S —"- RS University of Central Florida
/ k STARS

Electronic Theses and Dissertations, 2004-2019

2015

An Integrated Framework for Automated Data Collection and
Processing for Discrete Event Simulation Models

Carlos Rodriguez
University of Central Florida

b Part of the Computer Sciences Commons, and the Engineering Commons
Find similar works at: https://stars.library.ucf.edu/etd
University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted
for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation

Rodriguez, Carlos, "An Integrated Framework for Automated Data Collection and Processing for Discrete
Event Simulation Models" (2015). Electronic Theses and Dissertations, 2004-2019. 719.
https://stars.library.ucf.edu/etd/719

. . * + ’ d ' *

g.o..:"‘. +§_ +‘ + . 0*‘ ‘o
ersity of el . " +

Poeg Tw. + ¥ .1 STARS

Florida . * ’ + + Showcase of Text, Archives, Research & Scholarship


https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/719?utm_source=stars.library.ucf.edu%2Fetd%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

AN INTEGRATED FRAMEWORK FOR AUTOMATED DATA COLLECTION AND
PROCESSING FOR DISCRETE EVENT SIMULATION MODELS

by

CARLOS MANUEL RODRIGUEZ
B.S. University of Minnesota Twin Cities, 2001
B.S.B. University of Minnesota Twin Cities, 2002
M.S.P.E. University of Illinois Urbana-Champaign, 2004
M.S. University of Illinois Urbana-Champaign, 2005
M.A. Boston University, 2008

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida

Summer Term
2015

Major Professor: J. Peter Kincaid



© 2015 Carlos Manuel Rodriguez

i



ABSTRACT

Discrete Events Simulation (DES) is a powerful tool of modeling and analysis used in
different disciplines. DES models require data in order to determine the different parameters that
drive the simulations. The literature about DES input data management indicates that the
preparation of necessary input data is often a highly manual process, which causes inefficiencies,
significant time consumption and a negative user experience.

The focus of this research investigation is addressing the manual data collection and
processing (MDCAP) problem prevalent in DES projects. This research investigation presents an
integrated framework to solve the MDCAP problem by classifying the data needed for DES
projects into three generic classes. Such classification permits automating and streamlining the
preparation of the data, allowing DES modelers to collect, update, visualize, fit, validate, tally
and test data in real-time, by performing intuitive actions. In addition to the proposed theoretical
framework, this project introduces an innovative user interface that was programmed based on
the ideas of the proposed framework. The interface is called DESI, which stands for Discrete
Event Simulation Inputs.

The proposed integrated framework to automate DES input data preparation was
evaluated against benchmark measures presented in the literature in order to show its positive
impact in DES input data management. This research investigation demonstrates that the
proposed framework, instantiated by the DESI interface, addresses current gaps in the field,
reduces the time devoted to input data management within DES projects and advances the state-

of-the-art in DES input data management automation.
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CHAPTER ONE: INTRODUCTION

The Importance of Data Collection in Discrete Event Simulation

Discrete Event Simulation (DES) is widely regarded as a very powerful tool of modeling
and analysis. DES is used in different disciplines, and its usage will continue to grow [1], fueled
to a large extent, by the continuous enhancements in computer capabilities [3]. Areas of
application of DES include, but are not limited to manufacturing, health care, logistics, military
applications, finance and business, academia, human resources and energy [8]. Within these
areas, DES has had an important impact in design, planning and control, strategy making,
resource allocation and training [6].

DES models rely heavily on data in order to estimate different parameters that drive the
models through simulated time [3]. It is universally accepted that quality data are key drivers of
competitive advantage and proper decision making [32]. Such convention applies directly to
DES modeling, where results are sensitive to the quality of the data used to build the simulation
models.

The goal of this research project is developing the foundations for programming a robust
automated alternative to replace manual data collection and processing (MDCAP). As is detailed
later in this document, MDCAP is a common practice among DES researchers and practitioners,
most of whom agree that more automation in the collection and processing of DES input data is

highly desirable [8].



Motivation

Robertson and Perera pointed out that “data collection is an extremely time consuming
process predominantly because the task is manually orientated.” [7]. This is especially the case
when the data are collected through personal observation such as through-time studies or
collected via database queries of historical processes or system performance.

The challenges of MDCAP are not so prevalent when obtaining DES model input data
from system or process documentation such as process plans, facility layouts and work
procedures, from personal interviews with subject matter experts, from vendor claims, from
design estimates and specifications, and from the open research literature, which are all common
sources of data to construct DES models. In the framework presented in this research
investigation, such valid sources of data are used to build the model logic. As will be discussed
later in this document, the model logic has a very specific role in the development of a new
approach to automate data collection and processing for DES models.

Further manual processing of collected data is often required beyond the computations
performed in a spreadsheet because the data sometimes need to be converted into a format that is
compatible with a probability distribution fitting software, such as ExpertFit® by Averill M.
Law and Associates, Inc., EasyFit® by MathWave Technologies, Stat::Fit® by Geer Mountain
Software, Minitab® by Minitab, Inc., and R, a free software programming language.

Therefore, the focus of this research is when the simulation modeler or analyst is tasked
with the collection of historical performance data from a stochastic, dynamic process or system.

Some of the simulation researcher - and practitioner - recognized challenges of MDCAP

include:



e Manual data collection including data entry, which increases the likelihood of data entry
errors arising from human manipulation of data;

e Data pre-processing in the form of reformatting and calculations, e.g., data preparation
for probability distribution fitting, the calculation of interarrival time parameters, service
time parameters and historical probability parameters, etc.; and

e Multiple file handing in order to maintain and process data, which can become
particularly burdensome psychologically.

This research proposes a framework to eliminate the undesirable characteristics of
MDCAP using a robust, innovative, intuitive, automated and user-friendly solution that can be

used across the different disciplines where DES modeling is appropriate.

State-of-the-Art in Automated DES Data Collection and Processing

The state-of-the-art in DES input data management automation includes solutions that are
highly customized and specific to the project being carried out. In other words, the state-of-the-
art is moving away from generalization and towards project-specific customization. The
documented state-of-the-art solutions are exclusive to manufacturing applications of DES and
are considered “too difficult” to implement on a consistent basis [8], especially outside of
manufacturing. Such difficulties are confirmed by the fact that most DES practitioners still use
manual approaches to prepare data for DES models. As of 2012, 80% of practitioners still rely on
some type of manual gathering and processing of input data for DES projects [8].

There are documented solutions such as the Generic Data Management Tool (GDM-
Tool) [14] and Machine Data Acquisition (MDA) [15], which do address some of the challenges

of manual data processing, but they rely on previously available data found within corporate data
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systems. Such reliance on the existence of previous data imposes challenges to the proliferation
of these kinds of solutions because data are often not available or if available, these are often not
ready to be used in DES models. This suggests that in order to advance the state-of-the-art, there
needs to be less reliance on often-unavailable corporate data systems and more reliance on non-
available but collectable data. Furthermore, in order to advance the state-of-the-art, new
solutions must be usable beyond manufacturing applications of DES.

Currently, the streamlined real-time integration of data collection, data calculations,
probability distribution fitting and assumptions checking does not exist in DES input data
management literature. As a matter of fact, there is no documented attempt to accomplish such
tasks in a streamlined, automated manner. Furthermore, there is no theoretical foundation that
supports the development of such a solution. The fact that there is no integrated solution that
starts with the collection of data, leads to isolated processing of several steps within DES input

data management, potentially causing undesirable time delays in the completion of DES projects.

A New Alternative for DES Input Data Management

The approach proposed in this research starts with the analyst collecting the raw data
based on a well-defined framework by performing actions such as pressing buttons with
computer mouse clicks.

This project proposes three general classes of data for DES projects, regardless of the
area of application. The intended classification of the data is the foundation of the proposed
framework in order to achieve DES data processing automation. In this research, the data that are

collected are assumed to be independent and identically-distributed (IID), nevertheless the



proposed framework permits the automated validation of such critical assumption [3] in real-
time. The three general classes of input data can be conceptualized as follows:
I.  The class of data when the ending time of one event is the start time of the next event

(e.g., interarrival times).

II.  The class of data when the ending time of one event is not the start time of the next event;
hence, there must be a start time and an end time for each event (e.g., service times,
processing times, production times, transport times, etc.).

III.  The class of data when tallying different outcomes at a decision point generates relative
frequencies, which represent historical probabilities, where the sum of the probabilities of

each distinct outcome at a given decision point equals 1.0 [4].

At least one of these three conceptual data classes is necessary in any DES project [3, 4]
in addition to the model logic. Moreover, as the complexity of the subject process or system
increases, the likelihood of including data from all three classes increases. This implies that data
needed for any DES project fall among or can be derived from these three general data classes.
Throughout the remainder of this document, these general data classes are referred to as Class
(D), Class (II) and Class (III). Formal definitions of Class (I), Class (II) and Class (III) data are

provided in chapter three, where the proposed framework is presented in detail.

Claim 1 Data of Class (I), Class (IT) and/or Class (III) suffice to put together any DES project,

given the model logic that allows identifying the necessary parameters.

The development of the proposed framework to address MDCAP must rely on Claim 1.

The existence of a model logic is essential in simulation models; Skoogh and Johansson indicate



that “the first step while preparing input data for simulation models is to identify which
parameters are necessary to include in the model” and that “all parameters need to be defined
with regard to how they shall be measured and represented in the model” [5].

The proposed framework also needs to be robust; that is, it must be applicable across
different disciplines that utilize DES. Such framework is the theoretical foundation for
programming a computer solution that automates input data management for DES models. If the
proposed automated solution can effectively collect Class (I), Class (II) and Class (III) data, then
this solution can be used across different disciplines where DES modeling is appropriate. This

reasoning leads to the following:

Claim 2 Any solution that can collect Class (I) data, Class (IT) data and Class (III) data can be

used on any DES project, regardless of the discipline or area of application.

The development of a computer solution to address MDCAP must rely on Claim 2. Such
automated solution is the instantiation of the proposed integrated framework for automated DES

data collection and processing.

Research Objectives

The aim of this research investigation is to produce an innovative solution in the area of
data collection, processing and management for DES modeling. The ultimate goal of this
investigation is to develop a framework where user inputs automatically generate data collection,

processing and management in order to accelerate the construction of DES models with the



intent of reducing the life cycle of DES studies. The specific objectives of this research are as

follows:

Objective 1: Formulate the MDCAP problem within the context of DES models;

Objective 2: Design an integrated theoretical framework to address the MDCAP problem. The
proposed framework will provide the foundations to rapidly process raw data in real-time and
generate the necessary data computations, transformations (e.g., distributions, probabilities, etc.),
graphics and validations required for DES models. The framework will not only be based on
classical statistical modeling principles but it will also be designed using user-centered design

and human-computer interaction design principles to enhance the overall user experience.

Objective 3: Compare the proposed integrated framework to other automated solutions for DES
input data management such as the Generic Data Management (GDM) Tool and Machine Data
Acquisition (MDA) in order to demonstrate that the proposed integrated framework addresses

current gaps in the field; and

Objective 4: Perform usability studies in order to measure the impact of the proposed framework

and maximize its compatibility with the needs and desired uses of DES modelers and analysts.



Expected Contributions of this Research Investigation

This investigation should contribute quite significantly to the body of knowledge and
advance the state-of-the-art in DES data collection and management. Specifically, this
investigation adds the following original contributions to the body of knowledge:

i.  The conceptualization of data needed for DES projects into three specific data
classes, which permits focusing on each data class in order to automate its collection
and processing.

ii. A generic approach to automate input data management that is applicable across the
different disciplines where DES modeling and analysis are appropriate.

iii.  Input data management automation for DES models without relying on previously
available data within internal data sources or corporate data systems.

This research will potentially reduce the time devoted to MDCAP because the proposed
solution will streamline and automate the collection and processing of the data in real-time in
response to user inputs. In addition, automation will potentially reduce data entry errors and
increase data quality due to less human intervention. Finally, this research will provide a
mechanism for the real-time validation of DES theoretical assumptions, guaranteeing the
theoretical validity of the resulting parameters and consequently of the simulation models [3].

Several studies suggest that the amount of time within DES projects devoted to input data
management is about 31% of the entire project’s time, and could scale up to 40% [5, 33]. The
fact that most DES analysts and practitioners desire solutions that automate DES input data
management [8] suggests that the proposed solution will be attractive to users due to the

avoidance of manual data collection and processing.



Organization of this Document

The remainder of this document is organized as follows. Chapter two presents a review of
the existing research literature about the state-of-the-art in automated data collection and
processing for DES models. The details about the proposed integrated framework are presented
in chapter three. An instantiation of the proposed framework is detailed in chapter four in the
form of the DESI user interface. Chapter five presents a comparison between the DESI interface
and other documented solutions for DES input data management automation. Chapter six
evaluates the impact of the proposed framework on DES projects’ time-to-completion. Chapter

seven presents suggestions for future research and the conclusion.



CHAPTER TWO: LITERATURE REVIEW

Methodologies for DES Data Collection

The process of data collection, data entry and data management can take considerable
amount of time within DES modeling projects. The time spent on data management is, on
average, about 31% of the DES project’s lifecycle, and can go up to 40% [5, 33]. Different
research has been focused on analyzing and improving the process of collecting, entering and
managing data for DES projects, nevertheless such efforts are considerably less than the efforts
devoted to statistical techniques for data analysis [12]. Simulation practitioners acknowledge that
different DES software have limited functionalities for data preparation [12] and usually present
insufficient support for input data management [8].

In DES modeling projects, data can be classified based on availability as “non-available
and non-collectable”, “non-available but collectable” and ‘““available” [9]. “Non-available and
non-collectable” data can be approximated by interviewing subject matter experts or by using
data from similar systems or by using available data previously measured and stored in process
libraries [10].

Data categorized as “available”, in DES applications, are usually generated by internal
data systems such as Enterprise Resource Planning (ERP) systems, Material Planning Systems
(MPS), Manufacturing Execution Systems (MES) and previous analysis efforts [5]. “Available”
data are often not ready to be used in simulation models and further processing is required [5].

Depending on where the data are stored, “available” data are often accessible thru
customized tools that may or may not be able to prepare the data for DES projects. Such tools are

often referred to as ETL (extract, transform, load) applications, which can export, process and
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move data between different sources [11]. Documented solutions for DES automated input data
management rely on the existence of “available” data [14, 15, 29]. Such reliance on “available”
data imposes important limitations to the proliferation of these solutions because the
implementation of internal data systems can be complex and costly.

“Non-available, but collectable” data for DES projects can be gathered following
different approaches or methodologies. The most common approach is to conduct time studies
and measure the relevant steps of the subject process or system [5]. Such a manual approach
would fall under input data management methodologies (A) and (B) presented by Robertson and

Perera [7, 8]. Figure 1 summarizes the four DES input data management methodologies.

Data collected manually

butstored in an external source
: such as a spreadsheet.

Methodology B: Manually populated external data source

Corporate Business
Systems

Corporata Business

Methodology D: Directlink o external sources Systems

Figure 1 Alternative data input methodologies.
Source: Skoogh, A. A., Perera, T. T., & Johansson, B. B. (2012). Input data management in
simulation - Industrial practices and future trends. Simulation Modelling Practice and Theory,
181. doi:10.1016/j.simpat.2012.07.009

11



In methodology (A) data from several sources are compiled and processed manually; then
it is manually entered into the simulation model, so there is not an external data source where the
data reside after it is collected. In methodology (B), data and information are stored in an
external source, commonly a spreadsheet file, completed manually by the project team, which is
then transferred to the simulation [7, 8]. In other words, the DES project team manually performs
the collection and processing of data, but unlike methodology (A), these data are not entered
directly into the simulation model but maintained in an external data source; then the external
data source is linked to the simulation model. Methodology (B) is the most popular approach for
input data management, as 61% of surveyed professionals in 2012 use this approach [8].

