation. Sedimentation is divided into particle settling and trapping and also organic 

deposition. The model showed that the marshes that are more dependent on sediment transport 

adjust faster to SLR than a marsh that is more dependent on organic deposition. 

D' Alpaos et al. (2006)  used the marsh model developed by Morris et al. (2002)  in a numerical 

model for the evolution of a salt marsh creek. The model consists of hydrodynamic, sediment 



28 

 

erosion and deposition, and vegetation modules. The modules are connected together in a way that 

allows tidal flow to affect sedimentation, erosion and marsh productivity and the vegetation to 

affect drag. The objective of this model was to study vegetation and tidal flow on creek geometry. 

The results showed that the width-to-depth ratio of the creeks is decreased by increasing vegetation 

and accreting marsh platform whereas the overall cross section area depends on tidal flow. 

Kirwan and Murray (2007) generated a three dimensional model that connects biological and 

physical processes. The model has a channel network development module that is affected by 

erosion caused by tidal flow, slope driven erosion, and organic deposition. The vegetation module 

for this model is based on a simplified version of the parametric marsh model by (Morris et al., 

2002). The results indicated that for a moderate SLR, the accretion and SLR are equal, but for a 

high SLR, the creeks expand and the accretion rate increases and resists against SLR while 

unvegetated areas are projected to become inundated. 

Mariotti and Fagherazzi (2010)  also developed a one dimensional model that connects the marsh 

model by Morris et al. (2002) with tidal flow, wind waves, sediment erosion and deposition. The 

model was designed to demonstrate marsh boundary change with respect to different scenarios of 

SLR and sedimentation. This study showed the significance of vegetation on sedimentation in the 

intertidal zone. Moreover, the results illustrated the expanding marsh boundary under low SLR 

scenario due to an increase in transported sediment and inundation of the marsh platform and its 

transformation to a tidal flat under high SLR. 
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Tambroni and Seminara (2012) investigated salt marsh tendencies for reaching equilibrium by 

generating a one dimensional model that connects a tidal flow (considering wind driven currents 

and sediment flux) module with a marsh model. The model captures the growth of creek and marsh 

structure under SLR scenarios. Their results indicated that a marsh may stay in equilibrium under 

low SLR, but the marsh boundary may move based on different situations.   

Hagen et al. (2013) assessed SLR effects on the lower St. Johns River salt marsh using an 

integrated model that couples a two dimensional hydrodynamic model, the Morris et al. (2002) 

marsh model, and an engineered accretion rate. Their hydrodynamic model output is MLW and 

MHW, which are the inputs for the marsh model. They showed that MLW and MHW in the creeks 

are highly variable and sensitive to SLR. This variability explains the variation in biomass 

productivity. Additionally, their study demonstrated how marshes can survive high SLR using an 

engineered accretion such as thin-layer disposal of dredge spoils. 

Marani et al. (2013) studied marsh zonation in a coupled geomorphological-biological model. The 

model use Exner’s equation for calculating variations in marsh platform elevation. They showed 

that vegetation “engineers” the platform to seek equilibrium through increasing biomass 

productivity. The zonation of vegetation is due to interconnection between geomorphology and 

biology. The study also concluded that the resiliency of marshes against SLR depends on their 

characteristics and abilities and some or all of them may disappear because of changes in SLR. 

Schile et al. (2014) calibrated the Marsh Equilibrium Model developed by Morris et al. (2002) for 

Mediterranean-type marshes and projected marsh distribution and accretion rates for four sites in 
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the San Francisco Bay Estuary under four SLR scenarios. To better demonstrate the spatial 

distribution of marshes, the authors applied the results to a high resolution DEM. They concluded 

that under low SLR, the marshes maintained their productivity, but under intermediate low and 

high SLR, the area will be dominated by low marsh and no high marsh will remain; under high 

SLR scenario, the marsh area is projected to become a mudflat. 
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CHAPTER 3. METHODS AND VALIDATION 

The content in this chapter is published as: Alizad, K., Hagen, S. C., Morris, J. T., Bacopoulos, P., 

Bilskie, M. V., Weishampel, J. F. and Medeiros, S. C. 2016. A coupled, two-dimensional 

hydrodynamic-marsh model with biological feedback." Ecological Modelling 327: 29-43, 

10.1016/j.ecolmodel.2016.01.013. 

3.1 Introduction 

Coastal salt marsh systems provide intertidal habitats for many species (Halpin, 2000; Pennings 

and Bertness, 2001), many of which (e.g., crabs and fish) have significant commercial importance. 

Marshes also protect shorelines by dissipating wave energy and increasing friction, processes 

which subsequently decrease flow energy (Knutson, 1987; Leonard and Luther, 1995; Möller and 

Spencer, 2002; Shepard et al., 2011). Salt marsh communities are classic examples of systems that 

are controlled by and in turn influence physical processes (Silliman and Bertness, 2002).  

Studying the dynamics of salt marshes, which are characterized by complex inter-relationships 

between physics and biology (Townend et al., 2011), requires the coupling of seemingly disparate 

models to capture their sensitivity and feedback processes (Reed, 1990). Furthermore, coastal 

ecosystems need to be examined using dynamic models, because biophysical feedbacks change 

topography and bottom friction with time (Jørgensen and Fath, 2011). Such coupled models allow 

researchers to examine marsh responses to natural or anthropogenic changes in environmental 

conditions. The models can be divided into landscape scale and fine scale models based on the 

scales for projecting vegetation productivity. Ecosystem-based landscape models are designed to 

lower the computational expense by expanding the resolution to the order of kilometers and 

simplifying physical processes between ecosystem units (Fagherazzi et al., 2012). These models 
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connect different drivers including hydrology, hydrodynamics, water nutrients, environmental 

inputs and integrate them in a large scale model (Sklar et al., 1985; Park et al., 1986; Park et al., 

1989; Costanza et al., 1990; Fitz et al., 1996; Costanza and Ruth, 1998; Martin et al., 2000; Reyes 

et al., 2000; Martin et al., 2002; Craft et al., 2008; Clough et al., 2010). However, fine scale models 

with resolutions on the order of meters can provide more realistic results by including different 

feedback mechanisms. Most relevant to this work is their ability to model the response in marsh 

productivity to a change in forcing mechanisms (e.g., sea-level rise-SLR) (Reed, 1995; Allen, 

1997; Morris et al., 2002; Temmerman et al., 2003; Mudd et al., 2004; Kirwan and Murray, 2007; 

Mariotti and Fagherazzi, 2010; Stralberg et al., 2011; Tambroni and Seminara, 2012; Hagen et al., 

2013; Marani et al., 2013; Schile et al., 2014).  

Previous studies have shown that salt marshes possess biological feedbacks that change relative 

marsh elevation by accreting organic and inorganic material (Patrick and DeLaune, 1990; Reed, 

1995; Turner et al., 2000; Morris et al., 2002; Baustian et al., 2012; Kirwan and Guntenspergen, 

2012). SLR also will cause salt marshes to transgress, but extant marshes may be unable to accrete 

at a sufficient rate in response to high SLR (Warren and Niering, 1993; Donnelly and Bertness, 

2001) leading to their complete submergence and loss (Nyman et al., 1993).  

Salt marsh systems adapt to changing mean sea level through continuous adjustment of the marsh 

platform elevation toward an equilibrium (Morris et al., 2002). Based on long-term measurements 

of sediment accretion and marsh productivity, Morris et al. (2002) developed the Marsh 

Equilibrium Model (MEM) that links sedimentation, biological feedback, and the relevant time 

scale for SLR. Marsh equilibrium theory holds that a dynamic equilibrium exists, and that marshes 
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are continuously moving in the direction of that equilibrium. MEM uses a polynomial formulation 

for salt marsh productivity and accounts explicitly for inputs of suspended sediments and implicitly 

for the in situ input of organic matter to the accreting salt marsh platform. The coupled model 

presented in this manuscript incorporates biological feedback by including the MEM accretion 

formulation as well as implementing a friction coefficient effect that varies between subtidal and 

intertidal states. The resulting model not only has the capability of capturing biophysical feedback 

that modifies relative elevation, but it also includes the biological feedback on hydrodynamics. 

Since the time scale for SLR is on the order of decades to centuries, models that are based on long-

term measurements, like MEM, are able to capture a fuller picture of the governing long-term 

processes than physical models that use temporary physical processes to extrapolate long-term 

results (Fagherazzi et al., 2012). MEM has been applied to a number of investigations on the 

interaction of hydrodynamics and salt marsh productivity. Mudd et al. (2004) used MEM coupled 

with a one-dimensional hydrodynamic component to investigate the effect of SLR on 

sedimentation and productivity in salt marshes at the North Inlet estuary, South Carolina. MEM 

has also been used to simulate the effects of vegetation on sedimentation, flow resistance, and 

channel cross section change (D' Alpaos et al., 2006), as well as in a three-dimensional model of 

salt marsh accretion and channel network evolution based on a physical model for sediment 

transport (Kirwan and Murray, 2007). Hagen et al. (2013) coupled a two-dimensional 

hydrodynamic model with the zero-dimensional biomass production formula of Morris et al. 

(2002) to capture SLR effects on biomass density and simulated human-enhanced marsh accretion.  
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Coupling a two-dimensional hydrodynamic model with a point-based parametric marsh model that 

incorporates biological feedback, such as MEM, has not been previously achieved. Such a model 

is necessary because results from short-term limited hydrodynamic studies cannot be used for long-

term or extreme events in ecological and sedimentary interaction applications. Hence, there is a 

need for integrated models, which incorporate both hydrodynamic and biological components for 

long time scales (Thomas et al., 2014). Additionally, models that ignore the spatial variability of 

the accretion mechanism may not accurately capture the dynamics of a marsh system (Thorne et 

al., 2014), and it is important to model the distribution at the correct scale for spatial modeling 

(Jørgensen and Fath, 2011).  

Ecological models that integrate physics and biology provide a means of examining the responses 

of coastal systems to various possible scenarios of environmental change. D' Alpaos et al. (2007) 

employed simplified shallow water equations in a coupled model to study SLR effects on marsh 

productivity and accretion rates. Temmerman et al. (2007) applied a more physically complicated 

shallow water model to couple it with biological models to examine landscape evolution within a 

limited domain. These coupled models have shown the necessity of the interconnection between 

physics and biology; however, the applied physical models were simplified or the study area was 

small. This paper presents a practical framework with a novel application of MEM that enables 

researchers to forecast the fate of coastal wetlands and their responses to SLR using a physically 

more complicated hydrodynamic model and a larger study area. The coupled HYDRO-MEM 

model is based on the model originally presented by Hagen et al. (2013). This model has since 

been enhanced to include: spatially dependent marsh platform accretion, a bottom friction 

roughness coefficient (Manning’s n) using temporal and spatial variations in habitat state, a 
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“coupling time step” to incrementally advance and update the solution, and changes in biomass 

density and hydroperiod via biophysical feedbacks. The presented framework can be employed in 

any estuary or coastal wetland system to assess salt marsh productivity regardless of tidal range 

by updating an appropriate biomass curve for the dominant salt marsh species in the estuary. In 

this study, the coupled model was applied to the Timucuan marsh system located in northeast 

Florida under high and low SLR scenarios. The objectives of this study were to (1) develop a 

spatially-explicit model by linking a hydrodynamic-physical model and MEM using a coupling 

time step and (2) assess a salt marsh system long-term response to projected SLR scenarios.  

3.2 Methods 

3.2.1 Study Area 

The study area is the Timucuan salt marsh, located along the lower St. Johns River in Duval County 

in northeastern Florida (Figure 3.1). The marsh system is located to the north of the lower 10–20 

km of the St. Johns River, where the river is engineered and the banks are hardened for support of 

shipping traffic and port utility. The creeks have changed little from 1929 to 2009 based on 

surveyed data from National Ocean Service (NOS) and the United States Army Corps of Engineers 

(USACE), which show the creek layout to have remained essentially the same since 1929. The salt 

marsh of the Timucuan preserve, which was designated the Timucuan Ecological and Historic 

Preserve in 1988, is among the most pristine and undisturbed marshes found along the southeastern 

United States seaboard (United States National Park Service (Denver Service Center), 1996). 

Maintaining the health of the approximately 185 square km of salt marsh, which cover roughly 
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75% of the preserve, is important for the survival of migratory birds, fish, and other wildlife that 

rely on this area for food and habitat. 

The primary habitats of these wetlands are salt marshes and the tidal creek edges between the north 

bank and Sisters Creek are dominated by low marsh, where S. alterniflora thrives (DeMort, 1991). 

A sufficient biomass density of S. alterniflora in the marsh is integral to its survival, as the grass 

aids in shoreline protection, erosion control, filtering of suspended solids, and nutrient uptake of 

the marsh system (Bush and Houck, 2002). S. alterniflora covers most of the southern part of the 

watershed and east of Sisters Creek up to the primary dunes on the north bank, and is also the 

dominant species on the Black Hammock barrier island (DeMort, 1991). The low marsh is the 

more tidally vulnerable region of the study area. Our focus is on the areas that are directly exposed 

to SLR and where S. alterniflora is dominant. However, we also extended our salt marsh study 

area 11 miles to the south, 17 miles to the north, and 18 miles to the west of the mouth of the St. 

Johns River. The extension of the model boundary allows enough space to study the potential for 

salt marsh migration. 
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Figure 3.1: Study area and progressive insets. (a) Location of St. Johns river; (b) Location of 

Timucuan salt marsh system and lower St. Johns river; (c) Timucuan salt marsh system and tidal 

creeks. (d) Sub-region of Timucuan including the location of example transect AB and three 

biomass sample sites. Site 1 (blue) is in a low biomass productivity region, site 2 (red) is in a 

medium biomass productivity region, and site 3 (green) is in a high biomass productivity region. 

