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ABSTRACT 

Traffic demand has increased as population increased. The US population reached 313,914,040 in 

2012 (US Census Bureau, 2015).  Increased travel demand may have potential impact on roadway 

safety and the operational characteristics of roadways. Total crashes and injury crashes at 

intersections accounted for 40% and 44% of traffic crashes, respectively, on US roadways in 2007 

according to the Intersection Safety Issue Brief (FHWA, 2009). Traffic researchers and engineers 

have developed a quantitative measure of the safety effectiveness of treatments in the form of crash 

modification factors (CMF).  Based on CMFs from multiple studies, the Highway Safety Manual 

(HSM) Part D (AASHTO, 2010) provides CMFs which can be used to determine the expected 

number of crash reduction or increase after treatments were installed.  

 

Even though CMFs have been introduced in the HSM, there are still limitations that require to be 

investigated. One important potential limitation is that the HSM provides various CMFs as fixed 

values, rather than CMFs under different configurations. In this dissertation, the CMFs were 

estimated using the observational before-after study to show that the CMFs vary across different 

traffic volume levels when signalizing intersections. Besides screening the effect of traffic volume, 

previous studies showed that CMFs could vary over time after the treatment was implemented. 

Thus, in this dissertation, the trends of CMFs for the signalization and adding red light running 

cameras (RLCs) were evaluated. CMFs for these treatments were measured in each month and 90- 

day moving windows using the time series ARMA model.  The results of the signalization show 

that the CMFs for rear-end crashes were lower at the early phase after the signalization but 

gradually increased from the 9th month. Besides, it was also found that the safety effectiveness is 

significantly worse 18 months after installing RLCs. 
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Although efforts have been made to seek reliable CMFs, the best estimate of CMFs is still widely 

debated. Since CMFs are non-zero estimates, the population of all CMFs does not follow normal 

distributions and even if it did, the true mean of CMFs at some intersections may be different than 

that at others. Therefore, a bootstrap method was proposed to estimate CMFs that makes no 

distributional assumptions. Through examining the distribution of CMFs estimated by 

bootstrapped resamples, a CMF precision rating method is suggested to evaluate the reliability of 

the estimated CMFs. The result shows that the estimated CMF for angle+left-turn crashes after 

signalization has the highest precision, while estimates of the CMF for rear-end crashes are 

extremely unreliable. The CMFs for KABCO, KABC, and KAB crashes proved to be reliable for 

the majority of intersections, but the estimated effect of signalization may not be accurate at some 

sites. 

 

In addition, the bootstrap method provides a quantitative measure to identify the reliability of 

CMFs, however, the CMF transferability is questionable. Since the development of CMFs requires 

safety performance functions (SPFs), could CMFs be developed using the SPFs from other states 

in the United States? This research applies the empirical Bayes method to develop CMFs using 

several SPFs from different jurisdictions and adjusted by calibration factors. After examination, it 

is found that applying SPFs from other jurisdictions is not desired when developing CMFs. 

 

The process of estimating CMFs using before-after studies requires the understanding of multiple 

statistical principles. In order to simplify the process of CMF estimation and make the CMFs 

research reproducible. This dissertation includes an open source statistics package built in R (R, 

2013) to make the estimation accessible and reproducible. With this package, authorities are able 
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to estimate reliable CMFs following the procedure suggested by FHWA. In addition, this software 

package equips a graphical interface which integrates the algorithm of calculating CMFs so that 

users can perform CMF calculation with minimum programming prerequisite.  

 

Expected contributions of this study are to 1) propose methodologies for CMFs to assess the 

variation of CMFs with different characteristics among treated sites, 2) suggest new objective 

criteria to judge the reliability of safety estimation, 3) examine the transferability of SPFs when 

developing CMF using before-after studies, and 4) develop a statistics software to calculate CMFs. 

Finally, potential relevant applications beyond the scope of this research, but worth investigation 

in the future are discussed in this dissertation.  
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CHAPTER 1 : INTRODUCTION 

1.1 Overview 

Traffic demand has increased as population increased.  The US population reached 313,914,040 

in 2012 according to United State Census Bureau (USCB, 2012).  Increased travel demand may 

have potential impact on roadway safety and the operational characteristics of roadways.  Total 

crashes and injury crashes at intersections account for 40% and 44% of traffic crashes, respectively, 

on the US roadways in 2007 according to the Intersection Safety Issue Brief (FHWA, 2009). The 

Highway Safety Manual (HSM) (AASHTO, 2010) is a result of extensive work spearheaded by 

the Transportation Research Board’s (TRB) Committee on Highway Safety Performance. HSM 

will enable officials to benefit from the extensive research in safety of highways as it bridges the 

gap between research and practice. The HSM’s analytical tools and techniques provide quantitative 

information on crash analysis and evaluation for decision making in planning, design, operation, 

and maintenance. Thus, an assessment of the applicability of this manual in Florida is essential. 

Part D of the HSM provides a comprehensive list of crash modification factors (CMFs), which 

were compiled from past studies of the effects of various safety treatments (i.e., countermeasures).  

 

The HSM Part D introduces a methodology to evaluate the effects of safety treatments 

(countermeasures). These can be quantified by CMFs. The HSM Part D identifies CMFs based on 

literature review and experts or at least trends (or unknown effects) for each treatment. CMFs are 

expressed as numerical values to identify the percent increase or decrease in crash frequency 

together with the standard error. To further explain, CMFs are multiplicative factors that are used 

to estimate the expected changes in crash frequencies as a result of improvements with specific 

treatments. The CMFs have been estimated using observational before-after studies that account 
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for the regression-to-the-mean bias. Although various CMFs have been calculated and introduced 

in the HSM, still there are critical limitations that are required to be investigated.  

 

This study particularly focuses on the relationship between CMFs and annual average daily traffic 

volume (AADT) for different crash severities and crash types. To fulfill this objective, CMFs are 

calculated for different ranges of AADT.  CMFs are calculated for these AADT ranges to 

understand the influence of AADT on CMFs for more accurate estimation of CMFs. 

 

There is potential lag of drivers’ awareness of roadway treatments suggested by Sacchi et al. (2014).  

Variations in the CMFs for the signalization and adding RLCs over time are examined using a 

time series model.  This information would be helpful for traffic engineers to understand trends of 

safety performance of the treatments in the long term.  This dissertation evaluates the effectiveness 

of the signalization in reducing rear-end and angle + left-turn crashes and the effectiveness of 

adding RLCs in reducing total and fatal+injury crashes.   

 

Previous research efforts have focused on separating the treatment effects into crash modification 

functions based on temporal (Park et al., 2015; Sacchi et al., 2014; Wang et al., 2015b), traffic 

volume (Sacchi and Sayed, 2014; Wang and Abdel-Aty, 2014), area type (Wang and Abdel-Aty, 

2014), and speed limit (Lee et al., 2015). The CMFs can be conceptualized as a nested structure as 

shown in Figure 1-1. The CMFs for increasingly specific groups have smaller sample sizes, but 

also lower variation, due to greater homogeneity among the samples. The data (crash, geometry, 

target location) needed to conduct a before-after study is expensive to collect.  Therefore, if the 

CMF is stable at a higher, more aggregate level, it is not necessary to collect more data and 
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investigate at a more specific, less aggregate levels. By calculating the CMFs using bootstrapped 

resamples (bootstrapped CMFs), the stability of the estimate can be examined by calculating the 

bootstrap confidence interval (BC). If the BC is higher/lower than one, the CMF can be considered 

trustworthy and further split-up is not required. As suggested by the CMF Clearinghouse (FHWA, 

2016), randomly selected sites will increase the reliability of CMFs. The resampling procedure 

adds randomization to identify unstable results and compensates for small sample sizes. Based on 

the distribution of bootstrap CMFs, a precision rating is suggested in the result section of this 

chapter to help with decision making. 

 
Figure 1-1 Nested CMF Structure 

In addition, it is also important to validate the transferability of SPFs using different states/sources 

because data collection requires significant cost. Using the target intersections, before-after study 

is conducted using empirical Bayes (EB) method.  In order to perform EB analysis, it is needed to 

develop SPFs and calculate the predicted crashes based on the SPFs to serve as priors.  This 

research compares the CMFs values among multiple SPFs from Ohio, Florida, and the SPFs in the 

HSM.  If the CMFs calculated by the SPFs in the HSM are close to the CMFs when using the SPFs 
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in Florida, it would be a substantial benefit because it is not necessary to re-estimate SPFs based 

on local conditions for signalization.   

 

In this dissertation, crash severities were categorized according to the KABCO scale as follows: 

fatal (K), incapacitating injury (A), non-incapacitating injury (B), possible injury (C) and property 

damage only (O). 

 

1.2 Research Objectives 

The dissertation focuses on the development and evaluation of CMFs and the functions of CMFs. 

The main objectives are: 

1. Evaluate CMFs at different traffic volume with different roadway characteristics among 

treated sites over time  

2. Construct a reliable way to evaluate the quality of CMFs  

3. Identify the transferability of SPFs in the calculation of CMFs using EB method  

The detailed objectives will be realized by the following tasks;  

The first objective is analyzing CMFs at different characteristics and was achieved by following 

tasks: 

a) Estimating CMFs at different traffic volume for each crash type (Chapter 3) 

b) Estimating CMFs at different time period and using ARMA time series model to model 

the time trend of CMFs. (Chapter 4) 

The second objective can be achieved by the following tasks: 
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c) Developing an algorithm to automate the calculation of CMFs to be used to fulfilling the 

computation of bootstrapped data(Chapter 5) 

d) Selecting the ideal SPFs formulation using traffic exposure parameter (all possibility 

combination set of AADT) and other independent variables (Chapter 6) 

e) Analyzing the density plot of bootstrapped CMF using the bootstrapped resamples 

(Chapter 6) 

f) Suggesting improved CMF quality rating method using objective quantitative method to 

replace the qualitative rating method suggested by CMF clearinghouse (FHWA, 2016)  

(Chapter 6) 

The following tasks were implemented to achieve the third objective:  

g) Developing SPFs using data from different states (Chapter 5) 

h) Comparing the CMF values using the SPFs developed based on different states  

(Chapter 5) 

 

1.3 Organization of the Dissertation 

The dissertation is organized as follows: Chapter 2, following this chapter, summarizes the 

literature on previous CMF and related studies. Current CMF calculation methods (various 

observational before-after studies and cross-sectional method) are presented. Moreover, current 

issues of CMF related researches and their limitations are discussed. The review of literature used 

bootstrap resampling technique to ensure the reliability of CMFs. In addition, it will also be 

explained how to address limitations in these studies.  
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Chapter 3 estimates the CMFs under different traffic volume and discovers that the safety impact 

varied at different range of traffic volume. Chapter 4 suggests a comprehensive analysis about the 

development of function of CMFs to assess the variation over time using ARMA time series 

modeling techniques. Chapter 5 presents a statistical software to calculate CMFs. This tool is used 

to support further analysis performed in chapter 6 and is an easy to use statistical tool for public to 

develop CMFs following the procedure suggested by Gross et al. (2010). Chapter 6 gives a 

comprehensive analysis about the reliability of CMFs by estimating the nonparametric bootstrap 

approach without any distribution assumption. By analyzing the bootstrapped CMFs, a CMF rating 

criterion is suggested to evaluate the quality of the CMFs. Chapter 7 examined the transferability 

of SPFs when developing CMFs through comparing the values of CMF develop using SPFs 

developed from different states. Finally, Chapter 8 summarizes the dissertation and presents 

potential improvement for future applications of estimation of CMFs.  
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CHAPTER 2 :  LITERATURE REVIEW 

2.1 Crash Modification Factors 

There have been many research papers on the calibration and validation of the crash prediction 

models used in the HSM. For instance, Sacchi et al. (2012) studied the transferability of the HSM 

crash prediction algorithms on two-lane rural roads in Italy. The authors firstly estimated a local 

baseline model as well as evaluated each CMF based on the Italian data. Homogeneous 

segmentation for the chosen study roads has been performed just to be consistent with the HSM 

algorithms. In order to quantify the transferability, a calibration factor has been evaluated to 

represent the difference between the observed number of crashes and the predicted number of 

crashes by applying HSM algorithm.  

 

With four-year crash data, the calibration factor came out to be 0.44 which indicates the HSM 

model has over-predicted the collisions. After investigating the predicted values with the observed 

values by different AADT levels, the authors concluded that the predicted ability of the HSM 

model for higher AADT is poor and a constant value of “calibration factor” is not appropriate. 

This effect was also proved from the comparison between the HSM baseline model and the local 

calculated baseline model. Furthermore, the authors evaluated CMFs for three main road features 

(Horizontal Curve, Driveway Density and Roadside Design). The calculation of CMFs has been 

grouped according to Original CMFs, and results of comparing the calculated CMFs to baseline 

CMFs indicated that the CMFs are not unsuitable for local Italian roadway characteristics since 

most of them are not consistent.  
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Finally, several well-known goodness-of-fit measures have been used to assess the recalibrated 

HSM algorithms as a whole, and the results are consistent as the results mentioned in the split 

investigation of HSM base model and CMFs. With these facts the authors concluded that the HSM 

is not suitable to transferable to Italy roads and Europe should orient towards developing local 

SPFs/CMFs.  

 

Sun et al. (2011) calibrated the SPF for rural multilane highways in the Louisiana State roadway 

system. The authors investigated how to apply the HSM network screening methods and identified 

the potential application issues. Firstly the rural multilane highways were divided into sections 

based on geometric design features and traffic volumes, all the features are distinct within each 

segment. Then by computing the calibration factor, the authors found out that the average 

calibration parameter is 0.98 for undivided and 1.25 for divided rural multilane highways. These 

results turned out that HSM has underestimated the expected crash numbers.  

 

Besides the calibration factor evaluation, the authors investigated the network screening methods 

provided by HSM. 13 methods are promoted in the HSM, each of these methods required different 

data and data availability issue is the key part of HSM network screening methods application. In 

the paper, four methods have been adopted: crash frequency, crash rates, and excess expected 

average crash frequency using SPFs (EEACF) and expected average crash frequency with EB 

Adjustment (EACF). Comparisons between these methods have been done by ranking the most 

hazardous segments and findings indicate that the easily used crash frequency method produced 

similar results to the results of the sophisticated models; however, crash rate method could not 

provide the same thing.  
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Xie et al. (2011) investigated the calibration of the HSM prediction models for Oregon State 

Highways. The authors followed the suggested procedures by HSM to calibrate the total crashes 

in Oregon. In order to calculate the HSM predictive model, the author identified the needed data 

and came up with difficulties in collecting the pedestrian volumes, the minor road AADT values 

and the under-represented crash locations. For the pedestrian volume issue, the authors assumed 

to have “medium” pedestrian when calculate the urban signalized intersections. While for the 

minor road AADT issue, the authors developed estimation models for the specific roadway types. 

Then the calibration factors have been defined for the variety types of highways and most of these 

values are below than 1. These findings indicate an overestimation for the crash numbers by the 

HSM. However, the authors attribute these results to the current Oregon crash reporting procedures 

which take a relative high threshold for the Property Damage Only (PDO) crashes. Then for the 

purpose of proving the crash reporting issue, the authors compared the HSM proportions of 

different crash severity levels and the Oregon oriented values. Furthermore, calibration factors for 

fatal and injury crashes have been proved to be higher than the total crash ones, which also 

demonstrated that Oregon crash reporting system introduce a bias towards the fatal and injury 

conditions. So the authors concluded that the usages of severity-based calibration factors are more 

suitable for the Oregon State highways.  

 

Lubliner and Schrock (2012) investigated different aspects of calibrate the predictive method for 

rural two-lane highways in Kansas State. Two data sets were collected in this study; one data set 

was used to develop the different model calibration methods and the other one was adopted for 

evaluating the models accuracy for predicting crashes.  
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At first, the authors developed the baseline HSM crash predictive models and calculated the 

Observed-Prediction (OP) ratios. Results showed a large range of OP ratios which indicate the 

baseline method is not very promising in predicting crash numbers. Later on, the author tried 

alternative ways to improve the model accuracy. Since crashes on Kansas rural highways have a 

high proportion of animal collision crashes which is nearly five times the default percentage 

presented in the HSM. The authors tried to come up with a (1) statewide calibration factor, (2) 

calibration factors by crash types, (3) calibration using animal crash frequency by county and (4) 

calibration utilizing animal crash frequency by section. The empirical Bayes (EB) method was 

introduced to see whether it would improve the accuracy and also a variety of statistical measures 

were performed to evaluate the performance. Finally, the authors concluded that the applications 

of EB method showed consistent improvements in the model prediction accuracy. Moreover, it 

was suggested that a single statewide calibration of total crashes would be useful for the aggregate 

analyses while for the project-level analysis, the calibration using animal crash frequency by 

county is very promising.  

 

Banihashemi (2011) performed a heuristic procedure to develop SPFs and CMFs for rural two-

lane highway segments of Washington State and compared the developed models to the HSM 

model. The author utilized more than 5000 miles of rural two-lane highway data in Washington 

State and crash data for 2002-2004. Firstly the author proposed an innovative way to develop SPFs 

and CMFs, incorporating the segment length and AADT. Then CMFs for lane width, shoulder 

width, curve radius and grade have been developed. After all these procedures, the author came up 

with two self-developed SPFs and then compared them with the HSM model. The comparison was 

done at three aggregation levels: (1) consider each data as single observation (no aggregation), (2) 
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segments level with a minimum 10 miles length and (3) aggregated based on geometric and traffic 

characteristics of highway segments. A variety of statistical measures were introduced to evaluate 

the performances and the author concluded that mostly the results are comparable, and there is no 

need to calibrate new models. Finally a sensitivity analysis was conducted to see the influence of 

data size issue on the calibration factor for the HSM model, and the conclusions indicated that a 

dataset with at least 150 crashes per year are most preferred for Washington State.  

 

Later on, Banihashemi (2012) conducted a sensitivity analysis for the data size issue for calculating 

the calibration factors. Mainly five types of highway segment and intersection crash prediction 

models were investigated; Rural two-lane undivided segments, rural two-lane intersections, rural 

multilane segments, rural multilane intersections and urban/suburban arterials. Specifically, eight 

highway segment types were studied. Calibration factors were calculated with different subsets 

with variety percentages of the entire dataset. Furthermore, the probability that the calibrated 

factors fall within 5% and 10% range of the ideal calibration factor values were counted. Based on 

these probabilities, recommendations for the data size issue to calibrate reliable calibration factors 

for the eight types of highways have been proposed. With the help of these recommendations, the 

HSM predictive methods can be effectively applied to the local roadway system.  

 

Brimley et al. (2012) evaluated the calibration factor for the HSM SPF for rural two-lane two-way 

roads in Utah. Firstly, the authors used the SPF model stated in the HSM and found out the 

calibration factor to be 1.16 which indicate a under estimate of crash frequency by the base model. 

Later on, under the guidance of the HSM, the authors developed jurisdiction-specific negative 

binomial models for the Utah State. More variables like driveway density, passing condition, speed 
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limit and etc. were entered into the models with the p-values threshold of 0.25. Bayesian 

information criterion (BIC) was selected to evaluate the models and the finally chosen best 

promising model show that the relationships between crashes and roadway characteristics in Utah 

may be different from those presented in the HSM.  

 

Zegeer et al. (2012) worked on the validation and application issues of the HSM to analysis of 

horizontal curves. Three different data sets were employed in this study: all segments, random 

selection segments and non-random selection segments.  Besides, based on the three data sets, 

calibration factors for curve, tangent and the composite were calculated. Results showed that the 

curve segments have a relative higher standard deviation than the tangent and composite segments. 

However, since the development of a calibration factor requires a large amount of data collecting 

work, a sensitivity analysis of each parameter’s influence for the output results for curve segments 

have been performed. HSM predicted collisions were compared as using the minimum value and 

the maximum value for each parameter. The most effective variables were AADT, curve radius 

and length of the curve. Other variables like grade, driveway density won’t affect the result much 

if the mean value were utilized when developing the models. Finally, validation of the calibration 

factor was performed with an extra data set. Results indicated that the calibrated HSM prediction 

have no statistical significant difference with the reported collisions.  

 

Elvik (2009) examined whether accident modification functions could be transferred globally 

based on the data from Canada, Denmark, and Germany etc.  Srinivasan et al. (2013) examined 

the safety effect of converting the signals to composite LED bulbs. The empirical Bayes before-

after method was used for the evaluation and CMFs were estimated for 3 and 4 leg intersections 
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for 8 different crash types. Persaud et al. (2013) evaluated SPFs of passing relief lanes using the 

empirical Bayes before-after method and cross-sectional method. Based on their results, state-

specific CMFs were established for passing lanes. Simpson and Troy (2013) tried to evaluate safety 

effectiveness of intersection conflict warning system named “Vehicle Entering When Flashing” 

(VEWF) at stop-controlled intersection. CMFs were provided for all sites of study and each 

category using the empirical Bayes before-after evaluation.  

 

Bauer and Harwood (2013) evaluated the safety effect of the combination of horizontal curvature 

and longitudinal grade on rural two-lane highways. Safety prediction models for fatal-and-injury 

and PDO crashes were evaluated, and CMFs representing safety performance relative to level 

tangents were developed from these models.  Zeng and Schrock (2013) tried to address 10 shoulder 

design types’ safety effectiveness between the winter and non-winter periods. For this, a cross-

sectional approach was applied to develop SPFs of the winter and non-winter periods.   

 

Lu et al. (2013) compared the results of two methods, the empirical Bayes (EB) approach adopted 

in the HSM and the Safety Analyst application for evaluating safety performance functions (SPFs).  

Models were estimated for both total crashes and fatal and injury (F+I) crashes, and the two models 

yielded very similar performance of crash prediction.   

 

Kim et al. (2013) developed a four-step procedure for SPFs using categorical impact and clustering 

analysis. They claimed that their procedure can easily predict crash frequency more accurately.  

Mehta and Lou (2013) evaluated the applicability of the HSM predictive methods to develop state-

specific statistical models for two facility types, two-lane two-way rural roads and four-lane 
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divided highways. Nordback et al. (2014) presented for the first time specific SPFs for bicycle in 

Colorado. The developed SPFs demonstrated that intersections with more cyclists have fewer 

collisions per cyclist, illustrating that cyclists are safer at intersections with larger number of 

cyclists. 

 

Cafiso et al. (2013) compared the effect of choosing different segmentation methods; they 

examined using short and long roadway segments to calibrate the SPF.  In addition to the segment 

selection criteria, new treatment types have also been identified beside those which included in the 

HSM. Lan and Srinivasan (2013) focused on the safety performance on discontinuing late night 

flash operation at signalized intersections. The study also compared between empirical Bayes and 

full Bayes.   

