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ABSTRACT 

Discrete Events Simulation (DES) is a powerful tool of modeling and analysis used in 

different disciplines. DES models require data in order to determine the different parameters that 

drive the simulations. The literature about DES input data management indicates that the 

preparation of necessary input data is often a highly manual process, which causes inefficiencies, 

significant time consumption and a negative user experience.  

The focus of this research investigation is addressing the manual data collection and 

processing (MDCAP) problem prevalent in DES projects. This research investigation presents an 

integrated framework to solve the MDCAP problem by classifying the data needed for DES 

projects into three generic classes. Such classification permits automating and streamlining the 

preparation of the data, allowing DES modelers to collect, update, visualize, fit, validate, tally 

and test data in real-time, by performing intuitive actions. In addition to the proposed theoretical 

framework, this project introduces an innovative user interface that was programmed based on 

the ideas of the proposed framework. The interface is called DESI, which stands for Discrete 

Event Simulation Inputs.  

The proposed integrated framework to automate DES input data preparation was 

evaluated against benchmark measures presented in the literature in order to show its positive 

impact in DES input data management. This research investigation demonstrates that the 

proposed framework, instantiated by the DESI interface, addresses current gaps in the field, 

reduces the time devoted to input data management within DES projects and advances the state-

of-the-art in DES input data management automation.  
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CHAPTER ONE: INTRODUCTION 

The Importance of Data Collection in Discrete Event Simulation 

Discrete Event Simulation (DES) is widely regarded as a very powerful tool of modeling 

and analysis. DES is used in different disciplines, and its usage will continue to grow [1], fueled 

to a large extent, by the continuous enhancements in computer capabilities [3].  Areas of 

application of DES include, but are not limited to manufacturing, health care, logistics, military 

applications, finance and business, academia, human resources and energy [8]. Within these 

areas, DES has had an important impact in design, planning and control, strategy making, 

resource allocation and training [6].  

DES models rely heavily on data in order to estimate different parameters that drive the 

models through simulated time [3]. It is universally accepted that quality data are key drivers of 

competitive advantage and proper decision making [32]. Such convention applies directly to 

DES modeling, where results are sensitive to the quality of the data used to build the simulation 

models.  

The goal of this research project is developing the foundations for programming a robust 

automated alternative to replace manual data collection and processing (MDCAP). As is detailed 

later in this document, MDCAP is a common practice among DES researchers and practitioners, 

most of whom agree that more automation in the collection and processing of DES input data is 

highly desirable [8].  
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Motivation 

Robertson and Perera pointed out that “data collection is an extremely time consuming 

process predominantly because the task is manually orientated.”  [7]. This is especially the case 

when the data are collected through personal observation such as through-time studies or 

collected via database queries of historical processes or system performance.  

The challenges of MDCAP are not so prevalent when obtaining DES model input data 

from system or process documentation such as process plans, facility layouts and work 

procedures, from personal interviews with subject matter experts, from vendor claims, from 

design estimates and specifications, and from the open research literature, which are all common 

sources of data to construct DES models. In the framework presented in this research 

investigation, such valid sources of data are used to build the model logic. As will be discussed 

later in this document, the model logic has a very specific role in the development of a new 

approach to automate data collection and processing for DES models.  

Further manual processing of collected data is often required beyond the computations 

performed in a spreadsheet because the data sometimes need to be converted into a format that is 

compatible with a probability distribution fitting software, such as ExpertFit® by Averill M. 

Law and Associates, Inc., EasyFit® by MathWave Technologies, Stat::Fit® by Geer Mountain 

Software, Minitab® by Minitab, Inc., and R, a free software programming language.  

Therefore, the focus of this research is when the simulation modeler or analyst is tasked 

with the collection of historical performance data from a stochastic, dynamic process or system.  

Some of the simulation researcher - and practitioner - recognized challenges of MDCAP 

include: 
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 Manual data collection including data entry, which increases the likelihood of data entry 

errors arising from human manipulation of data; 

 Data pre-processing in the form of reformatting and calculations, e.g., data preparation 

for probability distribution fitting, the calculation of interarrival time parameters, service 

time parameters and historical probability parameters, etc.; and 

 Multiple file handing in order to maintain and process data, which can become 

particularly burdensome psychologically.  

This research proposes a framework to eliminate the undesirable characteristics of 

MDCAP using a robust, innovative, intuitive, automated and user-friendly solution that can be 

used across the different disciplines where DES modeling is appropriate.   

State-of-the-Art in Automated DES Data Collection and Processing 

The state-of-the-art in DES input data management automation includes solutions that are 

highly customized and specific to the project being carried out.  In other words, the state-of-the-

art is moving away from generalization and towards project-specific customization. The 

documented state-of-the-art solutions are exclusive to manufacturing applications of DES and 

are considered “too difficult” to implement on a consistent basis [8], especially outside of 

manufacturing. Such difficulties are confirmed by the fact that most DES practitioners still use 

manual approaches to prepare data for DES models. As of 2012, 80% of practitioners still rely on 

some type of manual gathering and processing of input data for DES projects [8].  

There are documented solutions such as the Generic Data Management Tool (GDM-

Tool) [14] and Machine Data Acquisition (MDA) [15], which do address some of the challenges 

of manual data processing, but they rely on previously available data found within corporate data 
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systems.  Such reliance on the existence of previous data imposes challenges to the proliferation 

of these kinds of solutions because data are often not available or if available, these are often not 

ready to be used in DES models. This suggests that in order to advance the state-of-the-art, there 

needs to be less reliance on often-unavailable corporate data systems and more reliance on non-

available but collectable data. Furthermore, in order to advance the state-of-the-art, new 

solutions must be usable beyond manufacturing applications of DES.  

Currently, the streamlined real-time integration of data collection, data calculations, 

probability distribution fitting and assumptions checking does not exist in DES input data 

management literature. As a matter of fact, there is no documented attempt to accomplish such 

tasks in a streamlined, automated manner. Furthermore, there is no theoretical foundation that 

supports the development of such a solution.  The fact that there is no integrated solution that 

starts with the collection of data, leads to isolated processing of several steps within DES input 

data management, potentially causing undesirable time delays in the completion of DES projects.   

A New Alternative for DES Input Data Management 

The approach proposed in this research starts with the analyst collecting the raw data 

based on a well-defined framework by performing actions such as pressing buttons with 

computer mouse clicks. 

 This project proposes three general classes of data for DES projects, regardless of the 

area of application. The intended classification of the data is the foundation of the proposed 

framework in order to achieve DES data processing automation. In this research, the data that are 

collected are assumed to be independent and identically-distributed (IID), nevertheless the 
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proposed framework permits the automated validation of such critical assumption [3] in real-

time. The three general classes of input data can be conceptualized as follows: 

I. The class of data when the ending time of one event is the start time of the next event 

(e.g., interarrival times). 

II. The class of data when the ending time of one event is not the start time of the next event; 

hence, there must be a start time and an end time for each event (e.g., service times, 

processing times, production times, transport times, etc.).  

III. The class of data when tallying different outcomes at a decision point generates relative 

frequencies, which represent historical probabilities, where the sum of the probabilities of 

each distinct outcome at a given decision point equals 1.0 [4]. 

At least one of these three conceptual data classes is necessary in any DES project [3, 4] 

in addition to the model logic. Moreover, as the complexity of the subject process or system 

increases, the likelihood of including data from all three classes increases. This implies that data 

needed for any DES project fall among or can be derived from these three general data classes. 

Throughout the remainder of this document, these general data classes are referred to as Class 

(I), Class (II) and Class (III). Formal definitions of Class (I), Class (II) and Class (III) data are 

provided in chapter three, where the proposed framework is presented in detail. 

 

Claim 1 Data of Class (I), Class (II) and/or Class (III) suffice to put together any DES project, 

given the model logic that allows identifying the necessary parameters. 

 

The development of the proposed framework to address MDCAP must rely on Claim 1. 

The existence of a model logic is essential in simulation models; Skoogh and Johansson indicate 
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that “the first step while preparing input data for simulation models is to identify which 

parameters are necessary to include in the model” and that “all parameters need to be defined 

with regard to how they shall be measured and represented in the model” [5]. 

The proposed framework also needs to be robust; that is, it must be applicable across 

different disciplines that utilize DES. Such framework is the theoretical foundation for 

programming a computer solution that automates input data management for DES models. If the 

proposed automated solution can effectively collect Class (I), Class (II) and Class (III) data, then 

this solution can be used across different disciplines where DES modeling is appropriate. This 

reasoning leads to the following: 

 

Claim 2 Any solution that can collect Class (I) data, Class (II) data and Class (III) data can be 

used on any DES project, regardless of the discipline or area of application. 

 

The development of a computer solution to address MDCAP must rely on Claim 2. Such 

automated solution is the instantiation of the proposed integrated framework for automated DES 

data collection and processing. 

Research Objectives 

The aim of this research investigation is to produce an innovative solution in the area of 

data collection, processing and management for DES modeling. The ultimate goal of this 

investigation is to develop a framework where user inputs automatically generate data collection, 

processing and management in order to accelerate the construction of DES models with the 
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intent of reducing the life cycle of DES studies. The specific objectives of this research are as 

follows: 

 

Objective 1: Formulate the MDCAP problem within the context of DES models; 

 

Objective 2: Design an integrated theoretical framework to address the MDCAP problem. The 

proposed framework will provide the foundations to rapidly process raw data in real-time and 

generate the necessary data computations, transformations (e.g., distributions, probabilities, etc.), 

graphics and validations required for DES models. The framework will not only be based on 

classical statistical modeling principles but it will also be designed using user-centered design 

and human-computer interaction design principles to enhance the overall user experience. 

 

Objective 3: Compare the proposed integrated framework to other automated solutions for DES 

input data management such as the Generic Data Management (GDM) Tool and Machine Data 

Acquisition (MDA) in order to demonstrate that the proposed integrated framework addresses 

current gaps in the field; and 

 

Objective 4: Perform usability studies in order to measure the impact of the proposed framework 

and maximize its compatibility with the needs and desired uses of DES modelers and analysts. 
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Expected Contributions of this Research Investigation 

This investigation should contribute quite significantly to the body of knowledge and 

advance the state-of-the-art in DES data collection and management.  Specifically, this 

investigation adds the following original contributions to the body of knowledge: 

i. The conceptualization of data needed for DES projects into three specific data 

classes, which permits focusing on each data class in order to automate its collection 

and processing. 

ii. A generic approach to automate input data management that is applicable across the 

different disciplines where DES modeling and analysis are appropriate. 

iii. Input data management automation for DES models without relying on previously 

available data within internal data sources or corporate data systems.  

This research will potentially reduce the time devoted to MDCAP because the proposed 

solution will streamline and automate the collection and processing of the data in real-time in 

response to user inputs. In addition, automation will potentially reduce data entry errors and 

increase data quality due to less human intervention. Finally, this research will provide a 

mechanism for the real-time validation of DES theoretical assumptions, guaranteeing the 

theoretical validity of the resulting parameters and consequently of the simulation models [3].  

Several studies suggest that the amount of time within DES projects devoted to input data 

management is about 31% of the entire project’s time, and could scale up to 40% [5, 33]. The 

fact that most DES analysts and practitioners desire solutions that automate DES input data 

management [8] suggests that the proposed solution will be attractive to users due to the 

avoidance of manual data collection and processing. 
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Organization of this Document 

The remainder of this document is organized as follows. Chapter two presents a review of 

the existing research literature about the state-of-the-art in automated data collection and 

processing for DES models. The details about the proposed integrated framework are presented 

in chapter three. An instantiation of the proposed framework is detailed in chapter four in the 

form of the DESI user interface. Chapter five presents a comparison between the DESI interface 

and other documented solutions for DES input data management automation. Chapter six 

evaluates the impact of the proposed framework on DES projects’ time-to-completion. Chapter 

seven presents suggestions for future research and the conclusion. 
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CHAPTER TWO:  LITERATURE REVIEW 

Methodologies for DES Data Collection 

The process of data collection, data entry and data management can take considerable 

amount of time within DES modeling projects. The time spent on data management is, on 

average, about 31% of the DES project’s lifecycle, and can go up to 40% [5, 33]. Different 

research has been focused on analyzing and improving the process of collecting, entering and 

managing data for DES projects, nevertheless such efforts are considerably less than the efforts 

devoted to statistical techniques for data analysis [12]. Simulation practitioners acknowledge that 

different DES software have limited functionalities for data preparation [12] and usually present 

insufficient support for input data management [8]. 

In DES modeling projects, data can be classified based on availability as “non-available 

and non-collectable”, “non-available but collectable” and “available” [9]. “Non-available and 

non-collectable” data can be approximated by interviewing subject matter experts or by using 

data from similar systems or by using available data previously measured and stored in process 

libraries [10]. 

Data categorized as “available”, in DES applications, are usually generated by internal 

data systems such as Enterprise Resource Planning (ERP) systems, Material Planning Systems 

(MPS), Manufacturing Execution Systems (MES) and previous analysis efforts [5]. “Available” 

data are often not ready to be used in simulation models and further processing is required [5].  

Depending on where the data are stored, “available” data are often accessible thru 

customized tools that may or may not be able to prepare the data for DES projects. Such tools are 

often referred to as ETL (extract, transform, load) applications, which can export, process and 
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move data between different sources [11]. Documented solutions for DES automated input data 

management rely on the existence of “available” data [14, 15, 29]. Such reliance on “available” 

data imposes important limitations to the proliferation of these solutions because the 

implementation of internal data systems can be complex and costly. 

“Non-available, but collectable” data for DES projects can be gathered following 

different approaches or methodologies. The most common approach is to conduct time studies 

and measure the relevant steps of the subject process or system [5]. Such a manual approach 

would fall under input data management methodologies (A) and (B) presented by Robertson and 

Perera [7, 8]. Figure 1 summarizes the four DES input data management methodologies. 

 
Figure 1 Alternative data input methodologies. 

 

Source: Skoogh, A. A., Perera, T. T., & Johansson, B. B. (2012). Input data management in 

simulation - Industrial practices and future trends. Simulation Modelling Practice and Theory, 

181. doi:10.1016/j.simpat.2012.07.009 
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In methodology (A) data from several sources are compiled and processed manually; then 

it is manually entered into the simulation model, so there is not an external data source where the 

data reside after it is collected. In methodology (B), data and information are stored in an 

external source, commonly a spreadsheet file, completed manually by the project team, which is 

then transferred to the simulation [7, 8]. In other words, the DES project team manually performs 

the collection and processing of data, but unlike methodology (A), these data are not entered 

directly into the simulation model but maintained in an external data source; then the external 

data source is linked to the simulation model. Methodology (B) is the most popular approach for 

input data management, as 61% of surveyed professionals in 2012 use this approach [8]. 

Methodology (C) uses an intermediate database that feeds the external data source, which 

feeds the simulation model [7, 8]. The primary difference between methodology (B) and 

methodology (C) is that the latter involves an automatically-populated external data source from 

an internal data source (ERP, MPS, etc.), and the former involves a manually-populated external 

data source. In methodology (D), there are no external data sources because there is a direct link 

between the internal data sources and the simulation model. Methodologies (C) and (D) solutions 

can be expensive and complex, especially (D). One reason for this is the fact that there may be a 

considerable amount of raw data available in the internal systems, but there is limited data that is 

ready to be used in simulation models [13]. In other words, raw available data often need to be 

processed further so it can be used in simulation models. 

From the same 2012 survey referenced earlier, 80% of those surveyed indicated that their 

organizations would like to enhance their input data management capabilities so they can 

implement methodology (C) or methodology (D) within the next 10 years [8]. For instance, the 

aim for more automation in input data management has motivated research and the development 
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of systems based mostly on methodology (C), such as the Generic Data Management Tool 

(GDM-Tool), which relies on already available data within internal systems such as ERP. GDM-

Tool processes available data so it can be used in simulation projects [14]. Consistent with 

methodology (C) [8, 14], GDM-Tool not only automates the extraction and preparation of raw 

data from internal sources, but it also fits statistical probability distributions to the data. GDM-

Tool must be properly configured according to the organizational procedures in order to 

automate data extraction and preparation, which can be challenging and requires trained 

technical staff [14, 20].  