The maps are screen captures of world imagery in ArcGIS (ESRI, 2012). 
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3.2.2 Overall Model Description 

 The flowchart shown in Figure 3.2 illustrates the dynamic coupling of the physical and biological 

processes in the model. The framework to run the HYDRO-MEM model consists of two main 

elements: the hydrodynamic model, and a marsh model with biological feedback (MEM) in the 

form of an ArcGIS toolbox. The two model components provide inputs for one another at a 

specified time step within the loop structure, referred to as the coupling time step. The coupling 

time step refers to the length of the time interval between updating the hydrodynamics based on 

the output of MEM, which was always integrated with an annual time step. The length of the 

coupling time step (t) governs the frequency of exchange of information from one model 

component to the other. The choice of coupling time step size affects the accuracy and 

computational expense of the HYDRO-MEM model which is an important consideration if 

extensive areas are simulated. The model’s initial conditions include astronomic tides, bottom 

friction, and elevation, which consist of the marsh surface elevations, creek geometry, and sea 

level. The hydrodynamic model is then run using the initial conditions and its results are processed 

to derive tidal constituents.  

The tidal constituents are fed into the ArcGIS toolbox, which contains two components that were 

designed to work independently. The “Tidal Datums” element of the ArcGIS toolbox computes 

Mean Low Water (MLW) and Mean High Water (MHW) in regions that were always classified as 

wetted during the hydrodynamic simulation. The second component of the toolbox, “Biomass 

Density,” uses the MLW and MHW calculated in the previous step and extrapolates those values 

across the marsh platform using the Inverse Distance Weighting (IDW) method of extrapolation 
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in ArcGIS (i.e., from the areas that were continuously wetted during the hydrodynamic 

simulation), computes biomass density for the marsh platform, and establishes a new marsh 

platform elevation based on the computed accretion.  

The simulation terminates and outputs the final results if the target time has been reached, 

otherwise time is incremented by the coupling time step, data are transferred and model inputs are 

modified, and another incremental simulation is performed. After each time advancement of the 

MEM and after updating the topography, the hydrodynamic model is re-initialized using the 

current elevations, water levels, and updated bottom friction parameters calculated in the previous 

iteration.  

The size of the coupling time step, i.e. the time elapsed in executing MEM before updating the 

hydrodynamic model, was selected based on desired accuracy and computational expense. The 

coupling time step was adjusted in this work to minimize numerical error associated with biomass 

calculations (the difference between using two different coupling time steps) while also 

minimizing the run time. 



46 

 

 

Figure 3.2: HYRDO-MEM model flowchart. The black boxes show the parameters that are not 

being changed and the gold boxes are the parameters that are being changed through simulation. 

The two main elements are the big gold boxes which are labeled as hydrodynamic model and 

ArcGIS toolbox. The black boxes on the left represent the initial conditions. 

 

3.2.2.1 Hydrodynamic Model 

We used the two-dimensional, depth-integrated ADvanced CIRCulation (ADCIRC) finite element 

model to simulate tidal hydrodynamics (Luettich et al., 1992). ADCIRC is one of the main 

components of the HYDRO-MEM model due to its capability to simulate the highly variable tidal 

response throughout the creeks and marsh platform. ADCIRC solves the shallow water equations 
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for water levels and currents using continuous Galerkin finite elements in space. ADCIRC based 

models have been used extensively to model long wave processes such as astronomic tides and 

hurricane storm surge (Bacopoulos and Hagen, 2009; Bunya et al., 2010) and SLR impacts 

(Atkinson et al., 2013; Bilskie et al., 2014). A value-added feature of using ADCIRC within the 

HYDRO-MEM model is its ability to capture a two-dimensional field of the tidal flow and 

hydroperiod within the intertidal zone. ADCIRC contains a robust wetting and drying algorithm 

that allows elements to turn on (wet) or turn off (dry) during run-time, enabling the swelling of 

tidal creeks and overtopping of channel banks (Medeiros and Hagen, 2013). A least-squares 

harmonic analysis routine within ADCIRC computes the amplitudes and phases for a specified set 

of tidal constituents at each computational point in the model domain (global water levels). The 

tidal constituents are then sent to the ArcGIS toolbox for further processing. 

Full hydrodynamic model description including elevation sources and boundary conditions can be 

found in Bacopoulos et al. (2012) and Hagen et al. (2013). The model is forced with the seven 

dominating tidal constituents along the open ocean boundary located on the continental shelf that 

account for more than 90% of the offshore tidal activity (Bacopoulos et al., 2012; Hagen et al., 

2013). Placement of the offshore tidal boundary allows tides to propagate through the domain and 

into the tidal creeks and intertidal zones, and simulate non-linear interactions that occur in the tidal 

flow. 

To model future conditions, sea level was increased by applying an offset of the initial sea surface 

equal to the SLR across the model domain to the initial conditions. Previous studies introduced 

SLR by applying an additional tidal constituent to the offshore boundary (Hagen et al., 2013). Both 
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methods produce an equivalent solution; however, we offset the initial sea surface across the entire 

domain as the method of choice in order to reduce computational time. 

There is no accepted method to project SLR at the local scale (Parris et al., 2012); however, a tide 

gauge analysis performed in Florida using three different methods gave a most probable range of 

rise between 0.11 and 0.36 m from present to the year 2080 (Walton Jr, 2007). The U.S. Army 

Corps of Engineers (USACE) developed low, intermediate, and high SLR projections at the local 

scale, based on long-term tide gage records (http://www.corpsclimate.us/ccaceslcurves_nn.cfm). 

The low curve follows the historic trend of SLR and the intermediate and high curves use the 

National Research Council (NRC) curves (United States Army Corps of Engineers (USACE), 

2011). Both methodologies account for local subsidence. We based our SLR scenarios on the 

USACE projections at Mayport, FL (Figure 3.1c), which accelerates to 11 cm and 48 cm for the 

low and high scenarios, respectively, in the year 2050. The low and high SLR scenarios display 

linear and nonlinear trends, respectively and using the time step approach helps to capture the rate 

of SLR in the modeling.  

The hydrodynamic model uses Manning’s n coefficients for bottom friction, which have been 

assessed for present-day conditions of the lower St. Johns River (Bacopoulos et al., 2012). Bottom 

friction must be continually updated by the model due to temporal changes in the SLR and biomass 

accretion.  To compute Manning’s n at each coupling time step, the HYDRO-MEM model utilizes 

the wet/dry area output of the hydrodynamic model as well as biomass density and accreted marsh 

platform elevation to find the regions that changed from marsh (dry) to channel (wet). This process 

is a part of the biofeedback process in the model: Manning’s n is adjusted using the accretion, 

http://www.corpsclimate.us/ccaceslcurves_nn.cfm
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which changes the hydrodynamics, which in turn changes the biomass density in the next time 

step. The hydrodynamic model, along with the main digital elevation model (Figure 3.3) and 

bottom friction parameter (Manning’s n) inputs, was previously validated in numerous studies 

(Bacopoulos et al., 2009; Bacopoulos et al., 2011; Giardino et al., 2011; Bacopoulos et al., 2012; 

Hagen et al., 2013) and specifically Hagen et al. (2013) validated the MLW and MHW generated 

by this model. 

 

Figure 3.3: ADCIRC model input of the Timucuan salt marsh surface elevations. Elevations are 

referenced to NAVD88 in meters with blue representing water depths greater than 1 m, greens 

indicating depths between 0 m and 1 m, and yellows and browns representative of elevations above 

0 m NAVD88. 
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3.2.2.2 ArcGIS Toolbox 

This element of the HYDRO-MEM model is designed as a user interface toolbox in ArcGIS (ESRI, 

2012). The toolbox consists of two separate tools that were coded in Python v2.7. The first, “Tidal 

Datums,” uses tidal constituents from the preceding element of the HYDRO-MEM model loop, 

the hydrodynamic model, to generate MLW and MHW in the river and tidal creeks. MLW and 

MHW represent the average low and high tides at a point (Hagen et al., 2013). The flooding 

frequency and duration are considered in the calculation of MLW and MHW. These values are 

necessary for the MEM-based tool in the model. The Tidal Datums tool produces raster files of 

MLW and MHW using the data from ADCIRC simulation and a 10 m Digital Elevation Model 

(DEM). These feed into the second tool, “Biomass Density,” to calculate MLW and MHW within 

the marsh areas that were not continuously wet during the ADCIRC simulation, which is done by 

interpolating MLW and MHW values from the creeks and river areas across the marsh platform 

using IDW. This interpolation technique is necessary because very small creeks that are important 

in flooding the marsh surface are not resolved in the hydrodynamic model. IDW calculates MLW 

and MHW at each computational point across the marsh platform based on its distance from the 

tidal creeks, where the number of the nearest sample points for the IDW interpolation based on the 

default setting in ArcGIS is twelve. This method was used in this work for the marsh interpolation 

due to its accuracy and acceptable computational time. The method produces lower water levels 

for points farther from the source, which in turn results in lower sedimentation and accretion in 

the MEM-based part of the model. Interpolated MLW and MHW, biomass productivity, and 

accretion are displayed as rasters in ArcGIS. The interpolated values of MLW and MHW in the 
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marsh are used by MEM in each raster cell to compute the biomass density and accretion rate 

across the marsh platform.  

The zero-dimensional implementation of MEM has been demonstrated to successfully capture salt 

marsh response to SLR (Morris et al., 2002; Morris, 2015). MEM predicts two salt marsh variables: 

biomass productivity and accretion rate. These processes are related; the organic component of the 

accretion is dependent on biomass productivity, and the updated marsh platform elevation is 

generated using the computed accretion rate. The coupling of the two parts of MEM is incorporated 

dynamically in the HYDRO-MEM model. MEM approximates salt marsh productivity as a 

parabolic function 

2                                                                                                     (3.1)B aD bD c    

where B is the biomass density (g·m-2), a = 1000 g.m-2, b = -3718 g.m-2, and c = 1021 g.m-2 are 

coefficients derived from bioassay data collected at North Inlet, SC (Morris et al., 2013) and where 

the variable D is the non-dimensional depth, given by 

                                                                                      (3.2)
MHW E

D
MHW MLW






and variable E is the relative marsh surface elevation (NAVD 88).  Relative elevation is a proxy 

for other variables that directly regulate growth, such as soil salinity (Morris, 1995) and hypoxia, 

and Equation (3.1) actually represents a slice through n-dimensional niche space (Hutchinson, 

1957). 
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The coefficients a, b, and c may change with marsh species, estuary type (fluvial, marine, mixed), 

climate, nutrients, and salinity (Morris, 2007), but Equation (3.1) should be independent of tide 

range because it is calibrated to dimensionless depth D, consistent with the meta-analysis of Mckee 

and Patrick (1988) documenting a correlation between the growth range of S. alterniflora and 

mean tide range.  The coefficients a, b, and c in Equation (3.1) give a maximum biomass of 1088 

g.m-2, which is generally consistent with biomass measurements from other southeastern salt 

marshes (Hopkinson et al., 1980; Schubauer and Hopkinson, 1984; Dame and Kenny, 1986; Darby 

and Turner, 2008), and since our focus is on an area where S. alterniflora is dominant, these 

constants are used.  Additionally, because many tidal marsh species occupy a vertical range within 

the upper tidal frame, but sorted along a salinity gradient, the model is able to qualitatively project 

the wetland area coverage including other marsh species in low, medium, and high productivity.  

The framework has the capability to be applied to other sites with different dominant salt marsh 

species by using experimentally-derived coefficients to generate the biomass curves (Kirwan and 

Guntenspergen, 2012). 

The first derivative of the biomass density function with respect to non-dimensional depth is a 

linear function, which will be used in analyzing the HYDRO-MEM model results, is given by 

                                               2                                       (3.3)
dB

bD a
dD

 

The first derivative values are close to zero for the points around the optimal point of the biomass 

density curve. These values become negative for the points on the right (sub-optimal) side and 

positive for the points on the left (super-optimal) side of the biomass density curve.  
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The accretion rate determined by MEM is a positive function based on organic and inorganic 

sediment accumulation (Morris et al., 2002). These two accretion sources, organic and inorganic, 

are necessary to maintain marsh productivity against rising sea level; otherwise marshes might 

become submerged (Nyman et al., 2006; Blum and Roberts, 2009; Baustian et al., 2012). Sediment 

accretion is a function of the biomass density in the marsh and relative elevation. Inorganic 

accretion (i.e., mineral sedimentation) is influenced by the biomass density, which affects the 

ability of the marsh to ‘trap’ sediments (Mudd et al., 2010). Inorganic sedimentation also occurs 

as salt marshes impede flow by increasing friction, which enhances sediment deposition on the 

marsh platform (Leonard and Luther, 1995; Leonard and Croft, 2006). The linear function 

developed by Morris et al. (2002) for the rate of total accretion is given by 

                                        ( )      for      >0                          (3.4)
dY

q kB D D
dt

 

where dY is the total accretion (cm/yr), dt is the time interval, q represents the inorganic 

contribution to accretion from the suspended sediment load and k represents the organic and 

inorganic contributions due to vegetation. The values of the constants q (0.0018) and k (2.5 x 10-

5) are from a fit of MEM to a time-series of marsh elevations at North Inlet (Morris et al., 2002) 

modified for a high sedimentary environment.  These constants take both autochthonous organic 

matter and trapping of allochthonous mineral particles into account for biological feedback. The 

accretion rate is positive for salt marshes below MHW; when D < 0 no accumulation of sediments 

will occur for salt marshes above MHW (Morris, 2007). The marsh platform elevation change is 

then calculated using the following equation 
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                                             ( ) ( )                                  (3.5)Y t t Y t dY    

where the marsh platform elevation Y is raised by dY meters every ∆t years. 

