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ABSTRACT 

 

 Mobile device data continues to increase in significance in both civil and criminal 

investigations. Location data is often of particular interest. To date, research has established that 

the devices are location aware, incorporate a variety of resources to obtain location information, 

and cache the information in various ways. However, a review of the existing research suggests 

varying degrees of reliability of any such recovered location data. In an effort to clarify the issue, 

this project offers case studies of multiple Android mobile devices utilized in controlled 

conditions with known settings and applications in documented locations. The study uses data 

recovered from test devices to corroborate previously identified accuracy trends noted in 

research involving live-tracked devices, and it further offers detailed analysis strategies for the 

recovery of location data from devices themselves. A methodology for reviewing device data for 

possible artifacts that may allow an examiner to evaluate location data reliability is also 

presented. This paper also addresses emerging trends in device security and cloud storage, which 

may have significant implications for future mobile device location data recovery and analysis. 

Discussion of recovered cloud data introduces a distinct and potentially significant resource for 

investigators, and the paper addresses the cloud resources’ advantages and limitations. 
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CHAPTER ONE: INTRODUCTION 

 Mobile devices have become pervasive throughout modern society and everyday life. As 

the devices have increased in proliferation, they have likewise improved in capabilities. They 

essentially function as pocket-sized computers, with full operating systems and the ability to 

install and run additional applications. Their hardware features have expanded to move beyond 

the transmission of voice and text content to include multimedia, internet browsing and 

streaming, location awareness, and navigation functionalities. This enrichment of features and 

capabilities has further entrenched the mobile device into everyday life for many, whether it be 

checking email or searching for a restaurant nearby.  

 Leaving aside the sociological implications of this heightened connectivity and 

convenience phenomenon, the frequency and intimate nature of use by the mobile device owner 

make them rich sources of data about an individual’s interests, activity, relationships, and 

communication. Naturally, this makes the mobile device a particularly valuable source of 

evidence in both criminal and civil investigations. Because users interact so often and so 

personally with their devices, their content may be of interest even in less obvious cases, where 

the incident does not directly involve the use of the device but the device may still hold 

information that could inform the investigation or adjudication of the case. 

 In particular, the location-awareness of mobile devices means they could store or 

generate historical location data that may document the device’s, and by extension, the user’s, 

whereabouts during a particular timeframe of interest in the case. Such data, if recovered and 

identified, could corroborate the accounts of witnesses in the case or implicate a suspect or even 

assist in the recovery of a missing person. Of course, much depends on the reliability of any such 
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cached location information, as well as an examiner’s ability to recover and interpret it from a 

particular device. 

 This paper will elaborate on the investigative role of mobile device location data and 

review existing research pertaining to the capabilities and data recovery efforts specifically 

involving Android devices and location information. The study focuses on criminal 

investigations in particular, but the concepts and methodologies presented would apply in civil 

contexts, as well. It further aims to address the complex nature of such recovery and 

interpretation by utilizing test devices in controlled conditions and examining the data extracted 

from the devices for evaluation of accuracy via comparison with the documented location 

history. It also examines the emerging role of cloud resources and presents test device cloud data 

retrieved for this study. Informed by the test findings, a general strategy for analysis of Android 

devices for location data will be presented, as will a discussion of limitations and 

recommendations for future research.   
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 CHAPTER TWO: LITERATURE REVIEW 

   

 

Proliferation and Utilization of Mobile Devices 

 According to the Pew Research Center (2014), a majority of American adults (58%) own 

a smartphone, and 29% of them identify their device as a necessity which they cannot imagine 

doing without. A separate report focusing on Internet users found that 80% of online adults 

possess a smartphone, spending an average of 1.85 hours per day online via their mobile device. 

Android-based devices comprise the largest market share at 54% (Mander, 2014), while also 

boasting high growth rates in emerging markets and a large app base of over 200,000 

downloadable, third-party apps (Maus, Hofken, & Schuba, 2011). Android is an open-source 

mobile device operating system developed and maintained by Google. 

 Empirically, it is clear that smartphones have become an entrenched and intimate part of 

daily life in the modern world. Pew (2014) reports that 44% of cell phone owners have slept with 

their phone next to their bed. Just over a third of U.S. households utilize a cell phone in lieu of a 

landline, and individuals carry their phones with them everywhere and use them in a myriad of 

ways. As a society, we have come to rely on these devices not just for communication, but also 

to get directions, coordinate schedules, and even make purchases (Wells, 2014). Smartphones 

have clearly evolved into more complex and powerful tools. Such developments prompted the 

Washington State Senate Judiciary Committee to ask in 2012, “Have [mobile devices] also 

effectively become tracking devices (State of Washington Senate Judiciary Committee, 2012)?”  
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 Certainly, there are those who would see the advantages of this, at least in some 

circumstances. Senator Charles Schumer has called for the Federal Communications 

Commission (FCC) to implement improvement plans for emergency call tracking of cell phones, 

noting that 70% of 911 calls now come from a cell phone (Fox, 2015). He recounted an incident 

from his state of New York, in which an elderly woman called 911 from a cell phone after 

having a stroke. Because her speech was slurred due to the stroke, she was unable to provide her 

address to the dispatcher. An address was obtained based on which cell tower(s) she was 

connected to during the call. The address proved inaccurate, however, and it was 8 hours before 

responders managed to find her. She died the next day (Schumer, 2015).  

 The big U.S. carriers (Verizon, AT&T, Sprint, and T-Mobile) pledged their commitment 

to a goal of providing precise location data to 911 dispatchers for 40% of cell phone 911 calls 

within two years, and 80% within six years. The FCC suggests this specific location information 

should be accurate within 50 meters horizontally and 3 meters vertically. The proposed method 

for achieving this level of accuracy involves the incorporation of nearby, static Bluetooth and 

WLAN-enabled devices, such as smoke detectors or wireless routers, which will be logged with 

a precise location in a special emergency services database. Carriers also plan to ensure that 

handset WLAN and Bluetooth functionality can be enabled remotely in an emergency, if they are 

disabled (Selyukh, 2014). 

 Other aims involving smartphones as tracking devices are less consequential, perhaps, 

but may be just as sensitive. Marketing companies, such as Path Intelligence (PI), claim to be 

able to detect phones entering their client’s business, recording the frequency and duration of 

their visits, as well as the typical routes they take from business to business. PI markets this 
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technology to shopping malls. However, this obviously involves the collection of shoppers’ 

location information, likely without their knowledge or consent, and then using that data for 

profit (Michael, 2013).  

 On the more altruistic end of the spectrum, some researchers have focused on the 

potential use of smartphones as a low-cost tracking device for Alzheimer patients. The devices 

often combine GNSS (Global Navigation Satellite System) functionality with internet access, so 

providers or caregivers could use a web-based application to monitor current or past location 

information for the patients (Paiva & Abreu, 2012). So the concept of using smartphones to 

monitor users’ locations has been embraced from multiple perspectives. 

 Even smartphone users themselves often use their devices as tracking devices, as a 

convenience. A study published in 2010 of almost 50,000 Android apps showed that 40% of the 

apps utilize the device location (Maus et al., 2011). Apps like Gas Buddy, Yelp, Waze, and Back 

Country Navigator allow users to find products or services nearby, navigate to them, and even 

use their devices as GPS guides in remote places (Reisinger, 2013). Pew (2014) reported that 

74% of smartphone owners had used their device to get directions, recommendations, or some 

other location-based information, with 12% saying they had used their device to “check in” at a 

particular location or to share their whereabouts with friends/family. Some apps market this 

location sharing feature as a public safety measure, allowing parents to monitor their children’s 

locations. 