Other documented attempts to automate DES input data management are the Machine 

Data Acquisition (MDA) and the Parts Data Collection application. MDA for d3FACT 

simulator, retrieves data automatically and directly from different sources and performs primary 

processing of the retrieved data following mapping rules, mapping formulas, etc. [15]. The Parts 

Data Collection application permits the users to pull data from a specific manufacturing database 

[29], format the retrieved data and feed simulation models. The benefits of the aforementioned 

solutions focus mainly in manufacturing applications [15, 29], which is one of the several areas 

where DES is useful. Chapter five presents more details about these documented methodology 

(C) solutions. 

In general, Skoogh et al. present methodology (C) and methodology (D) as “too difficult” 

[14]. For instance, before any automation, configuration is the first central activity required in 

setting up the GDM-Tool in order “to map the content of the different data sources to each other 

and to specify all transformation operations required to obtain the simulation information” [14].  

Methodology (C) solutions are more feasible than methodology (D) solutions because the latter 
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requires extensive research, customization and development and are often more complex at the 

time of implementation [8]. 

Even though many professionals would like to see a migration towards methodology (C) 

solutions and to a lesser extent to methodology (D) solutions, the reality indicates that 

methodologies (A) and (B) are still widely used. As a matter of fact, the most popular approach 

among DES practitioners is consistent with methodology (B) [8].  

Probability Distributions Fitting in DES 

After gathering, cleaning and preparing the data to be utilized in DES projects, statistical 

probability distributions must be fitted to different data inputs in order to perform the simulations 

using DES software. The fitting of the distributions generates parameters required by the 

software in order to run one or more replications of the system being analyzed [3]. Nowadays, 

multi-purpose software such as GDM-Tool [14] can fit most common theoretical statistical 

probability distributions [17], and there are also specialized, standalone probability distribution 

fitting software such as Arena’s Input Analyzer by Rockwell Automation [4], Stat::Fit by Geer 

Mountain Software [18] or ExpertFit by Averill M. Law and Associates [16] that can perform the 

fitting operation. The time involved when preparing collected data can be an issue with 

standalone distribution fitting software because these standalone programs expect data files with 

specific formats or layouts [4]. Obtaining the distributions from a separate standalone software as 

a separate step is the most common practice [8], especially if the available distributions within 

the multi-purpose input data management tools are limited [21,17].  

In addition to fitting probability distributions to the data, software performing the 

theoretical distribution fit usually provides a graphical representation of the data in the form of a 
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histogram plus goodness-of-fit tests such as Chi-Square test or Kolmogorov-Smirnov test or 

Anderson-Darling test [4] in order to confirm the adequacy of different fitted distributions [3,4]. 

Specialized distribution fitting software also permit empirical distribution fit if no theoretical 

distribution presents a proper fit based on the goodness-of-fit tests.  

Encountering multimodal data is a possibility in DES applications, and, often, this type of 

analysis has to be performed manually [4]. Current solutions for data fitting display the 

multimodal data but users need to handle such data manually outside of the probability fitting 

tool in order to obtain a proper fit on each of the subsets of these data. The solution proposed in 

this document provides an innovative option to fit multimodal data without having to process 

each subset manually.  

Independence among fitted observations is a key assumption in order to perform 

statistical goodness-of-fit tests and to use maximum likelihood estimation (MLE) to obtain 

probability distribution parameters [3]. Currently, not all statistical probability distribution fitting 

software offer the capability to test, diagnose or visualize autocorrelation [4,16,18]. The solution 

proposed in this document offers the ability to test, diagnose and visualize autocorrelation in 

real-time right after new data are collected.  

Analysis of Input Data Management Methodologies 

The different approaches or methodologies described above explain that solutions based 

on methodology (C) and on methodology (D) require data sources already in place [14, 15]. In 

other words, such solutions are not meant to be used in the collection of the data but assume 

availability of accessible data. Such reliance on existing data poses important limitations to the 

proliferation of these types of solutions. On the other side of the spectrum, manual approaches 
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such as methodology (A) and methodology (B) stress manual data collection and manual data 

preparation in order to feed simulation software, without much attention paid to automation that 

facilitates their implementation.  

Methodology (C) solutions add automation to methodology (B) in the form of data 

updates coming from an internal data source. Even though methodology (C) implementations are 

a desirable goal of 80% of surveyed professionals in 2012 [7, 8], literature shows few of such 

developments. In addition to the reliance on available data, another reason why sophisticated 

solutions such as (C) and (D) are not widely implemented is the fact that they are “too difficult”, 

according to Skoogh, Perera and Johansson [8]. Methodologies (C) and (D) solutions require 

detailed customization and complex implementation rules in order to convert internal data into 

simulation ready output.  

The fact that methodology (A) and methodology (B) are the most common approaches to 

collect data suggests that they present features that are convenient to DES modelers. 

Equivalently, it can be deducted that methodology (C) and methodology (D) solutions present 

complexities that prevent them from being implemented on a consistent basis.  

One of the strengths of performing manual collection of data is that the collector has 

control over the inputs and these can be verified at any time [8]. Methodology (A) and 

methodology (B) solutions tend to be fairly general and work in several applications of DES.  A 

common disadvantage of manual approaches, such as methodology (A) and methodology (B), is 

that they can be time-consuming [2]. In addition, manual collection of data for DES models can 

carry human error and become a tedious activity when entering values and processing the data. 
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Potential Hybrid Solution for Input Data Management 

After analyzing the strengths and weaknesses of documented methodologies it is evident 

that there is room for exploring combinations of features from the different methodologies in 

order to find an alternative solution to the ones documented in the literature. Figure 2 presents 

the idea of a hybrid solution for DES input data management.  

 

Figure 2 Potential hybrid solution combining features of different methodologies 

 

For instance, a desirable feature of a potential new input data management solution is for 

it to be general enough so it can be used in different types of DES projects, in different 

disciplines, beyond manufacturing. Another desirable feature of a potential new solution is that it 

should be easy to configure and implement.  Adding to the list of desirable features, it would be 

convenient to have a solution that allows the collector to verify the data at any time.  

The desirable features just described are consistent with the advantages of methodologies 

(A) and (B), the latter being the most popular of all input data management approaches [8]. As 

mentioned earlier, the main disadvantage of methodologies (A) and (B) is the manual collection 
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and preparation of data, hence a new solution should avoid tedious, error prone manual 

processing of data. In other words, any potential new solution should aim for a way to automate 

the collection, validation, storage, processing, visualization and fitting of input data with a 

simple action such clicking with a computer mouse.  

As stated previously, even if data are already available internally, these data are often not 

ready for DES projects.  Hence, even though a solution starting at the collection stage can be 

regarded as more time consuming than a solution getting the data directly from internal systems, 

the fact that previously available data often need considerable processing after extraction [8,21] 

suggests that the time-consumption benefit of working with already available data might not be 

as significant as expected. In general, available data accessed by methodology (C) and 

methodology (D) solutions are the result of complex implementation and configuration [8], 

which represents an obstacle to the proliferation of these types of solutions [22]. So even though 

internal systems produce large amounts of raw data, the fact that these data have not been 

designed or prepared for DES projects [8,21] can elevate costs relative to working with data 

collected outside of the internal systems and specifically designed for DES projects.  

Enhancements beyond Methodology (B) 

In order to make a new solution based on the strengths of methodologies (A) and (B) 

more attractive than relatively sophisticated methodology (C) and methodology (D) solutions, it 

should feature some of the key conveniences found in methodology (C) and to a lesser extent in 

methodology (D) without losing the conveniences of methodologies (A) and (B).  One of these 

convenient features is the ability to update existing databases automatically without the need of 

human assistance [8] as new data are generated.  In other words, a new solution should provide a 
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method to replace internal data systems from (C) and (D) with a mechanism of data generation 

that automatically feeds the external data sources, which feed the simulation models.  

Another useful feature that can be added to the new input data management solution is 

the ability to create histograms and fit probability distribution that update in real-time after a new 

observation is recorded. The updated histogram and probability distribution fit should be visible 

to the data collector right after the new data are added. The probability distribution fit should 

present the usual goodness-of-fit tests [3]. Moreover, the new solution for input data 

management should feature a visual way of notifying the analyst about the goodness-of-fit 

without having to refer to the goodness-of-fit test results every time the data are updated. In 

addition to the desirable features described above, a potential new solution should also offer the 

ability to test, diagnose and visualize serial correlation among observations in real-time in order 

to validate underlying theoretical assumptions [3]. 

In general, the new solution should be intuitive and consistent with the principles of 

human-computer interaction design [22, 34, 35]. A new solution should be flexible enough to 

accommodate different characteristics of the data being collected regardless of the discipline or 

area of application.  

Similar to methodology (C) solutions, the new potential input data management solution 

should automatically record, update and store the data in a separate location, such as a database 

or a data file. Similar to methodology (D) solutions, the hybrid solution should produce output 

that is definite and meaningful in the context of DES projects. In other words, the hybrid solution 

should produce output that is ready to be added to DES software via automated imports or by 

entering the resulting parameters into the software [14, 21, 23- 28]. Automated imports into DES 

software is outside the scope of this research work. 
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In summary, there is the need for a new hybrid input data management solution that 

combines the specific strengths of commonly-used manual methodologies (A) and (B) with 

features of the more complex methodologies (C) and (D). This research investigation seeks to 

provide the theoretical foundations for developing the aforementioned hybrid solution in order to 

solve the MDCAP problem prevalent in DES projects. 
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CHAPTER THREE: METHODOLOGY 

Formulation of the MDCAP Problem 

The manual data collection and processing (MDCAP) problem in the context of DES 

projects can be formulated as follows.  

On average 31% of DES projects’ time is devoted to data collection and processing. In 

some instances this percent can go up to 40%. The main reason for this is the fact that input data 

management for DES projects is a highly manual process [7]. MDCAP includes steps such as 

collecting the data, updating existing data, performing calculations on the data, validating the 

data, copying and pasting the data in different formats, visualizing the data, fitting and testing 

probability distributions to the data, storing the data and calculating relative frequencies of 

distinct outcomes at different decision points within the system being modeled.  

As mentioned earlier in this document, 80% of professionals or practitioners rely on 

manual methodologies (A) and (B), which shows that manual approaches to data collection and 

processing are the most common practice in the field. If this practice persists, the time devoted to 

input data management within DES projects will likely stay at roughly one third of the project’s 

lifecycle. Given the fact that more sophisticated solutions such as the ones from methodologies 

(C) and (D) are considered “too difficult” [8] also suggests that the reliance on manual 

approaches for data collection and processing will not go away. The fact that 80% of surveyed 

professionals also affirmed that they would like to migrate towards automated solutions for input 

data management suggests that methodologies (A) and (B) are not the preferred practice if these 

can be avoided, even though methodologies (A) and (B) present certain advantages such as 

verifiability and transparency.  
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The MDCAP problem is the negative impact on time-to-completion and on user 

experience caused by manual approaches to input data management in DES modeling projects. 

The MDCAP problem is generated by the inefficiencies associated with manually collecting and 

processing the data necessary for DES projects.  

Proposed Framework for Automated Data Collection and Processing 

Chapter one generalized DES input data into three specific data classes given the model 

logic. Such generalization constitutes the foundation for the theoretical framework detailed in 

this chapter and is an original contribution of this research investigation to the body of 

knowledge. Classifying DES input data as Class (I), Class (II) or Class (III) permits the intended 

automation and the applicability of the proposed framework in different disciplines where DES 

modeling is appropriate. 

Theoretical Foundations 

The idea of a hybrid solution to automate DES input data management is presented 

Figure 2. Figure 2 suggests combining the strengths of different methodologies in order to 

generate a user-friendly, intuitive solution that automates input data management for DES 

projects.  

The three generic data classes feed DES models based on a predefined model logic. In 

what follows, model logic is assumed to be known before starting the collection of the data. The 

three proposed DES input data classes constitute the key foundation in the development of an 
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automated alternative framework to address the MDCAP problem. Formally, these classes are 

defined as follows.  

Class (I) data: data where 

tend,j = tstart,j+1                                                                                         (3.1) 

For consecutive events indexed j and j+1, the ending timestamp associated with event j, 

tend,j represents the start timestamp of the next event (j+1), tstart,j+1. 

Class (II) data: data where 

tend,j ≠ tstart,j+1                                                                                         (3.2) 

For consecutive events indexed j and j+1, event j has a starting timestamp and an ending 

timestamp for a given event, represented by tstart,j and tend,j, respectively; For consecutive events j 

and j+1, the ending timestamp of event j, tend,j ,  does not represent the starting timestamp of the 

next event j+1, tstart,j+1 .   

Class (III) data: data where tallied counts generate relative frequencies or probabilities 

    γ𝑖𝑚=
𝑛𝑖𝑚𝑁𝑚                                                                 (3.3) 

…where m=1,…,M and i=1,…,cm ∀ m ∑ γ𝑖𝑚𝑐𝑚𝑖=1  = 1                                                           (3.4) 

…at each decision point m, m=1,…,M γ𝑖𝑚 represents the probability of the specific outcome i out of cm distinct possible 

outcomes, at the specific decision point m, so i=1,…,cm and m = 1,…, M. Total counts for each 

of the cm distinct outcomes at decision point m are represented by nim , i = 1, …, cm. Class (III) 

data are counts nim for each of the cm distinct outcomes out of the Nm total observations tallied at 

the decision point m. The counts nim determine relative frequencies for each of the cm distinct 
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outcomes at decision point m as a proportion of Nm. From these elements, relative frequencies for 

each distinct possible outcome at a given decision point m can be computed as shown in (3.3). 

Figure 3 shows an example of how the γ𝑖𝑚 ‘s become inputs in Arena DES software.  

In the example from Figure 3, cm = 3, as there are three possible outcomes, e.g. defective 

with solution, defective without solution and ready for shipment. There is only one decision 

point, hence m=1 and M=1. Also, γ11 = 0.83, γ21 = 0.13 and γ31 = 0.04. The way to interpret γ11 is 

that the probability of the first distinct outcome at decision point 1 is 0.83. The way to interpret 

γ21 is that the probability of the second distinct outcome at decision point 1 is 0.13. The way to 

read γ31 is that the probability of the third distinct outcome at decision point 1 is 0.04.  

 

 

Figure 3 Example of how historical probabilities are used in the Arena DES software. 
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Claim 3 Let Ω be the set of disciplines where DES is applicable. Let δρ be a data collection 

approach to gather input data for DES project ρ, and let Φ be the model logic of the system being 

analyzed using DES within the project ρ, then 

δρ (Φ| Ω) = δρ (Φ)                                                        (3.5) 

 

This means that the data collection approach for DES project ρ is a function of the model 

logic Φ and is independent of the area of application or discipline represented by Ω. 

Independence between Φ and Ω 

Because the collection of data for similar model logic is the same, regardless of the 

discipline, a single data collection tool that covers Class (I), Class (II) and Class (III) can be used 

to collect data in any discipline from Ω, given the model logic Φ. This can be summarized as: 

 

Claim 4 If a data collection approach δρ can collect Class (I), Class (II) and Class (III) data, this 

approach can be used in any discipline ω that belongs to Ω, in order to collect input data for a 

DES project ρ, given model logic Φ. Then, 

   ρ =f (δρ|Φ)                                                             (3.6) 

 

Hence, if there is a model logic Φ in place and data from Class (I) and/or Class (II) and/or 

Class (III) are collected, a DES project ρ will be feasible, regardless of the discipline or area of 

application.  Another interpretation of (3.6) is that specifying the discipline where a DES project 

ρ will be performed is not enough to create the DES project ρ; whereas if there exists a model 

logic Φ and data gathered using approach δρ, the DES project ρ will be feasible. 
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Resuming a Previous Data Collection Effort 

Resuming a previous data collection effort without distorting the information from 

previously gathered data is a key requirement in order to achieve automation in DES data 

collection and processing. There needs to exist the capability to add new data to previously 

collected data without corrupting the information obtained from older data.  As will be presented 

below, Class (I) data are susceptible to the timing of the collection efforts, so there needs to be a 

mechanism to neutralize the impact from resuming data collection at a later point in time. 

