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ABSTRACT OF DISSERTATION 

 

 

THE PHARMACOKINETICS OF METAL-BASED ENGINEERED 
NANOMATERIALS, FOCUSING ON THE BLOOD-BRAIN BARRIER  

Metal-based engineered nanomaterials (ENMs) have potential to revolutionize diagnosis, 
drug delivery and manufactured products, leading to greater human ENM exposure. It is 
crucial to understand ENM pharmacokinetics and their association with biological 
barriers such as the blood-brain barrier (BBB). Physicochemical parameters such as size 
and surface modification of ENMs play an important role in ENM fate, including their 
brain association. Multifunctional ENMs showed advantages across the highly regulated 
BBB. There are limited reports on ENM distribution among the blood in the brain 
vasculature, the BBB, and brain parenchyma.  

 

In this study, ceria ENM was used to study the effect of size on its pharmacokinetics. 
Four sizes of ceria ENMs were studied. Five nm ceria showed a longer half-life in the 
blood and higher brain association compared with other sizes and 15 and 30 nm ceria had 
a higher blood cell association than 5 or 55 nm ceria. Because of the long circulation and 
high brain association of 5 nm ceria compared with other sizes, its distribution between 
the BBB and brain parenchyma was studied. The in situ brain perfusion technique 
showed 5 nm ceria (99%) on the luminal surface of the BBB rather than the brain 
parenchyma.  

 

For biomedical applications in the central nervous system (CNS), it is vital to develop 
stable and biocompatible ENMs and enhance their uptake by taking advantage of their 
unique properties. Cross-linked nanoassemblies entrapping iron oxide nanoparticles 
(CNA-IONPs) showed controlled particle size in biological conditions and less toxicity in 
comparison to Citrate-IONPs. CNA-IONPs considerably enhanced MRI T2 relaxivities 
and generated heat at mild hyperthermic temperatures (40 ~ 42°C) in the presence of 
alternating magnetic field (AMF). Numerous researchers showed mild whole body 
hyperthermia can increase BBB permeability for potential brain therapeutic application. 
Compared to conventional hyperthermia, AMF-induced hyperthermia increased BBB 
permeability with a shorter duration of hyperthermia and lower temperature, providing 
the potential to enhance IONP flux across the BBB with reduced toxicity.  

 



Overall, ENMs with optimized physicochemical properties can enhance their flux across 
the BBB into the brain with desirable pharmacokinetics, which provide great potential for 
diagnosis and therapy in the CNS.  

 

KEYWORDS:  Metal-based engineered nanomaterials (ENMs), blood-brain barrier 
(BBB), ceria ENM, iron oxide nanoparticles, pharmacokinetics  
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28B28BChapter 1 Introduction and Objectives 

  

1.1. Introduction and Statement of the Problem 

Rapid expansion of nanotechnology has allowed metal-based engineered nanomaterials 

(ENMs) to be used with broad application.  These applications include drug delivery 

devices (1), imaging agents (2), catalysts (3) and sensors (4). Metal-based ENMs are very 

attractive for academia and industry, because of the dramatic increase in human exposure 

and unusual physicochemical properties such as their size and shape-dependent 

optoelectronic properties (5). Little is known about metal-based ENM distribution or 

persistence in the vascular system and their association with biological barriers such as 

the highly regulated blood-brain barrier (BBB).   

 

Previous studies reported that the blood and biological distribution of metal-based ENMs 

was size-dependent. For example, after iv injection of gold ENMs (15, 50, 100 and 200 

nm), 15 and 50 nm showed higher concentration in the blood and the most widespread 

organ distribution, including the brain compared with the other sizes 24 hours after 

injection (6). Our previous research showed that the blood cerium concentration was 0.56 

and 1.3 mg/L after a 1 h infusion of 50 or 250 mg/kg of an ~ 30-nm commercial ceria 

ENM to rats (7). In contrast, 1 h after infusion of 100 mg/kg of an in-house manufactured 

5-nm ceria ENM it was 370 mg/L (8), suggesting that the rate of metal oxide ENM 

clearance from blood was size dependent. However, little is known about the influence of 

size on the distribution in, and clearance from, blood of metal-based ENMs. 
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To investigate the persistence and distribution of a model ENM in blood, we utilized 

ceria (CeO2, ceric oxide). Numerous studies reported ceria ENM to be neuro- and 

cardioprotective, suggesting it has therapeutic utility in medical disorders caused by 

reactive oxygen species (9-17). On the other hand, there are reports of ceria-induced 

toxicity (toxicity: a cascade of events starting with exposure, proceeding through 

distribution and metabolism and ending with interaction with  cellular macromolecules 

and the expression of a toxic end point (18)) associated with increased oxidative stress 

(19-24). Nanoscale ceria is a catalyst, marketed as a diesel fuel additive in the Eolys® 

system (25). There have been limited studies of the biodistribution of nanoscale ceria (26, 

27).  Despite what has been done previously, there is a lack of knowledge of the 

pharmacokinetics of ceria ENMs in blood other than our report that a commercial ~ 30-

nm ceria had an initial t½ of ~ 0.125 h (7). It is vitally important to understand the 

pharmacokinetics of ENMs in relation to their potential therapeutic applications and/or 

toxicity.  

 

How ENMs interact with living tissues, particularly biological barriers including the 

BBB, after they distribute in the blood will determine their distribution and potential 

applications in the central nervous system (CNS). The tightly regulated BBB plays a 

crucial role in safeguarding the brain from endogenous and exogenous compounds 

circulating in the blood (28). ENMs are being extensively investigated as an approach to 

deliver drugs to the CNS based on their unique physicochemical properties, such as tight 

junction disruption, increased retention at the brain capillaries combined with adsorption 

to the capillary walls and receptor mediated transcytosis (29, 30). Several studies 
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indicated that metal ENMs altered BBB integrity and increased ENM brain accumulation 

(6, 7, 31). After oral gavage, 25 nm ceria appeared in the brain 1 day later and was still 

present in the brain at day 7 (32). Although these studies indicated that some metal oxide 

ENMs have the potential to cross the BBB, most studies on brain ENM uptake did not 

separate the capillary endothelial cells from the brain cells, making it difficult to 

determine whether the ENMs entered the brain or if their distribution was limited to the 

capillary endothelial cells and blood in the brain vasculature. For drug delivery into the 

brain, the capability of ENMs across the BBB into the brain will determine whether they 

can increase the drug in specific brain tissues such as brain tumor. Meanwhile, a better 

understanding of non-brain targeting ENMs in the BBB and the brain tissue will provide 

crucial information for their potential side effects in the CNS. In general, for 

toxicological consideration or biomedical application in the CNS, it is important to 

understand the distribution of ENMs between the BBB and/or brain tissue. 

 

After studying the pharmacokinetics in blood and interaction with the BBB of ceria 

ENMs, multifunctional ENMs with desirable physicochemical and pharmacokinetic 

properties were developed and investigated for potential biomedical application in the 

CNS. Iron oxide nanoparticles (IONPs) have drawn increasing attention as magnetic 

resonance imaging (MRI) contrast agents to evaluate blood-brain barrier dysfunction 

related to tumors and other pathologies in the CNS (e.g. brain tumor, stroke, and carotid 

atherosclerosis) in clinical and preclinical studies (33, 34). IONPs can also be used as a 

heating source for hyperthermia as they generate heat in the presence of an alternating 

magnetic field (AMF: a varying magnetic field. In an AMF, induced currents are 
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generated in IONPs and as a consequence, heat is generated in the metal (35)) to increase 

temperature in solutions or localized tissues, thereby killing cancer cells in a controlled 

manner (36-38). A problem with most metal-based ENMs including IONPs is their 

tendency to agglomerate in aqueous solutions unless their surface is properly modified, 

resulting in plasma protein binding in vivo and rapid clearance by the mononuclear 

phagocyte system (MPS) (39). Several studies showed that IONPs, either bare or surface-

modified, could cause cell toxicity and oxidative stress in vitro and in vivo (40-42). 

Therefore, it is crucial to improve particle stability and biocompatibility of IONPs in 

biological environments.  

 

In order to prevent agglomeration of IONPs, citric acid and surfactants are frequently 

used to stabilize IONPs in aqueous solutions (43-45), but these stabilizers often cause 

problems. For example, our previous study on citric acid-coated-ceria showed that 

agglomerated ENMs were cleared into and persisted in the MPS, which could potentially 

cause toxic effects over time (8, 27). Other research on citric acid IONPs demonstrated 

similar results (46, 47). Biocompatible polymer nanoparticles and water soluble polymers 

have been used as less toxic and more stable alternatives to these stabilizers (35, 48). 

Among these polymer-based formulations, polymeric micelles prepared from amphiphilic 

block copolymers are an attractive choice to develop IONP formulations for cancer 

imaging and hyperthermia (49, 50). Micelles can embed IONPs and achieve considerable 

MRI contrast enhancement as a result of the collective effects of IONP clusters (51-53). 

One of the critical problems associated with conventional polymeric micelles is particle 

stability, particularly in dilute conditions (e.g. blood and other biological environments) 
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as polymer micelles can dissociate below the critical micelle concentration (54). To solve 

these problems, cross-linked nanoassemblies (CNAs) from biocompatible poly(ethylene 

glycol)-poly(aspartate) [PEG-p(Asp)] block copolymers were used in my study, which 

have the potential to provide stable nanoparticles that can entrap charged, hydrophobic, 

and amphiphilic payloads without changing particle sizes optimized for accumulation in 

certain tissues  such as the CNS (55-57).  

 

For CNS application of IONPs, it is important to increase their flux across the BBB and 

brain entry. Numerous researchers have shown mild whole body hyperthermia can 

increase BBB permeability, which has potential for therapeutic application in the brain 

(58).  Whole body hyperthermia (42 ºC for 0.5 h) significantly increased adriamycin flux 

delivered in a temperature sensitive liposome across the BBB in vitro and in vivo (59). 

However, whole body hyperthermia led to heat stress in vivo and caused toxicity to the 

CNS such as edema (58, 60).  CNA-IONPs provide the potential to serve as a stable and 

biocompatible IONP delivery system to generate local hyperthermia to increase BBB 

permeability and brain accumulation for diagnosis and therapy.  

 

1B1B1.2. Objectives 

The overall objective of this dissertation was to gain a better understanding of the 

influence of size on the distribution in and clearance from blood of metal-based ENMs, 

interaction between metal-based ENMs and the BBB and develop a stable and 

biocompatible magnetic ENM for the controlled delivery of heat to enhance BBB flux of 
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ENMs.  Four projects were involved in this dissertation and the hypotheses of each 

project are described as follows:   

1. “Ceria engineered nanomaterial distribution in and clearance from blood: Size matters” 

Hypotheses: 

a. The fate of a metal oxide ENM in blood is different than its constituent metal  

b. ENM size influences its persistence in and distribution within the major 

components of blood.  

 

The cerium ion and four sizes of cubic or polyhedral citrate-coated ceria ENMs will 

be iv infused into rats. Blood will be repeatedly withdrawn up to 4 h later, and in 

some cases up to 30 days. An aliquot of each blood sample drawn up to 4 h after 

ceria infusion will be allowed to clot. By comparison of cerium in whole blood, 

serum, and the clot we could determine pharmacokinetic parameters of ceria 

distribution in and clearance from blood. This study informs about the effects of 

ceria ENM size on distribution and clearance from blood, which cannot be predicted 

from the cerium ion and size plays an important role on pharmacokinetics and cell 

associations. 

 

2. “ Brain microvascular endothelial cell association and distribution of a 5 nm ceria 

engineered nanomaterial” 

Hypothesis: 

c. A 5 nm ceria ENM can associate with brain capillary cells and enter the brain. 

 



7 

 

The in situ brain perfusion method will be used to evaluate BBB integrity and 

determine brain entry rate at different perfusion flow rates, ceria ENM concentrations 

and perfusion durations. Eight brain regions and a choroid plexus will be collected to 

test regional differences in BBB integrity and ceria ENM brain entry rate. The 

capillary depletion method will be used to evaluate ceria ENM distribution between 

capillary and brain tissues. Light and electron microscopy (LM and EM) will be 

employed to investigate the localization of ceria nanoparticles. This research will 

provide the first data on the kinetics of ceria nanoparticle interaction with the BBB 

and choroid plexus.  This information will be important for the design of ceria ENMs 

as a therapeutic agent as well as for a comprehensive toxicology assessment. 

 

 

3. “Block copolymer cross-linked nanoassemblies improve particle stability and 

biocompatibility of superparamagnetic iron oxide nanoparticles” 

Hypothesis: 

d. CNAs containing carboxyl groups in the core would simultaneously create, 

entrap, and protect IONPs as iron ions (Fe
2+

 and Fe
3+

) co-precipitate inside the 

nanoassembly core, thus suppressing IONP agglomeration and improve the 

biocompatibility of IONPs without losing their superparamagnetic properties. 

 

CNA-IONPs will be developed using the co-participation method. Particle stability 

and biocompatibility will be determined with or without AMF exposure at room, body, 

and hyperthermic temperatures. Cytotoxicity of the particles will be investigated using 
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brain endothelial-derived cells. To evaluate potential imaging applications, T2-

weighted MRI enhancement of CNA-IONPs and AMF-induced heating properties of 

CNA-IONPs will be evaluated. CNAs with a cross-linked anionic core have potential 

to improve particle stability and biocompatibility of IONPs, which would be 

beneficial for future MRI and AMF-induced remote hyperthermia applications.  

 

4. “Alternating magnetic field enhanced the blood brain barrier association and 

paracellular flux of superparamagnetic iron oxide nanoparticles” 

Hypothesis: 

e. AMF-induced hyperthermia would significantly increase the paracellular and/or 

transcellular flux of IONPs, and influence the BBB cell association with IONPs 

compared with conventional hyperthermia. 

 

CNA-IONP uptake flux across the BBB, and effects will be evaluated in in vitro BBB 

models at body temperature, conventional hyperthermia, or AMF-induced 

hyperthermia. The paracellular flux changes induced by conventional hyperthermia or 

AMF-induced hyperthermia will be monitored by Lucifer yellow (LY), a paracellular 

flux maker. Using transmission electron microscopy (TEM), the cellular localization of 

the iron oxide core of the studied nanoparticles will be investigated. Results of this 

study will provide a better understanding how AMF-induced hyperthermia influences 

IONP BBB cell association and flux across the BBB, which will be beneficial for IONP 

future application for the CNS and insight into the difference between conventional 

hyperthermia and AMF-induced hyperthermia on the BBB permeability and IONP flux. 
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This dissertation starts with an introduction and objectives in Chapter 1. Chapter 2 

contains background on metal-based ENMs, which includes an introduction to metal-

based ENMs, a discussion on how their physicochemical properties influence the 

pharmacokinetics and the BBB association of ENMs, and a review of previous work on 

ceria and iron oxide ENMs on pharmacokinetics and the BBB association and their 

problems. Chapters 3, 4, 5 and 6 present the results and discussion for each project 

described above.  Finally the conclusions and future studies are presented in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

Portions of the introduction was reproduced with permission from Dan M, Scott D, 

Hardy P, Wydra R, Yokel R, Hilt J, Bae Y. Block copolymer cross-linked 

nanoassemblies improve particle stability and biocompatibility of superparamagnetic 

iron oxide nanoparticles. Pharmaceutical Research 2013, 30(2):552-61. Copyright © 
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Grulke EA, Yokel RA. Brain microvascular endothelial cell association and 

distribution of a 5 nm ceria engineered nanomaterial. International Journal of 
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Size matters. Nanomedicine, 2012, 7(1), 95-110. Copyright © 2012 Future Medicine 

Ltd. 
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29B29BChapter 2 Background 

 

2B2B2.1. Metal-based engineered nanomaterials and their biomedical applications 

Engineered nanomaterials are normally defined as being smaller than 100 nm on one 

external dimension or internal structure (62). However defining the size of ENMs is 

debatable. An ENM has typically been referred as any particle less than 1 µm.  Such a 

small size gives the ENM an unusual surface area, size distribution, surface modification 

(surface groups, inorganic or organic coatings, surface charge etc.), solubility, shape, and 

potential aggregation compared to bulk material. The unique physicochemical properties 

of ENMs provide great potential for biomedical applications. 

 

The application of ENMs is a burgeoning field with immense biomedical potential. In 

2006, a global survey on biomedical application of ENMs was conducted by the 

European Science and Technology Observatory. This survey found that more than 150 

companies were developing nanoscale therapeutics; and 24 nanotechnology-based 

therapeutic products were already approved for clinical use with sales exceeding $5.4 

billion (62). Biomedical nanotechnology sales were expected to grow to $70-160 billion 

by 2015 worldwide (63). Most metal-based ENMs have unique physical properties which 

can be dictated for certain biomedical applications, giving them a strong potential for 

diagnosis and therapy. For example, the optical properties of gold nanorods are directly 

related with their shape and aspect ratio, which were used for contrast imaging and 

photothermal therapy (64).   
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Although the concept of metal-based ENMs was introduced in recent years, humans 

started to synthesize and use metal nanoparticles hundreds of years ago. Gold 

nanoparticles were used as part of ancient ayurvedic medicine in India 2000 years ago 

(65). Although previously used, the first scientific study on metal nanoparticles has been 

credited to English physicist and chemist Michael Faraday in 1857. Faraday studied and 

reported the size dependent optical properties of gold colloids (66). The application of 

metal-based ENMs has expanded in recent years as a result of significant developments 

in the synthesis process. It has become possible to design and engineer metal-based 

ENMs to produce specific and desired properties for different applications. I summarized 

the major novel biomedical applications below.  

 

2.1.1 Photothermal therapy  

Photothermal therapy has been actively investigated to localize cancer treatment, with 

promising potential to minimize damage to non-cancerous tissue.  Metal-based ENMs 

can be “tuned” to serve as either strong absorbers or scatters of near-infrared light, which 

enables their use for photothermal therapy.  Gold nanoshells have been extensively 

studied for this application (67).  For example, the therapeutic efficacy of photothermal 

therapy induced by gold nanoshells was tested in mouse tumors. The gold nanoshell was 

delivered via tail veil injection and the tumors were irradiated with near infrared (NIR) 

lasers at 808 nm wavelength at a power of 4 W/cm
2
 for 3 min. Several weeks after 

treatment, all mice in the treatment group were free of tumors. Meanwhile, they also 

showed that the gold nanoshell showed dramatic contrast enhancement for optical 

coherence tomography (OCT) imaging (68). Through this study gold nanoshells 
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demonstrated their effectiveness in imaging and ablating tumors in vivo. This could allow 

integration of gold nanoshells into diagnostic and therapeutic technologies.   

 

2.1.2. Radiotherapy 

Metal-based ENMs provide an advantage in radiotherapy because of their optical 

properties, surface resonance and wavelength tunability. Gold ENMs are the most studied 

metal-based ENMs for use in radiotherapy. The intrinsic radioactive properties of gold 

(Au-198 and Au-199) ENMs can be tuned, which make them ideal candidates for 

radiotherapy (69).  Dose and size dependent cytotoxicity of silver and gold ENMs were 

demonstrated on glioma cells in combination with radiation. And 20 nm silver ENMs and 

50 nm gold ENMs showed the most effective radiosensitization at low radiation doses 

compared with other sizes (70).  A recent report studied the radiosensitization application 

of gold ENMs using a size range of 14-74 nm. They demonstrated that both the size and 

the amount of uptake of ENMs into cells affect radiosensitization.  Their results also 

showed that 50 nm gold ENMs displayed the utmost enhancement compared to 14 and 74 

nm (71). For radiotherapy application, it will be critical to develop ENMs with the 

desirable size to enhance their radiosensitization ability.  

 

2.1.3. Imaging 

Their optical, magnetic, and other properties have made metal-based ENMs very 

attractive for imaging.  Numerous studies have demonstrated that gold ENMs are 

excellent contrast agents. This is due to the fact that the intensity of absorption and 

scattering of gold ENMs is significantly higher than most organic dyes (72).  The 
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applications of gold ENMs for in vivo imaging can be summarized as: 1) Optical 

coherence tomography; 2) Two-photon luminescence; 3) Photoacoustic tomography; 4) 

Surface enhanced Raman scattering; 5) X-ray computed tomography imaging. The details 

about these five applications were reviewed in 2011(73).  Another most investigated and 

widely used metal-based ENM for MR imaging is IONP, due to their unique magnetic 

properties.  More detail about this application will be reviewed and discussed in 2.5.  

 

2.1.4. Drug delivery 

The unique properties of metal-based ENMs have allowed for various controlled delivery 

systems to be developed such as pulsed laser induced gold-thiol bond cleavage (74) and 

hyperthermia-triggered release (75). Multifunctional metal-based ENMs were also 

developed for combination treatment, such as hyperthermia plus chemotherapy or 

theranostics, by combining drug delivery and imaging (73).  For example, tumor necrosis 

factor alpha (TNF-α) can covalently conjugate to gold ENMs resulting in the 

combination of TNF-α and gold-induced hyperthermia. This combination of TNF-α 

therapy with gold hyperthermia resulted in an increase in tumor recession (76). 

Thermally crosslinked IONPs have been developed for use in drug delivery and MR 

imaging. The polymeric shell of IONPs loaded with doxorubicin was efficient in 

detecting Lewis lung carcinoma, and delivering sufficient drug to tumor tissues with 

lower toxicity in other organs (77). These studies demonstrated that metal-based ENMs 

can be incorporated in drug delivery systems, which provide the possibility to control 

drug release and increase efficacy of nanomedicine by combining different therapeutic 

strategies.  
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3B3B2.2. Effect of size and surface modification on pharmacokinetics of metal-based 

engineered nanomaterials 

There have been several physicochemical candidates identified that influence the 

pharmacokinetics of ENMs such as chemical nature, size, shape, surface chemistry, 

charge, presence of surface lattice defects, surface curvature, and the atomic arrangement 

of the crystalline facets and agglomeration potential (78-80).  ENM size plays a very 

important role in the pharmacokinetics because of their effects on margination dynamics 

(lateral drifting from the vessel core to the walls), vascular adhesion, protein corona 

(protein coating) and escape routes from the vasculature (81). In this section, how size 

influences the pharmacokinetics of metal-based ENMs will be summarized. 

 

Different margination dynamics are desirable for different ENM applications. For tissue 

targeting ENMs, the fast margination and interaction with the endothelium may be 

needed to target with selective cells with a high adherence. On the other hand, low 

margination leads to long circulation without being trapped by cells. Mathematical 

modeling and experiments in vitro demonstrated that certain ENMs within the critical 

size showed the maximum margination time (82).  For different applications, ENMs 

should have size at the certain critical size range in order to circulate in the blood stream 

and/or interact with the endothelium cells (83). Adhesion was also studied in vitro using 

different sizes of silica ENMs. The strength of adhesion of the spherical ENMs reduces 

as their diameter increases (84). Despite these important findings, it is more than likely 

these previous mathematical modeling and experiments in vitro have oversimplified the 



15 

 

vasculature architecture in vivo. More studies are needed to define how different sizes of 

ENMs change their interaction with the vasculature in vivo.  

 

It has been shown that different ENMs influence their interactions with proteins in blood 

both quantitatively and qualitatively. For example, the protein corona changes the half-

life and biodistribution of ENMs (82, 85, 86).  ENM aggregation was induced by the 

proteins in blood, which can be trapped in the first capillary bed encountered, such as rat 

or mouse lung following tail vein injection (82). Furthermore, the protein corona on the 

surface of ENMs also facilitated recognition and clearance from the blood by circulating 

phagocytes and macrophages in the hepatic Kupffer cells and the marginal zone and red-

pulp macrophages in the spleen (87, 88). A previous study has shown that the size of 

ENMs changed the protein corona, which influence the ENM’s pharmacokinetics in the 

blood (85).  

 

Normally, ENMs leave blood circulation through opening fenestrations in the organs or 

some disease conditions such as tumor (89). In the liver, the size of fenestrate can be as 

large as 150 nm (90). Spleen filtration is also size dependent. ENMs need to be small 

enough to avoid the splenic filtration process at intercellular slits in the walls of venous 

sinuses (91). The width of interendothelial cell slits is approximately 200-250 nm, 

providing a mechanism to target the spleen (92). Alternatively, the size of longer-

circulating ENMs should not exceed 200 nm to bypass spleen filtration. Studies have 

shown that tumors have a characteristic leaky vasculature pore size of 200 nm to 1.2 μm 

(93). However, the average size recommended for tumor targeting is less than 200 nm to 
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take advantage of the enhanced permeability and retention (EPR) effect (94, 95). This 

doesn’t mean that the smaller ENMs will have desirable pharmacokinetics.  ENMs less 

than 10 nm can leave the blood circulation through the permeable vascular endothelium 

in lymph nodes (96, 97).  Furthermore, very small ENMs tend to be cleared by 

glomerular filtration very fast.  Quantum dots were used to define the renal filtration 

threshold in rodents. They showed that when the diameter is less than 5.5 nm, the ENMs 

were cleared through urinary excretion rapidly (98).  In order to target specific tissue or 

change the ENM’s clearance pathway, it is critical to design ENMs with desirable sizes. 

 

Another factor that influences the rate of ENM clearance from blood and their 

distribution is their surface chemistry, including charge and surface coating. A zeta 

potential greater than + 30 or less than -30 mV decreases the potential for agglomeration 

in the medium due to repulsive electrostatic forces (99). ENMs are often coated with 

polymers such as polyethylene glycol or oxygen-rich ions such as citrate. These coatings 

increase ENM hydrophilicity and stabilize ENM dispersions through the electrostatic 

repulsion mechanism, which may reduce their clearance by the reticuloendothelial system 

(100-103). Citrate, an endogenous molecule present in the blood and an integral 

component of the tricarboxylic acid cycle, is one of the most commonly used surface 

coatings to minimize agglomeration. Although citric acid forms a stable chelate with 

ENMs, it is not sufficient to prevent agglomeration and precipitation in the presence of 

multivalent counter ions (magnesium or calcium) and serum proteins (104-107).  

Biocompatible polymer ENMs and water soluble polymers have been used as less toxic 
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and more stable alternatives to these stabilizers (48, 108). More detail about 

biocompatible polymer stabilizers will be discussed in 2.3.3.2.  

 

2.3. Effect of physicochemical properties of engineered nanomaterials on their 

blood-brain barrier association 

2.3.1. The blood-brain barrier and the translocation mechanisms to the brain  

The microenvironment of the brain is tightly regulated by the BBB. It relies on brain 

endothelial cells, pericytes, astrocytes and neurons to generate and maintain the unique 

barrier properties regulating cerebral blood flow and barrier performance. Selected 

molecules pass the BBB from the bloodstream to the brain by either the passive diffusion 

pathway or a specific transporter pathway.  Lipid-soluble agents and small gaseous 

molecules enter into the brain through the effective transcellular passive diffusion 

pathway, but not the paracellular pathway because of the tight junctions between the 

endothelial cells (109). Carrier-mediated transport systems facilitate transport of nutrients 

into the brain including glucose, galactose, amino acid, nucleosides, purines, 

monocarboxylate, choline, vitamins and hormones (29). Glucose transporters (such as 

GLUT1 and GLUT3) provide the major energy source, glucose, for the brain. 