Methodology (C) uses an intermediate database that feeds the external data source, which
feeds the simulation model [7, 8]. The primary difference between methodology (B) and
methodology (C) is that the latter involves an automatically-populated external data source from
an internal data source (ERP, MPS, etc.), and the former involves a manually-populated external
data source. In methodology (D), there are no external data sources because there 1s a direct link
between the internal data sources and the simulation model. Methodologies (C) and (D) solutions
can be expensive and complex, especially (D). One reason for this is the fact that there may be a
considerable amount of raw data available in the internal systems, but there is limited data that is
ready to be used in simulation models [13]. In other words, raw available data often need to be
processed further so it can be used in simulation models.

From the same 2012 survey referenced earlier, 80% of those surveyed indicated that their
organizations would like to enhance their input data management capabilities so they can
implement methodology (C) or methodology (D) within the next 10 years [8]. For instance, the

aim for more automation in input data management has motivated research and the development
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of systems based mostly on methodology (C), such as the Generic Data Management Tool
(GDM-Tool), which relies on already available data within internal systems such as ERP. GDM-
Tool processes available data so it can be used in simulation projects [14]. Consistent with
methodology (C) [8, 14], GDM-Tool not only automates the extraction and preparation of raw
data from internal sources, but it also fits statistical probability distributions to the data. GDM-
Tool must be properly configured according to the organizational procedures in order to
automate data extraction and preparation, which can be challenging and requires trained
technical staff [14, 20].

Other documented attempts to automate DES input data management are the Machine
Data Acquisition (MDA) and the Parts Data Collection application. MDA for d3FACT
simulator, retrieves data automatically and directly from different sources and performs primary
processing of the retrieved data following mapping rules, mapping formulas, etc. [15]. The Parts
Data Collection application permits the users to pull data from a specific manufacturing database
[29], format the retrieved data and feed simulation models. The benefits of the aforementioned
solutions focus mainly in manufacturing applications [15, 29], which is one of the several areas
where DES is useful. Chapter five presents more details about these documented methodology
(C) solutions.

In general, Skoogh et al. present methodology (C) and methodology (D) as “too difficult”
[14]. For instance, before any automation, configuration is the first central activity required in
setting up the GDM-Tool in order “to map the content of the different data sources to each other
and to specify all transformation operations required to obtain the simulation information™ [14].

Methodology (C) solutions are more feasible than methodology (D) solutions because the latter
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requires extensive research, customization and development and are often more complex at the
time of implementation [8].

Even though many professionals would like to see a migration towards methodology (C)
solutions and to a lesser extent to methodology (D) solutions, the reality indicates that
methodologies (A) and (B) are still widely used. As a matter of fact, the most popular approach

among DES practitioners is consistent with methodology (B) [8].

Probability Distributions Fitting in DES

After gathering, cleaning and preparing the data to be utilized in DES projects, statistical
probability distributions must be fitted to different data inputs in order to perform the simulations
using DES software. The fitting of the distributions generates parameters required by the
software in order to run one or more replications of the system being analyzed [3]. Nowadays,
multi-purpose software such as GDM-Tool [14] can fit most common theoretical statistical
probability distributions [17], and there are also specialized, standalone probability distribution
fitting software such as Arena’s Input Analyzer by Rockwell Automation [4], Stat::Fit® by Geer
Mountain Software [18] or ExpertFit by Averill M. Law and Associates [16] that can perform the
fitting operation. The time involved when preparing collected data can be an issue with
standalone distribution fitting software because these standalone programs expect data files with
specific formats or layouts [4]. Obtaining the distributions from a separate standalone software as
a separate step is the most common practice [8], especially if the available distributions within
the multi-purpose input data management tools are limited [21,17].

In addition to fitting probability distributions to the data, software performing the

theoretical distribution fit usually provides a graphical representation of the data in the form of a
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histogram plus goodness-of-fit tests such as Chi-Square test or Kolmogorov-Smirnov test or
Anderson-Darling test [4] in order to confirm the adequacy of different fitted distributions [3,4].
Specialized distribution fitting software also permit empirical distribution fit if no theoretical
distribution presents a proper fit based on the goodness-of-fit tests.

Encountering multimodal data is a possibility in DES applications, and, often, this type of
analysis has to be performed manually [4]. Current solutions for data fitting display the
multimodal data but users need to handle such data manually outside of the probability fitting
tool in order to obtain a proper fit on each of the subsets of these data. The solution proposed in
this document provides an innovative option to fit multimodal data without having to process
each subset manually.

Independence among fitted observations is a key assumption in order to perform
statistical goodness-of-fit tests and to use maximum likelihood estimation (MLE) to obtain
probability distribution parameters [3]. Currently, not all statistical probability distribution fitting
software offer the capability to test, diagnose or visualize autocorrelation [4,16,18]. The solution
proposed in this document offers the ability to test, diagnose and visualize autocorrelation in

real-time right after new data are collected.

Analysis of Input Data Management Methodologies

The different approaches or methodologies described above explain that solutions based
on methodology (C) and on methodology (D) require data sources already in place [14, 15]. In
other words, such solutions are not meant to be used in the collection of the data but assume
availability of accessible data. Such reliance on existing data poses important limitations to the

proliferation of these types of solutions. On the other side of the spectrum, manual approaches
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such as methodology (A) and methodology (B) stress manual data collection and manual data
preparation in order to feed simulation software, without much attention paid to automation that
facilitates their implementation.

Methodology (C) solutions add automation to methodology (B) in the form of data
updates coming from an internal data source. Even though methodology (C) implementations are
a desirable goal of 80% of surveyed professionals in 2012 [7, 8], literature shows few of such
developments. In addition to the reliance on available data, another reason why sophisticated
solutions such as (C) and (D) are not widely implemented is the fact that they are “too difficult”,
according to Skoogh, Perera and Johansson [8]. Methodologies (C) and (D) solutions require
detailed customization and complex implementation rules in order to convert internal data into
simulation ready output.

The fact that methodology (A) and methodology (B) are the most common approaches to
collect data suggests that they present features that are convenient to DES modelers.
Equivalently, it can be deducted that methodology (C) and methodology (D) solutions present
complexities that prevent them from being implemented on a consistent basis.

One of the strengths of performing manual collection of data is that the collector has
control over the inputs and these can be verified at any time [8]. Methodology (A) and
methodology (B) solutions tend to be fairly general and work in several applications of DES. A
common disadvantage of manual approaches, such as methodology (A) and methodology (B), is
that they can be time-consuming [2]. In addition, manual collection of data for DES models can

carry human error and become a tedious activity when entering values and processing the data.
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Potential Hybrid Solution for Input Data Management

After analyzing the strengths and weaknesses of documented methodologies it is evident
that there is room for exploring combinations of features from the different methodologies in
order to find an alternative solution to the ones documented in the literature. Figure 2 presents

the idea of a hybrid solution for DES input data management.

Proposed
= P

solution

.
-

.
o

Figure 2 Potential hybrid solution combining features of different methodologies

For instance, a desirable feature of a potential new input data management solution is for
it to be general enough so it can be used in different types of DES projects, in different
disciplines, beyond manufacturing. Another desirable feature of a potential new solution is that it
should be easy to configure and implement. Adding to the list of desirable features, it would be
convenient to have a solution that allows the collector to verify the data at any time.

The desirable features just described are consistent with the advantages of methodologies
(A) and (B), the latter being the most popular of all input data management approaches [8]. As
mentioned earlier, the main disadvantage of methodologies (A) and (B) is the manual collection

17



and preparation of data, hence a new solution should avoid tedious, error prone manual
processing of data. In other words, any potential new solution should aim for a way to automate
the collection, validation, storage, processing, visualization and fitting of input data with a
simple action such clicking with a computer mouse.

As stated previously, even if data are already available internally, these data are often not
ready for DES projects. Hence, even though a solution starting at the collection stage can be
regarded as more time consuming than a solution getting the data directly from internal systems,
the fact that previously available data often need considerable processing after extraction [8,21]
suggests that the time-consumption benefit of working with already available data might not be
as significant as expected. In general, available data accessed by methodology (C) and
methodology (D) solutions are the result of complex implementation and configuration [8],
which represents an obstacle to the proliferation of these types of solutions [22]. So even though
internal systems produce large amounts of raw data, the fact that these data have not been
designed or prepared for DES projects [8,21] can elevate costs relative to working with data

collected outside of the internal systems and specifically designed for DES projects.

Enhancements beyond Methodology (B)

In order to make a new solution based on the strengths of methodologies (A) and (B)
more attractive than relatively sophisticated methodology (C) and methodology (D) solutions, it
should feature some of the key conveniences found in methodology (C) and to a lesser extent in
methodology (D) without losing the conveniences of methodologies (A) and (B). One of these
convenient features is the ability to update existing databases automatically without the need of

human assistance [8] as new data are generated. In other words, a new solution should provide a
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method to replace internal data systems from (C) and (D) with a mechanism of data generation
that automatically feeds the external data sources, which feed the simulation models.

Another useful feature that can be added to the new input data management solution is
the ability to create histograms and fit probability distribution that update in real-time after a new
observation is recorded. The updated histogram and probability distribution fit should be visible
to the data collector right after the new data are added. The probability distribution fit should
present the usual goodness-of-fit tests [3]. Moreover, the new solution for input data
management should feature a visual way of notifying the analyst about the goodness-of-fit
without having to refer to the goodness-of-fit test results every time the data are updated. In
addition to the desirable features described above, a potential new solution should also offer the
ability to test, diagnose and visualize serial correlation among observations in real-time in order
to validate underlying theoretical assumptions [3].

In general, the new solution should be intuitive and consistent with the principles of
human-computer interaction design [22, 34, 35]. A new solution should be flexible enough to
accommodate different characteristics of the data being collected regardless of the discipline or
area of application.

Similar to methodology (C) solutions, the new potential input data management solution
should automatically record, update and store the data in a separate location, such as a database
or a data file. Similar to methodology (D) solutions, the hybrid solution should produce output
that is definite and meaningful in the context of DES projects. In other words, the hybrid solution
should produce output that is ready to be added to DES software via automated imports or by
entering the resulting parameters into the software [14, 21, 23- 28]. Automated imports into DES

software is outside the scope of this research work.
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In summary, there is the need for a new hybrid input data management solution that
combines the specific strengths of commonly-used manual methodologies (A) and (B) with
features of the more complex methodologies (C) and (D). This research investigation seeks to
provide the theoretical foundations for developing the aforementioned hybrid solution in order to

solve the MDCAP problem prevalent in DES projects.
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CHAPTER THREE: METHODOLOGY

Formulation of the MDCAP Problem

The manual data collection and processing (MDCAP) problem in the context of DES
projects can be formulated as follows.

On average 31% of DES projects’ time is devoted to data collection and processing. In
some instances this percent can go up to 40%. The main reason for this is the fact that input data
management for DES projects is a highly manual process [7]. MDCAP includes steps such as
collecting the data, updating existing data, performing calculations on the data, validating the
data, copying and pasting the data in different formats, visualizing the data, fitting and testing
probability distributions to the data, storing the data and calculating relative frequencies of
distinct outcomes at different decision points within the system being modeled.

As mentioned earlier in this document, 80% of professionals or practitioners rely on
manual methodologies (A) and (B), which shows that manual approaches to data collection and
processing are the most common practice in the field. If this practice persists, the time devoted to
input data management within DES projects will likely stay at roughly one third of the project’s
lifecycle. Given the fact that more sophisticated solutions such as the ones from methodologies
(C) and (D) are considered “too difficult” [8] also suggests that the reliance on manual
approaches for data collection and processing will not go away. The fact that 80% of surveyed
professionals also affirmed that they would like to migrate towards automated solutions for input
data management suggests that methodologies (A) and (B) are not the preferred practice if these
can be avoided, even though methodologies (A) and (B) present certain advantages such as
verifiability and transparency.
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The MDCAP problem is the negative impact on time-to-completion and on user
experience caused by manual approaches to input data management in DES modeling projects.
The MDCAP problem is generated by the inefficiencies associated with manually collecting and

processing the data necessary for DES projects.

Proposed Framework for Automated Data Collection and Processing

Chapter one generalized DES input data into three specific data classes given the model
logic. Such generalization constitutes the foundation for the theoretical framework detailed in
this chapter and is an original contribution of this research investigation to the body of
knowledge. Classifying DES input data as Class (I), Class (II) or Class (III) permits the intended
automation and the applicability of the proposed framework in different disciplines where DES

modeling is appropriate.

Theoretical Foundations

The idea of a hybrid solution to automate DES input data management is presented
Figure 2. Figure 2 suggests combining the strengths of different methodologies in order to
generate a user-friendly, intuitive solution that automates input data management for DES
projects.

The three generic data classes feed DES models based on a predefined model logic. In
what follows, model logic 1s assumed to be known before starting the collection of the data. The

three proposed DES input data classes constitute the key foundation in the development of an
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automated alternative framework to address the MDCAP problem. Formally, these classes are
defined as follows.
Class (I) data: data where
Lendj = Tstartj+1 (3.1)
For consecutive events indexed j and j+1, the ending timestamp associated with event j,
tenaj represents the start timestamp of the next event (j+1), toq 1.
Class (II) data: data where
lendj F tstartj+1 (3.2)
For consecutive events indexed j and j+1, event j has a starting timestamp and an ending
timestamp for a given event, represented by t..j and f..qj, respectively; For consecutive events j
and j+1, the ending timestamp of event j, #.,4j, does not represent the starting timestamp of the
next event j+1, fyqrjsi -

Class (III) data: data where tallied counts generate relative frequencies or probabilities

Yim=tim 63)

L
..where m=1,... M and i=1,....c,, Vim
S Yim = 1 (3.4)
...at each decision point m, m=1,....M
Yim represents the probability of the specific outcome i out of ¢,, distinct possible
outcomes, at the specific decision point m, so i=1,...,c,, and m = 1,..., M. Total counts for each
of the ¢,, distinct outcomes at decision point m are represented by n;, , i =1, ..., ¢;;. Class (III)
data are counts n;,, for each of the ¢, distinct outcomes out of the N,, total observations tallied at

the decision point m. The counts n;, determine relative frequencies for each of the ¢, distinct
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outcomes at decision point m as a proportion of N,,. From these elements, relative frequencies for
each distinct possible outcome at a given decision point m can be computed as shown in (3.3).
Figure 3 shows an example of how the y;;,, ‘s become inputs in Arena DES software.

In the example from Figure 3, ¢, = 3, as there are three possible outcomes, e.g. defective
with solution, defective without solution and ready for shipment. There is only one decision
point, hence m=1 and M=1. Also, y;; = 0.83, y2; = 0.13 and y3; = 0.04. The way to interpret v, is
that the probability of the first distinct outcome at decision point 1 is 0.83. The way to interpret
v21 1s that the probability of the second distinct outcome at decision point 1 is 0.13. The way to

read vys3; is that the probability of the third distinct outcome at decision point 1 is 0.04.
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Figure 3 Example of how historical probabilities are used in the Arena DES software.
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Claim 3 Let Q be the set of disciplines where DES is applicable. Let J, be a data collection
approach to gather input data for DES project p, and let @ be the model logic of the system being
analyzed using DES within the project p, then

9, (P[ Q) =9, (D) (3.5)

This means that the data collection approach for DES project p is a function of the model

logic @ and is independent of the area of application or discipline represented by €.