For example, imagine that an analyst is recording arrival times to an airport security 

checkpoint in order to compute interarrival times (e.g. Class (I) data). The analyst takes lunch 

break and resumes collecting arrival times after finishing lunch. When he or she comes back 

from lunch, the specific interarrival time calculated as the difference between the latest arrival 

timestamp recorded before lunch and the first arrival timestamp recorded after lunch will be a 

corrupted interarrival time. The data corruption just mentioned will have a direct impact in the 

probability distributions and eventually in the simulations generated from these data.  

Let us define a data collection effort as the uninterrupted action of collecting data to be 

used in DES projects. This means that if the data collector quits collecting data for any reason 

and then resumes this collection at a later point in time, then the collector has engaged in two 

collection efforts. There is no limit in the number of efforts for a given DES project. 

Let ε𝑖𝜓𝜗 > 0 be i
th 

effort to collect class 𝜓 data for variable 𝜗 for a DES project, where 𝜓 

can take the values I, II or III depending on whether the collection is on Class (I), Class(II) or 

Class(III) data. Let τ𝑖𝜓𝜗 be a timestamp from ε𝑖𝜓𝜗, in order to gather class 𝜓 data for variable 𝜗. 

The rules to resume data collection are presented below. 
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Let Δψ be defined as the act of resuming data collection for class ψ data, where ψ can take 

the values I, II or III. 

If 𝜓 = III then resuming the data collection does not depend on the effort of the collection 

or in the timestamp of the collection, only on model logic. Formally 

  ΔIII (Φ)                                                                 (3.7) 

If 𝜓 = II then resuming the data collection does not depend on the effort of the collection, 

only in the timestamps of the collection and on model logic. Formally 

ΔII (Φ, τ𝑖𝐼𝐼𝜗)                                                           (3.8) 

If 𝜓 = I then resuming the data collection depends on the effort of the collection, on the 

timestamp of the collection and in the model logic. Formally 

ΔI (Φ, τ𝑖𝐼𝜗,ε𝑖𝐼𝜗)                                                         (3.9) 

For Class (II) data, each collection is generated by two timestamps, referred here as 

starting timestamp and ending timestamp. After a collection is completed from recording a 

starting timestamp and an ending timestamp, then the data collection can be resumed anytime in 

the future without affecting previous distribution of Class (II) data. Hence, resuming the 

collection of Class (II) data does not depend on the effort ε𝑖𝐼𝐼𝜗. 

For Class (I) data each entry consists of a single timestamp, where new timestamps are 

compared to the previously recorded timestamp in order to generate an interarrival collection. If 

the last recorded timestamp was gathered on a different effort (as in the simple airport security 

example presented earlier), then the time between collection efforts will corrupt the recording of 

Class (I) data. Hence, the resuming of Class (I) data needs to be independent of collection efforts ε𝑖𝐼𝜗’s. In other words, the following condition must hold:  

ΔI (Φ, τ𝑖𝐼𝜗|ε𝑖𝐼𝜗) = ΔI (Φ, τ𝑖𝐼𝜗)                                              (3.10) 
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In order to achieve condition (3.10) from (3.9) the following logic needs to be applied 

when resuming Class (I) data collection and processing.  

Let us introduce two consecutive efforts to collect Class (I) data for variable 𝜗, namely ε𝑖𝐼𝜗 and ε(𝑖+1)𝐼𝜗, where I in the subscript stands for Class (I) data and 𝑖 represents the effort. Let 

Ε be the set of all the collection efforts before i+1, so ε𝑖𝐼𝜗 𝜖 𝛦. Let the latest timestamp value 

from the collection effort ε𝑖𝐼𝜗 be called tN,original. When the next effort starts, namely ε(𝑖+1)𝐼𝜗, 

tN,original gets converted into the exact timestamp when  ε(𝑖+1)𝐼𝜗 starts. Once converted, tN,original is 

renamed to t1,resumed. Then the positive difference between tN,original and t1,resumed is calculated. This 

positive difference is represented by σ(i+1)ϑ for each resuming effort ε(𝑖+1)𝐼𝜗,  Formally, 

    σ(i+1)ϑ = t1,resumed - tN,original                                                                         (3.11) 

… for the (i+1)
th

 collection effort ε(𝑖+1)𝐼𝜗 of Class (I) variable 𝜗  ∀ ε𝑖𝐼𝜗 ϵ Ε 

Time difference σ(i+1)ϑ  needs to be added to all the previously recorded timestamps 

collected before tN,original. The new timestamps obtained after adding σ(i+1)ϑ are used to calculate 

the new set of interarrival times. All the previous arrival timestamps recorded before ε(𝑖+1)𝐼𝜗 get 

modified by σ(i+1)ϑ, but the Class (I) interarrival times remain the same regardless of the 

collection effort, fulfilling (3.10).When the second entity appears in the resumed collection effort ε(𝑖+1)𝐼𝜗 , at t2,resumed, the difference between consecutive timestamps t2,resumed and t1,resumed, 

becomes the first interarrival time of the resumed collection effort ε(𝑖+1)𝐼𝜗. Then Class (I) data 

collection can continue without any corrupted data. 
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Best Fitted Statistical Probability Distribution 

Let π be the non-empty set of probability distributions fitted to the resulting histogram of 

N observations from Class (I) or Class (II) data. Let K be the subset of π where the null 

hypothesis of good fit is not rejected. Then the best fitted probability distribution out of K is 

obtained as follows [34]. 

 If N < 50 then λ is the fit that produced Max (Max (p-value KS), Max (p-value AD)) ∀ Kϵπ 

 If N ≥ 50, then λ is the fit that produced Max (p − value χ2) ∀ Kϵπ 

λ represents the best fitted probability distribution out of K ϵ π, K
 
is the set of 

distributions from π where the null hypothesis of good fit is not rejected, AD stands for 

Anderson-Darling goodness-of-fit test, KS stands for Kolmogorov-Smirnov goodness-of-fit test 

and 𝜒2 stands for the Chi Square goodness-of-fit test.  

Speed between Two Points Using Class (II) Data 

A common data input to DES projects is the speed of different actors within the 

simulation. Entities, resources, transporters and other simulation elements often need to be 

assigned a speed when they move from one location to another within the modeled system. The 

proposed framework permits the automated calculation of average speed between two points 

using the reasoning behind the collection and processing of Class (II) data. Because Class (II) 

data can be regarded as having a departure timestamp and an arrival timestamp instead of 

starting and ending timestamps, the average speed s between two points can be deducted by 

knowing the traveled distance D and using formula (3.12). Let ti , i=1,…,d be one of the entries 



30 

 

of d x1 vector ς of calculated Class (II) continuous time intervals. Then, a d x1 vector of speeds 

S, with elements si, i=1,…,d, can be obtained using 

si = u • 𝐷𝑡𝑖                                                            (3.12) 

D is the target distance, ti represents the i
th

 Class (II) time interval within vector ς and u is a 

conversion constant. If speed is in miles per hour, D in meters and time in minutes, u= 0.03728. 

Expected Impact in DES Input Data Management 

This section presents the expected gains from using the proposed framework instead of 

using MDCAP associated with dominant input data methodologies (A) and (B) and instead of 

using more sophisticated solutions based on methodologies (C) and (D).  

A critical concept for this analysis is “the unavoidable wait for events to happen”. The 

unavoidable wait for events to happen can be defined as the unavoidable human wait associated 

with data collection for DES projects. For instance, if an analyst is collecting data on car arrivals 

to a gas station, there is an unavoidable wait for cars to arrive. The proposed framework reduces 

the time associated with DES input data management to be equal to the unavoidable wait for 

events to happen, eliminating all other sources of delays associated with data processing after the 

data are collected. 

Let βρ >0 be the total time devoted to input data management for DES project ρ. Let ηρ ≥0 

be the unavoidable wait for events to happen for DES project ρ. Let θρ ≥0 be the time necessary 

for implementing an input data management solution for DES project ρ. Let Λρ ≥0 be the time 

devoted to post-collection data processing for DES project ρ. 
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Under MDCAP βρ can be broken down in two components because the configuration 

component θρ ≈ 0. Under MDCAP θρ is considered to be almost equal (≈) to 0 because usually 

MDCAP is performed by standalone specialized tools that are ready to be used after simple 

installation steps. The first component of βρ under MDCAP is the unavoidable wait for events to 

happen ηρ >0 and the second component includes a series of processing steps beyond data 

collection represented by Λρ >0. The post-collection component Λρ includes, but is not limited 

to, data calculations, data reformatting, data exports, data imports, validations and other 

processing steps often performed by standalone isolated tools. Hence, under MDCAP, 

βρ ≈ ηρ + Λρ                                                           (3.13) ∀ ρ 

Under sophisticated methodologies (C) and (D), the unavoidable wait for events to 

happen and the post-collection processing time can be eliminated due to the automated extraction 

and processing of available internal data. Hence, if there exists internal data, under sophisticated 

(C) and (D) solutions Λρ ≈ 0 and ηρ ≈ 0. In these types of sophisticated solutions for automated 

DES input data management there is a significant amount of time that is required for 

implementation and configuration in order to produce simulation-ready data [8]. This implies 

that for methodology (C) and (D) solutions θρ >0. Hence, for methodology (C) and (D) solutions, 

if there exists available data within internal data systems, 

βρ ≈ θρ                                                                                              (3.14) ∀ ρ 

 

Claim 5 Under the proposed integrated framework for DES data collection and processing all 

delays in project ρ other than ηρ are eliminated. Formally, under the proposed framework 
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Λρ ≈ 0                                                                (3.15) 

θρ ≈ 0                                                                (3.16) 

Hence, given model logic, under the proposed framework 

βρ ≈ ηρ                                                               (3.17) ∀ ρ 

 

Claim 6 For a given DES project ρ and focusing only on time-to-completion, the proposed 

framework will be preferred to MDCAP if Λρ > 0; the proposed framework will be preferred 

over sophisticated methodology (C) and (D) solutions if θρ > ηρ. 

Opportunity for Innovation 

The proposed framework not only permits the automated collection and processing of 

Class (I), Class (II) and Class (III) data, but also facilitates the implementation of other useful 

features needed in DES analysis such as autocorrelation diagnostics, multimodal data 

visualization and transporter speed computations.  

The complex nature of methodology (C) and (D) solutions opens the window for a new 

automated solution based on the proposed integrated framework for automated DES data 

collection and processing. The automated solution developed following the proposed framework 

intends to streamline and integrate DES data collection, data updates, data storage, data 

processing, data visualization, data validation, distribution fitting and distribution testing in real-

time, in response to intuitive user actions. Such streamlined integration is what makes a solution 

based in the proposed framework unique in the field of modeling and simulation. 
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Human-Computer Interaction Design Considerations 

This research investigation includes the programming of a user interface based on the 

concepts and ideas of the proposed integrated framework. Hence human computer interaction 

(HCI) design principles must be considered when programming the aforementioned interface. As 

previously mentioned, the intended interface can be regarded as a hybrid that includes features 

from different input data management methodologies (A), (B), (C) and (D). The main user 

experience goals of this automated solution to MDCAP are 

 Avoidance of the undesirable characteristics of MDCAP; 

 Integration of currently isolated data processing steps into a single information stream 

triggered by a simple user action; 

 Streamlined validation of the results when new data are generated; and 

 Reliable data storage. 

The design of the proposed interface to automate DES data collection and processing 

should increase productivity and user satisfaction [35]. The proposed interface must be “usable”. 

Being “usable” in HCI design means that the proposed solution to MDCAP must be easy to learn 

and effective to use, while providing an enjoyable user experience [22]. Any innovative interface 

that seeks to improve DES data collection, data processing, data storage, data updates, validation 

of theoretical assumptions and distribution fitting must reliably provide correctness, no 

duplication, consistency, timeliness, validity, reliability and completeness [7, 29, 30, 31, 32]. 

The interface that instantiates the proposed integrated framework for DES data collection 

and processing should take into account the following principles from HCI design [22]:  

 Visibility: functionalities are clearly defined and easy to identify. 
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 Feedback: the user receives a specific response to different types of user inputs. 

 Constraints: restrict user interaction at a given moment. 

 Consistency: no ambiguity in the expected response to user inputs.  

 Affordance: hints the user on how to use the interface even without instructions.  

HCI design also indicates that interfaces should be satisfying, enjoyable, engaging, 

exciting, helpful, motivating, aesthetically pleasing, supportive of creativity, cognitively 

stimulating, rewarding and emotionally fulfilling.  

The conceptual model [22] for the proposed interface is the following: a system that 

offers the ability to declare a variable that will be used in a DES model; the declared variable 

then gets collected, stored, processed and updated in real-time, right after pressing specific 

buttons within the interface using a computer mouse.  

The interaction type with the proposed interface needs to be “instructing”, where users 

issue instructions to the system [22]. The instructions should be given by first specifying the 

name of the variable being collected, second, by checking boxes to determine optional 

parameters and third, by pressing buttons to initiate the real-time collection, storage, processing 

and updating of the data.  User inputs should generate a response from the system that is relevant 

to DES models, including images of the expected information.  

The declaration of a variable should be by typing the variable’s name into a space within 

the interface. The reason for typing the variable’s name into a space is to allow users to define a 

name that is appropriate for each DES project. If variables’ names were entered as selections 

from a dropdown or by checking a box, variables’ names would be restricted to a small set of 

options, whereas if the names are typed, the options are limitless to the user. Instructions 

provided via box-checking allow the user to intuitively select one or more options from a 
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relatively small, fixed set of options [22]. Variable declaration and box checking precede button 

pressing.  

The reason for using button pressing to initiate the automated processing (and not other 

options like drop downs, box checking or radial buttons) is because buttons are an intuitive way 

to issue a definite command. Buttons yield a sense of definiteness and closure (i.e. GO, 

SUBMIT, NEXT, etc.) [22].  

In order to make this interface easy and pleasant to use, the interface should reduce visual 

work, reduce intellectual work, reduce memory work, reduce motor work and eliminate or 

minimize burdens imposed by technology [35]. Other considerations in the design of the 

proposed user interface to address MDCAP include high color contrast, distinctive colors used 

with specific cues (i.e. brief instructions) and opponent colors separated from each other [36].  

Instantaneous feedback with relevant information for DES models should be provided in 

the form of message boxes [22] and relevant graphics. Messages such as errors or warning 

should be clearly presented as a separate box, in the center of the screen and not in the 

peripherals, so they can be easily visualized [36]. For instance, errors can be presented in red, 

with an “X” and warnings in yellow, with a “!” [36].  

Real-time responsiveness should be a key characteristic of this design [36] because users 

must receive feedback as soon as they collect new data. In other words, processing results should 

display real-time confirmations of the data collection and generate real-time output relevant to 

DES models. Relevant output for DES models includes probability distribution fitting, 

histograms, autocorrelation diagnostics, special options for visualizing multimodal data and pie 

charts, among others. A user interface instantiating the proposed framework is presented in 

chapter four and tested in chapter six. 
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CHAPTER FOUR: RESULTS 

Overview of the Prototype Interface 

Results are focused on the ability to generate an automated solution for input data 

management based on the proposed framework. The resulting prototype application is called 

DESI, which stands for Discrete Event Simulation Inputs. DESI is a graphical user interface 

(GUI) that is used to collect and process data for DES projects. The data to be collected are 

determined by the model logic. The proposed user interface has three main sections and a section 

of optional parameters. The three main sections of DESI are the top blue section, used to collect, 

fit and test Class (I) data; the middle orange section, used to collect, fit and test Class (II) data; 

and the bottom green section, used to collect and display Class (III) data. The flow of 

information when using DESI is detailed in Figure 4, starting from the top. 