 As another interested party on public safety matters, law enforcement also explores the 

use of mobile devices for tracking purposes. Given the intimate nature of the devices and the fact 

that over 6 billion cell phone subscriptions exist in the world (Wells, 2014), law enforcement 
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interest in such functionality is unsurprising. In discussing the usage of cell phones as tracking 

devices by law enforcement, Wells also noted that cell phone carriers informed Congress that 

they collectively received 1.3 million requests for customer information in 2011. This involved 

both real-time tracking and historical information on cell site connections obtained from the 

carrier. Both of these practices will be explored in greater detail later in the paper, in terms of 

how they are implemented as well as existing research on their reliability. 

 These descriptions of smartphone roles in law enforcement, emergency response, 

marketing, user convenience, and even healthcare emphasize their ubiquity and the depth to 

which they have permeated modern life. Their internet connectivity and location awareness have 

been powerful contributors to these developments. The next section explores the technological 

features that enable these functions. 

 

Device Capabilities and Location Awareness 

Indeed, mobile devices come equipped with a substantial arsenal of hardware sensors and 

transmitters to facilitate location awareness, augmented by web-based services operated by 

various private and public entities. This section of the paper will examine these resources and 

their role in sustaining location-based services in Android devices. 

The State of Washington Senate Judiciary Committee (2012) identified four key ways 

mobile devices may determine a user’s location: GNSS, cellular network information, WLAN 

access points, and users themselves. A review of the first three of these resources will 

demonstrate their relative strengths and weaknesses, followed by a discussion of the services that 

supplement the hardware-based abilities of the device. 
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 Before evaluating the utility of GNSS, more detail on its components and operation is 

warranted. GNSS is a relatively newer term used to encompass all potential satellite systems a 

device may use, since the activation of the Russian Global Navigation Satellite System 

(GLONASS) toppled the exclusivity previously held by the U.S.-operated Global Positioning 

System (GPS). Other satellite systems operated by other entities or nations are emerging, but 

thus far, these are the two commonly used in U.S. devices (Last, 2015). Throughout this paper, 

when the term “GNSS” is used, it refers to GPS and GLONASS. Where a cited study strictly 

refers only to “GPS,” the term GPS will be used. 

The GPS network includes 27 operational satellites and has been operating for over 30 

years (State of Washington Senate Judiciary Committee, 2012). Alternatively, GLONASS 

utilizes 23 operational satellites as of January 2012 (Cai, 2013). Both operate in similar fashion, 

via trilateration. The device receives signals from as many satellites as it can, then measures the 

distance between each satellite based on the time each satellite’s signal takes to travel to the 

device, in order to determine its precise location. Devices do not actively transmit their location 

(Last, 2015). Since both systems require line-of-sight paths between at least three satellites and 

the terrestrial devices utilizing them, they are subject to some limitations. Specifically, it can take 

a significant amount of time to get signals from enough satellites, and signals may be degraded 

or blocked entirely if there are atmospheric interferences or solar activity, topographical 

obstructions, or if the device is being used indoors or underground (Michael, 2013). In short, the 

big factor in the accuracy or utility of GNSS services is the surroundings (Last, 2015). 

Additional constraints are more fundamental: sensors are not present in all cell phones (though 

certainly in most if not all smartphones); the process requires a lot of power, draining the device 
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battery quickly; due to the power concerns, the sensor(s) are not typically enabled by default and 

must be activated by the user. On the plus side, when GNSS services are used successfully, the 

data is typically extremely accurate and often includes additional detail on speed, altitude, and 

direction of travel, or bearing (Lifchitz, 2010). 

Cellular network strategies typically present the opposite traits. All cellular phones 

possess the necessary transceiver, so additional hardware is not required. Furthermore, the 

function is typically enabled by default and consumes significantly less battery power, provided 

cellular network coverage is adequate. Cellular coverage continues to expand and improve in the 

United States, with over 280,000 cell sites in use as of June 2012. The tradeoff usually involves 

accuracy. In rural areas, where cell site towers are sometimes miles apart, accuracy tends to be 

less than in urban areas, which have higher tower densities (Wells, 2014). Other factors affecting 

the reliability of cellular network location data will be detailed later in the paper. 

Since every cell tower is uniquely identified and carriers maintain location information 

on each of their towers, the towers with which a phone communicates provide the basis for 

tracking its location. When a phone is on and the cellular service is enabled, the phone will 

attempt to connect to a tower as often as every 7 seconds (State of Washington Senate Judiciary 

Committee, 2012). Phones will often communicate with multiple towers simultaneously or 

within very short amounts of time. In these instances, a more precise location for the device may 

be obtained via triangulation. This process may be activated and tracked remotely from the 

network side, unlike GNSS, in a process known as “pinging” (Lifchitz, 2010). So in an 

emergency, for example, responders can utilize carrier resources to activate the device’s E911 

system, which will then use the cellular network pinging process or even activate the phone’s 
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GNSS service. The device can then obtain precise GNSS coordinates, if available, and then 

transmit them to emergency services via the carrier’s network to help guide responders to the 

right place (Daniel, 2014).  

The last of the hardware-based tools involves WLAN networks. This is actually a sort of 

hybrid approach, because it involves the use of network-based geolocation services. The 

technique involves the detection of nearby WLAN access points, along with their relative signal 

strengths (Brouwers & Woehrle, 2012), followed by a query of a remotely stored database 

containing location information associated with the particular access point’s media access 

control (MAC) address (State of Washington Senate Judiciary Committee, 2012). Theoretically, 

it could circumvent this remote query process if the MAC address-location information were 

stored locally on the device, as some third-party apps billed as “WLAN hotspot finders” purport 

to do. In either case, the benefits of the WLAN method typically involve lower power 

consumption, no performance detriment indoors, and decent accuracy. However, WLAN 

connectivity must also be enabled by the user, relies on the presence of access points (or other 

nearby hardware tracked in the queried database, such as cell towers, Bluetooth devices like 

smoke detectors, etc. [24]), and may not be as accurate as GNSS location results (Lifchitz, 2010). 

The discussion of WLAN-based methods introduced the extended functionality offered 

by remotely operated services. A key provider of the aforementioned remote location lookup 

services is Google itself, which maintains a database supported by the “anonymous” collection of 

geographic data for cell tower or WLAN routers to which its users are connected. By opting to 

use Google’s Location Services, users agree to contribute to this database (4RENSIKER, 2012). 
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The Google location database is thus vast and constantly updated, receiving data from Google’s 

cars (street view and automated) and of course, Android phones (Lifchitz, 2010). 

Android devices have built-in application programming interfaces (APIs) for location 

services developed and maintained by Google. Both stock Android apps and third-party apps use 

these services (Davydov, 2011). The location API may use any of the previously described 

resources to obtain device location, depending on the availability of the resource, as well as the 

parameters of the particular app. Apps may be programmed to request the current device 

location, receive updates on the location, look up addresses from detected device latitude and 

longitude (this process is known as reverse geocoding), or perform geofencing or activity 

recognition (“Making your app,” 2015). Geofencing involves the caching of location history of 

the device or recognition of a particular location, in order to provide additional context-based 

functionality, such as reminding a user of some task when they arrive home (Maus et al., 2011).  