2.2 Intersection Safety Analysis 

From an operational point of view, each state in the US has its own regulation in defining 

intersection-related crashes. Intersection-related crashes are typically defined as the crashes that 

occur within the “intersection influence area”.  Wang and Abdel-Aty (2007, Wang et al. (2008) 

suggested that the intersection influence area is determined based on the intersection type and 

configuration. However, two hundred and fifty feet from the intersection point has been commonly 

designated as the boundary of the intersection-influence area (Harwood et al., 2007; Hughes et al., 

2004; Wang et al., 2008).  Researches also put attention on develop crash models accounting 

spatial and temporal effect (Quddus, 2008; Song et al., 2006; Wang and Abdel-Aty, 2006; Wang 

et al., 2006) 
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The development and use of CMFs have recently been more common with the publication of the 

HSM and National Cooperative Highway Research Program (NCHRP) Crash Experience Warrant 

for Traffic Signals (McGee et al., 2003).  Researchers have developed the best ways to collect data 

and evaluate CMFs in order to predict the potential crash reduction once treatments are 

implemented.  According to the HSM, rear-end crashes are expected to increase whereas angle 

and left-turn crashes are expected to decrease after signalization.  Angle and left-turn crashes 

usually have higher severity levels than rear-end crashes.  Therefore, examining reduction in 

KABC crashes is also crucial when estimating the safety effect of signalization.   However, some 

researchers debated that possible injury crashes (C) are not considered as injury crashes.  

Therefore, CMFs were developed for KABC and KAB crashes separately. 

HSM provides CMFs for signalization in two categories of intersections.  One is urban four legged 

intersections and the other is rural three and four legged intersections (AASHTO, 2010).  In the 

HSM, AADT was not addressed in urban areas and only one range of AADT was specified in rural 

areas.  Thus, the HSM does not clearly show the relationship between AADT and CMF.  CMFs 

for signalization in urban areas for fatal and injury crashes were addressed in the crash experience 

in signal warrant studies (McGee et al., 2003).  The CMFs in the warrant study are not significant 

for both urban three and four legged intersections.  The CMFs will be compared among the HSM, 

the warrant study, and Florida specific in this proposal in the later chapter. Aul and Davis (2006) 

applied propensity score method and using EB and FB method to estimate the safety effeteness of 

signalization. 

 

In particular, crashes at signal-controlled intersections are closely related to driver’s violation of 

traffic signals. For instance, Hill and Lindly (2002) found that the violation rate was 3.2 per 
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intersection per hour.  Retting et al. (1999) also found that an average violation rate was 3 per 

intersection per hour in Virginia. Brittany et al. (2004) found that 20 percent of the drivers failed 

to obey the traffic signal. In general, higher rates of driver violation of traffic signals will result in 

higher frequency of intersection-related crashes. For instance, 6,396 people who failed to follow 

the traffic light were involved in fatal and injury (F+I) crashes in Florida (Yan et al., 2005).  

 

Researcher dedicated in the field of red light running related crashes (Campbell et al., 2004; 

Council et al., 2005a, 2005b; Hillier et al., 1993; IIHS, 2013; McGee and Eccles, 2003; Rocchi 

and Hemsing, 1999; Shin and Washington, 2007; South et al., 1988; Washington and Shin, 2005).  

According to the HSM (AASHTO, 2010), rear-end crashes are expected to increase whereas angle 

and left-turn crashes are expected to decrease after the signalization. Persaud et al. (2005) 

evaluated the safety effect of RLCs and concluded that RLCs decreased right-angle crashes and 

increased rear-end crashes.  Erke (2009) also showed that RLC reduced angle crashes by 10 percent 

and increased rear-end crashes by 40 percent using meta-analysis.  Similarly, Abdel-Aty et al. 

(2014) found that adding RLCs increased rear-end crashes by 17% to 41% and reduced angle and 

left-turn crashes by 13% to 26%.  However, a research conducted by Florida Highway Patrol 

(FDOT) claimed that RLCs even reduced rear-end crashes based on the result provided by 73 

Florida law enforcement agencies. Approximately sixty percent of the agencies reported 

reductions in total crashes, side impact crashes and rear-end crashes. This result is not consistent 

with previous research (Abdel-Aty et al., 2014; Erke, 2009) which found an increment in rear-end 

crashes.  These opposite effects of RLCs on rear-end crashes are potentially due to a lag of driver’s 

awareness of RLCs in the short term after RLCs were installed and the variation in safety effects 

of RLCs over time which will be explained in chapter 4.  
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2.3 Before and After Studies 

Crash modification factors are known also as collision modification factors or accident 

modification factors (CMFs or AMFs), all of which have exactly the same function. Crash 

reduction factors (CRFs) function in a very similar way as they represent the expected reduction 

in number of crashes for a specific treatment. The proper calibration and validation of crash 

modification factors will provide an important tool to practitioners to adopt the most suitable cost 

effective countermeasure to reduce crashes at hazardous locations. It is expected that the 

implementation of CMFs will gain more attention after the recent release of the HSM and the 2009 

launch of the CMF Clearinghouse (FHWA, 2011).  There are different methods to estimate CMFs, 

these methods vary from a simple before and after study and before and after study with 

comparison group to a relatively more complicated methods such as empirical Bayes and full 

Bayes methods. 

 

2.3.1 The Simple (Naïve) Before-After Study 

This method compares numbers of crashes before and after the treatment is applied. The main 

assumption of this method is that the number of crashes before the treatment would be expected 

without the treatment. This method tends to overestimate the effect of the treatment because of the 

regression to the mean problem (Hauer, 1997). 

The naïve before-after approach is the simplest approach. Crash counts in the before period are 

used to predict the expected crash rate and, consequently, expected crashes had the treatment not 

been implemented. This basic naïve approach assumes that there was no change from the ‘before’ 

to the ‘after’ period that affected the safety of the entity under scrutiny; hence, this approach is 

unable to account for the passage of time and its effect on other factors such as exposure, 
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maturation, trend and regression-to-the-mean bias. Despite the many drawbacks of the basic naïve 

before-after study, it is still quite frequently used in the professional literature because; 1) it is 

considered as a natural starting point for evaluation, and 2) its easiness of collecting the required 

data, and 3) its simplicity of calculation. The basic formula for deriving the safety effect of a 

treatment based on this method is shown in Equation 2-1: 

 
b

a

N

N
CMF   (2-1) 

where Na and Nb are the number of crashes at a treated site in the after and before the treatment, 

respectively. It should be noted that with a simple calculation, the exposure can be taken into 

account in the naïve before-after study. The crash rates for both before and after the 

implementation of a project should be used to estimate the CMFs which can be calculated as: 

 
Exposure

Crashes ofNumber  Total
RateCrash                          (2-2) 

where the ‘Exposure’ is usually calculated in million vehicle miles (MVM) of travel, as indicated 

in Equation 2-3: 

1,000,000

Days 365  Years ofNumber   ADTMean   Milesin Length Section Project 
Exposure


   (2-3) 

Each crash record would typically include the corresponding average daily traffic (ADT). For each 

site, the mean ADT can be computed by Equation 2-4: 

Crashes ofNumber  Total

Crasheach   with Associated ADTs Individual ofSummation 
ADTMean   (2-4) 
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2.3.2 The Before-After Study with Comparison Group 

This method is similar to the simple before and after study, however, it uses a comparison group 

of untreated sites to compensate for the external causal factors that could affect the change in the 

number of crashes. This method also does not account for the regression to the mean as it does not 

account for the naturally expected reduction in crashes in the after period for sites with high crash 

rates. 

 

To account for the influence of a variety of external causal factors that change with time, the 

before-after with comparison group study can be adopted. A comparison group is a group of 

control sites that remained untreated and that are similar to the treated sites in trend of crash history, 

traffic, geometric, and geographic characteristics. The crash data at the comparison group are used 

to estimate the crashes that would have occurred at the treated entities in the ‘after’ period had 

treatment not been applied. This method can provide more accurate estimates of the safety effect 

than a naïve before-after study, particularly, if the similarity between treated and comparison sites 

is high. The before-after with comparison group method is based on two main assumptions (Hauer, 

1997): 

1. The factors that affect safety have changed in the same manner from the ‘before’ period to 

‘after’ period in both treatment and comparison groups, and 

2. These changes in the various factors affect the safety of treatment and comparison groups 

in the same way. 

Based on these assumptions, it can be assumed that the change in the number of crashes from the 

‘before’ period to ‘after’ period at the treated sites, in case of no countermeasures had been 
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implemented, would have been in the same proportion as that for the comparison group.  

Accordingly, the expected number of crashes for the treated sites that would have occurred in the 

‘after’ period had no improvement applied (Nexpected, T,A) follows (Hauer, 1997): 

 
BC,observed,

AC,observed,

BT,observed,AT,expected,
N

N
NN   (2-5) 

If the similarity between the comparison and the treated sites in the yearly crash trends is ideal, the 

variance of Nexpected, T,A can be estimated from Equation 2-6: 

)N/1N/1N/1(N)Var(N
AC,observed,BC,observed,BT,observed,

2

BT,expected,AT,expected,
  (2-6) 

It should be noted that a more precise estimate can be obtained in case of using non-ideal 

comparison group as explained in (Hauer, 1997), Equation 2-7: 

))Var(N/1N/1N/1(N)Var(N
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2
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The CMF and its variance can be estimated from Equations 2-11 and 2-12. 
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where, 

Nobserved,T,B= the observed number of crashes in the before period for the treatment group; 

Nobserved,T,A= the observed number of crashes in the after period for the treatment group; 

Nobserved,C,B= the observed number of crashes in the before period in the comparison group; 

Nobserved,C,A= the observed number of crashes in the after period in the comparison group; 

ω = the ratio of the expected number of crashes in the ‘before’ and ‘after’ for the treatment and the 

comparison group; 

rc = the ratio of the expected crash count for the comparison group; 

rt = the ratio of the expected crash count for the treatment group. 

 

There are two types of comparison groups with respect to the matching ratio; 1) the before-after 

study with yoked comparison which involves a one-to-one matching between a treatment site and 

a comparison site, and 2) a group of matching sites that are few times larger than treatment sites. 

The size of a comparison group in the second type should be at least five times larger than the 

treatment sites as suggested by Pendleton (1991). Selecting matching comparison group with 

similar yearly trend of crash frequencies in the ‘before’ period could be a daunting task. In this 

study a matching of at least 4:1 comparison group to treatment sites was conducted. Identical 

length of three years of the before and after periods for the treatment and the comparison group 

was selected. 
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2.3.3 The Empirical Bayes Before-After Study 

The empirical Bays (EB) method can account for the regression to the mean issue by introducing 

an estimated for the mean crash frequency of similar untreated sites using SPFs. Since the SPFs 

use AADT and sometimes other characteristics of the site, these SPFs also account for traffic 

volume changes which provides a true safety effect of the treatment (Hauer, 1997). 

 

In the before-after with empirical Bayes method, the expected crash frequencies at the treatment 

sites in the ‘after’ period had the countermeasures not been implemented is estimated more 

precisely using data from the crash history of a treated site, as well as the information of what is 

known about the safety of reference sites with similar yearly traffic trend, physical characteristics, 

and land use. The method is based on three fundamental assumptions (Hauer, 1997): 

1. The number of crashes at any site follows a Poisson distribution. 

2. The means for a population of systems can be approximated by a Gamma distribution. 

3. Changes from year to year from sundry factors are similar for all reference sites. 

Figure 2-1 illustrates the conceptual approach used in the EB method (Harwood et al., 2002). 
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Figure 2-1 Conceptual Approach of the Empirical Bayesian Method 

 (Source: Harwood et al., 2003) 

One of the main advantages of the before-after study with empirical Bayes is that it accurately 

accounts for changes in crash frequencies in the ‘before’ and in the ‘after’ periods at the treatment 

sites that may be due to regression-to-the-mean bias. It is also a better approach than the 

comparison group for accounting for influences of traffic volumes and time trends on safety. The 

estimate of the expected crashes at treatment sites is based on a weighted average of information 

from treatment and reference sites as given in (Hauer, 1997; Persaud and Lyon, 2007): 

  (2-13) 

where γi is a weight factor estimated from the over-dispersion parameter of the negative binomial 

regression relationship and the expected ‘before’ period crash frequency for the treatment site as 

shown in Equation 2-14: 

ˆ ( ) (1 )
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where, 

yi= Number of average expected crashes of given type per year estimated from the SPF (represents 

the ‘evidence’ from the reference sites). 

ηi = Observed number of crashes at the treatment site during the ‘before’ period 

n = Number of years in the before period, 

k = Over-dispersion parameter 

 

The ‘evidence’ from the reference sites is obtained as output from the SPF. SPF is a regression 

model which provides an estimate of crash occurrences on a given roadway section. Crash 

frequency on a roadway section may be estimated using negative binomial regression models 

(Abdel-Aty and Radwan, 2000; Persaud, 1990; Washington et al., 2011), and therefore it is the 

form of the SPFs for negative binomial model is used to fit the before period crash data of the 

reference sites with their geometric and traffic parameters. A typical SPF will be of the following 

form:  

 
)...( 22110 nnxxx

i ey
 

 (2-15) 
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where, 

βi’s = Regression Parameters; 

x1, x2= logarithmic values of AADT and section length, respectively; 

xi’s(i> 2) = Other traffic and geometric parameters of interest. 

 Over-dispersion parameter, denoted by k is the parameter which determines how widely 

the crash frequencies are dispersed around the mean. The standard deviation (σi) for the estimate 

in Equation 2-16 is given by: 

 iii Ê)1(ˆ  
 (2-16) 

It should be noted that the estimates obtained from Equation 2-16 are the estimates for number of 

crashes in the before period. Since, it is required to get the estimated number of crashes at the 

treatment site in the after period; the estimates obtained from Equation 2-16 are adjusted for traffic 

volume changes and different before and after periods (Hauer, 1997; Noyce et al., 2006). The 

adjustment factors are given as below: 

 
1
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where, 

ρAADT = adjustment factor for AADT; 

afterAADT
 = AADT in the after period at the treatment site; 

beforeAADT
 = AADT in the before period at the treatment site; 

α1 = regression coefficient of AADT from the SPF. 

n

m
time   (2-18) 

where,  

ρtime = Adjustment factor for different before-after periods; 

m = Number of years in the after period; 

n = Number of years in the before period. 

Final estimated number of crashes at the treatment location in the after period ( î ) after adjusting 

for traffic volume changes and different time periods is given by: 

 timeAADTii E   ˆˆ
 (2-19) 

The index of effectiveness (θi) of the treatment is given by: 
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where, 

î = Observed number of crashes at the treatment site during the after period. 

 

The percentage reduction (τi) in crashes of particular type at each site i is given by: 

 
%100)ˆ1(ˆ  ii 

 (2-21)                              

The Crash Reduction Factor or the safety effectiveness (̂ )of the treatment averaged over all sites 

would be given by (Persaud et al., 2004):  
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where, 

m = total number of treated sites; 
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)ˆvar()ˆvar(  (Hauer, 1997) (2-23) 

The standard deviation (̂ ) of the overall effectiveness can be estimated using information on the 

variance of the estimated and observed crashes, which is given by Equation 2-24. 
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where,   
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)ˆvar(       (Hauer, 1997) (2-25) 

 

Equation 2-25 is used in the analysis to estimate the expected number of crashes in the after period 

at the treatment sites, and then the values are compared with the observed number of crashes at the 

treatment sites in the after period to get the percentage reduction in number of crashes resulting 

from the treatment. 

 

Many researches dedicated estimating before and after study based on FB methods (Carriquiry and 

Pawlovich, 2004; El-Basyouny and Sayed, 2010; Persaud et al., 2010; Yanmaz-Tuzel and Ozbay, 

2010). 

2.4 Negative Binomial Models 

Crash data have a gamma-distributed mean for a population of systems, allowing the variance of 

the crash data to be more than its mean (Shen, 2007). Suppose that the count of crashes on a 

roadway section is Poisson distributed with a mean λ, which itself is a random variable and is 

gamma distributed, then the distribution of frequency of crashes in a population of roadway 

sections follows a negative binomial probability distribution (Hauer, 1997).  
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yi|λi≈ Poisson (λi)  

λ ≈ Gamma (a,b) 

 

Then,  

 P(yi) ≈ Negbin (λi, k)
 =
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Where  y = number of crashes on a roadway section per period; 

λ = expected number of crashes per period on the roadway section; 

k= over-dispersion parameter. 

The expected number of crashes on a given roadway section per period can be estimated by 

Equation 2-27.  

 )exp(   X
T  (2-27) 

where,  

β = a vector of regression of parameter estimates; 

X= a vector of explanatory variables;  

exp() = a gamma distributed error term with mean one and variance k. 

Because of the error term the variance is not equal to the mean, and is given by Equation 2-28. 

 
2)var(  ky   (2-28) 
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As k 0, the negative binomial distribution approaches Poisson distribution with mean λ. The 

parameter estimates of the binomial regression model and the dispersion parameter are estimated 

by maximizing the likelihood function given in Equation 2-29. 
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Using the above methodology negative binomial regression models were developed and were used 

to estimate the number of crashes at the treated sites. Many researchers have applied fixed effect 

negative binomial models to estimate crash count model (Lord et al., 2008) and some researcher 

applied random effect negative binomial model (Chin and Quddus, 2003).  Lord and Persaud (2000) 

develop accident prediction models using generalized estimating equations procedure to consider 

the models with and without trend. 
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2.5 Cross-Sectional Studies 

It should be noted that the CMF for certain treatments (e.g., median width) can only be estimated 

using the cross-sectional method, but not before-after method. This is because it is difficult to 

isolate the effect of the treatment from the effects of the other treatments applied at the same time 

using the before-after method (Harkey, 2008).  

 

The method is used in the following conditions (AASHTO, 2010): 1) the date of the treatment 

installation is unknown, 2) the data for the period before treatment installation are not available, 

and 3) the effects of other factors on crash frequency must be controlled for creating a crash 

modification function (CMFunction). 

 

The cross-sectional method requires the development of crash prediction models (i.e., SPFs) for 

calculation of CMFs. The models are developed using the crash data for both treated and untreated 

sites for the same time period (3-5 years). According to the HSM, 10~20 treated and 10~20 

untreated sites are recommended. However, the cross-sectional method requires much more 

samples than the before-after study, say 100~1000 sites (Carter et al., 2012). Sufficient sample 

size is particularly important when many variables are included in the SPF. This ensures large 

variations in crash frequency and variables, and helps better understand their inter-relationships. 

The treated and untreated sites must have comparable geometric characteristics and traffic volume 

(AASHTO, 2010). 

 

The research developed a generalized linear model (GLM) with a negative binomial distribution 

(NB) using these crash data as it is the most common type of function which accounts over-
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dispersion. The model describes crash frequency in a function of explanatory variables including 

geometric characteristics, AADT and length of roadway segments as follows: 

 )**ln*exp( 21 kikiii xLengthAADTF     (2-30) 

where, 

Fi = crash frequency on a road segment i; 

Lengthi= length of roadway segment i (mi); 

AADTi = average annual daily traffic on a road segment i (veh/day); 

xki = geometric characteristic k (i.e., treatment) of a road segment i (k> 2); 

 = constant; 

1, 2, … ,k = coefficient for the variable k.  

 

In the above equation, length and AADT are control variables to identify the isolated effect of the 

treatment(s) on crash frequency. Since the above model form is log-linear, the CMFs can be 

calculated as the exponent of the coefficient associated with the treatment variable as follows 

(Carter et al., 2012; Lord and Bonneson, 2007; Stamatiadis, 2009): 

 )exp())(*exp( kkbktk xxCMF    (2-31) 

where, 

xkt= geometric characteristic k of treated sites; 

xkb= geometric characteristic k of untreated sites (baseline condition). 
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The above model can be applied to prediction of total crash frequency or frequency of specific 

crash type or crash severity. The standard error (SE) of the CMF is calculated as follows (Bahar, 

2010): 

 
2

))(*exp())(*exp(
kk

SExxSExx
SE

kbktkkbktk   
  (2-32) 

where, 

SE = standard error of the CMF; 

SEk = standard error of the coefficient k. 

Instead of applying NB model, researchers tried to estimate crash counts using poisson, poisson-

gamma and zero-inflated regression models (Lord et al., 2005).  Researchers also model crash 

performance under Bayesian framework (Li et al., 2008). 

 

2.6 Crash Modification Function 

In order to estimate CMFs under different circumstances, crash modification function 

(CMFunction) is a preferred way to measure CMF variation if the sample size is sufficient.  Elvik 

(2009) developed a CMFunction to account for the variation in CMFs for both adding bypass roads 

and installing roundabouts using Power functions.  The author also applied linear, logarithmic, 

inverse, quadratic, power, and exponential models to identify the relationship between CMF and 

police speed enforcement.  Among these models, the inverse model was found to be the best model.  