 

Figure 4 The flow of information when using the DESI interface. 
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There are two versions of DESI, DESI 1.0 and DESI 2.0. DESI 1.0 relies on database 

connectivity in order to store the data in MySQL tables. DESI 2.0 stores the data in the form of 

text files and presents key enhancements for DES data preparation beyond DESI 1.0. DESI 1.0 

has safer data storage, whereas DESI 2.0 presents more features, a simpler implementation and 

can be installed on both mac and pcs. DESI 2.0 evolved from DESI 1.0.  

The DESI interface sketch, the DESI 1.0 graphical user interface and the DESI 2.0 

graphical user interface are shown in Figure 5. The user issues instructions to both versions of 

DESI in the form of  

a) Box checking (to select what probability distributions to fit, to process subsets of the 

data, to display autocorrelation diagnostic plots, to calculate transporter speed
1
 and to 

simulate new data based on different types of fit); 

b) Typing  (to declare variables, to determine moving window of most recent data, to fix 

the number of histogram bins, to determine ranges of data to process, to specify 

number of  lags for autocorrelation diagnostic plots, to set a cutoff date for data 

purging, to enter distances for speed calculations
1
 and to provide the number of 

simulated data points to be generated from different fits); and 

c) Button pressing (to start procedures). 

                                                 
1
 Feature only available in DESI 2.0. 
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Figure 5 DESI interface sketch, DESI 1.0 GUI and DESI 2.0 GUI. 
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Both versions of DESI offer the ability to display previously-recorded data, delete the 

most recent observation in case it was erroneously recorded, resume a previous collection, test 

serial correlation, analyze multimodal data, select what probability distributions to fit and 

simulate new data based on different fits. DESI can display the most recent observations as a 

moving window in case the analyst is only interested in the most recent activity. Both versions of 

the proposed tool also have the option to purge data before a specified cutoff date in order to 

avoid storing old, unnecessary data.  

Because the count of the collected data values will not be large in comparison to the 

storage and processing capabilities of databases, installing the databases on personal computers 

suffices [38, 39, 40, 41] in order to run DESI 1.0. DESI 2.0 stores the data as text files so system 

memory should not present any constraint.  

Probability Distribution Fitting and Determination of Best Fit 

As presented in chapter three, the Kolmogorov-Smirnov and Anderson-Darling 

goodness-of-fit tests are performed if the number of fitted observations is less than 50 and the 

Chi Square goodness-of-fit test is performed if the number of observations is greater than or 

equal to 50 [34].  

In both versions of DESI, the analyst determines the set π of probability distributions to 

be fitted to the resulting histogram from Class (I) or Class (II) data. The user determines π by 

checking boxes in the left panel of DESI or if all boxes are left unchecked, all distributions will 

be included. In this project, π can have some or all of the following distributions: Normal, 

Lognormal, Gamma, Exponential, Weibull, Triangular, Uniform, Beta, Birbaum-Saunders, 
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Extreme Value, Generalized Extreme Value, Generalized Pareto, Logistic, Log Logistic, 

Nakagami, Rayleigh, Rician, T Location Scale, Inverse Gaussian (also known as Wald) and 

Poisson. Ideally, the user is expected to select the probability distributions supported by the DES 

software being utilized to complete the DES models. Distribution parameters are obtained using 

Maximum Likelihood Estimation (MLE) [37], which assumes independence between 

observations [3].  

The information produced by both versions of DESI can be added to DES software or it 

can be modified further by collecting more data values. In what follows, if DESI is referenced 

without the version number, then the statements are true for both versions of DESI.  

Development of DESI 1.0 

The ideas and concepts of the proposed integrated framework were initially implemented 

using a combination of Matlab code and MySQL databases in order to create the DESI 1.0 

interface. The reason for using Matlab is its ability to handle vectors, probability distributions, 

goodness-of-fit tests and graphics. In addition Matlab can connect to databases using the 

database toolbox capabilities [37]. The reason for using MySQL is because it is a well-

documented open source tool, widely used in different industries [38- 41].  There are other 

programming languages that could have been used to instantiate the proposed framework.  

The processing of the data is performed by Matlab code. The DESI 1.0 interface is linked 

to a MySQL database where all the data are stored. The interface can be made available to any 

user via the Matlab Compiler, even if the end user’s computer does not have Matlab [37].  
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The flow of information from Figure 4 is presented in Figure 6, but with the actual tools 

used in the development and implementation of DESI 1.0. Data processing starts with the DESI 

user interface, where users input information in the form of typing, box checking and button 

pressing. User inputs are processed by the compiled Matlab code and stored in MySQL. Once 

data are stored in MySQL, the program extracts the data from MySQL using SQL code in order 

to perform calculations and distribution fitting. Once the data have been processed, DESI 1.0 

sends the relevant information back to the analyst in the form of message boxes and relevant 

graphics.  

 

 
 

Figure 6 Flow of information after Matlab and MySQL implementation in DESI 1.0. 
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the positive difference ti+1 - ti in order to calculate interarrival time IATi. Arrival timestamps 

remain stored in MySQL in a schema called DESI_IAT_VN and within a table called IAT_VN 

where IAT stands for interarrival time and VN is the variable name. The number of rows of table 

DESI_IAT_VN.IAT_VN is equal to the number of collected arrival times minus one. 

Calculated interarrival times are also exported to a text file in case the user needs to load them 

into another application. Data files are named DATA_VN_interarrival_times.txt, 

where VN stands for variable name.  

For example, the timestamps for the variable called AIRPORT_PROJECT_ARRIVALS, 

are saved in the table 

DESI_IAT_AIRPORT_PROJECT_ARRIVALS.IAT_AIRPORT_PROJECT_ARRIVALS, as 

shown in Figure 7. The file exported with the collected data is called 

DATA_AIRPORT_PROJECT_ARRIVALS_interarrival_times.txt. 

 

Figure 7 The loading and storage of arrivals in MySQL.  
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After a new timestamp is inserted into the table DESI_IAT_VN.IAT_VN, the Matlab 

code does the following: 

1) Extracts the data from IAT_VN performing the query “SELECT * FROM 

DESI_IAT_VN.IAT_VN” so it can be processed using Matlab code; for the simple 

example shown in Figure 7  this query becomes  

SELECT * FROM DESI_IAT_AIRPORT_PROJECT_ARRIVALS.IAT_ 

AIRPORT_PROJECT_ARRIVALS 

2) Using Matlab code, consecutive arrival times are subtracted as follows 

                                               (Interarrivaltime)i = ti-ti-1                                               (4.1) 

where ti stands for the i
th

 collected arrival time. The calculated interarrival time is then 

converted into a continuous variable and stored in a vector of continuous data for 

probability distribution fitting. The time difference is converted to minutes using formula 

(4.2) for entry i, i=1,…,N  

Entry i=DD•24•60+HH•60 + MM + SS/60                                  (4.2) 

…where DD represents the days, HH represents the hours, MM represents the minutes 

and SS represents the seconds. So for example, if interarrival time i, e.g. IATi, is 2 

minutes 30 seconds, it is converted to 2.5 minutes. 

3) Once the time differences are calculated using (4.1) and converted into a continuous 

variable using (4.2), interarrival times are arranged into a histogram. The histogram 

updates after each collected arrival time.  

4) The resulting best fit is obtained using the rules detailed in chapter three. The best fit is 

displayed with the corresponding histogram as shown in Figure 8. Histograms and best 

fitted distributions update and display in real-time after a new timestamp is added. 
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Figure 8 Histogram and best fit display 

 

 For both versions of DESI, the default number of histograms bins is the square root of the 

number of entries in the data, rounded up.  Nevertheless, both versions of DESI offer the option 

to set the number of histogram bins. The resulting best fit distribution and its parameters are 

displayed in a message box like the one shown in Figure 9 so the analyst can enter this 

information in the DES software; or the analyst can keep recording data by pressing the button 

Press to record data, which will likely produce a different best fit each time. 

 

Figure 9 Best fit distribution after 100 observations. 
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connection parameters is created. This critical file is called dbconnection2.txt. More 

details on dbconnection2.txt are presented later in the document. When DESI is run for 

the first time, a log folder is also created, namely C:\DESI\LOG,where DESI 1.0 saves text 

files with collected data, goodness-of-fit tests results and simulated data if this option is selected.  

Figure 10 shows an example of the Kolmogorov - Smirnov goodness-of-fit test results 

for a Beta distribution fit saved in C:\DESI\LOG. Test results are provided for each of the 

selected probability distributions and updated right after new data are collected. In general, the 

goodness-of-fit text file is named GOF_VN_interarrival_times.txt, where VN stands 

for variable name. For the hypothetical variable shown in Figure 7 named 

AIRPORT_PROJECT_ARRIVALS, the file generated with the goodness-of-fit test results is 

GOF_AIRPORT_PROJECT_ARRIVALS_interarrival_times.txt.  

 

Figure 10 Partial view of goodness of fit test results. 
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After each collected observation, previously generated text files are overwritten with the 

updated information. DESI 2.0, discussed later in this document, produces the same data, but 

skips the MySQL part.  

As detailed in chapter three, users also have the option to resume the collection of 

interarrival times at a later time. In the blue section of DESI, this is accomplished by pressing the 

button labeled “Press to resume a previous collection. Press when 

first arrival occurs in the new collection period” (PRPC). When PRPC 

is pressed, DESI understands that the last value from the previous collection is not the first value 

of the resumed collection. In the proposed logic, the last value from the previous collection 

tN,original (N means the latest one from a sorted list of N elements) artificially becomes the first 

value of the resumed collection t1,resumed by converting tN,original into the exact timestamp of the 

resumed collection. Then the logic converts all the previously recorded values by adding to all of 

them, the difference between tN,original and t1,resumed, e.g. σ(i+1)ϑ  from eq. (3.11). In other words, all 

the arrival times from the original collection get modified by σ(i+1)ϑ, but the interarrival times 

remain the same, preventing corruption in the calculated data.  

The PRPC button in the blue section of DESI must be pressed when the first arrival of the 

resumed collection occurs. Then timestamp tN,original gets converted into the resuming effort 

timestamp and represents the first arrival of the resumed collection, t1,resumed. Then when the 

second entity arrives in the resumed collection at t2,resumed, the difference between these arrivals 

(t2,resumed – t1,resumed) becomes the first interarrival time of the resumed collection. Interarrival 

times from a resumed collection are then appended to the interarrival times of the original 

collection. Then users can continue recording Class (I) data in the usual manner. 
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The following example illustrates the logic for resuming a previous collection of Class (I) 

data in the blue section of DESI. For simplicity, let us use different timestamps of the same day. 

The last arrival in the original collection from Figure 7 occurred at tN,original = 12:44:30 AM. Let 

say the user wants to resume the collection at 12:50:26 AM. The difference between these two 

timestamps is 5 minutes and 56 seconds, hence σ2, AIRPORT_PROJECT_ARRIVALS = 5.93 minutes, after making it a 

continuous variable. Then, when the analyst resumes the collection in the second effort, the 

difference of 5 minutes and 56 seconds is added to every record in the original collection from 

Figure 7 in order to preserve the original interarrival times.  This is illustrated in Figure 11. 

When the resumed collection happens, tN,original becomes t1,resumed = 12:50:26 AM by adding the 

calculated σ2, AIRPORT_PROJECT_ARRIVALS = 5 minutes 56 seconds to tN,original. That is, 12:44:30 AM + 00:05:56 

= 12:50:26 AM. The 5 minutes 56 seconds are also added to every other recorded timestamp in 

the original collection effort. The difference between t1,resumed = 12:50:26 AM and t2,resumed will 

become the first inter arrival time of the resumed collection effort.  

 

Figure 11 Logic to resume a previous collection and preserve interarrival times 
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Then the analyst can continue recording interarrival times as usual by pressing the button 

labeled Press to record data. The logic for resuming a previous Class (I) data collection 

is an original contribution of this research work to the field of modeling and simulation. 

The blue section of DESI has the option to display, fit, test and validate previously 

collected Class (I) data at any time. This is accomplished by pressing the button labeled Press 

to display collected data, which does not add new values to the list of interarrival 

times, just displays what has been already collected. This feature is consistent with the ability to 

verify the data at any time found in methodologies (A) and (B) solutions [8].  

The blue section of DESI also permits deleting the last entry recorded by pressing the 

button labeled Delete last entry. DESI 1.0 can delete the entire set of collected data 

values in MySQL by pressing the button labeled Start Over. If the user chooses to start over, 

the data will only be deleted in MySQL but preserved in the log folder as a backup. In DESI 2.0, 

the deletion removes the text data files, but saves a copy of the data files with the prefix 

“Backup_”. Autocorrelation diagnostics, multimodal analysis and data simulation can be 

activated in the blue section of DESI by checking the appropriate boxes of the interface. 

Orange Section of DESI 1.0 

The middle orange section of the DESI user interface collects Class (II) data by typing 

the variable name and by pressing the buttons labeled RECORD START and RECORD END in 

order to collect the starting timestamp and ending timestamp of a specific event. Right under the 

RECORD START and RECORD END buttons is the option to delete the last entry or to delete the 

entire set of entries for the variable being recorded. After entering the variable name (VN), the 
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RECORD START button activates a compiled Matlab function that generates and stores the 

current timestamp for entity i, ti,start. In the same manner, the RECORD END button generates and 

stores another timestamp for entity i, ti,end. Then the underlying programming of DESI 1.0 

subtracts ti,end - ti,start in order to calculate service time STi. Timestamps are stored within a 

MySQL table called DESI_ST_VN.ST_VN where ST stands for service time and VN is the 

variable name. The number of rows of DESI_ST_VN.ST_VN is equal to the number of start 

timestamps. Collected data values and test results are saved in the log folder with filenames of 

the form DATA_VN_service_times.txt and GOF_VN_service_times.txt, where 

VN stands for variable name. For example, the variable COUNTER_SERVICE is stored in the 

table DESI_ST_COUNTER_SERVICE.ST_COUNTER_SERVICE.  

After the data are stored in MySQL, the processing is similar to the processing of the blue 

section. That is, the data gets converted into a continuous variable, displayed in a histogram, 

fitted, tested and validated. Feedback is provided to the analyst in the form of messages and 

images. Then the analyst decides whether or not to keep adding data that generate different fits. 

As new data are added, the histograms and fitted distributions get updated with the new 

information. If the analyst decides not to add more data values, then the DESI 1.0 output can be 

added to DES software. Autocorrelation diagnostics, multimodal analysis and data simulation are 

also available in the orange section of DESI by checking the appropriate boxes of the interface.  

Resuming the collection in the orange section is straight forward and processing is much 

simpler than doing so in the blue section because for each collection there will always be a start 

time and an end time, regardless of the time of the collection. The orange section is constrained 

[22] by the following conditions 
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 No end time can be recorded if there is no associated start time (i.e. it is not allowed to 

collect two consecutive end times). 

 Two consecutive start times cannot be recorded because a start time must be followed by 

its corresponding end time. 

Users receive an error message if there is an attempt to violate any of these constraints. 

Figure 12 shows these notifications. The orange section of DESI 2.0 performs the same 

functionalities, except that it does not save data in MySQL tables but in text files, which are 

named using the variable names as prefix. In DESI 2.0, the deleted variables are backed up using 

the prefix “Backup_” in the filename. 

  

Figure 12 Constraints in the orange section 
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Green Section of DESI 1.0 

The bottom green section of DESI collects Class (III) data. The analyst defines the 

variable name and also defines each of the possible outcomes of that variable at a given decision 

point within the modeled system. DESI allows up to 10 possible outcomes per variable at a given 

decision point. Within the green section of the DESI user interface, there are buttons labeled 

Press to tally outcome  that tally the occurrence of the outcome specified above it by 

typing the name of the potential outcome.  