Monocarboxylate transporters (MCTs) are responsible for the transport of 

monocarboxylates (lactate, pyruvate, acetoacetate). MCTs are of great significance for 

brain energy metabolism (110).  Receptor-mediated transport systems can facilitate 

endogenous proteins and hormones to cross the BBB. The transporters for insulin, 

insulin-like growth factors, angiotensin II, and transferrin (Tf) have been identified (111, 

112). However, under normal physiological conditions, the presence of interendothelial 



18 

 

tight junctions and absence of a vesicular transport system restrict the entry of proteins, 

ions, lipid insoluble non-electrolytes and circulating hematogenous cells into the brain 

(113, 114).  ATP-binding cassette (ABC) transporters, efflux transporters, are found at 

the luminal membrane of the brain endothelium. The multidrug resistance transporter P-

glycoprotein (P-gp or ABCB1) is an ATP-dependent efflux pump which mediates rapid 

removal of ingested toxic lipophilic metabolites, such as many amphipatic cationic drugs 

(115). Other efflux transporters (ASCT2, NET, OAT3) have the potential to work 

together to reduce penetration of xenobiotics into the brain and increase their efflux from 

the brain (116). In general, the BBB has not only a physical barrier but also metabolic 

mechanisms to eliminate the xenobiotics and maintain brain homeostasis. 

 

2.3.2. Conventional strategies to cross the BBB and their limitations 

Because of the insufficient delivery of therapeutics into the brain, aggressive research 

efforts have focused on the development of new strategies to more effectively deliver 

drugs to the CNS for decades. The major approaches and their limitations are 

summarized below (117). 

 

Invasive approaches have been used to mechanically breach the BBB to deliver drug to 

the brain including: 1) Intra-cerebro-ventricular (ICV) infusion: ICV showed 

pharmacologic effects if the target of the drug is close to the ventricles (118).  2) 

Convention-enhanced delivery (CED): a small catheter was inserted into the brain 

parenchyma and infusate is actively pumped into the brain. CED demonstrated promising 

results recently on animals. However, it is still challenging to place the catheters 
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precisely and optimize the infusion parameters for delivery (119). 3) Intra-cerebral 

injection or implants: the drug concentrations in the brain tissue depend on the diffusion 

principle. The distribution of drugs in the brain by diffusion decreased exponentially with 

distance (120). 4) Disruption of the BBB: the tight junctions were disrupted to increase 

the BBB permeability. Osmotic disruption, MRI-guided ultrasound BBB disruption and 

whole body hyperthermia are commonly used techniques. Hypertonic mannitol solution 

was used in the clinic to increase drug concentrations in the brain (121). Ultrasound 

demonstrated the capability to disrupt the BBB in animal models. Numerous researchers 

have shown that mild whole body hyperthermia can increase BBB permeability (58). 

However, these approaches are expensive and lead to potential brain toxicity (58, 60).  

 

Medicinal chemistry approaches have been utilized to modify the physicochemical 

properties of molecules to increase their BBB permeability. The small molecules to enter 

the brain should have molecular weight less than 500D, low hydrogen bounding 

capabilities and hydrophobic properties (122, 123).  For example, N-docosahexaenoyl 

can be conjugated with small molecules to increase their BBB permeability (124). 

However, structure modification has the potential to reduce, or even lose, the central 

nervous activities of small molecules. Furthermore, hydrophobic molecules serve as good 

candidates for the efflux pump P-glycoprotein in the BBB (125).   

 

One promising approach to access the brain is to take advantage of the receptors and 

transporters on the BBB. As I described in 2.3.1, essential substances such as glucose, 

insulin and growth hormone can be recognized and transported into the brain using the 
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receptors or transporters on the BBB. For example, transferrin-conjugated therapeutic 

agents can cross the BBB using receptor-mediated transcytosis (82). The limitation of 

this strategy is a lack of full understanding of certain transporters and/or receptor-

mediated mechanisms to cross the BBB. For example, the transferrin receptor has been 

the most studied receptor to target receptor-mediated brain uptake (126).  Despite this 

plethora of research on the transferrin receptor, there has been little work done on brain 

uptake of transferrin-modified agents, and most of the research was focused on the 

improvement of diagnostic and therapeutic effects (2, 127). Some studies showed that the 

brain delivery of the transferrin ligand led to limited transcytosis using a healthy animal 

model (128). In order to take advantage of transporter and receptor mediated mechanisms, 

a better understanding of these physiological processes is needed. 

 

2.3.3. Engineered nanomaterial translocation into the brain 

ENMs have been shown to have multiple mechanisms to cross the BBB and overcome 

some of the previous limitations mentioned in the above section. Numerous studies have 

shown that ENM uptake into the brain can occur through a variety of mechanisms (Figure 

2.1). 1) Passive diffusion: ENMs adhered to the endothelial cells of brain capillaries, 

increased the concentration gradient, then were transported by passive diffusion (129). 

ENMs also can prolong their circulation time in blood and be recognized by the MPS, 

increasing the passive targeting capability of ENMs (29). 2) Endothelial cell membrane 

lipid solubilization: surfactant coated ENMs can increase BBB permeability by 

solubilizing the endothelial cell membrane lipids (130). 3) Open the tight junctions: 

ENMs open the tight junctions between the brain capillary endothelial cells, and increase 
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the penetration into the CNS (30). 4) Receptor-mediated endocytosis: Polyether-

copolyester-coated nanoparticles are taken up into the brain via clathrin and caveolin 

mediated endocytosis mechanisms (131). Transferrin-coated ENMs enter the BBB via the 

caveolae pathway (132) and clathrin-coated pathway (133). Plasma protein, especially 

apolipoprotein E (Apo-E), coated nanoparticles are mistaken for low-density lipoprotein 

(LDL) particles by the cerebral endothelium and internalized by the LDL uptake system 

(134). 5) Inhibition of efflux systems: ENMs can inhibit the drug efflux system, i.e., 

Polysorbate-coated nanoparticles modulate P-glycoprotein on the BBB, to increase the 

ENMs flux across the BBB (135). 6) Absorptive transcytosis: positively-charged ENMs 

interact with the negatively charged plasma membrane surface through electrostatic 

interaction (136). Because of the unique physicochemical properties of ENMs, they can 

potentially cross the BBB by multiple mechanisms. That’s why nanoparticles are 

versatile platforms for drug delivery systems with potential to treat brain diseases. It is 

very important to understand how different physicochemical properties can affect BBB 

translocation and brain uptake of ENMs. The previous research on how size and surface 

modification influence ENMs flux across the BBB is summarized below.  
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Figure 2.1. A schematic diagram of the main pathways that ENMs have potential to 

increase the brain uptake of ENMs or drugs. a) ENMs increased passive diffusion by 

creating a sink condition. b) ENMs inhibit a drug efflux system. c) ENMs open tight 

junctions. d) ENMs are taken up by receptor-mediated endocytosis and transcytosis. e) 

Positive charged ENMs are taken up by adsorptive mediated transcytosis.  Adapted from 

(137).  

 

 

37B37B2.3.3.1. Size 

The size of ENMs has a profound effect on pharmacokinetics, biodistribution and passive 

targeting (See Section 2.2.). Tight junctions can block ENMs larger then 4 nm diameter 

under normal physiological conditions (138). However, except paracellular penetration, 

endocytosis and transcytosis are important ways to cross the BBB, especially for ENMs. 

Clathrin and caveolae-mediated endocytosis and adsorptive transcytosis are the main 

mechanisms for ENM uptake into the BBB (139, 140). Size plays a very important role in 
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these endocytosis pathways. There are different views on the average size of the 

endocytic vesicle, 100 nm (141) or 120 nm (142) for clathrin-mediated endocytosis, 50 

nm-100 nm (141, 143) or 60 nm-80 nm (142, 144) for caveolae-mediated endocytosis. 

However, most of this research is focused on fundamental biological processes. The 

differences between the fundamental biological research and particle uptake research lead 

to the finding of a difference in optimal size when looking at ENM drug delivery via the 

endocytosis pathway. Rejman et al investigated size-dependent internalization of 

nanoparticles from 50 nm to 1000 nm. Their results showed that when a diameter was 

less than 200 nm, clathrin-mediated endocytosis was the dominant pathway. With 

increasing size, a shift to caveolae-mediated endocytosis was observed, and caveolae-

mediated endocytosis became the predominant pathway for 500 nm particles (145). The 

cell types and their states of differentiation can also determine the choice of pathway 

(78).  Metal-based ENMs have been shown to have the ability to cross the BBB. 

However, most published studies show indirect evidence of nanoparticle flux across the 

BBB into the brain by monitoring fluorescent and radioactive drugs (146, 147), or 

therapeutic efficacy of drugs in animal models of brain tumors (148). A better 

understanding of nanoparticle association with biological barriers, such as the tightly 

regulated BBB, and their flux across them, is urgently needed.  

 

Previous research demonstrated that having a optimal particle radius would accelerate 

wrapping of ENMs and their cell uptake (78). The critical size for ENMs to have 

properties different from solution and bulk chemistry is ~ 15 to 50 nm. The critical size 

of ENMs has been studied on cell internalization and their function in biological systems. 
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Reactive oxygen species (ROS) generation in an acellular system, to which titania ENMs 

ranging in size from 4 to 195 nm were added, was negligible up to and including 10 nm 

then increased up to ~ 30 nm when it reached a plateau (149). Gold ENMs with a 

diameter of 50 nm were taken up by mammalian cells at a rate and concentration that was 

faster and higher, respectively, than 14, 30, 74, and 100 nm gold ENMs (150). The 

optimal wrapping of transferrin-coated gold ENMs occurs at about 50 nm and the 

interaction between the receptor and 50 nm gold ENMs can produce enough free energy 

to drive the ENMs into the cell (151). It is crucial to design an ENM system within the 

critical size range for biomedical applications. 

 

Numerous studies have already been done to investigate how crucial the size of metal-

based ENMs is to cross cell barriers (150, 152, 153). Size also plays an important role for 

the translocation of inhaled nanoparticles to the CNS via olfactory neurons (154) and 

toxicity such as ROS generation (149). However, how size influences the ability of 

nanoparticles to cross the BBB still hasn’t been systematically studied. Even though we 

could try to predict how size might affect the ability to cross the BBB using results about 

ENMs, our predictions are limited because the BBB is a tightly regulated special 

membrane barrier with tight junctions and efflux transporters. More research needs to be 

done to have a better understanding whether size influences ENM association with the 

BBB and entry into the brain, not only for drug delivery of ENMs, but also for human 

risk assessment.   
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38B38B2.3.3.2. Surface modification 

Surface coatings are widely used to change the physicochemical properties of metal-

based ENMs to cross the BBB and target the brain. Surface modifications can change 

nanoparticle size, charge and uptake mechanism etc, which can lead to a wide variety of 

biomedical applications. This can also make them hard to investigate due to their 

complicated system and toxicity issues.  

 

Surface modifications are commonly used in the ENM industry to tailor the dispersion 

characteristics of the ENMs to specific applications. PEGylation of ENMs has become 

the most widely used approach to increase the circulation lifetime of ENMs (155). 

PEGylated conjugated fluorescein-doped magnetic silica ENM (PEGylated FMSNs) 

could penetrate the BBB and spread into the brain parenchyma. However, FMSNs 

without PEG were easy to agglomerate, which resulted in a rapid clearance from blood 

circulation and subsequent capture by the MPS (156). In addition, this increased brain 

penetration was achieved without modification of the BBB permeability. No toxic effect 

arising from the PEGylated nanoparticles or from their degradation products has been 

detected toward the permeability of the BBB (157). Polyether-copolyester (PEPE) 

dendrimers internalized efficiently into brain vascular endothelial cells utilizing several 

pathways, but the major contributers were clathrin- and caveolin-mediated endocytosis. 

The PEPE dendrimers permeated across an in vitro BBB model in high amounts without 

significant disruption of the tight junction properties (131). Trimethylated chitosan 

(TMC) surface-modified PLGA nanoparticles enhanced the brain uptake of PLGA 

nanoparticles superior to the PLGA nanoparticles with negligible cytotoxicity (158). 
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Polysorbate 80-coated nanoparticles with brain diffusion capability were found to induce 

permeabilization of the BBB, likely due to toxic effects of free polysorbate 80, not the 

polysorbate 80-coated nanoparticles (157).  In general, most of these surface 

modifications showed that they are promising candidates to increase the stability, change 

the physicochemical properties, and help to cross the BBB with less toxicity. However, 

most ENM research has shown indirect evidence of their flux across the BBB by 

analyzing extractions of the whole brain without excluding the ENMs in the brain vessels 

and BBB cells, or through therapeutic efficacy of drugs in animal models of brain tumors. 

There is an urgent need to understand how metal-based ENMs associate with and 

transcytose across the BBB in vitro and in vivo.  When ENMs enter biological fluid, their 

surface properties interact with proteins leading to the exposure of new epitopes, altered 

function, and/or avidity effects (85, 159). By mimicking endogenous molecules we can 

investigate how surface modifications impact the uptake and fate of ENMs to the CNS.  

 

Endogenous surface modifications are widely used to target specific receptors or 

translocation mechanisms. Tf-ENMs were found to be highly adsorbed by the BBB cells 

and endocytosed using an energy-dependent process compared with blank ENMs and 

BSA-ENMs. Tf-ENMs interact with the cells in a specific manner and enter the BBB via 

the caveolae pathway. Tf also prevented the aggregation of ENMs with less toxicity 

compared with chemical stabilizers such as Tween 20 and Tween 80 (132). However, the 

actual extent of Tf transcytosis is still unknown. Some studies showed that only a 

miniscule amount of Tf is trancytosed across the brain capillary endothelial cells and 

accumulated in the brain (160, 161). Albumin ENMs with covalently-bound ApoE were 
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detected in brain capillary endothelial cells and neurons; whereas, no uptake of ENMs 

occured without Apo E. Apo-E coated ENMs were taken up into the cerebral 

endothelium by an endocytic mechanism followed by transcytosis into the brain 

parenchyma (162). However, binding of apolipoproteins has been shown to correlate with 

rapid uptake into the liver and the spleen, and clearance of the particles by the MPS, a 

negative effect if one is attempting to increase circulation and retention time of the ENMs 

in the body (163). Angiopep-2, one of the peptides derived from the Kunitz domain, 

targets the low-density lipoprotein receptor-related protein-1 (LRP1). Several studies 

demonstrated that Angiopep-2 possessed a higher brain penetration capability both in an 

in vitro model of the BBB and in situ brain perfusion in mice (164, 165). Angiopep-

modified polyamidoamine dendrimers showed higher efficiency in crossing the BBB than 

unmodified ENMs in vitro and in vivo. LRP1-mediated endocytosis may be the main 

mechanism of cellular internalization of angiopep-modified ENMs (166). According to 

our knowledge from the literature, no significant toxicity of angiopep-2 was reported and 

Angiochem Inc. has started clinical development with angiopep peptides for the transport 

of therapeutic agents in two Phase I clinical trials (117). In general, endogenous surface 

coatings are used as stabilizers to prevent agglomeration, gain functions to target specific 

targets, and reduce toxicity. We know little about the distribution, stability, and 

persistence of endogenous surface coated nanoparticles. At the same time, the 

endogenous surface coating may fall off or cause a loss of function, which may lead to 

agglomeration or enhance the rate of protein fibrillation (167). 

 

5B5B2.4. Ceria ENMs 
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Ceria ENMs have many current commercial applications and potential therapeutic 

applications in the CNS, because of their redox capability. Ceria ENM is highly insoluble 

and can be observed under TEM, which makes it a good model to study particle 

pharmacokinetics in blood and their distribution. In this dissertation, citrate-coated ceria 

ENMs were chosen as a metal-based ENM model to study the effect of size on their 

pharmacokinetics in blood and their blood distribution in vivo. Furthermore, the BBB 

association of ceria ENMs and their flux across the BBB were investigated, which 

provide important information for their potential CNS applications. 

 

39B39B2.4.1. Definition and their applications 

Cerium is a lanthanide metal and a member of the rare earth metals. Ceria ENM has 

multiple commercial applications, such as a diesel fuel catalyst in Envirox® (Oxonica 

Ltd.) (25). Nanoscale ceria has been nominated by the National Institute of 

Environmental Health Sciences (NIEHS) for toxicological consideration due to its 

widespread and expanding industrial uses, limited toxicity data, and lack of toxicological 

studies (168). Cerium (IV) (stable form) and cerium (III) oxidation states coexist, 

producing a redox couple that is responsible for catalytic activity (169). The reduction of 

Ce
3+ 

is compensated by a
 
corresponding number of oxygen vacancies. The defect 

concentrations of Ce
3+

 ion and oxygen vacancies are larger at the surface of ceria than in 

the bulk (170, 171). Therefore the surface of cerium oxide contains defects, such as, Ce
3+

 

ions and oxygen vacancies (172). Ceria ENM has higher Ce
3+

 concentration and 

enhanced redox activity with respect to larger particles, given the increase in the surface 

to bulk ratio (172). For these reasons, ceria ENM has been targeted as a potential 
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antioxidant agent to regenerate the initial oxidation state through redox cycling reactions 

(173). An autoregenerative mechanism for ceria was demonstrated (Figure 2.2) (174). 

The anti-oxidative stress ability of ceria ENMs showed a size-dependent pattern. With  

decreasing ENM size, the anti-radical ability increased, which was consistent with the 

Ce
3+

 concentration increase on the surface of the ENMs (175). Because of all these 

properties, numerous studies reported ENM ceria to be neuroprotective, suggesting it has 

utility in medical disorders caused by ROS (10, 12, 13, 17). The tetravalent state cerium 

(Ce
4+

) is more stable than the trivalent state (Ce
3+

). Meanwhile, a few studies reported 

that ENM ceria can increase oxidative stress (22, 176). It is very important to know 

whether the physicochemical properties of ceria ENMs will change their 

pharmacokinetics, biodistribution or how they interact with the biological barrier such as 

the BBB, regardless if you want to look at potential therapeutic applications or the 

toxicity of ceria ENMs. 
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Figure2.2. Schematic Detailing the Regenerative Properties of Ceria ENM and probable 

mechanism of Cerium oxide nanoparticles’ free radical scavenging property and auto-

catalytic behavior. Adapted from (174). 

 

 

40B40B2.4.2. Fate of ceria ENMs  

The uptake of ceria ENMs of different sizes and concentrations has been previously 

studied using human lung fibroblasts in vitro. The study found that ceria ENMs were 

contained inside single or multiple lipid bilayer vesicles in the cytoplasm. They also 

showed that the size of the ceria ENMs affected the cell uptake greatly. With the increase 

of size, the cell uptake of ceria ENMs was significantly increased. However, small ceria 

ENMs agglomerated rapidly and cells can absorb agglomerates effectively. Large ENMs 

agglomerate slowly because of low number densities and can penetrate into the cells 

much more efficiently (152).  This study demonstrated the importance of size on cell 

uptake of ceria ENMs. Furthermore, it is crucial to develop stable ENMs in the biological 

relevant system to study their cell association compared to micrometer size agglomerates.  

 

For therapeutic applications, ceria ENMs need to be delivered through systemic 

administration rather than oral or inhalation in vivo. This is due to the fact that ceria 

ENMs are poorly absorbed through oral or inhalation routes.   Twenty-eight days after 

inhalation a variety of concentrations were detected in various tissues,  1 x 10
-5

 % of the 

dose in the brain,  1 x 10
-3

 % in the kidney, 1 x 10
-2

 % in the spleen, and 1 x 10
-1 

% of the 

dose in the liver (32).  A 7 nm ceria (5 mg/kg) was orally administrated.  Only ~ 1 x 10
-4

 

% of the dose was detected in the liver and less than 1 x 10
-5

 % was in the heart, spleen, 

kidney, brain, testicle, and lung 1 to 7 days later (177). Ceria was found in lung and 
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spleen, but not brain, heart, kidney, or liver of mice after 5 weekly oral doses of 0.5 

mg/kg of a 3 to 5 nm ceria (178). For systemic administration of ceria ENMs, their 

pharmacokinetics in blood needs to be defined. In this dissertation, it is the first time that 

the influence of size on the distribution in and clearance from blood of ceria ENMs was 

investigated.  

 

Our lab studied the biodistribution through iv infusion of 5, 15, 30 and 55 nm citrate-

coated ceria. Of the ceria in the blood, brain, liver and spleen, ≥ 98% of the ceria was 

retained in the liver and spleen 20 h after its iv infusion, from which it was not 

significantly cleared over 30 days. Electron microscopy revealed only occasional ceria 

ENM beyond the BBB (179). The reasons for the lack of ceria ENM in the brain were 

unknown. One possibility is that ceria ENMs were rapidly coated by proteins in the blood 

that changed their physicochemical properties, resulting in their rapid clearance by the 

MPS (180, 181). Another possibility is that the ENMs agglomerated very rapidly in the 

blood or on a biological surface, changing their distribution and cell interaction (78, 182-

184),  so that the agglomerated ceria became too large or unavailable to penetrate the 

intact BBB. How ceria ENMs interact with brain capillary endothelial cells is relevant to 

the therapeutic use and toxicological consideration of ceria ENMs. In this dissertation, 5 

nm ceria was used to study its association with the BBB. 

 

6B6B2.5. Iron oxide nanoparticles 

The pharmacokinetic study of ceria ENMs helped me to have a better understanding of 

the blood distribution of different sized citrate coated metal-based ENMs and their BBB 
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association. According the results of the ceria ENM project, I designed a novel IONP 

which has potential to improve the stability and the biocompatibility of IONPs.  And its 

BBB association and flux across the BBB was tested, which will provide important 

information for its potential applications in the CNS. 

 

41B41B2.5. 1. Definition and their applications  

IONPs are superparamagnetic materials, which can be activated only in the presence of 

an external magnetic field, enabling various bionanomedical applications (185, 186). 

IONPs can be visualized in T2-weighted MRI sequences as a hypointense signal 

(negative contrast enhancement), which is the most widely investigated MRI contrast 

agent (187). IONPs have been approved by the Food and Drug Administration as MRI 

contrast agents including Lumiren® for bowel imaging (188), Feridex IV® for liver and 

spleen imaging (26), and Combidex® for lymph node metastases imaging (189). IONPs 

activated by AMF lead to a localized hyperthermia above 41-42 ºC resulting in cancer 

cell death (190). The particle sizes of IONPs can be tailored to accumulate in specific 

organs, contributing to early detection of human malignancies with blood vessel 

disruption such as brain tumor (191-193).  

 

Numerous studies have shown that multifunctional IONPs can be used for brain tumor 

diagnosis and therapy. When comparing traditional gadolinium (Gd)-based MRI contrast 

agents to IONPs, it has been found IONPs are eliminated slower from the circulation 

(194). IONPs reside within brain tumors much longer than Gd-based agents (the half-life 

of Gd-DTPA is ~ 20 min in blood (195)) and can be imaged from 24 and 72 h. More 
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importantly, IONPs have revealed more intense MRI contrast enhancement compared 

with Gd-based contrast agents (100). Previous research also demonstrated that 

multifunctional IONPs can conjugate with chemotherapeutic drugs. Such drug-loaded 

IONPs can accumulated in brain tumors and facilitate monitoring drug delivery via MR 

imaging (196). Another promising application of IONPs is hyperthermia induced by 

AMF, which can be utilized for thermotherapy of brain tumors. The first in vivo report on 

IONPs inducing local hyperthermia to kill glioma cells was in 1997 using T-9 glioma 

cell, injected to Fisher F344 rats (36).  After 1997, lots of studies have been done to test 

IONPs generating hyperthermia on glioma tumors in vivo (192). A hydrogel with iron 

oxide nanoparticles was tested using human glioblastoma cells (M059K). Cell death was 

observed where hydrogel was applied but not the surrounding region (43). Some studies 

also investigated the synergistic effects of combined gene and thermal therapy (197, 198).  

Most of the in vivo studies bypassed the BBB to deliver the IONPs to the tumor in the 

brain by intratumoral injection or implanting the tumor cells outside the brain regions 

(192).    As I described in section 2.3, the BBB is the tightly regulated barrier to eliminate 

therapeutics from brain. It is necessary to understand whether multifunctional IONPs 

cross the BBB and increase their brain accumulation for brain tumor therapy.   

 

A major challenge for effective delivery of IONPs to the CNS is the BBB. Many 

strategies have been developed to increase the flux of ENMs across the BBB as described 

in 2.3.3. IONPs can generate local hyperthermia by AMF. Mild hyperthermia 

demonstrated their ability to increase the BBB permeability and drug transport across the 

BBB (58). For example, previous research showed that the flux of liposomes across the 
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BBB increased significantly by whole body hyperthermia using 42 ºC water bath for 30 

min in vivo (59). However, whole body hyperthermia led to potential toxicities to the 

brain such as edema (58). In this dissertation, I hypothesize that multifunctional IONPs 

have the potential to generate local hyperthermia to open the BBB and decrease the side 

effects of conventional hyperthermia by locally using AMF.  

 

42B42B2.5.2.   Biocompatibility of IONPs 

Because of the favorable biocompatibility and biodegradability, IONPs have widespread 

biomedical applications (199, 200).  However, surface modification of IONPs change the 

toxicity of IONPs dramatically. Bare IONPs led to oxidative stress in the lungs after 

intranasal instillation using two-sizes of IONPs (22 and 280 nm) (201).  After inhalation 

of bare IONPs, neuron fatty degeneration occurred in the CA3 area of the hippocampus 

in the CNS (202). However, dextran surface modified IONPs showed no measurable 

LD50 (200). Even though retention of dextran-coated iron oxide NPs in the liver and 

spleen was observed in mice, but no histopathology alterations, including damaged cells, 

were found in the analyzed organs (203). In addition, IONPs are easily oxidized, 

transforming from magnetite (Fe3O4) to maghemite (γFe2O3), leading to a broad spectrum 

of particle size, shape, stability, and magnetic properties (108, 204). Particle stability also 

influences IONP toxicity and biological applications. For example, surfactants, typically 

prepared from multivalent polymers, have been developed to stabilize IONPs in vivo, yet 

they can get detached from IONPs due to an unclear mechanism by which ligand 

exchange occurs in metal chelates (205-207). Importantly, these IONP formulations, 

which change particle stability over time in vivo, could potentially cause toxic effects in 
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vivo (46, 47).  Therefore, it is crucial to improve particle stability and biocompatibility of 

IONPs in biological environments. 

 

Biocompatible polymers improve the stability of IONPs in aqueous solutions and avoid 

undesirable interactions with cells in the human body. Among these polymer-based 

formulations, polymer nanoassemblies are promising choices to improve the 

biocompatibility and stability of IONPs. For MRI contrast application, the signal-to-noise 

(S/N) ratio of contrast agents is very important for tumor imaging. Polymer 

nanoassemblies provide a stable nanocarrier without leakage of contrast agents during 

blood circulation, which leads to less blurring of cancer images (208). Micelles can 

embed IONPs and achieve excellent MRI contrast enhancement as a clustered IONP (51-

53). However, a major disadvantage of self-assembling conventional micelles is their 

thermodynamic nature, which leads to instabilities, particularly in dilute conditions (e.g. 

blood and other biological environments) as polymer micelles can dissociate below the 

critical micelle concentration (54). To solve this problem, cross-links can be used to 

stabilize conventional micelles. Dr. Bae’s lab developed CNAs from biocompatible PEG-

p(Asp) block copolymers. They showed improved particle stability in biological related 

environments. Furthermore CNAs can entrap charged, hydrophobic, and amphiphilic 

payloads including drugs and contrast agents without changing particle sizes (55). CNAs 

have the potential to provide a stable and biocompatible platform to deliver IONPs for 

diagnosis and therapy. 