The result also shows that more frequent enforcement reduced the CMF (Elvik, 2011).  Sacchi et 

al. (2014) found that CMFs for updating signal arms varied over time using log-linear and log-

non-linear models. Therefore, it is important to understand how CMFs vary over time to consider 

lag effects of the treatment. 
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2.7 Time Series Modeling 

The ARMA (AutoRegressive Moving Average) model consists of the autoregressive (AR) and 

moving average (MA) models.  The model is usually referred to as ARMA (p,q) where p and q 

represent the possible lags that affect the ARMA model.  For instance, the AR (2) model represents 

that the first and second lags are used to predict the autoregressive relationship for the target time 

period.  The MA (3) model represents the first, second and third lags are used to predict the moving 

average for the target time period.  When these two AR (2) and MA (3) models are combined, the 

model is referred to as ARMA (2,3).  According to the previous studies (Box et al., 2013; 

Woodward et al., 2011), the ARMA model can be specified as follows: 

 

 

           1 1
ˆ   1        1      

p q
X t X t X t p Z t Z t Z t q              (2-33) 

 

 where  X= General Time Series  

 X̂ t = Forecast of the time series Y for time t  

 X(t-1)~X(t-p)= Previous P values of time Series X  

 ϕi, …, ϕp = Coefficient estimated for autoregressive model 

 i, …, q = Coefficient estimated for moving average model 

 

Models are selected on the basis of the Akaike Information Criterion (AIC) and Schwarz's 

Bayesian Criterion (SBC).  Once ideal time series models are identified, we apply the models to 

predict  �̂� (t) for future time periods.  Statistics Analysis Software, SAS is used to develop the 

ARMA model.  
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Holder and Wagenaar (1994) conducted research using time series model related to DUI crash in 

Oregon.  Hu et al., (2013) estimating safety performance related to time effect using temporal 

modeling of highway crash counts for senior and non-senior drivers.  Liu and Chen (2004); 

Wagenaar, 1982To account for the temporal variation in safety performance, time series models 

such as the ARMA model (Box et al., 2013; Noland and Quddus, 2004) have been applied by 

traffic safety researchers. (Liu and Chen, 2004) applied the ARMA model and the Holt-Winter 

exponential smoothing (Winters, 1960) to forecast traffic fatalities in the United States.  Time 

series intervention study was also applied to account countermeasure other than before and after 

study (Box and Tiao, 1975; El-Basyouny and Sayed, 2012; Noland et al., 2008; Sharma and Khare, 

1999) 

 

Quddus, (2008) applied the integer-valued autoregressive (INAR) to forecast crashes in the UK 

and compared the model with the ARMA model.  The time series model under poisson distribution 

is discussed by (McKenzie, 1988; Zeger and Qaqish, 1988; Zeger, 1988). INAR and INMA 

process are discussed by statisticians (Al-Osh and Alzaid, 1988; Al‐Osh and Alzaid, 1987).  Brijs 

et al. (2008) also applied the INAR model along with weather information including temperature, 

sunshine hours, precipitation, air pressure and visibility.  However, these studies focused on 

modeling crash counts but not estimating the CMF using the ARMA model.   

 

2.8 Bootstrap Resampling Method 

Bootstrap resampling is based on the idea that samples are independent and identically distributed 

(i.i.d.) random variables. The method involves drawing samples from samples, with replacement,  

to build a new subsample as shown in Figure 2-2 (James et al., 2013). This figure explains that the 

resamples 𝑍∗1, 𝑍∗2, …   𝑡𝑜 𝑍∗𝐵are generated from the original sample 𝑍 (left side of the figure).  
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Assuming the original sample has 3 observations with ID (shown as Obs in the column name) 1,2, 

and 3. The first resample 𝑍∗1 draws “Obs=1” one time, and “Obs=3” two times and constructs a 

new resampled dataset. Similarly, the second resample 𝑍∗2 draws “Obs=1” one time, “Obs=2”, 

one time, and “Obs=3”, 1 time and constructs an identical dataset as the original sample. To further 

explain, bootstrapping is a non-parametric method as it requires no distributional assumptions 

about the original dataset. Bootstrap is a common technique used in the field of statistics, with 

applications such as improving the selection of model parameters. In the transportation safety field, 

Ogilvie (2014) used bootstrap to verify the stability of standardized direct effect. Voigt et al. (2008) 

used bootstrap method to examine the effect consistency at different time periods. Abay (2015) 

and Li et al. (2014) developed the distribution of the estimated parameter in the safety performance 

functions (SPFs) using the bootstrap method. Jun et al. (2014) compared the difference between a 

crash-involved and a crash-not-involved driver using logistic regression with bootstrap. Although 

bootstrap is widely used in the transportation field, there is limited precedence of its application in 

estimating the CMF. Ye and Lord (2009) used bootstrap in a simulation test to estimate the 

variance in a before-after study using the naïve method, and compare the bootstrapped result with 

the naïve method and empirical Bayes method, respectively, and found the crash count is not 

Poisson distributed.  
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In practice, the bootstrap technique can be implemented using most statistical software. In this 

dissertation, R (R Core Team, 2013) is used for the bootstrap resampling. To extract a resample, 

using the sample() function in R base package (R, 2013): 

sample(data, replace=T) 

where  data: original dataset 

 replace=T: resampling based on the original dataset with replacement 

 

The resamples generator is developed based on this function to create the resamples for treated 

data and reference data. This procedure is further explained in the methodology section, below. 

 

Figure 2-2 The bootstrap approach based on James et al. (2013) 
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CHAPTER 3 : SAFETY EVALUATION OF SIGNALIZATION FOR 

DIFFERENT LEVELS OF TRAFIC VOLUME 

3.1 Introduction 

Highway Safety Manual part D (AASHTO, 2010) provides CMFs which can be used to determine 

the expected number of crash reduction or increase after converting stop-controlled to signal-

controlled intersections.  These CMFs in HSM help engineers easily measure the safety and cost 

effectiveness of signalizing intersections. However, due to the differences in area type, road 

geometry, and traffic volume, CMFs could vary among different intersections.  For instance, the 

HSM suggests that the CMF for all crash types after signalization is significant below 1 (0.56) in 

rural areas but it is not statistically different from 1 (0.95) in urban areas.  Therefore, it is important 

to understand how CMFs vary with different roadway characteristics and ensure that signalization 

would have a positive effect on crash reduction for more specific conditions of an intersection, for 

example the traffic volume level. 

 

This chapter evaluates the safety effects of converting urban four-legged stop-controlled 

intersections to urban four-legged signal-controlled intersections using crash records and roadway 

inventory data in Florida. CMFs are calculated using observational before-and-after study with the 

EB method. For the prediction of expected crash frequency, SPFs are developed for three severity 

categories (KABCO, KABC, and KAB) and two crash types (rear-end, angle+left-turn), separately.  

The models are developed using the NB model formulation.   

This study particularly focuses on the relationship between CMFs and AADT for different crash 

severities and crash types. To fulfill this objective, CMFs were calculated for five different ranges 



39 
 

of AADTs.  CMFs for these five AADT ranges are calculated and compared to understand the 

influence of AADT on CMFs for more accurate estimation of CMFs. 

 

3.2 Data Preparation 

Data were collected and combined from the following five database sources: Roadway 

Characteristic Inventory (RCI) in Florida, Crash Analysis Report (CAR), Florida Financial 

Management Search System, Transtat I-View, and Google Earth.  The Financial Management 

Search System provides the information on projects constructed for FDOT.  The CAR system 

provides information on all the reported crashes in Florida including severity, crash type, and other 

crash-related characteristics.  This system allows us to locate crashes from 2003 to current.  

Crashes are divided into 30 different crash types including angle, rear-end, head-on and sideswipe, 

etc.  However, left-turn crashes were sometimes misclassified as angle crashes and vice versa.  

Therefore, in order to compensate for this misclassification, the CMFs were developed for the 

combined angle+left-turn crashes.   

 

Target intersections have been chosen from the Financial Project Search System from FDOT.  

Signalization of stop-controlled intersections was identified as the major treatment.  In the 

Financial Project Search System, one district was chosen at a time with status “Construction 

Complete”.  For the phasing selection, “Construction Contract” was selected for the years between 

2005 and 2010 because the RCI data are only available from 2004 to current.  Therefore, in order 

to obtain a reliable sample size, projects which were completed in the years 2005-2010 are 

preferred. 
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However, Financial Search System does not provide some essential variables such as AADT.  Thus, 

other sources such as Google Earth and the RCI needed to be used to acquire the micro-level 

properties of the chosen sites.  Also, through the TranStat I-View (a Geographical Database 

System provided by FDOT TranStat Department), we could precisely match the milepost of the 

constructed intersections; however, TranStat I-View does not provide historical satellite maps.  

Thus, the precise location was matched from TranStat I-View to historical satellite maps from 

Google Earth, RCI Database, and FDOT Video Log. 

 

A total of 142 intersections (treated sites) which were converted from an urban four-legged stop 

control to an urban four-legged signal control intersection were identified from the Financial 

Project Search System.  The CMFs were estimated based on these signalized intersections.  Urban 

three-legged intersections were not considered in this study due to a lack of samples.  Due to the 

limitation of Florida Roadway Characteristic data, the minor road ID could not be identified for 

some of the intersections.  Also, 79.6% of the minor road AADTs were missing among the treated 

intersections used in this study.  Thus, SPFs were developed only for the intersections with known 

major and minor AADTs but the minor AADT was not significant in the SPFs.  Although it is 

suggested by HSM to include the minor road AADT in the SPFs even if it is not significant, the 

number of observations for developing the SPFs will be reduced by 79.6%.  To develop more 

robust SPFs with more samples, only the major road AADTs was used in SPFs.  Previous research 

(Wang et al., 2015b) found inconsistency of CMFs between the first year and the years after 

intersections were signalized, the data within one year was removed after the treatment had been 

implemented. Crash data were collected for the two-year before period from 2003 to 2004 and the 

two-year after period from 2011 to 2012. 
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 Reference sites were also collected to address regression-to-the-mean (RTM) bias.  A total of 126 

urban four-legged stop controlled intersections (reference sites) were identified to develop SPFs 

using Florida Roadway Characteristic Inventory along with GIS database Transtat I-View.  A total 

of 1,512 crashes occurred at these intersections over 10 years from 2003 to 2012.  The AADT of 

the major road were included in SPFs. 

 

Table 3-1 shows mean, standard deviation and range of crash frequencies for the reference sites 

by severity and crash type.  In terms of severity, angle and left-turn crashes usually have higher 

severity levels than rear-end crashes.  Therefore, examining the reduction in KABC crashes is also 

crucial when estimating the safety effect of signalization.  However, some researchers debated that 

possible injury crashes (C) are not considered as injury crashes.  Due to this uncertainty, CMFs 

were developed for KABC and KAB crashes separately.  In the table, “KABCO Crashes”, “KABC 

Crashes”, and “KAB Crashes” represent total crashes, fatal and injury crashes including possible 

injury, and fatal and injury crash excluding possible injury, respectively.   Two categories of crash 

types are rear-end and angle + left-turn crashes.   Table 3-1 also shows the range of the AADT on 

the major road with variable name “Major AADT”. 
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Table 3-1 Data Used to Develop the Safety Performance Function 

  

No. of 

Observation Mean Standard Deviation Minimum Maximum 

KABCO Crashes 126 12 21.9 0 134 

KABC Crashes 126 6.13 11.3 0 52 

KAB Crashes 126 3.45 6.63 0 38 

Rear-End Crashes 126 2.91 7.37 0 50 

Angle+Left Crashes 126 5.02 10.6 0 57 

Major AADT 126 9791 8590 850 42500 

 

3.3 Methodology 

3.3.1 Negative Binomial Model 

To evaluate the relationship between CMFs and AADT, SPFs were developed for KABCO, KABC, 

KAB, rear-ends, angle, left-turn and angle + left-turn crashes.  The SPF is a negative binomial 

model for crash counts (Washington et al., 2011).  In the model, the crash count is a target variable 

while AADT, the number of through lanes on the major road, number of legs, operation class (rural 

or urban), etc. are covariates.  The advantage of using negative binomial (NB) distribution to model 

the distribution of crash frequencies is that the Poisson distribution requires that the mean and 

variance be equal (E[yi] = VAR[yi]) (Washington et al., 2011) where yi = predicted crash frequency.  

When this equality does not hold (statistically), the data are said to be underdispersed (E[yi] > 

VAR[yi]) or overdispersed (E[yi] < VAR[yi]).  The negative binomial model allows for 
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overdispersion in that the mean of Poisson counts over sites i is itself gamma distributed and is 

described by the following equation: 

  (3-1) 

where x is the covariate, β is the associated coefficient, λ is the expected crash count, and EXP(i) 

is a gamma-distributed error term with mean = 1 and variance 2. The addition of this term allows 

the variance to differ from the mean as below: 

  (3-2) 

For detail, please refer chapter 2.4. 

 

3.3.2 Empirical Bayes Method 

The EB method combines the strengths of a before-and-after study that uses specific case-control 

techniques with regression methods for estimating safety.  Unlike other methods, it increases the 

precision of estimation and it also corrects for the regression-to-mean bias.  According to (Hauer, 

1997), the safety performance can be estimated through the following steps: 

 �̂� = γ * E{k} + (1- γ) K (3-3) 

 where  �̂� =Expected crash count if there had been no treatment 

E{k}=predicted crash counts based on Safety Performance Function 

 K= observed crash counts before treatment 

            γ, (1- γ) =Weight for predicted crash counts and observed crash counts, respectively. 

  

   ( )i i i i iEXP x EXP x EXP      

2[ ] [ ][1 [ ]] [ ] [ ]
i i i i i

VAR y E y E y E y E y      
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The method of calculating the assigned weight is shown below as suggested by Hauer (1997): 

 γ = 11+𝜇∗𝑌𝜑  (3-4) 

where   𝜇 = predicted crashes before treatment (per year) 

 Y = number of year(s) 

 𝜑 =overdispersion parameter 

        

After �̂� is calculated, Gross et al. (2010) adjusted the value of �̂� as follows: 

 �̂�*=�̂� ∗ (𝐸{𝑙}/𝐸{𝑘}) (3-5) 

where   �̂�*= Expected crash counts if there had been no treatment after adjustment 

 �̂� = Expected crash counts if there had been no treatment before adjustment  

 𝐸{𝑙}= predicted crash counts after treatment 

 𝐸{𝑘}= predicted crash counts before treatment. 

 

The CMF can be written in the form as follow:  

 𝜃 = 
[ λ̂/ �̂�∗][1+Var{𝜋∗̂}/�̂�∗2] (3-6) 

 

where  𝜃  = crash modification factor 

 λ = Observed crash counts after treatment. 
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If 𝜃 < 1, the treatment has a positive effect. If 𝜃 > 1, it is expected to have a negative effect on 

safety performance. Variance of the CMF is shown in the following equation: 

  𝑉𝑎𝑟(𝜃)̂ = 𝜃2̂[𝑣𝑎𝑟(λ̂)λ̂̂2 +𝑣𝑎𝑟(π̂)�̂�∗2 ][1+𝑣𝑎𝑟(π̂)�̂�∗2 ]2   (3-7) 

 

3.4 Results 

Five SPFs were developed for KABCO, KABC, KAB, rear-end, and angle+left-turn crashes at 

urban four-legged intersections using the NB model.  To accurately identify the relationships 

between crashes and variables, we eliminated the insignificant variables.  After SPFs were 

specified, CMFs were estimated for different AADT ranges using its respective SPF.    

 

3.4.1 Safety Performance Functions 

In the final models “ln(Major.AADT)” are significant at a 95% as shown in Table 3-2. The SPF is 

described in the following equation: 

 N = exp[ 𝛽0 + 𝛽1 ∗ ln(Major. AADT)]  (3-8) 

where   

N = Predicted crash Frequency, Major. AADT = AADT on major road,  

β0 = Intercept,  β1 = Coefficient for ln(Major. AADT), 
 

Since the crash data was collected from 2003 to 2012, we assumed that the AADT in the median 

year, i.e. 2007, represents AADT in the 10-years period.  SPFs were developed for different 
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severity levels including KABCO, KABC, and KAB crashes as shown in Table 3-2.  The log of 

AADT on the major road [ln(Major.AADT)] is significant at a 99% confidence level with all 

coefficient to be positive.  SPFs were also developed for the 5 crash settings as shown in Table 

3-2.  Each SPFs predict annual crash count using numbers of year as offset in the NB models.  In 

this table, the Theta value is the over-dispersion parameter as shown in equation 4. Besides, AIC 

represents the Akaike Information Criterion which is a robust measure of model fitness. 
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Table 3-2 SPF for different crash severity levels (urban four-legged intersections) 

 

 Severity level or crash type 

  

 KABCO KABC KAB Rear-End Angle+Left-Turn 

 (1) (2) (3) (4) (5) 

 

ln(Major.AADT) 1.826*** 2.113*** 1.976*** 2.035*** 1.940*** 

(Standard Error) (0.252) (0.248) (0.247) (0.265) (0.263) 

      

Constant -16.764*** -20.042*** -19.334*** -20.330*** -18.570*** 

(Standard Error) (2.254) (2.247) (2.255) (2.445) (2.381) 

      

 

Observations 126 126 126 126 126 

Log Likelihood -312.211 -263.994 -223.334 -190.906 -244.687 

Theta 0.201 0.266 0.305 0.316 0.218 

AIC 628.422 531.987 450.667 385.812 493.374 

 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

 

3.4.2 Observational Before-and-After Study 

The CMFs were calculated using an observational before-and-after study with the EB method.  

The results of the EB method shown in Table 3-3 illustrate that signalization increased the number 

of KABCO crashes by 14% and this increase is statistically significant at a 95% confidence level. 

On the other hand, signalization reduced KABC and KAB crashes by 8% and 24%, respectively.  

Table 3-3 shows that the standard errors were lower for the Florida-based CMFs than the CMFs 
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provided in the HSM and the NCHRP Report 491 except for rural intersections in the HSM.  In 

addition, based on the standard errors shown in Table 3-3, the Florida-based CMF for KABC 

crashes is not statistically significant at a 90% confidence level, but the CMF for KAB crashes is 

statistically significant at a 95% confidence level.   Comparing the Florida-based CMFs with the 

CMFs from the HSM and the NCHRP Report 491, the results from these two references show 

higher standard error for KABCO and KABC crashes, respectively.  For KABCO crashes, the 

Florida-based CMF is not significantly different from the CMF from the HSM.  For KABC 

crashes, both Florida-based CMF and the CMF from the NCHRP Report 491 are not statistically 

significant.  However, the Florida-based results point out that signalization is more effective in 

reducing injury crashes (KABC and KAB crashes) compared to KABCO crashes. In addition, the 

Florida-based result for KABC crashes has lower standard comparing to the NCHRP Report 491.  

For rear-end crashes, the Florida-based result shows similar result comparing to the HSM but with 

lower standard error. On the other hand, the Florida-based crash data has problem with mixing 

right-angle and left-turn crashes.  Therefore, it is not possible to estimate the impact of right-angle 

and left-turn crashes separately to be compared with the CMF of the angle crashes in the HSM. 

Based on the available information, it can be concluded that both the Florida-based CMF of 

angle+left-turn crashes and the CMF of angle crashes in the HSM are significantly lower than one. 
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Table 3-3 Comparison of Crash Modification Factors for Signalization 

Area Type 
Number 

of Legs 

Crash 

Severity 
CMF 

Standard 

Error 
Reference 

Urban 4 KABCO 0.95 0.09 AASHTO (2010) 

Urban 4 Rear-End 2.43 0.4 AASHTO (2010) 

Urban 4 Angle 0.33 0.06 AASHTO (2010) 

Urban 4 KABC 0.77 0.27 McGee et al. (2003) 

Urban 4 KABCO 1.14 0.05 
This Florida-based 

research 

Urban 4 KABC 0.92 0.05 
This Florida-based 

research 

Urban 4 KAB 0.76 0.05 
This Florida-based 

research 

Urban 4 Rear-End 2.19 0.19 
This Florida-based 

research 

Urban 4 
Angle+ 

Left-Turn 
0.57 0.04 

This Florida-based 

research 

The values in bold are statistically significant at a 95 % confidence level. 

 

3.4.3 Variability of Crash Modification Factors 

In order to investigate the relationship between CMFs and AADT, the sites were classified into 

five groups based on AADT. These five AADT groups are 1)  10,000 vpd, 2) 10,001-20,000 vpd, 

3) 20,001-25,000 vpd, 4) 25,001-35,000 vpd, and 5) > 35,000 vpd.  The numbers of sites and 10-

year crashes for each AADT group are shown in Table 3-4.   

 

 

 



50 
 

Table 3-4 Numbers of Sites and 10-year Crashes in Each AADT Group 

 AADT Group (vpd) 

 

Less than 

10,000 

10,001-

20,000 

20,001-

25,000 

25,001-

35,000 

Greater than 

35,000 

# of Sites 11 36 17 33 45 

KABCO_Before 29 172 105 282 475 

KABCO_After 46 215 116 278 581 

KABC_Before 17 105 70 157 293 

KABC_After 16 106 66 135 280 

KAB_Before 12 61 45 84 158 

KAB_After 4 47 42 78 114 

Rear_End_Before 5 44 21 57 134 

Rear_End_After 16 100 46 116 322 

Angle_Left_Before 16 75 47 129 182 

Angle_Left_After 17 56 33 63 94 

 

The CMFs for each severity level are shown in Table 3-5 and Figure 3-1 Comparison of CMFs for 

different AADT ranges by crash severity.  The 90% confidence interval for each AADT group is 

plotted in Figure 3-1 Comparison of CMFs for different AADT ranges by crash severity.  The 

center of each vertical line is the expected value of CMF.  The top and bottom ends of the vertical 

lines represent the upper and lower bounds of a 90% confidence interval, respectively.   
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Table 3-5 Crash Modification Factors for Signalization by Crash Severity and AADT range 

 
CMF CMF CMF 

(Standard Error) (Standard Error) (Standard Error) 

AADT KAB Crashes KABC Crashes KABCO Crashes 

 10,000 

(Group1) 

0.146** 0.376** 0.735** 

0.047 0.102 0.159 

10,001 – 20000 

(Group2) 

0.500** 0.630** 0.851 

0.081 0.078 0.084 

20,001-25,000 

(Group3) 

0.947 0.964 1.139* 

0.197 0.162 0.157 

25,001-35,000 

(Group4) 

0.909 0.844 0.978 

0.138 0.094 0.082 

>35000 

(Group5) 

0.683** 0.887 1.188** 

0.075 0.072 0.076 

* significant at a 90% confidence level. 

** significant at a 95% confidence level 
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Figure 3-1 Comparison of CMFs for different AADT ranges by crash severity 

 

Figure 3-1 shows that the values of CMFs for signalization have an upward trend for different 

AADT ranges in general. Figure 3-1 also shows that signalization can significantly reduce KABC 

and KAB crashes at lower AADT ranges ( 20,000 vpd) and KAB crashes at AADT greater than 

35,000 vpd. CMFs among three severity categories (KABCO, KABC, and KAB) were also 

compared.  In AADT group 5 (> 35,000 vpd), the expected CMFs for KABC and KAB crashes 

are significantly lower than the CMF for KABCO crashes.  Another important finding is that in 

AADT group 5, the CMF for KAB crashes is significantly lower than 1 unlike the CMFs for 

KABCO and KABC crashes. 
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Overall signalization has positive safety effect for all severity levels for lower AADT (Groups 1 

and 2) at a 95% confidence level except KABCO crashes which is only significant at an 80% 

confidence level. However, signalization does not have significant safety effects on reduction in 

KABCO, KABC and KAB crashes for the two AADT groups 3 and 4.  It can be noticed that 

signalization may increase the number of crashes for these two AADT groups although its safety 

effects are not statistically significant (i.e. CMFs are not statistically different from 1).  This 

indicates that signalization is more effective in reducing fatal and injury crashes at the intersections 

with lower traffic volume than the intersections with higher traffic volume. 