In DESI 1.0, after pressing Press to tally outcome, the specified outcome of 

the variable VN is inserted into a MySQL table called DESI_OU_VN.OU_VN, where OU stands 

for outcome and VN stands for variable name. After a new value is tallied and inserted into 

DESI_OU_VN.OU_VN, a pie chart is produced detailing the relative frequencies or probabilities 

for each outcome. This pie chart contains information that can be entered into DES software at 

specific decision points within the modeled system, as shown in Figure 3. Each piece of the pie 

chart represents the γim’s presented in chapter three. The γim’s are added to DES software [4] in 

order to direct the flow of entities through the simulated system. 

 A partial view of the MySQL table that stores the data from Figure 3 is shown in Figure 

13. Collected Class (III) data are also saved as text files in the log folder C:\DESI\LOG, with 

filenames of the form TALLY_VN_outcomes.txt, where VN stands for variable name. For 

example, the text file that contains the collected data for the variable PART_STATUS shown in 

Figure 3 takes the name TALLY_PART_STATUS_outcomes.txt. 
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Figure 13 Class (III) data recorded using the green section of DESI 1.0. 

 

 Like the other two sections of DESI, the green section can display previously collected 

data, delete the latest recorded entry or delete all the observations for a given variable. The green 

section of DESI 2.0 performs the same functionalities as the green section of DESI 1.0, with the 

difference that the data are not stored in MySQL, but in text files.  

In addition to the aforementioned features, the three sections of DESI respond to the 

activation of optional parameters presented later in this document. 

Implementation of DESI 1.0 

In order to make DESI more attractive than “difficult” methodology (C) and 

methodology (D) solutions [8], the implementation of DESI must be simple.  
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When DESI 1.0 is run for the first time, it creates the folders C:\DESI and 

C:\DESI\LOG and the file called C:\DESI\dbconnection2.txt. DESI 1.0 notifies the 

user to enter the right connection parameters in the file dbconnecton2.txt. These 

parameters must be entered and saved the very first time DESI 1.0 is utilized. The location of 

dbconnection2.txt and the folders created by DESI 1.0 are shown in Figure 14.  

 

Figure 14 Parameters file and log folder created when DESI 1.0 is run the first time. 

 

  Figure 15 shows the content of dbconnection2.txt. The connection parameters’ 

setup is the only implementation requirement for DESI 1.0 beyond the installation wizard.  

 

Figure 15 Content of parameters' file dbconnection2.txt. 

 

 

In general, within dbconnection2.txt, lines 2, 4 and 5 will not need to be changed 

most of the time. Only dbname and password parameters will need to be modified during the 

implementation of DESI 1.0. The parameter dbname must be defined as any schema name 

present in MySQL. The default schema name is sakila, which is defined during the 
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installation of MySQL, and can be used in the dbconnection2.txt file (so dbname= 

'sakila'). Or the user can create a new schema within MySQL and use that one instead. It 

does not really matter what schema name is used, as long as it exists in MySQL. This is only for 

connection purposes and will not affect DESI 1.0 processing. DESI 1.0 eventually creates its 

own schemas, but installation requires one to exist initially, so the connection can be created [38 

- 41]. The password parameter must match the password created in MySQL during installation. 

DESI 1.0 notifies the user whether the connection parameters need to be initialized or reentered. 

Figure 16 shows these scenarios.  

 

Figure 16 Messages to set up the database connection. 

 

 If the connection to MySQL is successful, DESI 1.0 creates the necessary tables and a 

message is sent to the user, as shown in Figure 17. After the successful connection, there is no 

need to modify dbconnection2.txt anymore unless the connection parameters are 

modified.  



55 

 

 

Figure 17 Successful connection to MySQL. 

 

Once these parameters have been added and saved, DESI 1.0 is ready to be used. In 

summary, the implementation of DESI 1.0 only needs the installation of MySQL, the installation 

of DESI 1.0 following the installation wizard and the definition of the parameters in 

dbconnection2.txt.  

Development of DESI 2.0 

The second version of DESI, called DESI 2.0, does not rely on database connectivity, 

which makes its implementation simpler than DESI 1.0. Even though DESI 1.0 and DESI 2.0 are 

equivalent in many respects, DESI 2.0 simplifies the implementation process further because 

there is no need to set up database connections. DESI 2.0 presents important developments to 

DESI 1.0. For instance, DESI 2.0 can be installed on mac and pcs, whereas DESI 1.0 only works 

on pcs and DESI 2.0 has the option for speed calculation in the orange section. Nevertheless, the 

general features in DESI 2.0 are equivalent to those found in DESI 1.0. For instance, the three 

sections of DESI 1.0 have the same functionality in DESI 2.0.   

In DESI 2.0, the data are stored in text files and not in MySQL tables. The data files are 

produced and saved in the folder C:\DESI\DATA\ if running DESI 2.0 on a pc or in the 

folder /Applications/DESI/DATA/ if running DESI 2.0 on a mac. The name of the 
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collected variable is the prefix of the corresponding data filename so the user can locate the data 

within the folder C:\DESI\DATA\ if running DESI 2.0 on a pc or in the folder 

/Applications/DESI/DATA/ if running DESI 2.0 on a mac. Figure 18 shows the 

collected data and the calculated data in text files using DESI 2.0 for the hypothetical variable 

called ARRIVALS. The timestamp information contained in Figure 18 is equivalent to the 

information contained in Figure 7, with the difference that Figure 7 displays the data stored in 

MySQL generated using DESI 1.0.  

 

Figure 18 Data storage using DESI 2.0 

 

DESI 2.0 has eight global parameters. These parameters surround the main sections of 

the user interface, e.g. blue, green and orange. Most of these parameters are also found in DESI 

1.0, except for the speed calculation feature. Leaving the spaces for parameters blank or 

unchecked activates the default values. The parameters to customize the user experience using 

DESI are 

1) The level of significance α (default value is 0.05, and 0< α <1);  
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2) The moving window of observations (default is the total number of observations);  

3) The purge date, so any data collected prior to that date gets deleted; 

4) The number of histogram bins (default is the square root of the number of elements in 

the data, rounded up); 

5) The cutoff values for fitting multimodal data (default fits all data values); 

6) The lag parameter for autocorrelation visual diagnostics (default is 1);  

7) The number of new data values to be simulated based on resulting probability 

distribution fitting (default is 100). 

8) The distance for speed calculations
2
.  

The moving window of observations only fits the latest h ≤ N collected observations. For 

example, if there are N=100 collected data values, but the moving window parameter is 75, only 

the last h=75 collected values out of the 100 observations are analyzed by DESI. The purge date 

parameter must be entered using the format YYYY-MM-DD or YYYY-MM-DD HH:MM:SS 

where HH is in 24-hour format (i.e. 00 to 23). If the wrong date format is used or if the user tries 

to purge data without entering any dates, an error message is displayed, as suggested by the 

“feedback” HCI design principle [35]. The fourth optional parameter offers the possibility to 

create histograms with different number of bins. The reason for offering this option is that 

sometimes the shape of the histogram can impact the best fit probability distributions [4].  

The fifth optional parameter offers the capability to fit subsets of the data. It applies only 

to the blue and orange sections. This optional parameter seeks to handle multimodal data [4] and 

if enabled, DESI fits the data between the cutoff values, reports the percentage of processed 

records out of the full set of data values and produces histograms of the data that falls outside the 

                                                 
2
 Feature only available in DESI 2.0. 
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selected cutoff values. The multimodal parameter works in conjunction with checking the 

multimodal check box. The sixth optional parameter is the lag parameter, which works in 

conjunction with checking the box for autocorrelation diagnostics. This optional parameter 

works in the blue and orange sections of DESI. Autocorrelation diagnostics are important in DES 

because independence among collected observations is a key building block for different 

theoretical results such as the maximum likelihood estimation of probability distribution 

parameters and goodness-of-fit tests [3].  

The seventh parameter represents the number of data values to be simulated and it works 

in conjunction with checking the box for the simulation of new data. It applies to the blue and 

orange sections of DESI. When the simulation option is enabled, DESI produces simulated data 

and saves them as text files, which are ready to be imported into DES software. 

The eighth parameter is the distance parameter, which is used to calculate speeds given 

Class (II) data associated with transport times. This parameter, when checked, only applies to the 

orange section of DESI. 

Calculation of Speed in the Orange Section of DESI 2.0 

DESI 2.0 permits the calculation of speed in miles per hour from the data collected in the 

orange section as presented in eq. (3.12). The calculation of speed only requires checking the 

speed calculation checkbox and entering the distance associated with the transport in meters. 

Distance is part of the model logic, when applicable. Transport times are calculated using the 

orange section in the usual manner, where the start timestamp is the departure time and the end 

timestamp is arrival time. The visual output is a fit of the calculated speeds plus the relevant 

descriptive statistics so DES modelers can enter this information in DES software. When the 
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speed parameters are entered, the fitting is on the speeds calculated from the collected Class (II) 

data and not on the collected Class (II) data per se. The calculated speeds are a function of the 

Class (II) data, hence there is no need for a special data class for speed data as these fall under 

the umbrella of Class (II) data.  

Optional Autocorrelation Diagnostics 

For the data collected using the blue and orange sections of DESI there is the option to 

produce plots for the visual inspection of autocorrelation [3, 42, 43] for different lags of the 

collected variable. This feature is useful in confirming the random nature of the collected 

observations, which is an important assumption in DES theory [3]. Users need to check the box 

that activates the autocorrelation diagnostic plots and also need to provide the number of lags to 

be analyzed (if left blank, the default value is 1 period lag). Checking the box for autocorrelation 

diagnostics provides:  

 The correlation coefficient between X(t) vs X(t-j) where j is the selected number 

of lags; 

 Statistical testing for H0: no autocorrelation vs H1: autocorrelation; 

 A scatter plot of X(t) vs X(t-j) where j is the selected number of lags; 

 A correlogram; 

 A plot of the series with the mean of the series; and  

 A plot of the calculated data versus the timestamp of the calculated data
3
. 

                                                 
3
 Feature only available in DESI 2.0. 
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Figure 19 shows the output of selecting this option for a hypothetical variable called 

INTERARRIVAL and a lag of 1. Figure 19 shows the resulting lag correlation coefficient and 

whether or not it is significant at the selected level of significance, e.g. α from the global 

parameters section. The bottom right corner of Figure 19 presents the scatter plot of the 

calculated times by the timestamps of the data calculations. This plot includes the least squares 

regression line thru the scatter plot intending to reflect a potential relationship between the 

calculated data and the timestamps.  A statistically significant slope coefficient indicates that the 

time of the data entry can explain the calculated data [43]. The relevance of a statistically 

significant slope coefficient, based on the t-test [43], varies depending on the type of DES model 

being carried out. The purpose of producing the plot of calculated data by timestamps is to show 

the times of the day when there is more activity in order to produce more realistic simulations. In 

this plot, the timestamps range from 00:00 to 23:59, or equivalently from 00.00 to 23.99 when 

converted to a continuous variable. The scatter plot of calculated times by timestamps is 

unaffected by the timestamp adjustments when resuming a previous Class (I) data collection.  
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Figure 19 Autocorrelation diagnostic plots. 

 

Simulated Data for Automated Import into DES Software 

If the boxes for simulated data are checked in either version of DESI, the blue and orange 

sections create text files of data that are ready to be imported into DES software, if the DES 

software has that capability. In other words, new data can be simulated based on best fit, 

triangular fit or uniform fit and passed directly to the DES software so simulations can be 

performed. This is an alternative to entering the probability distribution into the DES software 

for data generation. Resulting files with simulated data are saved in the log folder with the prefix 
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SIMULATED_, TRIANGULAR_ or UNIFORM_ depending on the boxes checked in the interface. 

Figure 20 shows these options within the DESI interface.   

 

Figure 20 Options for simulating new data and feed DES software. 

 

The reason for having specific triangular and uniform options is the fact that when data 

are not available, triangular and uniform are viable options to approximate distributions [4]. 

DESI 1.0 and DESI 2.0 let the users determine how many observations to simulate using the N 

parameter; if the N box is left blank but one or more of the data simulation boxes are checked in 

DESI, the default value for N is 100. 

Even though DESI 2.0 is the evolution of DESI 1.0, both DESI 1.0 and DESI 2.0 

instantiate the proposed framework for automated DES data collection and processing. 

Evaluation of Automation 

Based  in the “model for types and levels of human interaction with automation” 

presented by Parasuraman et al. [44], the DESI interface focuses on information acquisition 

automation and information analysis automation hence the DESI interface presents a “high” rank 

on these two criteria. The DESI interface does not focus on decision automation or action 

automation hence DESI presents a “low” rank on these criteria. Ultimately the decision of 

whether to stop generating data belongs to the simulation analyst. The DESI interface is a 

mechanism for automated data generation, processing and analysis, which provides simulation-
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ready information to the simulation analyst, but ultimately it is the analyst who evaluates the 

output and acts based on it.  

Although the following analysis needs to be formally tested on user-experience 

evaluations, which are the subject of future research, the DESI interface intends to reduce mental 

workload and boost situation awareness about DES input data. The reduction in mental workload 

and the boosting of situation awareness are feasible due to the reliability of the DESI interface. 

Because of the full verifiability of the data when using DESI, complacency [44] is not an issue 

with the automation obtained from DESI. Nevertheless, using DESI can result in skill 

degradation [44], since the reliance in DESI may impact the learning of other computer solutions 

and skills. The cost of misusing the DESI interface can result in misleading simulations studies, 

nevertheless, if data errors are detected in the data preparation process, the DESI interface allows 

users to remove unwanted data or start over without major inconveniences.  

In summary, Parasuraman et al. [44] made the following remark about data automation, 

which applies directly to DESI: “Certainly cumbersome and clumsy data entry remains a viable 

candidate for automation. But to reiterate the linkage between decision and action automation, if 

high automation is selected for the latter, then designers should resist the temptation for high 

automation levels of decision making” [44]. 

Suggested Training for the DESI Interface 

The DESI interface is a novel option for input data management automation, especially 

when working with unavailable but collectable data from a stochastic, dynamic process or 

system. The DESI interface instantiates the proposed integrated framework by automating data 

preparation for Class (I), Class (II) and Class (III) data. In addition, the DESI interface features 
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convenient practical implications such as real-time simulation-ready output, resulting from the 

aforementioned classification of the data, given the model logic.  

The users of the DESI interface should have knowledge of statistical probability theory 

and familiarity with discrete event simulation modeling in order to fully understand and make the 

most out of the capabilities of DESI. Such background will ease the learning of the details within 

DESI. Nevertheless, the implementation and the data generation from pressing buttons can be 

performed by less trained technical staff, even if these users are not statisticians or engineers.  

The suggested training for the DESI interface has been divided in two sets of steps based 

on the user’s technical background. The training includes the following steps: 

1) Follow the simple installation wizard steps in order to install DESI on a PC or in a 

mac.  

2) Familiarize users with the differences between Class (I), Class (II) and Class (III) 

data.  

3) Emphasize the three main sections of DESI, e.g. blue, orange and green, and how 

these relate to Class (I), Class (II) and Class (III) data.  

4) Understand how the three data classes are generated from the data generation buttons 

in the different sections of the DESI interface.  

5) Understand how to automatically resume data generation for each of the three data 

classes using the buttons of the interface.  

6) Understand how to retrieve and display previously collected data for each of the three 

classes using the buttons of the interface. 

7) Understand how to delete the last recorded observation and how to delete the entire 

set of collected data values.  
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8) Understand how to display and process the last N collected data values.  

9) Understand how to purge data before a cutoff date.  

10) Understand how to change the number of histogram bins.  