 

7B7B2.6. Summary 



36 

 

The application of metal-based ENMs in medicine is an emerging field and has the 

potential to revolutionize the development of drug delivery, imaging, and diagnosis in the 

CNS. A variety of metal-based ENMs have been developed and engineered to cross the 

BBB for specific applications in the CNS. Because of the inherent complexity of the CNS 

and the safety concerns of metal-based ENMs, the fundamental understanding on the 

pharmacokinetics of metal-based ENMs, especially their BBB association will provide 

critical knowledge for further development of noble metal-based ENMs, which can be 

tuned to be effective therapeutic and diagnostic agents with low toxicity. 
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30B30BChapter 3 Ceria engineered nanomaterial distribution in and clearance from blood: 

Size matters  

 

The hypothesis of the present work is that the fate of a metal oxide ENM in blood is 

different than its constituent metal and ENM size influences its persistence in and 

distribution within the major components of blood. The kinetic endpoints include 

absorption (uptake), distribution, biotransformation (and protein corona), re-distribution 

(translocation), and elimination. These appear to be greatly influenced by the 

physicochemical properties of nanoscale materials. As noted in recent reviews of the 

pharmacokinetics of carbon-based and quantum dot ENMs (209, 210), they are not 

amenable to classical pharmacokinetic parameter estimations due to their differences 

from the solution chemistry of their components. In this chapter, we will characterize 

different sized ceria ENM distribution in and clearance from blood compared to the 

cerium ion. The results of this study will provide critical knowledge to engineer ENMs 

with desirable pharmacokinetics. 

 

8B8B3.1. Introduction 

There has been much research to develop ENMs. Polymer ENMs are being developed as 

drug delivery systems (211, 212), and some metal and metal oxide ENMs are being 

developed as therapeutic agents. Human exposure may also come from occupational and 

environmental sources. Little is known about ENM distribution or persistence in the 
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vascular system. We were unable to find published studies of the distribution of metal or 

metal oxide ENMs among blood compartments. 

 

Little is known about the influence of size on the distribution in and clearance from blood 

of metal and metal oxide ENMs. We found that the blood cerium concentration was 0.56 

and 1.3 mg/L after a 1 h infusion of 50 or 250 mg/kg of an ~ 30-nm commercial ceria 

ENM to rats (7). In contrast, 1 h after infusion of 100 mg/kg of an in-house manufactured 

5-nm ceria ENM it was 370 mg/L (8), suggesting that the rate of metal oxide ENM 

clearance from blood was size dependent. The present study was conducted to test this 

hypothesis.  

 

The present work was conducted to test the hypotheses that the fate of a metal oxide 

ENM in blood is different than its constituent metal and that ENM size and shape 

influence its persistence in and distribution within the major components of blood. We iv 

infused the cerium ion, four sizes of cubic or polyhedral citrate-coated ceria ENMs, and a 

mixture of cubic and rod-shaped ceria to rats. Blood was repeatedly withdrawn up to 4 h 

later, and in some cases up to 30 days. An aliquot of each blood sample drawn up to 4 h 

after ceria infusion was allowed to clot. By comparison of Ce in whole blood, serum, and 

the clot we could determine pharmacokinetic parameters of ceria distribution in, and 

clearance from, blood. 

 

3.2. Materials and methods 

3.2.1. Materials 
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Cerium chloride heptahydrate (Sigma-Aldrich #228931, 99.9% metal basis), cerium 

nitrate hexahydrate (Sigma-Aldrich # 22350, >99.0%), sodium hydroxide (Fisher #S318-

1, certified ACS pellets), ammonium hydroxide (Fisher # 3256, ACS, 28-30%), 

hexadecyltri-methylammonium bromide (CTAB, Sigma-Aldrich #H9151, ~99.0%), 

deionized ultra filtered water (DIUF, Fisher #W2-20), and citric acid monohydrate (EMD 

Chemicals Inc # CX1725-1, GR ACS) were used without further purification.  

 

3.2.2. Ceria ENM synthesis 

Five nm ceria ENM was synthesized as described (213). Typically a 20 ml aqueous 

mixture of 0.5 M (0.01 mol) cerium chloride and 0.5 M (0.01 mol) citric acid was added 

to 20 ml of 3 M ammonium hydroxide. The latter was in excess of that needed for 

complete reaction of the cerium chloride to cerium hydroxide. The final product was an 

un-buffered ceria dispersion with a pH of 8 to 9. After stirring for 24 h at 50 C, the 

solution was transferred into a Teflon-lined stainless steel bomb and heated at 80 C for 

24 h to complete the reaction. The cerium concentration in samples taken from the top 

and bottom of two ceria dispersion samples that were un-disturbed for > 2 months were 

within 2.5% of each other, demonstrating dispersion stability. Settling of the 5 nm ceria 

dispersion was not observed over at least three months and dynamic light scattering 

estimates of 5 nm ceria particle size distributions were similar to those obtained initially.  

The dispersed ceria ENM was infused intravenously without any further treatment. 

 

Fifteen nm ceria ENM was synthesized using a hydrothermal procedure (214). In a 

typical procedure, 2 ml ammonium hydroxide was drop-wise added into 20 ml aqueous 
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mixture of 1.5 mmol cerium nitrate and 0.5 mmol CTAB and kept stirring for 0.5 h to 

form a brown emulsion. The emulsion was transferred into a Teflon-lined stainless steel 

bomb and heated at 120 C for 24 h to complete the reaction. The fresh product was 

washed with water three times to remove free cerium, dialyzed three times with fresh 

citric acid aqueous solution, and dried at 55 C for 24 h. The final 15 nm citrate-modified 

ceria powder was re-dispersed into water to prepare a ~5 wt% aqueous suspension. The 

pH of the resulting un-buffered ceria dispersion was 3.5. 

 

Thirty nm ceria was synthesized using a hydrothermal approach (215). Generally, 20 ml 

aqueous mixture of 1 mmol cerium nitrate and 105 mmol sodium hydroxide was stirred 

for 0.5 h to get a milky suspension. The suspension was transferred into a Teflon-lined 

stainless steel bomb and heated at 180 C for 24 h. After the hydrothermal treatment, 

fresh white precipitates were washed with deionized water three times and then ethanol 

three times to remove the free cerium and organic impurities. Then the wet precipitates 

were dispersed into 0.05 M citric acid aqueous solution with stirring overnight, followed 

by washing with water 5 times.  The resulting dispersion had a pH of 3.9. 

 

The mixture of 30 nm cubic ceria ENMs with nanorods was synthesized using a 

hydrothermal method (216). Typically, 0.9 mmol cerium nitrate was dissolved into 15 ml 

9 M sodium hydroxide solution with stirring for 0.5 h.  The suspension was transferred 

into a Teflon-lined stainless steel bomb and heated at 140 C for 48 h. After the 

hydrothermal treatment, fresh precipitates were separated by centrifugation, and washed 

with deionized water three times. The wet precipitates were dispersed into 0.06 M citric 
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acid aqueous solution overnight, washed with water for several times until the final 

suspension had a pH around 7.  

 

Fifty-five nm ceria ENM was synthesized by a method (217) modified with controlled 

thermal treatment to achieve the desired ceria particle size (unpublished results). It was 

re-dispersed in citrate solution and washed three times in doubly distilled water to 

remove free cerium and citrate. The resulting dispersion had a pH of 7. 

 

3.2.3. Ceria characterization 

The morphology, crystallinity, and phase purity of each citrate-coated ceria ENM were 

determined in our laboratories using high resolution-transmission electron 

microscopy/scanning transmission electron microscopy and X–ray diffraction (XRD) 

analyses. Primary particle size distributions were determined by TEM analysis (184). The 

crystallinity of all ceria ENMs were determined by XRD (Siemens 5000 diffractometer). 

Particle size distributions in aqueous suspension were determined using dynamic light 

scattering (90Plus Nanoparticle Size Distribution Analyzer, Brookhaven Instruments 

Corp, Holtsville, NY). To indicate the stability of the ceria dispersion when infused into 

the rat, the zeta potential was measured for each ENM (except the mixture of ceria 

nanoparticles and nanorods) using a Zetasizer nano ZS (Malvern Instruments, 

Worchestershire, UK). The Zetasizer estimates the surface charge of nanoparticles based 

on the assumption that the correlations are generated from spheres, but nanorods have an 

elongated axis and different mobility from spherical nanoparticles; the instrument 

therefore often fails to provide consistent and accurate estimation for nanorods and 
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mixtures that include rods. Since all of the ceria ENMs had hydrodynamic diameters < 

200 nm, the Hückel approximation was used to calculate zeta potential from 

electrophoretic mobility. To estimate the extent of citrate surface coating each of the ceria 

ENMs was washed at least three times with water before drying. As separation of the 5 

nm ceria by centrifugation required ~12000 rpm for 12 h due to their small size, they 

were agglomerated by decreasing the pH to 4, enabling centrifugation.  

Thermogravimetric analysis (Perkin-Elmer TGA7 Analyzer) was then performed to 

investigate the weight loss of citrate-coated ceria ENMs over the temperature range of 

150 to 300°C under which decomposition of citric acid occurs. The extent of citrate 

surface coating was estimated based on the assumption that all the ceria NPs were 

spherical and had uniform size. The free cerium concentration in the ceria dispersions of 

the unwashed 5 nm ceria and each of the washed ENMs was determined using Amicon 

Ultra-4 centrifugal 3000 molecular weight cut-off filter devices and centrifugation at 

3000 g to obtain filtrate, which was analyzed for cerium by inductively coupled plasma 

mass spectrometry (ICP-MS). 

 

3.2.4. Animals 

Data were obtained from 101 male Sprague Dawley rats, weighing 325 ± 30 g (mean ± 

SD), that were housed individually in the University of Kentucky Division of Laboratory 

Animal Resources facility. All animal studies were approved by the University of 

Kentucky Institutional Animal Care and Use Committee. The research was conducted in 

accordance with the Society of Toxicology’s Guiding Principles in the Use of Animals in 

Toxicology (http://www.toxicology.org/ai/air/air6.asp).  
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3.2.5. Cerium ion and ceria ENM administration 

Rats were prepared with 2 cannulae, surgically inserted into femoral veins under 

ketamine/xylazine anesthesia, which terminated in the vena cava, and were connected to 

infusion pumps via a flow-through swivel. This enabled conduct of the study in the 

awake, mobile rat. All samples were sonicated to ensure dispersion prior to 

administration. The day after cannulae implantation the un-anesthetized rat was infused 

via the longer cannula with cerium ion (as the chloride), a ~ 5% ENM dispersion in 

water, or water. A pilot study was conducted with the cerium ion and each of the ceria 

ENMs to determine tolerability following iv infusion. A 100 mg cerium ion/kg infusion 

was lethal. Rats were infused with ~250 or 175 mg/kg of the 5 nm ceria; 3 of 8 died. A 

dose of ~250 mg of the 15 nm ceria/kg was tolerated. Infusion of 100 mg/kg of the 30 nm 

ceria resulted in some evidence of mild distress (tachypnea, skittish behavior, and not 

resting well).  Dyspnea and lethargy were seen in rats given 250, 100 or 78 mg of the 55 

nm ceria/kg. Therefore the target doses were 100 mg/kg for the 5, 15, and 30 nm ceria 

and 50 mg/kg for the 55 nm ceria ENM and the cerium ion. ICP-MS analysis of cerium in 

replicate samples of the dosed materials showed the doses to be 70 to 100% of the target 

doses. Each was infused over 1 h, except for the cerium ion that was infused over 2 h. 

Control rats received water adjusted to the pH of the paired ceria ENM or cerium ion.  To 

compensate for the iv administration of a considerable volume of grossly hypotonic 

infusion, concurrent iv infusion of an equal volume and rate of 1.8% sodium chloride in 

water was delivered into the second, shorter, cannula. Each fluid was delivered at ~ 0.6 

ml/h.  
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3.2.6. Sample collection  

After the infusion, 0.6 ml blood was withdrawn at 0.167, 0.5, 0.75, 1, 2 and 4 h from the 

cannula that had not delivered ceria from 3 rats that had received infusion of the cerium 

ion, 6 that received the 30 nm ceria ENM, and 5 that received the 5, 15, 55 or 30 nm ceria 

cube + rod ENM. The blood sample was immediately separated volumetrically into two 

0.3 ml aliquots to enable determination of Ce in whole blood in one and in the serum and 

clot fractions of the other. A blood clot is formed by platelets and blood proteins, 

including fibrin, and traps the blood’s red and white cells. It may have some serum 

trapped in it; therefore the clot fraction may over-estimate the percentage of Ce 

associated with cells. To determine the distribution of Ce in the serum and clot fractions 

the 0.3 ml sample of whole blood was allowed to clot at room temperature, the clot given 

time to contract, and serum withdrawn into a digestion vessel. The clot was withdrawn 

and placed in another digestion vessel and the remaining serum added to the serum 

sample. This enabled determination of the mass amount of Ce in the two major 

compartments of blood; serum and, from the clot fraction, association with the formed 

elements (red cells, white cells and platelets). This approach was taken to avoid 

centrifugation to generate the serum sample because we found that centrifugation at 1600 

g for 10 min, as used to generate serum, resulted in loss of ~ 75% of a 30-nm ceria ENM 

from the serum sample (7).  
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Blood was also obtained from some rats 20, 168 (1 week) or 720 h (30 days) after ceria 

ENM administration.  An equal volume of saline was infused after each blood withdrawal 

to replace the fluid volume. Blood was obtained at termination of all rats.  

 

3.2.7. Cerium analysis 

To determine Ce in whole blood, the sample was transferred into a 55 ml TFM 

(polytetrafluoroethylene) digestion vessel (CEM) to which 6 ml trace-metal grade nitric 

acid and 3 ml 30% H2O2 were added, digested in a CEM MARS Xpress microwave at 

180 °C for 10 min to convert all ceria to dissolved Ce
4+

, diluted with 18 MΩ water to 50 

ml, and subsequently further diluted dependent on the Ce concentration.  

 

Cerium concentration was determined in whole blood, serum and clot by ICP-MS 

(Agilent 7500cx, Santa Clara, CA, U.S.). Following ceria ENM administration, Ce 

concentration is believed to reflect the Ce in ceria ENM because ceria ENMs are quite 

inert and persist as an ENM in the rat for months (27), and the Ce levels in non-Ce 

treated rats is very low. We determined a method detection limit (MDL) of Ce for blood 

and serum samples of 0.018 mg/L (7). No samples in this study had Ce concentrations 

below this MDL. Seven samples, containing whole blood, serum or clot, were analyzed 

in duplicate and were spiked with 8.3 ng Ce/ml. Results of duplicate analysis showed a 

range of 0 to 4% between the two determinations. Recovery of the Ce spike ranged from 

93 to 114%, averaging 105%.  
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3.2.8. Data analysis and statistics 

Blood, serum and clot Ce concentrations were normalized to an infusion dose of 100 mg 

ceria/kg for all rats, based on determination of the actual Ce content of the infusions by 

ICP-MS analysis, and because a few materials were given at doses other than 100 mg/kg, 

as noted above. This enabled direct comparison of results from the cerium ion, ceria 

ENM sizes, and shapes. Outliers, identified using the Grubbs test, were not included in 

the data analysis. Four percent of the 600 whole blood, serum and clot samples were 

outliers by this test. 

 

Pharmacokinetic modeling. Non-compartmental and compartmental analyses of the 

whole blood Ce concentration vs. time results were conducted using WinNonLin, a 

pharmacokinetic analysis program (Pharsight®, St. Louis, Missouri). For non-

compartmental analysis, AUC (h*mg/L), Cmax (mg/L), half life (t1/2, h), and mean 

residence time (MRT, h) were calculated. The squared correlation of distances (Rsq) and 

correlation between time (X) and Ce concentration (Y) (Corr-XY) were used to measure 

the goodness of fit. For compartmental analysis, one and two compartments were 

evaluated to determine the best model fit. AUC (h*mg/L), Cmax (mg/L), half life (t1/2, h), 

mean residence time (MRT, h), clearance (CL, ml/h/kg) and apparent volume of 

distribution at steady state (Vdss) were calculated. Various weightings were evaluated, 

including 1, 1/y (y: ceria concentration, which weights higher values more heavily), 1/y
2
 

(which weights lower values more heavily), 1/predicted concentration (iterative 

reweighting), and 1/predicted concentration
2
. Goodness of fit was based on visual 

inspection, weighted corrected sum of squares, sum of square residuals, weighted sum of 
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square residuals, random distribution of residuals, Akaike’s information criteria, and 

Swartz criteria. The initial estimates for model parameters were calculated as below.  

The semi-logarithmic plots of blood concentration vs. time data showed the one or two 

compartment kinetics model as , 

respectively.  represent intercepts on the concentration (Y) axis of the back-

extrapolated initial and terminal phases and  the initial and terminal slopes. 

As blood sampling began after completion of the infusion, the iv bolus case was used. 

was used to correct the infusion intercept values for the one 

compartmental analysis and  and  were used in the two 

compartment model.   is the infusion dose,   is the infusion rate.   was used 

to calculate the volume of the central compartment. The micro rate constants were 

determined as ; .  k12 and k21 

represent the rate constants between central and peripheral compartment, and k10 is the 

elimination rate constant from the central compartment.  The elimination half-lives (t1/2) 

were calculated as t1/2 1 =0.693/ 1 and t1/2 2 =0.693/ 2. One-way ANOVA, followed by 

Tukey’s multiple comparison tests (Prism 5.02 software, GraphPad, San Diego, CA), was 

used to test for significant differences in pharmacokinetic parameters among the 6 

treatment groups.   

 

Quality analysis of the WinNonLin coefficients was conducted by determining whether 

the ratio of the coefficient estimate to its average standard error was greater than the 

appropriate p value < 0.05, using a two-tailed Student’s t-test (3.18 for n = 3, 2.78 for n = 
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4), Excel and Systat.  The results showed that the pharmacokinetic parameter estimations 

using WinNonLin were acceptable for only the cerium ion and the 5-nm ceria ENM. Two 

factors contributing to this were 1) that less than 2% of the dose of the other 4 ENMs was 

circulating in the blood when the first sample to estimate the pharmacokinetic parameters 

was obtained (0.167 h after completion of the infusion), and 2) the Ce concentration 

increased in blood from 0.167 to 4 h after infusion of the 15- and 30-nm ceria, which is 

not the elimination behavior for typical pharmacokinetic models. Therefore, the 

pharmacokinetic data for ceria ENMs was compared directly to that of the cerium ion, 

which is known to follow typical pharmacokinetic elimination models.  

 

Ratio of Ce concentration in whole blood following infusion of ceria ENMs vs. the 

cerium ion. The Ce ratio in ceria ENMs compared to the cerium ion was reported as

, calculated for each of the six sample times. This provided the 

opportunity to see temporal differences between the ENMs and the cerium ion.  The ratio 

for each ENM was plotted as a function of time from 0 to 4 h. Linear, exponential, power 

law, and 2
nd

 order polynomial equations were used to evaluate the data over 4 h. Because 

the linear, exponential, and power law equations required only two parameters for fitting, 

they could be used to demonstrate common trends for small data sets (usually six points 

over the 4 h time period). The partition ratio, R, for each ENM was evaluated to 

determine whether there was a significant trend in the data.  This was done by evaluating 

fits of linear, exponential, and power law equations to the data over the time period, 0 < t 

≤ 4 h. Quality of the fitted coefficients was evaluated by using the Student’s t-test 

)(][

][

ioncerium

ceria

Ce

Ce
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criteria. For example, if the exponential factor for the model  met the 

t-test criterion, then the trend was described by an apparent first order process. 

 

Ce partitioning between serum and clot. The quality of the data describing the 

partitioning of Ce between the serum and clot fractions was screened using mass 

balances. The total mass of cerium (or ceria) in the whole blood sample should equal the 

sum of the cerium masses in the serum and clot phases. The cut-off for mass material 

balance screening was taken to be ± 30%. If the sum of the masses of Ce in the serum and 

clot phases was < 70 or > 130% of that in the mass in the whole blood sample, the 

partitioning data were not used in the analysis or shown in the figure. No other screening 

analyses, such as outlier evaluation, were applied.  The partitioning of cerium was 

reported as the ratio of cerium in the serum phase to that in whole blood. 

 

9B9B3.3. Results 

Particle morphologies are shown in Figure 3.1. Panel D in Figure 3.1 is part of a larger 

image that shows the diameter and length of the rods in the mixture of 30-nm cubic and 

rod ENMs were ~ 10 nm and 2 µm, respectively. The shape, surface area, zeta potential 

in water, and estimated extent of the ENM surface that was coated with citrate are shown 

in Table 3.1. All of the ceria ENMs had face-centered cubic (FCC) crystal structures with 

the same Miller indices of (111), (220) and (311), and with lesser presence of (200), 

(222) and (400), based on XRD crystal structure linked to known morphology. The 55 

nm ceria had the lowest surface coating of citrate and a lower absolute surface charge (-

31.5 mV) than the other ENMs. The unwashed 5 nm ceria ENM had 11.6 ± 0.3% free 

R R0 exp t
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cerium in the dispersion. The washed ceria ENMs were found to contain << 1% free 

cerium. 

 

Figure 3.1. HRTEM and STEM images of ceria used in this study:  (a) TEM/STEM: 5-

nm polyhedral ceria; (b) TEM: 15-nm polyhedral ceria; (c) TEM: 30-nm cubic ceria; (d) 

TEM: 30-nm cubic and rod ceria; (e) STEM: 55-nm polyhedral ceria.  
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Table 3.1. Physico-chemical properties of the ceria ENMs. Shape delineation based on 

TEM data. Dave (average primary particle diameter from number frequency distribution) 

and standard deviation based on TEM measurements of diameter fitted using lognormal 

distribution models (n = 100). Citrate loading expressed as % of monolayer coverage 

(TGA analysis).   

 

Ceria ENM 

primary 

size(nm) 

shape 

Dave, nm 

(st. dev.) 

[TEM, Lognormal 

model] 

zeta potential 

in water at 

pH~ 7.3 (mV) 

extent of 

surface citrate 

coating 

5 polyhedral 4.6 (0.135) - 53 ± 7 ~ 40% 

15 polyhedral 12.0 (0.232) - 57 ± 5 ~ 27% 

30 cubic 31.2 (0.478) - 56 ± 8 ~ 18% 

55 polyhedral 55 (0.162) - 32 ± 2* ~ 15%* 

* Determinations made on a batch similarly-prepared to that administered to the rats 

 

Ten min (0.167 h) after completion of the cerium ion or 5-nm ceria ENM infusion ~ 14 

and 32% of the Ce remained in the circulating blood, respectively. This was calculated 

from the measured blood Ce concentration compared to the Ce dose, based on the iv 

infusion of 100 mg ceria/kg into the rat’s vascular system (~ 7% of its body volume), 

which would introduce ~ 1163 mg Ce/l blood. In contrast, the 15-, 30- and 55-nm ceria 

and mixture of 30-nm cubic + rod ceria were rapidly removed from circulation, so that 

0.167 h after their infusion ≤ 2% was in blood (Figure 3.2).  

 

Pharmacokinetic models were constructed using whole blood Ce concentrations from 

each individual rat’s results. Non-compartmental models showed the best fits for the 

cerium ion (Rsq 0.94 ± 0.08, Corr XY = 0.97 ± 0.04) and 5 nm ceria ENM (Rsq 0.89 ± 

0.06, Corr XY = 0.94 ± 0.03).  However, 15, 30 cubic, 30 cubic + rods, and 55 nm ceria 

ENMs were poorly fitted by non-compartmental models. One and two compartment 
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models showed the Ce concentrations in blood obtained 0.167 h to 1 week after cerium 

ion infusion and 0.167 h to 30 day following infusion of 5-, 15-, and 30- nm ceria ENMs 

were best fit by two compartmental models (biexponential decay). For the mixture of 30-

nm cubic + rod ceria and the 55-nm ceria ENMs, for which modeling was based on 

results to 4 h after their infusion, the one compartment model provided the best fit.  

 

Table 3.2 summarizes the pharmacokinetic parameters. Compartmental analysis showed 

the cerium ion to have a greater AUC than the ceria ENMs, a higher Cmax compared to 

the ≥ 15 nm ENMs, and a smaller Vdss than all of the ENMs. Surprisingly, the 15- and 

30-nm cubic ceria materials showed increasing blood concentrations over the period 0 to 

4 h after infusion, with estimated half-lives of this process of ~ 4 and 2.7 h, respectively 

(Figure 3.2). Since conventional elimination models are always monotonically decreasing 

in solute concentration, the WinNonLin fits were poor and the 15 and 30 nm ceria ENMs 

model coefficients did not meet the Student’s t-test criteria for quality (the average 

standard error was often larger than the estimated value of the coefficient).  

 

With the exception of the 5-nm ceria ENM, the pharmacokinetic results are based on < 

2% of ceria dose that was remaining in the blood 0.167 h after completion of the ceria 

infusion, therefore the pharmacokinetic parameter estimates describe only a small 

fraction of the dose of these ENMs.  The two-compartment models for each of the rats 

that received cerium ion or 5-nm ceria ENM infusions fit the data very well based on 

visual inspection, weighted corrected sum of squares, sum of square residuals, weighted 



53 

 

sum of square residuals, random distribution of residuals, Akaike’s information criteria, 

and Swartz criteria.  

 

Figure 3.3 shows the ratio of the whole blood Ce concentration after infusion of 5-, 15-, 

30-, and 55-nm ceria ENMs vs. the cerium ion.  The ratio, R, for 5 nm ceria ENM could 

be modeled either by a power law dependence, (R0 is a constant and d is the 

power exponent for time t), or an exponential dependence, (R0 is the 

Arrhenius-type factor and d is the process rate constant) for each of three animals. Trend 

lines are shown for the power law dependence (Figure 3.3, top left panel) with d ~ -0.8. 

Five-nm ceria ENMs are fitted by two-compartment models and their blood 

concentrations showed time dependent decreases compared to cerium ion blood 

concentrations. Over the time period, 0 to 4 h after infusion, it was cleared faster than the 

free ion. On the other hand, R values for both 15 and 30 nm ceria increased over the 0 to 

4 h time period and their exponential coefficients were similar (d = 0.41 h
-1

 and d = 0.45 

h
-1

, respectively). The R value of 55 nm ceria showed no strong trend. 

 

The Ce mass balance for cerium ion, calculated by comparing the cerium in the serum 

plus clot samples to the cerium in whole blood, averaged 98 ± 7% over all samples.  For 

the 5-nm ceria ENM, the average mass balance was 83 ± 44%; 5 out of the total of 30 

values from the 6 sample times were below the cutoff of 70% mass balance. These 

ranged from 16 to 31% and were obtained 120 or 240 min after the ceria infusion, at a 

time when Ce concentrations had decreased to an average of 8 and 0.4 microgram Ce in 

the serum prepared from the 0.3 ml of blood. They were not used in the data analysis. For 

R R0 t
d

R R0 exp(d t)
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the remaining 25 values, recovery was 93 ± 40%. For the 15-, 30-, and 55-nm ceria 

ENMs, 17, 16 and 11 of the 18 values from 3 of the rats met the material balance quality 

control criteria and were used in the data analysis, respectively. For the 30-nm ceria 

cubes and rods mixture, 12 values from 2 rats met the material balance quality control 

criteria and were used in the data analysis. 