3.3 Results 

3.3.1 Coupling Time Step 

In this study, coupling time steps of 50, 10, and 5 years were used for both the low and high SLR 

scenarios. The model was run for one 50-year coupling time step, five 10-year coupling time steps, 

and ten 5-year coupling time steps for each SLR scenario. The average differences for biomass 

density in Timucuan marsh between using one 50-year coupling time step and five 10-year 

coupling time steps for low and high SLR scenarios were 37 and 57 gm-2, respectively. Decreasing 

the coupling time step to 5 years indicated convergence within the marsh system when compared 

to a 10-year coupling time step (Table 3.1). The average difference for biomass density between 

using five 10-year coupling time steps and ten 5-year coupling time steps in the same area for low 

and high SLR were 6 and 11 gm-2, which implied convergence using smaller coupling time steps. 

The HYDRO-MEM model did not fully converge using a coupling time step of 10 years for the 

high SLR scenario, and a 5 year coupling time step was required (Table 3.1) because of the 

acceleration in rate of SLR. However, the model was able to simulate reasonable approximations 

of low, medium, or high productivity of the salt marshes when applying a single coupling time 

step of 50 years when SLR is small and linear. For this case, the model was run for the current 

condition and the feedback mechanism is subsequently applied using 50-year coupling time step. 

The next run produces the results for salt marsh productivity after 50 years using the SLR scenario. 
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Table 3.1: Model convergence as a result of various coupling time steps. 

Number of 

coupling 

time steps 

Coupling 

time step 

(years) 

Biomass 

density for a 

sample point* 

at low SLR 

(11cm) (g.m-2) 

Biomass 

density for a 

sample point* 

at high SLR 

(48cm) (g.m-2) 

Convergence at 

low SLR (11 cm) 

Convergence at 

high SLR (48 cm) 

1 50 1053  928 No No 

5 10 1088 901 Yes No 

10 5 1086 909 Yes Yes 

*The sample point is located at longitude = -81.4769 and latitude = 30.4167.  

 

3.3.2 Hydrodynamic Results 

MLW and MHW demonstrated spatial variability throughout the creeks and over the marsh 

platform.  The water surface across the estuary varied from -0.85 m to -0.3 m (NAVD 88) for 

MLW and from 0.65 m to 0.85 m for MHW in the present day simulation (Figure 3.4a, Figure 3.4). 

The range and spatial distribution of MHW and MLW exhibited a non-linear response to future 

SLR scenarios. Under the low SLR (11 cm) scenario, MLW ranged from -0.74 m in the ocean to 

-0.25 m in the creeks (Figure 3.4b), while MHW varied from 1 m to 0.75 m (Figure 3.4e). Under 

the high SLR (48 cm) scenario, the MLW ranged from -0.35 m in the ocean to 0.05 m in the creeks 

(Figure 3.4c), and from 1.35 m to 1.15 m for MHW (Figure 3.4f). 
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Figure 3.4: MLW (left column) and MHW (right column) results for the year 2000 (a and d), and 

for the year 2050 under low (11 cm) (b and e) and high (48 cm) (c and f) SLR scenarios. Results 

are referenced to NAVD88. 
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The same spatial pattern of water level was exhibited on the marsh platform for both present-day 

and future conditions with the low SLR scenario, but with future conditions showing slightly 

higher values consistent with the 11 cm increase in MSL (Figure 3.4d, Figure 3.4e). The MHW 

values in both cases were within the same range as those in the creeks. However, the spatial pattern 

of MHW changed under the high SLR scenario; the water levels in the creeks increased 

significantly and were more evenly distributed relative to the present-day conditions and low SLR 

scenario (Figure 3.4d, Figure 3.4e, Figure 3.4f). As a result, the spatial variation of MHW in the 

creeks and marsh area was lower than that of the present in the high SLR scenario (Figure 3.4f).  

3.3.3 Marsh Dynamics 

Simulations of biomass density demonstrated a wide range of spatial variation in the year 2000 

(Figure 3.5a), and in the two future scenarios (Figure 3.5b-Figure 3.5c), depending on the pre-

existing elevations of the marsh surface and their change relative to future MHW and MLW. The 

maps showed an increase in biomass density under low SLR in 90% of the marshes and a decrease 

in 80% of the areas under the high SLR scenario. The average biomass density increased from 804 

g·m-2 in the present to 994 g·m-2 in the year 2050 with low SLR, and decreased to 644 g·m-2 under 

the high SLR scenario. 

Recall that the derivative of biomass density under low SLR scenario varies linearly with respect 

to non-dimensional depth. Figure 3.6 illustrates the aboveground biomass density curve with 

respect to non-dimensional depth and three sample points with low, medium, and high 

productivity. The slope of the curve at the sample points is also shown, depicting the first derivative 

of biomass density. The derivative is negative if a point is located on the right side of the biomass 
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density curve, and is positive if it is on the left side. In addition, values close to zero indicate a 

higher productivity, whereas large negative values indicate low productivity (Figure 3.6). The 

average biomass density derivative under the low SLR scenario increased from -2000 g·m-2 to -

700 g·m-2 and decreased to -2400 g·m-2 in the high SLR case. 
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Figure 3.5: Biomass density patterns (left column) and its first derivative (right column) in the 

Timucuan marsh system. (a) Biomass density in the year 2000; (b) Biomass density in the year 

2050 under a low SLR (11 cm) scenario; (c) Biomass density in the year 2050 under a high SLR 

(48 cm) scenario. Dark blue represents no biomass density (0 g·m-2), yellows are medium biomass 

density (~700 g·m-2), and reds indicate biomass density of 1000 g·m-2 or greater. (d) Biomass 

density first derivative in the year 2000; (e) Biomass density first derivative in the year 2050 under 

the low SLR (11 cm) scenario; (f) Biomass density first derivative in the year 2050 under the high 

SLR (48 cm) scenario. 
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Figure 3.6: Change in the biomass productivity curve under different SLR scenarios. The colors 

selected are based on the scale in Figure 3.5. (a) is a selected geographical point from the Timucuan 

marsh system in the year 2000 that falls within the medium productivity range of the curve;  (b) is 

the same geographical location (a), in the year 2050 under high SLR (48 cm) and has moved to 

the low productivity range of the curve; (c) is the same geographical location (a) in the year 2050 

and under low SLR (11 cm) and has moved to the high productivity region. 

 

Sediment accretion in the marsh varied spatially and temporally under different SLR scenarios. 

Under the low SLR scenario (11 cm), the average salt marsh accretion totaled 19 cm or 0.38 cm 

per year (Figure 3.7a). The average salt marsh accretion increased by 20% under the high SLR 

scenario (48 cm) due to an increase in sedimentation (Figure 3.7b). Though the magnitudes are 

different, the general spatial patterns of the low and high SLR scenarios were similar. 
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Figure 3.7: Fifty years (year 2050) of salt marsh platform accretion following (a) 11 cm of SLR 

and (b) 48 cm of SLR. 

 

Comparisons of marsh platform accretion, MHW, and biomass density across transect AB 

spanning over Cedar Point Creek, Clapboard Creek, and Hannah Mills Creek (Figure 3.1d) 

between present and future time demonstrated that acceleration of SLR from 11 cm to 48 cm in 50 

years reduced the overall biomass, but the effect depended on the initial elevation 

(Figure 3.8aFigure 3.8d). Under the low SLR, accretion was maximum at the edge of the creeks, 

25 to 30 cm, and decreased to 15 cm with increasing distance from the edge of the creek 

(Figure 3.8a). Analyzing the trend and variation of MHW between future and present across the 

transect under low and high SLR showed that it is not uniform across the marsh and varied with 

distance from creek channels and underlying topography (Figure 3.8a, Figure 3.8c). MHW 

increased slightly in response to a rapid rise in topography (Figure 3.8a, Figure 3.8c). 
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Figure 3.8: Changes in elevation, MHW, and biomass along a transect (see Figure 3.1d for location 

of transect) for the low (11 cm) (a and b) and the high (48 cm) (c and d) scenarios. (a and c) Gray 

shaded area shows the elevation change between years 2000 (orange line) and 2050 (black line); 

red shaded area represents the increase in MHW between years 2000 (magenta line) and 2050 (red 

line). (b and d) The dark green (yellow) shaded area shows an increase (decrease) in biomass 

density between years 2000 (blue line) and 2050 (red line). 

 

The change in MHW, which is a function of the changing hydrodynamics and marsh topography, 

was nearly uniform across space when SLR was high, but when SLR was low, marsh topography 
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continued to influence MHW, which can be seen in the increase between years 2020 and 2030 

(Figure 3.9c, Figure 3.9d). This is due to the accretion of the marsh platform keeping pace with 

the change in MHW. The change in biomass was a function of the starting elevation as well as the 

rate of SLR (Figure 3.9e, Figure 3.9f). When the starting marsh elevation was low, as it was for 

sites 1 and 2, biomass increased significantly over the 50 yr simulation, corresponding to a rise in 

the relative elevation of the marsh platform that moved them closer to the optimum.  The site that 

was highest in elevation at the start, site 3, was essentially in equilibrium with sea level throughout 

the simulation and remained at a nearly optimum elevation (Figure 3.9e). When the rate of SLR 

was high, the site lowest in elevation at the start, site 1, ultimately lost biomass and was close to 

extinction (Figure 3.9f). Likewise, the site highest in elevation, site 3, also lost biomass, but was 

less sensitive to SLR than site 1.  The site with intermediate elevation, site 2, actually gained 

biomass by the end of the simulation when SLR was high (Figure 3.9f). 

Biomass density was generally affected by rising mean sea level and varying accretion rates. A 

modest rate of SLR apparently benefitted these marshes, but high SLR was detrimental 

(Figure 3.9e, Figure 3.9f). This is further explained by looking at the derivatives. The first-

derivative change of biomass density under low SLR (shaded red) demonstrated an increase toward 

the zero (Figure 3.10). Biomass density rose to the maximum level and was nearly uniform across 

transect AB under the low SLR scenario (Figure 3.8b), but with 48 cm of SLR biomass declined 

(Figure 3.8d). The biomass derivative across the transect decreased from year 2000 to year 2050 

under the high SLR scenario (Figure 3.10), which indicated a move to the right side of the biomass 

curve (Figure 3.6). 
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Figure 3.9: Changes in salt marsh platform elevation in (a) and (b), MHW in (c) and (d), and 

biomass density in (e) and (f) are displayed, for the low SLR (11 cm) and the high SLR (48 cm) 

scenarios respectively, for locations of low, medium, and high productivity as shown in 

Figure 3.1d (indicated as Sites 1, 2, and 3). 
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Figure 3.10: Changes in the first derivative of biomass density along a transect between years 2000 

and 2050. Red shaded area shows the change of the first derivative of biomass density between 

the year 2000 (yellow line) and the year 2050 (red line) under a low SLR (11 cm) scenario; green 

shaded area demonstrates the change in the first derivative of biomass between the year 2000 

(yellow line) and the year 2050 (green line) under a high SLR (48 cm) scenario. 

 

Comparisons between using the coupled model and MEM in isolation are given in Table 3.2 

according to total wetland area and marsh productivity for both the coupled HYDRO-MEM model 

and MEM. The HYDRO-MEM model exhibited more spatial variation of low and medium 

productivity for both the low and high SLR scenarios (Figure 3.11). Under the low SLR scenario 

there was less open water and more low and medium productivity, while under the high SLR 

scenario there was less high productivity and more low and medium productivity. 
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Table 3.2: Comparisons of areal coverage by landscape classifications following 50-yr simulations 

with high and low SLR using a coupled HYDRO-MEM model vs. a direct application of a 

spatially-distributed marsh equilibrium model (MEM) run without hydrodynamics. The marshes 

with productivity less than 370 gm-2 are categorized as low, between 370 g.m-2 and 750 g.m-2 are 

categorized as medium, and more than 750 g.m-2 are categorized as high productivity. 

Models 

Area Percentage by landscape classification 

Water 
Low 

productivity 

Medium 

productivity 

High 

productivity 

HYDRO-MEM (low 

SLR) 
54.4 5.2 6.3 34.1 

MEM (low SLR) 62.6 1.2 1.3 34.9 

HYDRO-MEM (high 

SLR) 
62.1 6.7 8.8 22.4 

MEM (high SLR) 61.0 1.2 1.1 36.7 

 

Figure 3.11: Biomass density patterns between using MEM (a and c) and HYDRO-MEM model 

(b and d) under the low SLR scenario (a and b) and the high SLR scenario (c and d). The 

marshes with productivity less than 370 gm-2 are categorized as low, between 370 g.m-2 and 750 

g.m-2 are categorized as medium, and more than 750 g.m-2 are categorized as high productivity. 
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To qualitatively validate the model result, infrared aerial imagery and land cover data from the 

National Land Cover Database for the year 2001 (NLCD2001) (Homer et al., 2007) were compared 

with the low, medium, and high productivity map (Figure 3.12). Within the box marked (a) in the 

aerial image (leftmost figure), the boundaries for the major creeks were captured in the model 

results (middle figure). Additionally, smaller creeks in boxes (a), (b) and (c) in the NLCD map 

(rightmost figure) also were represented well in the model results. The model identified the NLCD 

wetland areas corresponding to box (a) as highly productive marshes. Box (b) highlights an area 

with higher elevations, shown as forest land in the aerial map, and categorized as non-wetland in 

the NLCD map. These regions had low or no productivity in the model results. The border of the 

brown (low productivity) region in the model results generally mirrors the forested area in the 

aerial and the non-wetland area of the NLCD data. A low elevation area identified by box (c) 

consists of a drowning marsh flat with a dendritic layout of shallow tidal creeks. The model 

identified this area as having low or no productivity, but with a productive area marsh in the 

southeast corner. Collectively, comparison of the model results in these areas to ancillary data 

demonstrates the capability of the model to realistically characterize the estuarine landscape. 
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Figure 3.12: Qualitative comparison maps. From left to right, infrared aerial map of Timucuan 

sub-region (Figure 3.1d) from January 7, 1999 (USGS Digital Orthophoto Quadrangles), model 

generated map of open water, and low, medium, and high productivity regions, and wetland 

coverage area in the National Land Cover Database for the year 2001 (NLCD2001). 