Up to step (10), DESI can be used by less trained technical staff, e.g. non-statisticians or 

non-engineers. After step (10) the users should have knowledge of probability theory and DES 

modeling in order to better understand the workings of DESI and the results. The remaining steps 

for training are the following: 

11) Go over the probability distributions available in DESI and how to use specific 

probability distributions.  

12) Understand the rules for determining the best fitted probability distributions.  

13) Understand where to find the test results and the generated data, in case the user 

needs to see the details of the goodness-of-fit test results and the collected data 

values. 

14) Understand how the results can be used in DES software, including automated 

imports of the generated data. 

15) Understand how to perform autocorrelation diagnostics and the four diagnostic plots 

produced by DESI.  

16) Understand how to visualize and process multimodal data by entering cutoff values.  

17) Understand how to simulate new data based on best fit, triangular fit or uniform fit.  

18) Understand how to estimate average speed between two points using the logic of 

Class (II) data, given the distance. 

DESI training should emphasize the benefits of real-time, streamlined data generation 

and processing, including probability distribution fitting, goodness-of-fit testing and the 
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automatic validation of the IID assumption; these are original and innovative practical results 

featured by the DESI interface. In addition, DESI training should emphasize the opportunity cost 

of not using DESI, especially when dealing with unavailable but collectable data and MDCAP.   

Commercialization of the DESI Interface 

The DESI interface is an original contribution of this research work to the community of 

DES modelers, especially when simulation analysts must collect and process previously-

unavailable input data from a stochastic, dynamic process or system. DESI is especially useful 

when the data preparation would otherwise be performed semi-manually or using standalone 

specialized solutions that work in isolation from each other.  

As mentioned previously in this manuscript, 80% of DES modelers still rely on manual 

approaches to input data management; 80% of these indicated that they would like to enjoy the 

benefits of data processing automation. The reason why this percentage is so high is the fact that 

DES input data management automation has been regarded as been “too difficult” [8], especially 

due to the lack of accessibility and the unavailability of internal data sources with simulation-

ready data. Such universe of simulation analysts currently preparing data manually or using 

standalone solutions, are a potential market for the DESI interface.  

DESI should also be attractive to university students who must complete DES projects in 

order to fulfill course requirements. Students’ access to internal corporate data is likely 

restricted, so students completing university projects will, more than likely, have to collect and 

process DES input data themselves in order to complete course projects. DESI should be able to 

automate and streamline the data preparation process for undergraduate and graduate students, 

making them another potential market for the DESI interface.  
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DESI is ready to be used in simulation studies, as will be presented in chapter 6. 

Nevertheless, the current appearance and user-friendliness of this tool are subjects of future 

research. It is my intent to use user experience evaluations in order to make DESI a more 

attractive product for the aforementioned target markets.  
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CHAPTER FIVE: COMPARISON BETWEEN AUTOMATED SOLUTIONS 

Documented Tools for Automated DES Input Data Management 

Earlier in this document it was mentioned that the research on post-simulation data 

analysis considerably exceeds the research on pre-simulation data preparation [22]. This can 

explain the small number of documented solutions for automated input data management in DES 

projects. In other words, there are few tools that can perform different data preparation steps as 

part of the same streamlined process. It is important to emphasize the fact that there are 

standalone solutions that effectively perform each of the individual steps needed in the 

preparation of data for DES projects. Nevertheless, the gap in the field of modeling and 

simulation consists in the fact that these standalone solutions work in isolation. Such isolated 

approach to input data management is one of the main reasons for the MDCAP problem. 

The literature on input data management for DES projects presents three concrete 

attempts to automate input data management using a single tool. These documented tools are the 

GDM-Tool [14], the MDA interface [15] and Parts Data Collection [29].  Figures 20 to 25 

display the conceptual approaches and user interfaces used in the development of these tools. 

Figure 21 shows the flow of information and implementation requirements of the GDM-Tool. 

Figure 22 shows the user interface and different functionalities available in the GDM-Tool user 

interface. The most challenging step in setting up the GDM-Tool is the customized configuration 

required in order to fully map the data from internal data systems into simulation-ready output. 

Configuration requires trained staff and deep knowledge of the underlying data [14]. 
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Figure 21 Configuration and Automation of the GDM Tool. 

 

Source: Skoogh, A., Johansson, B., & Stahre, J. (n.d). Automated input data management: 

evaluation of a concept for reduced time consumption in discrete event simulation. Simulation-

Transactions of the Society for Modeling and Simulation International, 88(11), 1279-1293. 

 

 

Figure 22 User Interface of the GDM-Tool. 

 

Source: Skoogh, A., Johansson, B., & Stahre, J. (n.d). Automated input data management: 

evaluation of a concept for reduced time consumption in discrete event simulation. Simulation-

Transactions of the Society for Modeling and Simulation International, 88(11), 1279-1293. 
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Figure 23 shows the user interface of the MDA interface. Because MDA retrieves data 

from internal systems in order to be used in the d3FACT simulator, its applicability is limited. 

MDA is applicable, on the most part, to manufacturing models and should probably be used by 

trained technical staff. Familiarity with programming concepts is desirable in order to better 

understand the workings of this tool. Figure 24 shows an example of the mapping rules and 

events used in the MDA interface.  

 

Figure 23 MDA client with opened simulation and MDA driver windows. 

 

Source: Aufenanger, M., Blecken, A., & Laroque, C. (n.d). Design and implementation of an 

MDA interface for flexible data capturing. Journal of Simulation, 4(4), 232-241. 
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Figure 24 MDA Mapping Rules and Events 

 

Source: Aufenanger, M., Blecken, A., & Laroque, C. (n.d). Design and implementation of an 

MDA interface for flexible data capturing. Journal of Simulation, 4(4), 232-241. 

 

Figure 25 shows the corporate database structure of the Parts Data Collection tool. In this 

tool, the simulation model receives data from different sources and the data are linked based on a 

common identifier. This tool focuses on manufacturing applications and was developed for 

simulation projects within the Lockheed Martin Missiles and Fire Control [29].   Figure 26 

shows the interface sketch and user interface of Parts Data Collection tool. The development of 

this tool focused on user-friendliness [29] but it is dependent on the existence of data. 
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Figure 25 Corporate database structure in Parts Data Collection tool  

 

Source: Portnaya, Irin. (2004). An approach to automating data collection for simulation. (Master  

Thesis). Retrieved from University of Central Florida Library. (Accession Number 

ucfl.023120114) 

 

 

 

Figure 26 Interface sketch and user interface for Parts Data Collection Tool 

 

Source: Portnaya, Irin. (2004). An approach to automating data collection for simulation. (Master  

Thesis). Retrieved from University of Central Florida Library. (Accession Number 

ucfl.023120114) 
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It has been argued throughout this research investigation that the proposed framework 

and both versions of the DESI interface are innovative in the field of modeling and simulation 

and that they advance the state-of-the-art for DES data collection and processing. This chapter 

focuses on comparing the three documented solutions to the solution offered in this research 

investigation. The aim of the comparison presented in this chapter is to confirm the uniqueness 

and originality of the proposed framework and of the DESI interface. 

Comparison of Solutions for Automated Input Data Management in DES projects 

The comparison between the proposed framework and other documented solutions is 

summarized in Table 1. The proposed framework is represented by the column labeled DESI 

because both versions of DESI instantiate the proposed framework. In other words, database 

driven DESI 1.0 and DESI 2.0 were built based on the concepts and ideas presented in the 

proposed framework.  Specifically, both versions rely on the generalization of data needed for 

DES projects presented in chapter one.  

The criteria used for the comparison include: programming language, year of 

development, whether the tool requires internal data, ability to collect unavailable data but 

collectable data, ability to perform calculations on raw data, ability to perform distribution 

fitting, input data management methodology, disciplines where the tool can be used, the 

flexibility of the tool, real-time histogram creation, real-time distribution fitting, real-time data 

visualization, real-time goodness-of-fit tests, real-time autocorrelation diagnostics, ease of 

implementation, ability to handle speed computations and training requirements.  
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Table 1 Comparison of documented input data management solutions for DES projects 

 MDCAP GDM-TOOL MDA PARTS DATA 

COLLECTION 

DESI 

Language Depends on the 
tool being used 

C#.NET JAVA VisualStudio.NET, 
SQL 

Matlab, SQL 

Year developed Depends on the 

tool being used 

2012 2010 2004 2014 

Requires internal data NO YES YES YES NO 

Applicable on Available data, 

non-available but 

collectable data, 
non-collectable 

data 

Available data Available data Available data Non-available but 

collectable data, available 

data if it conforms to DESI 
format requirements in SQL 

tables or in text files 

Automated collection 

of non-available but 

collectable data 

NO NO NO NO YES 

Calculations on raw 

data 

YES YES YES YES YES 

Distribution fitting YES YES NO NO YES 

Applications needed MANY ONE ONE ONE ONE 

Input data 

management 

methodology 

A,B C C C Elements (hybrid) from       
- A - someone collects data;  

- B - data saved in 

intermediate MySQL tables 
or files; - C - data 

automatically stored and 

updated; - D - data is ready 
to be added to models 

Area of focus All Manufacturing

, production 

process, 
factories [14] 

Manufacturing

, materials 

flow, factories 
[15] 

Manufacturing [29] All 

Usable in multiple 

DES areas of 

applications 

YES NO NO NO YES 

Real-time automated 

data fit and histogram 

visualization 

NO NO NO NO YES 

Real-time automated 

goodness-of-fit tests 

NO NO NO NO YES 

Real-time automated 

autocorrelation 

diagnostics 

NO NO NO NO YES 

Implementation Depends on the 

tools used 

Complex due 

to customized 

configuration 
stage; trained 

staff needed 

[14] 

Complex due 

to the need to 

implement 
mappings of 

different types 

[15] 

Simple, but dependent 

on other requirements 

[29] 

Simple as it only requires 

setting parameters in the 

connections file if using 
DESI 1.0. DESI 2.0 

implementation is even 

simpler, as it only involves 
following the installation 

wizard. 

Special training 

requirements 

Depends on the 

tools used so 
complexity is 

variable. Requires 

knowing more 
than one tool at a 

time.  

Technical staff 

required with 
considerable 

knowledge of 

the underlying 
data and 

manufacturing 

system being 
modeled [14] 

Working 

knowledge of 
the d3fact 

simulator and 

programming 
skills required 

in order to 

understand 
API, Java 

script, JDBC, 

etc. [15] 

None beyond knowing 

where the information 
resides. 

None beyond knowledge 

about the system being 
modeled and the model 

logic. 

Average speed 

calculations 

Depends on the 

tool used 

NO NO NO YES, but only on DESI 2.0 
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Table 1 can also be regarded as a summary of the state-of-the-art in DES input data 

management automation. DESI has the disadvantage that it is not meant to work with data from 

internal systems; the reason DESI does not work with internal systems is because there are 

solutions such as GDM-Tool or MDA that already do that. Within Table 1 there is a column 

devoted to MDCAP, as it is the most widely used approach for DES input data management.  

DESI not only needs to provide an innovative alternative to fill the gaps of other 

documented automated solutions but it also needs to provide a viable alternative to MDCAP. 

Table 1 shows the areas where the proposed framework and the DESI interface have advanced 

the state-of-the-art in automated input data management for DES projects. 

A key contribution of the proposed framework and of the DESI interface is the fact that 

input data management automation can be achieved in DES applications beyond manufacturing. 

DESI can be used to automate data collection and processing for modeling non-manufacturing 

systems such as emergency rooms, airport security checkpoints, lines at a theme park, lines at a 

grocery store and traffic, just to name a few examples.  

The information in Table 1 shows that DESI advances the state-of-the-art in input data 

management solutions for DES projects because it covers areas that other tools do not cover. 

Because the programming of both versions of DESI is based on the proposed integrated 

framework, it can be affirmed that the proposed integrated framework presented in this research 

investigation is a significant contribution to the field of modeling and simulation.  
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Comparison to Standalone Probability Fitting Software 

Even though the focus of this research investigation is on solutions that automate all or 

most of the data preparation steps for DES projects within a single tool, the DESI interface can 

be directly comparable to standalone commercial probability distribution software such as 

Arena’s Input Analyzer by Rockwell Automation [4], Stat::Fit by Geer Mountain Software 

[18],  EasyFit® by MathWave Technologies or ExpertFit by Averill M. Law and Associates 

[16]. This means that data not collected using DESI can be fitted, tested and analyzed using the 

different features offered by DESI such as goodness-of-fit tests, multimodal fitting and 

autocorrelation diagnostics. The only requirement is that the external data has the right format. 

The way to fit external data not collected using DESI 2.0 is by saving the data as a text 

file in the folder C:\DESI\DATA if working on a pc or in the folder 

/Applications/DESI/DATA if working on a mac. The text file should include one 

continuous data value per line and should be named VN_service_times.txt, where VN 

stands for any variable name selected by the user. Ideally the variable name should not be shared 

with previously collected data in order to avoid any confusion, but that will not prevent DESI 2.0 

from fitting the external data. Finally, press the button labeled Press to display 

collected data in order to fit the external variable. Figure 27 shows the orange section of 

DESI 2.0 and the fitting the hypothetical variable not collected using DESI called EXTERNAL. 

 

Figure 27 Use DESI to fit external data not collected by DESI 
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 DESI 1.0 can also fit data not collected by DESI 1.0, but the continuous data need to be 

saved in a MySQL table instead of saving it in a text file. Once the table has been created, it 

needs to be named following the naming convention DESI_ST_VN.ST_VN, as detailed in 

chapter four. For the example displayed in Figure 27, the table in MySQL would be named 

DESI_ST_EXTERNAL.ST_EXTERNAL. 

Summary of Comparisons 

This chapter presented details about documented solutions for DES input data 

management automation and how DESI, programed following the proposed framework, 

compares with them. Documented tools for input data management automation other than DESI 

focus on manufacturing applications of DES and because they rely on internal data, their 

applicability outside of manufacturing is limited. These solutions require extensive 

implementation efforts and detailed customization. Documented solutions prior to DESI are 

methodology (C) type of solutions. Most DES practitioners acknowledge their desire for the 

potential automation capabilities offered by methodology (C) solutions. Nevertheless the 

difficulties associated with these solutions have prevented their proliferation to the extent that 

80% of surveyed practitioners still rely on manual approaches for input data management, e.g. 

methodology (A) and (B) solutions.   DESI was also compared to standalone probability 

distribution fitting tools. These sophisticated standalone tools often require data pre-processing 

in order to fit theoretical distributions to the data.  

The DESI interface was presented as an innovative option that addresses shortcomings of 

previously documented solutions. The originality of DESI opens the window for automation 

beyond manufacturing, advancing the state-of-the-art in DES input data processing. 
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CHAPTER SIX: EVALUATION OF THE PROPOSED FRAMEWORK 

Evaluation Criteria 

This chapter presents discrete event simulation projects of reasonable complexity 

completed using the proposed framework for DES input data management.  The goal is to 

measure the impact of using DESI in the time devoted to input data management. The 

simulations for each project were carried out using Arena discrete event simulation software. The 

projects do not include 3D representations of the modeled system; in other words, a project is 

completed after the model logic has been implemented in the Arena simulation models and the 

models accurately reflect the real world system. The relevant statistics from each project are 

grouped in Table 2. All projects use significance level of 0.05.  

Case Studies 

This section presents projects completed using DESI and Arena discrete event simulation 

software. The data were gathered and fitted using the DESI interface. The relevant metric from 

each project is the percentage of each project’s time devoted to input data management.  

Each projects’ time-to-completion has been distributed among the following general 

activities: input data management, model logic development, Arena model creation and 

transportation to the location of the modeled system. The literature indicates that on average, 

31% of DES projects’ time is devoted to input data management [5, 33]. The null hypothesis of 

this analysis is that the proposed framework produces a mean percentage statistically equal to 
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31% versus the alternative hypothesis that the calculated mean percentage is statistically smaller 

than 31%. The methodology for the experiment consists of:  

1) Measuring the percentage time devoted to input data management for each of the 

projects presented in this chapter; 

2) Calculating the sample mean of the percent time devoted to input data management; 

3) Testing the null hypothesis using a one-sided t-test about the mean since the 

population variance of the percentage devoted to DES input data management is 

unknown. The one-sided t-test relies on the reasonable assumption that the population 

of percentages devoted to input data management is normally distributed [43].  