 

Figure 3.4 shows the ratio of Ce distribution in blood serum vs. whole blood from 0.167 

to 4 h after completion of the cerium ion or ceria ENM infusions. The ratio of Ce in 

serum vs. whole blood shows its distribution between blood serum and the clot fraction 

(associated with the red and white cells and platelets). Blood samples taken from 0 to 4 h 

after infusion showed that the cerium ion, 5-, and 55-nm ceria ENMs did not 

preferentially distribute into either the blood serum or clot (containing red, white cells 

and platelets); there was no consistent time dependence of the ratio for all animals. The 

30 nm cubic + rod mixture preferentially distributed to the clot fraction over a similar 

period, also with no consistent time dependence of the ratio for all animals. However, 

serum/clot partition data for 15- and 30-nm ceria showed that these ENMs migrated into 

the clot fraction, and that partition ratio of ceria in the clot increased with time. Two of 

the rats that received 15 nm and 4 that received 30 nm ceria showed a statistically 

significant increase of Ce associated with the clot fraction. 



 

5
5
 

 

 

 

Table 3.2. Pharmacokinetic parameters for the cerium ion; 5-, 15-, 30- and 55-nm ceria ENMs; and mixture of 30-nm cubic and rod 

ceria ENMs and after iv infusion to rats. Values are means ± SD, calculated from results obtained from times shown (after 

completion of the infusion).  

 0.167 h to 7 days 0.167 h to 30 days   0.167 to 4 h 

Parameter cerium ion (n=3) 
5-nm ceria 

(n=3) 

15-nm ceria 

(n=4) 

30-nm cubic 

ceria (n=5) 

  30-nm cubic + 

rods ceria (n=5) 

55 nm ceria 

(n=5) 

Non-compartmental Analysis 

AUC (h* mg/L) 326 ± 102
a
 2264 ± 1284

b
 361 ± 130

a
 2201 ± 1314

b
   25 ± 8

a
 1.5 ± 0.5

a
 

Cmax (mg/L) 163 ± 27
a
 278 ± 215

b
 0.95 ± 0.34

a
 6.5 ± 3.1

a
   20 ± 11

a
 0.78 ± 0.12

a
 

t1/2 (h) 2.7 ± 0.8
a
 80 ± 25

b
 - -   26 ± 36

a
 2.2 ± 0.8

a
 

MRT (h) 1.5 ± 0.2
a
 7.1 ± 3.0

a
 41 ± 11

b
 15 ± 11

a
   1.6 ± 1.8

a
 1.5 ± 0.1

a
 

 Two Compartment Model  One Compartment Model 

AUC (h* mg/L) 1377 ± 416
c
 690 ± 181

a
 152 ± 41

b
 561 ± 256

a
   72 ± 39

b
 1.9 ± 0.7

b
 

Cmax (mg/L) 190 ± 29
a,b

 372 ± 317
a
 0.82 ± 0.45

b
 3.5 ± 1.7

b
   12 ± 5

b
 0.88 ± 0.44

b
 

t1/2-α (h) 0.57 ± 0.13 0.44 ± 0.27 2.5 ± 2.6 12 ± 17   4.3 ± 1.8 1.9 ± 0.6 

t1/2-β (h) 16 ± 3
b
 124 ± 53

a,b
 239 ± 56

c
 140 ± 43

a
   - - 

MRT (h) 21 ± 3
c
 92 ± 53

a,c
 343 ± 83

b
 192 ± 57

a
   6.3 ± 2.6

c
 2.8 ± 0.8

c
 

CL (L/h/kg) 0.078 ± 0.028
a
 0.15 ± 0.04

a
 0.71 ± 0.24

a
 0.22 ± 0.11

a
   1.4 ± 1.0

a
 46 ± 30

b
 

Vdss (L/kg) 1.7 ± 0.8
a
 15 ± 12

a
 240 ± 8

b
 38 ± 12

a
   9.6 ± 3.9

a
 130 ± 42

c
 

AUC, area under the concentration–time curve; t1/2-α , first half-life; t1/2-β , second half-life; Cmax, peak concentration; CL, Clearance; 

MRT, mean residence time;  Vdss, volume of distribution at steady state. 
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Figure 3.2. Whole blood Ce concentration after completion of iv infusion of the cerium 

ion, 5, 15, and 30 ceria ENM, a mixture of 30-nm ceria cubes and rods, and 55-nm ceria 

ENM. All values are normalized to an equivalent dose of 100 mg ceria/kg. Results are 

mean ± S.D. from 5 rats at each time point, except for cerium ion, where n = 3 for 5 nm 

ceria ENM where n = 9, 10, 21, 10, 12, and 7 rats at 0.167, 0.5, 1, 2, 20 and 720 h; for 15 

nm ceria ENM where n = 10 rats at 0.167, 0.5, 1, 2, and 4 h; for 30 nm ceria ENM were n 

= 6 for all times except 1, 20 168 and 720 h where n = 10, 8, 3 and 11; and for the 55 nm 

ceria ENM were n = 10 and 7 at 1 and 20 h, respectively.  The horizontal line at the top 

of each graph shows the calculated cerium concentration in blood representing 100% of 

the dose.   
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Figure 3.3. The ratio of Ce concentration in whole blood following iv infusion of 5-, 15-, 

30- and 55-nm ceria ENMs from 0.167 to 4 h after their infusion, compared to the cerum 

ion concentration. Each symbol represents a different rat. 
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Figure 3.4. The ratio of cerium in serum to whole blood (as %), following iv infusion of 

the cerium ion; 5-, 15-, and 30-nm ceria ENMs; mixture of 30-nm cubic + rod ceria 

ENMs; and 55-nm ceria ENM. Each symbol shows results from a different rat. For the 

15-nm ceria ENM the solid curve is the model for the rat shown by the open circle, 

dashed line for rat shown by the closed square, and double curve for rat shown by the 

closed diamond. For the 30-nm ceria ENM the solid curve is the model for the rat shown 

by the closed square, dashed line for rat shown by the open circle, double curve for rat 

shown by the closed diamond, and long dash dot curve for rat shown by the open triangle. 
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10B10B3.4. Discussion 

The crystal structure of the ceria ENMs was as expected because the fluorite structure is 

the only one for crystalline CeO2.  The citrate coating was least dense on the 55 nm ceria, 

suggesting it would be the most likely of the ENMs tested to agglomerate in aqueous 

dispersion; a problem that was observed during its administration requiring frequent 

agitation of the dispersion to prevent it from occluding the infusion line. Although nearly 

12% of the total cerium in the 5 nm ceria ENM was free cerium in the aqueous phase, 

comparison of the results after infusion of the 5 nm ceria ENM, the cerium ion, and the 

other ceria ENMs shows the free cerium cannot account for the differences between the 5 

nm and the larger ENMs. 

 

In the present study ~ 14% of the cerium ion remained in the blood 0.167 h after 

completion of a 1 h iv infusion. In a previous report Ce was determined in blood from 1 h 

to 3 days following its iv administration as the chloride to mice and rats; however, the 

author did not conduct a pharmacokinetic analysis of the results (218). Using WinNonLin 

to conduct pharmacokinetic analysis, non-compartmental and compartmental calculations 

of the Bjondahl results (218) showed similar AUC, MRT, Cmax, and CL results. The non-

compartmental half-life (10 h) was the same as the terminal half-life obtained with a two 

compartment model, which best fit the data for compartmental analysis. The initial half-

life of the Bjondahl results (~ 3 h) was longer than we obtained (0.6 h) because our study 

included samples taken as early as 10 min, whereas the first sample in the Bjondahl study 

was obtained at 1 h.  
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Ten min after completion of the iv infusion of ceria ENMs, ~ 32% of the 5-nm ceria but 

< 2% of the larger ceria ENMs were present in the blood. The greater extent of citrate 

coating on the 5-nm ceria (and therefore its greater hydrophilicity) may have contributed 

to this. However, we do not know how long the citrate persisted on the surface of the 

ceria ENM or if was covered (opsonized) by proteins. The rapid clearance of metal/metal 

oxide ENMs from blood has been reported previously. 

 

Little has been reported about the fate of systemic cerium, other than it is very slowly 

eliminated, primarily in bile, resulting in prolonged retention in mammals, primarily in 

the liver and skeletal system (219, 220). Our pharmacokinetic results showed that the 

cerium ion had a smaller Vdss than the 5-nm ceria ENM. It also showed less retention in 

reticuloendothelial tissues, but more in the lung (27). All the ceria ENMs showed a large 

Vdss indicating great distribution in tissues, consistent with the intracellular 

agglomerations we have seen, especially in reticuloendothelial cells (179). Ceria ENMs 

have been seen in the cytoplasm of brain cells, phagosomes of macrophages, vesicles of 

lung fibroblasts, spleen red pulp, Kupffer cells, hepatocytes and mesangial cells (7, 71, 

221-224). Thirty days after ceria ENM infusion the greatest concentration was seen in the 

reticuloendothelial tissues, including liver and spleen (7, 32, 224). It was reported that 

lung, heart, and brain cerium did not decrease over 6 months following iv ceria ENM 

dosing (221).  A study with the 30-nm ceria ENM used in the present study showed no 

significant decrease of ceria in 14 tissues up to three months after iv administration. The 

highest concentrations were in reticuloendothelial tissues (spleen, liver and bone 

marrow), followed by the lung, then other sites (27).  We are not aware of any reports of 
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ceria uptake into red or white blood cells or platelets other than our prior finding 

suggesting a small amount of a 30 nm ceria ENM might have entered red blood cells after 

1 h in vitro (7). It is unclear if the ceria ENMs would ever reach a constant blood level. 

Up to the times studied in the present report, there was generally a decrease of blood 

cerium. Given the persistence of ceria in the rat, one might expect a steady state to be 

reached. However, 90 days after ceria infusion blood cerium concentration was higher 

than earlier times (27).  

 

The cerium ion was equally distributed between serum and clot fractions. A previous 

study reported that 2 h after iv cerium ion administration ~ 28% of the cerium in the 

blood was in cells and 72% in serum (225), similar to results in the present study that 

showed ~ 70% in the serum fraction at 2 h. The distribution of ceria ENMs between 

serum and clot varied with size and surface chemistry. The 5-nm ceria was evenly 

distributed within the serum and clot fractions. We previously observed small 

agglomerations of the 5-nm ceria in serum, presumably associated with proteins, and 

agglomerations associated with the extracellular side of the erythrocyte cell membrane 

after 1 h of incubation of the ceria in blood (224). The ability of ENMs to enter 

erythrocytes, a non-phagocytic cell, has been observed for 78 nm polystyrene, 25-nm 

gold, and 22-, 25- and 80-nm titania ENMs (226-228).  However, we are not aware of 

any studies of ceria ENM or other metal/metal oxide ENMs entry into white blood cells 

or platelets.  
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Although the extent of citrate coating might be expected to influence the fate of ceria 

ENMs in vivo, the present results show no clear trends between the extent of citrate 

surface coating and ceria ENM distribution between serum and the clot fraction initially, 

or over time.  For the cerium ion, and 5- and 55-nm and the mixture of 30-nm cubic + rod 

ceria ENMs, we were unable to identify any trends in the percentage of Ce in the serum 

vs. time.  

 

The blood levels of the 15- and 30-nm ceria ENMs increased over the 4 h after their 

infusion. As they were given by the iv route, this suggests a re-distribution of the ENM 

over time.  Re-distribution of ENMs has been previously recognized and discussed, e.g.  

(229). An increase of ENM in blood within the first 2 h after iv administration has been 

reported, although the increases appear to be within the variability of the reported 

measure of the quantum dots in plasma or blood and neither report discusses the increase 

(230, 231). The increase we saw may be influenced by protein corona and/or distribution 

into and out of a non-central compartment, such as the lymphatic system, as noted by 

(232). We also observed that the distribution of the 15- and 30-nm ceria ENMs within 

blood compartments changed over the 4 h after completion of their infusion, when they 

became more associated with the cells in the clot fraction. These results suggest their 

surface chemistry changed during that period, which may be due to dissociation of the 

citrate, association with proteins or blood cells, and/or cell entry and release. Nanoscale 

materials are rapidly coated with plasma proteins and other circulating substances, which 

create a corona around the ENM, increasing their hydrodynamic size (163, 180). It has 

been shown that citrate-coated ENMs bind to the surface of cells (102) and can become 
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opsonized with albumin (233).  We speculate that the increase of the 15- and 30-nm ceria 

ENMs in circulating blood and migration toward the clot fraction during the first 4 h after 

their iv infusion is due to distribution out of, then back into, circulating blood, perhaps 

associated with protein corona. This might be due to initial accumulation in blood vessels 

or adsorption onto the luminal surface of vascular endothelial cells, followed by protein 

modification and re-circulation in blood. However, we would not anticipate extensive 

accumulations of ceria blocking the vasculature in the absence of cardio- and 

cerebrovascular incident (MI and stroke) which we have not observed in these rats that 

generally tolerated the target doses well.  Or the ceria ENMs may have distributed 

outside of the vascular compartment, such as entrapment by reticuloendothelial organs 

followed by their release back into blood, or entry into the lymphatic system, that drains 

into the cardiovascular system. Particles up to 50 nm are able to rapidly enter the 

lymphatic system (234, 235). From the results of the present study we do not have 

evidence of the origin of the ceria ENMs that re-entered circulating blood during the first 

4 h after their infusion. However, we have seen a net migration of Ce following 30-nm 

ceria ENM administration from liver to spleen from 1 to 20 h after its infusion (181) and 

into lung over 90 days, consistent with re-distribution of this ENM over time  (27). As > 

98% of the ceria dose was no longer in circulating blood when we started blood sampling 

10 min after completion of the ceria infusion, the long terminal half-life and MRT and 

large Vdss for the 5, 15 and 30 nm ceria ENMs, based on blood levels to 30 days, may 

describe the very small fraction of the ENMs that had not yet distributed out of blood 

and/or ceria re-distributing among storage sites. This speculation is based on the retention 

of a very large percentage of the ceria ENM dose for a long time in the rat and evidence 
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we (and others) have of re-distribution among sites over time. Similarly, there may have 

been some re-distribution of the 5 nm ceria which was not seen above the much higher 

level of ceria remaining in blood from the infusion during the first 4 h after its infusion.  

 

The non-compartmental analysis could not estimate some of the pharmacokinetic 

parameters for the 15 and 30 nm ceria ENMs probably because of the ceria concentration 

increase at the first 4 h.  Due to the lack of prior studies of metal and metal oxide ENMs 

in blood, further studies of citrate-coated ceria ENMs are necessary to better understand 

their fate in the vascular compartment, including the stability of the citrate coating; their 

interaction with cell membranes; and the rate, extent and character of protein association.  

 

The mean residence time (MRT) typically indicates the average time molecules stay in 

the body.  In our study, the MRT indicated how long ceria ENMs remained in blood, not 

in the tissues, because MRT is derived from measurement of ceria (as Ce) in blood (236). 

It has been previously noted that the blood half-life of an ENM may be short despite 

prolonged body persistence, due to reticuloendothelial system entrapment and other 

processes not typical of small inorganic and organic molecules (209). Non-

compartmental and compartmental analyses produced quite different MRT results, 

although the trends among the tested materials are similar across analysis. The lower 

MRT values with the non-compartmental analysis may be due to its tendency to 

underestimate MRT (237).  Knowing that there are persistent accumulations of ceria 

ENMs in multiple organs suggests the MRT results from the compartmental analysis 

more closely reflects the whole body residence time of ceria ENMs. The results of the 
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present pharmacokinetic calculations that one can have the most confidence in are those 

obtained following infusion of the cerium ion and the 5-nm ceria ENM, due to the very 

rapid clearance of the larger ENMs from circulating blood and the rise in Ce 

concentration over 4 h following 15- and 30-nm ceria ENM infusion. Although the 

results obtained with the cerium ion and 5, 15 and 30 nm ceria ENMs clearly show two 

compartments, the values for the second compartment do not have a high degree of 

precision due to the limited number of data points on which they are based. 

 

It has been previously noted that some of the properties of ENMs, e.g., protein coating, 

adhesion, and phagocytic uptake, may differ from small organic molecule disposition for 

which pharmacokinetic modeling programs such as WinNonLin were created (209). 

Pharmacokinetic and PBPK approaches have been used to model ENM distribution 

among tissues and blood (232, 238). Most nanomaterials do not exhibit ADME profiles 

typical of drugs (239), e.g. they are rapidly cleared from the blood, not metabolized, and 

not rapidly eliminated, unless small enough to be filtered by the renal glomerulus. It has 

been recognized that the toxicokinetics of ENMs are unlikely to follow the “rules” of 

current approaches (240, 241). Further work is needed to develop a pharmacokinetic 

model to predict the time-dependent changes of ceria ENM distribution in tissues and 

blood.  

 

There is considerable literature on the pharmacokinetics of polymer ENMs due to the 

extensive research in developing them as drug delivery systems. Much less is known 

about the pharmacokinetics of metal and metal oxide ENMs; particularly their 
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distribution, residence time, and rate of clearance from the vascular compartment. The 

present study informs about the effects of ENM physicochemical properties on 

distribution and clearance from blood. The results show ceria ENMs have a 

biodistribution and clearance pattern which cannot be predicted from the cerium ion. This 

may be due to the very different physicochemical properties of the cerium ion and ceria 

ENMs.  

 

11B11B3.5. Conclusions 

To better understand the fate of ceria as a model ENM we compared the distribution 

within, and rate of clearance from, blood of four different sizes of cubic or polyhedral 

ceria nanoparticles, a mixture of cubes and rods, and the cerium ion after iv infusion into 

rats. Table 3.3 summarizes the main findings of the present study. The kinetics and 

distribution of the cerium ion did not predict those of the ceria ENMs. A 5-nm ceria 

ENM, which was very resistant to agglomeration and settling in vitro, was cleared much 

more slowly from blood than larger ceria ENMs, presumably because it was too large to 

be cleared by glomerular filtration and perhaps too small or too hydrophilic to be readily 

recognized by the reticuloendothelial system. Ceria ENMs larger than 5 nm were very 

rapidly cleared from circulating blood. All the ceria ENMs had a much greater Vdss than 

the cerium ion, consistent with their extensive distribution and prolonged retention 

throughout the rat. The 15 and 30 nm ceria ENMs showed concentration ratios increasing 

vs. cerium ion over 4 h after infusion.  The distribution of ceria ENMs between serum 

and the blood clot was size dependent.  The citrate-coated 30-nm ceria showed the 

greatest distribution in the clot fraction. The fraction of 15 and 30 nm-ceria ENMs in the 

clot fraction increased over 4 h, suggesting a change in their surface properties, perhaps 
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due to protein corona. A further understanding of the rate and nature of ceria ENM 

association with blood proteins and cells, and the process(es) of their clearance from 

blood, is needed to fully interpret their fate in the vascular compartment. 

 

Table 3.3. The whole blood compartment model, serum and clot partitioning, and ceria 

ENM vs. cerium ion ratio results of the six materials studied.  

 

Material Compartment modeling  Serum/whole 

blood partitioning 

Cerium ion 
Fits the two compartment 

model 
Not applicable No strong trend 

5 nm ceria 

Fits the two compartment 

model; longer persistence in 

the second compartment 

than the cerium ion 

Time-dependent 

reduction in [Ce] 

relative to the ion; 

1
st
 order or other 

process possible 

No strong trend 

15 nm ceria 

Rapid loss during infusion; 

Apparent re-distribution to 

blood in 2-4 hours 

Increase relative to 

[Ce]ion; 1
st
 order 

process 

Reduction in serum 

levels with time; 

1st order process 

(protein corona?) 

30 nm ceria 

Rapid loss during infusion; 

Apparent re-distribution to 

blood in 2-4 hours 

Increase relative to 

[Ce]ion; 1
st
 order 

process 

Reduction in serum 

levels with time; 

1st order process 

(protein corona?) 

Cubic + 

rod ceria 

Loss during infusion; 

Apparent redistribution to 

blood in 2-4 hours 

No strong trend 

No strong trend; 

less than 50% in 

serum 

55 nm ceria 

Rapid loss during infusion; 

No apparent re-distribution 

to whole blood in 2-4 hours 

No strong trend No strong trend 

 

 

 

R
[Ce]ceria

[Ce]cerium(ion)
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12B12B3.6. Unsolved problems 

This study gave us a better understanding of pharmacokinetics of different sized ceria 

ENMs in blood. Traditional pharmacokinetic modeling showed the best fit for 5-nm ceria 

ENM and the cerium ion. Ceria ENMs larger than 5 nm were rapidly cleared from blood. 

After initially declining, whole blood 15- and 30-nm ceria increased; results not well-

described by traditional pharmacokinetic modeling. One possibility is that ceria ENMs 

associated with the blood vessel and dissociated over time due to protein corona. 

Following the distribution in and clearance from blood, the ceria ENM blood vessel 

association and moving out of the vascular compartment will be the next crucial step 

influencing their fate in biological systems. In the next chapter, the BBB was chosen to 

investigate the association and flux of ceria ENMs across this biological barrier using the 

in situ brain perfusion method.  

 

 

 

 

 

 

 

 

 

Reproduced with permission from Dan M, Wu P, Grulke EA, Graham UM, Unrine JM, 

Yokel RA. Ceria engineered nanomaterial distribution in and clearance from blood: Size 

matters. Nanomedicine, 2012, 7(1), 95-110. Copyright © Future Medicine Ltd. Dan M 

and Yokel RA drafted the published paper. Author’s contributions: Dan M did the most 

of pharmacokinetic studies including modelling and animal studies.  Wu P synthesized 

and characterized the ceria ENMs except 55 nm ceria. Grulke EA helped with the 

pharmacokinetics model and revised the paper critically. Graham UM synthesized the 55 

nm ceria. Unrine JM analyzed all the samples using ICP-MS.  

 

Copyright © Mo Dan 2013 
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31B31BChapter 4 Brain microvascular endothelial cell association and distribution of a 5 

nm ceria engineered nanomaterial 

 

In this chapter, we will test our hypothesis that a 5 nm ceria ENM can associate with 

brain capillary cells and enter the brain. The study will provide important information on 

how ceria ENMs associate with endothelial cells, which is the first step for its cell uptake 

or redistribution back into circulating blood.  This is the first report on how ceria ENMs 

distribute between the BBB and the brain parenchyma. The results will show the potential 

biomedical applications in the CNS and provide explanation for the nontraditional 

pharmacokinetics profile of ceria ENMs. 

 

4.1. Introduction 

Our previous findings showed 5 nm ceria ENM agglomerates in the brain capillary 

lumen. Electron microscopy did not reveal ceria ENM inside microvascular endothelial 

or brain cells. Ceria  ENMs did not produce profound pro- or anti-oxidant effects in the 

brain 1 or 20 h after a one h systematic intravenous infusion (8). The reasons for the lack 

of ceria ENM in the brain were unknown. One possibility is that the protein corona in the 

blood that changed ceria ENMs physicochemical properties, resulting in their rapid 

clearance by the MPS (180, 181). Nanoparticles agglomerated very rapidly in the blood 

or on a biological surface, changing their distribution and cell interaction (78, 182-184),  

so that the agglomerated ceria became too large or unavailable to penetrate the intact 

BBB. The present study utilized a controlled system to better understand how ceria 
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ENMs interact with brain capillary endothelial cells. The results are relevant to the 

therapeutic use and toxicological consideration of ceria ENMs. 

 

The objective of this study was to investigate the brain capillary cell association and brain 

entry rate of a 5 nm ceria ENM. We used the in situ brain perfusion method to evaluate 

BBB integrity and determine brain entry rate at different perfusion flow rates, ceria ENM 

concentrations and perfusion durations. Eight brain regions and a choroid plexus were 

collected to test regional differences in BBB integrity and ceria ENM brain entry rate. 

The capillary depletion method was used to evaluate ceria ENM distribution between 

capillary and brain tissues. The localization of ceria nanoparticles was investigated by 

LM and EM. 

 

4.2. Materials and Methods 

4.2.1. Materials 

The chemicals used to prepare the ceria ENMs have been described (242).  Cerium 

chloride heptahydrate (Sigma-Aldrich #228931, 99.9% metal basis), ammonium 

hydroxide (Fisher # 3256, ACS, 28-30%), deionized ultra filtered water (Fisher #W2-20), 

and citric acid monohydrate (EMD Chemicals Inc # CX1725-1, GR ACS) were used 

without further purification. All other chemicals were purchased from Sigma-Aldrich (St. 

Louis, MO) unless otherwise noted. 

 

4.2.2. Ceria ENM synthesis  
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Synthesis of the 5 nm ceria ENM was described (224). It was synthesized using a 

hydrothermal method (213) that produces monodisperse nanoparticles directly in the 

reactor. Typically, a 20-ml aqueous mixture of 0.5 M (0.01 mol) ceria chloride and 0.5 M 

(0.01 mol) citric acid was added to 20 ml of 3 M ammonium hydroxide. The latter was in 

excess of that needed for complete reaction of the cerium chloride to cerium hydroxide. 

After stirring for 24 h at 50 ºC, the solution was transferred into a Teflon-lined stainless 

steel bomb and heated at 80 ºC for 24 h  to complete the reaction. Ceria ENM was citrate 

coated (capped) to improve their dispersity in water to stabilize dispersion through 

electrostatic repulsion to prevent the agglomeration seen with uncoated ceria that occurs 

in high ionic strength solutions, such as blood (102, 103, 243).  Citrate was selected 

because it is a commonly used surface coating agent for ENMs to inhibit agglomeration 

(e.g., NIST’s reference materials 8011, 8012 and 8013), is a component of blood (present 

at ~ 100 µM in humans), might coat bare ENMs circulating in blood, has been shown to 

have no effect on erythrocyte response to a silver ENM, and citrate-coated ENMs interact 

strongly with proteins, resulting in the rapid protein corona that occurs when ENMs enter 

blood (233, 244, 245).  

 

4.2.3. Ceria ENM characterization 

The physico-chemical properties of the ceria ENMs were determined in our laboratories. 

Most of the methods have been reported (242). Primary particle size distributions were 

determined by TEM and scanning transmission electron microscope (200-keV field 

emission analytical transmission electron microscope, JEOL JEM-2010F, Tokyo, Japan). 

From the individual primary particle sizes measured from TEM images, number 
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frequency cumulative distributions were constructed. These cumulative distributions 

were best described by log-normal distribution models, characterized by a sample mean 

and its standard deviation.  All of these data sets were well-described by a single mono-

modal distribution, that is, one continuous distribution was observed, and no significant 

secondary or tertiary peaks were noted. The reported ‘average’ diameter of each sample 

was , where µ is the mean of the log-normal probability distribution, and the 

reported ‘standard deviation (S.D.)’ is the value from the fit of the log-normal 

distribution to the data. For each sample, number-based differential frequency 

distributions were constructed using the model coefficients. The particle size distributions 

(PSDs) for each batch of as-synthesized ceria aqueous dispersion were determined using 

dynamic light scattering (DLS; 90Plus NanoParticle Size Distribution Analyzer; 

Brookhaven Instruments Corporation, Holtsville, NY). Zeta potential of the ceria ENMs 

dispersion as infused into the rat was estimated from electrophoretic mobility 

measurements using a Zetasizer nanoZS with a typical ceria concentration ~0.02 wt% 

(Malvern Instruments, Worchestershire, UK). Because the particles had hydrodynamic 

diameters < 200 nm, the Hückel approximation was used to calculate zeta potential from 

electrophoretic mobility. The surface area of the dried powder was determined using a 

BET surface area analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA). 