Google’s application development tutorials offer some insight into the functionality of 

their own location services API, the fused location provider. Specifically, app developers must 

not only code for the location functions described above, but they must also ensure their app 

contains the appropriate permissions to do so. Location permissions come in two flavors: coarse 

and fine, with fine being the more precise of the two. The permission level and the details of the 

location request determine the accuracy of the information obtained via Google’s location 

services (“Making your app,” 2015). The 2010 study of Android apps showed that of the 50,000 

reviewed, 25% of the apps requested permission to the device coarse location, and 15% 

requested permission to the fine location. Examples of such apps include Facebook, Foursquare, 

and Twitter, as well as more obvious tools like mapping and navigation apps (Maus et al., 2011). 
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Indeed, the Android development tutorial offers an enticing pitch to developers to include 

location-based features in their app development tutorial (“Making your app,” 2015), noting the 

following: 

If your app can continuously track location, it can deliver more relevant information to 

the user. For example, if your app helps the user find their way while walking or driving, 

or if your app tracks the location of assets, it needs to get the location of the device at 

regular intervals. As well as the geographical location (latitude and longitude), you may 

want to give the user further information such as the bearing (horizontal direction of 

travel), altitude, or velocity of the device. (p. 5) 

This statement offers further insight into the capabilities and strategies of the device. It 

suggests that location information may be routinely updated at configurable intervals, with the 

update rate having reliability implications. It also implies that GNSS technology may be used, 

with its references to latitude and longitude, bearing, altitude, and velocity. Furthermore, it 

suggests some good application types to use for studying this topic, specifically navigation and 

tracking apps, in addition to those apps already mentioned. 

The tutorial goes on to lay out how developers code for this type of functionality. First, 

developers must ensure their applications have the proper permissions, as discussed previously. 

Coarse permissions are described as yielding locations with maximum accuracy within 

approximately one city block, while fine permissions are needed for functions requiring greater 

precision (“Making your app,” 2015). Permissions are disclosed to the user when they attempt to 

download or update an app from the Google Play market, and they must accept these in order for 

the download to proceed (State of Washington Senate Judiciary Committee, 2012). Later, we 
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will examine how this arrangement figures into issues of user awareness and consent in terms of 

device location capabilities and monitoring. 

Having secured the proper permissions, developers must then program their app to 

request the device location. This may be done a single time, to request the device’s last known 

location, or it may be configured to receive regular location updates. The parameters of any of 

these location requests will affect the accuracy of the information, dictating the update interval 

and the priority level. The table below summarizes the different request types, as described in the 

Android developer tutorial (“Making your app,” 2015). 

Table 1 - Android Application Location Requests 

Request Type Description 

Balanced Considered coarse-level (max accuracy within 100 meters) 

Likely to use WLAN and cell towers to obtain device location, depending 

on availability 

High accuracy Most precise 

When used with fast update interval of 5 seconds, this request type can 

return information accurate within a few feet 

More likely to use GNSS 

Appropriate for mapping/navigation apps 

Low power Consumes less power 

City-level precision, accurate to within 10 kilometers 

No power Receive updates when available as other apps request location updates 

Accuracy dependent on permissions/request details of other application(s) 

   

The varying options for the location requests themselves reflect the inherent inverse 

relationship between accuracy prioritization and battery life, as well as the developers’ desire to 

balance the two. High accuracy requires high power consumption. There would also seem to be 

some correlation between these request parameter types and the app permission details. Indeed, 

in order for the high accuracy parameter to be implemented, an app must have permission to the 
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device fine location (“Making your app,” 2015). This implies that applications without such 

permissions may be less reliable sources of location data, when examining artifacts recovered 

from the device itself. This hypothesis helps shape the strategy of this study and will figure in the 

review of study findings. 

The Android tutorial essentially states that the fused location provider updates apps 

periodically with the best available location, and that the accuracy of the information depends on 

the active sensors (i.e., cellular, WLAN, GNSS), the location permissions, and the options in the 

app’s location request (“Making your app,” 2015). Thus, beyond identifying app types that may 

be of interest, the tutorial’s description of the fused location provider’s features might also 

suggest strategies for analyzing the data associated with those apps. For example, if applications 

log timestamped metadata about their activity, a review of this data could provide some insight 

into how reliable any associated, cached location information may be, by documenting its 

location request activity and details. This study’s methodology will include a search for such 

metadata. 

Clearly, the devices have many resources and many purposes involving location 

information. To date, much of the research involving the location-awareness features of Android 

phones has focused on the accuracy of tracking a live device as well as the review of historical 

cell site data obtained from cell phone carriers for a particular user. However, from a forensics 

perspective, many crimes are not reported or known until well after the incident, leaving 

investigators with a device seized later from an identified suspect and rendering live tracking 

moot. Furthermore, historical cell site data may not be accessible, or as we shall see in 
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subsequent sections, entirely reliable. Thus, the impetus and motivation for this study involves 

the recovery and reliability evaluation of the data recovered from the device itself.  

 

Existing Research on Location Data Recovery and Reliability 

Maus et al. (2011) noted that in general, locations derived by smartphones are generally 

quite accurate, in most cases. Empirically, this would make sense, since companies want users to 

enjoy and rely on their products, but it of course implies that the accuracy varies under different 

conditions. This section of the paper reviews the existing research on accuracy associated with 

device location services, as well as the recovery and reliability of the data recovered from the 

devices themselves.  

 

Accuracy of Device Location Services 

Much prior study has targeted the live tracking of devices, rather than data recovered 

from the devices after the incident. Even though this study focuses on the analysis of data 

recovered from the devices themselves, these works still inform the study methodology and 

shape hypotheses. Part of this work’s aims involve an assessment of the accuracy trends noted in 

live tracking with regard to location resources such as cellular data versus GNSS, for example. If 

these trends do hold, it will place a higher priority on developing strategies for reviewing device 

data to determine which resources were active when the recovered data was cached, or 

evaluating if such a determination is even feasible at all. 

In an excerpt from his upcoming book, Cellular Location Evidence for Legal 

Professionals, Larry Daniel (2014) states that two fundamental options exist for tracking a 
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device in real-time: activate the device GPS and request information via pings from the carrier 

side or triangulate the location using the cellular network. Daniel describes GPS as accurate to 

within 50 feet, while noting that triangulation demands three reference points and can err by up 

to several thousand feet. Each of these techniques has its own set of benefits and limitations. 

As noted earlier, GNSS-based services drain battery power quickly, require time and line 

of sight with several satellites to fix the device location, and can be subject to interference by 

atmospheric conditions, buildings and trees, or radio activity/jamming. On the other hand, the 

U.S. government reports that the civilian GPS service offers accuracy within 7.8 meters with a 

95% confidence level, making it an exceptionally accurate resource (Michael, 2013). Given that 

this service is now being used in conjunction with the Russian GLONASS system in newer 

devices, the effective accuracy may be even greater. Plus, as Professor David Last (2015) notes, 

GNSS services also often log additional metadata beyond just latitude and longitude information, 

including quality (accuracy) information, altitude, speed, and bearing. This additional metadata, 

if cached on the device, may be of use in evaluating the reliability of the recovered location 

history. This idea will be incorporated into this study’s evaluation of test results. 