Another finding is that CMFs for KAB and KABC crashes were consistently lower than CMFs for 

KABCO crashes for all AADT groups.  Furthermore, CMFs for KAB crashes are also lower than 

CMFs for KABC crashes except AADT group 4. This result indicates that signalization is more 

effective in reducing fatal and injury crashes than property damage only crashes.  It is worth 

mentioning that signalization is more effective in reducing all severities of crashes at the 

intersections with AADT lower than 20,000 vpd than the intersections with AADT higher than 

20,000 vpd.  This result is consistent with the HSM which has lower CMF at 0.56 at rural area for 

KABCO crashes which have lower AADT than the urban area. In addition, the expected CMFs 

for KAB crashes are lower than CMFs for KABC crashes within the same AADT group except 

25,001-35,000 vpd.  Therefore, based on the dotted red trend line shown in Figure 3-1, the 

observed order of CMFs is expressed as follows: 

 

Expected CMF value:  KABCO > KABC > KAB 
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CMFs were also calculated for 2 major crash types (rear-end and angle+left-turn).  As shown in 

Table 3-6 and Figure 3-2, CMFs for rear-end crashes were significantly higher than one at a 90% 

confidence interval for all AADT groups except for AADT group 1.  For angle+left-turn crashes, 

CMFs are significantly lower than one at a 90% confidence interval for all AADT groups.   

 

Table 3-6 Crash Modification Factors for Signalization by Crash Type 

 
CMF CMF 

(Standard Error) (Standard Error) 

AADT Angle+Left-Turn  Rear End Crashes 

 10,000 

(Group1) 

**0.466 1.336 

0.131 0.590 

10,001 – 20000 

(Group2) 

**0.490 *1.447 

0.072 0.273 

20,001-25,000 

(Group3) 

*0.713 **2.153 

0.145 0.638 

25,001-35,000 

(Group4) 

**0.481 **1.975 

0.059 0.362 

>35000 

(Group5) 

**0.492 **2.25 

0.051 0.269 

* significant at a 90% confidence level. 

** significant at a 95% confidence level 
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Figure 3-2 Comparison of CMFs for Different AADT Ranges by Crash Type 

 

The trend of CMFs for rear-end crashes in Figure 3-2 has an increasing trend. For the AADT group 

1, the large standard error in rear-end crashes is due to the low crash count for intersections with 

low AADT. On the other hand, the expected CMFs increased with AADT and reached its peaks at 

AADT groups 3 and 5.  It is worth noting that the confidence interval for group 3 is large. 

Therefore, it lacks evidence to conclude that group 3 and 5 are the worst cases.  However, one 

would infer from Figure 3-2 that the aggregated CMF for AADT groups 3, 4 and 5 is 2.17, which 

is higher than the aggregated CMF for AADT groups 1 and 2 which has the value of 1.45.  This 
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indicates that signalization could increase the number of rear-end crashes at the intersections with 

higher AADT. 

 

For angle+left-turn crashes, the CMFs were lower than the CMFs for rear-end crashes at all AADT 

ranges as shown in Figure 3-2. The figure also shows that all CMFs for angle+left-turn crashes are 

consistently lower than 1 with less fluctuation across different AADT groups unlike CMFs for 

rear-end crashes.  Based on the variance of CMFs as shown in Table 6, signalization reduces 

angle+left-turn crashes by 28-53%.  This range of variation is relatively smaller compared to the 

ranges of variation for rear-end, KABCO, KABC, and KAB crashes.  Therefore, it can be 

concluded that signalization can significantly reduce angle+left-turn crashes regardless of AADT. 

 

Figure 3-2 visually compares CMFs between rear-end and angle+left-turn crashes.  The red dotted 

lines represent the simple linear trends of CMFs for angle+left-turn and rear-end crashes.  The 

trends show that the CMFs for angle+left-turn crashes are generally similar among different AADT 

groups whereas the CMFs for rear-end crashes increase with AADT. 

 

3.5 Conclusion 

In this chapter, safety effects of converting urban four-legged stop-controlled intersections to urban 

four-legged signal-controlled intersections were evaluated based on crash modification factors 

(CMFs).  Since traffic volumes at intersections are likely to affect the safety of signalization, this 

study investigates the variations in CMFs for signalization at five ranges of Average Annual Daily 

Traffic volumes (AADT).  
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CMFs were calculated using the observational before-after study with the EB method.  CMFs for 

signalization were separately determined for three crash severity categories (KABCO, KABC, and 

KAB) and two crash types (rear-end and angle + left-turn).  Five safety performance functions 

(SPFs) were developed using the negative binomial (NB) model formulation to predict crash 

frequency.  The variable in the SPFs is the log of the AADT on the major road.  Based on the 

results of the NB models, an intersection with higher AADT has a higher crash frequency for all 

severities and crash types. 

 

Based on the comparison of CMFs by crash severity, it was found that signalization reduced fatal 

and injury crashes (KABC and KAB) more than total crashes (KABCO). In particular, 

signalization is more likely to reduce fatal and injury crashes when AADT is lower at intersections.  

Also, CMFs for KAB crashes were consistently lower than CMFs for KABCO crashes at all 

AADT ranges.  It is also identified that the general relationship between CMF and AADT.  When 

comparing CMFs among the five AADT ranges, installing traffic signals at the stop-controlled 

intersections with AADT greater than 35,000 vpd significantly increases the number of total 

crashes as indicated by CMFs greater than one.  In addition, safety effect of signalization is not 

significant for KABC and KAB crashes at the intersections with AADT of 20,001– 35,000 vpd.  

Based on this finding, the target intersections at this AADT range must be carefully considered to 

ensure safety effectiveness of signalization before implementation of signalization.   

 

From the result of CMFs for rear-end crashes, it was found that the signalization significantly 

increased rear-end crashes for AADT greater than 20,000 vpd at a 90% confidence level.  In 

particular, the increase in rear-end crashes was generally higher at the intersections with higher 
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AADT.  This is potentially because as AADT increases, the number of conflicts among vehicles 

entering the intersection also increases.  Thus, signalization generally has a negative effect on the 

reduction of rear-end crashes.   

 

In contrast, the signalization significantly reduced angle+left-turn crashes for all AADT groups at 

a 90% confidence level.  However, the reduction in angle+left-turn crashes was similar for 

different AADT groups.  This is potentially because signals can better control the movements of 

left-turn vehicles than stop signs and reduce their conflicts with vehicles in other approaches at 

intersections.  Therefore, it can be concluded that the signalization can consistently reduce 

angle+left-turn crashes regardless of AADT, but it rather increases rear-end crashes, particularly 

at the intersections with higher AADT.  Thus, it is recommended to assess the trade-off between 

reductions in angle+left-turn crashes and increase in rear-end crashes for different levels of traffic 

volume.   

 

The results of this study can be improved if more detailed geometric and traffic signal phase 

features of intersections are available.  With this additional information, it is possible to develop 

CMFs for more specific types of intersections such as CMFs for intersections with exclusive 

turning lanes and protected left-turn phases.  More samples of intersections would help observe 

more general relationship between the CMF and AADT since CMFs can be calculated for smaller 

ranges of AADT.  For example, intersections could be spitted in the range of 25,001-35,000 vpd 

into two ranges of 25,001-30,000 vpd and 30,001-35,000 vpd, and measure the respective CMFs 

for smaller intervals of AADT.  It’s also possible to develop a crash modification function to 

account for the effects of difference in AADT and other roadway characteristics.  If the CMF is 
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significantly higher than one for a target AADT range, it is suggested to use more specific 

modification or improvement of the signalization warrant for that particular AADT range.   
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CHAPTER 4 : ESTIMATING SAFETY PERFORMANCE TRENDS OVER 

TIME FOR TREATMENTS AT INTERSECTIONS IN FLORIDA 

4.1 Introduction 

Traffic researchers and engineers have developed a quantitative measure for safety effectiveness 

of signalization in the form of the Crash Modification Factor (CMF).  Based on CMFs from 

multiple studies, the Highway Safety Manual (HSM) Part D (AASHTO, 2010) provides CMFs 

which can be used to predict the expected number of crash reduction or increase after converting 

stop-controlled to signal-controlled intersections (defined as “the signalization”) and installing 

RLCs.   

 

There is potential lag of drivers’ awareness of roadway treatments suggested by Sacchi et al. (2014).  

Thus, the objectives of this study are to analyze the variations in the CMFs for the signalization 

and adding RLCs over time and to predict the CMFs for the treatments using a time series model.  

This information would be helpful for traffic engineers to understand trends of safety performance 

of the treatments in the long term.  This chapter evaluates the effectiveness of the signalization in 

reducing rear-end and angle + left-turn crashes and the effectiveness of adding RLCs in reducing 

total and fatal+injury crashes.   

 

To better reflect the short term variations in CMFs, CMFs are calculated using the observational 

before-after study with the comparison group method in each month and 90-day moving windows. 

Then ARMA time series model was applied to predict trends of CMFs over time for each treatment.   
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4.2 Data Preparation 

The data for the signalization were collected and combined from the following six database sources: 

Roadway Characteristic Inventory (RCI) in Florida, Crash Analysis Report (CAR), Florida 

Financial Management Search System, Transtat I-View, Orange County Traffic Engineering 

Department and Google Earth.  The Financial Management Search System provides the 

information on projects constructed for the Florida Department of Transportation (FDOT).  For 

the crash report, the CAR system provided the information on all the reported crashes in Florida 

including severity, crash type, and other crash-related characteristics.  This system allowed us to 

locate crashes from 2003 to 2013.  Crashes were divided into 30 different crash types including 

angle, rear-end, head-on and sideswipe, etc.  However, it was verified that left-turn crashes were 

sometimes misclassified as angle crashes and vice versa.  Therefore, angle crashes and left-turn 

crashes were combined into angle + left-turn crashes.   

 

Target intersections for signalization have been chosen from the Financial Project Search System 

from the FDOT.  Signalization of stop-controlled intersections was identified as a major treatment.  

Through the TranStat iView, it is possible to precisely match the mile post of the constructed 

intersections. However, the TranStat iView did not provide historical satellite maps.  Thus, the 

precise location was matched from TranStat iView to historical satellite maps from Google Earth, 

RCI Database, and FDOT Video Log.  A total of 32 intersections (treated sites) which were 

converted from a stop-controlled to a signal-controlled intersection were identified from the 

Financial Project Search System.  The CMFs were estimated based on these 32 signalized 

intersections.  A total of 190 stop-controlled intersections without the signalization treatment were 

identified as the comparison sites. 
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The locations of RLCs and their construction dates were retrieved from the Orange County 

Engineering Department in the City of Orlando.  A total of 19 intersections were identified as the 

sites with RLCs in Orange County.  To examine the effects of each treated site, 185 untreated 

intersections were located in southwest Florida where no RLC were installed over the study period. 

However, due to a lack of samples for each crash type, this study focused on crash severity instead 

of crash type.   

 

Table 4-1 and Table 4-2 show the numbers of sites and observed 30-day study periods, average 

crash frequencies per 30 days and their standard deviation, and the range of crash frequencies 

among the treated sites.  In Table 4-1, “Angle + Left-turn Crashes” indicates the crash count for 

angle crashes plus left turn crashes, “KABCO Crashes” and “KABC Crashes” represent total 

crashes and fatal and injury crashes including possible injury, respectively. 
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Table 4-1 Descriptive Statistics for Treated Sites 

Variable 
Numbers of 

Treated Sites 

 Numbers of 

30-day 

Intervals * 

Average 

Crashes per 30 

Days 

Standard 

Deviation 

Minimum 

# of 

Crashes 

Maximum 

# of 

Crashes 

Signalization 

Rear-end Crash 32 28 6.4138 2.1132 2 10 

Angle + Left-

Turn Crash 
32 28 3.1034 1.3976 1 6 

Adding RLCs 

KABCO Crash 19 36 8.1667 4.0249 2 21 

KABC Crash 19 36 4.3889 2.7597 1 13 

*Time length after treatment was implemented in 30 days unit. 

 

Table 4-2 Descriptive Statistics for Comparison Sites 

Variable 

Numbers of 

Comparison 

Sites 

Numbers of 

30-day 

Intervals * 

Average 

Crashes per 30 

Days 

Standard 

Deviation 

Minimum 

# of 

Crashes 

Maximum 

# of 

Crashes 

Signalization 

Rear-end Crash 190 28 3.7241 1.6881 1 8 

Angle + Left-

Turn Crash 
190 28 4.3103 2.1062 1 9 

Adding RLCs 

KABCO Crash 95 36 100.1111 17.9073 58 138 

KABC Crash 95 36 37.9167 9.5300 23 64 

*Time length after treatment was implemented in 30 days unit. 
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4.3 Methodology 

4.3.1 Before-After Study with Comparison Group Method 

Comparison group before-after study estimates safety effects of the treatment not only using crash 

data for the treatment sites, but also crash data for the untreated sites which are chosen as 

comparison group. The method compensates for the external causal factors that could affect the 

change in the number of crashes. Previous research (AASHTO, 2010; Abdel-Aty et al., 2014) 

applied the empirical Bayes and full Bayes methods in order to capture the regression-to-the-mean 

(RTM) bias. Although these two methods account for the RTM bias, they require ADT data along 

with other geometry information to develop safety performance function.  Notwithstanding, traffic 

volume data is retrieved as Annual Average Daily Traffic (AADT).  Therefore, it is not feasible in 

many cases to estimate the safety effect within a year using the empirical Bayes and full Bayes 

methods.   

 

Thus, to capture the safety effect in time periods shorter than a year, this study estimated monthly 

CMFs using the before-after study with comparison group method.  First, it can be observed that 

the CMFs in each month (30 days) but found that CMFs significantly fluctuated over time.  This 

RTM bias makes it difficult to observe the general trends.  Therefore, the CMFs were also 

calculated in 3-month (90 days) moving windows.  In this case, instead of calculating the CMF for 

each month (i = 1 to n), the monthly moving averages of CMF in three months (i.e. the current 

month and the following two months) was calculated.  For instance, the CMF for p = 1 (the first 

moving window) reflects a moving average of the CMFs for i = 1, 2 and 3 months. This way, the 

CMFs would indicate the safety effect for 3 consecutive months.   
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According to Hauer (1997), before estimating the CMF using the comparison group method, 

sample odds ratio need to be checked to make sure the comparison sites are comparable with the 

treated sites. For both target treatments, the odds ratio (Equation 4-1) between the comparison 

group and the treated group are close to 1.  Thus, it is proper to use the comparison groups for 

analyzing the effects for signalization and RLC at intersections.   

   
[(Tb*Ca)/(Ta*Cb)]

S=     
1 1

[1+ + ]
Ta Cb

 (4-1) 

Where  

S = Sample odds ratio; 

Tb = Crash for treatment group at before period; 

Ta = Crash for treatment group at after period; 

Cb = Crash for comparison group at before period;  

Ca = Crash for comparison group at after period. 

There are two main assumptions in the before-after study with comparison group method Hauer 

(1997):   

1. The factor Ta/Tb= Ca/Cb  

2. Changes in the various factors affect the safety of both treatment and comparison groups in same 

scale.  

 

Based on these assumptions, it can be assumed that the change in the number of crashes from the 

‘before’ period to ‘after’ period at the treated sites, in case of no countermeasures had been 

implemented, would have been in the same proportion as that for the comparison group.  

Accordingly, the expected number of crashes for the treated sites that would have occurred in the 
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‘after’ period had no improvement applied (Nexpected, T,A) can be calculated using Equation 4-2 

Hauer (1997): 

 
BC,observed,

AC,observed,

BT,observed,AT,expected,
N

N
NN   (4-2) 

 

If the similarity between the comparison and treated sites in the yearly crash trends is ideal, the 

variance of Nexpected, T,A can be estimated from Equation 4-3: 

 )N/1N/1N/1(N)Var(N
AC,observed,BC,observed,BT,observed,

2

BT,expected,AT,expected,
  (4-3) 

It should be noted that a more precise estimate can be obtained in case of using non-ideal 

comparison group as explained in Hauer (1997), Equation 4-4: 

))Var(N/1N/1N/1(N)Var(N
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The CMF and its variance can be estimated using Equation 4-5 and 4-6 as follows: 

 )))/N(Var(N)/(1/N(NCMF
2

AT,expected,AT,expected,AT,expected,AT,observed,
   (4-5) 
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AT,expected,AT,expected,

2
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])/N(Var(N[1

)])/N((Var(N)[(1/NCMF
Var(CMF)




   (4-6) 
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4.3.2 ARMA Time Series Model 

The ARMA (Auto Regressive Moving Average) model consists of the autoregressive (AR) and 

moving average (MA) models.  The model is usually referred to as ARMA (p,q) where p and q 

represent the possible lags that affect the ARMA model.  For instance, the AR (2) model represents 

that the first and second lags are used to predict the autoregressive relationship for the target time 

period.  The MA (3) model represents the first, second and third lags are used to predict the moving 

average for the target time period.  When these two AR (2) and MA (3) models are combined, the 

model is referred to as ARMA (2,3).  According to the previous studies (Box et al., 2013; 

Woodward et al., 2011), the ARMA model can be specified as follows: 

 

           1 1
ˆ   1        1      

p q
X t X t X t p Z t Z t Z t q              (4-7) 

  

where  X= General Time Series  

 X̂ t = Forecast of the time series Y for time t  

 X(t-1)~X(t-p)= Previous P values of time Series X  

 fi, …, fp = Coefficient estimated for autoregressive model 

 i, …, q = Coefficient estimated for moving average model 

 

Models are selected on the basis of the Akaike Information Criterion (AIC) and Schwarz's 

Bayesian Criterion (SBC).  Once ideal time series models are identified, the optimized model was 

used to predict  �̂� (t) for future time periods.  Statistics Analysis Software, SAS (SAS) was used 

to develop the ARMA model.  
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4.4 Results 

4.4.1 Trends of CMF for Signalization 

CMFs were calculated based on the crash counts for each month by referencing the comparison 

group.  The monthly CMF trend for rear-end crashes is shown in the upper part of Figure 4-1.  

The figure shows that CMFs for the ninth and the fifteenth month after the treatment are peak 

points.  According to previous research (Wang and Abdel-Aty, 2014), the CMF for the 

signalization indicates that the CMF for rear-end crashes is 1.7- 2.7 at a 95 percent confidence 

interval.  Therefore, it appears that these high CMFs were observed due to the regression to the 

mean (RTM) bias.  In order to account for the RTM bias, the CMFs in 90-day moving windows 

were also observed.  As shown in Figure 4-1, the variations in the CMF were lower for 90-day 

moving windows. The bottom part of Figure 4-1 shows the variations in CMF for angle and left-

turn crashes. 

 

It should be noted that the CMF for rear end crashes was lower at the beginning and started 

increasing 9 months after the signalization.  On the other hand, the CMFs for angle + left turn 

crashes showed the opposite trend - is the CMF was higher at the beginning and started decreasing 

9 months after the signalization.   
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Figure 4-1 Monthly variations in CMF for the signalization (Rear-end and Angle + Left-turn 
crashes) 

 

For rear-end crashes, Table 4-3 shows that the CMF for the first 9 months is lower than the CMF 

for the 1st-29th month whereas the CMF for the 10th-29th month is higher than the CMF for the 1st-

29th month.  At an 85% confidence interval, the CMFs for rear-end crashes for the first 9 month 

and the 10th-29th month are 0.996~1.520 and 1.521~1.947, respectively.  Since these two intervals 

do not overlap, the CMF for the 10th-29th month is significantly higher than the CMF for the 1st-

9th month at a 85% confidence level.  On the other hand, Table 4-3 shows that angle + left-turn 

crashes have opposite effect compared to rear-end crashes.  The CMF for the first nine months is 
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0.575 with standard error at 0.039.  This CMF is significantly less than the CMF for the 10th~29th 

month at a 95% confidence level.  The results indicate that the crash reduction rate is higher for 

angle + left-turn crashes at later period (the 10th-29th month).  On the other side, the crashes 

performance is worse at later period (the 10th-29th month) for rear-end crashes.   

 

These results are potentially due to changes in driver behavior over time after the intersection 

control changes from stop control to signal control.  In general, it takes a certain amount of time 

for drivers to be adapted to any change in intersection control.  It is possible that drivers are more 

cautious immediately after the intersections are signalized but their behavior gradually changes 

(e.g. more risk-taking) as they are more familiar with the new signal design.  Thus, a significant 

increase in CMFs after the 9th month indicates that it took approximately 9 months for drivers to 

be adapted to the new signalized intersections. This demonstrates that true safety effects of the 

signalization can be observed several months after (rather than immediately after) the completion 

date of the treatment.  

 

CMFs for signalization were calculated using the full time period to consider severities for both 

crashes types.  According to Table 4-3, signalization effectively reduce F+I crashes for angle+left 

turn crashes by 63.8% but slightly increase in F+I crashes for rear-end crashes by 14.7%.   This 

indicates that angle+left-turn crashes are more likely to be severe than rear-end crashes.  Thus, it 

can be concluded that the benefit of a larger reduction in F+I angle+left-turn crashes outweighs 

the cost of a smaller increase in F+I rear-end crashes by signalization after comparing these two 

factors. 
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Table 4-3 CMFs for Signalization at Different Time Periods 

Crash Type  

(Number of months after 

signalization) 

Method 

Comparison Group Before-After 

CMF 
S.E 

(Safety Effectiveness) 

Rear-End Crashes  

(1-29) 

1.580 0.116 

-58.0%   

Rear-End Crashes  

(1-9) 

1.258 0.182 

-25.8%   

Rear-End Crashes  

(10-29) 

1.734 0.148 

-73.4%   

Rear-End F+I Crashes  

(1-29) 

1.147 

-14.7% 

0.132 

  

        

Angle+Left-turn Crashes  0.356 0.04 

(1-29) 64.4%   

Angle+Left-turn Crashes  0.575 0.039 

(1-9) 42.5%   

Angle+Left-turn Crashes  0.284 0.052 

(10-29) 71.6%   

Angle+Left-turn F+I Crashes  

(1-29) 

0.362 

-63.8% 

0.05 
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4.4.2 Estimating CMF Trends for Signalization Using ARMA Model 

This study also predicted the trend of CMF over time using the ARMA (Box et al., 2013) model 

after checking the autocorrelation function (ACF) and partial autocorrelation (PACF). The 

optimized model for rear end crashes are shown in Table 4-4.  Table 4-4(a) shows the model for 

CMFs in each month and Table 4-4(b) shows the model for CMFs in 90-day moving window.  