Rejecting the null hypothesis in favor of the alternative implies a significant positive 

impact from using the proposed framework. Formally the test can be defined as follows, 𝐻0 ∶ 𝜇 = .31 𝑣𝑠 𝐻1 : 𝜇 < .31                                              (6.1) 

 Based on the results from Table 2, the average percentage of time devoted to input data 

management using DESI is 21%. The calculation of the t-statistic takes the following form  𝑡 = .21−.31.1061√11                                                                (6.2) 

The t-statistic from (6.2) is -3.13 and produced a p-value of 0.005, which is smaller than 

the level of significance 0.05, hence H0 is rejected in favor of H1. Test details are summarized in 

Table 3. 

As presented in chapter three, when using DESI, the time delays arise from the 

unavoidable wait for the events to happen ηρ and not because of post-collection data processing 

represented by Λρ. All the projects summarized in Table 2 are presented in detail in subsequent 

sections of this chapter. 
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Table 2 Time allocation to complete the evaluation DES projects 

 
PROJECT INPUT DATA 

MANAGEMENT  

MODEL LOGIC 

DEVELOPMENT 

ARENA 

MODEL  

CREATION 

TRANSPORT 

TO 

LOCATION 

TOTAL 

HOURS 

PERCENT USED 

FOR INPUT DATA 

MANAGEMENT 

MANTA 4 3 21 2 30 13% 

WAWA 2 1 4 1 8 25% 

STARBUCKS 

DRIVE THRU 

.5 .25 1 .5 2.25 22% 

ALTAMONTE 

MALL FOOD 

COURT 

2 1 10 .5 13.5 15% 

SANFORD 

AIRPORT 

.5 .5 1.5 .5 3 17% 

PUBLIX 

CASHIERS 

1.5 .5 2.5 .5 5 30% 

STARBUCKS 

COFFEE SHOP 

1.5 .5 2.5 .5 5 30% 

CHASE BANK 

DRIVE THRU 

1.5 .5 1 .5 3.5 43% 

ORLANDO 

INTL AIRPRT 

.5 1 4.5 2 8 6% 

COPAAIRLINES 1.5 .5 2.5 2 7.5 20% 

CHIPOTLE .5 1 3 .5 5 10% 

 

Table 3 t-test results 

 

t-statistic Sample 

mean 

Standard 

deviation 

Degrees of 

freedom 

Critical 

value 

p-value 

-3.13 .21 0.1061 10 -1.8125 0.0053 

 

Seaworld Orlando Manta Roller Coaster 

This project was carried out at Seaworld Orlando and models the queue forming process 

of Manta roller coaster. This project shows the positive impact on queues of having two loading 

stations instead of one. In order to complete this project, the necessary data were: 

 Data on IID arrivals collected using DESI’s blue section, which produced the 

results displayed in Figure 28.  
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 Distribution of number of entities per arrival collected using DESI’s green section 

as displayed in Figure 29.  The information in Figure 29 reads as follows: 8.33% 

of the time there were 4 persons arriving at the roller coaster, 41.7% of the time 

there were 2 persons arriving at the roller coaster, and so on.  

 Data on IID Manta car load times measured using the orange section of DESI and 

displayed in Figure 30. Because Arena does not support all the distributions 

available in DESI, for convenience only the Lognormal distribution was selected 

in the left panel of DESI.  

 Data on IID quick queue arrivals using the blue section of DESI presented in 

Figure 31.  

The full Manta ride takes 2 minutes to complete and this is part of the model logic. 

Entities are dynamically assigned to each Manta car in batches of 32 riders. This project assumes 

two Manta cars because that was the situation the day of the data gathering. Both cars were 

observed to be working at full capacity, and each car can carry as many as 32 riders. Figure 32 

shows the Manta model in Arena DES software. 

The Arena model features two entity creation modules in order to define priority 

attributes based on regular and “quick queue” arrivals. The model logic loads each of the two 

Manta loading stations based on car availability and queue sizes. The cars share the same steel 

track and the busy car seizes the track once the ride starts. The Arena model displays the busy 

steel track utilization with the green square shown in Figure 32, which turns white when the 

steel track is idle. For this project, 13% of the entire project’s time was devoted to input data 

management and the total duration of this project was approximately 30 hours. More information 

on this project is presented in Table 2. 
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Figure 28 IID Manta arrivals and respective autocorrelation diagnostics. 

 

 

Figure 29 Entity counts per arrival into Manta. 
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Figure 30 IID Manta car loading times and respective autocorrelation diagnostics. 
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Figure 31 IID Manta quick queue arrivals and respective autocorrelation diagnostics. 
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Figure 32 Manta Arena model. 

 

Wawa Gasoline Station 

This project was carried out at the Wawa gas station located at 901 N Orlando Ave, 

Winter Park, FL and seeks to model resource utilization (gas pumps) based on demand. In order 

to complete this project, the necessary data were: 

 Data on IID vehicle arrivals into Wawa from Orlando Avenue gathered using the 

blue section of DESI as presented in Figure 33.  

 Data on IID vehicle arrivals into Wawa from Lee Road using the blue section of 

DESI as presented in Figure 34.  

 Data on IID gas pumping times gathered using the orange section of DESI as 

presented in Figure 35.  
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 Data on the percentage of vehicles that stop for gasoline versus the percentage of 

cars that only arrive at the convenience store gathered using the green section of 

DESI as presented in Figure 36.  

The Wawa gas station Arena simulation model is presented in Figure 37. The model 

features 16 resources (gas pumps) and the focus of the analysis is resource utilization based on 

demand. Cars seize the gas pumps and the utilization status is presented as green/white squares 

in Figure 37. This project presents entities as cars, which can arrive into Wawa from two 

entrances. Based on collected data, 70% of the incoming cars go for gasoline and the others park 

in the convenience store depending on parking availability. The convenience store is represented 

by the orange rectangle in Figure 37. The cars that stop for gas seize the free pumps and then 

leave the system. Cars that go into the convenience store stay for some time and then leave the 

system. In this project, 25% of the time was spent in input data management out of 

approximately 8 hours devoted to the entire project. More information on this project is 

presented in Table 2. 
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Figure 33 IID arrivals into Wawa from Orlando Ave and autocorrelation diagnostics.  
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Figure 34 IID arrivals into Wawa from Lee Road and autocorrelation diagnostics. 
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Figure 35 IID gas pumping times and autocorrelation diagnostics. 
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Figure 36 Cars going for gasoline versus cars going to the Wawa convenience store. 

 

 

Figure 37 Wawa Arena simulation model. 
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Winter Park Village Starbucks Coffee Drive Thru 

This project was carried out at the Starbucks coffee shop located at 600 N Orlando Ave, 

Winter Park, FL and seeks to model the drive thru during morning hours. The motivation behind 

the Starbucks drive thru project is the fact that long car queues impact the traffic into the Winter 

Park village parking area. In order to complete this project, the necessary data were: 

 Data on IID car arrivals to the drive thru collected using the blue section of DESI 

presented in Figure 38. 

 Data on queue size in terms of how many cars can fit at a given time between the 

ordering station and the window where the order is dispatched; current physical 

queue size is overwhelmed by demand.  

 Data on IID wait time to get the order at the window gathered using the orange 

section of DESI presented in Figure 39. 

The Starbucks Arena model is displayed in Figure 40. The Arena model includes the 

delay logic when customers spend some time placing their orders; such delay is zero when the 

order pickup window queue is greater than 4, because customers must wait due to the queue and 

not because of the normal order delay. The Arena model also displays the busy state of the order 

pickup window with a green square. The scope of this project focuses in the morning demand of 

the Starbuck’s drive thru, hence replications only run for three hours. In this project, the 

percentage time devoted to input data management was 22% out of the entire project’s time of 2 

hours and 15 minutes. More information on this project is presented in Table 2. 
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Figure 38 IID arrivals into Starbucks drive thru and autocorrelation diagnostics. 
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Figure 39 IID Starbucks drive thru service times and autocorrelation diagnostics. 

 

 

Figure 40 Starbucks Arena model. 
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Altamonte Mall Food Court 

This project was carried out in the food court of the Altamonte Mall, in Altamonte 

Springs, Florida. This model focuses on the demand for seats to eat in the food court. There are a 

approximately 400 available seats, distributed among100 available tables. Seats and tables can be 

moved therefore seats allocation is flexible depending on party sizes. In order to complete this 

project, the necessary data were: 

 Data on IID arrivals to the food court gathered using the blue section of DESI, as 

presented in Figure 41.  

 Data on arriving party sizes gathered using the green section of DESI, as presented in 

Figure 42. 

 Data on IID food serving times gathered using the orange section of DESI, as presented 

in Figure 43.  

 Data on IID payment times gathered using the orange section of DESI, as presented in 

Figure 44.  

 Data on number of tables and quantity of seats per table gathered using the green section 

of DESI, as presented in Figure 45.  

The Altamonte mall food court Arena model is presented in Figure 46. This logic requires 

the use of 13 sub-models in order to model the 13 food stations. One of the 13 sub-models is 

shown in Figure 47. In the food serving process, individual customers arrive at the different fast 

food stations such as Taco Bell, Subway, Sbarro, etc. and they are helped by staff plus a cashier 

who receives the payment. There were several staff members on each station, but only two staff 

members were observed to help customers at a given time, plus the cashier. Then customers are 
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batched based on party size probabilities and proceed to the tables. The logic of the Arena model 

assigns party size as an attribute, so when customers seize the dining seats, they seize the right 

number of seats based on the party size. The seating space resource has a capacity of 400 seats 

and each party’s size reduces the number of available seats by the number of the party size.  The 

model keeps track of the entities entering the dining area and the number of busy and free 

seats.15% of this project’s time was spent in input data management out of a total of 13.5 hours. 

More details about this project can be found in Table 2.  

 

Figure 41IID arrivals into the Altamonte mall food court and autocorrelation diagnostics. 
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Figure 42 Party size distribution per arrivals into Altamonte mall food court. 

 

 

Figure 43 IID Service times at fast food stations and autocorrelation diagnostics. 
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Figure 44 IID Payment times at fast food stations and autocorrelation diagnostics. 

 

 

Figure 45 Distribution of seats per table in Altamonte mall food court. 
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Figure 46 Altamonte food court Arena model. 

 

 

Figure 47 One of the 13 sub-models representing a fast food station in the food court. 

 

Orlando-Sanford International Security Checkpoint 

This project was carried out at the Orlando Sanford International Airport, in Sanford, FL. 

The goal of this project is to simulate the passengers arriving and going thru the security 

checkpoint of this relatively small airport. At the moment of the data collection, only one of the 

two available X-ray positions was used to check passengers. Even though the security checkpoint 

has periods of low demand, the queues can get very large when passengers need to proceed to the 
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gates. As a matter of fact, security lines can get so crowded that passengers are retained in the 

lower level of the airport if the queue is too crowded. Then passengers are allowed to proceed up 

the stairs so they can enter the actual security line. In order to complete this project, the 

necessary data were: 

 IID arrivals of ticketed passengers into the security checkpoint presented in 

Figure 48.  

 Delay in getting personal items thru the X-ray machine presented in Figure 49.  

 

Figure 48 IID Arrivals into Sanford Airport security checkpoint and diagnostics. 
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Figure 49 IID delays before going thru the X-ray machine in Sanford International airport. 

 

 

Figure 50 Arena Model for Sanford airport security checkpoint. 
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The Arena model for the Sanford International airport is presented in Figure 50. This 

model presents the utilization of the TSA officer checking travel documents and also the usage 

of the X-ray machine to check passengers. Utilization is represented by the green and white 

squares of Figure 50.The model logic includes the revision of traveling documents and the wait 

times before entering the X-ray machine. Model logic also includes the fact that passengers are 

retained downstairs until there is enough room in the upper level to accommodate queued 

passengers. 17% of this project’s time was spent in input data management out of a total of 3 

hours. More details about this project can be found in Table 2.  

Lake Mary Publix Cashiers 

This project was carried out at the Publix grocery store of Lake Mary, Florida. The goal 

of this project is to analyze the demand for cashier lanes on a Sunday, when there is high demand 

for the cashiers. This project was created with scheduled periods of full capacity, that is, when all 

cashiers are open to customers and scheduled periods when one lane is closed. The scenario 

modeled in this project is based on a Sunday afternoon’s activity, with periods when one cashier 

was not active. The intention is analyzing the impact of opening an inactive cashier when there is 

high demand. In order to complete this project, the necessary data were: 

 Data on IID arrivals into the cashiers collected using the blue section of DESI, as 

shown in Figure 51. 

 Data on percentage clients going into fast cashier (10 items or less) collected 

using the green section of DESI as shown in Figure 52. 

 IID intervals of service on a regular cashier collected using the orange section of 

DESI as shown in Figure 53.  
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 IID intervals of service on the fast lane cashier collected using the orange section 

of DESI as shown in Figure 54.  

 

 

Figure 51 IID arrivals into Publix cashiers and autocorrelation diagnostics. 
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Figure 52 Percent of customers using the fast cashier 

 

 

Figure 53 IID Publix regular cashiers' service times and autocorrelation diagnostics. 
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Figure 54 IID service times of Publix's fast cashier and autocorrelation diagnostics. 

 

The Publix cashiers Arena Model is presented in Figure 55. The logic sends about 34% of 

customers to the fast cashier’s lane, based on collected data. It was also observed that if the fast 

lane had a long queue, customers leave that lane for a smaller lane if there is one. Entities that 

use the regular cashiers select the one with the smallest queue. Figure 55 shows the utilization of 

the cashiers with green squares if the cashier is busy. The inactive cashier is represented by the 
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white square with tilted lines. 30% of this project’s time was spent in input data management out 

of a total of 5 hours. More details about this project can be found in Table 2.  

 

Figure 55 Publix cashiers Arena model. 

 

Starbucks Winter Park Village 

This project was carried out at the Starbucks coffee shop located at 600 N Orlando Ave, 

Winter Park, FL. This project focuses on Starbucks’ personnel utilization during periods of high 

demand. Long waiting times during periods of high demand can deter the experience of 

customers. In order to complete this project, the necessary data were: 

 IID arrivals into Starbucks gathered using the blue section of DESI and presented 

in Figure 56. 

 IID payment times gathered the orange section of DESI and presented in Figure 

57.  
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 IID order waiting times gathered using the orange section of DESI and presented 

in Figure 58.  

 Percentage of times a customer is asked to wait for his or her order, gathered 

using the green section of DESI, as presented in Figure 59.  

 Percentage of consumers who stay in the coffee shop gathered using the green 

section of DESI, as presented in Figure 60.  

 Number of available tables and seats; once a party is in a table, the table is 

considered taken and other customers do not share the seized table. This data 

enters the model as part of the model logic.  

 

Figure 56 IID arrivals into Starbucks and autocorrelation diagnostics. 
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Figure 57 IID payment times in Starbucks cashiers and autocorrelation diagnostics. 
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Figure 58 IID data on Starbucks order completion and autocorrelation diagnostics. 

 

 

Figure 59 Percentage of customers who order black coffee. 
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Figure 60 Percentage of customers who stay in coffee shop. 

  

 The Starbucks coffee shop Arena model is displayed in Figure 61. This model focuses on 

table utilization and staff utilization during lunch hours, when employees of businesses around 

the coffee shop coincide in the coffee shop in addition to regular Starbucks customers. The 

model presents busy resources with green squares. Resources include staff and tables available 

for seating. Even though some tables can seat more than one person, usually when a person or 

group of persons take a table, no one else sits on it. 30% of this project’s time was spent in input 

data management out of a total of 5 hours. Details about this project can be found in Table 2.  