Last (2015) also points out that an examiner can always check if the recovered 

coordinates make sense, lining up with travel routes or roads, for example. Furthermore, the 

precision of the coordinates and altitude may also offer some insight. For example, a decimal 

GPS coordinate with hundredths-level precision (two places after the decimal) is accurate to 

within 1,111.1 meters, but a coordinate with ten thousandths-level precision (four places after the 

decimal) can pinpoint locations within 11.1 meters. Too many places after the decimal point, 

however, may indicate that a particular coordinate is dubious or fabricated, because consumer-
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level technology in mobile devices is not typically capable of resolving locations to that level of 

precision (Bairstow, 2015). Since altitude is typically less accurate than latitude and longitude 

values, if the altitude seems quite accurate, the latitude and longitude data should be very 

reliable. Also, since one of the known GNSS issues involves atmospheric interference, an 

examiner can check for unusual solar activity at the time in question, as solar activity is well-

tracked and documented by multiple entities.  

This latest point highlights another way GNSS and cellular-based location features differ, 

in that at least a number of GNSS limitations can be evaluated after the fact, such as the solar 

activity or the topography of the region in question. However, a few major caveats apply to the 

use of cellular tower connections to locate a device, whether in a live tracking situation or in an 

effort to reconstruct location traces from historical cell site records obtained from the carrier. 

The primary issue arises from the assumption that a device will connect to the tower(s) 

nearest its current location. This assumption is problematic for a number of reasons. For multiple 

reasons, cell tower coverage varies and may not be known for a given time. Phones will connect 

to the tower with the best signal at the time, but since multiple factors affect cellular signals, that 

tower may not necessarily be the closest (Daniel, 2014). Some of the factors involve the tower 

infrastructure and operation, the local environment, and even the devices themselves (Wells, 

2014). The table below summarizes the various factors affecting phone-cell tower interaction.  
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Table 2 - Factors Affecting Cell Tower Activity 

Cellular Network/Operations Environmental Device 

Number of cell sites 

Ongoing maintenance or repairs 

Height of tower 

Height of tower above sea level 

Wattage output 

Range of coverage 

Number of antennas per tower 

Direction and height of antennas 

Call traffic via each antenna at 

time of connection 

Interference from other towers 

or radio signals 

Weather 

Topography (hills, trees, etc.) 

Urban structures (buildings, 

signs, etc.) 

Time of day 

 

Wattage output 

Broadband capability (age of 

phone) 

Indoor/outdoor at time of use 

 

In cases of live tracking, these complicating factors may be rendered moot when the 

device is actually located, but in cases involving historical cell site data, Daniel (2014) asserts 

that because of these issues, it is not possible to know the coverage area of a cell tower at the 

time of a particular event, nor is it possible to recreate exactly the conditions under which the 

event occurred, in terms of the cell coverage and operation. Furthermore, even if carriers 

maintain the location of each of their towers, one cannot know from the carrier’s records if the 

recorded tower was actually the one closest to the phone at the time. For example, even if a 

tower is closest, it may be inundated with heavy call traffic during peak activity times, forcing a 

phone to connect to a tower further away. These issues have significant implications for the use 

of these historical carrier records in the adjudication of criminal cases, as will be discussed in the 

next section of the paper. 

In terms of the accuracy of the cellular-based location derivations, varying results have 

been obtained. By working off just the single tower connected to and referring to carrier 
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maintained locations associated with that tower, accuracy levels within 100 to 3000 meters have 

been assessed. Triangulation techniques, available when a device communicates with multiple 

towers simultaneously or in rapid succession, have produced accuracy levels as precise as 25 

meters (Maus et al., 2011). How are these assessments performed, though? 

Yang et al. (2010) highlight the technique of wardriving, wherein “a vehicle drives within 

the target area recording signals emanating from nearby cell towers (or WLAN access points) 

and the locations these signals were received at.” They then use various mathematical strategies 

to infer the location of the various towers and access points detected during the collection phase. 

By comparing these inferred locations to the known locations of the towers in question, they 

evaluate the accuracy levels. 

Yang et al. (2010) performed their own wardriving effort around Los Angeles, an area of 

roughly 1396 square kilometers covered by 54 cell towers at the time. The team collected data, 

measuring signal strengths every two seconds as they drove around the area for a period of two 

months in 2009. Having gathered their data, they used techniques to infer locations of the towers 

they detected and compared the results to the known tower locations they had documented. They 

then developed their own supplemental mathematical strategies to refine those results, in an 

attempt to establish a way of improving the reliability of location data inferred from cellular 

tower interactions. The figure below provides a visual representation of the improvements to 

accuracy they were able to achieve via their innovative post-processing, as well as a quick 

comparison of the variations in accuracy among different environments, namely rural, 

residential, or urban areas (Yang et al., 2010). 
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Figure 1 - Cell Tower Localization Errors by Environment 

 

From these results, it would appear that cellular location information may be fairly 

reliable, generally much more so in urban and residential areas than in rural areas. Other 

researchers seem to corroborate this generalization, describing accuracy estimates as being 

within 50 to 100 meters in urban areas and some hundreds of meters elsewhere (Michael, 2013).  

Another study focused on identifying when a user is “dwelling,” or stationary, by 

tracking the user’s mobile device. Such concerns may figure in multiple contexts, from military 

operations to marketing strategies. The researchers created a custom Android application and 

collected information from five different devices with seven users. Users were directed to enable 

various settings at certain times and to track their own movements throughout their use of the 

devices. These researchers looked beyond cell towers and focused on the addition of GPS and 
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WLAN resources, as well as geolocation services, like Google location services or rival provider 

Skyhook (Brouwers & Woehrle, 2012). 

As might be expected, these researchers found that tracking information was most 

accurate when all of the aforementioned resources were involved, meaning GPS and WLAN 

sensors were enabled and access to geolocation services was facilitated. Again, geolocation 

services use the detected WLAN access points and signal strengths to query a remote database, 

which returns a location and estimate of accuracy based on the query information. The 

researchers noted that the best results typically involved the use of this service, although the 

quality of such information depends on the accuracy of the database and how many WLAN 

access points are actually in range at particular place. They found that static users would 

sometimes appear to jump between two points over 100 meters apart within seconds, as signals 

were detected and lost, etc. They also found that users moving at constant speed would appear to 

have clumped locations along their tracked route, rather than continuous travel, likely a sign that 

devices revert to most recent previously detected location when no new signal is detected. 

Furthermore, the use of geolocation services comes with a cost in terms of power consumption 

versus cellular only, especially if the rate of the queries is increased (Brouwers & Woehrle, 

2012). 

But how are these geolocation service databases developed? Who maintains them? How 

is their accuracy evaluated and improved?  

The “dwelling” researchers highlighted two key points that offer some response to these 

questions and also serve to guide some of the methodology of this study. First, they noted that 

Google’s geolocation service boasts reliable accuracy and extensive coverage. Secondly, they 
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offer some insight to its operation. According to Brouwers and Woehrle (2012), “Google trains 

its database using a background service built into Android devices that reports GPS coordinates 

and WLAN scan results to their servers at regular intervals” (p. 667). 