 

3.4 Discussion 

Geomorphic variation on the marsh platform as well as variation in marsh biomass and their 

interactions with tidal flow play a key role in the spatial and temporal distribution of tidal 

constants, MLW and MHW, across an estuarine landscape. Tidal flow is affected because salt 

marsh systems increase momentum dissipation through surface friction, which is a function of 

vegetation growth (Möller et al., 1999; Möller and Spencer, 2002). Furthermore, the productivity 

and accretion of sediment in marshes affect the total area of wetted zones and, as a result of higher 

SLR projections, may increase the width of the tidal creeks, and some areas that are currently 

covered by marshes might convert to open water. Also, as the level of water increases, water can 

flow with lower resistance in the tidal creeks and circulate more freely through the marshes, thus 

leading to less spatial variability in tidal constants within the creeks and over the marsh platform. 
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During the high SLR scenario, water levels and flow rates increased and bottom friction was 

reduced. This reduced the spatial variability in MHW in the creeks and across the marshes. Further, 

as SLR increased, MHW in the marshes and creeks converged as energy dissipation from the 

marshes decreased.  These energy controls are fundamental to the geomorphological feedbacks 

that maintain stable marshes.  At the upper end of SLR, the tidal constants are in more dynamic 

equilibrium, where at the lower end of SLR, the tidal constants are sensitive to subtle changes 

where they are in adjustment towards dynamic equilibrium. 

Marsh productivity is primarily a function of relative elevation, MHW, and accretion relative to 

SLR. SLR affects future marsh productivity by altering elevation, relative MHW, and their 

distributions across the marsh platform (i.e., hydroperiod). SLR also affects the accretion rate due 

to the biological feedback mechanisms of the system. The HYDRO-MEM model captured this 

relationship by updating accretion at each coupling time step based on data-derived biomass curve 

(MEM). Biomass density increased under the low SLR scenario as a result of the dynamic 

interactions between SLR and sedimentation. In this case, the low SLR scenario and the marsh 

system worked together to increase productivity and are in agreement with the predicted changes 

for salt marsh productivity in response to suggested ranges of SLR in recent study (Cadol et al., 

2014). 

For the low SLR scenario, the numerator in Equation 3.2 decreased with increasing accretion while 

the denominator increased; the point on the horizontal axis of the biomass curve moved to the left, 

closer to the optimum part of the curve (Figure 3.6). For the high SLR scenario, the numerator’s 

growth outpaced that of the denominator in Equation 3.2, and the non-dimensional depth increased 
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to a higher value on the right side of the graph (Figure 3.6). This move illustrates the decrease in 

salt marsh productivity from the medium to the low region on the biomass density curve. In our 

study, most of the locations for the year 2000 were positioned on the right side of the biomass 

curve (Figure 3.6, Figure 3.5d). If the location is positioned on the far right or left sides of the 

biomass curve, the first derivative of biomass productivity is a small negative or large positive 

number, respectively (Figure 3.6). This number characterizes the slope of the tangent line to the 

curve at that point on the curve. The slope will approach zero at the optimal point of the curve 

(parabolic maximum). Therefore, if the point transitions to the right side of the curve, the first 

derivative will become smaller, and if the point moves to the left side of the curve, the first 

derivative will become larger. Under the low SLR scenario, the first derivative showed higher 

values generally approaching the optimal point (Figure 3.5e). As shown in Figure 3.6, the biomass 

density decreased under the high SLR scenario and the first derivative also decreased as it shifted 

to the right side of the biomass density curve (Figure 3.5f). 

D’ Alpaos et al. (2007) found that the inorganic sedimentation portion of the accretion decreases 

with increasing distance from the creek, which in this study is observed throughout a majority of 

the marsh system, thus indicating good model performance (Figure 3.7a, Figure 3.7b). Figure 3.8a 

and Figure 3.8c further illustrate this finding for the transect AB (Figure 3.1d), showing that the 

minimum accretion was in the middle of the transect (at a distance from the creeks) and the 

maximum was close to creeks.  This model result is a consequence of the higher elevation of inland 

areas, and decreased inundation time of the marsh surface, rather than a result of a decrease in the 

mass of sediment transport.   
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Spatial and temporal variation in the tidal constants had a dynamic effect on accretion and also 

biomass density (Figure 3.8a, Figure 3.8b). The coupling between the hydrodynamic model and 

MEM, which included the dynamics of SLR, also helped to better capture the salt marsh’s 

movements toward a dynamic equilibrium. This change in condition is exemplified by the red area 

in Figure 3.10 that depicted the movement toward the optimum point on the biomass density curve. 

Although the salt marsh platform showed increased rates of accretion under high SLR, the salt 

marsh was not able to keep up with MHW. Salt marsh productivity declined along the edge of the 

creeks (Figure 3.8d); if this trend were to continue, the marsh would drown. The decline depends 

on the underlying topography as well as the tidal metrics, neither of which are uniform across the 

marsh. The first derivative curve for high SLR (shaded green) in Figure 3.10 illustrates a decline 

in biomass density; however, marshes with medium productivity due to higher accretion rates had 

minimal losses (Figure 3.9f) and the marsh productivity remained in the intermediate level. The 

marshes in the high productivity zone descended to the medium zone as the marshes in the lower 

level were exposed to more frequent and extended inundation. As a result, in the year 2050 under 

the high SLR scenario, the total salt marsh area was projected to decrease, with salt marshes mostly 

in the medium productivity level surviving (Figure 3.5c, Figure 3.5f). The high SLR scenario also 

exhibits a tipping point in biomass density that occurs at different times based on low, medium or 

high productivity, where biomass density declines beyond the tipping point. 

The complex dynamics introduced by marsh biogeomorphological feedbacks as they influence 

hydrodynamic, biological, and geomorphological processes across the marsh landscape can be 

appreciated by examination of the time series from a few different positions within the marshes 
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(Figure 3.9). The interactions of these processes are reciprocal.  That is, relative elevations affect 

biology, biology affects accretion of the marsh platform, which affects hydrodynamics and 

accretion, which affects biology, and so on.  Furthermore, to add even more complexity to the 

biofeedback processes, the present conditions affect the future state. For example, the response of 

marsh platform elevation to SLR depends on the current elevation as well as the rate of SLR 

(Figure 3.9a, Figure 3.9b). The temporal change of accretion for the low productivity point under 

the high SLR scenario after 2030 can be explained by the reduction in salt marsh productivity and 

the resulting decrease in accretion. These marshes, which were typically near the edge of creeks, 

were prone to submersion under the high SLR scenario. However, the higher accretion rates for 

the medium and high productivity points under the high SLR compared to the low SLR scenario 

were due to the marsh’s adaptive capability to capture sediment. The increasing temporal rate of 

biomass density change for the high, medium, and low productivity points under the low SLR 

scenario was due to the underlying rates of change of salt marsh platform and MHW (Figure 3.9). 

The decreasing rate of change for biomass density under the high SLR after 2030 for the medium 

and high productivity points, and after 2025 for the low productivity point was mainly because of 

the drastic change in MHW (Figure 3.9f). 

The sensitivity of the coupled HYDRO-MEM model to the coupling time step length varied 

between the low and high SLR scenarios. The high SLR case required a shorter coupling time step 

due to the non-linear trend in water level change over time. However, the increased accuracy with 

a smaller coupling time step comes at the price of increased computational time. The run time for 

a single run of the hydrodynamic model across 120 cores (Intel Xeon quad core @ 3.0 GHz) was 

four wallclock hours, and with the addition of the ArcGIS portion of the HYDRO-MEM model 
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framework, the total computational time was noteworthy for this small marsh area and should be 

considered when increasing the number of the coupling time steps and the calculation area.  

Therefore, the optimum of the tested coupling time steps for the low and high SLR scenarios were 

determined to be 10 and 5 years, respectively. 

As shown in Figure 3.11 and Table 3.2, the incorporation of the hydrodynamic component in the 

HYDRO-MEM model leads to different results in simulated wetland area and biomass 

productivity relative to the results estimated by the marsh model alone. Under the low SLR 

scenario, there was an 8.2% difference in predicted total wetland area between using the coupled 

HYDRO-MEM model vs. MEM alone (Table 3.2), and the low and medium productivity regions 

were both underestimated. Generally, MEM alone predicted higher productivity than the HYDRO-

MEM model results. These differences are in part attributed to the fact that such an application of 

MEM applies fixed values for MLW and MHW in the wetland areas and uses a bathtub approach 

for simulating SLR, whereas the HYDRO-MEM model simulates the spatially varying MLW and 

MHW across the salt marsh landscape and accounts for non-linear response of MLW and MHW 

due to SLR (Figure 3.11). Secondly, the coupling of the hydrodynamics and salt marsh platform 

accretion processes influences the results of the HYDRO-MEM model. 

A qualitative comparison of the model results to aerial imagery and NLCD data provided a better 

understanding of the biomass density model performance. The model results illustrated in areas 

representative of the sub-optimal, optimal and super-optimal regions of the biomass productivity 

curve were reasonably well captured compared with the above-mentioned ancillary data. This 

provided a final assessment of the model ability to produce realistic results. 
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The HYDRO-MEM model is the first spatial model that includes (1) the dynamics of SLR and its 

nonlinear (Passeri et al., 2015) effects on biomass density, and (2) SLR rate by employing a time 

step approach in the modeling rather than using a constant value for SLR. The time step approach 

used here also helped to capture the complex feedbacks between vegetation and hydrodynamics. 

This model can be applied in other estuaries to aid resource managers in their planning for potential 

changes or restoration acts under climate change and SLR scenarios. The outputs of this model 

can be used in storm surge or hydrodynamic simulations to provide an updated friction coefficient 

map. The future of this model should include more complex physical processes including inflows 

for fluvial systems, sediment transport (Mariotti and Fagherazzi, 2010) and biologically mediated 

resuspension, and a realistic depiction of more accurate geomorphological changes in the marsh 

system. 
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CHAPTER 4. APPLICATION OF THE MODEL IN A FLUVIAL 

ESTUARINE SYSTEM 

The content in this chapter is under review as: Alizad, K., Hagen, S. C., Morris, J. T., Medeiros, 

S. C., Bilskie, M. V., Weishampel, J. F. 2016. Coastal Wetland Response to Sea Level Rise in a  

Fluvial Estuarine System." Earth’s Future. 

4.1 Introduction 

The fate of coastal wetlands may be in danger due to climate change and sea-level-rise (SLR) in 

particular. Identifying and investigating factors that influence the productivity of coastal wetlands 

may provide insight into the potential future salt marsh landscape and to identify tipping points 

(Nicholls, 2004). It is expected that one of the most prominent drivers of coastal wetland loss will 

be SLR (Nicholls et al., 1999). Salt marsh systems play an important role in coastal protection by 

attenuating waves and providing shelters and habitats for various species (Daiber, 1977; Halpin, 

2000; Moller et al., 2014). A better understanding of salt marsh evolution under SLR supports 

more effective coastal restoration, planning, and management (Bakker et al., 1993). 

Plausible projections of global SLR, including its’s rate, are critical to effectively analyze coastal 

vulnerability (Parris et al., 2012). In addition to increasing local mean tidal elevations, SLR alters 

circulation patterns and sediment transport, which can affect the ecosystem as a whole and 

wetlands in particular (Nichols, 1989). Studies have shown that adopting a dynamic modeling 

approach is preferred over static modeling when conducting coastal vulnerability assessments 

under SLR scenarios. Dynamic modeling includes nonlinearities that are unaccounted for by 

simply increasing water levels. The static or “bathtub” approach simply elevates the present-day 

water surface by the amount of SLR and projects new inundation using a digital elevation model 
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(DEM). On the other hand, a dynamic approach incorporates the various nonlinear feedbacks in 

the system and considers interactions between topography and inundation that can lead to an 

increase or decrease in tidal amplitudes and peak storm surge, changes to tidal phases and timing 

of maximum storm surge, and modify depth-averaged velocities (magnitude and direction) (Hagen 

and Bacopoulos, 2012; Atkinson et al., 2013; Bilskie et al., 2014; Passeri et al., 2015; Bilskie et 

al., 2016; Passeri et al., 2016). 

Previous research has investigated the effects of sea-level change on hydrodynamics and coastal 

wetland changes using a variety of modeling tools (Wolanski and Chappell, 1996; Liu, 1997; 

Hearn and Atkinson, 2001; French, 2008; Leorri et al., 2011; Hagen and Bacopoulos, 2012; Hagen 

et al., 2013; Valentim et al., 2013). Several integrated biological models have been developed to 

assess the effect of SLR on coastal wetland changes. They employed hydrodynamic models in 

conjunction with marsh models to capture the changes in marsh productivity as a result of 

variations in hydrodynamics (D' Alpaos et al., 2007; Kirwan and Murray, 2007; Temmerman et 

al., 2007; Hagen et al., 2013). However, these models were designed for small marsh systems or 

simplified complex processes. Alizad et al. (2016) coupled a hydrodynamic model with Marsh 

Equilibrium Model (MEM) to include the biological feedback in a time stepping framework that 

incorporates the dynamic interconnection between hydrodynamics and marsh system by updating 

inputs including topography and bottom roughness in each time step. 