Thermogravimetric analysis (Perkin-Elmer TGA7 Analyzer) was then performed to 

investigate the weight loss of citrate-coated ceria NPs over the temperature range of 150 

to 300°C under which decomposition of citric acid occurs. The extent of citrate surface 

coating was estimated based on the assumption that all the ceria NPs were spherical and 

had uniform size. 

expaveD
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4.2.4. Nanomaterial  

The 5 nm ceria ENM was synthesized using a previously reported method (8). The 

physico-chemical properties of the ceria ENMs were determined in our laboratories. Free 

cerium in the ceria ENM dispersion was removed by ultrafiltration using 3 kDa 

molecular weight cutoff regenerated cellulose centrifugal filtration devices (Amicon 

Ultra-4, Millipore). The 5 nm ceria (3.5 ml) was added to the Amicon Ultra Filter unit. 

The unit was centrifuged at 4800 g for 35 min to obtain 3 ml filtrate and 0.5 ml 

concentrated ceria ENM. The 3 ml filtrate (containing free cerium) was removed from the 

centrifuge tube. Three ml sodium citrate (0.17 M) solution was added to the filtration 

device to disperse the ceria ENM.  After conducting this washing procedure 3 times, 

sodium citrate solution (3 ml; 0.17 M) was added to the filtration device which was bath 

sonicated for 15 min to redisperse the ceria ENM.  The Ce concentrations of the 5 nm 

ceria ENM dispersion and free cerium in the ultrafiltrate were analyzed by ICP-MS (8, 

242).  

 

4.2.5. Perfusate for in situ brain perfusion  

 

The perfusate contained 30, 100 or 500 µg/ml ceria ENM in a solution of Na
+
 (153 mM), 

K
+
 (4.2 mM), Ca

2+
 (1.5 mM), Mg

2+
 (0.9 mM), Cl

-
 (162 mM) and glucose (9 mM). 

Gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) (1 mM) was added to 

determine BBB integrity. Gd-DTPA, a marker for vascular space, has been shown to not 

significantly cross the intact BBB because of its charge and high molecular weight (246). 

A significant increase of Gd-DTPA in brain samples indicates BBB damage. Following 
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at least 1 h incubation at 37°C, the perfusate was bubbled for 2 min with 95/5 air/CO2 

and adjusted to pH 7.4 prior to its use (247).  

 

4.2.6. Ceria ENM stability in the perfusate 

Ceria ENM stability in the perfusate was determined from 1 to 230 min (after addition to 

perfusate) using dynamic light scattering (DLS) (90Plus Nanoparticle Size Distribution 

Analyzer, Brookhaven Instruments Corp, Holtsville, NY). The intensity-weighted 

hydrodynamic diameter in the perfusate was measured at 1000 µg/ml at 37 ºC, and then 

converted to number- and volume-weighted averages.  

 

4.2.7. Animals 

This study used 55 male Sprague-Dawley rats, weighing 330 ± 35 g (mean ± SD), that 

were housed individually prior to study in the University of Kentucky Division of 

Laboratory Animal Resources Facility. Animal work was approved by the University of 

Kentucky Institutional Animal Care and Use Committee (Protocol 2008-0272). The 

research was conducted in accordance with the Guiding Principles in the Use of Animals 

in Toxicology. 

 

4.2.8. In situ brain perfusion methods 

We employed the modification of the brain perfusion technique that we previously 

reported (247-249). Briefly, the rat was anesthetized under ketamine/xylazine anesthesia 

(75 and 5 mg/kg), and its left carotid artery exposed. Following ligation of the external 

carotid, occipital and common carotid arteries, PE60 tubing containing heparin (100 
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U/ml, in 0.9% NaCl) was inserted into the common carotid. We used the heart-cut 

modification of this technique and increased the perfusate flow rate to 20 ml/min (250). 

The rat was decapitated to end the perfusion. The brain was harvested and cleaned of 

meninges and surface vessels. Brain tissue (~ 20 mg from each brain region except the 

choroid plexus, which averaged 0.9 ± 0.4 mg) was collected from the frontal cortex, 

parietal cortex, occipital cortex, thalamus/hypothalamus, midbrain/colliculus, striatum, 

cerebellum, hippocampus, and choroid plexus from the left hemisphere for measurement 

of Gd-DTPA (as gadolinium) and ceria ENM (as cerium) by ICP-MS. Cerebrovascular 

washout of perfusate was conducted to test the influence of ceria concentrations in the 

vascular space on the brain uptake space. The cerebrovascular space was washed at the 

same perfusion rate (n = 4 rats) for 20 s with ceria-free perfusate immediately following 

100 µg ceria ENM/ml perfusion for 120 s at 20 ml/min. The results were compared to 

those obtained without cerebrovascular washout using a two-way ANOVA. The brain 

uptake space in the washout and non washout conditions did not show significant 

differences after correcting for the vascular volume. Therefore, the rest of the studies did 

not conduct washout except the capillary depletion experiment and 3 rats perfused for 

LM and EM examination.  

 

Flow-rate dependent uptake is a property of some carrier-mediated uptake systems, but is 

not a property of diffusion (247). Therefore, to examine the effect of perfusion flow rate 

on influx rate and the vascular and brain extracellular fluid volumes, 15 and 20 ml/min 

flow rates (100 µg ceria ENM/ml) were tested in 4 and 5 rats, respectively.  To determine 

whether ceria ENM brain entry is concentration dependent, 3 ceria ENM concentrations 
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(30, 100 and 500 µg/ml) were investigated using a perfusion rate of 20 ml/min and 

duration of 120 s (n = 4, 6 and 5 rats, respectively). Ceria ENM brain entry during 

different perfusion durations was investigated to determine how fast ceria ENM 

associates with brain capillary cells or enters the brain. Perfusion durations of 20, 60 and 

120 s, using a rate of 20 ml/min, and 30 µg ceria ENM/ml were studied in 4 treated 

animals and 3 control animals in each group.  Three animals were prepared for LM and 

EM after perfusion with 100 µg ceria ENM/ml, 20 ml/min for 120 s, followed by 20 s 

washout with ceria-free perfusate. 

 

4.2.9. Capillary depletion method 

The capillary depletion method was used to separate brain parenchyma from capillary 

tissue (247, 251). After a 30 µg/ml, 120 s, 20 ml/min ceria ENM perfusion, a 20 s 

washout was conducted.  The forebrain from perfused hemisphere was isolated from 10 

rats (2 control and 8 treated) and the lateral ventricle choroid plexus in the perfused 

hemisphere was removed. The tissue was homogenized in 3.5 ml physiological buffer 

containing 141 mM NaCl, 4 mM KCl, 2.8 mM CaCl2, 1 mM NaH2PO4, 1 mM MgSO4, 

10 mM glucose and 10 mM HEPES at pH 7.4. Dextran (70,000 g/mol) was then added to 

18% (w/v) and the sample further briefly homogenized. After centrifugation at 5400 x g 

for 15 min at 4 ºC, the supernatant (brain rich fraction) and pellet (capillary rich fraction) 

were carefully separated for measurement of ceria ENM by ICP-MS. The percentage of 

the forebrain ceria ENM in the capillary rich fraction = mass amount of cerium in the 

capillary rich fraction / mass amount cerium in the capillary rich fraction plus brain rich 

fraction.   The percentage of the ceria ENM dose in the capillary rich fraction = mass 
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amount of cerium in the capillary rich fraction / mass amount cerium in the total ceria 

ENM dose  

 

4.2.10. Cerium and gadolinium analysis 

Cerium and gadolinium were analyzed by ICP-MS (Agilent 7500cx, Santa Clara, CA, 

USA) as previously described (7, 224).  The method detection limits of Ce and Gd in 

tissue were 0.013 mg Ce/kg and 0.0004 mg Gd/kg, respectively. 

 

4.2.11. Light and electron microscopy 

Rats were decapitated at the end of the in situ-washout perfusion for brain removal. After 

bisection, each hemisphere was immediately immersed in a fixative containing 2% 

paraformaldehyde-2% glutaraldehyde in 0.1 M cacodylate buffer for 24 h at 4 ºC. Tissue 

samples from pituitary gland, hippocampus, and choroid plexus were identified with the 

aid of a dissecting microscope, and stored in 0.1 M cacodylate buffer. Samples were cut 

to approximately 3 mm
3
 before being dehydrated in ascending concentrations of ethanol 

and embedded in Araldite 502. After polymerization, blocks were sectioned at one 

micron thickness, toluidine blue stained for screening, and selected blocks sectioned at 80 

nm thickness for TEM viewing in a Philips CM 10 electron microscope operated at 80 

kV. 
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4.2.12. Data and Statistical Analysis 

The distribution volume, or uptake space (Q), derived from the in situ brain perfusion 

results, is the amount of brain tissue into which the substrate distributes during a given 

perfusion duration. Q ceria total (ml/g) = ceria ENM in tissue (µg/g) / ceria per volume of 

perfusate (µg/ml) (252). The mass amount of ceria ENM per gram of brain (µg/g) was 

also calculated in order to compare the results of perfusion of the 3 ceria ENM 

concentrations. Gd-DTPA uptake space (vascular and extracellular space) was used to 

correct the ceria ENM brain uptake space results (247). QGd-DTPA = Gd-DTPA in tissue 

(µg/g) / Gd-DTPA per volume of perfusate (µg/ml). Corrected brain Qceria ENM = Qceria total 

– QGd-DTPA. The corrected mass amount of ceria ENM per gram of brain (µg/g) = (Qceria 

total – QGd-DTPA) (ml/g) X ceria per volume of perfusate (µg/ml). Grubbs' test was used to 

determine outliers. Bartlett’s was used to test if samples have equal variances. Two - way 

ANOVA followed by Bonferroni multiple comparisons was used to test for significant 

differences among Gd-DTPA concentrations at 15 ml/min and 20 ml/min (treated and 

control) flow rates and among the nine regions. Two - way ANOVA followed by 

Bonferroni multiple comparisons was also used to test for significant differences among 

three concentration groups of ceria ENMs and the nine regions or among three infusion 

times of ceria ENMs and the nine regions (GraphPad Prism Version 3.00 for Windows, 

GraphPad Software, San Diego, CA). The results of the statistical analysis for two-way 

ANOVA will be reported as F(df (degrees of freedom) effect, df error) = F-value and P-

value. The percentage of the capillary surface area that would be covered by ceria ENMs 

was calculated as = (the number of ceria ENM particles in the perfused hemisphere X one 

ceria particle cross sectional area)/the rat brain capillary endothelial cell surface area. 
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This was based on the ceria average diameter, the ceria density = 7.132 g/cm
3
 and the 

rat’s capillary surface area = 140 cm
2
/g brain (253). All results are reported as mean ± 

SD.  

 

4.3. Results  

4.3.1. Nanoparticle characterization  

The ceria ENM was polyhedral. The X-ray diffraction pattern showed the ceria to be 

highly crystalline. It was face centered cubic with corresponding Miller indices of the 

most common faces of (111), (220), and (311). Evaluation of a number of TEM images 

(Figure 4.1A) showed that Dmean (average primary particle diameter from number 

frequency distribution) and standard deviation based on TEM measurements of diameter 

fitted using lognormal distribution models was 4.6 ± 0.1 nm. DLS results of a 

representative batch of as-synthesized ceria dispersion showed that 98 percent of the 

particles were in the range of 6.7 - 8.2 nm (Figure 4.1B). Zeta potential was -53 ± 7 mV 

at pH ~ 7.35 in water. The ceria ENM surface area was 121 m
2
/g. The extent of surface 

citrate coating was ~ 40% (8). Five percent free cerium ions were in the as-synthesized 

ceria ENM. After the 3 filtrations, less than 0.05 % of the ceria ENM perfusate was free 

cerium ions. Ceria ENM was stable in the perfusate at 37 ºC: no apparent agglomeration 

was observed from 1 to 230 min. The particle size of the ceria ENMs was within +/- one 

standard deviation after addition of the ceria ENM to the perfusate (Figure 4.2). The 

stability of the ceria ENM in the perfusate is crucial for this experiment to understand 

how the ceria ENM interacts with capillary cells and brain tissue.  
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Figure 4.1. Ceria ENM morphology. (A) Ceria ENM imaged using TEM. The insert at 

the top right shows the crystallinity of the ceria ENM. (B) Volume-based particle size 

distribution for ceria ENM of a representative batch of as-synthesized ceria aqueous 

dispersion.  

 

 

Figure 4.2. Ceria ENM hydrodynamic diameter in perfusate. Hydrodynamic diameter 

(intensity weighted average) of ceria ENM in the in situ perfusate from 1 to 230 min 

(1000 µg/ml at 37 ºC) after ceria was added to the perfusate.  Solid circles are DLS data 

and black solid line is the average of all the data. Dotted lines represent the position of 

average diameter +/- one standard deviation.   

 

4.3.2. Flow rate dependency 

Comparison of uptake space (Qceria ENM) using 15 and 20 ml/min flow rates did not show 

a significant flow rate effect on brain ceria ENM uptake in any of the 8 brain regions or 

A 
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the choroid plexus. Furthermore, there was no significant difference in the vascular space 

with these 2 flow rates or between control and treated groups. However, the choroid 

plexus showed a significantly higher vascular space than the 8 brain regions (F(8,144) = 

12, P < 0.0001) (Figure 4.3). The brain vascular space results were similar to those we 

measured using [
14

C]-sucrose (247).  A 20 ml/min flow rate was used for the rest of 

study. 

 

Figure 4.3. Vascular space of the brain as measured by Gd-DTPA at 15 (n=4) and 20 

(n=5) ml/min flow rate in control rats and 20 (n=10) ml/min flow rate in 5 nm ceria 

treated rats.  

* Significantly different from 8 brain regions, F(8,144) = 12, P < 0.0001. 

 

4.3.3. Ceria ENM uptake 

To investigate the 5 nm ceria brain entry rate, its uptake space (Qceria ENM) was 

determined for each brain region for each of the 3 ceria perfusate concentrations. Figure 
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4.4A shows the uptake space significantly decreased with the increase of ceria ENM 

concentration in the perfusate (F(2,108) = 118, P < 0.0001).  In the 30 µg/ml group, there 

were no significant differences among the nine regions. However, in the 100 and 500 

µg/ml groups, choroid plexus uptake space was significantly higher than in the 8 brain 

regions. In order to compare ceria ENM uptake among the three concentrations, we 

calculated the mass amount of ceria uptake into the brain as µg/g (Figure 4.4B). There 

were no significant differences among the 3 treatment concentrations. The mass amount 

of ceria in the choroid plexus uptake space was significantly higher than in the 8 brain 

regions and also significantly higher in the 100 and 500 µg/ml groups compared to the 30 

µg/ml group. The average mass amount of ceria per brain hemisphere (0.85 g) (excluding 

choroid plexus) was 4.2 ± 0.7 µg. To verify whether the uptake space of ceria ENM 

rapidly saturates ceria uptake space was determined for 30 µg ceria ENM/ml for 20, 60 

and 120 s perfusion durations. There were significant increases of uptake space to 

multiple brain regions from 20 to 60 s (F(2,81) = 9, P < 0.0004) but no differences 

between 60 and 120 s, suggesting the uptake space of this ceria ENM saturated between 

20 and 60 s (Figure 4.4C). The increased uptake space of the 5 nm ceria ENM showed 

that the ceria ENM either associated with capillary endothelial cells or entered the brain. 

In the next step, ceria ENM distribution between cerebral capillary cells and brain 

parenchyma was determined. 

 

4.3.4. Isolation of cerebral capillaries 
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Cerebral capillaries were isolated from brain parenchyma to investigate the distribution 

of ceria ENMs between these two fractions. Less than 0.4% of the perfused ceria ENM 

 

Figure 4.4. Ceria ENM uptake space at three concentrations and perfusion duration 

times. Effect of ceria ENM concentration and perfusion duration on its uptake. (A) Q 

uptake space (ml/g) of a 5 nm ceria ENM in 8 brain regions and the choroid plexus for 3 
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concentrations, at a flow rate of 20 ml/min, and 120 s perfusion duration. (B) Mass 

amount (µg/g) of 5 nm ceria ENM in 8 brain regions and the choroid plexus after brain 

perfusion with 3 ceria concentrations, at a flow rate of 20 ml/min, and perfusion duration 

of 120 s. (C) Q uptake space (ml/g) of 5 nm ceria ENM in eight brain regions and 

choroid plexus after 20, 60 and 120 s perfusion at 30 µg/ml, at a flow rate of 20 ml/min.  

Figure 4.4A, # = significantly different among three concentration groups, F(2,108) = 

118, P < 0.0001; * = significantly different compared to the 8 brain regions at the same 

concentration, P < 0.05. Figure 4.4B, # = significantly different compared to 30 µg/ml 

concentration group; * = significantly different compared to the 8 brain regions, P < 0.05. 

Figure 4.4C, # = significantly different between 20s and 60s perfusion duration groups, 

F(2,81) = 9, P < 0.0004. 

 

dose associated with cerebral capillaries and brain parenchyma. This separation revealed 

that a great majority of the ceria ENM (99.4% ± 1.1% of the total ceria ENM in both the 

capillary rich fraction plus brain rich fraction) was associated with the capillary 

endothelial cells. Less than 0.003% of the ceria ENM dose was associated with the brain 

tissue rich fraction (Figure 4.5). These results suggest that most of the 4.2 ± 0.7 µg ceria 

ENM in the perfused brain hemisphere was associated with the capillary endothelial cells 

and very little ceria ENM passed through the endothelial cells into brain extracellular 

fluid or brain cells.  

 

4.3.5. Ceria ENM localization using LM and EM 

LM and EM were used to confirm BBB integrity and determine the localization of ceria 

ENM in the endothelial cells and/or brain tissue. Light microscopic examination of 

choroid plexus revealed the presence of a cuboidal epithelial cell layer surrounding a core 

of capillaries with some surrounding loose connective tissue. There appeared to be no 
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Figure 4.5. Capillary depletion results. The percentage of the ceria ENM dose in the 

capillary rich fraction and brain rich fraction for 100 µg/ml, at a flow rate of 20 ml/min, 

120 s perfusion duration, followed by 20 s washout. 

 

physical injury from the exposure to the high perfusate flow rate (Figure 4.6A). A 

capillary in the mid-CA1 region of the hippocampus is shown in Figure 4.6B. The 

pyramidal cells appeared unaffected by in situ perfusion. In the posterior pituitary, 

capillaries were not affected by the high perfusate flow rate (Figure 4.6C).  At the 

ultrastructural level, the endothelial lining of the choroid plexus appeared intact (Figure 

4.7A).  The adjacent ependymal cell layer was lined by tightly adhering cells with well 

developed surface microvilli creating frond-like processes projecting into the ventricles.  



 

   8
6
 

 

 

 
Figure 4.6. The capillaries in the choroid plexus (A), hippocampus (mid-CA1 region) (B) and pituitary (C) were not affected by the 

high perfusate flow rate. Rats perfused with 100 µg ceria ENM/ml, at a flow rate of 20 ml/min, and perfusion duration of 120 s.  

 

 
Figure 4.7. A capillary with intact endothelial lining in the choroid plexus containing two  ceria ENM agglomerates (arrows) (A).  A 

vessel in the hippocampus (B) and a vessel from the pituitary gland (C) associated with fine ceria ENM (arrows).  Rats perfused 

with 100 µg ceria ENM/ml, at a flow rate of 20 ml/min, and perfusion duration of 120 s.  
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Consistent with the high ceria concentration in the choroid plexus, electron dense ceria 

ENM agglomerations were observed on the endothelial lining (Figure 4.7A). Meanwhile, 

electron dense nonagglomerated ceria ENM particles adhered to the endothelial lining in 

the hippocampal vessels (Figure 4.7B) and the pituitary gland vessels that lack a BBB 

(Figure 4.7C).  Ceria ENM associated with the surface of brain capillary endothelial cells. 

No ceria ENM was observed in any brain tissue, consistent with our capillary depletion 

results. The ultrastructural data lend support to the calculation that 2.4 ± 0.4 % of the 

luminal surface area of the capillary endothelial cells would be occupied by the 4.2 ± 0.7 

µg ceria ENM per hemisphere measured in our uptake study.   

 

4.4. Discussion 

The results demonstrate that this ceria ENM did not influence BBB integrity. Perfusate 

flow rate and ceria ENM concentration did not influence ceria ENM uptake to brain 

parenchyma, providing evidence for a non-diffusion mechanism. The uptake space of the 

5 nm ceria ENM did increase compared to the vascular space, leading to the conclusion 

that the 5 nm ceria ENM either associated with capillary endothelial cells or entered the 

brain. The capillary depletion method showed that most of the ceria ENM associated with 

the capillary cells. Association of the ceria with the brain endothelial cells was a very 

rapid process that saturated between 20 and 60 s using a flow rate of 20 ml/min and ceria 

ENM concentration of 30 µl/ml. Electron microscopy revealed the ceria ENM was 

associated with the capillary luminal wall and was not seen inside the brain capillary 

endothelial cells. 
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Prior to the present studies how metal or metal oxide ENMs interact with or cross the 

brain capillary endothelial cells was poorly understood.  One of the issues relevant to 

how nanomaterials interact with biological membranes is that “what the cell sees” may 

not be the same as the ENM introduced into the study preparation (e.g., cells in culture, 

intact mammal in this study).  Several researchers showed that ENMs agglomerate in cell 

culture media (22, 182). In blood, plasma proteins rapidly adsorb to nanoparticle 

surfaces, to form a protein corona which can change the physicochemical properties and 

influence the fate of ENMs (232, 254, 255). It is hard to interpret some in vitro and in 

vivo nanoparticle studies because of their agglomeration in cell culture media and 

development of the protein corona in blood. In our studies, we used a technique that does 

not allow the nanoparticles to mix with blood. We determined the size distribution and 

stability of our ceria ENM in the perfusate from 1 to 230 min. The results did not show 

agglomeration, which was supported by EM images that did not show significant ceria 

ENM agglomeration in rat brain.  This is the first report of ceria ENM interaction with 

the BBB in vivo under conditions that control ENM chemistry. This research helps us to 

understand citrate-coated 5 nm ceria brain capillary cell association, potential brain entry 

and redistribution. The in situ brain perfusion technique is a good experimental method to 

investigate how the different physicochemical properties of ENMs interact with or cross 

the BBB in the absence of major agglomeration and a protein corona. The research will 

help us understand how certain physicochemical properties influence the ability of ENMs 

to associate with or cross the BBB for therapeutic application.  
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Our results showed that most of the ceria ENMs are associated with brain capillary cells 

rather than brain cells. Several studies showed that metal and metal oxide ENMs cross 

the BBB (7, 31, 256). However, without separating brain capillary cells from brain cells, 

it is very possible that the ENMs in those studies were associated with endothelial cells 

rather than entering brain parenchyma. For example, based on ICP-MS results of brain 

metal content, bovine serum albumin-coated silver ENM was in the brain, compared with 

control.  Signs of silver-induced brain damage were observed. However, EM did not 

reveal silver ENMs in the brain (257). It is possible that the silver ENMs associated with 

the BBB and released silver ions to produce the toxicity rather than being an effect of 

silver ENMs. A previous study using the in situ brain perfusion method reported that 

polymer-based nanoparticles entered the central nervous system within 60 s without 

influencing BBB integrity. However, the researchers did not separate the capillary cells 

from the brain parenchyma. They showed an uptake space similar to results we obtained 

at 20 and 60 s. Capillary association may also contribute to their brain uptake space 

(258). Our previous studies showed only 0.02% of a 5 nm ceria dose in the brain 1 h after 

iv infusion. However we didn’t observe any 5 nm ceria ENM in brain tissue (8). In light 

of the results in this paper, the 0.02% ceria in the brain may be ceria ENM in blood and 

associated with capillary cells. In this study, brain association (0.386% of the ceria ENM 

dose) using in situ perfusion is 19 times higher than our previous report (0.02% of the 

ceria dose) 1 h after iv infusion. The different  timelines (in the prior study brain samples 

were obtained 1 h after completion of a ceria infusion; in the present immediately after 

completion of ceria perfusion) and routes (intravenous vs. intra-carotid artery) may 

contribute to the ceria ENM brain capillary association differences. In the present studies 
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using in situ brain perfusion ceria ENM did not mix with blood and avoided first pass 

clearance. After intravenous administration ceria ENM agglomerated in the blood and 

protein corona formation changed its physicochemical properties, resulting in rapid 

clearance by the mononuclear phagocyte system (181, 259) . Ceria ENM may associate 

with brain capillary cells at 120 s perfusion and dissociate over time. The above reasons 

may explain the high brain capillary ceria ENM association compared with our previous 

iv infusion study. 

 

Our EM results showed that most of the ceria ENM is on the luminal surface of brain 

capillary cells rather than inside these cells.  Brain capillary cell association with this 

negatively charged ceria ENM is in agreement with a previous kinetic study that reported 

a negatively charged nanoparticle associated with the cell surface within seconds by 

Langmuir adsorption through electrostatic interaction (260). After surface adsorption, the 

next step may be dissociation and redistribution or cell internalization. The time course of 

cell internalization of metal oxide nanoparticles is still under investigation. Anionic iron 

oxide ENMs attached onto the cell membrane of Hela cells immediately after ENM 

introduction to the cells. Early endocytic coated vesicles were observed at 10 min (260). 

Most of the literature we are aware of showed cell line- and material-dependent ENM 

internalization half lives more than a few min in vitro and in vivo (151, 260-263).   

Fourteen, 50 and 74 nm gold nanoparticles had uptake half lives more than 1 h in three 

different cancer cells (151). Flux of cationic arginine-vasopressin nanoparticles across the 

BBB started at 15 min though absorptive-mediated endocytosis in mice (262).  Because 

of the nature of the in situ perfusion technique, perfusion duration in the present study 
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was not greater than 120s (252). More research will need to be done to understand what 

happens after the ceria ENMs interact with brain capillary cells. However, no matter what 

does happen, it is very important to know the rate and extent of cell surface adsorption; 

because it is the initial step for ENM cell uptake and potential redistribution back into 

blood.  

 

In this study, capillary depletion results showed ceria ENM associated with brain 

endothelial cells. Electron microscopy failed to find any 5 nm ceria in brain tissue, 

however, nonagglomerated ceria ENM was observed to associate with the luminal wall of 

brain capillary endothelial cells. Assuming all of the ceria associated with the capillary 

surface without any agglomeration and based on the mass of ceria ENM we observed in 

rat brain after arterial ceria ENM perfusion, our calculation showed that 2.4 ± 0.4 % of 

the brain capillary surface area might be covered by the ceria ENM. We think that the 4.2 

± 0.7 µg of ceria ENM per brain hemisphere seen in the present study might contribute to 

ceria ENM redistribution or sustained release back to blood.  Ceria ENM dissociation 

from the brain capillary lumina over time may provide an explanation for findings in our 

pharmacokinetic study where the circulating blood level of two sizes of ceria ENMs 

increased from 2-4 hours after completion of their iv infusion, which cannot be explained 

using conventional pharmacokinetics (259).  A similar increase of ENM in blood within 

the first 2 h after its intravenous administration has been reported for quantum dots, 

however explanation of the increase was not discussed in these reports (230, 231). ENMs 

that associate with, and subsequently disassociate from, the vascular wall might provide 

an explanation.  Another study showed that 100-200 nm ceria ENMs (primary size 3-5 
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nm) were observed on the luminal surface of mice tail vein 30 days post  intravenous 

injection (223). It is not known if these agglomerated ceria nanoparticles were from 

original association with the blood vessel or from redistribution over time.  In general, 

our results showed that ENMs can associate with capillary cells which may contribute to 

nanoparticle redistribution back into the blood. 