This indicates that Google’s database is likely to be extremely well-maintained, given the 

abundance of Android users and their ongoing participation in contributing to its improvement. It 

further suggests that Android users may not be particularly cognizant of their role in this 

maintenance effort, since it is a background service that is built into the devices that facilitates 

the activity. So does Google actually have a vast repository of location history information 

associated with its Android customers, and is that information at all accessible? Those questions 

also guided this study’s methodology and will be addressed in the study findings. 

However, other geolocation services, such as Skyhook (Brouwers & Woehrle, 2012), for 

example, certainly cannot enjoy Google’s access to Android user location updates. There are 

other ways of building geolocation databases, though. The aforementioned technique of 

wardriving may be employed. Service users may also contribute known location/access point 

information directly to the provider, as with Skyhook (Skyhook, 2015). Via wardriving, 

voluntary user contributions, and in Google’s case, Android background location services, 

various providers have been able to build geolocation service databases (Michael, 2013).  

Having elaborated on how the geolocation services are developed, operated, and 

maintained, the question turns to their reliability. One study evaluated Skyhook’s service, 

contrasting the company’s claims of 10-meter accuracy with results closer to 63-meter averages 

in Sydney, Australia, and 43 to 92 meters in Las Vegas, Miami, and San Diego (Michael, 2013). 

Yang et al. (2010) reference a study regarding wardriving and WLAN access points that found 
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that the estimated access point locations have a median error of 40 meters. Another group noted 

that WLAN access point locations can change (Davydov, 2011). However, Brouwers and 

Woehrle (2012) generally found geolocation services to be fairly accurate, especially when used 

in conjunction with other resources like GPS.  

 In summary, a review of the existing work involving smartphone location resources and 

their accuracy indicates a broad range of reliability estimates, from a few meters for GNSS 

information to a few kilometers for positions obtained via a single cell tower connection. The 

chart below offers a visual representation of the relative error ranges by resource type, with 

cellular on the order of thousands of meters, GNSS way down in the single to double digits, and 

WLAN resources overlapping between the two. Part of this study’s objectives will be to 

determine if any such accuracy trends are noted in the testing. 

 

Figure 2 - Relative Error Range by Resource Type 
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Recovery of Location Data from Devices 

 Studies related to location data recovered from the devices themselves appeared 

somewhat limited in scope and become dated quickly due to the fast-paced evolution of devices 

and applications, but they do offer some instructive insight. Various strategies are described by 

different researchers. Some are more direct than others, as the subsequent discussion will show. 

 Several works mentioned the need to “root” a device to extract all of the data (Davydov, 

2011; Kroger & Creutzberg, 2012; Maus, Hofken, & Schuba, 2011; Racioppo & Murthy, 2012; 

Sack, Kroger, & Creutzberg, 2012). The term “root” refers to the process of obtaining 

administrative, or root, access to the device’s operating system. This enables greater user control 

of the phone’s functionality and files, and it also ensures a forensic examiner the ability to obtain 

a complete raw image of the device’s internal memory (Racioppo & Murthy, 2012). Statistics on 

just what percentage of Android users root their phones proved elusive, but the process is 

specific to each particular make and model of the device, sometimes even varying depending on 

the device firmware version as well (Riley, 2015).  

 Also highlighted by multiple researchers are two files associated with older versions of 

Android, and therefore, older devices: cache.cell and cache.wifi (4RENSIKER, 2012; Kroger & 

Creutzberg, 2012; Yi, 2012). These files stored the 50 most recently detected cell tower locations 

and 200 most recent WLAN network locations, respectively. The information was timestamped, 

as well (4RENSIKER, 2012). However, researchers also noted that these files would only be 

populated with information if the user had enabled two specific settings which are not active by 

default (Kroger & Creutzberg, 2012). Furthermore, the files would only maintain the information 

up to the previously stated maximum record number, or for fourteen days (4RENSIKER, 2012).  
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 Instead of focusing on specific files of interest, some chose to hone in on certain file 

types, specifically SQLite databases and certain picture files. Racioppo and Murphy (2012) stress 

that SQLite databases are among the most important features of a smartphone, for forensic 

purposes, storing the bulk of the application data for Android apps. Among others, Yi (2012) 

discusses geo-tagged photos, images captured by the device’s camera that contain embedded 

latitude and longitude information. However, Yi also offers the more novel approach for photos 

of possible interest that are not geo-tagged: upload the image in question to Google Image search 

to find possibly similar images that are geo-tagged. More conventionally, Sack, Kroger, and 

Creutzberg (2012) also point out the potential value of Google Maps’ map tiles, which are 

snapshots of map images viewed via the application. 

Other examiners targeted specific apps, or categories of apps. For example, Saliba (2013) 

identifies the Facebook and Facebook Messenger apps as specific sources of location data, 

noting that the “threads_db2” database(s) associated with these apps store latitude and longitude 

values, along with altitude and speed, along with users’ message content. Maus et al. (2011) 

highlight other apps, such as Google Maps, Foursquare, and Twitter, as well as database content 

recovered from a weather app and a navigation app. Sack et al. (2012) also mention cookies and 

databases associated with the device’s web browser app. Davydov (2011) extends the 

consideration to all location-aware apps, naming example categories like navigation, social 

networking, weather, travel services, and banking.  

 Finally, when the traditional avenues of exploring known file types and applications of 

likely interest have been exhausted, the task shifts to identifying more elusive types of location 

artifacts. Artifacts stored as text addresses, points of interest, or navigation routes may require 
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additional search techniques (Barmpatsolou, Damopoulos, Kambourakis, & Katos, 2013). 

Strategies involve searching for geodata formats (GPS coordinates) or keywords like location, 

latitude, longitude, or address (Maus et al., 2011). Davydov (2011) suggests looking for logged 

MAC addresses of WLAN access points the device has detected, then looking up the associated 

location. The table below summarizes the various strategies utilized by previous researchers for 

recovering location data from Android devices. 

Table 3 - Strategies for Recovery of Location Data from Android Devices 

File Types App Categories Other 

SQLite Databases 

Pictures 

 Geo-tagged 

 Map tiles 

 Google Image Search 

 

Navigation 

Social networking 

Weather 

Travel 

Banking 

Text content 

Addresses 

Points of interest 

Routes 

Keywords 

MAC addresses of WLAN access 

points 

 

 While all of these insights are useful and certainly inform the methodology of this study, 

little comment on the accuracy of any such recovered data was observed. Davydov (2011) offers 

a discouraging assessment of prospects, noting that phones use cellular, GPS, and WLAN 

resources collectively to get location information, and there is no way to determine how 

particular data recovered from a device was obtained by that device. As an evaluation of his own 

proffered method regarding cached MAC address lookup, he notes that any location estimate so 

obtained may be of questionable accuracy. The relative lack of resolution regarding the 

reliability of the location information recovered from Android devices factored heavily into the 

motivation for this study.  
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Use of Mobile Device Location Data in Criminal Cases 

 Of course, the reliability of mobile device location data would be of interest in criminal 

cases where one or more of the parties involved used a smartphone during or around the incident. 