Lidar-derived DEMs are a generally-accepted means to generate accurate topographic surfaces 

over large areas (Medeiros et al., 2011; Bilskie and Hagen, 2013). While the ability to cover vast 

geographic regions at relatively low cost make lidar an attractive proposition, there are well 
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documented topographic errors, especially in coastal marshes, when compared to Real Time 

Kinematic (RTK) topographic survey data (Hsing-Chung et al., 2004; Hladik and Alber, 2012; 

Medeiros et al., 2015). The accuracy of lidar DEMs in  salt marsh systems is limited primarily 

because of  the inability of the laser to penetrate through the dense vegetation to the true marsh 

surface (Hladik and Alber, 2012). Filters, such as slope-based or photogrammetric techniques 

applied in post processing, are able to reduce but not eliminate these errors (Kraus and Pfeifer, 

1998; Lane, 2000; Vosselman, 2000; Carter et al., 2001; Hicks et al., 2002; Sithole and Vosselman, 

2004; James et al., 2006). The amount of adjustment required to correct the lidar-derived marsh 

DEM varies on the marsh system, its location, the season of data collection, and instrumentation  

(Montane and Torres, 2006; Yang et al., 2008; Wang et al., 2009; Chassereau et al., 2011; Hladik 

and Alber, 2012). In this study, the lidar-derived marsh table elevation is adjusted based on RTK 

topographic measurements and remotely sensed data (Medeiros et al., 2015).   

Sediment deposition is a critical component in sustaining marsh habitats (Morris et al., 2002). The 

most important factor that promotes sedimentation is the existence of vegetation that increases 

residence time within the marsh allowing sediment to settle out (Fagherazzi et al., 2012). Research 

has shown that salt marshes maintain their state (i.e. equilibrium) under SLR by accreting 

sediments and organic materials (Reed, 1995; Turner et al., 2000; Morris et al., 2002; Baustian et 

al., 2012). Salt marshes need these two sources of accretion (sediment and organic materials) to 

survive in place (Nyman et al., 2006; Baustian et al., 2012) or to migrate to higher land (Warren 

and Niering, 1993; Elsey-Quirk et al., 2011). 
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The Apalachicola River (Figure 4.1), situated in the Florida Panhandle, is formed by the 

confluence of the Chattahoochee and Flint Rivers, and has the largest volumetric discharge of any 

river in Florida, which drains the second largest watershed in Florida (Isphording, 1985). Its wide 

and shallow microtidal estuary is centered on Apalachicola Bay in the northeastern Gulf of Mexico 

(GOM). Apalachicola Bay is bordered by East Bay to the northeast, St. Vincent Sound to the west, 

and St. George Sound to the east. The river feeds into an array of salt marsh systems, tidal flats, 

oyster bars, and submerged aquatic vegetation (SAV) as it empties into Apalachicola Bay, which 

has an area of 260 km2 and a mean depth of 2.2 m (Mortazavi et al., 2000). Offshore, the barrier 

islands (St. Vincent, Little St. George, St. George and Dog Islands) shelter the bay from the Gulf 

of Mexico. Approximately 17% of the estuary is comprised of marsh systems that provide habitats 

for many species, including birds, crabs, and fish (Halpin, 2000; Pennings and Bertness, 2001). 

Approximately 90% of Florida’s annual oyster catch, which amounts to 10% of the nation’s, comes 

from Apalachicola Bay, and 65% of workers in Franklin County are or have been employed in the 

commercial fishing industry (FDEP, 2013). Therefore, accurate assessments regarding this 

ecosystem can provide insights to environmental and economic management decisions. 

It is projected that SLR may shift tidal boundaries upstream in the river, which may alter 

inundation patterns and remove coastal vegetation or change its spatial distribution (Florida 

Oceans and Coastal Council, 2009; Passeri et al., 2016). Apalachicola salt marshes may lose 

productivity with increasing SLR due to the microtidal nature of the estuary (Livingston, 1984). 

Therefore, the objective of this study is to assess the response of the Apalachicola salt marsh for 

various SLR scenarios using a high-resolution Hydro-MEM model for the region 
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Figure 4.1: Study area and marsh organ locations. (a) Location of the Apalachicola estuarine 

system in Florida; (b) The Apalachicola River, Bay, and other locations including the transects for 

assessing velocity variations in the estuarine system; (c) The marsh organ experimental sets in the 

estuarine system. 

 

4.2 Methods 

4.2.1 HYDRO-MEM Model 

The integrated Hydro-MEM model was used to assess the response of the Apalachicola salt marsh 

under SLR scenarios. The hydrodynamic and biologic components are coupled and exchange 

information at discrete coupling intervals (time steps). Incorporating multiple feedback points 

along the simulation timeline via a coupling time step permits a nonlinear rate of SLR to be 

modeled. This contrasts with other techniques that apply the entire SLR amount in one single step. 
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This procedure better describes the physical and biological interactions between hydrodynamics 

and salt marsh systems over time. The coupling time step, considering the desired level of accuracy 

and computational expense, depends on the rate of SLR and governs the frequency of information 

exchange between the hydrodynamic and biological models (Alizad et al., 2016).  

The model was initialized from the present day marsh surface elevations and sea level. First, the 

hydrodynamic model computes water levels and depth-averaged currents and yields astronomic 

tidal constituent amplitudes and phases. From these results, mean high water (MHW) was 

computed and passed to the parametric marsh model, and along with field/laboratory analyzed 

biomass curve parameters, the spatial distribution of biomass density and accretion was calculated. 

Accretion was applied to the marsh elevations and the bottom friction was updated based on the 

biomass distribution and passed back to the hydrodynamic model to initialize the next time step. 

Additional details in the Hydro-MEM model can be found in Alizad et al. (2016). The next two 

sections provide specific details to each portion of the Hydro-MEM framework, the hydrodynamic 

model and the marsh model. 

4.2.1.1 Hydrodynamic Model 

Hydrodynamic simulations were performed using the two dimensional, depth-integrated, 

ADvanced CIRCulation (ADCIRC) finite element based shallow water equations model to solve 

for water levels and depth-averaged currents. An unstructured mesh for the Apalachicola estuary 

was developed with focus on simulating water level variations within the river, tidal creeks, and 

daily wetting and drying across the marsh surface. The mesh was constructed from manual 

digitization using recent aerial imagery of the River, distributaries, tidal creeks, estuarine 
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impoundments, and intertidal zones. To facilitate numerical stability of the model with respect to 

wetting and drying, the number of triangular elements within the creeks was restricted to three or 

more to represent a trapezoidal cross-section (Medeiros and Hagen, 2013). Therefore, the width of 

the smallest captured creek was approximately 40 m. For smaller creeks, the computational nodes 

located inside the digitized creek banks were assigned a lower bottom friction value to allow the 

water to flow more readily, thus keeping lower resistance of the creek (compared to marsh grass 

vegetation). The mesh extends to the 60o west meridian (the location of the tidal boundary forcing) 

in the western North Atlantic and encompasses the Caribbean Sea and the Gulf of Mexico (Hagen 

et al., 2006). Overall, the triangular elements range from a minimum of 15 m within the creeks and 

marsh platform, 300 m in Apalachicola Bay, and 136 km in the open ocean. 

The source data for topography and bathymetry consisted of the online accessible lidar-derived 

digital elevation model (DEM) provided by the Northwest Florida Water Management District 

(http://www.nwfwmdlidar.com/) and Apalachicola River surveyed bathymetric data from the U.S. 

Army Corps of Engineers, Mobile District. Medeiros et al. (2015) showed that the lidar 

topographic data for this salt marsh contained high bias and required  correction to increase the 

accuracy of the marsh surface elevation and facilitate wetting of the marsh platform during normal 

tidal cycles. The DEM was adjusted using biomass density estimated by remote sensing; however 

a further adjustment was also implemented. The biomass adjusted DEM in that study (Figure 4.2) 

reduced the high bias of the lidar-derived marsh platform elevation from 0.65 m to 0.40 m. This 

remaining 0.40 m of bias was removed by lowering the DEM by this amount at the southeastern 

salt marsh shoreline where the vegetation is densest and linearly decreasing the adjustment value 

to zero moving upriver (i.e. to the northwest). This method was necessary in order to properly 

http://www.nwfwmdlidar.com/
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capture the cyclical tidal flooding of the marsh platform; without removing this remaining bias, 

the majority of the platform was incorrectly specified to be above MHW and was unable to become 

wet in the model during high tide. 

 

Figure 4.2: Topographic model input of the Apalachicola estuarine system and the elevation 

change along the transect “T” shown in Figure 4.2a. Color bar elevations are referenced to 

NAVD88 in meters. (a) Adjusted marsh platform elevation; (b) lidar data elevation without any 

correction. 
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Bottom friction was included in the model as spatially varying Manning’s n and were assigned 

based on the National Land-Cover Database 2001 (Homer et al., 2004; Bilskie et al., 2015). Three 

values for low, medium, and high biomass densities in each land cover class were defined as 0.035, 

0.05, and 0.07, respectively (Arcement and Schneider, 1989; Medeiros, 2012; Medeiros et al., 

2012). At each coupling time step, using the computed biomass density and hydrodynamics, 

Manning’s n values for specific computational nodes were converted to open water (permanently 

submerged due to SLR) or if their biomass density changed.  

In this study, the four global SLR scenarios for the year 2100 presented by Parris et al. (2012) were 

applied; low (0.2 m), intermediate-low (0.5 m), intermediate-high (1.2 m) and high (2.0 m). The 

coupling time step was 10 years for the low and intermediate-low SLR scenarios and 5 years for 

the intermediate-high and high SLR scenarios. This protocol effectively discretizes the SLR curves 

into linear segments that adequately capture the projected SLR acceleration for the purposes of 

this study (Alizad et al., 2016). Thus, the total number of hydrodynamic simulations used in this 

study are 60: 10 (100 years divided by 10 coupling steps) for the low and intermediate-low 

scenarios and 20 (100 years divided by 20 coupling steps) for the intermediate-high and high 

scenarios. 

The hydrodynamic model is forced with astronomic tides at the 60° meridian (open ocean 

boundary of the WNAT model domain) and river inflow for the Apalachicola River. The tidal 

forcing is comprised of time varying water surface elevations of the seven principal tidal 

constituents (M2, S2, N2, K1, O1, K2, and Q1) (Egbert et al., 1994; Egbert and Erofeeva, 2002). The 

river inflow boundary forcing was obtained from the United States Geological Survey (USGS) 
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gage near Sumatra, FL in the Apalachicola River (USGS 02359170). The mean discharge value 

from 38 years of record for this gage (http://waterdata.usgs.gov/nwis/uv?02359170) was 670.17 

cubic meters per second as of February 2016. The discharge at the upper (northern) extent of the 

Apalachicola River is controlled at the Jim Woodruff Dam near the Florida – Georgia border and 

was considered to be fixed for all simulations. Two separate hyperbolic tangent ramping functions 

were applied at the model start, one for tidal forcing and the other for the river inflow boundary 

condition. The main outputs from the hydrodynamic model used in this study were the amplitude 

and phase harmonic tidal constituents, which were then used as input to the Hydro-MEM model. 

This hydrodynamic model has been extensively validated for astronomic tides in this region 

(Bilskie et al., 2016; Passeri et al., 2016). 

4.2.1.2 Marsh Model 

The parametric marsh model employed was the Marsh Equilibrium Model (MEM), which 

quantifies biomass density (B) (g.m-2.yr-1) using a parabolic curve (Morris et al., 2002) : 

2  B aD bD c

D MHW Elevation

  
 

                                                                                                                    (4.1) 

The biomass density curve includes data for three different marsh grass species of S. cynosuroides, 

J. romerianus, and S. alterniflora. These curves were divided into left (sub-optimal) and right 

(super-optimal) branches that meet at the maximum biomass density point. The left and right curve 

coefficients used were al = 197.5 g.m-3.yr-1, bl = -9870 g.m-4.yr-1, cl =1999 g.m-2.yr-1, and ar = 

326.5 g.m-3.yr-1, br = -1633 g.m-4.yr-1, cr =1998 g.m-2.yr-1, respectively. They were derived using 

http://waterdata.usgs.gov/nwis/uv?02359170
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field bio-assay experiments, commonly referred to as “marsh organs”, which consisted of planted 

marsh species in an array of PVC pipes cut to different elevations in the tidal frame. The pipes 

each contain approximately the same amount of biomass at the start of the experiment and are 

allowed to flourish or die off based on their natural response to the hydroperiod of their row 

(Morris et al., 2013). They were installed at three sites in Apalachicola estuary (Figure 4.1) in 2011 

and inspected regularly for two years by qualified staff from the Apalachicola National Estuarine 

Research Reserve (ANERR).  

The accretion rate in the coupled model included the accumulation of both organic and inorganic 

materials and was based on the MEM accretion rate formula found in (Morris et al., 2002). The 

total accretion (dY) (cm/yr) during the study time (dt) was calculated by incorporating the amount 

of inorganic accumulation from sediment load (q) and the vegetation effect on organic and 

inorganic accretion (k): 

( )        for        >0
dY

q kB D D
dt

                                                                                      (4.2) 

where the parameters q (0.0018 yr-1) and k (1.5 x 10-5g-1.m2) (Morris et al., 2002) were used to 

calculate the total accretion at each computational point and update the DEM at each coupling time 

step. The accretion was calculated for the points with positive relative depth, where average mean 

high tide is above the marsh platform (Morris, 2007).  
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4.3 Results 

4.3.1 Hydrodynamic Results 

The MHW results for future SLR scenarios predictably showed higher water levels and altered 

inundation patterns. The water level change in the creeks was spatially variable under the low and 

intermediate-low SLR scenario. However, the water level in the higher scenarios were more 

spatially uniform. The warmer colors in Figure 4.3 indicate higher water levels; however, please 

note that to capture the variation in water level for each scenario the range of each scale bar was 

adjusted. In the low SLR scenario, the water level changed from 10 to 40 cm in the river and 

creeks, but the wetted area remained similar to the current condition (Figure 4.3a, Figure 4.3b). 