 

This is the first report that a ceria ENM has a higher concentration in the choroid plexus 

compared with brain regions. Our vascular space results measured by Gd-DTPA showed 

that the choroid plexus has a larger vascular space than brain tissues. The choroid plexus 

showed a significantly higher uptake space compared with brain regions in the 100 and 

500 µg/ml concentration groups rather than 30 µg/ml group. The uptake space of choroid 

plexus did not change between 100 and 500 µg/ml concentration groups. Little is known 

about how metal oxide nanoparticles interact with the choroid plexus. The choroid plexus 

has larger surface area per weight, a leaky epithelial barrier, and different junction 

proteins and transport protein expression compared to cerebral endothelium (264, 265). 

The fundamental differences between the choroidal epithelium and the cerebral 

endothelium may influence the ceria ENM association sites and determine the ceria ENM 

saturation concentration. Ceria agglomerates (Figure 4.7) were observed in the choroid 

plexus compared to fine primary ceria ENM on the surface of the brain endothelial cells, 

providing evidence that ceria ENM may associate with choroid plexus differently than 

the BBB, leading to higher concentrations in the choroid plexus.  Previous research 

showed that the choroid plexus sequesters metal ions rapidly and that their concentrations 

were more than 10 times higher than other brain regions (247, 266). Some polymer 



93 

 

nanoparticles showed similar results as the present study. Poly (d,l-lactide-co-glycolide) 

nanoparticles showed a high concentration in the choroid plexus (158).  The choroid 

plexus is considered to be a potential region to retain nanoparticles (267) and a pathway 

to enter the CNS (158, 268). Our results provide the first evidence that ceria ENMs 

interact significantly with the choroid plexus. Our data showed high variability in choroid 

plexus. The choroid plexus in rats only weigh 1-2 mg, which might contribute for the 

high variability. However, this results provides initial evidence of high ceria ENMs 

association with choroid plexus, which is very important for toxicity concerns and 

therapeutic application.  

 

4.5. Conclusion  

Brain uptake of a 5 nm ceria ENM was flow rate and perfusion concentration 

independent, showing diffusion was not mediating its association with brain tissue. The 

ceria ENM concentration was significantly higher in the choroid plexus than in 8 brain 

regions. Brain ceria ENM association was a very rapid process that reached saturation 

between 20 and 60 s. The capillary depletion method showed that the ceria ENM was 

predominately associated with the brain capillary cells rather than brain parenchyma. 

Furthermore, EM showed most of the ceria ENM associated with the luminal surface of 

brain endothelial cells, rather than entering the cells. This research provides the first data 

on the kinetics of ceria interaction with the BBB and choroid plexus.  Ceria ENM 

capillary cell surface association also provides a site from which it can dissociate, 

redistribute or enter the capillary cells.  This information will be important for design of 

ceria ENMs as a therapeutic agent as well as for a comprehensive toxicology assessment. 



94 

 

13B13B4.6. Unsolved problems 

This study showed that the brain entry of ceria ENMs is very limited. However, ceria 

ENMs can associate with the BBB, which provides the possibility to enter the BBB for 

therapeutic applications. Chapters 3 and 4 demonstrated that it is very important to design 

biocompatible and stable metal-based ENMs for biomedical applications. Furthermore, 

different strategies should be used to increase metal-based ENMs flux across the BBB. In 

chapters 5 and 6, we designed CNA-IONPs which have the potential to improve the 

biocompatibility and stability of IONPs and enhance IONP flux across using AMF-

induced local hyperthermia compared to conventional hyperthermia.  
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Chapter 5 Block copolymer cross-linked nanoassemblies improve particle stability 

and biocompatibility of superparamagnetic iron oxide nanoparticles 

 

As I described in 2.5.2, IONPs tend to agglomerate in aqueous solutions unless their 

surface is properly modified, resulting in plasma protein binding in vivo and rapid 

clearance by the MPS (39). Several studies showed that IONPs, either bare or surface-

modified, could cause cell toxicity and oxidative stress in vitro and in vivo (40-42). 

Therefore, it is crucial to improve particle stability and biocompatibility of IONPs in the 

biological environment. In this chapter, we hypothesized that CNAs containing carboxyl 

groups in the core would simultaneously create, entrap, and protect IONPs as iron ions 

(Fe
2+

 and Fe
3+

) co-precipitate inside the nanoassembly core, thus suppressing IONP 

agglomeration and improve the biocompatibility of IONPs without losing their 

superparamagnetic properties. CNA-IONPs would be beneficial for future MRI and 

AMF-induced remote hyperthermia applications.  

 

14B14B5.1. Introduction 

Aggregation of IONPs leads to altered magnetic properties or even complete loss of 

magnetism (48). In addition, IONPs are easily oxidized, transforming from magnetite 

(Fe3O4) to maghemite (γFe2O3), leading to a broad spectrum of particle size, shape, 

stability, and magnetic properties (35, 204). Numerous efforts have been made to 

suppress agglomeration and retain the superparamagnetic properties of IONPs for a 

prolonged time (269-271). Citric acid is commonly used to stabilize IONPs in aqueous 

solutions (43, 45, 272). Although citric acid forms a stable chelate with iron oxide, it is 
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not sufficient to prevent agglomeration and precipitation in the presence of multivalent 

counter ions (magnesium or calcium) and serum proteins (105-107, 273). Importantly, 

these IONP formulations, which change particle stability over time in vivo, could 

potentially cause toxic effects in vivo (46, 47).  

 

To solve these problems, we recently developed CNAs from biocompatible PEG-p(Asp) 

block copolymers, which provided stable nanoparticles that can entrap charged, 

hydrophobic, and amphiphilic payloads without changing particle sizes optimized for 

tumor accumulation (< 100 nm) (55-57). We hypothesized that CNAs containing 

carboxyl groups in the core would simultaneously create, entrap, and protect IONPs as 

iron ions (Fe
2+

 and Fe
3+

) co-precipitated inside the nanoassembly core, thus suppressing 

IONP agglomeration (Figure 5.1). In this study, we tested our hypothesis and confirmed 

that IONPs incorporated into CNAs improve their particle stability and biocompatibility 

in aqueous solutions without compromising paramagnetic properties.  

 

Particle stability and biocompatibility were determined with or without 30 min AMF 

exposure in water, PBS, and a cell culture medium with 10% FBS at 22, 37, and 43 °C, 

respectively. Cytotoxicity of the particles was investigated using a mouse brain 

endothelial-derived cell line (bEnd.3). T2-weighted MRI enhancement of CNA-IONPs 

was tested in water, PBS and a cell culture medium. AMF-induced heating properties of 

1, 2.5 and 5 mg/mL CNA-IONPs were also evaluated in a cell culture medium for future 

hyperthermia applications. Conventional citrate-coated IONPs (Citrate-IONPs) were used 
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as control. Results of this study provide insight into potential applications of CNA-

IONPs, integrating MRI diagnosis and thermal therapy.  

 

 

 

 

Figure 5.1. Citrate-coated iron oxide nanoparticles (Citrate-IONPs) and cross-linked 

nanoassemblies entrapping IONPs (CNA-IONPs). (A: A chelate is formed between citric 

acid and Fe3O4 iron oxide; B: CNA-IONPs entrap Fe3O4 in the core to protect the iron 

oxide from agglomeration and protein binding; and C: Fe3O4 IONPs are stabilized in the 

cross-linked core of CNAs.) 

 

15B15B5.2. Materials and methods  

5.2.1. Materials 

N,N′-Diisopropylcarbodiimide (DIC), N-hydroxysuccinimide (NHS), 4-

(dimethylamino)pyridine (DMAP), β-benzyl L-aspartate, triphosgene, hexane, benzene, 

tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), ferrous chloride tetrahydrate 

(FeCl2·4H2O), ferric chloride hexahydrate (FeCl3·6H2O), ammonium hydroxide 

(NH4OH), citric acid monohydrate, and ethanol (100%) were purchased from Sigma-
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Aldrich (St. Louis, MO, USA). α-Methoxy-ω-amino poly(ethylene glycol) (PEG, 5 kDa) 

was purchased from the NOF Corporation (Tokyo, Japan). Cell culture medium 

Dulbecco's Modified Eagle Medium (DMEM), regenerated cellulose dialysis bags with 6 

 8 kDa molecular weight cut off (MWCO), sodium hydroxide (NaOH), and 

hydrochloric acid (HCl) were purchased from Fisher Scientific (USA). FBS was 

purchased from Atlanta Biologicals (Lawrenceville, GA, USA) and penicillin-

streptomycin (Pen-Strep) was purchased from Invitrogen (Grand Island, NY, USA). 

 

5.2.2. Synthesis of CNAs 

CNAs were prepared by cross-linking poly(ethylene glycol)-poly(aspartate) [PEG-

p(Asp)] block copolymers as previously reported with slight modification (55). Briefly, 

β-benzyl-L-aspartate N-carboxy anhydride (BLA-NCA) monomers were prepared by 

reacting β-benzyl-L-aspartate with triphosgene (1.3 equivalent) in dry THF at 45 C until 

the solution became clear. Anhydrous hexane was added to the BLA-NCA, which was 

subsequently recrystallized at -20 C. As shown in Figure 5.2, BLA-NCA monomers were 

polymerized using amino-terminated 5kDa PEG as a macroinitiator in DMSO (50 

mg/mL) at 45 C under dry nitrogen for 48 h to synthesize PEG-poly(β-benzyl L-

aspartate) (PEG-PBLA). PEG-PBLA was collected from the reaction solution by 

precipitation in diethyl ether and freeze drying from benzene. 
1
H-NMR (400 MHz, 

Varian) spectra from PEG (3.5 ppm) and benzyl groups (7.3 ppm) was used to determine 

the block copolymer composition. PEG-PBLA with 40 aspartate repeating units was used 

for this study. The benzyl groups of PEG-PBLA were removed by 0.1 N NaOH. The 

benzyl alcohol byproducts and excess NaOH were removed through dialysis, followed by 
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desalination of the aspartate through the addition of HCl to the dialysis solution to yield 

PEG-p(Asp). To prepare CNAs, PEG-p(Asp) was dissolved in DMSO to a final 

concentration of 75 mg/mL followed by the addition of DIC, NHS, and DMAP (in a 

molar ratio of 4:4:0.2, respectively) to the aspartate units of PEG-p(Asp). A 0.5 molar 

equivalent of 1,8-diaminooctane was added to the reaction solution, which was placed at 

50 C for 72 h. The CNAs were dialyzed against 100% DMSO, 50% DMSO, and finally 

deionized water to remove impurities, followed by freeze drying. CNA purity was 

characterized with gel permeation chromatography (GPC, Shimadzu LC20, Japan), which 

was equipped with refractive index (RI) and ultraviolet (UV) detectors. PEG standards 

were used to establish a calibration curve for molecular weight determination (Mn = 

number molecular weight). 

 

5.2.3. Preparation of Citrate-IONPs and CNA-IONPs 

Citrate-IONPs were prepared by co-precipitating iron oxides and citric acid in an aqueous 

solution as previously reported (186). As shown in Figure 5.2B, ferric chloride 

hexahydrate (Fe
3+

) and ferrous chloride tetrahydrate (Fe
2+

) were dissolved in deionized 

water (Fe
3+ 

Fe
2+

 = 2:1), followed by adding ammonium hydroxide dropwise under an N2 

atmosphere at 85 ºC. Citric acid (2 equivalent) was then added to prepare Citrate-IONPs. 

After 1 h, the solution was placed on a magnet to collect black brown particles, which 

were washed repeatedly using pure ethanol (274, 275). Citrate-IONPs were dried 

overnight in a vacuum drying oven.  
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Figure 5.2. Synthesis schemes for empty CNAs (A), Citrate-IONPs (B), and CNA-

IONPs (C).  

 

 

CNA-IONPs were prepared similarly by mixing ferric and ferrous salts at a 2:1 molar 

ratio with CNAs in deionized water (Figure 5.2C). The total iron ions and the carboxyl 

groups of CNAs were adjusted in a molar ratio of 1:2. Ammonium hydroxide was added 

to this mixed solution dropwise under nitrogen atmosphere and the reaction was allowed 

to proceed at 85 C for 1 h. The solution was centrifuged at 3,000 g for 5 min to remove 

precipitates and other water-insoluble impurities. CNA-IONPs in the supernatant were 

dialyzed (MWCO 6  8 kDa), filtered (0.22 µm syringe filters), and collected by freeze 

drying. 
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5.2.4. Particle characterization 

The particle size distribution was determined by DLS analysis (90Plus NanoParticle size 

distribution analyzer, Brookhaven Instruments, Holtsville, NY, USA). Zeta potential was 

measured with Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). The 

IONP loading content for CNA-IONPs was quantified by thermal gravimetric analysis 

(TGA, Perkin-Elmer TGA7 Analyzer, Waltham, MA, USA) and inductively coupled 

plasma mass spectrometry (ICP-MS, Agilent 7500cx, Santa Clara, CA, USA). TGA and 

ICP-MS determined the amount of iron remaining from CNA-IONPs, following thermal 

decomposition (100 ~ 600 ºC) and chemical digestion (HNO3:H2O2 = 2:1) of CNAs, 

respectively. 

 

5.2.5. Particle size and stability evaluation in aqueous media 

Particle size and stability of Citrate-IONPs and CNA-IONPs (0.1 mg/mL, based on IONP 

content) were first observed by dissolving the particles in water, PBS, and DMEM with 

10% FBS and 1% Pen-Strep, using 1.5 mL microvials. Aqueous solubility, particle size, 

and stability of Citrate-IONPs and CNA-IONPs were further characterized under various 

media: in water at 1 mg/mL, 22 °C, for 30 h; in water at 1 mg/mL, 37 °C, for 30 h; in cell 

culture medium at 1 mg/mL, 37 °C, for 30 h; and in cell culture medium at 1 mg/mL, 43 

°C, for 30 h, as discussed in detail in the Results and Discussion section. DLS was used 

to monitor time-dependent changes in particle size of all samples. 
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5.2.6. Cytotoxicity assays 

A mouse brain endothelial cell line (bEnd.3) was obtained from American Type Culture 

Collection (CRL-2299). The cells were cultured in a humidified incubator (37 ºC and 5% 

CO2) and used from passages 5 through 10. Cells were seeded on 96 well plates (4,000 

cells/well) and incubated with DMEM supplemented with 10% FBS and 1% Pen-Strep 

for 24 h. These cells were treated with Citrate-IONPs (0, 0.002, 0.02, 0.05, 0.1, and 0.2 

mg/mL) and CNA-IONPs (0, 0.2, 0.5, 1, 5, and 10 mg/mL). Citrate-IONP and CNA-

IONP concentrations were based on cytotoxicity observed in preliminary experiments. 

The cells were incubated with Citrate-IONPs or CNA-IONPs for 0.5, 3, 6, 12 and 30 h, 

followed by washing the cells with PBS three times. After additional 24 h incubation in 

fresh cell culture media, cell viability was determined using the resazurin dye assay. 

Resazurin in PBS was added to the cell-containing wells to a final concentration of 100 

µM. Cell plates were incubated for an additional 3 h as non-fluorescent resazurin was 

converted to fluorescent resorufin by live cells (276, 277). Resorufin signals were 

measured at λex 485 nm and λem530 nm. Cell viability was reported as % of control at the 

same time.  

 

5.2.7. Magnetic resonance imaging 

Citrate-IONPs and CNA-IONPs were dispersed in water, PBS, and cell culture media 

with two-fold serial dilutions ranging from 0.02 to 2.5 mg/mL (based on IONP content). 

Citrate-IONP and CNA-IONP solutions (150 µL) were placed in a 96 well plate and 

imaged on a 3.0 Tesla MR imager (Siemens Tim Trio, Erlangen, Germany) using a 10 cm 

diameter surface coil to enhance the received signal. Multiple, T2-weighted fast spin echo 



103 

 

images of all samples were acquired with different echo time (TE), to visualize the 

dependence of the T2 relaxation time on the particle composition and dispersing media. 

From the multi echo T2 images acquired at different echo times, we used a custom-

developed software code to derive T2 on a pixel-by-pixel basis. From these images we 

estimated the average T2 within the wells of CNA-IONPs in the three media as a function 

of particle concentration.  

 

5.2.8. Evaluation of AMF-induced heating profiles and particle stability after AMF 

exposure 

The heating profiles of CNA-IONPs were evaluated in cell culture media (1, 2.5, and 5 

mg/mL) under AMF induced by a Taylor Winfield induction power supply (Taylor-

Winfield Technologies MMF-3-135/400-2, Columbus, OH, USA) equipped with a 15 

mm diameter, 5 turn solenoid. The AMF field parameters were set to 59.3 kA/m at 300 

kHz for 30 minutes. The temperature of the medium was measured every 0.25 seconds 

for 30 minutes using a Fluoroptic® thermometer (LumaSense Technologies, Santa Clara, 

CA, USA). The initial medium temperature was 37 ºC. The CNA-IONP particle stability 

was monitored in cell culture media (1, 2.5, and 5 mg/mL) for 30 h after 30 min AMF 

using DLS. 

 

5.2.9. Statistical analysis 

One-way ANOVA followed by Tukey’s test was used to test for significant differences 

on particle sizes of the samples with 37 and 43 °C incubation temperatures for 30 h (1 

mg/mL) or different concentrations (1, 2.5 and 5 mg/mL) for 30 h after 0.5 h AMF 
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compared to the particle size of sample at time 0 with 22 °C incubation temperatures (1 

mg/mL). Two-way ANOVA followed by Bonferroni multiple comparisons was used to 

test for significant differences among different concentration groups and times (GraphPad 

Prism Version 3.00 for Windows, GraphPad Software, San Diego, CA). The results of the 

statistical analysis for one-way ANOVA and two-way ANOVA will be reported as F(df 

effect, df error) = F-value and P-value. Statistical significance was accepted at a level of 

p < 0.05. All results are reported as mean ± standard deviation (SD).  

 

Figure 5.3. Gel permeation chromatography (GPC) spectra of CNAs. 
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5.3. Results and discussion 

5.3.1. Preparation and characterization of Citrate-IONPs and CNA-IONPs 

GPC analyses confirmed that CNAs were successfully formed with narrow dispersity 

(Figure 5.3). Molecular weight of CNAs was 304,007 Da, indicating that approximately 

32 PEG-p(Asp) block copolymer chains formed an individual CNA particle. No free 

PEG-p(Asp) block copolymers (Mn = 9,600 Da) were seen after CNA synthesis, 

although small molecular weight impurities (Mn = 2,859 Da) were observed. The particle 

size of empty CNAs was 36 ± 5 nm. These results were consistent with our previous 

observations for other CNAs (55, 56). The solution containing IONPs formed dark brown 

precipitates immediately after NH4OH was added in the presence of either citric acid or 

empty CNAs. In comparison to Citrate-IONPs, CNA-IONPs remained soluble in aqueous 

solutions even after centrifugation. As a result, unreacted iron ions, aggregated IONPs, 

and other impurities were readily removed from CNA-IONPs. Subsequent DLS 

measurements showed that CNA-IONPs were 25 ± 3 nm, similar to empty CNAs, 

indicating that the cross-linked core of CNAs effectively suppressed the growth of IONPs 

inside the nanoassemblies, preventing aggregation. Citrate-IONPs were initially 90 ± 10 

nm in water at 200 µg/mL, but their particle sizes varied as agglomeration and 

precipitation occurred (discussed in detail in Particle stability section). CNA-IONPs 

showed 25 ± 3 and 25 ± 1 % (wt%) IONP loading, determined by TGA and ICP-MS 

analyses, respectively. Zeta potentials of Citrate-IONPs and CNA-IONPs in PBS at pH 

7.4 were -29.5 ± 3.6 and -5.0 ± 0.6 mV, respectively. These results suggested that CNA-

IONPs effectively protected IONPs inside the carboxyl-rich nanoassembly core, shielding 

the electric charge of IONP chelates with CNAs.  
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5.3.2. Particle stability 

Citrate-IONPs and CNA-IONPs were first dispersed in water, PBS, and cell culture 

media at 0.1 mg/mL for solubility testing (Figure 5.4). Citrate-IONPs dispersed partially 

in aqueous solutions, but the solutions were turbid (Figure 5.4A), forming precipitates 

(Figure 5.4B, blue box). On the other hand, CNA-IONPs were stable in all aqueous 

solutions: the letters ‘IO’ can be seen clearly through the brown solution in Figure 5.4A 

and no precipitates are seen in Figure 5.4B (red box). Interestingly, Citrate-IONPs 

remained at around 400 nm in the serum-containing cell culture medium at 37 ºC for 3 h, 

but they ultimately precipitated in water, PBS, and DMEM (Figure 5.5A). It is surmised 

that Citrate-IONPs in the cell culture medium might have bound to bovine serum albumin 

(BSA) from 10% FBS, forming 400 nm complexes that dispersed in the solution as 

previous studies reported that BSA stabilized metal oxide nanoparticles (278-280). 

Nevertheless, rapid agglomeration in the cell culture medium to > 400 nm will still likely 

limit biomedical applications of Citrate-IONPs. Previous research demonstrated that 

IONPs smaller than 50 nm had a longer circulation time in blood than larger IONPs that 

were rapidly cleared by the MPS (281). 
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Figure 5.4. Citrate-IONPs and CNA-IONPs in aqueous solutions. (A: Turbidity of 

sample solutions at 0.1 mg/mL; and B: Enlarged images of the bottom of a 1.5 mL glass 

vial showing precipitates of Citrate-IONPs [blue box] but not CNA-IONPs [red box]) 

 

CNA-IONPs were stable in water and cell culture media at 22, 37, and 43 °C for 30 h, 

and particle size remained unchanged between 25 ~ 29 nm in diameter (Figures 5.5A and 

5.5B). There were no significant changes in the particle size of CNA-IONP from 1 to 5 

mg/ml (Figure 5.5C). A previous study showed that the magnetic property of IONPs is 

size-dependent and that the particle size is linearly correlated with the saturation  
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Figure 5.5. Particle stability characterization results. Samples were incubated in DMEM 

cell culture media with 10% FBS. (A: Time-dependent changes of particle sizes for 

Citrate-IONPs [circles] and CNA-IONPs [squares] incubated at room temperature. The 

asterisk (*) indicates that Citrate-IONPs started precipitating; B: Temperature effects on 

particle sizes for CNA-IONPs incubated for 30 h (n = 6); and C: Concentration effects on 

particle sizes of CNA-IONPs following 30 min AMF (n = 4)) 

 

magnetization of IONPs (282). As mentioned above, IONPs below 50 nm can circumvent 

the MPS and have a longer circulation time (281). Several researchers demonstrated 

plasma proteins rapidly bound to nanoparticle surfaces, forming a protein corona which 

can change nanomaterial physicochemical properties and influence their fate in vivo 

(232, 254, 283). In this study, the presence of 10% FBS in cell culture medium produced 

no significant change in the particle size of CNA-IONPs over 30 h in a biologically-

relevant medium compared with their size in water. In general, the small particle size that 

remained constant for > 30 h is favorable for in vivo applications using CNA-IONPs 

because particle size-induced changes in IONPs magnetic properties and biodistribution 

will be minimal. Therefore, these results suggested that CNA-IONPs would be stable in 
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blood in vivo, which will be beneficial especially for increasing their blood retention 

time, and thus potentially improving blood-tumor barrier penetration for diagnosis and 

therapy of tumors located away from the body surface such as brain (284).  

 

5.3.3. Cytotoxicity of Citrate-IONPs and CNA-IONPs 

Time-dependent cytotoxicity of Citrate-IONPs and CNA-IONPs was tested in a murine 

brain endothelial cell line (bEnd.3) as shown in Figure 5.6. Citrate-IONPs caused a 

significant decrease in cell viability at concentrations greater than 0.05 mg/mL, and cell 

viability dropped rapidly at 0.1 mg/mL after 3 h (Figure 5.6A). This is consistent with 

previous reports showing IONPs caused serious cytotoxicity in cells, limiting their 

applications as imaging contrast agents (41), and significantly increased reactive oxygen 

species (> 0.025 mg/mL) (285). Even FDA-approved MRI contrast agents, such as 

Endorem® and Sinerem® (derivatized dextran coated IONPs), are reported to cause cell 

growth inhibition over a 24 h period at 0.05 mg/mL (286), similar to the Citrate-IONPs 

cytotoxic concentration in this study. Previous studies showed that IONP toxicity in vitro 

was highly dependent on size, surface modification, charge, and cell type (287). 

However, most IONPs started to show toxicity above 1 mg/mL in vitro despite their size, 

surface modification, charge, or the cell type (41). On the contrary, CNA-IONPs caused 

no cell death up to 10 mg/mL and 30 h exposure (Figure 5.6B). These results demonstrate 

that CNA-IONPs significantly improved biocompatibility of IONPs entrapped inside the 

nanoassemblies as opposed to citrate-IONP formulations.  
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Figure 5.6. Biocompatibility characterization results. A mouse brain endothelial cell line 

(bEnd.3) was incubated with either Citrate-IONPs (A) or CNA-IONPs (B) at different 

concentrations and times (n = 4). The asterisks (*) indicate significant differences 

(F(4,75) = 150, p < 0.0001) from the three lower concentrations (0.002, 0.02, and 0.05 

mg/mL).  

 

5.3.4. MRI of Citrate-IONPs and CNA-IONPs 

Citrate-IONPs and CNA-IONPs showed concentration-dependent changes on T2-

weighted MR images (image darkening) (Figure 5.7). Citrate-IONPs showed contrast 

patterns similar to CNA-IONPs in water, but Citrate-IONPs dispersed initially yet 

agglomerated gradually in PBS and cell culture media, forming agglomerates on the 

bottom of wells when placed in the magnetic field of the MR imager. Images acquired 

transverse to the wells showed that Citrate-IONPs precipitated at the bottom of wells 

producing zones of intense signal loss on T2 images (side-view images in Figure 5.7). 

Citrate-IONPs showed a dark signal on the T2 images above 0.16 mg/mL in water. 

Citrate-IONPs were observed to agglomerate faster in cell culture medium than PBS at 

the same concentration (data not shown), and showed dark images above 0.63 mg/mL. 
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On the contrary, CNA-IONPs were stable in water, PBS and cell culture media (Figure 

5.4B, red box), showing concentration-dependent T2-weighted MRI contrast (Figure 5.7). 