Sisak (2012, p. 2) notes that “the technologies that make smartphones so ‘smart’ also make them 

the closest thing law enforcement officers have to...homing devices.” Sisak also quotes one 

detective who points out the potential boon that the increasingly ubiquitous smartphone has 

brought investigators:  

It only makes sense for us to look for digital evidence. A crime is committed. People 

panic. They’re making calls. They’re sending text messages. All of that stuff is being 

digitally recorded and it’s going to be great evidence for prosecuting a case. (p. 1) 

The nature of who or what is recording the information becomes of interest. It could be 

service providers, law enforcement or other parties actively tracking a live device, or it could be 

cached by the device itself. Live tracking typically pertains to investigative operations, not 

prosecution strategies, though courts have ruled that using a phone’s GPS capability to track 

location does not require a warrant as law enforcement need no physical contact with the device 

to facilitate such operations (Harvard Law Review, 2013). However, the remaining two of these 

possibilities raises multifaceted concerns regarding the reliability and admissibility of the 

information, leading to qualified conclusions about how it should be used in court.  

The first category, data retrieved from service providers, has been the most studied and 

arguably, the most controversial. The general process involves a few preliminary steps: 

associating a device with a person of interest; identifying the phone carrier in question; and 

serving some sort of legal process (i.e., search warrant, subpoena, etc.) on the carrier for the 
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relevant call detail records. Then, an analyst examines the records and plots locations of cell 

towers on a map, assigns a coverage area to each tower, then plots pie-shaped sectors that 

represent possible locations from which particular cellular activity originated (Daniel, 2014). The 

resulting maps may be presented in court as evidence of where an individual could have been at 

or around the time of the crime, or to track past activity (Blank, 2011).  

This practice has been targeted from various angles. Critics question everything from 

how the records are obtained to their relevance and admissibility to their scientific validity. Even 

service providers have weighed in on the discussions, with AT&T filing a friend-of-the-court 

brief on a case involving records obtained via a court order, arguing that a search warrant should 

be required. Whether due to AT&T’s intervention or not, the 11th Circuit Court of Appeals ruled 

that police do indeed need a search warrant for cellular location history (American Civil 

Liberties Union, 2014). A number of efforts to require search warrants for such records have 

been undertaken in courts and legislatures in California, Maryland, and Georgia. Though these 

did not all succeed, Washington state attorneys, for their part, are now advising law enforcement 

to obtain a search warrant when seeking cellular location data from service providers (State of 

Washington Senate Judiciary Committee, 2012). 

In terms of relevance and admissibility, the path has been a bit smoother but still has 

some evolving nuances. Establishing the relevance of the records, or for data obtained via live 

tracking or from the device itself, has proven fairly straightforward. As long as a connection 

between the device and the person can be established, as when a phone is found in an 

individual’s possession or registered in their name, the location of the phone can certainly be 

germane. Furthermore, records from providers are admissible under the business records 
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exception to the hearsay rule, so long as they were obtained appropriately (Blank, 2011). Some 

argue that an expert witness should be required to testify to cellular records, since the average 

juror is unlikely to understand the technology well enough to use the information to judge the 

defendant fairly (Wells, 2014). 

Others would argue that introducing historical cellular location data via an expert witness 

would impart a weight to the information that may be unwarranted. The previous review of 

existing research attributed a broad and variable range of accuracy to cellular location 

information. Furthermore, Daniel (2014) asserts that such records do not meet the Daubert 

standard for scientific evidence. The Daubert standard sets out specific criteria governing the 

admissibility of expert findings. Daniel particularly highlights the requirement that processes be 

subject to peer review, have published error rates, and conform to standard, repeatable 

methodology. Daniel argues that location evidence from call detail records fails to meet any of 

these conditions. Specific findings may not be repeated or corroborated via peer review, since it 

is impossible to recreate all of the conditions at the time of the incident and it is likewise 

infeasible to know the exact distance between phones and towers at any given time. To be 

forensically sound, Daniel notes that a process must be predictable, repeatable, and verifiable. 

Once again, he argues that the use of call detail records to track a phone’s location fails on all of 

these counts.  

This leaves the data recovered from the device themselves. Presumably, such data would 

be easily admissible if law enforcement obtained a valid search warrant for the device, and if the 

device was collected from the subject, the association between user and device would easily 

cement the relevance of any recovered data. However, an interesting argument emerges, hinging 
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on application permissions. As stated previously, Android applications require permissions to 

access (and possibly cache or transmit) the device location, and users accept these permissions 

upon installing the app. Thus, an inference can be made regarding the user’s consent to the 

collection of their location data, which has been used to rebut their expectation of privacy with 

regard to the information. However, vague privacy policies presented by apps assuring users that 

the information is used “to improve services” or the like may obscure users’ awareness that their 

location history may be collected or used by other parties. This may undermine the easy 

assumption that cached location data should be accorded no special privacy protections (State of 

Washington Senate Judiciary Committee, 2012).   

In any case, privacy concerns continue to inform legal developments regarding mobile 

device location data, but Michael and Clarke (2013) argue that even if proper legal measures are 

indeed taken to obtain the data, it can still lead to a “miscarriage of justice” (p. 221) if the 

tracking data is not accurate. Indeed, both Blank (2011) and Daniel (2014) argue that the data 

can be helpful in refuting an alibi or demonstrate travel, for example. The issue arises from 

overstating the accuracy of the presented information. Ultimately, though, as Wells (2014) points 

out, the question of accuracy is for the jury to decide. The questions of reliability and authority 

still restrict the utility of mobile device location data in criminal cases. 

 

Emerging Issues 

 Aside from the trend of heightened legal protection of device location information, 

additional challenges are emerging in the world of Android forensics, in general, and for location 

data recovery, in particular. These complications start with the devices themselves. Newer 
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versions of the Android operating system (KitKat and higher) have inherent security measures 

that prevent access to key device functions, some of which were previously utilized by forensic 

software developers and others to obtain full physical images of the phone’s internal memory. 

Now that those exploits may no longer be used, examiners must rely on the built-in Android 

backup functionality to extract data from the device. The main issue with this is that application 

developers can set a flag in their app’s code to exclude their app’s content from the backup 

process. Unsurprisingly, many stock Google applications appear to have this exclusion flag set. 

The ultimate consequence of this development is that even with a fully accessible, unlocked 

device, an examiner may still not be able to extract all of the phone’s data, including in some 

cases, the data of particular interest. This leaves examiners with complex rooting or custom 

recovery options that require significant research and testing, or they can opt for hardware-based 

options like the Joint Test Action Group (JTAG), In-System Programming (ISP), or chip-off 

methods that are time-consuming or potentially destructive, if they need to retrieve excluded or 

deleted data from a particular device (International Association of Computer Investigative 

Specialists, 2015). 

 Given that Google excludes many of its apps from the backup process, this begs the 

question of what other backup resources are available to users. Here we turn to the cloud. 

Google, of course, backs up contacts and emails associated with users’ Gmail accounts. Other 

providers like Facebook may keep messages or contacts on their servers, as well. Recovery of 

this data is a significant challenge, introducing a host of technical and legal issues. For example, 

the data may be stored across multiple servers that are geographically scattered. This complicates 
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jurisdictional issues and prevents the traditional approach of capturing a raw image of data, since 

the data must be identified and isolated before the extraction process (CelleBrite, 2015).  

 One prominent cell phone forensics company, CelleBrite, has developed a new tool 

called Cloud Analyzer, specifically designed to retrieve data from these remote resources. The 

tool utilizes the various providers’ own APIs to authenticate credentials and download content. 