Independence between ®© and Q

Because the collection of data for similar model logic is the same, regardless of the
discipline, a single data collection tool that covers Class (I), Class (II) and Class (III) can be used

to collect data in any discipline from €, given the model logic ®@. This can be summarized as:

Claim 4 If a data collection approach J, can collect Class (I), Class (II) and Class (III) data, this
approach can be used in any discipline @ that belongs to Q, in order to collect input data for a

DES project p, given model logic ®. Then,

p =f (0, ®) (3.6)

Hence, if there is a model logic @ in place and data from Class (I) and/or Class (II) and/or
Class (III) are collected, a DES project p will be feasible, regardless of the discipline or area of
application. Another interpretation of (3.6) is that specifying the discipline where a DES project
p will be performed is not enough to create the DES project p; whereas if there exists a model

logic @ and data gathered using approach J,, the DES project p will be feasible.
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Resuming a Previous Data Collection Effort

Resuming a previous data collection effort without distorting the information from
previously gathered data is a key requirement in order to achieve automation in DES data
collection and processing. There needs to exist the capability to add new data to previously
collected data without corrupting the information obtained from older data. As will be presented
below, Class (I) data are susceptible to the timing of the collection efforts, so there needs to be a
mechanism to neutralize the impact from resuming data collection at a later point in time.

For example, imagine that an analyst is recording arrival times to an airport security
checkpoint in order to compute interarrival times (e.g. Class (I) data). The analyst takes lunch
break and resumes collecting arrival times after finishing lunch. When he or she comes back
from lunch, the specific interarrival time calculated as the difference between the latest arrival
timestamp recorded before lunch and the first arrival timestamp recorded after lunch will be a
corrupted interarrival time. The data corruption just mentioned will have a direct impact in the
probability distributions and eventually in the simulations generated from these data.

Let us define a data collection effort as the uninterrupted action of collecting data to be
used in DES projects. This means that if the data collector quits collecting data for any reason
and then resumes this collection at a later point in time, then the collector has engaged in two
collection efforts. There is no limit in the number of efforts for a given DES project.

Let €9 > 0 be i™ effort to collect class 1 data for variable 9 for a DES project, where 1
can take the values 1, II or III depending on whether the collection is on Class (I), Class(II) or
Class(IIT) data. Let T;,9 be a timestamp from €9, in order to gather class 1 data for variable 9.

The rules to resume data collection are presented below.
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Let 4,, be defined as the act of resuming data collection for class y data, where y can take
the values I, II or 111.

If 1 = III then resuming the data collection does not depend on the effort of the collection
or in the timestamp of the collection, only on model logic. Formally

A (®) (3.7)

If 1 = II then resuming the data collection does not depend on the effort of the collection,

only in the timestamps of the collection and on model logic. Formally
A (P, Tigrs) (3.8)

If ¢ = I then resuming the data collection depends on the effort of the collection, on the

timestamp of the collection and in the model logic. Formally
A1(P, Tipg.Eirg) (3.9)

For Class (II) data, each collection is generated by two timestamps, referred here as
starting timestamp and ending timestamp. After a collection is completed from recording a
starting timestamp and an ending timestamp, then the data collection can be resumed anytime in
the future without affecting previous distribution of Class (II) data. Hence, resuming the
collection of Class (II) data does not depend on the effort €;;;9.

For Class (I) data each entry consists of a single timestamp, where new timestamps are
compared to the previously recorded timestamp in order to generate an interarrival collection. If
the last recorded timestamp was gathered on a different effort (as in the simple airport security
example presented earlier), then the time between collection efforts will corrupt the recording of
Class (I) data. Hence, the resuming of Class (I) data needs to be independent of collection efforts
€19’ s. In other words, the following condition must hold:

A1(P@, Tipgl€irg) = A1(P, Tirg) (3.10)
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In order to achieve condition (3.10) from (3.9) the following logic needs to be applied
when resuming Class (I) data collection and processing.

Let us introduce two consecutive efforts to collect Class (I) data for variable 99, namely
€19 and €;11)r9, where [ in the subscript stands for Class (I) data and i represents the effort. Let
E be the set of all the collection efforts before i+1, so g;;9 € E. Let the latest timestamp value
from the collection effort ;9 be called 7y originai. When the next effort starts, namely €419,
INoriginal g€ts converted into the exact timestamp when €(i+1)r0 Starts. Once converted, y original 15
renamed to #; resumed- Then the positive difference between #y original and #7 resumed 18 calculated. This
positive difference is represented by o(;+1)g for each resuming effort €(; 419, Formally,

O(i+1)¢ = 11 resumed - IN,original (3.11)
... for the (i+ l)th collection effort €(;41);9 of Class (I) variable ¥
Ve €eE

Time difference 6;.1)9 needs to be added to all the previously recorded timestamps
collected before #y original. The new timestamps obtained after adding 6.1 gare used to calculate
the new set of interarrival times. All the previous arrival timestamps recorded before £(;.41)9 get
modified by o+ )9, but the Class (I) interarrival times remain the same regardless of the
collection effort, fulfilling (3.10).When the second entity appears in the resumed collection effort
E(i+1)19 » At 12 resumeds the difference between consecutive timestamps 72 resumed aNd #7 resumeds
becomes the first interarrival time of the resumed collection effort £, 1y;9. Then Class (I) data

collection can continue without any corrupted data.
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Best Fitted Statistical Probability Distribution

Let m be the non-empty set of probability distributions fitted to the resulting histogram of
N observations from Class (I) or Class (II) data. Let K be the subset of © where the null
hypothesis of good fit is not rejected. Then the best fitted probability distribution out of K is

obtained as follows [34].

e [f N <50 then A is the fit that produced Max (Max (p-value ks), Max (p-value ap)) V Ken
e IfN =50, then A is the fit that produced Max (p — value ,2) V Ken

A represents the best fitted probability distribution out of K € , K is the set of
distributions from 7 where the null hypothesis of good fit is not rejected, AD stands for
Anderson-Darling goodness-of-fit test, KS stands for Kolmogorov-Smirnov goodness-of-fit test

and y? stands for the Chi Square goodness-of-fit test.

Speed between Two Points Using Class (IT) Data

A common data input to DES projects is the speed of different actors within the
simulation. Entities, resources, transporters and other simulation elements often need to be
assigned a speed when they move from one location to another within the modeled system. The
proposed framework permits the automated calculation of average speed between two points
using the reasoning behind the collection and processing of Class (II) data. Because Class (II)
data can be regarded as having a departure timestamp and an arrival timestamp instead of
starting and ending timestamps, the average speed s between two points can be deducted by

knowing the traveled distance D and using formula (3.12). Let ¢;, i=1,...,d be one of the entries
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of d x1 vector ¢ of calculated Class (IT) continuous time intervals. Then, a d x1 vector of speeds

S, with elements s;, i=1,...,d, can be obtained using

simue2 (3.12)

2
D is the target distance, #; represents the i”" Class (II) time interval within vector ¢ and u is a

conversion constant. If speed is in miles per hour, D in meters and time in minutes, u= 0.03728.

Expected Impact in DES Input Data Management

This section presents the expected gains from using the proposed framework instead of
using MDCAP associated with dominant input data methodologies (A) and (B) and instead of
using more sophisticated solutions based on methodologies (C) and (D).

A critical concept for this analysis is “the unavoidable wait for events to happen”. The
unavoidable wait for events to happen can be defined as the unavoidable human wait associated
with data collection for DES projects. For instance, if an analyst is collecting data on car arrivals
to a gas station, there is an unavoidable wait for cars to arrive. The proposed framework reduces
the time associated with DES input data management to be equal to the unavoidable wait for
events to happen, eliminating all other sources of delays associated with data processing after the
data are collected.

Let B, >0 be the total time devoted to input data management for DES project p. Let 1,>0
be the unavoidable wait for events to happen for DES project p. Let 0,>0 be the time necessary
for implementing an input data management solution for DES project p. Let A,>0 be the time

devoted to post-collection data processing for DES project p.
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Under MDCAP B, can be broken down in two components because the configuration
component 6, =~ 0. Under MDCAP 6, is considered to be almost equal (<) to 0 because usually
MDCAP is performed by standalone specialized tools that are ready to be used after simple
installation steps. The first component of 3, under MDCAP is the unavoidable wait for events to
happen 1, >0 and the second component includes a series of processing steps beyond data
collection represented by A, >0. The post-collection component A, includes, but is not limited
to, data calculations, data reformatting, data exports, data imports, validations and other
processing steps often performed by standalone isolated tools. Hence, under MDCAP,

Bp=mpy+ A, (3.13)
Vp

Under sophisticated methodologies (C) and (D), the unavoidable wait for events to
happen and the post-collection processing time can be eliminated due to the automated extraction
and processing of available internal data. Hence, if there exists internal data, under sophisticated
(C) and (D) solutions A,= 0 and 1, = 0. In these types of sophisticated solutions for automated
DES input data management there is a significant amount of time that is required for
implementation and configuration in order to produce simulation-ready data [8]. This implies
that for methodology (C) and (D) solutions 6, >0. Hence, for methodology (C) and (D) solutions,
if there exists available data within internal data systems,

B,~0, (3.14)

Vp

Claim 5 Under the proposed integrated framework for DES data collection and processing all

delays in project p other than n, are eliminated. Formally, under the proposed framework
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A0 (3.15)

0,~0 (3.16)
Hence, given model logic, under the proposed framework

Bp=m, (3.17)

Vp

Claim 6 For a given DES project p and focusing only on time-to-completion, the proposed
framework will be preferred to MDCAP if A,> 0; the proposed framework will be preferred

over sophisticated methodology (C) and (D) solutions if 6, > ,.

Opportunity for Innovation

The proposed framework not only permits the automated collection and processing of
Class (I), Class (II) and Class (II1) data, but also facilitates the implementation of other useful
features needed in DES analysis such as autocorrelation diagnostics, multimodal data
visualization and transporter speed computations.

The complex nature of methodology (C) and (D) solutions opens the window for a new
automated solution based on the proposed integrated framework for automated DES data
collection and processing. The automated solution developed following the proposed framework
intends to streamline and integrate DES data collection, data updates, data storage, data
processing, data visualization, data validation, distribution fitting and distribution testing in real-
time, in response to intuitive user actions. Such streamlined integration is what makes a solution

based in the proposed framework unique in the field of modeling and simulation.
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Human-Computer Interaction Design Considerations

This research investigation includes the programming of a user interface based on the
concepts and ideas of the proposed integrated framework. Hence human computer interaction
(HCI) design principles must be considered when programming the aforementioned interface. As
previously mentioned, the intended interface can be regarded as a hybrid that includes features
from different input data management methodologies (A), (B), (C) and (D). The main user
experience goals of this automated solution to MDCAP are

e Avoidance of the undesirable characteristics of MDCAP;

e Integration of currently isolated data processing steps into a single information stream
triggered by a simple user action;

e Streamlined validation of the results when new data are generated; and

e Reliable data storage.

The design of the proposed interface to automate DES data collection and processing
should increase productivity and user satisfaction [35]. The proposed interface must be “usable”.
Being “usable” in HCI design means that the proposed solution to MDCAP must be easy to learn
and effective to use, while providing an enjoyable user experience [22]. Any innovative interface
that seeks to improve DES data collection, data processing, data storage, data updates, validation
of theoretical assumptions and distribution fitting must reliably provide correctness, no
duplication, consistency, timeliness, validity, reliability and completeness [7, 29, 30, 31, 32].

The interface that instantiates the proposed integrated framework for DES data collection
and processing should take into account the following principles from HCI design [22]:

e Visibility: functionalities are clearly defined and easy to identify.
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e Feedback: the user receives a specific response to different types of user inputs.
e Constraints: restrict user interaction at a given moment.

e Consistency: no ambiguity in the expected response to user inputs.

e Affordance: hints the user on how to use the interface even without instructions.

HCI design also indicates that interfaces should be satisfying, enjoyable, engaging,
exciting, helpful, motivating, aesthetically pleasing, supportive of creativity, cognitively
stimulating, rewarding and emotionally fulfilling.

The conceptual model [22] for the proposed interface is the following: a system that
offers the ability to declare a variable that will be used in a DES model; the declared variable
then gets collected, stored, processed and updated in real-time, right after pressing specific
buttons within the interface using a computer mouse.

The interaction type with the proposed interface needs to be “instructing”, where users
issue instructions to the system [22]. The instructions should be given by first specifying the
name of the variable being collected, second, by checking boxes to determine optional
parameters and third, by pressing buttons to initiate the real-time collection, storage, processing
and updating of the data. User inputs should generate a response from the system that is relevant
to DES models, including images of the expected information.

The declaration of a variable should be by typing the variable’s name into a space within
the interface. The reason for typing the variable’s name into a space is to allow users to define a
name that is appropriate for each DES project. If variables’ names were entered as selections
from a dropdown or by checking a box, variables’ names would be restricted to a small set of
options, whereas if the names are typed, the options are limitless to the user. Instructions
provided via box-checking allow the user to intuitively select one or more options from a
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relatively small, fixed set of options [22]. Variable declaration and box checking precede button
pressing.

The reason for using button pressing to initiate the automated processing (and not other
options like drop downs, box checking or radial buttons) is because buttons are an intuitive way
to issue a definite command. Buttons yield a sense of definiteness and closure (i.e. GO,
SUBMIT, NEXT, etc.) [22].

In order to make this interface easy and pleasant to use, the interface should reduce visual
work, reduce intellectual work, reduce memory work, reduce motor work and eliminate or
minimize burdens imposed by technology [35]. Other considerations in the design of the
proposed user interface to address MDCAP include high color contrast, distinctive colors used
with specific cues (i.e. brief instructions) and opponent colors separated from each other [36].

Instantaneous feedback with relevant information for DES models should be provided in
the form of message boxes [22] and relevant graphics. Messages such as errors or warning
should be clearly presented as a separate box, in the center of the screen and not in the
peripherals, so they can be easily visualized [36]. For instance, errors can be presented in red,
with an “X” and warnings in yellow, with a “!”” [36].

Real-time responsiveness should be a key characteristic of this design [36] because users
must receive feedback as soon as they collect new data. In other words, processing results should
display real-time confirmations of the data collection and generate real-time output relevant to
DES models. Relevant output for DES models includes probability distribution fitting,
histograms, autocorrelation diagnostics, special options for visualizing multimodal data and pie
charts, among others. A user interface instantiating the proposed framework is presented in

chapter four and tested in chapter six.
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CHAPTER FOUR: RESULTS

Overview of the Prototype Interface

Results are focused on the ability to generate an automated solution for input data
management based on the proposed framework. The resulting prototype application is called
DESI, which stands for Discrete Event Simulation Inputs. DESI is a graphical user interface
(GUI) that is used to collect and process data for DES projects. The data to be collected are
determined by the model logic. The proposed user interface has three main sections and a section
of optional parameters. The three main sections of DESI are the top blue section, used to collect,
fit and test Class (I) data; the middle orange section, used to collect, fit and test Class (II) data;
and the bottom green section, used to collect and display Class (IIT) data. The flow of
information when using DESI is detailed in Figure 4, starting from the top.

User issues
instructions

Response is sent_ User instructions are
back to the user in converted into MATLAB
the form of code and into database

messages and language for real-time
graphics processing

Data are stored in
databases or as
text files and are
accessible to the
users

Figure 4 The flow of information when using the DESI interface.
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There are two versions of DESI, DESI 1.0 and DESI 2.0. DESI 1.0 relies on database
connectivity in order to store the data in MySQL tables. DESI 2.0 stores the data in the form of
text files and presents key enhancements for DES data preparation beyond DESI 1.0. DESI 1.0
has safer data storage, whereas DESI 2.0 presents more features, a simpler implementation and
can be installed on both mac and pcs. DESI 2.0 evolved from DESI 1.0.