Based on the fit of each model, (1,1) and (0,3) were found to be the optimized model to represent 

CMFs for each month and 90-day moving windows, respectively.  The coefficients for the MA 

and AR parameters represent the relationship of the observed data between the current month and 

n previous months.  Higher coefficient reflects that the data for the previous month(s) have stronger 

influence on data for the current month.  For instance, if the coefficient for AR(1) is small or AR(1) 

is not statistically significant, there is no strong influence of the data for the previous month(s) on 

the data for the current month. 

 

The ARMA model with CMFs in 90-day moving windows has lower values of AIC and SBC than 

the model with CMFs in each month. This indicates that the prediction capability is better for the 

model with CMFs in 90-day moving windows than the model with CMFs in each month. 
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Table 4-4 Estimated Parameters in ARMA Model for Signalization (Rear-end Crashes) 

CMF in each month (a) 

Parameter Estimate Standard Error t Value Pr > |t| Lag 

MU 1.93506 0.22824 8.48 <.0001 0 

MA1,1 -0.83199 0.20568 -4.05 0.0004 1 

AR1,1 -0.52604 0.31657 -1.66 0.1086 1 

AIC=86.83     SBC=90.93 

CMF in 90-day moving windows (b) 

Parameter Estimate Standard Error t Value Pr > |t| Lag 

MU 1.62658 0.16142 10.08 <.0001 0 

MA1,1 -0.80688 0.16762 -4.81 <.0001 1 

MA1,2 -0.59535 0.16969 -3.51 0.0018 2 

AIC=26.90765  SBC=30.79516 

 

Figure 4-2 shows the observed and predicted CMFs for rear end crashes in each month and 90-day 

moving windows.  The dotted line is the end of the observation period and the shaded area is a 

95% confidence interval.  As shown in Figure 4-2, the ARMA model fits better for the CMFs in 

90-day moving windows than the CMFs in each month for 29 months after the signalization.  

 

However, the predicted CMFs for the time period after the 29th month (i.e. beyond the observation 

time period) were nearly constant. This is because the ARMA model does not have an obvious 

autoregressive value.  Therefore the constant value is the predicted mean CMF. In fact, it is not 

ideal to apply this model to predict the CMF values after the 29th month since the CMF is not 

statistically different from 1 due to very high standard errors.   
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(a) CMF in each month 

  
(b) CMF in 90-day moving windows 

 

Figure 4-2 Prediction of monthly variations in CMFs for the signalization using ARMA models 
(Rear-end  crashes) 

No. of months after treatment 
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The AR(1) and MA(3) models were used to explain the CMFs in each month and 90-day moving 

windows, respectively.  Similar to rear-end crashes, using the CMFs for angle + left-turn crashes 

in 9-month moving windows also increased model fit as indicated by lower AIC and SBC values.  

 

Table 4-5 Estimated Parameters in ARMA Model for Signalization (Angle + Left-Turn Crashes) 

CMF in each month (a) 

Parameter Estimate Standard Error t Value Pr > |t| Lag 

MU 0.49333 0.09231 5.34 <.0001 0 

AR1,1 0.05041 0.19221 0.26 0.7951 1 

AIC=40.80     SBC=43.53 

CMF in 90-day moving windows (b) 

Parameter Estimate Standard Error t Value Pr > |t| Lag 

MU 0.43488 0.0685 6.35 <.0001 0 

MA1,1 -1.10728 0.19582 -5.65 <.0001 1 

MA1,2 -0.82782 0.26027 -3.18 0.0042 2 

MA1,3 -0.42102 0.19746 -2.13 0.0439 3 

AIC=-33.91  SBC=-28.7254 

 

Figure 4-3 shows the CMFs for angle + left-turn crashes in each month and 90-day moving 

windows.  The ARMA model could not predict a clear trend of CMFs since the noise level was 

too high to predict the CMF values as shown in Figure 4-3 (a).  On the other hand, the predicted 

CMFs in 90-day moving windows is consistently below 1 as shown in Figure 4-3 (b).  Similar to 

rear-end crashes, the ARMA model fits better for the CMFs in 90-day moving windows than the 

CMFs in each month.  However, the predicted CMFs after the 29th month were statistically 

significant (i.e. the CMF is significantly lower than 1).  This indicates that the signalization would 

have significant safety effects on reducing angle + left-turn crashes in the long term. 
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(a) CMF in each month 

 
(b) CMF in 90-day moving windows 

Figure 4-3 Prediction of monthly variations in CMFs for the signalization using ARMA models 
(Angle + Left-turn  crashes) 

 

No. of months after treatment 

No. of months after treatment 
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4.4.3 CMF Trends for Adding RLCs 

The trends of CMFs for adding RLCs for total and F+I crashes are shown in Figure 4-4. The crash 

data for adding RLCs were available for a longer time period (36 months) than the crash data for 

the signalization. Previous studies (Abdel-Aty et al., 2014; Erke, 2009) found that the CMFs for 

adding RLCs were higher than 1 for rear-end crashes and lower than 1 for angle crashes. However, 

due to a lack of samples for each crash type, this study focused on crash severity instead of crash 

type.  As shown in the upper part of Figure 4-4, the CMF for total crashes generally decreased in 

the first 9 months after adding RLCs and then started increasing.  The CMF for F+I crashes showed 

a similar trend – it decreased in the first 13 months and then started increasing as shown in the 

bottom part of Figure 4-4.   

 

 

Figure 4-4 Monthly variations in CMFs for adding RLCs (Total Crashes and F+I Crashes) 
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The CMFs were calculated for total crashes and F+I crashes for adding RLCs as shown in Table 

4-6.  For the total crashes, the CMF for the first 18 months was lower than the CMF for the 1st-

36th month whereas the CMF for the 19th-36th month was higher than the CMF for the 1st-36th 

month. Also, the CMF for the first 18 months is significantly lower than the CMF for the 19th-36th 

month at a 95 confidence level.   

 

A similar trend of CMFs was observed for F+I crashes as shown in the bottom part of Table 4-6.  

The CMF for the first 18 months was significantly lower than the CMF for the following 18 months 

at a 90% confidence level.  
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Table 4-6 CMFs for Adding RLCs at Different Time Period 

Severity Type (Number 

of months after adding 

RLCs) 

Method 

Comparison Group Before-After 

CMF 
S.E 

(Safety Effectiveness) 

Total Crashes (1-36) 0.872 0.056 

 12.80%   

Total Crashes (1-18) 0.695 0.063 

 30.50%   

Total Crashes (19-36) 1.089 0.087 

 -8.90%   

        

F+I Crashes (1-36) 0.652 0.057 

 34.80%   

F+I Crashes (1-18) 0.518 0.067 

 48.20%   

F+I Crashes (19-36) 0.789 0.083 

 21.10%   

 

4.4.4 Estimating CMF Trends of Adding RLCs Using ARMA Model 

The AR(2) and AR(1) models were used for total crashes to explain the CMFs in each month and 

90-day moving windows as shown in Table 4-7.  The ARMA model with the CMFs in each month 

did not have a good fit compared to the model with the CMFs in 9-month moving windows as 

indicated by higher AIC and SBC values.  Also, the AR(1) estimator is not statistically significant 

at a 95% confidence level.   
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Table 4-7 Estimated Parameters in ARMA Model for RLCs (Total Crashes) 

CMF for each month 

Parameter Estimate Standard Error t Value Approx Pr > |t| Lag 

MU 0.90417 0.20563 4.4 0.0001 0 

AR1,1 0.19211 0.15298 1.26 0.218 1 

AR1,2 0.51495 0.16529 3.12 0.0038 2 

AIC=45.78 SBC=50.55 

CMF for 90-day moving windows 

Parameter Estimate Standard Error t Value Approx Pr > |t| Lag 

MU 0.90077 0.17081 5.27 <.0001 0 

AR1,1 0.85561 0.09832 8.7 <.0001 1 

AIC=-3.99 SBC=-0.93 

 

Figure 4-5 shows the CMFs for total crashes in each month and 90-day moving windows.  The 

confidence interval for the CMFs in each month is much wider than the interval for the CMFs in 

90-day moving windows.  However, the predicted CMF after the 40th month is approximately 1.  

This suggests that the installation of RLCs would not have significant safety effects on reducing 

total crashes in the long term.   
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(a) CMFs in each month 

 
(b) CMFs in 90-day moving windows 

Figure 4-5 Monthly variations in CMFs for adding RLCs using ARMA model (Total crashes). 
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The AR (1) + MA (2) and AR (1) models were used for F+I crashes to explain the CMFs in each 

month and 90-day moving windows, respectively as shown in Table 4-8. Similar to total crashes, 

the model with the CMFs in each month did not have good fit compared to the model with the 

CMFs in moving windows.  Also, MA(1) and AR (1) estimators are not statistically significant at 

a 95% confidence level.    

 

Table 4-8 Estimated Parameters in ARMA Model for Adding RLCs (F+I Crashes) 

F+I Crashes per Month 

Parameter Estimate 
Standard 

Error 
t Value Approx Pr > |t| Lag 

MU 0.66898 0.08948 7.48 <.0001 0 

MA1,1 0.42097 0.50157 0.84 0.4075 1 

MA1,2 -0.33345 0.16925 -1.97 0.0575 2 

AR1,1 0.2812 0.52927 0.53 0.5989 1 

AIC=45.45 SBC=51.78 

F+I Crashes MW3 

Parameter Estimate 
Standard 

Error 
t Value Approx Pr > |t| Lag 

MU 0.64434 0.09467 6.81 <.0001 0 

AR1,1 0.73171 0.12139 6.03 <.0001 1 

AIC=-20.56 SBC=-17.51 

 

Figure 4-6(a) shows the CMFs for total crashes in each month and 90-day moving windows.  The 

confidence interval for the CMFs in each month was much wider than the confidence interval for 

the CMFs in 90-day moving windows.  In fact, when focusing on the mean value using the monthly 
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model, the predicted CMF after the 40th month is at 0.7.  This suggests that the installation of RLCs 

would reduce total crashes in the long term but not significant at 95 level.   

 

The CMFs for F+I crashes are shown in Figure 4-6(b).  The confidence interval for the CMFs in 

each month was also much wider than the CMFs in 90-month windows.   The figure shows a 

downward trend of the predicted CMF for the first 13 months followed by an upward trend for the 

13th-25th month and a downward trend after the 25th month.  To take a closer look at its predicted 

CMF, the CMF at 40th month is lower than one.  In this case, it indicates that there is higher 

probability that CMF will be lower than 1 for F+I crashes using moving windows however not 

statistically significant at 95% level.   
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(a) CMFs in each month 

 
(b) CMFs in 90-day moving windows 

 

Figure 4-6 Prediction of monthly variations in CMFs for adding RLCs using ARMA models 
(F+I crashes) 
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4.5 Conclusion 

This study analyzes the trends of CMFs for the signalization of stop-controlled intersections and 

adding RLCs over time after these treatments are implemented.  The CMFs were estimated using 

the Before-After study with comparison group method since Bayesian framework (empirical 

Bayes or full Bayes) requires detailed traffic volume data that are not readily available.  The data 

used in this study are the records of intersection-related crashes in Florida during the time period 

between the treatment completion date and the end of 2013.   Monthly CMFs were calculated in 

each month and 90-day (three months) moving windows.  The CMFs for total observation periods 

(28 months for the signalization and 36 months for adding RLCs), and early phase and later phase 

in the total period were also calculated.   The study also developed the ARMA time series model 

(Box et al., 2013) to predict the trends of CMFs over time on a monthly basis.   

 

The results of the signalization show that the CMFs for rear-end crashes were initially low during 

the early phase after the signalization but started increasing from the 9th month.  On the other hand, 

the CMFs for angle + left-turn crashes were initially higher during the early phase after the 

signalization but started decreasing from the 9th month then became stable.  This indicates a lag in 

safety effects of the signalization as it takes time for road users to be adapted to the new intersection 

control. The results of adding RLCs show that the CMFs for both total and F+I crashes were higher 

during the first 18 months than the following 18 months.  Thus, the CMFs for the early phase after 

adding RLCs did not reflect the safety performance in the later phase.   

 

The results of the ARMA model show that the model can better predict trends of the CMFs for the 

signalization and adding RLCs when the CMFs are calculated in 90-day moving windows 
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compared to the CMFs calculated in each month.  Moving windows is used to compensate the 

noise due to short sample size.  If sample size is good enough to develop time series model using 

single month, it is suggested not using moving windows because this allows us to see the pure 

monthly effect.  The study also demonstrates that the ARMA time series model can be applied to 

the prediction of the CMFs in the long term based on historical trend of CMFs over time.  Although 

the predicted CMFs generally had large standard errors (i.e. not statistically significant safety 

effect), the CMF was significantly lower than 1 at a 95% confidence level for angle + left-turn 

crashes after the signalization.  Thus, it is expected that the signalization has significant positive 

safety effects in reducing angle + left-turn crashes in the long term.   

 

Based on the results in this study, it is concluded that trends of CMF over time need to be observed 

after the treatment is installed.  If there is any significant change in CMFs between the first several 

months and the following several months, using the data from the early period after the treatment 

will result in bias of estimating CMFs.  Thus, to avoid making erroneous decisions in selecting the 

treatments based on biased CMFs, the CMF should capture the long-term safety effects of the 

treatment based on their observed and predicted trends over time.  

 

When estimating CMFs based on time, there is a trade-off between selecting longer time interval 

and shorter time interval as an observation unit.  When using longer time interval, the variations 

in CMFs among different intervals will be smaller. Thus, noise can be reduced by using longer 

time interval.  However, the short-term effect cannot be captured when using longer interval.  To 

select more appropriate CMFs, it is recommended to develop CMF functions using time series 

model with shorter time intervals as long as the sample size in each interval is sufficient.  



87 
 

Afterwards, one could calculate CMFs based on the function.  If the sample is too restricted to 

develop time series models, it is recommended to estimate CMFs for the first year and the period 

afterwards separately.   
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CHAPTER 5 : AN R PACKAGE FOR CALCULTION OF THE CRASH 

MODIFICATION FACTORS WITH GRAPHICAL USER INTERFACE 

5.1 Introduction 

The HSM Part D provides a comprehensive list of the effects of safety treatments 

(countermeasures). These effects are quantified by crash modification factors (CMFs), which are 

based on the compilation from past studies of the effects of various safety treatments. The HSM 

Part D provides CMFs for treatments applied to roadway segments (e.g., roadside elements, 

alignment, signs, rumble strips, etc.), intersections (e.g., control), interchanges, special facilities 

(e.g., highway-rail crossings), and road networks. The objective of this chapter is to develop an R 

package for engineers to develop CMF.   

 

Before-after study is widely used to develop CMFs comparing to cross-sectional analysis.  In 

detail, the before-after method includes naïve before-after study, before-after study with 

comparison group (CG), before-after study with empirical Bayesian (EB) methods, and before-

after study with full Bayesian. In this package, three methods are provided which are naïve, 

comparison group, and EB method.  For calculating CMFs using the EB method, one need to 

develop safety performance functions (SPFs), which predict crash frequency as a function of 

explanatory variables.  This package was built based on the methodology by previous publications 

(Gross et al., 2010; Hauer, 1997). In fact, before-after study has been used in HSM (AASHTO, 

2010) Part D, (Abdel-Aty et al., 2014), and many others. Therefore, this package improves the 

efficiency and correctness of implementing before and after studies. 
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In R (R, 2013) environment, it requires installation before using this package. This package can 

be downloaded from the author’s Github site (Wang and Norberg, 2015). Besides, this package 

was built using devtools by Wickham and Chang (2015). Before using this package, users should 

install R package devtools first in order to install the package from Github. After installing 

devtools, users can input install_github to install this package bastudy using the code as follows: 

 

install.packages(devtools) 

library(devtools) 

devtools::install_github("doubleck/bastudy") 

 

In addition, the graphical user interface was also developed using shiny (Chang et al., 2016). 

Before using the graphical interface, shiny needed to be installed in advance.  The installation of 

the shiny can be achieved by using the code as follows: 

 

install.packages(shiny) 

library(shiny) 

 

5.2 Methodology and Package Usage 

In this package, there are four main methods.   

1. Naïve  

2. Comparison Group 

3. Empirical Bayes 

4. Graphical Interface 

 

The introduction of each function will be introduced in this section.   
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5.2.1 Naïve Method 

According to Hauer (1997), naïve before-after study is the simplest form that it compares the crash 

count of the before period with the crash count of the after period. In this case, it assumes the 

passage of time from before to after is not associated with changes that affected the traffic safety. 

 

Since the duration of the before and after can be different, rd is used to represent the ratio of the 

durations as shown in Equation 5-1. 

rd = Duration of after periodDuration of before period (5-1) 

 

The expected crashes for the after period if there were no treatment is shown in Equation 5-2: 

Nexpected,T,A = rd ∗ Nobserved,T,B (5-2) 

where, Nexpected,T,A= The expected crashes for the after period if there were no treatment rd= The ratio of the durations Nobserved,T,B= The observed crashes for the before period 

 

The variance of the expected crashes for the after period if they were no treatment can be written 

as shown in Equation 5-3: 

 Var(Nexpected,T,A) = rd2 ∗ Nobserved,T,B  (5-3) 

Afterward, crash modification factor using naïve method can be calculated using the equation as 

indicated in Equation 5-4: 

)))/N(Var(N)/(1/N(NCMF
2

AT,expected,AT,expected,AT,expected,AT,observed,   (5-4) 
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The variance of the crash modification factor using the naïve method is shown in Equation 5-5: 

22

AT,expected,AT,expected,

2

AT,expected,AT,expected,AT,observed,

2

])/N(Var(N[1

)])/N((Var(N)[(1/NCMF
Var(CMF)




  (5-5) 

 

The detailed usage of can be found in the documentation file along with the software.  The detail 

usage to calculate CMF using the naïve before-after study is explained using the following code: 

 

naive(before, after, depVar, db = 1, da = 1, alpha = 0.95) 

 

Where, 

before Treatment data, before treatment was made 

after Treatment data, after treatment was made 

depVar The dependent variable (the number of crashes - should always be of class integer or 

numeric). 

db duration of before period (typically years) 

da duration of after period (typically years) 

alpha Level of confidence 

 
Example code: 

naive(treat_before,treat_after,depVar=”KABCO_Crashes”,db=3,da=3,alpha=0.95) 
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5.2.2 Comparison Group 

Comparison group before-after study estimates safety effects of the treatment not only using crash 

data for the treatment sites, but also crash data for the untreated sites, which are chosen as the 

comparison group. The method compensates for the external causal factors that could affect the 

change in the number of crashes.  

 

The expected number of fatalities for the treated sites that would have occurred in the ‘after’ period 

had no improvement applied (Nexpected, T,A) can be calculated using Equation 5-6 (Hauer, 1997): 

BC,observed,

AC,observed,

BT,observed,AT,expected,
N

N
NN   (5-6) 

If the similarity between the comparison and treated sites in the yearly crash trends is ideal, the 

variance of Nexpected, T,A can be estimated from Equation 5-7: 

)N/1N/1N/1(N)Var(N
AC,observed,BC,observed,BT,observed,

2

BT,expected,AT,expected,


            (5-7) 

It should be noted that a more precise estimate can be obtained in case of using ideal comparison 

group as explained by Hauer (1997), Equation 5-8: 

 

))Var(N/1N/1N/1(N)Var(N
AC,observed,BC,observed,BT,observed,

2

BT,expected,AT,expected,


(5-8) 
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The CMF (Crash Modification Factor) and its variance can be estimated using Equations 5-9 and 

5-10 as follows: 

 )))/N(Var(N)/(1/N(NCMF
2

AT,expected,AT,expected,AT,expected,AT,observed,    (5-9) 

 

 
22

AT,expected,AT,expected,

2

AT,expected,AT,expected,AT,observed,
2

])/N(Var(N[1

)])/N((Var(N)[(1/NCMF
Var(CMF)




  (5-10) 

The syntax used to perform a comparison group before-after study can be found in the help 

document as: 

CompGroup(compBefore, compAfter, before, after, depVar, alpha = 0.95) 

 

where, 

compBefore Comparison data in before period 

compAfter Comparison data in after period 

before  Treatment data, before some change was made 

after  Treatment data, after some change was made 

depVar The dependent variable (the number of crashes - should always be of class integer 

or numeric). 

alpha  Level of confidence 

 

Example code: 

CompGroup(compBefore=comparison_before,compAfter=comparison_after,before=trea

t_before,after=treat_after,depVar=”KABCO_Crashes”,db=3,da=3,alpha=0

.95) 

 



94 
 

For further example code, please refer to the documentation file after installing “bastudy” package 

from Github (Wang and Norberg, 2015). 

 

5.2.3 Empirical Bayes Method 

The empirical Bayes (EB) method combines the strengths of a before and after study that uses 

specific case-control techniques with regression methods for estimating safety. Unlike other 

methods, it increases the precision of estimation and it also corrects for the regression to the mean 

bias. 

 

According to Hauer (Hauer, 1997), the safety performance can be estimated using Equation 5-11: 

 

 Nexpected,T,A = γ ∗ Npredicted,B + (1 − γ)Nobserved,T,B   (5-11) 

 

Where  Nexpected,T,A=Expected crash count if there had been no treatment Npredicted,B=predicted crash counts based on SPF multiply by the calibration factor 

 Nobserved,T,B= observed crash counts before treatment 

            γ =Weight between observed crash counts and predicted crash counts 

 

Afterward, Npredicted,B was re-estimated based on SPFs and Calibration factors from different 

states and calculated the predicted crash counts accordingly. Then the updated Nexpected,T,A after 

substitution was retrieved. 
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The method of the assigned weight is shown below as suggested by Hauer (1997).  The weight is 

inversely proportional to the variances of the corresponding random variables as shown in 

Equation 5-12.  When two estimates of unequal precision are joined, the weights γ and 1 −γ that 

minimize the expected squared error of estimation are inversely proportional to the variance 𝜑 of 

the estimate. 

 γ = 11+𝜇∗𝑌𝜑   (5-12) 

Where   𝜇 = predicted crashes before treatment (per year) 

 Y = number of year(s) 

 𝜑 =overdispersion parameter 

In this term, the overdispersion parameter γ is different for each SPFs. 