Credentials may be manually entered, as in cases where owner consent has been obtained, or 

they may be recovered from account information extracted from a target device. In any case, this 

technique offers two inherent benefits. First, the use of the providers’ own interfaces and 

protocols means that whatever the provider would allow the user to access, the Cloud Analyzer 

software can also retrieve. Second, because this method also employs the user credentials, 

concerns over encryption and specificity are rendered moot. The data will be received in its 

decrypted state and only the authorized user data will be obtained (CelleBrite, 2015). 

 The latest development involves out-of-the-box encryption for new Android devices, 

running version 6.0, also known as Marshmallow. Google has mandated full-disk encryption be 

implemented by the time the user completes their device setup steps, though only for new 

Marshmallow devices that meet certain performance standards. The requirement will not extend 

to older devices upgrading to Marshmallow, but the concern from a data recovery standpoint is 

that this will introduce significant complications going forward and may result in an inability to 

extract any data from the devices, even via hardware-based methods that would normally extract 

the full device content (Cunningham, 2015). This development could place even more emphasis 

on cloud data. 
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 In summary, a heightened emphasis on securing device application functionality and user 

data has developed, raising new obstacles to software-based methods of capturing a complete 

extraction from newer Android devices. The simultaneously emerging shift from device-based 

storage of user data to cloud storage further complicates mobile device data recovery. This could 

place more emphasis on thorough analysis and understanding of what data is recovered from the 

device, as well as the cloud provider data. In any case, the recovery of any location data obtained 

from either source could prove crucial in a criminal case, and the ability to assess the accuracy of 

such data could figure heavily into its admissibility and impact.   
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CHAPTER THREE: METHODOLOGY 

 This study focuses on Android devices, since Android currently comprises the largest 

market share among mobile devices. Four different test phones were obtained, each a different 

make and model. The table below summarizes the features of each device, highlighting the 

differences in system version, network type, and hardware capabilities. These distinction mirror 

the wide variety of devices likely to be encountered in forensic casework. 

Table 4 - Test Device Information 

Make/Model LG VS870 

Lucid II 

Samsung SGH-i257 

Galaxy S4 Mini 

OnePlus One 

A0001 

Samsung SM-

G900P Galaxy S5 

Android OS 

Version 

(Status) 

4.1.2 

JellyBean 

(Unrooted) 

4.4.2 

KitKat 

(Unrooted) 

5.0 

Lollipop 

(Unrooted) 

5.0 

Lollipop 

(Unrooted) 

Carrier Verizon AT&T AT&T Boost Mobile 

Network Type CDMA GSM GSM CDMA 

GNSS Sensor(s) GPS GPS 

GLONASS 

GPS GLONASS GPS  

GLONASS 

 

 The decision not to root the devices was made for a number of reasons. First, a rooted 

device is the best-case scenario in terms of data recovery capabilities, but the goal of this study is 

to address the most typical scenario forensic examiners are likely to encounter. Since rooting is a 

complex and potentially damaging process, it seems likely that most users would not attempt to 

root their device. Thus, a rooted device would probably be an exception rather than the rule in 

forensic casework situations.  

 The devices were then prepped for the testing phase, with various location-aware 

applications installed and user accounts configured. These apps were specifically selected for 

their location functionalities, including permissions. Several application categories were chosen 
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for testing, including navigation/mapping, messaging/chat, fitness, weather, location sharing, and 

leisure activity apps. Ad-supported games were also installed, to see if any location data would 

be cached in relation to advertisements transmitted to the device based on its location. Devices 

and applications were configured with a view to optimizing the recovery of cached location data 

from the device. 

 Devices were used in 24 test sessions under controlled conditions. Recorded test 

parameters ranged from actual time and location to environment (rural, urban, or suburban) to 

enabled sensors (GNSS, WLAN, cellular, or combination), as well as careful documentation of 

user activity. Weather conditions were also noted, as well as which devices were used, of course. 

User activity involved navigation sessions, photo/video captures, chat and location sharing 

sessions, weather lookup, location searches, web searches, and/or workout recordings. The 

documentation was maintained to allow for a later evaluation of reliability regarding any 

extracted data. 

 After completing the device testing phase, work shifted to recovery of device data. At this 

point, issues with accessibility due to security implementations of later Android devices were 

encountered and documented. Successful extractions of each the devices were performed. One test 

device was subjected to an initial extraction, then a reset operation was performed. Following the 

hard reset, the device data was acquired again to determine if any location artifacts would be 

recoverable after the reset operation. All extracted data was then analyzed for location artifacts 

using various tools.  

 The analysis strategy began by identifying which apps had permissions to the device 

location. Permissions information is stored in the file title “packages.xml.” Some software utilities, 
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such as CelleBrite Physical Analyzer, will parse the permissions information from this file and 

report it in its list of installed apps. Once the apps with location permissions were identified, the 

associated application data for each was examined for location information. The examination 

followed much of the previously outlined strategy, focusing first on SQLite databases and geo-

tagged media files. Further analysis involved a search for possible textual location information, 

including addresses, destinations, points of interest, MAC addresses, etc. This latter step was 

effected via keyword searches and manual review of application data.  

 In addition, the Google Location History was retrieved for each test device using the 

specialized Cloud Analyzer software. These operations were performed using both the credentials 

obtained from the devices themselves, as well as a manual entry of the credentials, to see if the 

method used had any effect on the results. A third step involved the collection of one day’s worth 

of location history for one test device via the Google user account interface itself, accessible by 

logging into the account on the web. This data was retrieved to compare the collected cloud 

location history to the location data made available by Google to its users.  

All recovered location information was compared to the location data recovered from the 

devices themselves, as well as the known locations recorded in the test session documentation. 

This was done with a view to confirming the accuracy trends noted in the previous research, 

ranging from highly accurate GNSS data to the variable reliability of cellular network location 

information. The data was also examined for trends involving environmental impact, in terms of 

indoor versus outdoor activity and area type (rural, suburban, or urban).   

 From there, reviews of system logs, application code, databases, and text-based application 

data (XML files) were undertaken to see if any determinations about sensor activity could be made. 
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For example, if a location artifact was found in the web browser cache and timestamped with a 

particular value, it would be useful to be able to establish if the GNSS sensor was active at this 

time. If sensor activity could be ascertained for that timeframe, it could help bolster the reliability 

of the location artifact.  

 Another consideration was whether the mere presence or absence of certain information 

could be used to infer which sensors were active. For example, do certain applications only 

function or log data when the GNSS sensors are in use? Or do they still cache information but with 

null values for certain metadata like accuracy and altitude values? Will devices still geo-tag photos 

and videos if the GNSS services are not enabled? If an obvious trend could be observed in regards 

to these questions, it may have implications for the future accuracy evaluation of certain types of 

location data recovered from devices. 
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CHAPTER FOUR: FINDINGS 

Extraction Issues 

 Three of the devices were susceptible to physical extraction methods. One device, the 

OnePlus One A0001, running Android 5.0 (Lollipop), blocked the physical extraction since the 

device is running Lollipop and is not rooted. Furthermore, because of additional technical 

aspects of this device, all solutions for obtaining root access would require wiping the user data 

first. Thus, this device could only be analyzed logically via the ADB (Android Debugging 

Bridge) backup method.  