The DESI interface sketch, the DESI 1.0 graphical user interface and the DESI 2.0
graphical user interface are shown in Figure 5. The user issues instructions to both versions of
DESI in the form of

a) Box checking (to select what probability distributions to fit, to process subsets of the
data, to display autocorrelation diagnostic plots, to calculate transporter speed' and to
simulate new data based on different types of fit);

b) Typing (to declare variables, to determine moving window of most recent data, to fix
the number of histogram bins, to determine ranges of data to process, to specify
number of lags for autocorrelation diagnostic plots, to set a cutoff date for data
purging, to enter distances for speed calculations' and to provide the number of
simulated data points to be generated from different fits); and

c) Button pressing (to start procedures).

! Feature only available in DESI 2.0.
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Figure 5 DESI interface sketch, DESI 1.0 GUI and DESI 2.0 GUI.




Both versions of DESI offer the ability to display previously-recorded data, delete the
most recent observation in case it was erroneously recorded, resume a previous collection, test
serial correlation, analyze multimodal data, select what probability distributions to fit and
simulate new data based on different fits. DESI can display the most recent observations as a
moving window in case the analyst is only interested in the most recent activity. Both versions of
the proposed tool also have the option to purge data before a specified cutoff date in order to
avoid storing old, unnecessary data.

Because the count of the collected data values will not be large in comparison to the
storage and processing capabilities of databases, installing the databases on personal computers
suffices [38, 39, 40, 41] in order to run DESI 1.0. DESI 2.0 stores the data as text files so system

memory should not present any constraint.

Probability Distribution Fitting and Determination of Best Fit

As presented in chapter three, the Kolmogorov-Smirnov and Anderson-Darling
goodness-of-fit tests are performed if the number of fitted observations is less than 50 and the
Chi Square goodness-of-fit test is performed if the number of observations is greater than or

equal to 50 [34].

In both versions of DESI, the analyst determines the set & of probability distributions to
be fitted to the resulting histogram from Class (I) or Class (II) data. The user determines 7 by
checking boxes in the left panel of DESI or if all boxes are left unchecked, all distributions will
be included. In this project, © can have some or all of the following distributions: Normal,

Lognormal, Gamma, Exponential, Weibull, Triangular, Uniform, Beta, Birbaum-Saunders,
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Extreme Value, Generalized Extreme Value, Generalized Pareto, Logistic, Log Logistic,
Nakagami, Rayleigh, Rician, T Location Scale, Inverse Gaussian (also known as Wald) and
Poisson. Ideally, the user is expected to select the probability distributions supported by the DES
software being utilized to complete the DES models. Distribution parameters are obtained using
Maximum Likelihood Estimation (MLE) [37], which assumes independence between

observations [3].

The information produced by both versions of DESI can be added to DES software or it
can be modified further by collecting more data values. In what follows, if DESI is referenced

without the version number, then the statements are true for both versions of DESI.

Development of DESI 1.0

The ideas and concepts of the proposed integrated framework were initially implemented
using a combination of Matlab code and MySQL databases in order to create the DESI 1.0
interface. The reason for using Matlab is its ability to handle vectors, probability distributions,
goodness-of-fit tests and graphics. In addition Matlab can connect to databases using the
database toolbox capabilities [37]. The reason for using MySQL is because it is a well-
documented open source tool, widely used in different industries [38- 41]. There are other
programming languages that could have been used to instantiate the proposed framework.

The processing of the data is performed by Matlab code. The DESI 1.0 interface is linked
to a MySQL database where all the data are stored. The interface can be made available to any

user via the Matlab Compiler, even if the end user’s computer does not have Matlab [37].

40



The flow of information from Figure 4 is presented in Figure 6, but with the actual tools
used in the development and implementation of DESI 1.0. Data processing starts with the DESI
user interface, where users input information in the form of typing, box checking and button
pressing. User inputs are processed by the compiled Matlab code and stored in MySQL. Once
data are stored in MySQL, the program extracts the data from MySQL using SQL code in order
to perform calculations and distribution fitting. Once the data have been processed, DESI 1.0
sends the relevant information back to the analyst in the form of message boxes and relevant

graphics.

ANALYST
Vi N
MATLAB MATLAB
\J y \J y
MysQL
, |

Figure 6 Flow of information after Matlab and MySQL implementation in DESI 1.0.

Blue Section of DESI 1.0

The top blue section of DESI is used to collect Class (I) data by typing the variable name
and pressing the button that says Press to record data. The Press to record
data button activates a Matlab function that generates SQL statements to produce the current
timestamp for entity i, ;, When entity i+/ arrives, the pressing of Press to record data
records #;;; as the timestamp, in the same manner it recorded #;. Then the DESI logic calculates
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the positive difference ,,; - t; in order to calculate interarrival time IAT;. Arrival timestamps
remain stored in MySQL in a schema called DEST IAT VN and within a table called IAT VN
where TAT stands for interarrival time and VN is the variable name. The number of rows of table
DESI IAT VN.IAT VN is equal to the number of collected arrival times minus one.
Calculated interarrival times are also exported to a text file in case the user needs to load them
into another application. Data files are named DATA VN interarrival times.txt,
where VN stands for variable name.

For example, the timestamps for the variable called ATRPORT PROJECT ARRIVALS,
are saved in the table
DESI TIAT AIRPORT PROJECT ARRIVALS.IAT ATRPORT PROJECT ARRIVALS, as
shown in Figure 7. The file exported with the collected data is called

DATA AIRPORT PROJECT ARRIVALS interarrival times.txt.

'y rootmiocalhost {carlo I

4/14/7014 12:44:15 AM
| 411442014 12:44:20 am
| 471442014 12:44:30 AM

FE| 1L SrporE Droject armvals,

Figure 7 The loading and storage of arrivals in MySQL.
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After a new timestamp is inserted into the table DEST IAT VN.IAT VN, the Matlab
code does the following:

1) Extracts the data from IAT VN performing the query “SELECT * FROM
DESI IAT VN.IAT VN”so itcan be processed using Matlab code; for the simple
example shown in Figure 7 this query becomes
SELECT * FROM DESI IAT AIRPORT PROJECT ARRIVALS.IAT
ATRPORT PROJECT ARRIVALS

2) Using Matlab code, consecutive arrival times are subtracted as follows

(Interarrivaltime); = ti-t;_; (4.1)
where #; stands for the i collected arrival time. The calculated interarrival time is then
converted into a continuous variable and stored in a vector of continuous data for
probability distribution fitting. The time difference is converted to minutes using formula
(4.2) for entry i, i=1,...,N

Entry i=DD*24+60+HH+*60 + MM + SS/60 (4.2)
...where DD represents the days, HH represents the hours, MM represents the minutes
and SS represents the seconds. So for example, if interarrival time i, e.g. [AT;, is 2
minutes 30 seconds, it is converted to 2.5 minutes.

3) Once the time differences are calculated using (4.1) and converted into a continuous
variable using (4.2), interarrival times are arranged into a histogram. The histogram
updates after each collected arrival time.

4) The resulting best fit is obtained using the rules detailed in chapter three. The best fit is
displayed with the corresponding histogram as shown in Figure 8. Histograms and best
fitted distributions update and display in real-time after a new timestamp is added.
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Histogram of Interarrival times with best fit probability distribution
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Figure 8 Histogram and best fit display

For both versions of DESI, the default number of histograms bins is the square root of the
number of entries in the data, rounded up. Nevertheless, both versions of DESI offer the option
to set the number of histogram bins. The resulting best fit distribution and its parameters are
displayed in a message box like the one shown in Figure 9 so the analyst can enter this
information in the DES software; or the analyst can keep recording data by pressing the button

Press to record data, which will likely produce a different best fit each time.

= Best fit s “

Exponential distribution with parameter (0.14733) far N=100

oK

Figure 9 Best fit distribution after 100 observations.

When DESI 1.0 is run for the first time, MySQL database connection parameters need to

be defined. The first run of DESI 1.0 creates a folder called C: \DESI, where a text file of
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connection parameters is created. This critical file is called dbconnection?2. txt. More
details on dbconnection?2. txt are presented later in the document. When DESI is run for
the first time, a log folder is also created, namely C : \DESTI \LOG,where DESI 1.0 saves text
files with collected data, goodness-of-fit tests results and simulated data if this option is selected.
Figure 10 shows an example of the Kolmogorov - Smirnov goodness-of-fit test results
for a Beta distribution fit saved in C: \DES T\ LOG. Test results are provided for each of the
selected probability distributions and updated right after new data are collected. In general, the
goodness-of-fit text file is named GOF VN interarrival times.txt, where VN stands
for variable name. For the hypothetical variable shown in Figure 7 named
AIRPORT PROJECT ARRIVALS, the file generated with the goodness-of-fit test results is

GOF_AIRPORT PROJECT ARRIVALS interarrival times.txt.

B R AR e oA R PR RARRE O R CREAREAERARRRRAARRAERARAARAARAAR AR RREAR AR AR EERRAARARERR]
beta_parametera =
2.124554400779485 11.566633265958707

¥ Teat-———— e e e e

——————-RKoluogorov-amirnoy

p=

0.717978244880142

kstest =

0.243665461462578

ov

0.483420000000000

pbetaks =

0.717978244880142

eat_result

Fail to Reject

Figure 10 Partial view of goodness of fit test results.
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After each collected observation, previously generated text files are overwritten with the
updated information. DESI 2.0, discussed later in this document, produces the same data, but
skips the MySQL part.

As detailed in chapter three, users also have the option to resume the collection of
interarrival times at a later time. In the blue section of DESI, this is accomplished by pressing the
button labeled “Press to resume a previous collection. Press when
first arrival occurs in the new collection period” (PRPC). When PRPC
is pressed, DESI understands that the last value from the previous collection is not the first value
of the resumed collection. In the proposed logic, the last value from the previous collection
tnoriginal (N means the latest one from a sorted list of NV elements) artificially becomes the first
value of the resumed collection #; resumed by converting #y original 1nto the exact timestamp of the
resumed collection. Then the logic converts all the previously recorded values by adding to all of
them, the difference between ty original and 77 resumeds> €.8. 6(i+n9 from eq. (3.11). In other words, all
the arrival times from the original collection get modified by o;. )9, but the interarrival times
remain the same, preventing corruption in the calculated data.

The PRPC button in the blue section of DESI must be pressed when the first arrival of the
resumed collection occurs. Then timestamp v original g€ts converted into the resuming effort
timestamp and represents the first arrival of the resumed collection, #; resumed- Then when the
second entity arrives in the resumed collection at 2 resumed, the difference between these arrivals
(2 resumed — 1 resumed) becomes the first interarrival time of the resumed collection. Interarrival
times from a resumed collection are then appended to the interarrival times of the original

collection. Then users can continue recording Class (I) data in the usual manner.
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The following example illustrates the logic for resuming a previous collection of Class (I)
data in the blue section of DESI. For simplicity, let us use different timestamps of the same day.
The last arrival in the original collection from Figure 7 occurred at #y originat = 12:44:30 AM. Let
say the user wants to resume the collection at 12:50:26 AM. The difference between these two
timestamps is 5 minutes and 56 seconds, hence 6. wwrorr romeramenas = 5.93 minutes, after making it a
continuous variable. Then, when the analyst resumes the collection in the second effort, the
difference of 5 minutes and 56 seconds is added to every record in the original collection from
Figure 7 in order to preserve the original interarrival times. This is illustrated in Figure 11.
When the resumed collection happens, #y,original PECOMES #; resumed = 12:50:26 AM by adding the
calculated o, urorr rrosecr arenas = 5 minutes 56 seconds to #y original. That is, 12:44:30 AM + 00:05:56
=12:50:26 AM. The 5 minutes 56 seconds are also added to every other recorded timestamp in
the original collection effort. The difference between ?; resumed = 12:50:26 AM and 2 resumed Will

become the first inter arrival time of the resumed collection effort.

4/14/2014 12:43:11 AM
4/14/2014 12:43:17 AM
4/14/2014 12:43:25 AM

[ 4/14/2014 12:49:40 AM
2 4/14/2014 12:49:47 AM
E] 4/14/2014 12:49:51 AM
1| 4/14/2014 12:49:56 AM
| /1472014 12:50:00 AM
(| /142014 12:50: 12 AM
E] 4/14/2014 12:50:16 AM
8] 471412014 12:50:26 AM

1| 471472014 12:43:55 AM
4/14/2014 12:44:00 AM
4/14/2014 12:44:04 AM

4/14/2014 12:44:20 AM
4/14/2014 12:44:30 AM

Figure 11 Logic to resume a previous collection and preserve interarrival times
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Then the analyst can continue recording interarrival times as usual by pressing the button
labeled Press to record data. The logic for resuming a previous Class (I) data collection
is an original contribution of this research work to the field of modeling and simulation.

The blue section of DESI has the option to display, fit, test and validate previously
collected Class (I) data at any time. This is accomplished by pressing the button labeled Press
to display collected data, which does not add new values to the list of interarrival
times, just displays what has been already collected. This feature is consistent with the ability to
verify the data at any time found in methodologies (A) and (B) solutions [8].

The blue section of DESI also permits deleting the last entry recorded by pressing the
button labeled Delete last entry. DESI 1.0 can delete the entire set of collected data
values in MySQL by pressing the button labeled Start Over. If the user chooses to start over,
the data will only be deleted in MySQL but preserved in the log folder as a backup. In DESI 2.0,
the deletion removes the text data files, but saves a copy of the data files with the prefix
“Backup ”. Autocorrelation diagnostics, multimodal analysis and data simulation can be

activated in the blue section of DESI by checking the appropriate boxes of the interface.

Orange Section of DESI 1.0

The middle orange section of the DESI user interface collects Class (II) data by typing
the variable name and by pressing the buttons labeled RECORD START and RECORD END in
order to collect the starting timestamp and ending timestamp of a specific event. Right under the
RECORD START and RECORD END buttons is the option to delete the last entry or to delete the

entire set of entries for the variable being recorded. After entering the variable name (VN), the
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RECORD START button activates a compiled Matlab function that generates and stores the
current timestamp for entity i, #; sart. In the same manner, the RECORD END button generates and
stores another timestamp for entity i, #; ¢ng. Then the underlying programming of DESI 1.0
subtracts f; end - i start in Order to calculate service time ST;. Timestamps are stored within a
MySQL table called DEST ST VN.ST VN where ST stands for service time and VN is the
variable name. The number of rows of DEST ST VN.ST VN is equal to the number of start
timestamps. Collected data values and test results are saved in the log folder with filenames of
the form DATA VN service times.txt and GOF VN service times.txt, where
VN stands for variable name. For example, the variable COUNTER SERVICE is stored in the
table DESTI ST COUNTER SERVICE.ST COUNTER SERVICE.

After the data are stored in MySQL, the processing is similar to the processing of the blue
section. That is, the data gets converted into a continuous variable, displayed in a histogram,
fitted, tested and validated. Feedback is provided to the analyst in the form of messages and
images. Then the analyst decides whether or not to keep adding data that generate different fits.
As new data are added, the histograms and fitted distributions get updated with the new
information. If the analyst decides not to add more data values, then the DESI 1.0 output can be
added to DES software. Autocorrelation diagnostics, multimodal analysis and data simulation are
also available in the orange section of DESI by checking the appropriate boxes of the interface.