 

After Nexpected,T,A= is calculated, Gross et al. (2010) suggest to use Nexpected,T,A= to adjust the 

value of �̂� which can be shown in Equation 5-13: 

 Nexpected,T,A∗ = Nexpected,T,A ∗ Npredicted,T,ANpredicted,T,B  (5-13) 

Where   Nexpected,T,A∗ = Expected crash count if there had been no treatment after adjustment 

 Nexpected,T,A= Expected crash count if there had been no treatment before adjustment  

 Npredicted,T,A= Predicted crashes after treatment 

 Npredicted,T,B= Predicted crashes before treatment 
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The CMF can be written in the form as shown in Equation5-14:  

 )))/N(Var(N)/(1/N(NCMF
2

AT,expected,AT,expected,AT,expected,AT,observed,
    (5-14) 

Where CMF = crash modification factor 

 observed,T,AN  = Observed after crash 

 

When 𝜃 <1, the treatment has a positive effect; when  𝜃 >1 it is expected to have a negative effect 

on safety performance. 

 

The variance of CMF is shown in Equation 5-15: 

 22

AT,expected,AT,expected,

2

AT,expected,AT,expected,AT,observed,

2

])/N(Var(N[1

)])/N((Var(N)[(1/NCMF
Var(CMF)




   (5-15) 

 

The syntax used to perform an empirical Bayes before-after study can be achieved by: 

empBayes(reference, before, after, depVar, offsetVar = NULL, indepVars = 

setdiff(names(reference), c(depVar, offsetVar)), forceKeep = NULL, 

alpha = 0.95) 

 

reference Reference data 

before  Treatment data, before some change was made 

after  Treatment data, after some change was made 

depVar The dependent variable (the number of crashes - should always be of class integer 

or numeric).  

offsetVar An offset variable (eg years) 
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indepVars Variables used to model the outcome variable depVar 

forceKeep A character vector of variable names. These variables will not be considered for 

removal during the variable selection process. 

alpha  Level of confidence 

 

Example code: 

empBayes(reference=reference_group, before=treat_before, after=treat_after, 

depVar=”KABCO_Crashes”, offsetVar = NULL, indepVars= 

c(”Major_AADT”, ”Speed_Limit”), forceKeep = “Major_AADT” alpha = 

0.95) 

 

It is worth mentioning that the negative binomial model is estimated using MASS package with 

function “glm.nb” (Venables and Ripley, 2002). Besides, if the forceKeep does not specify, the 

algorithm will select optimized variables using stepwise selection based on Akaike Information 

Criterion (AIC). 

 
 

5.3 Graphical User Interface, GUI 

Three methods, naïve, comparison group, and empirical Bayes calculation are all prepared with 

graphical user interface.  After installing bastudy, the user input bagui() to use the user interface.  

Besides, in the recent update (03/10/2016), this GUI was ported to the server and can be accessed 

using the link: “https://junghanwang.shinyapps.io/bastudy/” 

 

In the GUI, there are 3 tabs in the GUI, each tab deal with one type of before-after study. The first 

tab, naïve before-after study is shown in Figure 5-1.  The user has to select “Naïve” under “Select 
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Analysis Type”.  Then upload data to be analyzed.  The before data and the after data need to be 

uploaded separately with the same variable name.  In detail, the data uploaded was set to be 

comma-separated values (CSV).  Once the system detects the CSV files for the before and the after 

with identical variable names, the user can select the target variable.  Afterward, the duration for 

before and after period can be input with numeric value based on the data.  Then, the next input is 

a bar scale for the confidence level.  The default value of the confidence interval was set to be 95 

percent level.  The user can drag it up and down as needed. 

 

Figure 5-1 Graphical User Interface for Naive Before-after Study 

 

The second tab is comparison group before-after study as shown in Figure 5-2.  The user has to 

select four CSV files to be analyzed.  These four files are the before data and the after data for 

treated sites and the before and after data for comparison sites.  Similar to naïve, these variables 

have to share the same variable name.  Once the system detects the CSV files for the before and 
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the after with identical variable names, user can select the target variable and set the confidence 

level and press the “Calculate CMF” button. 

 

Figure 5-2 Graphical User Interface for Comparison Group Before-after Study 

The last tab is the GUI for empirical Bayes method as shown in Figure 5-3.  The user has to select 

three CSV files to be analyzed.  The first two files are the before and after data for treated sites.  

The third file is the reference sites used to develop safety performance function using the negative 

binomial model.  After the files are loaded, the user needs to select the target variable, offset 

variable (year in the sample file), and independent variables.  Once these factors set up, users can 

select the confidence interval and press the “Calculate CMF” button to get the CMF value. 
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Figure 5-3 Graphical User Interface for Empirical Bayesian Before-after Study 

 

5.4 Future Improvement 

This package provides a way for traffic safety engineers to estimate crash modification factor.  It 

was released to simplify the estimation of CMFs. Since all codes are open-sourced, users can feel 

free to improve this package without notifying the author or contact the author to improve this tool. 

 

In the future, for the empirical Bayes analysis, HSM(AASHTO, 2010) suggests incorporating 

overdispersion function instead of fixed overdispersion parameter for roadway segment.  However, 

adjusting overdispersion cannot be achieved using bastudy package and may be improved in the 

future. 

 

Besides, Sacchi and Sayed (2015) claim that the full Bayesian method is the most  accurate method 

for calculating CMFs. Therefore, it will be beneficial to include the full Bayesian method in this 
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package in the future.  Again, since this package is an open-source software under the license 

specified in the package license document. By writing this package, I hope it can benefit the society 

and improve traffic safety by providing straightforward and trustworthy CMFs calculations. 
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CHAPTER 6 : MODIFICATION FACTORS USING EMPIRICAL BAYES 

METHOD WITH RESAMPLING TECHNIQUE 

6.1 Introduction 

Traffic researchers and engineers have developed the crash modification factor (CMF) as a 

quantitative measure of safety and effectiveness of signalization. Based on multiple studies, the 

Highway Safety Manual (HSM) Part D (AASHTO, 2010) provides CMFs which can be used to 

determine the expected crash reduction or increase after converting stop-controlled to signal-

controlled intersections. These CMFs in HSM help engineers easily measure the safety and cost-

effectiveness of treatments. After the HSM was introduced, many states in the United States, 

including Florida (Abdel-Aty et al., 2014; Park et al., 2015; Wang et al., 2015a), Utah (Brimley et 

al., 2012), Kansas (Lubliner and Schrock, 2012), Oregon (Xie et al., 2011), and others, have 

investigated the suitability of applying the values in the HSM to local intersections. In addition, 

the CMF Clearinghouse (FHWA, 2016) gathered  5378 CMFs, some of the which have different 

values for the same target treatment. When estimating CMFs using empirical data, there exist 

differences between samples such as geographic location, traffic volume, lane configuration, 

surrounding facilities, etc. It is not feasible to treat each combination of conditions separately due 

to the small sample sizes that would result. As such, many CMF values in the HSM assume all 

sites share the same true CMF value. This approach ignores site-specific features as well as 

potential interaction effects between site characteristics. Previous research efforts have focused on 

separating the treatment effects into crash modification functions based on temporal (Park et al., 

2015; Sacchi et al., 2014; Wang et al., 2015b), traffic volume (Sacchi and Sayed, 2014; Wang and 

Abdel-Aty, 2014), area type (Wang and Abdel-Aty, 2014), and speed limit (Lee et al., 2015). The 

CMFs can be conceptualized as a nested structure as shown in Figure 6-1. The CMFs for 
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increasingly specific groups have smaller sample sizes, but also lower variation, due to greater 

homogeneity among the samples.  

 

Figure 6-1 Nested CMF Structure 

 

The data (crash, geometry, target location) needed to conduct a before-after study is expensive to 

collect.  Therefore, if the CMF is stable at a higher, more aggregate level, it is not necessary to 

collect more data and investigate at a more specific, less aggregate levels. By calculating the CMFs 

using bootstrapped resamples (bootstrapped CMFs), the stability of the estimate can be examined 

by calculating the bootstrap confidence interval (BC). If the BC is higher/lower than one, the CMF 

can be considered trustworthy and further split-up is not required. As suggested by the CMF 

Clearinghouse (FHWA, 2016), randomly selected sites will increase the reliability of CMFs. The 

resampling procedure adds randomization to identify unstable results and compensates for small 

sample sizes. Based on the distribution of bootstrap CMFs, a precision rating is suggested in the 

result section of this chapter to help with decision making. 

 

Applying this method, this study evaluates the safety effects of converting urban four-legged stop-

controlled intersections to urban four-legged signal-controlled intersections using Florida’s crash 
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records and roadway characteristics inventory data. The study develops CMFs for different crash 

types and severities. Crash severities are classified into the following 5 levels, according to the 

KABCO scale developed by the National Safety Council (1989): fatal (K), incapacitating injury 

(A), non-incapacitating (B), possible injury (C), and property damage only (O).  CMFs are 

calculated using observational before-and-after study with the empirical Bayes method. The CMFs 

were developed for three severities (KABCO, KABC, and KAB) and two crash types (rear-end, 

angle+left-turn). For each crash category, the CMFs were developed using the original and 

resampled datasets. In this chapter, 100 resamples were generated based on the original dataset. 

After calculating all 100 bootstrapped CMFs for each crash category, the precision rating was 

identified for each crash category. 

 

6.2 Methodology 

6.2.1 Workflow 

The workflow used to calculate the bootstrapped CMFs is shown in Figure 6-2. The first step in 

the workflow is to obtain the original dataset. The second step in the workflow is the bootstrap 

resampling of the original data. This was done via a program making use of R’s sample() function, 

described previously. In the third step, each resampling of the data was passed, along with the 

optimized SPF (introduced later in the following section), to the R package bastudy mentioned in 

Chapter 5. Next, the bootstrapped CMFs were calculated using the empBayes() function in the 

bastudy package. Finally, analysis was performed based on the distribution of the bootstrapped 

CMFs and the suggested precision ratings were formulated. 
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Figure 6-2 Workflow for calculating bootstrapped CMF 

 

6.2.2 Safety Performance Functions 

In order to apply the empirical Bayes method, it is necessary to estimate SPFs based on the 

reference sites in order to estimate the expected crash count if the sites were not treated. The most 

common type of SPFs has been a generalized linear model (GLM) with negative binomial 

distribution as the model accounts for over-dispersion. In this chapter, the negative binomial 

models were developed based on the function glm.nb() in R’s MASS package (Venables and 

Ripley, 2002)  with the equation explicated below: 
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N= 𝐸𝑋𝑃(𝛽0+∑ 𝛽𝑝𝑖∗𝑉𝑜𝑙𝑢𝑚𝑒𝑝𝑖+𝛽𝑞∗𝑅𝑎𝑡𝑖𝑜𝑞+𝛽𝑟∗𝑆𝑝𝑑_𝑚𝑎𝑗+𝛽𝑠∗𝑆𝑝𝑑_𝑚𝑖𝑛 )
 (6-1) 

Where, β0 = Intercept  βpi = Summation of all coefficients for volume 𝑝𝑖1 2 β𝑞 = Coefficient for ratio of the AADT on the major road and minor road,  β𝑟 = Coefficient for major road speed limit  β𝑠 = Coefficient for minor road speed limit 
 

In the equation, there are eight volume sets and two ratio sets which are explained in the following 

paragraphs. The crash frequency models assume a Poisson distribution with a gamma distributed 

error term. The coefficient associated with each covariate represents the relationship between the 

covariate and crash frequency. HSM defines the base condition SPFs using only the natural log of 

the annual average daily traffic (AADT) on the major and the minor roads when developing the 

negative binomial model. HSM does not suggest covariates for developing full SPFs. Abdel-Aty 

et al. (2014) conclude that using full SPFs achieves better model fitness than the SPFs found in the 

HSM. Dixon et al. (2015), suggested the critical variables for developing SPFs for urban signalized 

intersections: 

  

                                                 
1 If the volume is the logarithmic of the traffic volume on major road and minor road, then the βp1is the coefficient 

for ln(major traffic) and βp2 is the coefficient for ln(minor traffic) 

2 All 8 exposure variable set are explained in the next session 
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 The natural log of the AADT on the major road; ln(AADT_{Major}) 

 The natural log of the AADT on the minor road; ln(AADT_{Minor}) 

 Speed limit on the major road; Speed_{Major} 

 Speed limit on the minor road; Speed_{Minor} 

 

In fact, Dixon et al.'s (2015) results show that the natural log of the AADT on the major and the 

minor roads alone do not always achieve good model fit. Following the suggestions of Dixon et 

al. (2015), the authors of this chapter considered several combinations of covariates for estimating 

SPFs. However, the SPF for KABCO crashes was best modeled using  ln(AADT_{Major}) and 

ln(AADT_{Minor}), which is consistent with the HSM’s recommendation. Akaike Information 

Criterion (AIC) was used to compare models. The optimal model formulation for KAB crash 

counts used ln(AADT_{Major}), the speed limit on the major road, and a latent variable developed 

by the authors called “modular AADT”. “Modular AADT” is calculated using the AADT on the 

major and minor roads as shown in Equation 6-2. The fit of SPF improves by substituting the 

exposure measures from the AADT on the major and minor road with the latent variable. 𝒎𝒐𝒅𝑨𝑨𝑫𝑻 = √(𝒎𝒂𝒋_𝒂𝒂𝒅𝒕𝟐 + 𝒎𝒊𝒏_𝒂𝒂𝒅𝒕𝟐) (6-2) 

 

Based on these findings, it can be concluded that different exposure methods should be tested for 

different crash categories. Therefore, in order to determine the best combination of exposure 

variables and speed limit, a full-factorial experiment (Montgomery, 2008) was constructed using 

each of the eight exposure metrics with other variables as shown in Table 6-1. These eight 

exposures are listed below: 
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 Exposure 1 ln(Maj): The log of the AADT on the major road  

 Exposure 2 ln(Maj), ln(Min): The log of the AADT on the major and the minor road  

 Exposure 3 ln(total): The log of the summed AADT on the major and minor road  

 Exposure 4 ln(mod): The log of the modular AADT on the major and minor roads  

 Exposure 5 ln(Maj),(Maj): The log of the AADT on the major road and the non-log form 

 Exposure 6 ln(Maj), ln(Maj), (Maj), (Min):The log of the AADT on the major and the 

minor road and the non-log form 

 Exposure 7 ln(Total), (Total): The log of the summed AADT on the major and minor road 

and the non-log form 

 Exposure 8 ln(Mod), (Mod): The log of the modular AADT on the major and minor road 

and the non-log form 

 

Each exposure variable was paired with no ratio, a ratio of the AADT in Equations 6-3 and 6-4, 

and the speed limit on the major and minor road. Besides, the experimental design excluded the 

ratio if minor AADT was missing. For example, the experiment was removed when ln(Maj) is the 

only exposure with the ratio1 or ratio2. 𝐫𝐚𝐭𝐢𝐨𝟏 = 𝐥𝐧 𝐦𝐢𝐧𝐦𝐚𝐣 (6-3) 𝐫𝐚𝐭𝐢𝐨𝟐 = 𝐥𝐧(𝐦𝐢𝐧)𝐥𝐧(𝐦𝐚𝐣) (6-4) 

  

With the full-factorial design, 64 SPFs were developed for each crash category (KABCO, KABC, 

KAB, rear-end, angle+left-turn) for a total of 320 SPFs. To compute these efficiently, an R 

program was developed to fit each SPF and return the resulting AIC. For each crash category, an 



109 
 

AIC comparison chart was used to compare the 64 SPFs and the simplest optimal model was 

chosen from these as show in Table 6-2. 
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Table 6-1 Factorial Experiment of Safety Performance Functions 

  ln(Maj) ln(Min) ln(Total) ln(Mod) Maj Min Total Mod Ratio1 Ratio2 Spd 
Maj 

Spd 
Min 

1 +            

2 +          +  

3 +           + 

4 +          + + 

5 + +           

6 + +         +  

7 + +          + 

8 + +         + + 

9   +          

10   +        +  

11   +         + 

12   +        + + 

13   +      +    

14   +      +  +  

15   +      +   + 

16   +      +  + + 

17   +       +   

18   +       + +  

19   +       +  + 

20   +       + + + 

21    +         

22    +       +  

23    +        + 

24    +       + + 

25    +     +    

26    +     +  +  

27    +     +   + 

28    +     +  + + 

29    +      +   

30    +      + +  

31    +      +  + 

32    +      + + + 

33 +    +        

34 +    +      +  

35 +    +       + 

36 +    +      + + 

37 + +   + +       

38 + +   + +     +  

39 + +   + +      + 

40 + +   + +     + + 

41   +    +      

42   +    +    +  

43   +    +     + 

44   +    +    + + 

45   +    +  +    

46   +    +  +  +  

47   +    +  +   + 

48   +    +  +  + + 

49   +    +   +   

50   +    +   + +  

51   +    +   +  + 

52   +    +   + + + 

53    +    +     

54    +    +   +  

55    +    +    + 

56    +    +   + + 

57    +    + +    

58    +    + +  +  

59    +    + +   + 

60    +    + +  + + 

61    +    +  +   

62    +    +  + +  

63    +    +  +  + 

64    +    +  + + + 
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 Table 6-2 Optimal Safety Performance Functions 

 

  

 

 Dependent variable: 

  

 KABCO KABC KAB Rear-End Angle+Left-Turn 

 (1) (2) (3) (4) (5) 

 

log_maj_aadt 1.606***   2.171***  

 (0.252)   (0.275)  

      

log_mod_aadt  3.688*** 3.873***  2.990*** 

  (0.701) (0.748)  (0.695) 

      

mod_aadt  -0.0001** -0.0001***  -0.0001** 

  (0.0001) (0.0001)  (0.0001) 

      

speed_maj 0.078*** 0.066** 0.072**  0.113*** 

 (0.027) (0.030) (0.029)  (0.024) 

      

speed_min  0.056* 0.065** 0.061**  

  (0.033) (0.032) (0.028)  

      

Constant -15.489*** -35.365*** -37.996*** -21.277*** -29.183*** 

 (2.222) (5.931) (6.421) (2.852) (5.754) 

      

 

Observations 124 124 124 124 124 

Log Likelihood -303.571 -245.190 -200.676 -186.123 -230.428 

Overdis. Param.  0.231*** 0.471*** 0.612*** 0.355*** 0.370*** 

AIC 613.142 500.379 411.351 378.247 468.855 

 

Note: *p<0.1;** p<0.05;*** p<0.01 
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6.2.3 Optimize Safety Performance Functions 

SPFs were developed for KABCO, KABC, KAB, rear-end, and angle+left-turn crashes at urban 

four-legged intersections using maximum likelihood estimation to fit the negative binomial 

models. According to Figure 6-3, there is a trend that the AADT exposure 1-4 outperform AADT 

exposure 5-8, which indicates that using only the natural log of AADT perform better when I fit 

the SPFs for KABCO crashes. After screening, the optimized model is the second design which is 

the log of the major AADT with the major speed limit. 

 

 

Figure 6-3 AICs for each SPF in KABCO crashes 

 

In Figure 6-4, the AIC result is opposite, the AADT exposure 5-8 outperform AADT exposure 1-

4. This suggests adding the non-log form of AADT provides a better fit when developing the SPFs 

for KABC crashes at urban four-legged intersections. Based on the figure, the optimized model is 

the 56th design which is the log of the modular AADT, modular AADT, speed limit on the major 

road, and speed limit on the minor road. 
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Figure 6-4 AICs for each SPF in KABC crashes 

 

For KAB crashes, the AIC shown in Figure 6-5 share similar trend compared to Figure 6-4. SPFs 

with the log and the non-log form of AADT provide a better fit when developing the SPFs. Besides, 

the optimized model is the same as the SPF in KABC crashes which is the 56th design. 

 

 

Figure 6-5 AICs for each SPF in KAB crashes 
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For rear-end crashes, Figure 6-6 indicates there is a trend that the AADT exposure 1-4 outperform 

AADT exposure 5-8, which indicates that using only the natural log of AADT perform better when 

I fit the SPFs for rear-end crashes. In this screening, the optimized model is the third design which 

is the log of the major AADT with the minor speed limit. 

 

 

Figure 6-6 AICs for each SPF in rear-end crashes 

 

For angle+left-turn crashes, Figure 6-7 shows AADT exposure 1-4 have higher AIC comparing to 

AADT exposure 5-8. In this screening, the optimized model is the 54th design which is the log of 

the modular AADT, modular AADT, and the major speed limit. 
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Figure 6-7 AICs for each SPF in angle+left-turn crashes 

 

For all developed SPFs, the AIC differences among top 5 SPFs are small and do not show 

improvement from one to the other. Another finding is that adding the AADT ratio between the 

major road and the minor road does not improve the model fit for any crash category when 

estimating crash frequency on urban four-legged stop controlled intersections. Other than the 

AADT ratio, the speed limit was included in all optimized SPFs. This infers that the speed limit is 

an important factor when developing SPFs which is also suggested by Dixon et al. (2015). In 

addition, the AADT exposure in the optimized SPFs for KABC, KAB, and angle+left-turn include 

the log of the modular AADT and modular AADT. This explains that the AADT on the minor 

road needs to be considered when developing SPFs for severe crashes such as KABC, KAB, and 

angle+left-turn. On the other hand, only the log of the AADT on the major road is selected for the 

KABCO, and rear-end crashes.  This indicates the log of the AADT on the major road is sufficient 

when developing SPFs for non-severe crashes such as KABCO and rear-end.  
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6.3 Data Preparation 

Data were collected and combined from the following five database sources: Roadway 

Characteristics Inventory in Florida, Crash Analysis Report, Florida Financial Management Search 

System, TranStat iView, and Google Earth.   

 Roadway Characteristics Inventory in Florida - provides detailed information of each 

roadway such as AADT and speed limit 

 The Crash Analysis Report System provides information on all the reported crashes in 

Florida, including severity, crash type, and other crash-related characteristics 

 The Financial Management Search System - provides the information on projects 

constructed for FDOT 

 TranStat iView - a geographical database system provided by FDOT TranStat Department, 

which provides satellite images of street view to with lat-long and roadway mileage point 

 Google Earth - provides historical street view to validate the existence of the construction 

 

 Using these data sources, crashes from 2003 to 2015 were collected.  These crashes are divided 

into 30 different crash types including angle, rear-end, head-on and sideswipe, etc. Left-turn 

crashes were sometimes misclassified as angle crashes and vice versa.  To compensate for this 

misclassification, I developed CMFs for the combined angle+left-turn crashes.   