The water level and wetted area increased under the intermediate-low SLR scenario and some of 

the forested area became inundated (Figure 4.3c). Under the intermediate-high and high SLR 

scenarios, all of the wetlands were inundated, water level increased by more than a meter, and the 

bay extended to the uplands (Figure 4.3d, Figure 4.3e). 

The table in Figure 4.3 shows the inundated area for each SLR scenario in the Apalachicola region 

including the bay, rivers and creeks. Under the intermediate-low SLR the wetted area increased by 

12 km2, an increase by 2 percent. However, the flooded area for the intermediate-high and high 

SLR scenarios drastically increased to 255 km2 and 387 km2, which is a 45 and 68 percent increase 

in the wetted area, respectively. 
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Figure 4.3: MHW results for projected SLR scenarios and projected wetted area. MHW projection 

under (a) Current condition; (b) low SLR scenario (0.2 m); (c) intermediate-low SLR scenario (0.5 

m); (d) intermediate-high SLR scenario (1.2 m); (e) high SLR scenario (2 m). 
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4.3.2 Biomass Density 

Biomass density is a function of both topography and MHW and is herein categorized as low, 

medium, and high. The biomass density map for the current condition (Figure 4.4b) displays a 

biomass concentration in the lower part of the East Bay islands.  The black boxes in the map 

(Figure 4.4a, Figure 4.4b) draw attention to areas of interest for comparison with satellite imagery 

(Medeiros et al., 2015). The three boxes qualitatively illustrate that our model reasonably captured 

the low, medium, and high productivity distributions in these key areas. The simulated categorized 

(low, medium, and high) biomass density (Figure 4.4b) was compared with the biomass density 

derived from satellite imagery over both the entire satellite imagery coverage area (Figure 4.4a, n 

= 61202 pixels) as well as over the highlighted areas (n = 6411 pixels). The confusion matrices for 

these two sets of predictions are shown in Table 4.1. 

 

Figure 4.4: Biomass density maps focused on the wetland area in the islands between the 

Apalachicola River and the East Bay categorized into low, medium, and high productive regions 

represented by red, yellow, and green, respectively and blue shows the wet regions. (a) The IfSAR 

data (Medeiros et al., 2015) with black boxes highlights three selected regions for comparison; (b) 

Biomass density results under current conditions and the black boxes for comparison. 
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Table 4.1: Confusion Matrices for Biomass Density Predictions 

 Entire Coverage Area Highlighted Areas 

           Predicted 

True Low Medium High Low Medium High 

Low 4359 7112 4789 970 779 576 

Medium 1764 10331 7942 308 809 647 

High 2129 8994 7266 396 728 1198 

 

These confusion matrices indicate a true positive rate over the entire coverage area of 23.5%, 

46.0%, and 35.9% for low, medium and high, respectively, and an overall weighted true positive 

rate of 35.9%. For comparison, a neutral model where the biomass category was assigned 

randomly (stratified to match the distribution of the true data derived from satellite imagery) 

produced true positive rates of 30.5%, 36.8% and 32.8% for low, medium and high, respectively, 

and an overall weighted true positive rate of 33.6%. For the highlighted areas, the true positive 

rates were 41.7%, 45.8%, 51.6% for low, medium and high, respectively, and an overall weighted 

true positive rate of 46.4%. 

Temporal changes in the biomass density are demonstrated in the four columns (a), (b), (c), and 

(d) of Figure 4.5 for the years 2020, 2050, 2080, and 2100. The rows from top to bottom show 

biomass density results for the low, intermediate-low, intermediate-high, and high SLR scenarios, 

respectively. For the year 2020 (Figure 4.5a), under the low SLR scenario, the salt marsh 

productivity yields little , but for the other SLR scenarios the medium and low biomass density are 

getting more dominant, specifically in the intermediate-high and high SLR scenarios marsh lands 

were lost. In Figure 4.5b, the first row from top displays a higher productivity for the year 2050 
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under the low SLR scenario, whereas in the intermediate-high and high SLR (third and fourth 

column) the salt marsh is losing productivity and marsh lands were drowned. This trend continues 

in the year 2080 (Figure 4.5c). In the year 2100 (Figure 4.5d), as shown for the low SLR scenario 

(first row), the biomass density is more spatially uniform. Some salt marsh areas lost productivity 

whereas some areas with no productivity became productive, where the model captured marsh 

migration. Regions in the lower part of the islands between the Apalachicola River and East Bay 

shifted to more productive regions while most of the other marshes converted to medium 

productivity and some areas with no productivity near Lake Wimico became productive. Under 

the intermediate-low SLR scenario (second row of Figure 4.5d), the upper part of the islands 

became flooded and most of the salt marshes lost productivity while some migrated to higher lands. 

Salt marsh migration was more evident in the intermediate-high and high SLR scenarios (third and 

fourth row of Figure 4.5d). The productive band around the extended bay under higher scenarios 

implied the possibility for productive wetlands in those regions. It is shown in the intermediate-

high and high SLR scenarios (third and fourth row) from 2020 to 2100 (column (a) to (d)) that the 

flooding direction started from regions of no productivity and extended to low productivity areas. 

Under higher SLR, the inundation stretched over the marsh platform until it was halted by the 

higher topography. 
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Figure 4.5: Temporal changes in biomass density under future SLR scenarios. Biomass density is 

categorized into low, medium, and high productive regions represented by red, yellow, and green, 

respectively and blue shows the wet regions. For column (a), (b), (c), and (d) shows biomass 

density for the years 2020, 2050, 2080, and 2100, respectively and the rows from top to bottom 

displays the results for the low (0.2 m), intermediate-low (0.5 m), intermediate-high (1.2 m), and 

high (2 m) SLR. 
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4.4 Discussion 

The salt marsh response to SLR is dynamic and strongly depends on both MHW and 

geomorphology of the marsh system. The hydrodynamic results for the SLR scenarios are a 

function of the rate of SLR and its magnitude, the subsequent topographic changes resulting from 

marsh platform accretion, and the change in flow resistance induced by variations in biomass 

density. This was demonstrated in the low and intermediate-low SLR scenarios, where the water 

level varies in the creeks, in the marsh platform and where the flooding started from no marsh 

productivity regions (Figure 4.3b, Figure 4.3c). In the intermediate-high and high SLR scenarios, 

the overwhelming extent of inundation damped the impact of topography and flow resistance and 

the new hydrodynamic patterns were mostly dependent on SLR magnitude.  

Using the adjusted marsh platform and river inflow forcing in the hydrodynamic simulations, the 

model results demonstrated good agreement with the remotely sensed data (Figure 4.4a, 

Figure 4.4b). If we focus on the three black boxes highlighted in the Figure 4.3a and Figure 4.3b, 

in the first box from left, the model predicted the topographically lower lands as having low 

productivity whereas the higher lands were predicted to have medium productivity. Some higher 

lands near the bank of the river (middle box in the Figure 4.4a) were correctly predicted as a low 

productivity (Figure 4.4b). The right box in Figure 4.4a also depicts areas of both high and mixed 

productivity patterns. The model also predicted the vast expanse of area with no productivity. 

Although the model prediction shows a qualitatively successful results, the quantitative results 

indicated that over the entire coverage area, slightly more than one third of the cells were correctly 

captured. This represents a slight performance increase over the neutral model, with weighted true 
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positive rates over the entire coverage area of 35.9% and 33.6% for the proposed model and the 

neutral model, respectively. However, the results from the highlighted areas indicated much better 

performance with 46.4% of the cells being correctly identified. This indicates the promise of the 

method to capture the biomass density distribution in key areas. 

In both cases, as shown in Table 4.1, there is a noticeable pattern of difficulty in differentiating 

between medium and high classifications. This may be attributed to saturation in satellite imagery 

based coverage where at high levels of “greenness” and canopy height, the satellite imagery can 

no longer differentiate subtle differences in biomass density, especially at fine spatial resolutions. 

As such, the incorrectly classified cells are primarily located throughout the high resolution part 

of the model domain where the spacing is 15 m on average. This error may be mitigated by 

coarsening the resolution of the biomass density predictions using a spatial filter; predictions at 

this fine of a resolution are admittedly ambitious. This would reduce the “speckled” appearance of 

the predictions and likely lead to better results. 

Another of the main error sources that decrease the prediction accuracy likely originate from the 

remotely sensed, experimental, and elevation data. The remotely sensed biomass density is 

primarily based on IfSAR and ASTER data which have inherent uncertainty (Andersen et al., 

2005). In addition, the remotely sensed biomass density estimation was constrained to areas 

classified as Emergent Herbaceous Wetland (95) by the National Land Cover Dataset 2011. This 

explains the difference in coverage area and may have excluded areas where the accuracy of the 

proposed biomass density prediction model was better. Other errors are likely generated by the 

variability in planting, harvesting, and processing of biomass that is minimized, but unavoidable, 
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in any field experiment of this nature. These data were used to train the satellite imagery based 

biomass density prediction method and errors in their computation, while minimized by sample 

replication and outlier removal, may have propagated into the coverage used as the ground truth 

for comparison (Figure 4.4a). Another source of error occurs in the topography adjustment process 

in the marsh system. The true marsh topography is highly nonlinear and any adjustment algorithm 

cannot include all of the nonlinearities and microtopographic changes in the system. Considering 

all of these factors and the capability of the model to capture the low, medium, and high productive 

regions qualitatively as well as the difficulty to model the complicated processes within salt marsh 

systems, the Hydro-MEM model was successful in computing the marsh productivity. In order to 

improve the predictions and correctly identify additional regions with limited or no salt marsh 

productivity, future versions of the Hydro-MEM model will include salinity and additional 

geomorphology, such as shoreline accretion and erosion.  

Lastly, investigating the temporal changes in biomass density helps to understand the interaction 

between the flow physics and biology used in the coupled Hydro-MEM model. In the year 2020 

(Figure 4.5a), under the low (linear projected) SLR case, the accretion aids the marshes to maintain 

their position in the tidal frame, thus enabling them to remain productive. However, under higher 

SLR scenarios, the magnitude and rate of inundation prevented this adaptation and salt marshes 

began to lose their productivity. The sediment accretion rate in the SLR scenarios also affects the 

biomass density. The accretion and SLR rate associated with the low SLR scenario in the years 

2050 and 2080 (first row from top in Figure 4.5b and Figure 4.5c) increased productivity. The 

higher water levels associated with the intermediate-low SLR scenario lowered marsh productivity 

and generated new impoundments in the upper islands between the Apalachicola River and East 
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Bay (second row of Figure 4.5b and Figure 4.5c). Under the intermediate-high and high SLR, the 

trend continued and salt marshes lost productivity, drowned or disappeared altogether. It also 

caused the disappearance or productivity loss and inundation of salt marshes in other parts near 

Lake Wimico.  

The inundation direction under the intermediate-low SLR scenario began from regions of no 

productivity, extended over low productivity areas, and stopped at higher productivity regions due 

to an increased organic and inorganic accretion rates and larger bottom friction coefficients. Under 

intermediate-high and high SLR scenarios, the migration to higher lands was apparent in areas that 

have the topographic profile to be flooded regularly when sea-level rises and are adjacent to 

previously productive salt marshes.  

In the year 2100 (Figure 4.5d), the accretion and SLR rate associated with the low SLR scenario 

increased productivity near East Bay and produced a more uniform salt marsh. The productivity 

loss near Lake Wimico is likely due to the increase in flood depth and duration. For the 

intermediate-high and high SLR scenarios, large swaths of salt marsh were converted to open water 

and some of the salt marshes in the upper elevation range migrated to higher lands. The area 

available for this migration was restricted to a thin band around the extended bay that had a 

topographic profile within the new tidal frame. If resource managers in the area were intent on 

providing additional area for future salt marsh migration, targeted regrading of upland area 

projected to be located near the future shoreline is a possible measure for achieving this. 
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4.5 Conclusions 

The Hydro-MEM model was used to simulate the wetland response to four SLR scenarios in 

Apalachicola, Florida. The model coupled a two dimensional depth integrated hydrodynamic 

model and a parametric marsh model to capture the dynamic effect of SLR on salt marsh 

productivity. The parametric marsh model used empirical constants derived from experimental 

bio-assays installed in the Apalachicola marsh system over a two year period. The marsh platform 

topography used in the simulation was adjusted to remove the high elevation bias in the lidar-

derived DEM. The average annual Apalachicola River flow rate was imposed as a boundary 

condition in the hydrodynamic model. The results for biomass density in the current condition 

were validated using remotely sensed-derived biomass density. The water levels and biomass 

density distributions for the four SLR scenarios demonstrated a range of responses with respect to 

both SLR magnitude and rate.  The low and intermediate-low scenarios resulted in generally higher 

water levels with more extreme gradients in the rivers and creeks. In the intermediate-high and 

high SLR scenarios, the water level gradients were less pronounced due to the large extent of 

inundation (45 and 68 percent increase in inundated area). The biomass density in the low SLR 

scenario was relatively uniform and showed a productivity increase in some regions and a decrease 

in the others. In contrast, the higher SLR cases resulted in massive salt marsh loss (conversion to 

open water), productivity decreased and migration to areas newly within the optimal tidal frame. 