Resuming the collection in the orange section is straight forward and processing is much
simpler than doing so in the blue section because for each collection there will always be a start
time and an end time, regardless of the time of the collection. The orange section is constrained

[22] by the following conditions
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e No end time can be recorded if there is no associated start time (i.e. it is not allowed to
collect two consecutive end times).
e Two consecutive start times cannot be recorded because a start time must be followed by

its corresponding end time.

Users receive an error message if there is an attempt to violate any of these constraints.
Figure 12 shows these notifications. The orange section of DESI 2.0 performs the same
functionalities, except that it does not save data in MySQL tables but in text files, which are
named using the variable names as prefix. In DESI 2.0, the deleted variables are backed up using

the prefix “Backup " in the filename.

Missing end time = O

hasz a pending end time 1o be recorded. In order bo add anolhed stait lime
you must enter & completion lime or erase the last iecced. Service times
ara entered in pairs and you are not allowed bo record neve start imes if

Ihete are pending end times,

The lastest enlry of
Q DESI ST_AIRPORT_PROJECT _COUMTER_SERVICE.ST_AIRPORT_PROJECT_COUNTER_SERVICE

Missing start time - B

e Yau are hiving to record an end fime withow! recarding a start time i the
Lahle

DES_ST_AIRPORT_PROJECT_COUNTER_SERWICE.ST_AIRPORT_PROJECT _COUMTER_SERVICE.
Fleaze tecond & stait ime and then iecord end time,

Figure 12 Constraints in the orange section
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Green Section of DESI 1.0

The bottom green section of DESI collects Class (III) data. The analyst defines the
variable name and also defines each of the possible outcomes of that variable at a given decision
point within the modeled system. DESI allows up to 10 possible outcomes per variable at a given
decision point. Within the green section of the DESI user interface, there are buttons labeled
Press to tally outcome that tally the occurrence of the outcome specified above it by
typing the name of the potential outcome.

In DESI 1.0, after pressing Press to tally outcome, the specified outcome of
the variable VN is inserted into a MySQL table called DEST OU VN.OU VN, where OU stands
for outcome and VN stands for variable name. After a new value is tallied and inserted into
DESI OU VN.OU VN, a pie chart is produced detailing the relative frequencies or probabilities
for each outcome. This pie chart contains information that can be entered into DES software at
specific decision points within the modeled system, as shown in Figure 3. Each piece of the pie
chart represents the vy;,’s presented in chapter three. The v;,,’s are added to DES software [4] in
order to direct the flow of entities through the simulated system.

A partial view of the MySQL table that stores the data from Figure 3 is shown in Figure
13. Collected Class (II1) data are also saved as text files in the log folder C : \DESTI\LOG, with
filenames of the form TALLY VN outcomes.txt, where VN stands for variable name. For
example, the text file that contains the collected data for the variable PART STATUS shown in

Figure 3 takes the name TALLY PART STATUS outcomes.txt.
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Figure 13 Class (III) data recorded using the green section of DESI 1.0.

Like the other two sections of DESI, the green section can display previously collected

difference that the data are not stored in MySQL, but in text files.

In addition to the aforementioned features, the three sections of DESI respond to the

Implementation of DESI 1.0

data, delete the latest recorded entry or delete all the observations for a given variable. The green

section of DESI 2.0 performs the same functionalities as the green section of DESI 1.0, with the

activation of optional parameters presented later in this document.

In order to make DESI more attractive than “difficult” methodology (C) and
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When DESI 1.0 is run for the first time, it creates the folders C: \DESTI and
C:\DESI\LOG and the file called C: \DESI\dbconnection?2.txt. DESI 1.0 notifies the
user to enter the right connection parameters in the file dbconnecton2. txt. These

parameters must be entered and saved the very first time DESI 1.0 is utilized. The location of

dbconnection2. txt and the folders created by DESI 1.0 are shown in Figure 14.

. ¢ Computer » Local Disk (C:) » DESI »

Lo Include in library + Share with =

-

Mare

LOG

| | db_connection?

Figure 14 Parameters file and log folder created when DESI 1.0 is run the first time.

Figure 15 shows the content of dbconnection?2. txt. The connection parameters’

setup is the only implementation requirement for DESI 1.0 beyond the installation wizard.

|dbname =t

username = "root!’

|pa35wmrd =X

driver = 'com.my=sqgl.jdbc.Driver’

dburl = ['jdbc:mysgl://localhost:32306/"' dbname]

Figure 15 Content of parameters' file dboconnection?2. txt.

In general, within dbconnection?2. txt, lines 2, 4 and 5 will not need to be changed
most of the time. Only dbname and password parameters will need to be modified during the
implementation of DESI 1.0. The parameter doname must be defined as any schema name

present in MySQL. The default schema name is sakila, which is defined during the
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installation of MySQL, and can be used in the dbconnection?2. txt file (so doname=
'sakila"'). Or the user can create a new schema within MySQL and use that one instead. It
does not really matter what schema name is used, as long as it exists in MySQL. This is only for
connection purposes and will not affect DESI 1.0 processing. DESI 1.0 eventually creates its
own schemas, but installation requires one to exist initially, so the connection can be created [38
- 41]. The password parameter must match the password created in MySQL during installation.
DESI 1.0 notifies the user whether the connection parameters need to be initialized or reentered.

Figure 16 shows these scenarios.

B promerisision R s

Eefore uzing DES| wou must 2et up the databaze connection paramneters found
in the file CADESINAD connection2 tat

[ Access to database was deni

Your connection attempt falled. Please check your parameters in the file
CADESHdL connection2 tut

o)

Figure 16 Messages to set up the database connection.

If the connection to MySQL is successful, DESI 1.0 creates the necessary tables and a
message is sent to the user, as shown in Figure 17. After the successful connection, there is no
need to modify dbconnection2. txt anymore unless the connection parameters are

modified.
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n Table creation i

DESI hias created the table DESI_IAT _mypdatalaT mpdats

(o]

Figure 17 Successful connection to MySQL.

Once these parameters have been added and saved, DESI 1.0 is ready to be used. In
summary, the implementation of DESI 1.0 only needs the installation of MySQL, the installation
of DESI 1.0 following the installation wizard and the definition of the parameters in

dbconnection?2. txt.

Development of DESI 2.0

The second version of DESI, called DESI 2.0, does not rely on database connectivity,
which makes its implementation simpler than DESI 1.0. Even though DESI 1.0 and DESI 2.0 are
equivalent in many respects, DESI 2.0 simplifies the implementation process further because
there is no need to set up database connections. DESI 2.0 presents important developments to
DESI 1.0. For instance, DESI 2.0 can be installed on mac and pcs, whereas DESI 1.0 only works
on pcs and DESI 2.0 has the option for speed calculation in the orange section. Nevertheless, the
general features in DESI 2.0 are equivalent to those found in DESI 1.0. For instance, the three
sections of DESI 1.0 have the same functionality in DESI 2.0.

In DESI 2.0, the data are stored in text files and not in MySQL tables. The data files are
produced and saved in the folder C: \DESTI\DATA\ if running DESI 2.0 on a pc or in the

folder /Applications/DESI/DATA/ if running DESI 2.0 on a mac. The name of the
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collected variable is the prefix of the corresponding data filename so the user can locate the data
within the folder C: \DEST\DATA\ if running DESI 2.0 on a pc or in the folder
/Applications/DESI/DATA/ if running DESI 2.0 on a mac. Figure 18 shows the
collected data and the calculated data in text files using DESI 2.0 for the hypothetical variable
called ARRIVALS. The timestamp information contained in Figure 18 is equivalent to the
information contained in Figure 7, with the difference that Figure 7 displays the data stored in

MySQL generated using DESI 1.0.

ARRIVALS timestamps.txt® x ARRIVALS interarrival_times.txt® x
1268-0ct-2014 10:46:35 10.16667
2 28-0ct-2014 10:46:45 0.33333
3 28-0ct-2014 10:47:05 0.16667
4 28-0ct-2014 10:47:15 0.25
528—Cct-2014 10:47:30 - 0.16667
- 28-0ct-2014 10:47:40 0.7
728-0ct-2014 10:48:22 ’
)
§ 28-0ct-2014 10:48:39 é'i§333
28-0ct-2014 10:49:06 CEY
10 28-0ct-2014 10:49:28 ° 0.36667
11 28-0Oct-2014 10:50:04 0.6
12 28-0ct-2014 10:50:16 110.2
13 28-0ct-2014 10:51:43 1.45
14 28—0ct—-2014 10:52:14 0.51667
5 28-0ct-2014 10:54:00 11.7748

Figure 18 Data storage using DESI 2.0

DESI 2.0 has eight global parameters. These parameters surround the main sections of
the user interface, e.g. blue, green and orange. Most of these parameters are also found in DESI
1.0, except for the speed calculation feature. Leaving the spaces for parameters blank or
unchecked activates the default values. The parameters to customize the user experience using
DESI are

1) The level of significance a (default value is 0.05, and 0< a <1);
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2) The moving window of observations (default is the total number of observations);

3) The purge date, so any data collected prior to that date gets deleted;

4) The number of histogram bins (default is the square root of the number of elements in

the data, rounded up);

5) The cutoff values for fitting multimodal data (default fits all data values);

6) The lag parameter for autocorrelation visual diagnostics (default is 1);

7) The number of new data values to be simulated based on resulting probability

distribution fitting (default is 100).

8) The distance for speed calculations®.

The moving window of observations only fits the latest # < N collected observations. For
example, if there are N=100 collected data values, but the moving window parameter is 75, only
the last 7=75 collected values out of the 100 observations are analyzed by DESI. The purge date
parameter must be entered using the format YYYY-MM-DD or YYYY-MM~-DD HH:MM:SS
where HH is in 24-hour format (i.e. 00 to 23). If the wrong date format is used or if the user tries
to purge data without entering any dates, an error message is displayed, as suggested by the
“feedback” HCI design principle [35]. The fourth optional parameter offers the possibility to
create histograms with different number of bins. The reason for offering this option is that
sometimes the shape of the histogram can impact the best fit probability distributions [4].

The fifth optional parameter offers the capability to fit subsets of the data. It applies only
to the blue and orange sections. This optional parameter seeks to handle multimodal data [4] and
if enabled, DESI fits the data between the cutoff values, reports the percentage of processed

records out of the full set of data values and produces histograms of the data that falls outside the

? Feature only available in DESI 2.0.
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selected cutoff values. The multimodal parameter works in conjunction with checking the
multimodal check box. The sixth optional parameter is the lag parameter, which works in
conjunction with checking the box for autocorrelation diagnostics. This optional parameter
works in the blue and orange sections of DESI. Autocorrelation diagnostics are important in DES
because independence among collected observations is a key building block for different
theoretical results such as the maximum likelihood estimation of probability distribution
parameters and goodness-of-fit tests [3].

The seventh parameter represents the number of data values to be simulated and it works
in conjunction with checking the box for the simulation of new data. It applies to the blue and
orange sections of DESI. When the simulation option is enabled, DESI produces simulated data
and saves them as text files, which are ready to be imported into DES software.

The eighth parameter is the distance parameter, which is used to calculate speeds given
Class (II) data associated with transport times. This parameter, when checked, only applies to the

orange section of DESI.

Calculation of Speed in the Orange Section of DESI 2.0

DESI 2.0 permits the calculation of speed in miles per hour from the data collected in the
orange section as presented in eq. (3.12). The calculation of speed only requires checking the
speed calculation checkbox and entering the distance associated with the transport in meters.
Distance is part of the model logic, when applicable. Transport times are calculated using the
orange section in the usual manner, where the start timestamp is the departure time and the end
timestamp is arrival time. The visual output is a fit of the calculated speeds plus the relevant

descriptive statistics so DES modelers can enter this information in DES software. When the
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speed parameters are entered, the fitting is on the speeds calculated from the collected Class (II)
data and not on the collected Class (II) data per se. The calculated speeds are a function of the
Class (II) data, hence there is no need for a special data class for speed data as these fall under

the umbrella of Class (II) data.

Optional Autocorrelation Diagnostics

For the data collected using the blue and orange sections of DESI there is the option to
produce plots for the visual inspection of autocorrelation [3, 42, 43] for different lags of the
collected variable. This feature is useful in confirming the random nature of the collected
observations, which is an important assumption in DES theory [3]. Users need to check the box
that activates the autocorrelation diagnostic plots and also need to provide the number of lags to
be analyzed (if left blank, the default value is 1 period lag). Checking the box for autocorrelation
diagnostics provides:

e The correlation coefficient between X(t) vs X(z-j) where j is the selected number
of lags;

e Statistical testing for Hy: no autocorrelation vs H;: autocorrelation;

e A scatter plot of X(t) vs X(t-j) where j is the selected number of lags;

e A correlogram;

e A plot of the series with the mean of the series; and

e A plot of the calculated data versus the timestamp of the calculated data’.

? Feature only available in DESI 2.0.
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Figure 19 shows the output of selecting this option for a hypothetical variable called
INTERARRIVAL and a lag of 1. Figure 19 shows the resulting lag correlation coefficient and
whether or not it is significant at the selected level of significance, e.g. a from the global
parameters section. The bottom right corner of Figure 19 presents the scatter plot of the
calculated times by the timestamps of the data calculations. This plot includes the least squares
regression line thru the scatter plot intending to reflect a potential relationship between the
calculated data and the timestamps. A statistically significant slope coefficient indicates that the
time of the data entry can explain the calculated data [43]. The relevance of a statistically
significant slope coefficient, based on the t-test [43], varies depending on the type of DES model
being carried out. The purpose of producing the plot of calculated data by timestamps is to show
the times of the day when there is more activity in order to produce more realistic simulations. In
this plot, the timestamps range from 00:00 to 23:59, or equivalently from 00.00 to 23.99 when
converted to a continuous variable. The scatter plot of calculated times by timestamps is

unaffected by the timestamp adjustments when resuming a previous Class (I) data collection.
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Figure 19 Autocorrelation diagnostic plots.

Simulated Data for Automated Import into DES Software

If the boxes for simulated data are checked in either version of DESI, the blue and orange
sections create text files of data that are ready to be imported into DES software, if the DES
software has that capability. In other words, new data can be simulated based on best fit,
triangular fit or uniform fit and passed directly to the DES software so simulations can be
performed. This is an alternative to entering the probability distribution into the DES software

for data generation. Resulting files with simulated data are saved in the log folder with the prefix
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SIMULATED , TRIANGULAR or UNIFORM depending on the boxes checked in the interface.

Figure 20 shows these options within the DESI interface.

"] simulate from BESTFIT [ From TRIANGULAR [ | From UNIFORM ~ N= -

Figure 20 Options for simulating new data and feed DES software.

The reason for having specific triangular and uniform options is the fact that when data
are not available, triangular and uniform are viable options to approximate distributions [4].
DESI 1.0 and DESI 2.0 let the users determine how many observations to simulate using the N
parameter; if the N box is left blank but one or more of the data simulation boxes are checked in
DESI, the default value for N is 100.

Even though DESI 2.0 is the evolution of DESI 1.0, both DESI 1.0 and DESI 2.0

instantiate the proposed framework for automated DES data collection and processing.

Evaluation of Automation

Based in the “model for types and levels of human interaction with automation”
presented by Parasuraman et al. [44], the DESI interface focuses on information acquisition
automation and information analysis automation hence the DESI interface presents a “high” rank
on these two criteria. The DESI interface does not focus on decision automation or action
automation hence DESI presents a “low” rank on these criteria. Ultimately the decision of
whether to stop generating data belongs to the simulation analyst. The DESI interface is a

mechanism for automated data generation, processing and analysis, which provides simulation-
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ready information to the simulation analyst, but ultimately it is the analyst who evaluates the
output and acts based on it.