 

The treated intersections in this study are chosen from the FDOT’s Financial Project Search 

System. Signalization of stop-controlled intersections was identified as the major treatment.  In 

the Financial Project Search System, I chose the signalization project from 2005 to 2010. The 

Financial Search System does not provide some essential variables such as AADT.  Thus, I had to 
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refer to other sources such as Google Earth and the RCI to acquire the roadway features of the 

chosen sites.  Through the TranStat iView, I could also precisely match the milepost of the 

constructed intersections; however, TranStat iView does not provide historical satellite maps, so I 

matched the precise location from TranStat I-View to historical satellite maps from Google Earth, 

RCI Database, and FDOT Video Log. 

 

A total of 29 intersections (treated sites) which were converted from an urban four-legged stop 

control to an urban four-legged signal control intersection were identified using the Financial 

Project Search System.  The CMFs were estimated based on these signalized intersections.  The 

authors’ previous research (Wang et al., 2015b) found an inconsistency in CMFs between the first 

year after signalization and following years, so I removed data within one year of signalization. 

After removing these periods, crash data were prepared for conducting before-after analysis. The 

two-year crash data before signalization was queried from 2003 to 2004 and another two-year 

crash data after signalization were queried from 2011 to 2012. 

  

Reference sites were also collected to address regression-to-the-mean bias.  A total of 124 urban 

four-legged stop-controlled intersections (reference sites) were identified to develop SPFs using 

Florida Roadway Characteristics Inventory along with GIS database TranStat iView.  A total of 

1,512 crashes occurred at these intersections over 10 years from 2003 to 2012.  The AADT of the 

major road was included in the SPF. 

 

Table 6-3 and Table 6-4 show the mean, standard deviation, and range of crash frequencies for the 

reference sites and treated sites by severity and crash type.  In terms of severity, angle and left-
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turn crashes usually have higher severity levels than rear-end crashes.  Therefore, examining the 

reduction in KABC crashes is crucial when estimating the safety effect of signalization. Srinivasan 

et al. (2010) debate whether possible injury crashes (C) should be considered injury crashes.  To 

satisfy both perspectives, CMFs were developed for KABC and KAB crashes separately. Rear-

end and angle + left-turn crashes are also evaluated separately.  Table 6-3 Table 6-3 Reference 

Data Used to Develop the Safety Performance Functionand Table 6-4 also include the range of the 

AADT on the major road (rows titled “Major AADT”).  
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Table 6-3 Reference Data Used to Develop the Safety Performance Function 

  

No. of 

Observation Mean Standard Deviation Minimum Maximum 

KABCO Crashes 124 12.15 22.00 0 134 

KABC Crashes 124 6.13 11.35 0 52 

KAB Crashes 124 3.45 6.68 0 38 

Rear-End Crashes 124 2.91 7.43 0 50 

Angle+Left Crashes 124 5.02 10.64 0 57 

Major AADT 124 9802 8648 850 42,500 

Minor AADT 124 1783 1684 100 15,000 

Major Speed Limit 124 35.6 7.59 20 55 

Minor Speed Limit 124 30.81 6.79 15 55 

      

 

Table 6-4 Crash Data for Treated Intersections 

  

No. of 

Observation Mean Standard Deviation Minimum Maximum 

KABCO Crashes Before 29 11.66 9.89 0 40 

KABC Crashes Before 29 6.48 5.17 0 22 

KAB Crashes Before 29 3.35 2.55 0 8 

Rear-End Crashes Before 29 3.41 3.71 0 13 

Ang+Left Crashes Before 29 4.79 4.87 0 18 

KABCO Crashes After 29 11.66 12.67 0 55 

KABC Crashes After 29 5.24 4.67 0 19 

KAB Crashes After 29 2.35 2.48 0 11 

Rear-End Crashes After 29 6.17 9.31 0 42 

Ang+Left Crashes After 29 2.03 2.11 0 9 

Major AADT Before 29 35,954 24820 6,800 110,500 

Major AADT After 29 38,275 30862 6,700 149,000 

Minor AADT Before 29 10,513 13024 1,416 63,500 

Minor AADT After 29 7,728 8683 700 37,000 

Major Speed Limit 29 43.79 6.64 35 55 

Minor Speed Limit 29 34.14 6.95 25 45 

      

 



120 
 

6.4 Result and Discussion 

6.4.1 Observational Before-and-After Study on the Original Data 

After identifying the SPFs with the lowest AIC, five CMFs were calculated using the optimized 

SPFs to perform an observational before-and-after study via the empirical Bayes method. The 

results are shown in Table 6-5. It is found that the signalization decreased the number of KABCO 

crashes by 17%, KABC crashes by 19%, and KAB crashes by 29%. Note that the standard errors 

are lower for the Florida-based CMFs than those provided in the HSM (KABCO and rear-end) and 

the NCHRP Report 491 (KABC).  In addition, based on the standard errors shown in Table 6-5, 

the Florida-based CMF for KABC and KAB crashes are significantly lower than one at a 90% 

confidence level, leading us to conclude that signalization reduces these type of crashes. These 

findings differ from those of NCHRP Report 491, which does not find the CMF for KABC crashes 

to be significantly less than one. This may be a consequence of the fact that my estimated CMF 

for KABC crashes has a lower standard error than that in the NCHRP Report 491. For rear-end 

crashes, the Florida-based result shows a lower CMF, with a smaller standard error, than that in 

the HSM. 

 

On the other hand, the Florida-based crash data have a problem with mixing right-angle and left-

turn crashes.  Therefore, I could not estimate the impact of right-angle and left-turn crashes 

separately to be compared with the CMF of the angle crashes in the HSM. Based on the available 

information, I can conclude that both the Florida-based CMF of angle+left-turn crashes and the 

CMF of angle crashes in the HSM are significantly lower than one. 
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Table 6-5 Comparison of Crash Modification Factors for Signalization 

Reference Number of Legs Crash Severity CMF Standard Error 

HSM (2010) 4 KABCO 0.95 0.09 

HSM (2010) 4 Rear-End 2.43 0.4 

HSM (2010) 4 Angle 0.33 0.06 

NCHRP Report 491 (2003) 4 KABC 0.77 0.27 

This Florida-based research 4 KABCO 0.83 0.06 

This Florida-based research 4 KABC 0.81 0.08 

This Florida-based research 4 KAB 0.71 0.10 

This Florida-based research 4 Rear-End 1.28 0.17 

This Florida-based research 4 Angle+Left-Turn 0.43 0.05 

The values in bold are statistically significant at a 95 % confidence level. 

 

6.4.2 Observational Before-and-After Study on the Resampled Data 

The number of observations for each resampled data are the same as the original dataset which is 

29 for the treated sites and 124 for the referenced sites. Using the resampled data, the CMFs for 

crash severity and crash type are shown in Figure 6-8 and Figure 6-9, respectively. All bootstrap 

CMFs were aligned with the horizontal axis, which were calculated based on each resample. In 

the figures, the expected CMF values are plotted in blue. The 90 percent upper bound confidence 

intervals were plotted in green while the lower confidence intervals were in red.   

 

The CMFs estimated using the original datasets are 0.83, 0.81, and 0.71 for KABCO, KABC, and 

KAB crashes. Although these three CMFs are significantly lower than one, the crash counts used 

for the estimation were aggregated from all samples which ignores the heterogeneity of each site. 

To solve this, the bootstrap technique was used to examine the stability of the CMFs. Figure 6-8(a) 

shows the result of the bootstrapped CMFs for KABCO crashes which 74 percent of the 
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bootstrapped CMFs are significantly lower than one with 1 percent significantly higher than 1.  

For KABC crashes, the result is shown in Figure 6-8(b) with 66 percent of the bootstrapped CMFs 

significantly lower than one and 1 percent higher than 1. For KAB crash as shown in Figure 6-8(c), 

78 percent of the bootstrapped CMFs are lower than 1 and none of the bootstrapped CMF is higher 

than one.  
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a. CMF Values for KABCO Crashes 

 

b. CMF Values for KABC Crashes 

 

c. CMF Values for KAB Crashes 

 

Figure 6-8 CMF Values for each Resamples for KABCO KABC KAB Crashes 
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The bootstrapped CMFs for rear-end crashes are displayed in Figure 6-9(a), and the bootstrapped 

CMFs for angle-left turn crashes are shown in Figure 6-9(b). For rear-end crashes, the range of the 

bootstrapped CMFs is wider than the other crash categories which suggests the effect is not stable. 

In detail, as shown in Figure 6-9(a), the CMF values can differ from 0 to 3. Such differences can 

lead to erroneous judgement if the stability is not considered. On the other hand, the bootstrapped 

CMFs for angle+left-turn crash in Figure 6-9(b) is stable with 98 percent of the CMF values 

significantly below 1 and none of the CMF value significantly higher than 1. This proves 

signalization stably decreases angle+left-turn crashes at the current aggregation level.  
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a. CMF Values for Rear-End Crashes 

 

b. CMF Values for Angle+Left-Turn Crashes 

 

Figure 6-9 CMF Values for each Resamples for Rear- End and Angle+Left-Turn Crashes 

 

The descriptive statistics of bootstrapped CMFs are shown in Table 6-6. In the table, the bootstrap 

standard deviation, 5th percentile, and 95th percentile of bootstrap CMFs are shown. The 

bootstrapped CMFs for angle+left-turn crashes are the only crash category that has 95 percent 

fallen under 1. Besides, the bootstrapped standard deviation is the smallest for angle+left-turn 

crashes. Based on these criteria, it is concluded that the CMF for angle+left-turn crashes is very 

reliable. 
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Table 6-6 Bootstrapped Confidence Interval under Normal Distribution 

 KABCO KABC KAB Rear-End Angle+Left 

Standard Deviation 0.19 0.15 0.18 0.40 0.14 

5th Percentile 0.52 0.61 0.48 0.64 0.26 

95th Percentile 1.09 1.13 1.05 1.89 0.71 
 Bold: 95% of the CMFs are lower than one 

 

The resampling results shown in Figure 6-8 and Figure 6-9 were summarized using box plots (box 

and whisker diagram, McGill et al., 1978) and histograms as shown in Figure 6-10. It is worth 

mentioning that these diagrams were plotted Figure 6-10 using the R package ggplot2 (Wickham, 

2009). Each dot in the box plots represents a bootstrapped CMF calculated from a resample. In 

order to clearly observe the data points, all dots are displayed randomly (horizontal wise) instead 

of mapping the dots in the center line. At the bottom of Figure 6-10, the histograms and density 

plots (using Gaussian kernel) show the distributions of the bootstrapped CMFs. It was found that 

all five histograms are unimodal distributions which has only one peak. If the distribution is a 

multimodal distribution which has multiple peaks, the CMF is less reliable and requires further 

screening to yield a stable CMF.  
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Figure 6-10 Box-Plot and Histograms of the Bootstrapped CMF 
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6.4.3 CMF Precision Rating 

As suggested by the current CMF Clearinghouse (FHWA, 2016), the quality of the CMFs was 

determined using the “star quality rating”. One rating criterion is “controlling the potential bias” 

which suggests controlling all sources of known potential bias. Agreeing that controlling potential 

bias is important, this criterion can be strengthened using the summary statistics of bootstrapped 

CMFs as mentioned in the previous chapter as a quantitative measurement towards bias. Previous 

research focused on screening the bias such as traffic volume and time using CMF function, 

however, the reliability of the CMF after screening is still not quantified. Due to the fact that there 

are countless factors to control, it is important to analyze whether the developed CMFs can be 

applied to the candidate site in different situations. In this case, a precision rating is suggested in 

this chapter in Table 6-7. Three criteria are introduced which are “CMF using the original dataset 

is significantly above or below 1”, “90% of the bootstrapped CMFs are above or below 1 at 90% 

level”, and “the bootstrapped CMFs follow a unimodal distribution”.  

 

Table 6-7 Rating for the Reliability of the CMFs 

 Original CMF >1 

Original CMF <1  

Bootstrap CMF >1  

Bootstrap CMF <1  

Unimodal Precision 

Rating 

Condition 1 + + Yes ***** 

Condition 2 + - Yes *** 

Condition 3 + + No **** 

Condition 4 - + Yes **** 

Condition 5 + - No ** 

Condition 6 - - Yes ** 

Condition 7 - - No * 
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Therefore, this table answers the question that, whether the CMF need additional screening or the 

CMF is already stable at the current aggregation level as previously introduced in Figure 6-1. In 

addition, using this precision rating, it is found that only the CMF for angle+left-turn crashes, falls 

within condition 1 which is the most stable CMF with the highest precision rating. The CMFs for 

KABCO, KABC, KAB crashes, falls within condition 2 which the results are informative but may 

need further screening. Besides, the CMF for rear-end crashes is condition 6 with precision rating 

equals 2. This CMF provides potential trend for engineering consideration, but cannot be used to 

calculate the cost after signalization. In summary, it is concluded that the precision rank of the 

CMFs is: 

Precision of CMF: Angle+Left> KABC>KAB> KABCO> Rear-End 

 

6.5 Conclusion and Recommendations 

In this chapter, safety effects of converting urban four-legged stop-controlled intersections to urban 

four-legged signal-controlled intersections were evaluated based on CMFs. In addition, the 

bootstrap resampling technique was used to analyze the stability of each crash category. The CMFs 

were calculated using the observational before-after study using the empirical Bayes method. 

CMFs were determined for three crash severity categories (KABCO, KABC, and KAB) and two 

crash types (rear-end and angle + left-turn). In order to develop the CMFs using the empirical 

Bayes method, the optimized SPFs were identified based on the result of the factorial experiment. 

In summary, adding non-log exposure (AADT) in the negative binomial formulation improves the 

model fit for KABC, KAB, and Angle+Left-Turn. Another finding is that using the modular 

AADT as the exposure parameter improves the model fits in KABC, KAB, and Angle+Left-Turn 

crashes. In addition, using only AADT of the major road achieve the best model fit for KABCO 



130 
 

and rear-end crashes. In addition to the exposure parameter, the speed limit on the major road was 

found to be an important factor which is significant in KABCO, KABC, KAB, and Angle+Left-

Turn. On the other hand, the speed limit on the minor road was found to be significant for KABC, 

KAB, and rear-end crashes. Therefore, when developing SPFs for stop-controlled intersections, it 

is suggested to collect the information of the speed limit on the major and the minor roads. 

 

The CMF estimates using the original dataset are consistent with previous studies in HSM, 

NCHRP Report 491 and FDOT Part D Project. The signalization lowers total, severe crashes and 

angle crashes, but increase rear-end crashes. After evaluating the bootstrapped CMFs, it is found 

that the CMF for angle+left-turn crashes is stable, whereas, the CMFs for KABCO, KABC, KAB, 

and rear-end are not stable. Furthermore, the standard deviation of bootstrapped CMFs for rear-

end crashes is the largest. Accordingly, the angle+left-turn crashes after signalization is 

categorized as “condition 1” with the highest precision using the precision rating suggested in this 

chapter. The CMFs for KABCO, KABC, KAB crashes were categorized as “condition 2” which 

can be used to predict the future crashes at average condition but not to a specific site. In addition, 

the CMF for rear-end crashes is “condition 6” which only provide clues for the future prediction, 

but cannot be applied to calculate the expected crashes. Therefore, the CMFs for KABCO, KABC, 

KAB, and rear-end crashes require further screening to yield a stable CMF. These CMFs may have 

interaction with skew angle, turning lanes, land use (commercial/residential), and/or factors other 

than geometry design such as country, climate, and/or driver composition.  

 

Further improvement can be performed regarding the ratio of the observation between each 

bootstrap trial and the original sample. In this chapter, the number of the observations in each 
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bootstrapped resample is the same as the original dataset. Larger observation in each resample will 

yield a smaller bootstrap CI but harder to identify the heterogeneity of the CMF. This ratio should 

be situational and requires further investigation to suggest an appropriate value. Therefore, it 

requires further study to find an optimal ratio between the bootstrapped resamples and original 

dataset.  
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CHAPTER 7 : SAFETY PERFORMANCE FUNCTIONS FOR 

DEVELOPING CRASH MODIFICATION FACTORS USING EMPIRICAL 

BAYES METHOD 

7.1 Introduction 

The purpose of this chapter is to validate the transferability of SPFs using different states/sources 

(i.e., Ohio and HSM which developed based on data from Minnesota and North Carolina) and 

apply SPFs from these sources to compare the CMF values for signalization in Florida.  I located 

the treated intersections which control type changed from two-way stop controlled to signal 

controlled.  Using these target intersections, before-after study is conducted using empirical Bayes 

(EB) method.  In order to perform EB analysis, it is needed to develop SPFs and calculate the 

predicted crashes based on the SPFs to serve as priors.  Since these treatments are located in the 

state of Florida, the SPFs in Florida are likely to have the highest accuracy.  Under this assumption, 

this chapter compares the CMFs values among multiple SPFs from these 3 sources.  If the CMFs 

calculated by the SPFs in HSM are close to the CMFs when using the SPFs in Florida, it would be 

a substantial benefit because it is not necessary to re-estimate SPFs based on local conditions for 

signalization.   

 

The issue of transferability of SPFs and calibrating SPFs is an important topic.  Developing SPFs 

requires a tremendous effort of data collection and data analysis.  If SPFs are transferable, 

researchers and engineers could skip the model development stage which is the most challenging 

part when developing new SPFs.  Many states in the US have already developed their own 

calibration factors based on the SPFs provided in HSM (AASHTO, 2010).  Nowadays, several 

studies investigate the impact of the calibration of the SPFs in HSM for local roadway networks 
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(Cafiso et al., 2013; Mehta and Lou, 2013; Persaud et al., 2002; Sun et al., 2006; Tegge et al., 2010; 

Xie et al., 2011; Young et al., 2012).  Besides, the calibration factors based on the SPFs in HSM 

are examined for places outside America such as Saudi Arabia (Al Kaaf and Abdel-Aty, 2015) and 

Italy (Dell’Acqua et al., 2014).  These studies all pointed out that calibrated HSM models perform 

better (measured by model fit) than non-calibrated one. 

 

7.2 Data Preparation 

7.2.1 Data Description 

Data in Florida were collected and combined from the following five database sources; Roadway 

Characteristic Inventory (RCI), Crash Analysis Report (CAR), Florida Financial Management 

Search System, Transtat iView, and Google Earth. The Financial Management Search System 

provides projects constructed for FDOT.  The CAR system has all the reported crashes.  Crash 

reports included in CAR have information such as severity, crash type, and other crash related 

characteristics.  This system allows us to locate crashes from 2003 to date.  Crashes are divided 

into 30 different crash types including rear end, head on, side swipe, angle, etc. Crashes are also 

divided into five crash severities: fatal, incapacitating injury, non-incapacitating, possible injury 

and PDO.   

 

In order to compare the transferability of applying SPFs from HSM, I specifically target four-

legged intersections in urban/suburban areas.  Since crash reports in Florida sometimes misclassify 

left-turn crashes as angle crashes, I could only estimate angle and left turn crashes together. In 

HSM, the expected crash count for different crash types such as rear-end crashes and angle crashes 

are calculated based on proportion to KABC crashes and PDO crashes.  However, there is no 
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proportion of left turn crashes provided by HSM.  Therefore, it is not possible to calculate the 

predicted crash count for left-turn crashes using the ratio suggested in HSM.  In this case, I cannot 

compare the CMFs value for angle crashes nor left turn crashes.  

 

The treatment locations were chosen from two sources, one is from the Financial Project Search 

System and another part is from RCI, both maintained by FDOT. I have selected the signal 

installation date from 2005 to 2010. After retrieving these data, we combined traffic volume on 

the major road and the minor road with the target intersections using GIS.  On the other hand, the 

Ohio data is collected from the Highway Safety Information System (HSIS). Crash data was 

combined from 2003 to 2011.  

 

7.2.2 Summary of Data Collection 

Twenty-nine intersections that were signalized were identified in Florida.  The CMFs were 

estimated based on these 29 signalized intersections.  For reference intersections in Florida, data 

for 126 intersections were located with major and minor AADT.  On the other hand, I have more 

than 1000 reference locations in the state of Ohio.  In order to compare the Florida SPFs with Ohio 

SPFs, I also control the sample size by randomly selecting 126 intersections from Ohio.  The 

descriptive statistics for the treatment group, Florida reference group, and Ohio reference group 

are shown in Table 7-1.  In the first part of the table, descriptive statistics for the treated sites are 

shown, if the variable is in before condition I inserted “Before”, if it is after condition I inserted 

“After”.   
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 The roadway variables include:  

(1) Annual average daily traffic on major road (Maj_AADT) 

(2) Annual average daily traffic on minor road (Min_AADT) 

(3) Total Average annual daily traffic entering the intersection (Tot_AADT) 

 

For each variable, simple statistics is provided with mean, standard deviation and minimum and 

maximum value also shown in Table 7-1.  In addition, descriptive statistics of three crash types 

are also shown.  On top of the crash count, the crash rate for each crash types is calculated.  The 

unit of rate is “million vehicles entering the intersection per year per site”.  The detailed 

explanations for these crash types are: 

(1) Total crashes (KABCO) - /per site per yr 

(2) Fatality and injury crashes (KABC) - /per site per yr 

(3) Rear-end crashes (Rear) - /per site per yr 

(4) Total crash Rate (KABCO_Rate) - / per mvmt per yr per site 

(5) Fatality and injury crash Rate (KABC_Rate) - / per mvmt per yr per site 

(6) Rear-end crash Rate (Rear_Rate) - per mvmt per yr per site 

 

Overall, 29 treatment sites are located with 126 reference sites from Florida and 126 reference sites 

from Ohio.  To insure the quality of the SPFs, I checked the reference group to verify that there is 

no major geometry change in the research period.  For the data in Florida, I have checked street 

images from multiple years using Google Earth. On the other hand, for the data in Ohio, I made 

sure that the selected sites do not overlap with the treatment list in the research period. 
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The crash rate for KABCO is much higher in Ohio compared to Florida.  Ohio has KABCO crash 

rate at 276 per million vehicles per year, and there are only 78.981 crashes per million vehicles per 

year in Florida.  A similar situation was found for rear-end crashes.  The rear-end crash rate in 

Ohio is more than 5 times than in Florida which is a significant different.  On the other hand, crash 

rate for KABC in Ohio is 60 percent more than in Florida.  Due to the differences in crash rate, it 

is expected that the predicted crash count for each state based on its own SPFs are different.  