The inundation path generally began in areas of no productivity, proceeded through low 

productivity areas, and stopped when the local topography prevented further progress. 
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4.6 Future Considerations 

One of the main factors in sediment transport and marsh geomorphology is velocity variation 

within tidal creeks. These velocities are dependent on many factors including water level, creek 

bathymetry, bank elevation, and marsh platform topography (Wang et al., 1999). The maximum 

tidal velocities for four transects, two in the distributaries flowing into the Bay in the islands 

between Apalachicola River and East Bay (T1 and T2), one in the main river (T3), and the fourth 

one in the tributary of the main river far from main marsh platform (T4) (Figure 4.1) were 

calculated. 

The magnitude of the maximum tidal velocity generally increased with increasing sea level 

(Figure 4.6). The rate of increase in the creeks closer to the bay was higher due to reductions in 

bottom roughness caused by loss of biomass density. The magnitude of maximum velocity also 

increased as the creeks expanded. However, these trends leveled off under the intermediate-high 

and high SLR scenarios when the boundaries between the creeks and inundated marsh platform 

were less distinguishable. This trend progressed further under the high SLR scenario, where there 

was also an apparent decrease due to the bay extension effect.   

Under SLR scenarios, the maximum flow velocity generally, but not uniformly, increased within 

the creeks. Transect 1 was chosen to show the marsh productivity variation effects in the velocity 

change. Here, the velocity increased with increasing sea level. However, under the intermediate-

low and intermediate-high SLR scenarios, there were some periods of velocity decrease due to 

creation of new creeks and flooded areas. This effect was also seen in transect 2 for the 

intermediate-high and high SLR scenarios. Under the low SLR scenario in transect 2, a velocity 
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reduction period was generated in 2050 as shown in Figure 4.6. This period of velocity reduction 

is explained by the increase in roughness coefficient related to the higher biomass density in that 

region at that time. Transect 3, because of its location in the main river channel, was less affected 

by SLR induced variations on the marsh platform but still contained some variability due to the 

creation of new distributaries under the intermediate-high and high SLR scenarios. All of the 

curves for transect 3 show a slow decrease at the beginning of the time series indicating that tidal 

flow dominated in that section of the main river at that time. This is also evident in transect 4 

located in a tributary of the Apalachicola River. The variations under intermediate-high and high 

SLR scenarios in transect 4 are mainly due to the new distributaries and flooded area. One 

exception to this is the last period of velocity reduction occurring as a result of the bay extension. 

    The creek velocities generally increased in the low and intermediate-low scenarios due to 

increased water level gradients, however there were periods of velocity decrease due to higher 

bottom friction values corresponding with increased biomass productivity in some regions. Under 

the intermediate-high and high scenarios, velocities generally decreased due to the majority of 

marshes being converted to open water and the massive increase in flow cross-sectional area 

associated with that. These changes will be considered in the future work of the model related with 

geomorphologic changes in the marsh system. 
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Figure 4.6: Maximum velocity variation with time under the low, intermediate-low, intermediate-

high, and high SLR in four transects shown in Figure 4.1. 
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CHAPTER 5. APPLICATION OF THE MODEL IN MARINE AND MIXED 

ESTUARINE SYSTEMS  

The content in this chapter is under preparation to submit as: Alizad, K., Hagen, S.C., Morris, J. 

T., Medeiros, S.C. 2016. Salt Marsh System Response to Seal Level Rise in a Marine and Mixed 

Estuarine Systems.  

5.1 Introduction 

Salt marshes in the Northern Gulf of Mexico (NGOM) are some of the most vulnerable to sea level 

rise (SLR) in the United States (Turner, 1997; Nicholls et al., 1999; Thieler and Hammer-Klose, 

1999). These estuaries are dependent on hydrodynamic influences that are unique to each 

individual system (Townend and Pethick, 2002; Rilo et al., 2013). The vulnerability to SLR is 

mainly due to the microtidal nature of the NGOM and lack of sufficient sediment (Day et al., 

1995). Since the estuarine systems respond to SLR by accumulating or releasing sediments 

according to local conditions (Friedrichs et al., 1990), it is critical to study the response of different 

estuarine systems, assessed by salt marsh productivity, accounting for their unique topography and 

hydrodynamic variations. These assessments can aid coastal managers to choose effective 

restoration planning pathways (Broome et al., 1988). 

In order to assess salt marsh response to SLR, it is important to use marsh models that capture as 

many of the processes and interactions between the salt marsh and local hydrodynamics as 

possible. Several integrated models has been developed and applied in different regions to study 

SLR impact on wetlands (D' Alpaos et al., 2007; Kirwan and Murray, 2007; Hagen et al., 2013; 

Alizad et al., 2016). In addition, SLR can effectively change the hydrodynamics in estuaries 

(Wolanski and Chappell, 1996; Hearn and Atkinson, 2001; Leorri et al., 2011), which  are 
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inherently dynamic due to the characteristics of the systems (Passeri et al., 2014) and need to be 

considered in the marsh model time progression. The Hydro-MEM model (Alizad et al., 2016) was 

developed to capture the dynamics of SLR (Passeri et al., 2015) by coupling hydrodynamic and 

parametric marsh models. Hydro-MEM incorporates the rate of SLR using a time stepping 

framework and also includes the complex interaction between the marsh and its hydrodynamics 

by adjusting the platform elevation and friction parameters in response to the conditions at each 

coupling time step (Alizad et al., 2016). The Hydro-MEM model requires an accurate topographic 

elevation map (Medeiros et al., 2015), Marsh Equilibrium Model (MEM) experimental parameters 

(Morris et al., 2002), SLR rate projection from National Oceanic and Atmospheric Administration 

(NOAA) (Parris et al., 2012), initial spatially distributed bottom friction parameters (Manning’s 

n) from the National Land-Cover Database 2001 (NLCD 2001) (Homer et al., 2004), and a high 

resolution hydrodynamic model (Alizad et al., 2016). The objective of this study is to investigate 

the potential changes in wetland productivity and the response to SLR in two unique estuarine 

systems (one marine and one tributary) that are located in the same region (northern Gulf of 

Mexico).   

Grand Bay, AL and Weeks Bay, MS estuaries are categorized as marine dominated and tributary 

estuaries, respectively. Grand Bay is one of the last remaining major coastal systems in 

Mississippi, located at the border with Alabama (Figure 5.1) and consisting of several shallow 

bays (0.5 m to 3 m deep in Point aux Chenes Bay) and barrier islands that are low in elevation but 

effective in damping wave energy (O'Sullivan and Criss, 1998; Peterson et al., 2007; Morton, 

2008). The salt marsh system covers 49% of the estuary and is dominated by Spartina alterniflora 

and Juncus romerianus. The marsh serves as the nursery and habitat for commercial species such 
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as shrimp, crabs, and oysters (Eleuterius and Criss, 1991; Peterson et al., 2007). Historically, this 

marsh system has been prone to erosion and loss of productivity under SLR (Resources, 1999; 

Clough and Polaczyk, 2011). The main processes that facilitate the erosion are (1) the Escatawpa 

River diversion in 1848, which was the estuary’s main sediment source and (2) the Dauphin Island 

breaching caused by a hurricane in the late 1700s that allowed the propagation of larger waves and 

tidal flows from the Gulf of Mexico (Otvos, 1979; Eleuterius and Criss, 1991; Morton, 2008). In 

addition, when the water level is low, the waves break along the marsh platform edge; this erodes 

the marsh platform and breaks off large chunks of the marsh edge. When the water level is high, 

the waves break on top of the marsh platform and can cause undermining of the marsh; this can 

open narrow channels that dissect the marsh (Eleuterius and Criss, 1991). 

The Weeks Bay estuary, located along the eastern shore of Mobile Bay in Baldwin County, AL is 

categorized as a tributary estuary (Figure 5.1). Weeks Bay provides bottomland hardwood 

followed by intertidal salt marsh habitats for mobile animals and nurseries for commercially fished 

species such as shrimp, blue crab, shellfish, bay anchovy and others. Fishing and harvesting is 

restricted in Weeks Bay; however, adult species are allowed to be commercially harvested in 

Mobile Bay, after they emerge from Weeks Bay (Miller-Way et al., 1996). This estuary is mainly 

affected by the fresh water inflow from the Magnolia River (25%), the Fish River (73%), and some 

smaller channels (2%) with a combined annual average discharge of 5 cubic meters per second 

(Lu et al., 1992) , as well as Mobile Bay, which is the estuary’s coastal ocean salt source. Sediment 

is transported to the bay by Fish River during winter and spring as a result of overland flow from 

rainfall events but this process is limited during summer and fall when the discharge is typically 

low (Miller-Way et al., 1996). Three dominant marsh species are J. romerianus and S. alterniflora 
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in the higher salinity regions near the mouth of the bay, and Spartina cynosuroides in the brackish 

region at the head of the bay. In the calm waters near the sheltered shorelines, submerged aquatic 

vegetation (SAV) is dominant. The future of the reserve is threatened by recent urbanization, which 

is the most significant change in the Weeks Bay watershed (Weeks Bay National Estuarine 

Research Reserve, 2007). Also, as a result of SLR already occurring, some marsh areas have 

converted to open water and others have been replaced by forest (Shirley and Battaglia, 2006). 

 

Figure 5.1: Study area and location of the Grand Bay estuary (left) and Weeks Bay estuary (right) 

 

5.2 Methods 

Wetland response to SLR was assessed using the integrated Hydro-MEM model comprised of 

coupled hydrodynamic and marsh models. This model was developed to include the 

interconnection between physics and biology in marsh systems by applying feedback processes in 

a time stepping framework. The time step approach helped to capture the rate of SLR by 

incorporating the two-way feedback between the salt marsh system (vegetation and topography) 
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and hydrodynamics after each time step. Additionally, the model implemented the dynamics of 

SLR by applying a hydrodynamic model that provided input for the parametric marsh model 

(MEM) in the form of tidal parameters. The elevation and Manning’s n were updated using the 

biomass density and accretion results from the MEM and then input into the hydrodynamic model. 

Once the model reached the target time, the simulation stopped and generated results (Alizad et 

al., 2016). 

The hydrodynamic model component of Hydro-MEM model was the two-dimensional, depth-

integrated ADvanced CIRCulation (ADCIRC) model that solves the shallow water equations over 

an unstructured finite element mesh (Luettich and Westerink, 2004; Luettich and Westerink, 

2006). The developed unstructured two-dimensional mesh consisted of 15 m elements, on average, 

in the marsh regions both in the Grand Bay and Weeks Bay estuaries and manually digitized rivers, 

creeks, and intertidal zones. This new high resolution mesh for Grand Bay and Weeks Bay 

estuaries was fused to an existing mesh developed by Hagen et al. (2006) in the Western North 

Atlantic Tidal (WNAT) model domain that spans from the 60 degree west meridian through the  

Atlantic Ocean, Gulf of Mexico, and Caribbean Sea and includes 1,095,214 nodes. This new 

combined mesh was developed with consideration of numerical stability in cyclical floodplain 

wetting (Medeiros and Hagen, 2013) and the techniques to capture tidal flow variations within the 

marsh system (Alizad et al., 2016).  

The most important inputs to the model consisted of topography, Manning’s n, and initial water 

level (with SLR) and the model was forced by tides and river inflow. The elevation was 

interpolated onto the mesh using an existing digital elevation model (DEM) developed by Bilskie 
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et al. (2015) incorporating the necessary adjustment to the marsh platform (Alizad et al., 2016) 

due to the high bias of the lidar derived elevations in salt marshes (Medeiros et al., 2015). Since 

this marsh is biologically similar to Apalachicola, FL (J. romerianus dominated, Spartina fringes, 

and similar above-ground biomass density), the adjustment for most of the marsh platform was 42 

cm except for the high productivity regions where the adjustment was 65 cm as suggested by 

Medeiros et al. (2015). Additionally, the initial values for Manning’s n were derived using the 

NLCD 2001 (Homer et al., 2004) along with in situ observations (Arcement and Schneider, 1989) 

and was updated based on the biomass density level of low, medium, and high or reclassified as 

open water (Medeiros et al., 2012; Alizad et al., 2016). The initial water level input, including 

SLR, to Hydro-MEM model input was derived from the NOAA report data that categorized them 

as low (0.2), intermediate-low (0.5 m), intermediate-high (1.2 m) and high (2.0 m) calculated using 

different climate change projections and observed data (Parris et al., 2012).  Since the coupling 

time step for low and intermediate-low scenarios was 10 years and for the intermediate-high and 

high cases was 5 years (Alizad et al., 2016), the SLR at each time step varied based on the SLR 

projection data (Alizad et al., 2016). In addition, the hydrodynamic model was forced by seven 

principal harmonic tidal constituents (M2, S2, N2, K1, O1, K2, and Q1) along the open ocean 

boundary at the 60 degree west meridian and river inflow at the Fish River and Magnolia River 

boundaries. No flow boundary conditions were applied along the coastline. The river discharge 

boundary conditions were calculated as the mean discharge from 44 years of record for the Fish 

River (http://waterdata.usgs.gov/usa/nwis/uv?site_no=02378500) and 15 years of record for 

Magnolia River (http://waterdata.usgs.gov/nwis/uv?site_no=02378300) and as of February 2016 

were 3.18 and 1.11 cubic meters per second, respectively. The hydrodynamic model forcings were 

http://waterdata.usgs.gov/usa/nwis/uv?site_no=02378500
http://waterdata.usgs.gov/nwis/uv?site_no=02378300
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ramped by two hyperbolic tangential functions: one for the tidal constituents and the other for river 

inflows. To capture the nonlinearities and dynamic effects induced by geometry and topography, 

the output of the model in the form of harmonic tidal constituents were resynthesized and analyzed 

to produce Mean High Water (MHW) in the rivers, creeks and marsh system. This model has been 

applied in previous studies and extensively validated (Bilskie et al., 2016; Passeri et al., 2016). 