Although the following analysis needs to be formally tested on user-experience
evaluations, which are the subject of future research, the DESI interface intends to reduce mental
workload and boost situation awareness about DES input data. The reduction in mental workload
and the boosting of situation awareness are feasible due to the reliability of the DESI interface.
Because of the full verifiability of the data when using DESI, complacency [44] is not an issue
with the automation obtained from DESI. Nevertheless, using DESI can result in skill
degradation [44], since the reliance in DESI may impact the learning of other computer solutions
and skills. The cost of misusing the DESI interface can result in misleading simulations studies,
nevertheless, if data errors are detected in the data preparation process, the DESI interface allows
users to remove unwanted data or start over without major inconveniences.

In summary, Parasuraman et al. [44] made the following remark about data automation,
which applies directly to DESI: “Certainly cumbersome and clumsy data entry remains a viable
candidate for automation. But to reiterate the linkage between decision and action automation, if
high automation is selected for the latter, then designers should resist the temptation for high

automation levels of decision making” [44].

Suggested Training for the DESI Interface

The DESI interface is a novel option for input data management automation, especially
when working with unavailable but collectable data from a stochastic, dynamic process or
system. The DESI interface instantiates the proposed integrated framework by automating data

preparation for Class (I), Class (II) and Class (III) data. In addition, the DESI interface features
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convenient practical implications such as real-time simulation-ready output, resulting from the

aforementioned classification of the data, given the model logic.

The users of the DESI interface should have knowledge of statistical probability theory

and familiarity with discrete event simulation modeling in order to fully understand and make the

most out of the capabilities of DESI. Such background will ease the learning of the details within

DESI. Nevertheless, the implementation and the data generation from pressing buttons can be

performed by less trained technical staff, even if these users are not statisticians or engineers.

The suggested training for the DESI interface has been divided in two sets of steps based

on the user’s technical background. The training includes the following steps:

1)

2)

3)

4)

5)

6)

7)

Follow the simple installation wizard steps in order to install DESI on a PC or in a
mac.

Familiarize users with the differences between Class (I), Class (II) and Class (III)
data.

Emphasize the three main sections of DESI, e.g. blue, orange and green, and how
these relate to Class (I), Class (II) and Class (III) data.

Understand how the three data classes are generated from the data generation buttons
in the different sections of the DESI interface.

Understand how to automatically resume data generation for each of the three data
classes using the buttons of the interface.

Understand how to retrieve and display previously collected data for each of the three
classes using the buttons of the interface.

Understand how to delete the last recorded observation and how to delete the entire

set of collected data values.
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8) Understand how to display and process the last N collected data values.

9) Understand how to purge data before a cutoff date.

10) Understand how to change the number of histogram bins.

Up to step (10), DESI can be used by less trained technical staff, e.g. non-statisticians or
non-engineers. After step (10) the users should have knowledge of probability theory and DES
modeling in order to better understand the workings of DESI and the results. The remaining steps
for training are the following:

11) Go over the probability distributions available in DESI and how to use specific

probability distributions.

12) Understand the rules for determining the best fitted probability distributions.

13) Understand where to find the test results and the generated data, in case the user
needs to see the details of the goodness-of-fit test results and the collected data
values.

14) Understand how the results can be used in DES software, including automated
imports of the generated data.

15) Understand how to perform autocorrelation diagnostics and the four diagnostic plots
produced by DESI.

16) Understand how to visualize and process multimodal data by entering cutoff values.

17) Understand how to simulate new data based on best fit, triangular fit or uniform fit.

18) Understand how to estimate average speed between two points using the logic of
Class (II) data, given the distance.

DESI training should emphasize the benefits of real-time, streamlined data generation

and processing, including probability distribution fitting, goodness-of-fit testing and the
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automatic validation of the IID assumption; these are original and innovative practical results
featured by the DESI interface. In addition, DESI training should emphasize the opportunity cost

of not using DESI, especially when dealing with unavailable but collectable data and MDCAP.

Commercialization of the DESI Interface

The DESI interface is an original contribution of this research work to the community of
DES modelers, especially when simulation analysts must collect and process previously-
unavailable input data from a stochastic, dynamic process or system. DESI is especially useful
when the data preparation would otherwise be performed semi-manually or using standalone
specialized solutions that work in isolation from each other.

As mentioned previously in this manuscript, 80% of DES modelers still rely on manual
approaches to input data management; 80% of these indicated that they would like to enjoy the
benefits of data processing automation. The reason why this percentage is so high is the fact that
DES input data management automation has been regarded as been “too difficult” [8], especially
due to the lack of accessibility and the unavailability of internal data sources with simulation-
ready data. Such universe of simulation analysts currently preparing data manually or using
standalone solutions, are a potential market for the DESI interface.

DESI should also be attractive to university students who must complete DES projects in
order to fulfill course requirements. Students’ access to internal corporate data is likely
restricted, so students completing university projects will, more than likely, have to collect and
process DES input data themselves in order to complete course projects. DESI should be able to
automate and streamline the data preparation process for undergraduate and graduate students,

making them another potential market for the DESI interface.

66



DESI is ready to be used in simulation studies, as will be presented in chapter 6.
Nevertheless, the current appearance and user-friendliness of this tool are subjects of future
research. It is my intent to use user experience evaluations in order to make DESI a more

attractive product for the aforementioned target markets.

67



CHAPTER FIVE: COMPARISON BETWEEN AUTOMATED SOLUTIONS

Documented Tools for Automated DES Input Data Management

Earlier in this document it was mentioned that the research on post-simulation data
analysis considerably exceeds the research on pre-simulation data preparation [22]. This can
explain the small number of documented solutions for automated input data management in DES
projects. In other words, there are few tools that can perform different data preparation steps as
part of the same streamlined process. It is important to emphasize the fact that there are
standalone solutions that effectively perform each of the individual steps needed in the
preparation of data for DES projects. Nevertheless, the gap in the field of modeling and
simulation consists in the fact that these standalone solutions work in isolation. Such isolated
approach to input data management is one of the main reasons for the MDCAP problem.

The literature on input data management for DES projects presents three concrete
attempts to automate input data management using a single tool. These documented tools are the
GDM-Tool [14], the MDA interface [15] and Parts Data Collection [29]. Figures 20 to 25
display the conceptual approaches and user interfaces used in the development of these tools.
Figure 21 shows the flow of information and implementation requirements of the GDM-Tool.
Figure 22 shows the user interface and different functionalities available in the GDM-Tool user
interface. The most challenging step in setting up the GDM-Tool is the customized configuration
required in order to fully map the data from internal data systems into simulation-ready output.

Configuration requires trained staff and deep knowledge of the underlying data [14].
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Figure 21 Configuration and Automation of the GDM Tool.

Source: Skoogh, A., Johansson, B., & Stahre, J. (n.d). Automated input data management:
evaluation of a concept for reduced time consumption in discrete event simulation. Simulation-
Transactions of the Society for Modeling and Simulation International, 88(11), 1279-1293.
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Figure 22 User Interface of the GDM-Tool.
Source: Skoogh, A., Johansson, B., & Stahre, J. (n.d). Automated input data management:
evaluation of a concept for reduced time consumption in discrete event simulation. Simulation-

Transactions of the Society for Modeling and Simulation International, 88(11), 1279-1293.
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Figure 23 shows the user interface of the MDA interface. Because MDA retrieves data
from internal systems in order to be used in the d3FACT simulator, its applicability is limited.
MDA is applicable, on the most part, to manufacturing models and should probably be used by
trained technical staff. Familiarity with programming concepts is desirable in order to better

understand the workings of this tool. Figure 24 shows an example of the mapping rules and

events used in the MDA interface.
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Figure 23 MDA client with opened simulation and MDA driver windows.

Source: Aufenanger, M., Blecken, A., & Laroque, C. (n.d). Design and implementation of an

MDA interface for flexible data capturing. Journal of Simulation, 4(4), 232-241.

70



[] Mapping File (Szenariol_2.bde] i : g g X
| 1.Mapping Rules | 2. initialization | 3. Schedule plans | 4. Evented plans |

Simutation inttializistion
wmwmmwumumummmmm
T WappingRule | Orververiables | Simulaion variable | Mapping formula 3]

Average Transport_in 400 06,08-12,12-18,18-24] [TransportinTime __ |Average -l
Average TranSpon Out IOGOG 08-12,12- 18 18 24] [TranspontOutTime |Average

‘Binding Buffer Size |[BufferSize] TokenBufferSize Simple
Binding Tmou;h-pﬁi ]n’mougmﬂ [Throughput (Simple
@ Rurwar 1 Thoughout hvouonout “hvoughou———lsimote
.‘R_u_n_»yav 2 Throughput [Throughpun “Thrqughpqt_ ;Stmole

Il [Runway 3 Throughput Throughpu [Throughput Simple
#.vl Binding Prozess Time |(oncess'r|me) ProcessTime |Simple |
¥l Runway 1 Transport [Tr:msoormmej MotorRPM ]snmnlo
vl [Runway 2 Tvansnon lmansnormmel MotorRPM inmple
L._q [Runway 3 Tnnspon [Ttanspormme) |MotorRPM [Simple
vl Rurnway Branch Transpon Time I[Ttansnorﬂ'lme] MolorRPM |Simple
| Ei [Runway Branch Sortout—> Trallet Input [[SortedOut) lInput [Bimple
[ 1-Mopping Rudes. | 2. intiskzation | 3. Schodulo plans | 4. Evented plans |
Ev-ndm
@mm ‘&l g‘ || (D Remove event |
." Ewrtedsourcevanable | Rule | Mappings T Reacvon =
{BufferOverfiowOccurred = bue \IRurway Branch Sortout --» Traller Input, Binding Bufer Se| ueurvmﬂﬂunm: sl
M;nuﬂmmnlnewer =8 0 qmcStmuhbon |

Figure 24 MDA Mapping Rules and Events

Source: Aufenanger, M., Blecken, A., & Laroque, C. (n.d). Design and implementation of an
MDA interface for flexible data capturing. Journal of Simulation, 4(4), 232-241.

Figure 25 shows the corporate database structure of the Parts Data Collection tool. In this
tool, the simulation model receives data from different sources and the data are linked based on a
common identifier. This tool focuses on manufacturing applications and was developed for
simulation projects within the Lockheed Martin Missiles and Fire Control [29]. Figure 26
shows the interface sketch and user interface of Parts Data Collection tool. The development of

this tool focused on user-friendliness [29] but it is dependent on the existence of data.
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Figure 25 Corporate database structure in Parts Data Collection tool

Source: Portnaya, Irin. (2004). An approach to automating data collection for simulation. (Master
Thesis). Retrieved from University of Central Florida Library. (Accession Number
ucfl.023120114)
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Figure 26 Interface sketch and user interface for Parts Data Collection Tool

Source: Portnaya, Irin. (2004). An approach to automating data collection for simulation. (Master
Thesis). Retrieved from University of Central Florida Library. (Accession Number
ucfl.023120114)
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It has been argued throughout this research investigation that the proposed framework
and both versions of the DESI interface are innovative in the field of modeling and simulation
and that they advance the state-of-the-art for DES data collection and processing. This chapter
focuses on comparing the three documented solutions to the solution offered in this research
investigation. The aim of the comparison presented in this chapter is to confirm the uniqueness

and originality of the proposed framework and of the DESI interface.

Comparison of Solutions for Automated Input Data Management in DES projects

The comparison between the proposed framework and other documented solutions is
summarized in Table 1. The proposed framework is represented by the column labeled DESI
because both versions of DESI instantiate the proposed framework. In other words, database
driven DESI 1.0 and DESI 2.0 were built based on the concepts and ideas presented in the
proposed framework. Specifically, both versions rely on the generalization of data needed for
DES projects presented in chapter one.

The criteria used for the comparison include: programming language, year of
development, whether the tool requires internal data, ability to collect unavailable data but
collectable data, ability to perform calculations on raw data, ability to perform distribution
fitting, input data management methodology, disciplines where the tool can be used, the
flexibility of the tool, real-time histogram creation, real-time distribution fitting, real-time data
visualization, real-time goodness-of-fit tests, real-time autocorrelation diagnostics, ease of

implementation, ability to handle speed computations and training requirements.
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Table 1 Comparison of documented input data management solutions for DES projects

Language
Year developed

Requires internal data
Applicable on

Automated collection
of non-available but
collectable data
Calculations on raw
data

Distribution fitting
Applications needed
Input data
management
methodology

Usable in multiple
DES areas of
applications
Real-time automated
data fit and histogram
visualization
Real-time automated
goodness-of-fit tests
Real-time automated
autocorrelation
diagnostics
Implementation

Special training
requirements

Average speed
calculations

MDCAP

Depends on the
tool being used
Depends on the
tool being used
NO
Available data,

non-available but

collectable data,
non-collectable
data
NO
YES
YES

MANY
AB

9

All

YES

NO

NO

NO

Depends on the
tools used

Depends on the
tools used so
complexity is

variable. Requires

knowing more
than one tool at a
time.

Depends on the
tool used

GDM-TOOL
C#NET
2012

YES
Available data

NO

YES

YES
ONE

Manufacturing

, production

process,

factories [14]
NO

NO

NO

NO

Complex due
to customized
configuration
stage; trained
staff needed
[14]

Technical staff
required with
considerable
knowledge of
the underlying
data and
manufacturing
system being
modeled [14]

NO

MDA
JAVA
2010

YES
Available data

NO

YES

NO
ONE

Manufacturing
, materials
flow, factories
[15]

NO

NO

NO

NO

Complex due
to the need to
implement
mappings of
different types
[15]

Working
knowledge of
the d3fact
simulator and
programming
skills required
in order to
understand
API, Java
script, JDBC,
etc. [15]

NO
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PARTS DATA
COLLECTION
VisualStudio.NET,
SQL
2004
YES
Available data
NO
YES
NO
ONE
C

Manufacturing [29]

NO

NO

NO
NO
Simple, but dependent

on other requirements
[29]

None beyond knowing
where the information
resides.

NO

DESI
Matlab, SQL
2014

NO
Non-available but
collectable data, available
data if it conforms to DESI
format requirements in SQL
tables or in text files

YES

YES

YES

ONE
Elements (hybrid) from
- A - someone collects data;
- B - data saved in
intermediate MySQL tables
or files; - C - data
automatically stored and
updated; - D - data is ready
to be added to models

All

YES

YES

YES

YES

Simple as it only requires
setting parameters in the
connections file if using
DESI 1.0. DESI 2.0
implementation is even
simpler, as it only involves
following the installation
wizard.

None beyond knowledge
about the system being
modeled and the model
logic.

YES, but only on DESI 2.0



Table 1 can also be regarded as a summary of the state-of-the-art in DES input data
management automation. DESI has the disadvantage that it is not meant to work with data from
internal systems; the reason DESI does not work with internal systems is because there are
solutions such as GDM-Tool or MDA that already do that. Within Table 1 there is a column
devoted to MDCAP, as it is the most widely used approach for DES input data management.

DESI not only needs to provide an innovative alternative to fill the gaps of other
documented automated solutions but it also needs to provide a viable alternative to MDCAP.
Table 1 shows the areas where the proposed framework and the DESI interface have advanced
the state-of-the-art in automated input data management for DES projects.

A key contribution of the proposed framework and of the DESI interface is the fact that
input data management automation can be achieved in DES applications beyond manufacturing.
DESI can be used to automate data collection and processing for modeling non-manufacturing
systems such as emergency rooms, airport security checkpoints, lines at a theme park, lines at a
grocery store and traffic, just to name a few examples.