CNA-IONPs produced dark MR images as low as 0.04 mg/mL in water and 0.02 mg/mL 

in cell culture medium. CNA-IONPs evenly distributed in the solution and produced 

homogenous MR images. The average T2 within the wells of CNA-IONPs in water, PBS 

and cell culture medium as a function of their concentration were estimated from these 

images. Plots of relaxation rate (i.e. 1/T2) versus CNA-IONP concentration showed a 

linear dependency with correlation coefficients nearly 1 in all three media (data not 

shown). From the slope of 1/T2 vs particle concentration curves, we estimated CNA-

IONP relaxivities to be 70, 63 and 73/s/mM Fe in water, PBS and cell culture medium, 

respectively. Previous research showed that IONPs have T2 relaxivities around 30 /s/mM 

Fe (1, 39, 52). Contrast efficiency was considerably enhanced by CNA-IONPs compared 

with Citrate-IONPs. We tried to estimate relaxivities for the T2* relaxation rates (1/T2*, 

s
-1

) measurements in a similar way. However, the T2* was so low for the samples that the 

measurements were not reliable. Nevertheless, the ratio of T2* relaxivity and T2 

relaxivity (R2*/R2, mM
-1

s
-1

) would be high, indicating the potential of the CNA-IONPs 

to strongly influence the contrast on either T2* or T2 weighted MRI. Previous clinical 

investigation showed that IONPs with diameters less than 40 nm can accumulate at the 

margins of human brain tumors resulting in improvement of their delineation on MRI 

(73). Therefore, CNA-IONPs are expected to significantly improve contrast efficiency 

and serve as excellent T2 contrast agents in future in vivo applications. 
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Figure 5.7. Visual images and T2-weighted MRI of Citrate-IONPs and CNA-IONPs. 

Serial dilutions of the samples were prepared on a 96-well plate, containing water, PBS, 

and DMEM with 10% FBS. Side view images of transverse plane MRIs show dispersion 

and precipitation of the Citrate-IONPs and lack of CNA-IONP precipitation in DMEM 

with 10% FBS.  

 

5.3.5. AMF-induced heating profiles and particle stability after AMF exposure 

Another exciting application of IONPs is AMF-mediated remote heating hyperthermia. 

CNA-IONPs in cell culture media generated heat in response to AMF, increasing the 

solution temperature in a concentration-dependent manner (Figure 5.8). The solution 

temperature reached equilibrium in 10 min at 40, 41 and 42 °C with 1, 2.5 and 5 mg/mL 

CNA-IONPs, respectively. This temperature range is promising because previous results 

demonstrated that cancer cells were susceptible to > 40 ºC and IONP-induced local 

hyperthermia appeared effective to kill glioma T-9 cells in Fisher F344 rats (288, 289). 

CNA-IONPs in cell culture media exposed to AMF for 30 min were subsequently 

incubated for 30 h at 37 ºC, yet the AMF caused no adverse changes in particle sizes of 

CNA-IONPs (Figure 5.5C). Although no large aggregates were formed, the particle sizes 

of CNA-IONPs increased slightly at 2.5 and 5 mg/mL, following 30 minute AMF 

exposure and subsequent 30 h at 37 ºC. Such an increase was not shown in 1 mg/mL 

CNA-IONPs. We found that the particle sizes were consistent for all 1 mg/mL CNA-

IONPs incubated at 22, 37, and 43 ºC for 30 h continuously or after 30 min AMF 

exposure. These results suggested that the increase in particle sizes of 2.5 and 5 mg/mL 
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CNA-IONPs following 30 min AMF exposure might be attributed not to interparticular 

aggregates during AMF-induced heat generation but to molecular vibration of IONPs 

entrapped in CNAs, causing relaxation and rearrangement of block copolymer segments 

in the CNA core. Despite the slight increase in the particle size, CNA-IONPs were 

always smaller than 40 nm after 30 h at 37 ºC in cell culture media regardless of AMF 

exposure, indicating that IONPs can remain entrapped stably inside CNAs without 

compromising AMF-responsive magnetic properties. These results suggested that CNA-

IONPs would be a promising nanoscale tool to achieve localized hyperthermia in vivo, an 

elegant thermal therapy that invokes little damage to critical organs or tissues such as the 

central nervous system compared with whole body hyperthermia, which often leads to 

potential toxicities to the brain (58), or to develop a multifunctional nanoparticle for 

theranostic applications by delivering IONPs in combination with various therapeutic 

agents (33, 190). 

 

Figure 5.8. Representative heating profiles of CNA-IONPs in the presence of AMF. 

Three concentrations (1, 2.5, and 5 mg/mL) were tested for fine-tuned remote heating 
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with 30 minute applications of AMF. Control indicates the initial temperature of cell 

culture medium containing no CNA-IONPs (37 ºC).  

 

16B16B5.4. Conclusions  

CNA-IONPs, block copolymer cross-linked nanoassemblies entrapping 

superparamagnetic Fe3O4 iron oxide in a cross-linked core, showed controlled particle 

size in biological conditions and less toxicity without loss of magnetic properties in 

comparison to Citrate-IONPs, conventional iron oxide formulations stabilized with citric 

acid. CNA-IONPs did not agglomerate in water, PBS, or cell culture media, maintaining 

a clinically-relevant particle size (< 40 nm), suggesting that such stable and small CNA-

IONPs may achieve preferential accumulation in tumors and reduced macrophage uptake 

in vivo. Cytotoxicity of CNA-IONPs was significantly lower than that of Citrate-IONPs, 

causing no cell death up to 10 mg/mL using a murine brain endothelial cell line (bEnd.3). 

For MRI contrast agent application, CNA-IONPs showed concentration-dependent T2-

weighted MRIs with correlation coefficients nearly 1 between CNA-IONP concentrations 

and T2-weighted MRIs. CNA-IONPs considerably enhanced the T2 relaxivities 

compared to Citrate-IONPs. CNA-IONPs retained the magnetic properties of IONPs, 

which generated heat at mild hyperthermic temperatures (40 ~ 42 C) in the presence of 

AMF. In conclusion, CNA-IONPs significantly improved particle stability and 

biocompatibility of IONPs, and thus provide a promising iron oxide nanoparticle 

formulation for MRI and AMF-induced remote hyperthermia with low toxicity and high 

efficiency.  

 

17B17B5.5. Unsolved problems 
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In the studies reported in this chapter, we successfully developed stable and 

biocompatible CNA-IONPs, which showed their potential for MRI diagnosis and 

therapeutic applications in the CNS. For biomedical application in the brain, whether 

CNA-IONPs can cross the BBB needs to be determined. Furthermore, mild whole body 

hyperthermia can increase BBB permeability, which provide the potential for IONPs to 

cross the BBB using AMF-induced hyperthermia (58). Whether the flux of CNA-IONPs 

across the BBB can be enhanced by taking advantage of unique properties of IONPs such 

as AMF-induced hyperthermia need to be defined. In the next chapter, we will investigate 

whether AMF-induced hyperthermia enhance the paracelullar and transcelullar flux of 

CNA-IONPs across the BBB.  
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32B32BChapter 6 Alternating magnetic field enhanced the blood brain barrier association 

and paracellular flux of superparamagnetic iron oxide nanoparticles  

  

The hypothesis of this chapter is that AMF-induced hyperthermia would significantly 

increase the paracellular and/or transcellular flux of IONPs, and influence the BBB cell 

association with IONPs compared with conventional hyperthermia. We investigated the 

effect of conventional hyperthermia and AMF-induced hyperthermia on BBB 

permeability using two in vitro BBB models, bEnd.3 and Madin-Darby canine kidney 

(MDCKII) cells. Results of this study will give us a better understanding how AMF-

induced hyperthermia influences IONP association with BBB cells and flux across the 

BBB, which will provide important information for the future application of IONP in the 

CNS and insight into the difference between conventional hyperthermia and AMF-

induced hyperthermia on the BBB permeability and IONPs flux.   

 

18B18B6.1 Introduction 

The BBB’s tight junctions and drug efflux transporters play a crucial role in safeguarding 

the brain from endogenous and exogenous compounds, including most therapeutics 

circulating in the blood (28). One of the most promising approaches to overcome limited 

drug flux to the CNS is the employment of multifunctional nanoparticles (290). However, 

most published studies showed indirect evidence of nanoparticle flux across the BBB into 

the brain by monitoring fluorescent and radioactive drugs (146, 147) or therapeutic 

efficacy of drugs in animal models of brain tumors (148).  A better understanding of 
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nanoparticle association with and flux across biological barriers including the highly 

regulated BBB is urgently needed.  

 

One type of multifunctional nanoparticle, IONPs, has multiple bionanomedical 

applications, such as diagnosis and therapy for the CNS (291). IONPs can be activated by 

an AMF to generate controlled local hyperthermia  (292). IONPs can also be used as T2 

MRI contrast agents for pathologies in the CNS such as brain tumors (34).  To achieve 

CNS applications, the ability of IONPs to cross the BBB needs to be better understood.  

A recent study evaluated the uptake and transport of different surface modified IONPs by 

human-derived endothelial cells; no IONP flux across the BBB was observed under 

normal conditions (293).  However, the influence of AMF-induced local hyperthermia on 

BBB permeability and IONP flux across the BBB has not been reported.  

 

Numerous researchers showed mild whole body hyperthermia can increase BBB 

permeability, which has potential for brain therapeutic application (58).  However, whole 

body hyperthermia led to heat stress in vivo and caused toxicity to the CNS such as 

edema (58, 60).  An IONP nanocarrier system can generate a local hyperthermia to 

increase BBB permeability and brain accumulation of IONPs for diagnosis and therapy in 

the CNS.  

 

In the previous chapter, we developed CNA-IONPs, which are stable in cell culture 

medium with and without AMF for at least 30 h. They produced  no observed 

cytotoxicity in bEnd.3 cells when exposed up to 10 mg/mL for 30 h (292). CNA-IONPs 
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significantly improved particle stability and biocompatibility of IONPs compared to 

citrate-coated IONPs, and thus provide a promising iron oxide nanoparticle formulation 

that retain paramagnetic properties for AMF-induced hyperthermia and T2 MRI 

enhancement. We used CNA-IONPs as a IONP nanocarrier model to investigate our 

hypothesis that AMF-induced hyperthermia would significantly increase the paracellular 

and/or transcellular flux of IONPs, and influence the BBB cell association with IONPs 

compared with conventional hyperthermia.  

 

In this report the objective of the study was to elucidate the potential and mechanism of 

AMF-induced hyperthermia to increase IONP flux across the BBB. We evaluated CNA-

IONP flux across, and effects on two in vitro BBB models (bEnd.3 and MDCKII cell 

lines) at 37 °C, conventional hyperthermia at 43 °C (0.5 h) or AMF-induced 

hyperthermia at 41 °C (0.5 h). The paracellular flux changes induced by conventional 

hyperthermia at 43 °C up to 4 h were monitored by LY, a paracellular flux maker. Using 

TEM, the cellular localization of the iron oxide core of the studied nanoparticles was 

investigated. Conventional citrate-IONPs were used as a control.  

 

19B19B6.2. Methods 

6.2.1. Lucifer yellow flux and transendothelial electrical resistance  

To monitor flux through the paracellular pathway, Lucifer yellow (100 µM) (Sigma-

Aldrich, St. Louis, MO), which fluxes across cells via this pathway, was added to the 

medium on the donor side of the cells. Samples (100 µL) of the medium from the donor 

chamber were collected at time zero and from the receiving chamber at different time 
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points for LY concentration analysis. Fluorescence was determined in a SpectraMax M5 

Multi-Mode Microplate Reader (Molecular devices, Sunnyvale, CA) at λex\λem = 450/530 

nm and compared with a standard of Lucifer yellow in Dulbecco's Modified Eagle 

Medium (DMEM, Mediatech, Manassas, VA) or minimum essential medium with 

Earle’s salts (MEM, Mediatech, Manassas, VA) depending on cell lines and cell culture 

conditions (Appendix B) (294). Transendothelial electrical resistance (TEER) of bEnd.3 

or MDCKII Transwell® models was measured every other day using a RMA321-

Millicell-ERS voltohmmeter (Millipore Corp, Billerica, MA).  

 

6.2.2. Evaluation of AMF-induced heating profiles and particle stability after AMF 

exposure  

The heating profiles of CNA-IONPs induced by AMF-activation of CNA-IONPs were 

evaluated in cell culture media (2.5 mg/mL) in the Transwell® cell model under AMF 

induced by a Taylor Winfield induction power supply (Taylor-Winfield Technologies 

MMF-3-135/400-2, Columbus, OH) equipped with a 15 mm diameter, 5 turn solenoid. 

The AMF field parameters were set to 33.4 kA/m at 300 kHz for 0.5 h. The temperature 

of the medium in the Transwell® donor chamber was measured every 0.25 seconds for 

0.5 h using a Fluoroptic® thermometer (LumaSense Technologies, Santa Clara, CA). The 

initial medium temperature was 37 ºC. CNA-IONP stability was monitored for 30 h after 

0.5 h at 37 ºC, 43 ºC and AMF using DLS analysis (90Plus NanoParticle size distribution 

analyzer, Brookhaven Instruments, Holtsville, NY). 
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6.2.3. Effects of AMF on CNA-IONP and Citrate-IONP cell association and flux 

using bEnd.3 and MDCKII in vitro BBB models  

Citrate-IONPs (0.05 mg/ml) or CNA-IONPs (2.5 mg/ml) were introduced into the donor 

chamber at 37ºC or 43ºC or exposed to AMF for 0.5 h. All were then maintained at 37 ºC 

for 30 h. Most clinical research showed conventional hyperthermia between 41 and 45 °C 

can induce tumor cell death (190).  Conventional hyperthermia at 43 °C was chosen to 

compare with AMF-induced hyperthermia. AMF was induced by the Taylor Winfield 

induction power supply described above. The AMF field parameters were set to 33.4 

kA/m at 300 kHz. Samples (100 µL) were collected from the donor chamber at time 0 

and from the receiving chamber at different time points. IONP cell uptake was terminated 

by removal of the medium and addition of ice cold solution containing 137 mM NaCl and 

10 mM HEPES at PH 7.4 (295). Cells were trypsinized using 0.25% trypsin-EDTA for 5 

minutes at 37°C and the suspension centrifuged. The cell pellet was re-suspended with 

DMEM. A trypan blue exclusion test was performed to assess cell viability. Protein 

concentrations were measured using a bicinchoninic acid assay (BCA Protein Assay Kit, 

Thermo Fisher Scientific, Waltham, MA). Iron concentrations in cells and samples were 

measured by Ferrozine assay (Appendix B). All experiments were done three or four 

times. 

6.2.4. Effect of conventional hyperthermia on paracellular flux using a MDCKII in 

vitro BBB model  

The effect of hyperthermia on the paracellular pathway was tested using a MDCKII in 

vitro BBB model. LY (100 µM) was added to the medium on the donor chamber of the 

Transwell®. The cells were incubated for 0.5, 1, 2 and 4 h at 43 °C followed by 
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incubation at 37 °C till 6 h. Samples (100 µL) were collected from the donor chamber at 

time 0 and from the receiving chamber up to 6 h. Cells were collected as described in the 

above section. A trypan blue exclusion test was performed to assess cell viability at the 

end of the experiment. LY concentrations were analyzed as described above. All 

experiments were performed in triplicate wells and repeated once in triplicate wells. 

 

6.2.5. Citrate-IONP and CNA-IONP cell localization using transmission electron 

microscopy 

bEnd.3 and MDCKII cells were seeded on 12 well plates (BD Falcon, San Jose, 

California) at a density of 200,000 cells/cm
2
. A cell uptake experiment was performed 3 

days after seeding. The cells were exposed to a cell culture medium containing 0.05 

mg/mL Citrate-IONPs or 0.05 mg/mL CNA-IONPs for 2 h then quickly washed with ice 

cold saline 3 times. The cells were fixed in 3.5% glutaraldehyde in 0.1M cacodylate 

buffer, pH 7.4 for 1 h at 4 °C. Samples were dehydrated in ascending concentrations of 

ethanol and embedded in Eponate 12. After polymerization, blocks were sectioned at 80 

nm for TEM viewing in a Philips Tecnai 12 Biotwin electron microscope (FEI, Hillsboro, 

Oregon).  

 

6.2.6. The apparent permeability coefficient  

The apparent permeability coefficient (Papp) of LY and CNA-IONPs exposed to 37ºC or 

43ºC or AMF for 0.5 h followed by 30 h incubation at 37ºC was calculated using 

GraphPad Prism (GraphPad Software, San Diego, CA). The first 6 h flux data were used 

with R
2
 cutoff > 0.8. The Papp in (cm/s) was calculated using the equation: Papp = 
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(ΔQ/Δt)/(area*CD) (296). ΔQ/Δt is the linear appearance rate obtained from the profile of 

the transported amount of the substrate against time (mg/s). area is the surface area of the 

cell monolayer (4.67 cm
2
 for a 6-well plate). CD is the initial donor concentration of LY 

or nanoparticle (mg/mL). 

 

6.2.7. Statistical analysis 

Influx rates of LY and CNA-IONPs were calculated by linear regression using GraphPad 

Prism. The first 6 h data were used with R
2
 cutoff > 0.8. Bartlett’s was used to test if 

samples have equal variances. One-way ANOVA followed by Tukey’s test was used to 

test for significant differences of Citrate-IONP and CNA-IONP cell association among 

control, conventional hyperthermia and AMF-induced hyperthermia conditions. One-way 

ANOVA followed by Tukey’s test was also used to test for significant differences of 

apparent permeability coefficients of LY and CNA-IONP among control, conventional 

hyperthermia and AMF-induced hyperthermia conditions. Two-way ANOVA followed 

by Bonferroni multiple comparisons was used to test for significant flux differences 

among the treatment groups and times using GraphPad Prism. The results of the 

statistical analysis for one-way ANOVA and two-way ANOVA will be reported as F(df 

effect, df error) = F-value and P-value. All results are reported as mean ± standard 

deviation (SD). Statistical significance was accepted at p < 0.05.  

 

20B20B6.3. Results  

6.3.1. Characterization and stability of Citrate-IONPs and CNA-IONPs 
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AMF activation of CNA-IONPs in cell culture medium generated heat. The cell culture 

media temperature reached equilibrium in 10 min at 41 °C with 2.5 mg/mL CNA-IONPs 

(Figure 6.1A). IONP loading contents in CNAs were 25 ± 3 and 25 ± 1 wt % determined 

by thermal gravimetric analysis and inductively coupled plasma mass spectrometry 

analyses, respectively. DLS measurements showed that AMF-induced hyperthermia had 

no effects on the CNA-IONP size at 30 h (Figure 6.1B).  Citrate-IONPs were 90 ± 10 nm 

in water at 200 µg/mL, but they agglomerated > 400 nm and precipitated in PBS and cell 

culture medium (292). Furthermore, conventional hyperthermia at 43 °C and AMF-

induced hyperthermia accelerated the agglomeration of Citrate-IONPs (> 800 nm).  

 

6.3.2. Citrate-IONPs and CNA-IONPs flux and cell association using a bEnd.3 in 

vitro BBB model 

In order to study the flux of IONPs across the BBB, bEnd.3 cells were grown as a 

monolayer on Transwell® inserts (Figure 6.2A). All the flux experiments were studied 7-

10 days after cell seeding on the Transwell® insert, when TEER was > 120 Ω/cm
2
. The 

Papp of Lucifer yellow was 3.81 ± 0.17 X 10
-6 

cm/s, similar to a previous report (Table 

6.1) (297).  
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Figure 6.1. Representative heating profiles of CNA-IONPs (2.5 mg/mL) in the 

Transwell® cell model for fine-tuned remote heating with 0.5 h applications of AMF. 

Control indicates the temperature of cell culture medium containing no CNA-IONPs (37 

ºC) (A). Particle stability characterization results using DLS after exposure to 37 °C for 

30 h (n = 6), 43 °C (0.5 h) followed by 37 °C for 30 h (n = 6) or AMF (0.5 h) followed by 

37 °C for 30 h (n = 4) (B). 

 

 

Table 6.1. The apical-to-basolateral apparent permeability coefficients of Lucifer yellow 

and CNA-IONPs flux using bEnd.3 and MDCKII in vitro BBB models at 37°C for 6 h (n 

= 3), 43°C (0.5 h) followed by 37°C (n = 3) for 6 h or AMF (0.5 h) followed by 37°C for 

6 h (n = 4).  

Papp 37 °C 43 °C (0.5 h) AMF (0.5 h) 

bEnd.3 

Transwell® 

model 

LY X 10
-6

 (cm/s) 3.81 ± 0.17 4.04 ± 0.14 7.25 ± 0.28* 

CNA-IONPs (2.5 

mg/mL) X 10
-6

 (cm/s) 

0.67± 0.09 0.67± 0.09 1.66 ± 0.37* 

MDCKII 

Transwell® 

model 

LY X 10
-6

 (cm/s) 0.49 ± 0.03 0.49 ± 0.049 0.59 ± 0.04* 

CNA-IONPs (2.5 

mg/mL) X 10
-6

 (cm/s) 

0.06 ± 0.01 0.056 ± 0.011 0.13 ± 0.02* 

* Significantly different compared with 37 and 43 °C. 

 

n
m

C

 3
7 

C
 (0

.5
 h

) 

43
 

A
M

F (0
.5

 h
) 

0

10

20

30

40

50A B 



125 

 

Citrate-IONPs (0.05 mg/mL) and  CNA-IONPs (2.5 mg/mL) were used in the flux study 

according to our previous cytotoxicity study (292). The fluxes of Citrate-IONPs did not 

increase over 30 h and they were similar in the control group (37 °C for 30 h), 

conventional hyperthermia group (43 °C for 0.5 h followed by 37 °C for 30 h) and AMF-

induced hyperthermia group (AMF for 0.5 h followed by 37 °C for 30 h) (Figure 6.2B).  

However, Citrate-IONP cell association significantly increased in the conventional 

hyperthermia and AMF-induced hyperthermia groups compared to control (F(2,6) = 24, P 

< 0.0014) (Figure 6.2C). TEM was used to observe Citrate-IONPs localization in cells. 

The agglomerated Citrate-IONPs (close to micrometer size) (Figure 6.3A) with their 

primary size around 10 nm (Figure 6.3B) were observed inside the bEnd.3 cells.  

 

CNA-IONPs showed very different cell association and flux patterns compared with 

Citrate-IONPs. The flux of CNA-IONPs was significantly increased from 1 to 30 h in the 

AMF-induced hyperthermia group compared with the control and conventional 

hyperthermia groups (Figure 6.2D). The flux of CNA-IONPs was overall higher in the 

conventional hyperthermia group then control; however, they were not significantly 

different (Figure 6.2E). The Papp of LY and CNA-IONPs were similar in both the control 

and conventional hyperthermia groups. However, the Papp of LY (F(2,7) = 280, P < 

0.0001) and CNA-IONPs (F(2,7) = 19, P < 0.0016) in the AMF-induced hyperthermia 

group significantly increased 90% and 148% respectively compared with control (Table 

6.1). Trypan blue exclusion test results showed no observed cell death in any 

experiments.  Meanwhile, analysis of iron concentration showed CNA-IONP cell 

association or cell uptake increased, but not significantly, in the AMF-induced 
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hyperthermia group compared with the control and conventional hyperthermia groups 

analyzed by iron concentrations (Figure 6.2F). CNA-IONPs cell association was at least 

10 times lower compared with Citrate-IONPs (Figure 6.2F vs. 6.2C; Figure 6.3C vs. 

6.3B). Less CNA-IONP cell uptake agreed with our TEM results. After analysis of three 

separately prepared TEM samples and two sections from each sample, CNA-IONPs were 

found occasionally in three samples (Figure 6.3C).   
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Figure 6.2.  Citrate-IONP and CNAs-IONP flux across bEnd.3 cells and cell association 

results. Schema of the Transwell® system and AMF used for flux studies (A). Citrate-

IONPs flux across bEnd.3 cells (B) and cell association with bEnd.3 cells (C) at 37°C (n 

= 3) for 30 h, conventional hyperthermia at 43°C (0.5 h, n = 3) followed by  37°C for 30 

h or AMF-induced hyperthermia (0.5 h, n = 3) followed by  37°C for 30 h. CNAs-IONPs 

flux across bEnd.3 cells (D), liner regression of the first 6 h CNAs-IONPs flux data (E) 

and bEnd.3 cell association (F) at 37°C (n = 3) for 30 h, conventional hyperthermia at 

43°C (0.5 h, n = 3) followed by  37°C for 30 h or AMF-induced hyperthermia (0.5 h, n = 

4) followed by  37°C for 30 h.   * Significantly different compared to 37 °C in panel C 

(F(2,6) = 24, P < 0.0014). * Significantly different compared to 37 °C and conventional 

hyperthermia in panel D and E (F(2,48) = 121, P < 0.0001). 

 

The LY results showed that the bEnd.3 BBB model showed high paracellular pathway 

flux (Table 6.1), which may mimic a ‘leaky’ BBB such as the blood tumor barrier (BTB). 

For this study, it was also crucial to use an in vitro model which can form tight junctions 

to predict how AMF-induced hyperthermia increases CNA-IONP flux in vivo since 

AMF-induced hyperthermia significantly increased the paracellular flux. After we tested 

CNA-IONPs trafficking across the bEnd.3 monolayer, CNA-IONPs flux was investigated 

using a ‘tighter’ BBB Transwell® model - MDCKII to gain better understanding how 

conventional hyperthermia and AMF-induced hyperthermia influence the paracellular 

pathway.  

 

6.3.3. CNA-IONPs flux and cell association using MDCKII in vitro BBB model 

MDCKII cells were grown as a monolayer on Transwell® inserts. Three to 4 days after 

cell seeding when resistance was > 170 Ω/cm
2
 flux experiments were conducted. Lucifer 

yellow Papp was at 0.49 ± 0.033 X 10
-6

 cm/s (Table 6.1). 
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Figure 6.3. Transmission electron microscopy results of the cellular localization of the Citrate-IONPs (0.05 mg/ml) (A and B) and 

CNA-IONPs (0.05 mg/ml) (C) in bEnd.3 cells at 2 h.   
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LY significantly increased in the AMF-induced hyperthermia group from 2 to 6 h 

compared with the control and conventional hyperthermia groups (Figure 6.4A).  CNA-

IONP flux increased in the AMF-induced hyperthermia group (Figure 6.4B). The Papp of 

LY (F(2,7) = 7, P < 0.019) and CNA-IONPs (F(2,7) = 27, P < 0.0005) in the AMF group 

increased 23% and 123%, respectively compared with control using MDCKII 

Transwell® model (Table 6.1). The MDCKII cell uptake or cell association of CNA-

IONPs was also significantly increased in the AMF-induced hyperthermia group 

compared to the control and conventional hyperthermia groups (F(2,7) = 10, P < 0.0081) 

(Figure 6.4C). Trypan blue exclusion test results showed no observed cell death in any 

experiments. In both MDCKII and bEnd.3 models, AMF-induced hyperthermia 

significantly increased LY and CNA-IONP flux across the BBB monolayer but 

conventional hyperthermia did not. Numerous studies showed that conventional 

hyperthermia can increase BBB permeability, heat magnitude and duration dependently 

(60, 298). Our results showed that conventional hyperthermia for 0.5 h did not change the 

MDCKII in vitro BBB model permeability. The following study is to test the effect of 

different hyperthermia durations on paracellular flux in order to have better 

understanding of the differences between AMF-induced hyperthermia and conventional 

hyperthermia.  

 

6.3.4. Effect of conventional hyperthermia on paracellular flux using MDCKII in 

vitro BBB model 

 The Papp of LY was 0.46 to 0.5 X 10
-6

 cm/s for the first 6 h after 0.5, 1, and 2 h exposure 

at 43 °C followed by 37 °C for 6 h. However, after incubation at 43 °C for 4 h, the Papp of 
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LY significantly increased 22% (Papp, 0.61 ± 0.05 X 10
-6

 cm/s) compared with control 

and similar to the Papp of LY in the AMF-induced hyperthermia group (Figure 6.5). The 

trypan blue exclusion test results showed no observed cell death in any experiments after 

4 h at 43 °C followed by 36 h at 37 °C.  