The MEM component of the model used MHW and topography as well as experimental parameters 

to derive a parabolic curve used to calculate biomass density at each computational node. The 

parabolic curve used a relative depth (D) defined by subtracting the topographic elevation of each 

point from the computed MHW elevation. The parabolic curve determined biomass density as a 

function of this relative depth (Morris et al., 2002) as follows: 

2
B aD bD c                                                                                                                       (5.1) 

where a, b, and c were unique, experimentally derived parameters for each estuary. In this study, 

the parameters were obtained from field bio-assay experiments (Alizad et al., 2016) in both Grand 

Bay and Weeks Bay. These curves are typically divided into sub-optimal and super-optimal 

branches that meet at the parabola maximum point. The left and right parameters for Grand Bay 

were al = 32 g.m-3.yr-1, bl = -3.2 g.m-4.yr-1, cl =1920 g.m-2.yr-1, and ar = 6.61 g.m-3.yr-1, br = -0.661 

g.m-4.yr-1, cr =1983 g.m-2.yr-1, respectively. The biomass density curve for Weeks Bay was defined 

using the parameters a = 73.8 g.m-3.yr-1, b = -1.14 g.m-4.yr-1, c =1587.1 g.m-2.yr-1. Additionally, 

the MEM element of the model calculated the organic and inorganic accretion rates on the marsh 

platform using an accretion rate formula incorporating the parameters for inorganic sediment load 
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(q) and organic and inorganic accumulation generated by decomposing vegetation (k) (Morris et 

al., 2002) as follows: 

( )        for        >0
dY

q kB D D
dt

                                                                                        (5.2) 

Based on this equation, salt marsh platform accretion depended on the productivity of the marsh, 

the amount of sediment and the water level during the high tide. It also depended on the coupling 

time step (dt) that updated elevation and bottom friction inputs in the hydrodynamic model. 

5.3 Results 

The hydrodynamic results in both estuaries showed little variation in MHW within the bays and 

slight changes within the creeks (first row of Figure 5.2a) in the current condition. The MHW in 

the current condition has a 2 cm difference between Bon Secour Bay and Weeks Bay (first row of 

Figure 5.2b). Under the low SLR scenario for the year 2100, the maps implied higher MHW levels 

close to the SLR amount (0.2 m) with lower variation in the creeks in both Grand Bay and Weeks 

Bay (second row of Figure 5.2a and Figure 5.2b). The MHW in the intermediate-low SLR scenario 

also increased by an amount close to SLR (0.5 m) but with creation of new creeks and flooded 

marsh platform in Grand Bay (third row of Figure 5.2a). However, the amount of flooded area in 

Weeks Bay is much less (0.1 percent) than Grand Bay (1.3 percent). Under higher SLR scenarios, 

the bay extended over marsh platform in Grand Bay and under high SLR scenario, the bay 

connected to the Escatawpa River over highway 90 (fourth and fifth rows of Figure 5.2a) and the 

wetted area increased by 25 and 45 percent under intermediate high and high SLR (Table 5.1). The 
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flooded area in the Weeks Bay estuary was much less (5.8 and 14 percent for intermediate-high 

and high SLR) with some variation in the Fish River (fourth and fifth rows of Figure 5.2b). 

Biomass density results showed a large marsh area in Grand Bay and small patches of marsh lands 

in Weeks Bay (first row of Figure 5.3a and Figure 5.3b). Under low SLR scenario for the year 

2100, biomass density results demonstrated a higher productivity with an extension of the marsh 

platform in Grand Bay (second row of Figure 5.3a), but only a slight increase in marsh productivity 

in Weeks Bay with some marsh migration near Bon Secour Bay (second row of Figure 5.3b). 

Under the intermediate-low SLR, salt marshes in the Grand Bay estuary lost productivity and parts 

of them were drowned by the year 2100 (third row of Figure 5.3a). In contrast, Weeks Bay showed 

more productivity and the marsh lands both in the upper part of the Weeks Bay and close to Bon 

Secour Bay were extended (third row of Figure 5.3b). Under intermediate-high and high SLR, both 

estuaries demonstrated marsh migration to higher lands and a new marsh land was created near 

Bon Secour Bay under high SLR (fifth row of Figure 5.3b). 
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Figure 5.2: MHW results for (a) Grand Bay and (b) Weeks Bay. The rows from top to bottom are 

for the current sea level, and the Low (0.2 m), intermediate-low (0.5 m), intermediate-high (1.2 

m), high (2 m) SLR for the year 2100. 
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Table 5.1: The wetted area in the Grand Bay and Weeks Bay estuaries under different SLR 

scenarios. 
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Figure 5.3: Biomass density results categorized into low, medium, and high productive regions 

represented by red, yellow, and green, respectively for (a) Grand Bay and (b) Weeks Bay. The 

rows from top to bottom are for the current sea level, and the Low (0.2 m), intermediate-low (0.5 

m), intermediate-high (1.2 m), high (2 m) SLR for the year 2100. 
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5.4 Discussion 

The current condition maps for MHW illustrates one of the primary differences between the Grand 

Bay and Weeks Bay in terms of their vulnerability to SLR. The MHW within Grand Bay, along 

with the minor changes in the creeks, demonstrated its exposure to tidal flows, whereas the more 

distinct MHW change between Bon Secour Bay and Weeks Bay illustrated how the narrow inlet 

of the bay can dampen currents, waves, and storm surge. The tidal flow in Weeks Bay dominates 

the river inflow while the bay receives sediments from the watershed during the extreme events. 

The amount of flooded area under high SLR scenarios demonstrates the role of the bay inlet and 

topography of the Weeks Bay estuary in protecting it from inundation. 

MHW significantly impacts the biomass density results in both the Grand Bay and Weeks Bay 

estuaries. Under the low SLR scenario, the accretion on the marsh platform in Grand Bay 

established an equilibrium with the increased sea level and produced a higher productivity marsh. 

This scenario did not appreciably change the marsh productivity in Weeks Bay but did cause some 

marsh migration near Bon Secour Bay, where some inundation occurred. 

Under the intermediate-low SLR scenario, higher water levels were able to inundate the higher 

lands in Weeks Bay and produce new marshes with high productivity there as well as in the regions 

close to Bon Secour Bay. Grand Bay began losing productivity under this scenario and some 

marshes, especially those directly exposed to the bay, were drowned. 

In Grand Bay, salt marshes migrated to higher lands under the intermediate-high and high SLR 

scenarios and all of the current marsh platform became open water and created an extended bay 
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that connected to the Escatawpa River under the high SLR scenario. The Weeks Bay inlet became 

wider and allowed more inundation under these scenarios and created new marsh lands between 

Weeks Bay and Bon Secour Bay. 

5.5 Conclusions 

Weeks Bay inlet offers some protection from SLR, enhanced by the higher topo that allows for 

marsh migration and new marsh creation. 

Grand Bay is much more exposed to SLR and therefore less resilient. Historic events have 

combined to both remove its sediment supply and expose it to tide and wave forces. It’s generally 

low topography facilitates conversion to open water, rather than marsh migration, at higher SLR 

rates. 
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CHAPTER 6. CONCLUSION 

This research aimed to develop an integrated model to assess SLR effects on salt marsh 

productivity in coastal wetland systems with a special focus on three NERRs in the NGOM. The 

study started with a comprehensive literature review about SLR and hydrodynamic modeling of 

SLR and its dynamic effects on coastal systems, different models of salt marsh systems based on 

their modeling scales including coupled models and the interconnection between hydrodynamics 

and biological processes. Most of the models that consist of a coupling between hydrodynamics 

and marsh processes are small scale models that apply SLR all at once. Moreover, they generally 

capture neither the dynamics of SLR (e.g., the nonlinearity in hydrodynamic response to SLR) nor 

the rate of SLR (e.g., applying time step approach to capture feedbacks and responses in a time 

frame). The model presented herein (HYDRO-MEM) consists of a two-dimensional 

hydrodynamic model and a time stepping framework was developed to include both dynamic 

effects of SLR and rate of SLR in coastal wetland systems. 

The coupled HYDRO-MEM model is a spatial model that interconnects a two-dimensional depth-

integrated finite element hydrodynamic model (ADCIRC) and a parametric marsh model (MEM) 

to assess SLR effects on coastal marsh productivity. The hydrodynamic component of the model 

was forced at the open ocean boundary by the dominant harmonic tidal constituents and provided 

tidal datum parameters to the marsh model, which subsequently produces biomass density 

distributions and accretion rate. The model used the marsh model outputs to update elevations on 

the marsh platform, bottom friction, and SLR within a time stepping feedback loop. When the 
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model reached the target time, the simulation terminated and results in the form of spatial maps of 

projected biomass density, MLW, MHW, accretion, or bottom friction were generated. 

The model was validated in the Timucuan marsh in northeast Florida, where rivers and creeks have 

changed very little in the last 80 years. Low and high SLR scenarios for the year 2050 were used 

for the simulation. The hydrodynamic results showed higher water levels with more variation 

under the low SLR scenario. The water level change along a transect also implied that changes in 

water level appeared to be a function of distance from creeks as well as topographic gradients. The 

results also indicated that the effect of topography is more pronounced under low SLR in 

comparison to the high SLR scenario. Biomass density maps demonstrated an increase in overall 

productivity under the low SLR and a contrasting decrease under the high SLR scenario. That was 

a combined result of nonlinear salt marsh platform accretion and the dynamic effects of SLR on 

the local hydrodynamics. The calculation using different coupling time steps for the low and high 

SLR scenarios indicated that the optimum time steps for a linear (low) and nonlinear (high) SLR 

cases are 10 and 5 years, respectively. The HYDRO-MEM model results for biomass density were 

categorized into low, medium, and high productivity compared with MEM only and demonstrated 

better performance in capturing the spatial variability in biomass density distribution. Additionally, 

the comparison between the categorized results and a similar product derived from satellite 

imagery demonstrated the model performance in capturing the sub-optimal, optimal and super-

optimal regions of the biomass productivity curve.  

The HYDRO-MEM model was applied in a fluvial estuary in Apalachicola, FL using NOAA 

projected SLR scenarios. The experimental parameters for the model were derived from a two-
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year experiment using bio-assays in Apalachicola, FL. The marsh topography was adjusted to 

eliminate the bias in lidar-derived elevations. The Apalachicola river inflow boundary was applied 

in the hydrodynamic model. The results using four future SLR projections indicated higher water 

levels with more variations in rivers and creeks under the low and intermediate-low SLR scenarios 

with some inundated areas under intermediate-low case. Under higher SLR scenarios, the water 

level gradients are low and the bay extended over the marsh and even some forested upland area. 

As a result of the changes in hydrodynamics, biomass density results showed a uniform marsh 

productivity with some increase in some regions under the low SLR scenario, whereas under the 

intermediate-low SLR scenario, salt marsh productivity declined in most of the marsh system. 

Under higher SLR scenarios, the results demonstrated a massive salt marsh inundation and some 

migration to higher lands. 

Additionally, a marine dominated and mixed estuarine system in Grand Bay, MS and Weeks Bay, 

AL under four SLR scenarios were assessed using the HYDRO-MEM model. Their unique 

topography and geometry and individual hydrodynamic characteristics demonstrated different 

responses to SLR. Grand Bay showed more vulnerability to SLR due to more exposure to open 

water and less sediment supply. Its lower topography facilitate the conversion of marsh lands to 

open water. However, Weeks Bay topography and the Bay’s inlet protect the marsh lands from 

SLR and provide lands to create new marsh lands and marsh migration under higher SLR 

scenarios. 

The future development of the HYDRO-MEM model is expected to include more complex 

geomorphologic changes in the marsh system, sediment transport, and salinity change. The model 
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also can be improved by including a more complicated model for groundwater change in the marsh 

platform. Climate change effects will be considered by implementing the extreme events and their 

role in sediment transport into the marsh system. 

6.1 Implications 

This dissertation enhanced the understanding of the marsh system response to SLR by integrating 

physical and biological processes. This study was an interdisciplinary research endeavor that 

connected engineers and biologists each with their unique skill sets. This model is beneficial to 

scientists, coastal managers, and the natural resource policy community. It has the potential to 

significantly improve restoration and planning efforts as well as provide guidance to decision 

makers as they plan to mitigate the risks of SLR. 

The findings can also support other coastal studies including biological, engineering, and social 

science. The hydrodynamic results can help other biological studies such as oyster and SAV 

productivity assessments. The biomass productivity maps can project reasonable future habitat and 

nursery conditions for birds, fish, shrimp, and crabs, all of which drive the seafood industry. It can 

also show the effect of SLR on the nesting patterns of coastal salt marsh species. From an 

engineering standpoint, biomass density maps can serve as inputs to estimate bottom friction 

parameter changes under different SLR scenarios both spatially and temporally. These data are 

used in storm surge assessments that guide development restrictions and flood control 

infrastructure projects. Additionally, projected biomass density maps indicate both vulnerable 

regions and possible marsh migration lands that can guide monitoring and restoration activities in 

the NERRs.  
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The developed HYDRO-MEM model is a comprehensive tool that can be used in different coastal 

environments by various organizations, both in the United States and internationally, to assess 

SLR effects on coastal systems to make informed decisions for different restoration projects. Each 

estuary is likely to have a unique response to SLR and this tool can provide useful maps that 

illustrate these responses. Finally, the outcomes of this study are maps and tools that will aid policy 

makers and coastal managers in the NGOM, NERRs, and different estuaries in other parts of the 

world as they plan to monitor, protect and restore vulnerable coastal wetland systems. 
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