The information in Table 1 shows that DESI advances the state-of-the-art in input data
management solutions for DES projects because it covers areas that other tools do not cover.
Because the programming of both versions of DESI is based on the proposed integrated
framework, it can be affirmed that the proposed integrated framework presented in this research

investigation is a significant contribution to the field of modeling and simulation.
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Comparison to Standalone Probability Fitting Software

Even though the focus of this research investigation is on solutions that automate all or
most of the data preparation steps for DES projects within a single tool, the DESI interface can
be directly comparable to standalone commercial probability distribution software such as
Arena’s Input Analyzer by Rockwell Automation [4], Stat::Fit® by Geer Mountain Software
[18], EasyFit® by MathWave Technologies or ExpertFit by Averill M. Law and Associates
[16]. This means that data not collected using DESI can be fitted, tested and analyzed using the
different features offered by DESI such as goodness-of-fit tests, multimodal fitting and
autocorrelation diagnostics. The only requirement is that the external data has the right format.

The way to fit external data not collected using DESI 2.0 is by saving the data as a text
file in the folder C: \DESI\DATA if working on a pc or in the folder
/RApplications/DESI/DATA if working on a mac. The text file should include one
continuous data value per line and should be named VN_service times.txt, where VN
stands for any variable name selected by the user. Ideally the variable name should not be shared
with previously collected data in order to avoid any confusion, but that will not prevent DESI 2.0
from fitting the external data. Finally, press the button labeled Press to display
collected data in order to fit the external variable. Figure 27 shows the orange section of

DESI 2.0 and the fitting the hypothetical variable not collected using DESI called EXTERNAL.

Enter variable name without spaces in the orange box below (for example: Senice_timsa)

{ Press 1o dispiay collecied daia |

Figure 27 Use DESI to fit external data not collected by DESI
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DESI 1.0 can also fit data not collected by DESI 1.0, but the continuous data need to be
saved in a MySQL table instead of saving it in a text file. Once the table has been created, it
needs to be named following the naming convention DESI ST VN.ST_ VN, as detailed in
chapter four. For the example displayed in Figure 27, the table in MySQL would be named

DESI ST EXTERNAL.ST EXTERNAL.

Summary of Comparisons

This chapter presented details about documented solutions for DES input data
management automation and how DESI, programed following the proposed framework,
compares with them. Documented tools for input data management automation other than DESI
focus on manufacturing applications of DES and because they rely on internal data, their
applicability outside of manufacturing is limited. These solutions require extensive
implementation efforts and detailed customization. Documented solutions prior to DESI are
methodology (C) type of solutions. Most DES practitioners acknowledge their desire for the
potential automation capabilities offered by methodology (C) solutions. Nevertheless the
difficulties associated with these solutions have prevented their proliferation to the extent that
80% of surveyed practitioners still rely on manual approaches for input data management, e.g.
methodology (A) and (B) solutions. DESI was also compared to standalone probability
distribution fitting tools. These sophisticated standalone tools often require data pre-processing
in order to fit theoretical distributions to the data.

The DESI interface was presented as an innovative option that addresses shortcomings of
previously documented solutions. The originality of DESI opens the window for automation

beyond manufacturing, advancing the state-of-the-art in DES input data processing.
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CHAPTER SIX: EVALUATION OF THE PROPOSED FRAMEWORK

Evaluation Criteria

This chapter presents discrete event simulation projects of reasonable complexity
completed using the proposed framework for DES input data management. The goal is to
measure the impact of using DESI in the time devoted to input data management. The
simulations for each project were carried out using Arena discrete event simulation software. The
projects do not include 3D representations of the modeled system; in other words, a project is
completed after the model logic has been implemented in the Arena simulation models and the
models accurately reflect the real world system. The relevant statistics from each project are

grouped in Table 2. All projects use significance level of 0.05.

Case Studies

This section presents projects completed using DESI and Arena discrete event simulation
software. The data were gathered and fitted using the DESI interface. The relevant metric from
each project is the percentage of each project’s time devoted to input data management.

Each projects’ time-to-completion has been distributed among the following general
activities: input data management, model logic development, Arena model creation and
transportation to the location of the modeled system. The literature indicates that on average,
31% of DES projects’ time is devoted to input data management [5, 33]. The null hypothesis of

this analysis is that the proposed framework produces a mean percentage statistically equal to
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31% versus the alternative hypothesis that the calculated mean percentage is statistically smaller
than 31%. The methodology for the experiment consists of:
1) Measuring the percentage time devoted to input data management for each of the
projects presented in this chapter;
2) Calculating the sample mean of the percent time devoted to input data management;
3) Testing the null hypothesis using a one-sided t-test about the mean since the
population variance of the percentage devoted to DES input data management is
unknown. The one-sided t-test relies on the reasonable assumption that the population
of percentages devoted to input data management is normally distributed [43].
Rejecting the null hypothesis in favor of the alternative implies a significant positive
impact from using the proposed framework. Formally the test can be defined as follows,
Hy:u=.31vsH;:u<.31 (6.1)
Based on the results from Table 2, the average percentage of time devoted to input data

management using DESI is 21%. The calculation of the t-statistic takes the following form

.21-31
b= "xoer- (6-2)
Vi1

The t-statistic from (6.2) is -3.13 and produced a p-value of 0.005, which is smaller than
the level of significance 0.05, hence Hy is rejected in favor of H;. Test details are summarized in
Table 3.

As presented in chapter three, when using DESI, the time delays arise from the
unavoidable wait for the events to happen 1, and not because of post-collection data processing

represented by A,. All the projects summarized in Table 2 are presented in detail in subsequent

sections of this chapter.
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Table 2 Time allocation to complete the evaluation DES projects

PROJECT INPUT DATA MODEL LOGIC ARENA TRANSPORT TOTAL PERCENT USED
MANAGEMENT DEVELOPMENT MODEL TO HOURS FOR INPUT DATA
CREATION LOCATION MANAGEMENT

MANTA
WAWA

DRIVE THRU
ALTAMONTE
MALL FOOD

COURT
SANFORD
AIRPORT

PUBLIX
CASHIERS

STARBUCKS
COFFEE SHOP
CHASE BANK
DRIVE THRU
ORLANDO
INTL AIRPRT
COPAAIRLINES
CHIPOTLE

Table 3 t-test results

t-statistic Sample Standard Degrees of  Critical p-value

mean deviation freedom value

21 0.1061 10 -1.8125 0.0053

Seaworld Orlando Manta Roller Coaster

This project was carried out at Seaworld Orlando and models the queue forming process
of Manta roller coaster. This project shows the positive impact on queues of having two loading
stations instead of one. In order to complete this project, the necessary data were:

e Data on IID arrivals collected using DESI’s blue section, which produced the

results displayed in Figure 28.
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¢ Distribution of number of entities per arrival collected using DESI’s green section
as displayed in Figure 29. The information in Figure 29 reads as follows: 8.33%
of the time there were 4 persons arriving at the roller coaster, 41.7% of the time
there were 2 persons arriving at the roller coaster, and so on.

e Data on IID Manta car load times measured using the orange section of DESI and
displayed in Figure 30. Because Arena does not support all the distributions
available in DESI, for convenience only the Lognormal distribution was selected
in the left panel of DESI.

e Data on IID quick queue arrivals using the blue section of DESI presented in
Figure 31.

The full Manta ride takes 2 minutes to complete and this is part of the model logic.
Entities are dynamically assigned to each Manta car in batches of 32 riders. This project assumes
two Manta cars because that was the situation the day of the data gathering. Both cars were
observed to be working at full capacity, and each car can carry as many as 32 riders. Figure 32
shows the Manta model in Arena DES software.

The Arena model features two entity creation modules in order to define priority
attributes based on regular and “quick queue” arrivals. The model logic loads each of the two
Manta loading stations based on car availability and queue sizes. The cars share the same steel
track and the busy car seizes the track once the ride starts. The Arena model displays the busy
steel track utilization with the green square shown in Figure 32, which turns white when the
steel track is idle. For this project, 13% of the entire project’s time was devoted to input data
management and the total duration of this project was approximately 30 hours. More information
on this project is presented in Table 2.
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Figure 29 Entity counts per arrival into Manta.
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84



'EHZ Eilz; ]

i

Manta Riders

Figure 32 Manta Arena model.

Wawa Gasoline Station

This project was carried out at the Wawa gas station located at 901 N Orlando Ave,
Winter Park, FL and seeks to model resource utilization (gas pumps) based on demand. In order
to complete this project, the necessary data were:

e Data on IID vehicle arrivals into Wawa from Orlando Avenue gathered using the
blue section of DESI as presented in Figure 33.

e Data on IID vehicle arrivals into Wawa from Lee Road using the blue section of
DESI as presented in Figure 34.

e Data on IID gas pumping times gathered using the orange section of DESI as

presented in Figure 35.
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e Data on the percentage of vehicles that stop for gasoline versus the percentage of
cars that only arrive at the convenience store gathered using the green section of
DESI as presented in Figure 36.

The Wawa gas station Arena simulation model is presented in Figure 37. The model
features 16 resources (gas pumps) and the focus of the analysis is resource utilization based on
demand. Cars seize the gas pumps and the utilization status is presented as green/white squares
in Figure 37. This project presents entities as cars, which can arrive into Wawa from two
entrances. Based on collected data, 70% of the incoming cars go for gasoline and the others park
in the convenience store depending on parking availability. The convenience store is represented
by the orange rectangle in Figure 37. The cars that stop for gas seize the free pumps and then
leave the system. Cars that go into the convenience store stay for some time and then leave the
system. In this project, 25% of the time was spent in input data management out of
approximately 8 hours devoted to the entire project. More information on this project is

presented in Table 2.
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Figure 33 IID arrivals into Wawa from Orlando Ave and autocorrelation diagnostics.
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Winter Park Village Starbucks Coffee Drive Thru

This project was carried out at the Starbucks coffee shop located at 600 N Orlando Ave,
Winter Park, FL and seeks to model the drive thru during morning hours. The motivation behind
the Starbucks drive thru project is the fact that long car queues impact the traffic into the Winter
Park village parking area. In order to complete this project, the necessary data were:

e Data on IID car arrivals to the drive thru collected using the blue section of DESI
presented in Figure 38.

e Data on queue size in terms of how many cars can fit at a given time between the
ordering station and the window where the order is dispatched; current physical
queue size is overwhelmed by demand.

e Data on IID wait time to get the order at the window gathered using the orange
section of DESI presented in Figure 39.

The Starbucks Arena model is displayed in Figure 40. The Arena model includes the
delay logic when customers spend some time placing their orders; such delay is zero when the
order pickup window queue is greater than 4, because customers must wait due to the queue and
not because of the normal order delay. The Arena model also displays the busy state of the order
pickup window with a green square. The scope of this project focuses in the morning demand of
the Starbuck’s drive thru, hence replications only run for three hours. In this project, the
percentage time devoted to input data management was 22% out of the entire project’s time of 2

hours and 15 minutes. More information on this project is presented in Table 2.
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Altamonte Mall Food Court

This project was carried out in the food court of the Altamonte Mall, in Altamonte
Springs, Florida. This model focuses on the demand for seats to eat in the food court. There are a
approximately 400 available seats, distributed among100 available tables. Seats and tables can be
moved therefore seats allocation is flexible depending on party sizes. In order to complete this
project, the necessary data were:

e Data on IID arrivals to the food court gathered using the blue section of DESI, as

presented in Figure 41.

e Data on arriving party sizes gathered using the green section of DESI, as presented in

Figure 42.

e Data on IID food serving times gathered using the orange section of DESI, as presented

in Figure 43.

e Data on IID payment times gathered using the orange section of DESI, as presented in

Figure 44.

e Data on number of tables and quantity of seats per table gathered using the green section

of DESI, as presented in Figure 45.

The Altamonte mall food court Arena model is presented in Figure 46. This logic requires
the use of 13 sub-models in order to model the 13 food stations. One of the 13 sub-models is
shown in Figure 47. In the food serving process, individual customers arrive at the different fast
food stations such as Taco Bell, Subway, Sbarro, etc. and they are helped by staff plus a cashier
who receives the payment. There were several staff members on each station, but only two staff

members were observed to help customers at a given time, plus the cashier. Then customers are
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batched based on party size probabilities and proceed to the tables. The logic of the Arena model
assigns party size as an attribute, so when customers seize the dining seats, they seize the right
number of seats based on the party size. The seating space resource has a capacity of 400 seats
and each party’s size reduces the number of available seats by the number of the party size. The
model keeps track of the entities entering the dining area and the number of busy and free
seats.15% of this project’s time was spent in input data management out of a total of 13.5 hours.

More details about this project can be found in Table 2.
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Orlando-Sanford International Security Checkpoint

This project was carried out at the Orlando Sanford International Airport, in Sanford, FL.
The goal of this project is to simulate the passengers arriving and going thru the security
checkpoint of this relatively small airport. At the moment of the data collection, only one of the
two available X-ray positions was used to check passengers. Even though the security checkpoint

has periods of low demand, the queues can get very large when passengers need to proceed to the
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gates. As a matter of fact, security lines can get so crowded that passengers are retained in the
lower level of the airport if the queue is too crowded. Then passengers are allowed to proceed up
the stairs so they can enter the actual security line. In order to complete this project, the

necessary data were:

e [IID arrivals of ticketed passengers into the security checkpoint presented in

Figure 48.

e Delay in getting personal items thru the X-ray machine presented in Figure 49.
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The Arena model for the Sanford International airport is presented in Figure 50. This
model presents the utilization of the TSA officer checking travel documents and also the usage
of the X-ray machine to check passengers. Utilization is represented by the green and white
squares of Figure 50.The model logic includes the revision of traveling documents and the wait
times before entering the X-ray machine. Model logic also includes the fact that passengers are
retained downstairs until there is enough room in the upper level to accommodate queued
passengers. 17% of this project’s time was spent in input data management out of a total of 3

hours. More details about this project can be found in Table 2.

Lake Mary Publix Cashiers

This project was carried out at the Publix grocery store of Lake Mary, Florida. The goal
of this project is to analyze the demand for cashier lanes on a Sunday, when there is high demand
for the cashiers. This project was created with scheduled periods of full capacity, that is, when all
cashiers are open to customers and scheduled periods when one lane is closed. The scenario
modeled in this project is based on a Sunday afternoon’s activity, with periods when one cashier
was not active. The intention is analyzing the impact of opening an inactive cashier when there is
high demand. In order to complete this project, the necessary data were:

e Data on IID arrivals into the cashiers collected using the blue section of DESI, as
shown in Figure S1.

e Data on percentage clients going into fast cashier (10 items or less) collected
using the green section of DESI as shown in Figure 52.

e IID intervals of service on a regular cashier collected using the orange section of

DESI as shown in Figure 53.
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e [ID intervals of service on the fast lane cashier collected using the orange section

of DESI as shown in Figure 54.
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Figure 54 IID service times of Publix's fast cashier and autocorrelation diagnostics.

The Publix cashiers Arena Model is presented in Figure 55. The logic sends about 34% of
customers to the fast cashier’s lane, based on collected data. It was also observed that if the fast
lane had a long queue, customers leave that lane for a smaller lane if there is one. Entities that
use the regular cashiers select the one with the smallest queue. Figure 55 shows the utilization of

the cashiers with green squares if the cashier is busy. The inactive cashier is represented by the
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white square with tilted lines. 30% of this project’s time was spent in input data management out

of a total of 5 hours. More details about this project can be found in Table 2.

Simulation clock

Figure 55 Publix cashiers Arena model.