Therefore, the calibration factor is needed to bridge this gap across regions. 
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Table 7-1 Descriptive Statistics 

Descriptive Statistics for Treatment Sites     N=29 
 
Statistic  Mean St. Dev. Min Max 

 
Maj_AADT_Before  35,954 24,820 6,800 110,500 
Min_AADT_Before  10,513 13,024 1,416 63,500 
Tot_AADT_Before  46,467 35,156 10,281 162,500 
Maj_AADT_After  38,275 30,862 6,700 149,000 
Min_AADT_After  7,728 8,684 700 37,000 
Tot_AADT_After  46,002 33,906 8,100 169,000 
KABCO_Before  11.655 9.893 0 40 
KABCO_After  11.655 12.670 0 55 
KABC_Before  6.483 5.166 0 22 
KABC _After  5.241 4.673 0 19 
Rear_Before  3.414 3.708 0 13 
Rear_After  6.172 9.312 0 42 

 
Descriptive Statistics for Reference Sites in Florida     N=126 

 

Statistic  Mean St. Dev. Min Max 

 
Maj_AADT  9,791 8,590 850 42,500 
Min_AADT  1,864 1,902 100 15,000 
Total_AADT  11,655 9,145 1,500 48,500 
KABCO  1.198 2.186 0 13.4 
KABC  0.613 1.128 0 5.2 
Rear  0.291 0.737 0 5 
KABCO_Rate (per mvmt/yr)  78.981 151.491 0 839.080 
KABC_Rate (per mvmt/yr)  40.812 85.410 0 586.207 
Rear_Rate (per mvmt/yr)  16.542 36.981 0 245.989 
      

Descriptive Statistics for Reference Sites in Ohio     N=126 

 

Statistic  Mean St. Dev. Min Max 

 
Maj_AADT  13,031 8,625 530 46,090 
Min_AADT  4,401 3,593 259 19,400 
Total_AADT  17,432 10,708 980 54,249 
KABCO  5.6226 7.073 0 38.889 
KABC  1.324 1.158 0 7.556 
Rear  2.336 3.692 0 23.667 
KABCO_Rate (per mvmt/yr)  276.309 240.000 0 1158.701 
KABC_Rate (per mvmt/yr)  66.968 58.946 0 249.373 
Rear_Rate (per mvmt/yr)  104.122 119.719 0 606.938 
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7.3 Results 

Safety performance functions were developed using the NB Model formulation.  SPFs were 

developed based on total crashes, KABC (fatal and injury) crashes, and rear-end crashes 

respectively.  In this study, I targeted on four-legged intersections as my locations. In this section, 

SPFs for Florida, Ohio and HSM will be developed.  Calibration factors are also shown in the 

following paragraph.  The predicted crash counts were calculated from the SPFs then adjusted by 

calibration factors.  Using the different predicted crash counts from each source (Florida, OH, 

HSM), I estimated CMF accordingly. 

 

7.3.1 Safety Performance Function 

HSM and other research suggest that it is ideal to use the log of major AADT and the log of minor 

AADT to develop SPFs.  However, after developing SPFs using major and minor AADT as 

separate variables, I found that the model fitness is worse than using the total AADT in Florida 

and Ohio. In addition, the log of minor AADT is not significant in Florida.  Therefore, I estimated 

the models using the log of the total AADT.  On the other hand, I applied the base condition model 

of the urban and suburban arterials in HSM.  The model form in HSM is provided with the 

coefficient of the log of major AADT and the log of minor AADT.  In this case, Equation 7-1 

represents the model form for developing SPFs for Florida and Ohio and Equation 7-2 

demonstrates the equation for HSM. 
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The variables included in the model form can be explained as follows:  

i. Log AADT on Both Major and Minor Road (Log Total_AADT) 

ii. Log AADT on Major Road (Log Major_AADT) 

iii. Log AADT on Minor Road (Log Minor_AADT) 

The equations can be written in this form. 

N = exp(𝛽0 * (Total_AADT)^ 𝛽1)     (7-1) 

N = exp(𝛽0 * (Major_AADT)^ 𝛽2 * (Minor_AADT)^ 𝛽3) (7-2) 

 

where  N=Crash Frequency  𝛽0 = Intercept  𝛽1 = Coefficient for log (Total_aadt) 

 𝛽2 = Coefficient for log(Major_AADT)     𝛽3 = Coefficient for log(Minor_AADT) 

 

The relationship between total AADT and each crash types is shown in Figure 7-1.  The y-axis is 

the predicted crash count per year and x-axis is AADT entering the intersections.  Due to the 

limitation that I do not have the data for developing the SPFs in HSM, I cannot include the fitted 

line for HSM.  In the figure, the dark gray lines represent fitted values for Florida and the lighter 

gray lines represent fitted values for Ohio.  For crash types “KABCO” and “rear-end” crashes, 

Ohio’s predicted crashes is higher than Florida’s for our study AADT group.  However, for KABC 

crashes, Ohio’s predicted crashes is higher only at low AADT intersections.  Florida’s predicted 

crash count becomes higher when total AADT is higher than 15,955 (vehicles entering 

intersection). 
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  Figure 7-1 Scatter Plot for Crash Count and Total AADT 

 

The results in Table 7-2, show that three variables were selected to be included in the final SPF.  

According to the result, I could see that the coefficient is much different from each source.  For 

the models developed for Florida and Ohio, all listed coefficient is significant at 99 percent level.  

When comparing the SPFs from Florida with Ohio, the coefficient of the log of total AADT is 

very different from the coefficient in Ohio.  Besides, the SPFs from HSM consist of the major and 

minor AADT separately, which is different from Florida and Ohio condition as well.  It is worth 
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noting that there are no SPFs for rear-end nor left turn crashes in the SPFs from HSM.  Instead, a 

proportion was suggested based on FI and PDO crashes respectively in HSM.  Therefore, as shown 

in Table 7-2, the SPF for rear-end is stated as the pound sign.     

 

It is worth noting that in HSM, the suggested way to calculate rear-end crashes is to estimate 

KABC and PDO crashes first, and then multiply the predicted crashes by a certain ratio to get the 

predicted count.  In fact, the SPFs are developed based on the data from Minnesota and North 

Carolina.  However, the proportion factors are developed based on the data collected in California.  

This inconsistency may cause potential bias when applying the SPFs to estimate rear-end crashes.  
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Table 7-2 SPFs for each Crashes Types (The Urban 4-Leg Intersections) 

 

Negative Binomial Model using Data in Florida  N=126 
 

 Dependent variable: 
  

 KABCO KABC Rear 
    

Constant -18.601 -22.222 -21.754 
log(Total_AADT) 1.985 2.304 2.147 
Overdispersion  
Parameter 

0.193 0.250 0.294 

 
Negative Binomial Model using Data in Ohio  N=126 
 

 Dependent variable: 
  

 KABCO KABC Rear 
    
Constant -12.212 -12.709 -16.864 
log(Total_AADT) 1.416 1.321 1.791 
Overdispersion  
Parameter 

1.487 1.534 1.140 

 

Negative Binomial Model using Data in HSM  N=96 
 

 Dependent variable: 
  

 KABCO KABC Rear 
    

Constant -8.97 -11.20 # 
log(Major_AADT) 0.82 0.93 # 
log(Minor_AADT) 0.25 0.28 # 
Overdispersion  
Parameter 

2.50 2.08 # 

 
Note: #Use proportion in HSM 
 All coefficients are significant at 99% level 

 
 

  



143 
 

The CMFs were calculated as shown in Table 7-3,  After calculating the predicted crash count 

from SPFs, the empirical Bayes method was utilized to estimate the crash modification factors 

(CMFs) for each category.  The comprehensive CMFs result is shown in Table 7-3. Similar to 

previous research findings, signalization will result in more rear-end crashes.  However, the CMFs 

for KABCO are different from HSM.  According to HSM, the CMF is at 0.95 when signalizing an 

intersection in an urban area.  But the CMF calculated in Florida is at 0.785 which is 0.165 lower 

than HSM.  In fact, if I apply the SPFs and its corresponding calibration factors, the CMF values 

will become 1.062 and 1.072 which is significantly higher than using the SPF in Florida.   

Table 7-3 Crash Modification Factors using SPFs of Different States w/o Calibration Factors 

       FLORIDA         OHIO          HSM 

 CMF 

Standard 

Error CMF 

Standard 

Error CMF 

Standard 

Error 

KABCO 0.785 0.057 1.060 0.083 1.072 0.084 

KABC_CMF 0.599 0.057 0.856 0.089 0.855 0.089 

REAR_CMF 1.283 0.167 1.829 0.258 1.814 0.255 

 
 
The calibration factors were estimated in this chapter as shown in Table 7-4.  In Ohio, the 

calibration factors show the crash count is higher than that in Florida. Therefore, the calibration 

factors for all crash severities and types are below 1. For rear-end crashes, the calibration factor is 

as low as 0.23.  This means that the rear-end crash count in Ohio is much higher than in Florida.  

On the other hand, the SPFs suggested in HSM were developed using data from Minnesota and 

North Carolina.  It is worth noting that the number of KABC crashes depicted in HSM is much 

less than in Florida.   
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Table 7-4 Calibration Factors for OH and HSM SPFs Based on FL 

  KABCO KABC REAR 

OH 0.3835 0.8171 0.2342 

HSM 0.785 2.067 0.5229 

 

After applying calibration factors along with the predicted crash count based on the SPFs, the 

adjusted CMFs are shown in Table 7-5.  Comparing the results without applying calibration factors 

as shown in Table 7-3 with the calibrated ones shown in Table 7-5, there is only minor difference.  

This is due to the weight for predicted value E{k} is small as shown in Equation 3-3.  Therefore, 

after adjustment by Equation 3-5 which is the ratio suggested by Gross et al., 2010, the differences 

are marginal.  

Table 7-5 Crash Modification Factors using SPFs of Different States with Calibration Factors 

       FLORIDA         OHIO          HSM 

 CMF 

Standard 

Error CMF 

Standard 

Error CMF 

Standard 

Error 

KABCO 0.785 0.057 1.062 0.083 1.072 0.084 

KABC_CMF 0.599 0.057 0.857 0.089 0.852 0.088 

REAR_CMF 1.283 0.167 1.837 0.260 1.818 0.256 

 
 

By plotting the CMF values in Table 7-5Table 7-5 to line chart as shown in Figure 7-2, I can 

observe the difference more closely.  The CMFs using HSM and Ohio SPFs are significantly higher 

for KABCO and KABC crashes when using the locally developed Florida SPFs (after adjustment 

by the calibration factor).  This is an important finding since the CMFs become insignificant in 

KABCO crashes when applying SPF from different sources.  If I apply the SPF using Florida data, 

I would expect to get 21.5% crash reduction and it is statistically significant.  However, substituting 

the Florida SPFs with the SPFs from HSM or Ohio, I would get CMF values slightly higher than 
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1 and not significant.  In addition, the rear-end crashes have a similar pattern which CMFs from 

HSM and Ohio are also higher than Florida but not significant. 

 
 

  

Figure 7-2 Comparison of CMF using SPFs from the Different States (90% Confidence Interval) 

 

The estimated CMFs were compared from this chapter with others.  According to the results shown 

in Table 7-6Table 7-6, the CMFs for KABCO and KABC crashes in this chapter is not significantly 

different from previous research (HSM (AASHTO, 2010) and NCHRP Vol. 491(McGee et al., 
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2003)).  In fact, the results specified in this chapter have a lower standard error which indicates 

that the CMFs are more precise.  However, there is one issue worth noting which is that the CMFs 

were developed for all types of crashes in HSM and NCHRP Vol.491. However, the CMFs in this 

chapter are specifically for multi-vehicle crashes.  The reason I did not use all types of crashes 

(including single vehicle crashes) is due to the SPFs in HSM separate the urban/suburban into 

multi-vehicle crashes and single vehicle crashes.  In order to compare CMFs using SPFs provided 

in the HSM, I chose multi-vehicle crashes since the majority of crashes at intersections are multi-

vehicle crashes.  Therefore, the CMF values stated in Table 7-6 can still be compared with the 

sources from HSM and NCHRP Vol. 491.   

 
Table 7-6 Signalization Crash Modification Factors in HSM and NCHRP Report 

Crash 
Severity 

Crash 
Type 

CMF 
Standard 

Error 
Reference 

KABCO All Crash 0.95 0.09 HSM (AASHTO, 2010) 

KABCO Multi 0.785 0.06 This chapter (FL SPF) 

KABCO Multi 1.06 0.08 This chapter (OH SPF) 

KABCO Multi 1.07 0.08 This chapter (HSM SPF) 

KABC All Crash 0.77 0.27 
NCHRP Volume 491 
(McGee et al., 2003) 

KABC Multi 0.60 0.06 This chapter (FL SPF) 

KABC Multi 0.86 0.09 This chapter (OH SPF) 

KABC Multi 0.85 0.09 This chapter (HSM SPF) 
Bold text significant at 90% confidence interval 
*Multi represents multi-vehicle crashes 

 

7.4 Conclusion 

In this chapter, I estimated CMFs for the safety effect of signalization implemented in Florida.  

This chapter applied the empirical Bayes method to develop CMFs for KABCO, KABC, and rear-

end crashes using SPFs and calibration factors developed based on Florida, HSM (North Carolina 
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and Minnesota), and Ohio. The results showed the significant difference between the CMFs using 

Florida, Ohio, and HSM SPFs. Therefore, I concluded that it is not suitable to apply data to SPFs 

developed from other jurisdictions without further investigation.   

 

The CMFs were estimated for three crash types (i.e., KABCO, KABC, rear-end).  For each crash 

type, the Florida, Ohio, and HSM SPFs were used to estimate CMFs.  It was observed that the 

coefficients of SPFs from the three sources are not comparable.  In addition, the calibration factors 

comparing the observed crash counts in Florida to the predicted crash counts from Ohio and HSM 

SPFs were also calculated.  According to the results, the calibration factor for Ohio KABCO 

crashes is 0.38.  On the other hand, the calibration factor for KABC crashes in HSM is 2.07. In 

fact, the different reporting threshold among states may be the key factor to explain why the 

calibration factor is needed.  In Ohio, the reporting threshold is $1000+ of property damage.  

However, in Florida, the threshold is based on specific crash conditions. These crash types are, 

involve any injury, leaving the scene, commercial motor vehicles involved, require a wrecker to 

remove it from the scene, and driving under influence.  The different reporting threshold has to be 

considered when using SPFs from non-local ones. That is to say, the calibration factors not only 

adjusting the different crash behavior among states but also adjusting the different reporting 

threshold.  It is challenging to separate the effect of reporting differences from behavioral 

differences.  Therefore, in this paper, I used the calibration factors to consider the combination 

effect as suggested by HSM and found the calibration factors are really different for each crash 

type and state.  Moreover, it is desirable that the next edition of HSM address the issue of reporting 

threshold because its SPFs are intended for nationwide use. 
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Comparing the CMFs calculated based on the calibrated SPFs with the non-calibrated SPFs, it was 

found that differences are minimal.  In detail, I found that when observed before and observed 

after crashes at 150 (crash count for KABC) or more, there is no significant difference between 

whether using the calibrated SPFs or not.  Another important finding in this chapter is that some 

CMF values are statistically significantly different when using SPFs developed from other states.  

In fact, the CMFs for KABCO and KABC crashes are 0.785 and 0.60 for Florida, 1.06 and 0.86 

for Ohio, and 1.07 and 0.85 for HSM, respectively.  The CMFs using the data in Florida are 

significantly lower than Ohio and HSM.  This indicates that SPFs may not be transferrable and it 

results in the biased estimation of CMFs.  An erroneous judgment would be made if I borrow SPFs 

from other states.  The CMF is 0.785 for KABCO using the SPF in Florida which is a closer 

estimate since the treatment targets are located in Florida.   However, when applying the SPFs 

from Ohio or HSM, I would get a higher CMF value at 1.06 and 1.07, respectively.  In this case, 

if Florida does not have its own SPFs and borrows the SPFs from HSM or Ohio, the judgment will 

be different from using the Florida SPF.  Therefore, according to these results, it is suggested to 

apply SPFs from other jurisdictions after thorough examination and validation when developing 

CMFs. It would be most desirable to use locally developed SPFs if sufficient traffic and crash data 

are available. 
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CHAPTER 8 : CONCLUSION 

8.1 Summary 

The dissertation focuses on exploration and development of CMFs. The main objective of this 

study are to 1) develop CMFs at different situations with different roadway characteristics among 

treated sites over time, 2) construct a reliable way to evaluate the quality of CMFs, 3) identify the 

transferability of SPFs in the calculation of CMFs using EB method. Based on the evaluation 

results, corresponding improvement suggestions have been made. 

 

In chapter 3, the CMFs were estimated using the observational before-after study to show that the 

CMFs vary across different traffic volume levels when signalizing intersections. Besides screening 

the effect of traffic volume, the trends of CMFs for the signalization and adding red light running 

cameras (RLCs) were evaluated in chapter 4. CMFs for these treatments were measured in each 

month and 90- day moving windows using the time series ARMA model.  The results of the 

signalization show that the CMFs for rear-end crashes were lower at the early phase after 

signalization but gradually increased from the 9th month onward. Besides, it was also found that 

the safety effectiveness is significantly worse 18 months after installing RLCs. 

 

In chapter 5, four major CMFs calculating methods are introduced for helping users developing 

CMFs using naïve, comparison group, and empirical Bayes methods.  In addition, graphical user 

interfaces (GUIs) are provided to help users to use this tool.  By inputting the data in CSV format 

using the GUI, this package is capable to calculate the expected value of CMF, variance of CMF, 

standard error of CMF, upper bound confidence interval, and lower bound confidence interval. 
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In chapter 6, efforts have been made to seek reliable CMFs, the best estimate of CMFs is still 

widely debated. Since CMFs are non-zero estimates, the population of all CMFs does not follow 

normal distributions and even if it did, the true mean of CMFs at some intersections may be 

different than that at others. Therefore, a bootstrap method was proposed to estimate CMFs that 

makes no distributional assumptions. Through examining the distribution of CMFs estimated by 

bootstrapped resamples, a CMF precision rating method is suggested to evaluate the reliability of 

the estimated CMFs. The result shows that the estimated CMF for angle+left-turn crashes after 

signalization has the highest precision, while estimates of the CMF for rear-end crashes are 

extremely unreliable. The CMFs for KABCO, KABC, and KAB crashes proved to be reliable for 

the majority of intersections, but the estimated effect of signalization may not be accurate at some 

sites. 

 

In chapter 7, the empirical Bayes method was applied to develop CMFs using several SPFs from 

different jurisdictions and adjusted by calibration factors. After examination, it is found that 

applying SPFs from other jurisdictions is not desired when developing CMFs. 

 

8.2 Research Implication 

The implications from Chapter 3 are as follow: signalization reduced fatal and injury crashes 

(KABC and KAB) more than total crashes (KABCO). In particular, signalization is more likely to 

reduce fatal and injury crashes when AADT is lower at intersections.  Also, CMFs for KAB crashes 

were consistently lower than CMFs for KABCO crashes at all AADT ranges. When comparing 

CMFs among the five AADT ranges, installing traffic signals at the stop-controlled intersections 

with AADT greater than 35,000 vpd significantly increases the number of total crashes as indicated 
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by CMFs greater than one. In addition, safety effect of signalization is not significant for KABC 

and KAB crashes at the intersections with AADT of 20,001– 35,000 vpd.  For rear-end crashes, it 

was found that the signalization significantly increased rear-end crashes for AADT greater than 

20,000 vpd.  In particular, the increase in rear-end crashes was generally higher at the intersections 

with higher AADT.  Signalization generally has a negative effect on the reduction of rear-end 

crashes.  In contrast, the signalization significantly reduced angle+left-turn crashes for all AADT 

groups.  

 

The findings in chapter 4 show the following implication: CMFs for signalizing an intersection 

and adding RLCs were measured in each month and 90- day moving windows respectively.  The 

ARMA time series model was applied to predict trends of CMFs over time based on monthly 

variations in CMFs.  The results of the signalization show that the CMFs for rear-end crashes were 

lower at the early phase after the signalization but gradually increased from the 9th month.  On the 

other hand, the CMFs for angle crashes were higher at the early phase after adding RLCs but 

decreased after the 9th month and then became stable. It was also found that the CMFs for total 

and fatal/injury crashes after adding RLCs in the first 18 months were significantly greater than 

the CMFs in the following 18 months.  This indicates that there was a lag effect of the treatments 

on safety performance.  The results of the ARMA model show that the model can better predict 

trends of the CMFs for the signalization and adding RLCs when the CMFs are calculated in 90-

day moving windows compared to the CMFs calculated in each month.  In particular, the ARMA 

model predicted a significant safety effect of the signalization on reducing angle and left-turn 

crashes in the long term.  Thus, it is recommended that the safety effects of the treatment be 
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assessed using the ARMA model based on trends of CMFs in the long term after the 

implementation of the treatment. 

 

Chapter 5 is dedicated to developing an R package to develop CMFs.  This package is named 

“bastudy”.  In this package, three major CMFs calculating methods were introduced to develop 

CMFs using naïve, comparison group, and empirical Bayes methods.  More importantly, this 

package was used to support the examination of the reliability of CMFs addressed in chapter 6. 

 

In chapter 6, the effort was done to identify the quality of CMFs. Through examining the 

distribution of CMFs for five crash categories, estimated by bootstrapped resamples of this data, a 

CMF precision rating method is suggested to evaluate the reliability of the estimated CMFs. The 

analysis shows that the estimated CMF for angle+left-turn crashes after signalization has the 

highest precision, while estimates of the CMF for rear-end crashes are extremely unreliable. The 

CMFs for KABCO, KABC, and KAB crashes proved to be reliable for the majority of 

intersections, but the estimated effect of signalization may not be accurate at some sites. 

 

Several important implications were found from Chapter 7. CMFs for the effect of signalization at 

intersections in Florida were estimated. The empirical Bayes method was used to develop CMFs 

for KABCO, KABC, and rear-end crashes using several safety performance functions (SPFs) from 

different jurisdictions and adjusted by calibration factors.  These SPFs were developed using 

Florida’s and Ohio’s data. Also, the SPFs suggested in the HSM were used to calculate CMFs.  By 

developing and comparing the SPFs from different states, it can be concluded that it might not be 

suitable to apply SPFs from other states without thorough examinations.  The CMF is 0.785 for 
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KABCO using the SPF in Florida and it was significantly smaller than 1, which indicates that the 

signalization at intersections results in more total crashes. However, when applying the SPFs from 

Ohio and HSM, higher CMFs of 1.06 and 1.07 were obtained, respectively. Also they were both 

significantly larger than 1. It shows that the signalization brings about less total crashes. The major 

finding of this chapter is that the CMF values may be significantly different when applying SPFs 

developed from other states. Therefore, one would have biased CMFs if borrowing SPFs from 

other states without proper adjustments. 
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