 

21B21B6.4. Discussion  

Biocompatibility and stability in biological environments, such as cell culture medium or 

blood, are crucial for nanoparticles to serve as good candidates as carriers across the BBB 

(281, 291). In this study, we investigated Citrate-IONPs flux across the BBB at normal, 

conventional hyperthermia and AMF-induced hyperthermia conditions. Citrate-IONPs 

did not show any flux across bEnd.3 cells over 30 h. Citrate-IONPs agglomerated very 

rapidly in cell culture medium to > 400 nm (292), which may be too large to cross the 

BBB through the paracellular pathway (299). Even through Citrate-IONPs agglomerated 

close to micrometer size in vitro, they were still able to be taken up by BBB cells. The 

TEM results suggested that Citrate-IONPs were taken up by phagocytosis, consistent 

with a previous report that phagocytosis could engulf particles as large as 20 µm (300). 

Furthermore, citrate-IONP agglomerations were close to microsize and could not be 

measured by DLS after conventional hyperthermia at 43 °C and AMF-induced 

hyperthermia for 0.5 h. Citrate-IONPs agglomeration provided one of the explanations 

for higher bEnd.3 cell association in the conventional hyperthermia and AMF-induced 

hyperthermia groups. However, no transcytosis was observed over 30 h.   
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Figure 6.4. LY and CNA-IONP flux across the MDCKII cells and cell association results. LY flux (A),  CNA-IONPs  flux across 

MDCKII in vitro BBB model (B) and CNA-IONPs MDCKII cell association (C) after 37 °C (n = 3) for 6 h, conventional 

hyperthermia at 43 °C (0.5 h, n = 3) followed by 37 °C for 6 h or AMF-induced hyperthermia (0.5 h, n = 4)) followed by 37°C for 

6 h. * Significantly different compared to control in panel A (F(5,54) = 94, P <0.001). * Significantly different compared to AMF 

(0.5 h) (F(2,7) = 10, P < 0.0081).  
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Figure 6.5. The effect of conventional hyperthermia on paracellular flux results. LY flux 

across MDCKII in vitro BBB model at 43 °C incubation for 0.5, 1, 2, and 4 h followed 

by 37 °C till 6 h  

 

It’s not surprising that Citrate-IONPs agglomerates did not show any flux over time 

across the highly regulated BBB in vitro. A high concentration of Citrate-IONPs in BBB 

cells related to toxicity, according to our previous research (292), and no transcytosis 

suggests they lack potential therapeutic CNS applications.  

 

CNAs improved IONPs stability (size < 40 nm, Figure 6.1B) and biocompatibility 

without loss of AMF-induced hyperthermia and MRI T2 enhancement properties (292). 

In this study, Citrate-IONPs and CNA-IONPs showed completely different patterns of 

bEnd.3 cell association and flux across the BBB in vitro. CNA-IONP flux increased with 

time across bEnd.3 cells at 37 °C. However, less than 6 % of CNA-IONPs from the donor 

chamber crossed the bEnd.3 monolayer into receiving chambers over 30 h. Previous 

research demonstrated that different charged IONP fluxes were also studied using a 
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human brain derived BBB model. No IONPs fluxes were observed over 24 h under 

normal conditions (293).  AMF-induced hyperthermia doubled the Papp of CNA-IONPs in 

the bEnd.3 model during the first 6 h.  Thirty % of CNA-IONPs crossed the bEnd.3 

monolayer at 30 h. The LY flux was also significantly increased which provides evidence 

that AMF-induced hyperthermia opened the paracellular pathway to increase CNA-IONP 

flux. The lack of observed cell death ruled out increased flux simply due to  cell death. 

Meanwhile, the cell uptake/association of CNA-IONPs was ~ 10 times lower then 

Citrate-IONPs. The low cell uptake of CNA-IONPs was consistent with CNA-IONPs 

crossing the BBB mainly through the paracellular pathway after AMF-induced 

hyperthermia in the bEnd.3 in vitro BBB model. This is the first study showing that 

AMF-induced hypothermia significantly increased CNA-IONPs flux across a BBB model 

in vitro with low toxicity. AMF-induced hypothermia by IONPs is one approach to 

potentially increase BBB permeability and IONPs flux for diagnosis and therapy in the 

CNS.  

 

The bEnd.3 cell as a BBB derived cell line suffers the problem that they (the junctions) 

cannot be “tight” enough to fully recapitulate the normal in vivo BBB.  Madin-Darby 

canine kidney II (MDCKII) cells are known to form tight junctions very well with 

paracellular flux <1.5% of the donor dose per hour measured by inulin (301). Therefore, 

the non-cerebral cell line MDCKII was used as a surrogate  in vitro BBB model (302) to 

study  nanoparticle flux (303).  In the present paper, we used bEnd.3 and MDCKII cell 

lines as two common in vitro BBB models to evaluate CNA-IONP uptake, cell effects 

and CNA-IONP flux under AMF-induced hyperthermia and conventional hyperthermia 
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conditions. After 0.5 h conventional hyperthermia treatment, CNA-IONP flux across the 

bEnd.3 monolayer was overall higher, but not significantly, compared with control (37 

°C), but no differences was observed using MDCKII cells. The Papp of LY in the AMF 

groups increased 90% in the bEnd.3 model v.s. 20% in the MDCKII model compared to 

the control. AMF-induced hyperthermia increased the Papp of CNA-IONPs 148% in the 

bEnd.3 model and 128% in the MDCKII model. In general, a similar trend was observed 

with BBB permeability changes by AMF-induced hyperthermia using the two in vitro 

BBB models. However, the ‘leaky’ bEnd.3 Transwell® model’s paracellular pathway 

flux was more sensitive to conventional hyperthermia and AMF-induced hyperthermia 

compared with MDCKII cells. Previous studies also showed a threshold at 43 °C for 

BBB disruption induced by conventional hyperthermia in normal brain tissue (298, 304). 

However, in a leaky BBB, such as the BTB, which was more sensitive to conventional 

hyperthermia, permeability increases at a lower temperature (305). The bEnd.3 

Transwell® model can provide insight on the effect of AMF-induced hyperthermia on 

leaky BBB conditions such as the BTB. Even though MDCKII cells are not a blood-brain 

barrier derived cell line, they were shown to be a good in vitro model to predict the extent 

of brain exposure and the rate of brain uptake in vivo for several CNS drug candidates 

(306). Comparisons of these two in vitro BBB models, MDCKII cells produce a better in 

vitro model to predict whether AMF-induced hyperthermia changes paracellular flux in 

normal brain tissue because they form tight junctions very well. Because of the unique 

physicochemical properties and different cell association mechanisms of nanoparticles 

compared with small drug candidates, further studies were needed to investigate the 
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correlation between nanoparticle flux across the bEnd.3 and MDCKII Transwell® 

models and the BBB in vivo.  

 

We also tested whether AMF-induced hyperthermia influences the cell association of 

CNA-IONPs using both cell lines. AMF-induced hyperthermia increased CNA-IONPs 

cell uptake/association in bEnd.3 cells and significantly increased cell uptake/association 

in MDCKII cells. Several studies showed that mild hyperthermia induced by ultrasound 

can enhance the intracellular uptake/association of polymeric micelles by increasing the 

diffusion of micelles and/or ultrasound-induced perturbation of cell membranes (307, 

308). We are not aware of any report on cell uptake/association enhancement by AMF-

induced hyperthermia. Furthermore, the Papp of CNA-IONPs increased more than the Papp 

of LY suggesting AMF-induced hyperthermia increased transcellular flux.  How AMF-

induced hyperthermia enhances CNA-IONP cell uptake and transcytosis needs to be 

explored. Compared with MDCKII cells, CNA-IONP cell uptake by bEnd.3 cells was 

~10 times higher. MDCKII cells have good paracellular permeability characteristics; 

however, there are major differences between MDCKII epithelial and brain endothelial 

cells, such as expression of different transporters (309). Taken together, different models 

might be suitable to address different questions of BBB function. The brain endothelial 

cell line bEnd.3 model might be suitable to address IONPs cell uptake and non-brain 

derived MDCKII cells provide a good model to test BBB permeability. 

 

The potential application of conventional hyperthermia to increase BBB permeability has 

been investigated for decades (58, 60).  However, the difference between conventional 
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hyperthermia and AMF-induced hyperthermia on the BBB permeability was not studied 

before.  Our results showed that the Papp of LY and CNA-IONPs significantly increased 

79% and 148%, respectively, in the AMF-induced hyperthermia group compared with the 

conventional hyperthermia group. There was no significant difference between 37 °C and 

43 °C groups, suggesting AMF-activation of CNA-IONPs increased the BBB 

permeability not only by simple heating but also other factors such as IONP vibration or 

IONP surface temperature vs. surroundings temperature. The temperature we measured 

was the environmental temperature in the Transwell® rather than the surface temperature 

of IONPs. Previous research showed that IONP surface temperature can be up to 20 °C 

higher relative to the surrounding regions (310).  The temperature on the surface of cells 

may be higher than we measured using the temperature probe. Another possibility is that 

CNA-IONPs can bind to the cell surface and vibrate under AMF, mechanically 

increasing BBB permeability. Other research demonstrated that cell surface bound IONPs 

can mechanically activate certain cell surface receptors (311).  However, further research 

needs to be done to investigate how CNA-IONPs associate with BBB cells and the role of 

temperature and mechanical effects on BBB permeability.   

 

We further tested how different durations of conventional hyperthermia exposure at 43 

°C influence paracellular pathway compared with AMF-induced hyperthermia. Our 

results showed that conventional hyperthermia (43 °C) did not influence the paracellular 

flux up to 2 h and that flux significantly increased at 43 °C after 4 h. A previous whole 

body hyperthermia study on rats also showed BBB permeability changes were highly 

dependent on heat magnitude and duration. No BBB permeability change was observed 
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(within 2 h) under whole body hyperthermia, but BBB permeability was increased after 4 

h whole body hyperthermia (60). We did not observe any cell death even after 4 h 

conventional hyperthermia at 43 °C. However, whole body hyperthermia leads to heat 

stress in vivo causing numerous CNS toxicities such as edema, spontaneous 

electroencephalogram and neuronal damage (312).  Our results also showed that the Papp 

of LY after conventional hyperthermia at 43 °C for 4 h was similar to the Papp of LY at 

AMF-induced hyperthermia for 0.5 h. AMF-induced hyperthermia can increase BBB 

permeability similar to conventional hyperthermia at lower temperature and shorter time 

without cell death in vitro. Previous research showed that half an hour AMF-induced 

hyperthermia killed head and neck cancer cells in mice without harming any normal cells 

(313).  However, the toxicity of AMF-induced hyperthermia on the BBB in vivo needs to 

be investigated. AMF-induced hyperthermia showed potential advantage to increase BBB 

permeability more effectively with low toxicity compared with conventional 

hyperthermia, suggesting potential therapeutic application.  

 

22B22B6.5. Conclusions 

CNA-IONPs showed low flux across the BBB under normal conditions in both b.End3 

and MDCKII in vitro BBB models. AMF-induced hyperthermia (0.5 h) enhanced CNA-

IONPs flux and cell association using both b.End3 and MDCKII BBB models in the 

absence of cell death. However, conventional hyperthermia at 43 °C did not increase the 

BBB permeability up to 2 h. AMF-induced hyperthermia at 41 °C (0.5 h) enhanced BBB 

permeability similar to conventional hyperthermia at 43 °C for 4 h. Altogether these 

results suggested that AMF-induced hyperthermia enhanced the BBB association and 
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permeability of CNA-IONPs more effectively than conventional hyperthermia. AMF-

induced hyperthermia provides an approach to deliver IONPs across the BBB with low 

toxicity for potential therapeutic and diagnostic applications in the CNS.  
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33B33BChapter 7 Conclusions and future studies 

 

With the rapid surge in the development of metal-based ENMs, it is critical to understand 

how ENMs were handled in the biological system and to identify physicochemical 

properties most relevant to their biological properties that best predict ENM response. 

This information will guide researchers to design and engineer ENMs with desirable 

properties to change their behavior in the biological system and avoid undesirable 

outcomes. The guiding hypothesis for this dissertation is that the physicochemical 

properties of metal-based ENMs change their pharmacokinetics, especially BBB 

association and flux. In this dissertation, Chapters 3 and 4 used ceria ENMs as a metal-

based ENM model to study their pharmacokinetics in blood and BBB association 

properties. Then Chapters 5 and 6 developed an optimized multifunctional IONP for 

potential biomedical application in the CNS according to the results from Chapters 3 and 

4.  

 

First, we proved our first hypothesis that ceria ENMs demonstrated different 

pharmacokinetic profiles compared with the cerium ion. Furthermore, different sizes and 

shapes of ceria ENMs showed size-dependent blood concentrations and blood circulation 

time supporting our second hypothesis in chapter 3. Five nm ceria ENM showed 

significantly higher blood concentration compared with the other 3 sizes ten min after 

infusion. The high hydrophilicity of ENMs and small size may have contributed to slower 

clearance from the blood (194, 314). Ceria ENMs larger than 5 nm were very rapidly 
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cleared from circulating blood. Fifteen and thirty nm ceria ENMs showed different blood 

cell association behavior compared with other sizes, which agrees with previous studies 

that the critical size of ENMs plays a very important role on cell association and uptake 

(83, 149, 150). After ceria ENMs distributed in the blood, our next hypothesis is that 

ceria ENMs can associate with and flux across the BBB. The in situ brain perfusion 

technique was used to study ceria ENM flux and brain vascular cell associations. This is 

the first report of ceria ENM interaction with the BBB in vivo under conditions that 

control ENM chemistry. Five nm ceria ENMs associated with the capillary luminal wall 

rather than appearing inside the brain parenchyma. This result showed that the flux of 

ceria ENMs across the healthy BBB is very limited. A recent published review 

summarized the BBB permeability of metal and metal oxide ENMs and the results from 

30 different metal-base ENM demonstrated bran entry is very challenging in general 

(200). Most of these studies only analyzed the whole brain concentrations of ENMs. The 

present study was the first study to specifically demonstrate ceria ENM distribution 

between the BBB and brain parenchyma. These results provide important information to 

design a ceria ENMs to cross the BBB for their therapeutic applications for 

neurodegenerative diseases and their potential toxicity on the BBB cells.  Meanwhile, 

capillary luminal wall association provides the possibility for redistribution back to blood 

which lead to nontraditional pharmacokinetic profiles, as we showed in our 

pharmacokinetic study of different size ceria ENMs (259).  

 

Second, we hypothesized that multifunctional CNA-IONPs will have optimized 

physicochemical properties to improve the stability and biocompatibility of IONPs 
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compared to the results from the citrate-coated ceria ENMs studies. The stability of 

CNA-IONPs in cell culture medium was significantly improved with a size around 30 nm 

compared with citrate-IONPs. Furthermore, CNAs significantly decreased the toxicity of 

IONPs in vitro with enhanced superparamagnetic properties such as MRI T2 contrast and 

hyperthermia abilities (196). CNA-IONPs with improved biocompatibility and stability in 

biological environments serve as good candidates as carriers to cross the BBB (281, 291).  

However, the study in chapter 4 showed that even in the absence of agglomeration, the 

flux of metal-based ENMs across healthy BBB was very limited (199). In chapter 6, we 

hypothesized that AMF-induced hyperthermia would significantly increase the 

paracellular and/or transcellular flux of IONPs, and influence the BBB cell association 

with IONPs compared with conventional hyperthermia. Our results showed that AMF-

induced hyperthermia significantly increased CNA-IONP flux across the BBB, which 

increased the paracellular and transcellular flux without apparent toxicity. AMF-induced 

hyperthermia provides the potential to overcome some side effects of conventional 

hyperthermia on the BBB. In summary, metal-based ENMs have different 

pharmacokinetic behaviors because of their unique physicochemical properties compared 

with their constituent metal. The stability and physicochemical properties of metal-based 

ENMs are critical for their pharmacokinetics in blood and their biological barrier 

association such as the BBB. Even though metal-based ENMs without special surface 

modification have limited ability to cross the healthy BBB, researchers are taking 

advantage of metal-based ENMs’ unique properties such as hyperthermia to enhance the 

BBB flux of IONPs with low toxicity.  
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The research presented in this dissertation provides a starting point for future studies. It 

has been shown that ENMs are rapidly coated with plasma proteins and other circulating 

substances, which create a corona around the ENM (254, 255). The protein coating of 

citrate-coated ENMs might change their pharmacokinetics in blood and cell association. 

We are not aware of any reports of ceria uptake into blood cells or platelets other than our 

prior finding suggesting a small amount of a 30 nm ceria ENM might have entered red 

blood cells after 1 h in vitro (7). A systematic research on different size ceria ENMs 

association with proteins in the blood and blood cells will provide potential explanations 

for their unique pharmacokinetic profiles in the blood. Furthermore, protein association 

on the surface of ENMs is a dynamic process. It is crucial to investigate the dynamic 

changes of the protein corona to predict the biological response changes of ENMs in vivo. 

Because of the unique properties of ENMs, such as protein corona, adhesion and 

phagocytic uptake compared with small molecules, new pharmacokinetic models should 

be developed such as a PBPK to predict the time-dependent changes of ceria ENM 

distribution in tissues and blood (232, 238). After blood distribution, ENM interaction 

with biological barriers including cell association/ dissociation, cell uptake, and 

transcytosis will determine their fate in biological systems. We observed the 5 nm ceria 

associated on the surface of the BBB cells 2 min after infusion. A better understanding of 

ENM interaction process with the BBB over time will provide evidence to explain the 

nontraditional pharmacokinetic behavior such as concentrations increasing over time 

after iv injection. This information will also help us to design optimized ENMs with 

desirable biological properties such as the increased BBB association or prolonged 

circulation times.  
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With this fundamental information on the pharmacokinetics of metal-based ENMs in 

hand, we developed a polymer based ENMs loaded with IONPs with improved stability 

and biocompatibility in vitro (196). More studies are needed to investigate their 

pharmacokinetics such as half-life and clearance in vivo, which are important for passive 

targeting for certain organs (315). More importantly, for biomedical applications, it is 

critical to test whether they can accumulate at target organs such as tumors, cross 

biological barriers such as the BBB and their potential toxicity in vivo. ENMs with 

different physicochemical properties cross the BBB through various mechanisms as 

discussed in 2.3.3. However, little research has been reported on the paracellular and 

transcellular flux of ENMs across the BBB and how the flux can be increased or 

decreased by surface modification or unique properties of ENMs. Our results showed that 

AMF-induced hyperthermia using IONPs can increase IONPs flux in vitro. However, this 

monolayer BBB in vitro model cannot mimic the BBB in vivo. An in vivo study will be 

needed to test whether AMF-induced hyperthermia can effectively open the BBB without 

causing major toxicity. Our results also showed that AMF-induced hyperthermia 

increased the BBB permeability more effectively in a ‘leaky’ BBB in vitro model. Since 

the BBB will become leakier because of the brain tumor, the effect of AMF-induced 

hyperthermia using IONPs on the blood tumor barrier permeability needs to be 

investigated for their potential brain tumor therapeutic or diagnostic applications.  

 

In conclusion, this work yielded valuable information in regards to metal-based ENMs 

for brain delivery and ENMs in general. The pharmacokinetic study of ceria ENMs may 
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be relevant to most citrate-coated metal-based ENMs and provide evidence that size plays 

important role on ENMs’ fate in biological system. This points to the importance of 

analyzing metal-based ENMs to identify their unique pharmacokinetics properties, which 

determine their potential biomedical applications. It is also possible that ceria ENM 

interaction with the BBB may be applied in other metal-based ENMs, which provides 

important information for future applications of metal-based ENMs in the CNS. CNA-

IONPs demonstrated that CNAs have the potential to significantly improve the stability 

and biocompatibility of metal-based ENMs, which are very important for any biomedical 

applications. Metal-based ENMs are promising because of their unique properties 

compared with other ENMs. AMF-induced hyperthermia using CNA-IONPs can increase 

the BBB permeability, demonstrating the possibility of other metal-based ENMs 

generating heat for this application.  
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34B34BAppendices 

 

This section contains the following additional information: 

 

Appendix A: Abbreviations 

Appendix B: Supplementary Information to chapter 6 
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23B23BAppendix A Abbreviations 

ABC ATP-binding cassette 

AMF Alternating magnetic field 

BBB Blood-brain barrier 

CED Convention-enhanced delivery 

CNAs Cross-linked nanoassemblies 

CNS Central nervous system 

CTAB Hexadecyltri-methylammonium bromide 

DIUF Deionized ultra filtered water 

DLS Dynamic light scattering 

EPR Enhanced permeability and retention 

FCC Face-centered cubic 

Gd-DTPA Gadolinium-diethylenetriaminepentaacetic acid 

ICP-MS Inductively coupled plasma mass spectrometry 

ICV Intra-cerebro-ventricular 

IONPs Iron oxide nanoparticles 

LM Light microscopy 

EM Electron microscopy 

LRP1 Low-density lipoprotein receptor-related protein-1 

LY Lucifer yellow 

MCT Monocarboxylate transporters 

MPS Mononuclear phagocyte system 

MRI Magnetic resonance imaging 

MRT Mean residence time 

NIR Near infra-red 

OCT Optical coherence tomography 

PEG-p(Asp) Poly(ethylene glycol)-poly(aspartate) 

PEPE Polyether-copolyester 

P-gp P-glycoprotein 

PSD Particle size distribution 

TEER Transendothelial electrical resistance 

TEM Transmission electron microscopy 

Tf Transferrin 

TMC Trimethylated chitosan 

TNF-α Necrosis factor alpha 

XRD X–ray diffraction 
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    Appendix B Supplementary Information to chapter 6 

B.6.1. Method 

B.6.1.1. Materials 

The chemicals used to prepare the Citrate-coated IONPs (Citrate-IONPs) and cross-

linked nanoassemblies loaded with superparamagnetic iron oxide nanoparticles (CNA-

IONPs) have been described (292). 

 

B.6.1.2. Preparation and characterization of Citrate-IONPs and CNA-IONPs 

Citrate-IONPs and CNA-IONPs were synthesized using a previously reported method 

(55, 186, 292). Briefly, ferric chloride hexahydrate (Fe
3+

) and ferrous chloride 

tetrahydrate (Fe
2+

) were dissolved in deionized water (Fe
3+ 

Fe
2+

 = 2:1), followed by 

adding ammonium hydroxide dropwise under an N2 atmosphere at 85 ºC. Citric acid (2 

equivalent) was then added to prepare Citrate-IONPs. After 1 h, the solution was placed 

on a magnet to collect black brown particles, which were washed repeatedly using pure 

ethanol (274, 275). Citrate-IONPs were dried overnight in a vacuum drying oven.  

CNA-IONPs were prepared similarly by mixing ferric and ferrous salts at a 2:1 molar 

ratio with CNAs in deionized water. The total iron ions and the carboxyl groups of CNAs 

were adjusted in a molar ratio of 1:2. Ammonium hydroxide was added to this mixed 

solution dropwise under nitrogen atmosphere and the reaction was allowed to proceed at 

85 C for 1 h. The solution was centrifuged at 3,000 g for 5 min to remove precipitates 

and other water-insoluble impurities. CNA-IONPs in the supernatant were filtered (0.22 

µm syringe filters), dialyzed (MWCO 6  8 kDa), and collected by freeze drying. The 

physico-chemical properties and stability of the Citrate-IONPs and CNA-IONPs were 
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determined in our laboratories. All of the methods have been reported in our previous 

report (292). 

 

B.6.1.3. Cell lines and culture conditions 

The immortalized mouse brain endothelial cell line bEnd.3 (American Type Culture 

Collection, Manassas, VA) was cultured in Dulbecco's Modified Eagle Medium (DMEM, 

Mediatech, Manassas, VA) with 10% fetal bovine serum (FBS, Atlanta Biologicals, 

Lawrenceville, GA), 100 U/ml penicillin, and 100 mg/ml streptomycin (Invitrogen, 

Grand Island, NY) at 37ºC in a humidified incubator with 5% CO2 and used from 

passages 5 through 10. Madin-Darby canine kidney II (MDCKII) cells (European 

Collection of Cell Cultures, Salisbury, UK) were cultured in minimum essential medium 

with Earle’s salts (MEM, Mediatech, Manassas, VA) with 5% FBS, 100 U/ml penicillin, 

and 100 mg/ml streptomycin at 37 ºC in a humidified incubator with 5% CO2 and used 

from passages 45 through 60.  

 

B.6.1.4. Transwell cultures 

bEnd.3 cells were seeded on Transwell® filters (polycarbonate 12 mm, pore size 3.0 µm, 

Corning Costar, Lowell, MA) in a density of 200,000 cells/cm
2
. The flux assays were 

performed 7-10 days after seeding (297). MDCKII cells were seeded on Transwell® 

filters in a density of 200,000 cells/cm
2
 and the flux assays were performed 4 days after 

seeding (296). 
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B.6.1.5. Iron concentration analyzed by Ferrozine assay 

A ferrozine assay for iron was carried out to determine the iron content of the 

nanoparticle solutions, the cell culture media, the nanoparticle-loaded cells and the 

control cells, (316, 317). The cell suspension or nanoparticle solution was diluted to 

appropriate concentration. Fifty µL samples were mixed with 50 µL of 1.4 mM HCl and 

20 µL ascorbic acid (2M), and then incubated at 70 °C for 1 hour. After the mixtures 

cooled to room temperature, 30 µL of the iron detection reagent (6.5 mM ferrozine, 6.5 

mM neocuproine, 2.5 M ammonium acetate and 1 M ascorbic acid dissolved in water) 

was added to each sample. After 30 min, the solution in each tube was transferred into a 

well of a 96 well plate and the absorbance measured at 550 nm on a microplate reader. A 

standard curve was also prepared with 0, 0.1, 0.2, 0.5, 1, 2, 5 and 10 μg/mL iron and 

treated in the same way. 

 

B.6.1.6. The effect of temperature and CNA-IONPs concentrations on CNA-IONPs 

flux using MDCKII Transwell® model 

CNA-IONP and LY fluxes were also investigated with two concentrations (0.5 mg/ml 

and 2.5 mg/ml CNA-IONP) at 37 and 43 °C (0.5 h). Samples (100 µL) were collected 

from the donor chamber at time 0 and from the receiving chamber at 0.5, 0.75, 1, 2, 3, 4, 

and 6 h. LY concentrations was analyzed as described in the method section of this report 

and iron concentrations were analyzed as described above.  
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B.6.2. Results 

CNA-IONPs fluxes were studied at 37 °C and 43 °C (0.5 h) with two concentrations (0.5 

mg/ml or 2.5 mg/ml). Neither temperature or concentration increased the flux of CNA-

IONPs and LY over 6 h and the total flux of CNA-IONPs was less than 0.2% of donor 

chamber over 6 h (Figure B.6.1A& B.6.1B). The concentration independence of  CNA-

IONP flux across the BBB provided evidence that CNA-IONPs cross the BBB through 

non-diffusion mechanism.  This very limited IONPs flux across the BBB was consistent 

with a previous report. . They did not observe any IONPs flux over 24 h under normal 

conditions using a human brain derived BBB model (293).   

 

 

Figure B.6.1. LY (A) and CNA-IONP (B) flux across MDCKII transwell® model at two 

different concentrations (0.5 and 2.5 mg/mL) and temperatures (37 and 43 °C) (n = 3 in 

each group). 
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