Starbucks Winter Park Village

This project was carried out at the Starbucks coffee shop located at 600 N Orlando Ave,
Winter Park, FL. This project focuses on Starbucks’ personnel utilization during periods of high
demand. Long waiting times during periods of high demand can deter the experience of
customers. In order to complete this project, the necessary data were:

e IID arrivals into Starbucks gathered using the blue section of DESI and presented
in Figure 56.
e [ID payment times gathered the orange section of DESI and presented in Figure

57.
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IID order waiting times gathered using the orange section of DESI and presented
in Figure 58.

Percentage of times a customer is asked to wait for his or her order, gathered
using the green section of DESI, as presented in Figure 59.

Percentage of consumers who stay in the coffee shop gathered using the green
section of DESI, as presented in Figure 60.

Number of available tables and seats; once a party is in a table, the table is
considered taken and other customers do not share the seized table. This data
enters the model as part of the model logic.
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Figure 56 IID arrivals into Starbucks and autocorrelation diagnostics.
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Figure 57 IID payment times in Starbucks cashiers and autocorrelation diagnostics.
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Figure 59 Percentage of customers who order black coffee.

108



Figure 60 Percentage of customers who stay in coffee shop.

The Starbucks coffee shop Arena model is displayed in Figure 61. This model focuses on
table utilization and staff utilization during lunch hours, when employees of businesses around
the coffee shop coincide in the coffee shop in addition to regular Starbucks customers. The
model presents busy resources with green squares. Resources include staff and tables available
for seating. Even though some tables can seat more than one person, usually when a person or
group of persons take a table, no one else sits on it. 30% of this project’s time was spent in input

data management out of a total of 5 hours. Details about this project can be found in Table 2.
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Figure 61 Starbucks coffee shop Arena model.
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Winter Park Village Chase Bank Drive Thru

This project was carried out at the Chase Bank located at 600 N Orlando Ave, Winter

Park, FL. This project analyzes the traffic in the bank’s drive thru stations and the drive thru

ATM. In order to complete this project, the necessary data were:

Arrivals into the Chase Bank drive thru using the blue section of DESI and
presented in Figure 62. This is an example on how DESI can help detect
autocorrelation. Notice the significant serial correlation. The simulation project
was still carried out, but this example shows the usefulness of DESI in validating
DES theoretical assumptions.

IID service times at the drive thru banking stations collected using the orange
section of DESI and presented in Figure 63.

Percentage of times a customer uses the ATM drive thru station versus other
banking services, collected using the green section of DESI and presented in
Figure 64.

IID data on ATM drive thru station usage collected using the orange section of

DESI and presented in Figure 65.
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Figure 65 11D Chase drive thru ATM usage times.

The Chase Bank drive thru Arena model is presented in Figure 66. The logic of this
model allows incoming cars to determine which station they want to go into, depending on the

queue size, unless customers only need the ATM. Resources are represented by bank staff and

113



the ATM machine. Resource utilization is represented by green and white squares, depending on
whether the resources are busy or idle. 43% of this project was devoted to input data

management out of a total of 3.5 hours.
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Figure 66 Chase bank drive thru Arena model.

Orlando International Airport (MCO) Security Checkpoint

This project was carried out at the Orlando International Airport in Orlando, Florida and
it analyzes the flow of passengers thru the 10 boarding pass check stations and thru the 8 X-ray
machines. The focus is on the security checkpoint for gates 1 to 59. In order to complete this
project, the necessary data were:

e [ID arrivals of passengers to the security check point gathered using the blue
section of DESI and presented in Figure 67.

e [ID times for boarding pass revision gathered using the orange section of DESI

and presented in Figure 68.
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Distribution of number of passengers arriving into the security checkpoint
gathered using the green section of DESI and presented in Figure 69.
IID wait times before using the X-ray machine gathered using the orange section

of DESI and presented in Figure 70.
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Figure 67 IID arrivals into MCO security check point and diagnostics.
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The Orlando International Airport Arena model is presented in Figure 71. The model
logic features the passenger arrivals, who decide on which security lane to enter based on queue
size. There are two entry points into security, and each point has 5 TSA agents checking travel
documents. This project takes into account traveling group sizes, which are batched based on the
probabilities obtained in the data collection process. The batching happens in order to direct
families thru the same X-ray machine. Once a machine has been assigned, the batches are
separated. High priority travelers have not been defined in this model, since the number of these
travelers is negligible compared to the overall number of passengers, making almost no
difference in the simulation results. 8% of this project’s time was spent in input data

management out of a total of 8 hours. More details about this project can be found in Table 2.

COPA Airlines Passenger Check-In Process

This project was carried out at the Orlando International Airport in Orlando, Florida and
it analyzes the flow of passengers flying in COPA Airlines to Panama City, Panama. In order to
complete this project, the necessary data were:

e IID arrivals of passengers to the check-in stations using the blue section of DESI
and presented in Figure 72.

e [ID times for the check-in process gathered using the orange section of DESI and
presented in Figure 73.

¢ Distribution of number of passengers arriving into COPA Airlines check-in

stations using the green section of DESI and presented in Figure 74.
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e Distribution of the type of passengers (regular, premier, web check-in) arriving
into COPA Airlines check-in stations using the green section of DESI and

presented in Figure 75.
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Figure 72 11D passenger arrivals into COPA Airlines’ check-in and diagnostics.
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Figure 73 1ID COPA Airlines check-in times and autocorrelation diagnostics.
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Figure 75 Passenger type distribution arriving for COPA check-in.

The COPA Airlines Arena model is presented in Figure 76. The model logic sends the
entities to the open check-in stations where COPA staff provides boarding passes. Family sizes
are represented by batches of entities, which need to be sent to the same station. Staff member
utilization is presented by green squares in Figure 76. Passenger priority and group sizes are
assigned based on probability. Then signals for open stations are sent in order to release entities
so they can seize the open stations based on availability. 20% of this project’s time was spent in
input data management out of a total of 7.5 hours. More details about this project can be found in

Table 2.

TO GATES

Figure 76 COPA Airlines check-in Arena model.
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Chipotle Mexican Grill

This project was carried out at the Chipotle Mexican Grill in the intersection of Orlando
Avenue and Fairbanks Avenue in Orlando, Florida and it analyzes the heavy demand during
lunch hours. In order to complete this project, the necessary data were:

e [IID arrivals of customers gathered using the blue section of DESI and presented
in Figure 77.

e Ordering times gathered using the orange section of DESI and presented Figure
78. This is another instance of how DESI can help detect serial correlation.

e [ID cashier serving times gathered using the orange section of DESI and
presented in Figure 79.

e Distribution of number of customers arriving to Chipotle gathered using the green
section of DESI and presented in Figure 80.

The Chipotle Arena model is displayed in Figure81. This model logic prevents entities from
being served if there is no more room in the serving area. Idle employees, other than the ones
taking orders and receiving payments, send signals to different hold modules in order to release
one entity at a time so the one entity can be served. Busy Chipotle employees receiving the
orders and getting the payments are represented by green squares in Figure 81. The flow of
customers is determined by the paying times, which must be fast in order to prevent queues to
end up forming outside the restaurant. 10% of this project’s time was spent in input data

management out of a total of 5 hours. More details about this project can be found in Table 2.
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Figure 79 11D Chipotle payment times and autocorrelation diagnostics.
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Summary of Results

The DES projects presented in this chapter show a significant positive impact from using
the DESI interface in the percentage of DES projects’ time devoted to input data management.

As presented in chapter three, the reduction in time devoted to input data management
comes from eliminating post-collection data processing A, fulfilling condition (3.15), where A,
~ 0. The projects presented in this chapter are not manufacturing applications of DES, since
manufacturing applications of DES are already the focus of other documented solutions for DES
automated data processing. The fact that no manufacturing project was included in this chapter
does not imply that the proposed framework, instantiated by the DESI interface, cannot be used
in manufacturing applications of DES.

Without DESI, the projects presented in this chapter would have been completed using
methodology (A) and (B) solutions, namely MDCAP. More sophisticated solutions for DES
input data automation would not have been adequate for these types of DES projects because the
systems modeled in this chapter did not have previously available data, which is the most

important requirement in order to use documented methodology (C) and (D) solutions.
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The projects presented in this chapter are of reasonable complexity, but in reality DES
models can get much more complex. Figure 82 shows that as model complexity increased, the
total hours devoted to input data management also increased, even with automation. Model
complexity is measured as the sum of hours needed to develop the model logic plus the hours
used in model creation within DES software. In Figure 82, model complexity is presented in the
x-axis and hours spent in input data management are presented in the y-axis. Results show a
significant positive linear correlation of 0.85 between model complexity and time devoted to
input data management.

Even though model complexity implies more absolute time devoted to input data
management, the percentage of time devoted to input data management decreased as model
complexity increased. This means that the reduction in the percentage of DES projects devoted
to input data management suggested in this chapter would not be compromised as model
complexity increases; as a matter of fact, such reduction in percentage time devoted to input data

management is reinforced as complexity increases.
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CHAPTER SEVEN: FUTURE RESEARCH AND CONCLUSIONS

Place in DES Input Data Management Literature

This section reconciles the proposed framework with the literature about DES input data
management. Skoogh and Johansson proposed the methodology for increased precision and
rapidity in DES input data management shown in Figure 83 [5]. This methodology emphasizes
the identification and definition of relevant parameters, specification of requirements and
availability of data as the initial steps in DES input data management [5]. Such steps can be
regarded as equivalent to the concept of model logic presented in the proposed integrated
framework. Using Figure 83 as reference, the proposed framework presented in this research
investigation permits data processing automation that starts in the “Create data sheet” step,
continues through the right path, i.e. “gather non available data”, and ends after the completion
of the “Finish final documentation” step, since the proposed framework allows for streamlined
validation the collected data. The aforementioned automation is possible due to the
generalization of the data into three specific classes, as presented in the proposed integrated
framework for DES input data management automation.

In summary, the documented steps from Figure 83 indicate what needs to be done in
DES input data management, whereas the proposed integrated framework presented in this
research investigation proposes a methodology to get it done in an automated manner, regardless

of the discipline or area of application.
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Future Research

In addition to speeding up data preparation for DES projects, the proposed framework,
instantiated by the DESI interface, offers advantages to the users such as flexibility, data
verifiability, lower implementation costs, ease of use by non-technical staff, real-time data
visualization, real-time data fitting, real-time assumption checking, simulation-ready output,
multimodal data fitting and relative frequencies of outcomes at decision points. User satisfaction
from these convenient features needs to be tested in user experience evaluations, which are the
subject of future research. Future research will also be focused on the financial impact of using
DESI instead of using MDCAP or instead of using more complex methodology (C) and (D)
solutions. The argument in favor of DESI as a less costly solution is the fact that it requires fewer
resources and less trained technical staff.

Then research will be directed towards the usage of sensors in order to replace humans
pressing the buttons in the DESI interface. Sensorial activation of DESI will not be feasible in all
DES applications, but when applicable, sensors can help eliminate or avoid the unavoidable wait
for events to happen 1, because sensor signaling will replace humans in the collection of the data.
Based on the claims from chapter three, if DESI can respond to sensor signals, the time devoted

to input data management will approach 0, namely B,~ 0. Such reasoning leads to the following,

Claim 7 Under the proposed integrated framework for automated DES data collection and
processing, the condition where A,~ 0, 1,~ 0, 0, = 0 and B,~ 0 for a DES project p is feasible if
sensor signaling can replace human intervention in the collection of unavailable but collectable

data.
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Conclusion

This research investigation presented an integrated framework to automate data collection
and processing for Discrete Event Simulation (DES) projects. Input data processing steps for
DES projects include calculations, probability distribution fitting, visualization and validation.
The motivation for selecting this topic is the fact that input data management for DES projects is
a highly manual process. This is confirmed by the fact that manual input data methodologies (A)
and (B) are employed by 80% of recently surveyed DES practitioners. Even though specialized
DES software runs the simulations, it does not prepare the data to set up the simulations, hence
there is the need for a solution that can automate input data management, while being usable in
the different disciplines where DES modeling is appropriate.

The literature about DES input data management presents specific attempts to automate
DES data preparation. Documented attempts are of the form suggested by methodology (C) and
(D) solutions, where automation depends on the existence of data within internal corporate
systems. Such sophisticated automation attempts present important drawbacks that prevent their
proliferation. First, these sophisticated solutions require previously available data, which often
do not exist. Second, their implementation can be challenging because of customized
configuration requirements and the need for specialized staff. Third, these sophisticated solutions
are presented only in manufacturing applications, which is one of the areas where DES modeling
1s appropriate.

The proposed integrated framework generalizes the data needed for DES projects into
three classes. These classes are Class (I) data, where the ending timestamp of one event

represents the beginning timestamp of the following event; Class (II) data, where each event has
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its own start and end timestamp; and Class (III) data, where counts of outcomes at a given
decision point generate relative frequencies or probabilities. Such generalization permits
automating the collection and processing for each one of these classes, given a model logic for
the target system.

The proposed integrated framework provides the foundations to develop an innovative
automated solution that combines key features from the four DES input data management
methodologies (A), (B), (C) and (D). For example, the solution based on the proposed
framework permits full verification and validation of the data at any time as would be expected
in methodology (A) and (B) solutions, while achieving automatic processing, storage, extraction
and updates of simulation-ready data, as would be expected in methodologies (C) and (D)
solutions.

The automated, hybrid solution based on the proposed integrated framework is called
DESI, which stands for Discrete Event Simulation Inputs. The DESI interface has three main
sections, which are devoted to the collection and processing of Class (I), Class (II) and Class (III)
data. The interface also features a section of optional parameters, which permits the selection of
specific criteria in order to customize the user experience in the analysis of data for DES
projects. DESI is activated by pressing buttons and it returns processing results in real-time.
Simulation-ready results include probability distribution fitting, histograms, autocorrelation
diagnostics, multimodal data partitions and relative frequencies in the form of pie charts. This
research investigation presents two versions of DESI. These versions are DESI 1.0, which stores
data in MySQL databases and DESI 2.0., which stores the data in text files.

This research investigation presented DES projects completed using the DESI interface.

The completion of such projects showed that the proposed framework, instantiated by the DESI
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interface, can reduce the percentage time devoted to input data management from 31%, which is
the average presented in the literature, down to 21%. Such reduction is statistically significant.
The 21% obtained using DESI comes from the unavoidable wait for events to happen, as the
implementation of DESI is very simple and post-collection data processing is fully automated
based on the concepts of the proposed framework. Future research can be focused on the
financial impact of the proposed framework as it requires fewer resources. Future research can
also be focused on user experience evaluations of the DESI interface in order to improve its
design and in the usage of sensors to replace humans pressing the buttons of the DESI interface.

A potential disadvantage of DESI is the fact that data must be collected by someone. In
other words, the current versions of DESI need a person controlling the interface by pressing the
buttons and checking the boxes in order to collect and process the data. Other documented DES
input data management solutions obtain the data directly from internal data sources. Such
reliance on internal data systems also has its drawbacks.

The challenges of relying on internal data sources have been documented in the literature.
These challenges include complexity, high costs, lengthy implementation, detailed customization
and lack of flexibility. Due to the complicated nature of input data management solutions that
rely on internal data sources, DESI can be considered a convenient alternative in the automated
processing of data for DES projects because it is independent of internal data sources. Hence,
even though the lack of connectivity to internal data sources poses the need for someone to
control the DESI interface, such independence also creates a significant strength. Non-reliance
on internal data permits DESI to be usable in different areas where DES modeling is appropriate

beyond manufacturing, advancing the state-of-the-art in automated DES input data management.
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