 

Figure 61 Starbucks coffee shop Arena model. 
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Winter Park Village Chase Bank Drive Thru 

This project was carried out at the Chase Bank located at 600 N Orlando Ave, Winter 

Park, FL. This project analyzes the traffic in the bank’s drive thru stations and the drive thru 

ATM. In order to complete this project, the necessary data were: 

 Arrivals into the Chase Bank drive thru using the blue section of DESI and 

presented in Figure 62. This is an example on how DESI can help detect 

autocorrelation. Notice the significant serial correlation. The simulation project 

was still carried out, but this example shows the usefulness of DESI in validating 

DES theoretical assumptions. 

 IID service times at the drive thru banking stations collected using the orange 

section of DESI and presented in Figure 63. 

 Percentage of times a customer uses the ATM drive thru station versus other 

banking services, collected using the green section of DESI and presented in 

Figure 64.  

 IID data on ATM drive thru station usage collected using the orange section of 

DESI and presented in Figure 65.  
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Figure 62 Automated detection of serial correlation using DESI. 
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Figure 63 IID Chase drive thru banking times. 

 

 

Figure 64 Percentage of cars going into Chase bank drive thru ATM. 
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Figure 65 IID Chase drive thru ATM usage times. 

 

 

 The Chase Bank drive thru Arena model is presented in Figure 66. The logic of this 

model allows incoming cars to determine which station they want to go into, depending on the 

queue size, unless customers only need the ATM. Resources are represented by bank staff and 
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the ATM machine. Resource utilization is represented by green and white squares, depending on 

whether the resources are busy or idle. 43% of this project was devoted to input data 

management out of a total of 3.5 hours.   

 

Figure 66 Chase bank drive thru Arena model. 

 

Orlando International Airport (MCO) Security Checkpoint 

This project was carried out at the Orlando International Airport in Orlando, Florida and 

it analyzes the flow of passengers thru the 10 boarding pass check stations and thru the 8 X-ray 

machines. The focus is on the security checkpoint for gates 1 to 59. In order to complete this 

project, the necessary data were: 

 IID arrivals of passengers to the security check point gathered using the blue 

section of DESI and presented in Figure 67. 

 IID times for boarding pass revision gathered using the orange section of DESI 

and presented in Figure 68. 
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 Distribution of number of passengers arriving into the security checkpoint 

gathered using the green section of DESI and presented in Figure 69. 

 IID wait times before using the X-ray machine gathered using the orange section 

of DESI and presented in Figure 70. 

 

 

Figure 67 IID arrivals into MCO security check point and diagnostics. 
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Figure 68 IID MCO revision of travel documents and autocorrelation diagnostics. 

 

 

Figure 69 Distribution of group sizes entering security at Orlando Intl. Airport. 
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Figure 70 IID wait times before X-ray machines in MCO and diagnostics. 

 

 

Figure 71 Orlando International Airport security Arena model. 
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 The Orlando International Airport Arena model is presented in Figure 71. The model 

logic features the passenger arrivals, who decide on which security lane to enter based on queue 

size. There are two entry points into security, and each point has 5 TSA agents checking travel 

documents. This project takes into account traveling group sizes, which are batched based on the 

probabilities obtained in the data collection process. The batching happens in order to direct 

families thru the same X-ray machine. Once a machine has been assigned, the batches are 

separated. High priority travelers have not been defined in this model, since the number of these 

travelers is negligible compared to the overall number of passengers, making almost no 

difference in the simulation results. 8% of this project’s time was spent in input data 

management out of a total of 8 hours. More details about this project can be found in Table 2. 

COPA Airlines Passenger Check-In Process 

This project was carried out at the Orlando International Airport in Orlando, Florida and 

it analyzes the flow of passengers flying in COPA Airlines to Panama City, Panama. In order to 

complete this project, the necessary data were: 

 IID arrivals of passengers to the check-in stations using the blue section of DESI 

and presented in Figure 72. 

 IID times for the check-in process gathered using the orange section of DESI and 

presented in Figure 73. 

 Distribution of number of passengers arriving into COPA Airlines check-in 

stations using the green section of DESI and presented in Figure 74. 
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 Distribution of the type of passengers (regular, premier, web check-in) arriving 

into COPA Airlines check-in stations using the green section of DESI and 

presented in Figure 75. 

 

 

Figure 72 IID passenger arrivals into COPA Airlines’ check-in and diagnostics. 
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Figure 73 IID COPA Airlines check-in times and autocorrelation diagnostics. 

 

 

Figure 74 Group size distribution arriving for COPA check-in. 
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Figure 75 Passenger type distribution arriving for COPA check-in. 

 

 The COPA Airlines Arena model is presented in Figure 76. The model logic sends the 

entities to the open check-in stations where COPA staff provides boarding passes. Family sizes 

are represented by batches of entities, which need to be sent to the same station. Staff member 

utilization is presented by green squares in Figure 76. Passenger priority and group sizes are 

assigned based on probability. Then signals for open stations are sent in order to release entities 

so they can seize the open stations based on availability.  20% of this project’s time was spent in 

input data management out of a total of 7.5 hours. More details about this project can be found in 

Table 2. 

 

Figure 76 COPA Airlines check-in Arena model. 
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Chipotle Mexican Grill 

This project was carried out at the Chipotle Mexican Grill in the intersection of Orlando 

Avenue and Fairbanks Avenue in Orlando, Florida and it analyzes the heavy demand during 

lunch hours. In order to complete this project, the necessary data were: 

 IID arrivals of customers gathered using the blue section of DESI and presented 

in Figure 77. 

 Ordering times gathered using the orange section of DESI and presented Figure 

78. This is another instance of how DESI can help detect serial correlation. 

 IID cashier serving times gathered using the orange section of DESI and 

presented in Figure 79.  

 Distribution of number of customers arriving to Chipotle gathered using the green 

section of DESI and presented in Figure 80. 

The Chipotle Arena model is displayed in Figure81. This model logic prevents entities from 

being served if there is no more room in the serving area. Idle employees, other than the ones 

taking orders and receiving payments, send signals to different hold modules in order to release 

one entity at a time so the one entity can be served. Busy Chipotle employees receiving the 

orders and getting the payments are represented by green squares in Figure 81. The flow of 

customers is determined by the paying times, which must be fast in order to prevent queues to 

end up forming outside the restaurant. 10% of this project’s time was spent in input data 

management out of a total of 5 hours. More details about this project can be found in Table 2. 
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Figure 77 IID arrivals into Chipotle and autocorrelation diagnostics. 
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Figure 78 Chipotle ordering times and how DESI detects serial correlation. 
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Figure 79 IID Chipotle payment times and autocorrelation diagnostics. 

 

 

Figure 80 Distribution of customers entering Chipotle. 
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Figure 81 Chipotle Arena model 

Summary of Results 

The DES projects presented in this chapter show a significant positive impact from using 

the DESI interface in the percentage of DES projects’ time devoted to input data management.  

As presented in chapter three, the reduction in time devoted to input data management 

comes from eliminating post-collection data processing Λρ, fulfilling condition (3.15), where Λρ 

≈ 0. The projects presented in this chapter are not manufacturing applications of DES, since 

manufacturing applications of DES are already the focus of other documented solutions for DES 

automated data processing. The fact that no manufacturing project was included in this chapter 

does not imply that the proposed framework, instantiated by the DESI interface, cannot be used 

in manufacturing applications of DES.  

Without DESI, the projects presented in this chapter would have been completed using 

methodology (A) and (B) solutions, namely MDCAP. More sophisticated solutions for DES 

input data automation would not have been adequate for these types of DES projects because the 

systems modeled in this chapter did not have previously available data, which is the most 

important requirement in order to use documented methodology (C) and (D) solutions.  



127 

 

The projects presented in this chapter are of reasonable complexity, but in reality DES 

models can get much more complex. Figure 82 shows that as model complexity increased, the 

total hours devoted to input data management also increased, even with automation. Model 

complexity is measured as the sum of hours needed to develop the model logic plus the hours 

used in model creation within DES software. In Figure 82, model complexity is presented in the 

x-axis and hours spent in input data management are presented in the y-axis. Results show a 

significant positive linear correlation of 0.85 between model complexity and time devoted to 

input data management.  

Even though model complexity implies more absolute time devoted to input data 

management, the percentage of time devoted to input data management decreased as model 

complexity increased. This means that the reduction in the percentage of DES projects devoted 

to input data management suggested in this chapter would not be compromised as model 

complexity increases; as a matter of fact, such reduction in percentage time devoted to input data 

management is reinforced as complexity increases. 

 

Figure 82 Input data management vs model complexity 
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CHAPTER SEVEN: FUTURE RESEARCH AND CONCLUSIONS 

Place in DES Input Data Management Literature 

This section reconciles the proposed framework with the literature about DES input data 

management. Skoogh and Johansson proposed the methodology for increased precision and 

rapidity in DES input data management shown in Figure 83 [5]. This methodology emphasizes 

the identification and definition of relevant parameters, specification of requirements and 

availability of data as the initial steps in DES input data management [5]. Such steps can be 

regarded as equivalent to the concept of model logic presented in the proposed integrated 

framework. Using Figure 83 as reference, the proposed framework presented in this research 

investigation permits data processing automation that starts in the “Create data sheet” step, 

continues through the right path, i.e. “gather non available data”, and ends after the completion 

of the “Finish final documentation” step, since the proposed framework allows for streamlined 

validation the collected data. The aforementioned automation is possible due to the 

generalization of the data into three specific classes, as presented in the proposed integrated 

framework for DES input data management automation.  

In summary, the documented steps from Figure 83 indicate what needs to be done in 

DES input data management, whereas the proposed integrated framework presented in this 

research investigation proposes a methodology to get it done in an automated manner, regardless 

of the discipline or area of application. 
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Figure 83 Methodology for increased precision and rapidity in input data management 

 

Source: Skoogh, A. A., & Johansson, B. B. (2008). A methodology for input data management in  

discrete event simulation projects. 2008 Winter Simulation Conference Proceedings, 1727. 

doi:10.1109/WSC.2008.4736259 
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Future Research 

In addition to speeding up data preparation for DES projects, the proposed framework, 

instantiated by the DESI interface, offers advantages to the users such as flexibility, data 

verifiability, lower implementation costs, ease of use by non-technical staff, real-time data 

visualization, real-time data fitting, real-time assumption checking, simulation-ready output, 

multimodal data fitting and relative frequencies of outcomes at decision points. User satisfaction 

from these convenient features needs to be tested in user experience evaluations, which are the 

subject of future research. Future research will also be focused on the financial impact of using 

DESI instead of using MDCAP or instead of using more complex methodology (C) and (D) 

solutions. The argument in favor of DESI as a less costly solution is the fact that it requires fewer 

resources and less trained technical staff.  

Then research will be directed towards the usage of sensors in order to replace humans 

pressing the buttons in the DESI interface. Sensorial activation of DESI will not be feasible in all 

DES applications, but when applicable, sensors can help eliminate or avoid the unavoidable wait 

for events to happen ηρ because sensor signaling will replace humans in the collection of the data. 

Based on the claims from chapter three, if DESI can respond to sensor signals, the time devoted 

to input data management will approach 0, namely βρ≈ 0. Such reasoning leads to the following, 

 

Claim 7 Under the proposed integrated framework for automated DES data collection and 

processing, the condition where Λρ ≈ 0, ηρ ≈ 0, θρ ≈ 0 and βρ≈ 0 for a DES project ρ is feasible if 

sensor signaling can replace human intervention in the collection of unavailable but collectable 

data.  
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Conclusion 

This research investigation presented an integrated framework to automate data collection 

and processing for Discrete Event Simulation (DES) projects. Input data processing steps for 

DES projects include calculations, probability distribution fitting, visualization and validation. 

The motivation for selecting this topic is the fact that input data management for DES projects is 

a highly manual process. This is confirmed by the fact that manual input data methodologies (A) 

and (B) are employed by 80% of recently surveyed DES practitioners. Even though specialized 

DES software runs the simulations, it does not prepare the data to set up the simulations, hence 

there is the need for a solution that can automate input data management, while being usable in 

the different disciplines where DES modeling is appropriate. 

The literature about DES input data management presents specific attempts to automate 

DES data preparation. Documented attempts are of the form suggested by methodology (C) and 

(D) solutions, where automation depends on the existence of data within internal corporate 

systems. Such sophisticated automation attempts present important drawbacks that prevent their 

proliferation. First, these sophisticated solutions require previously available data, which often 

do not exist. Second, their implementation can be challenging because of customized 

configuration requirements and the need for specialized staff. Third, these sophisticated solutions 

are presented only in manufacturing applications, which is one of the areas where DES modeling 

is appropriate.  

The proposed integrated framework generalizes the data needed for DES projects into 

three classes. These classes are Class (I) data, where the ending timestamp of one event 

represents the beginning timestamp of the following event; Class (II) data, where each event has 
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its own start and end timestamp; and Class (III) data, where counts of outcomes at a given 

decision point generate relative frequencies or probabilities. Such generalization permits 

automating the collection and processing for each one of these classes, given a model logic for 

the target system.  

The proposed integrated framework provides the foundations to develop an innovative 

automated solution that combines key features from the four DES input data management 

methodologies (A), (B), (C) and (D). For example, the solution based on the proposed 

framework permits full verification and validation of the data at any time as would be expected 

in methodology (A) and (B) solutions, while achieving automatic processing, storage, extraction 

and updates of simulation-ready data, as would be expected in methodologies (C) and (D) 

solutions.  

The automated, hybrid solution based on the proposed integrated framework is called 

DESI, which stands for Discrete Event Simulation Inputs. The DESI interface has three main 

sections, which are devoted to the collection and processing of Class (I), Class (II) and Class (III) 

data. The interface also features a section of optional parameters, which permits the selection of 

specific criteria in order to customize the user experience in the analysis of data for DES 

projects. DESI is activated by pressing buttons and it returns processing results in real-time. 

Simulation-ready results include probability distribution fitting, histograms, autocorrelation 

diagnostics, multimodal data partitions and relative frequencies in the form of pie charts. This 

research investigation presents two versions of DESI. These versions are DESI 1.0, which stores 

data in MySQL databases and DESI 2.0., which stores the data in text files.  

This research investigation presented DES projects completed using the DESI interface. 

The completion of such projects showed that the proposed framework, instantiated by the DESI 
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interface, can reduce the percentage time devoted to input data management from 31%, which is 

the average presented in the literature, down to 21%. Such reduction is statistically significant. 

The 21% obtained using DESI comes from the unavoidable wait for events to happen, as the 

implementation of DESI is very simple and post-collection data processing is fully automated 

based on the concepts of the proposed framework. Future research can be focused on the 

financial impact of the proposed framework as it requires fewer resources. Future research can 

also be focused on user experience evaluations of the DESI interface in order to improve its 

design and in the usage of sensors to replace humans pressing the buttons of the DESI interface.  

A potential disadvantage of DESI is the fact that data must be collected by someone. In 

other words, the current versions of DESI need a person controlling the interface by pressing the 

buttons and checking the boxes in order to collect and process the data. Other documented DES 

input data management solutions obtain the data directly from internal data sources.  Such 

reliance on internal data systems also has its drawbacks. 

The challenges of relying on internal data sources have been documented in the literature. 

These challenges include complexity, high costs, lengthy implementation, detailed customization 

and lack of flexibility. Due to the complicated nature of input data management solutions that 

rely on internal data sources, DESI can be considered a convenient alternative in the automated 

processing of data for DES projects because it is independent of internal data sources. Hence, 

even though the lack of connectivity to internal data sources poses the need for someone to 

control the DESI interface, such independence also creates a significant strength. Non-reliance 

on internal data permits DESI to be usable in different areas where DES modeling is appropriate 

beyond manufacturing, advancing the state-of-the-art in automated DES input data management. 
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