The other Lollipop device, the Galaxy S5, did have a physical extraction solution that 

does not involve wiping the user data, but to test the impact of resetting a device to allow root 

access, the ADB backup method was used on this device first. Then, the device was used once to 

take three photos, reset, and a physical extraction was successfully performed. The resulting 

physical extraction was examined to determine if information previously recovered via the ADB 

backup could still be located after the reset operation. For instance, keyword searches were 

performed for known latitude and longitude values recovered via the analysis of the ADB 

backup. These searches were unsuccessful, though the data was known to be cached in SQLite 

databases.  

Additional research into this apparent complication revealed that the SQLite databases in 

question store the latitude and longitude coordinates as “REAL” or “DOUBLE” (floating point) 

or “INTEGER” values. Therefore, a search for numeric strings consistent with coordinate values 

will not recover these artifacts, even if regular expressions or GREP techniques are used. A 
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potential solution involved attempts to carve out SQLite databases containing text terms like “lat 

REAL” and “latitude DOUBLE,” or similar variations. These search terms successfully returned 

hits on the actual databases containing the location artifacts, but no results of value were 

obtained when searching the unallocated space of the post-reset physical extraction. Searches of 

SQLite databases carved from the unallocated space were also negative.  

Clearly, recovery of location data stored in SQLite databases after resetting a device 

presents significant challenges. This underscores the need to mitigate risk when confronted with 

devices that are not inherently supported for software-based physical extraction. In some cases, 

where encryption is not involved, hardware-based techniques may be a better solution. Though 

they may require more time and expense, they can assure access to all of the device content 

without running the risk of resetting the device. 

Furthermore, as anticipated, certain applications were excluded from the ADB backup in 

the Lollipop device extractions. Notably, WhatsApp, Facebook Messenger, Chrome browser, 

and Google Maps application data was excluded from the backups of these devices. On a 

positive note, these items were listed as installed applications by the forensic tools. A review of 

the “localappstate.db” database confirms that the apps were installed on the devices, as well as 

their installation time. In a case where Facebook Messenger or Google location data was needed, 

but the extraction failed to retrieve it, the investigator may wish to turn to the next resource 

discussed: the cloud. 
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Cloud Data Recovery 

 The first notable feature of the Cloud Analyzer software’s “Google Location History” 

extraction function is the 30-day range limit on location data. Presumably, this is a result of 

Google’s own imposed limitations capping the retrieval of history information even by users and 

devices to one month at a time. By repeating the extraction process and selecting different 

ranges, though, multiple months’ worth of locations were recovered for each test device. The 

figure below shows the Cloud Analyzer interface with the 30-day range selection requirement. 

  

 

Figure 3 - Cloud Analyzer Location History Options (30-day range) 
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Two methods exist for retrieving Google Location History. Both were tested and 

successfully used. The first method involves the export of a specialized account package from 

the CelleBrite Physical Analyzer (P.A.) software. This account package contains all of the user 

account credentials parsed by the P. A. software, as well as the unique Android device identifier. 

By utilizing this information, the software is essentially able to present the request for the 

location history via Google’s own API as though the device itself were retrieving the data. This 

offers a key advantage over the second method, in which examiners manually enter the account 

credentials. Manual entry generates a notification email from the provider, Google, to the 

accountholder regarding a new login from an unrecognized device. Use of the account package 

(device credentials) does not produce this alert to the user. This distinction was confirmed in the 

tests performed for this study. A notification email was received when the manual credential 

entry method was used but not with the account package method. Note that account packages 

could not be created for the Lollipop ADB backup extractions, as the Google account credentials 

are not recovered via this extraction method. For such situations, account credentials would have 

to be obtained via the device owner or other source and entered manually. 

 Both methods yielded the same results, and the results were very impressive. Latitude 

and longitude coordinates for the device locations were retrieved with a frequency of roughly 

one location per minute that the devices were up and running. Another initial observation was 

that the retrieved coordinates were in decimal format, and the precision of all recovered 

coordinates appeared to be limited to the thousandths place. This could have implications 

regarding the accuracy of the cloud location data. However, the frequency with which the device 

reports its location to Google was surprising, and certainly supports the idea that Google does 
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indeed have a vast cache of user location history information that could potentially be of great 

value in criminal investigations. Table 5 illustrates the frequency with which Google location 

updates are recorded for the device, based on a sampling of test results. The results displayed 

were selected to optimize for visualization of any trends noted among the different environment 

types and sensor activity, so some sessions with identical environment and sensor parameters 

were excluded from the table though they displayed similar trends. 

Table 5 - Average Cloud Location Frequency 

Device Number of 

Cloud 

Locations 

Up Time 

(minutes) 

Average 

Frequency 

(points/minute) 

Environment 

(Sensors Active) 

OnePlus One 22 25 0.88 

Suburban, Indoor 

(Cell, WLAN, GNSS) 

LG VS870 

OnePlus One 

118 

116 

105 

105 

1.12 

1.10 

Suburban, Outdoor 

(Cell, WLAN, GNSS) 

VS870 

OnePlus One 

84 

115 

105 

110 

0.80 

1.05 

Suburban, Outdoor 

(Cell only) 

S4 Mini 

Galaxy S5 

85 

86 

80 

82 

1.06 

1.05 

Urban, Outdoor 

(Cell, WLAN, GNSS) 

LG VS870 

OnePlus One 

56 

63 

71 

74 

0.79 

0.85 

Suburban, Indoor 

(Cell only) 

LG VS870 

OnePlus One 

51 

110 

50 

115 

1.02 

0.96 

Rural, Indoor 

(Cell, WLAN, GNSS) 

LG VS870 

OnePlus One 

43 

39 

49 

34 

0.88 

1.15 

Rural, Outdoor 

(Cell, WLAN, GNSS) 

LG VS870 

OnePlus One 

78 

118 

80 

121 

0.98 

0.98 

Suburban, Indoor 

(Cell, WLAN) 

S4 Mini 23 19 1.21 

Suburban, Outdoor 

(Cell, GNSS) 

LG VS870 27 26 1.04 

Rural, Outdoor 

(Cell only) 

Galaxy S5 0 10 0 

Suburban, Indoor 

(WLAN only) 

OnePlus One 0 60 0 

Suburban, Outdoor 

(WLAN, GNSS) 
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Some notable observations from this data include the fact that the trend of roughly one 

location per minute seems to persist across environment types and regardless of which services 

are active, with one notable exception: when test devices were used with cellular services 

disabled, no cloud locations were captured. Interestingly, a fitness app also used in one such test 

session did cache some location data for the same timeframe. However, the phenomenon could 

be an aberration, given that it involved just two devices in as many test sessions. More testing 

would be needed to confirm if this trend holds.   

 

Recovery of Device Location Data 

 Some location information was automatically parsed by the forensic software tools used 

to analyze the data from the test devices. This included Facebook Messenger, WhatsApp, and 

Viber chat message locations, some Google Maps and Waze navigation data, and geo-tagged 

media files. These artifacts are essentially the “low-hanging fruit,” as it were, so not much 

additional strategy is required to identify them. However, other data of possible value poses 

greater challenges. 

App and File Review 

 A review of the extracted data confirmed that the location cache files identified in 

previous studies, “cache.cell” and “cache.wifi,” were not recovered from any of the test devices, 

as expected based on the ages of the test devices. The file review then shifted to the next most 

obvious targets: geo-tagged photos and SQLite databases. In terms of geo-tagged photos, 

although they were identified by the analysis software immediately, the results were somewhat 
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muddled. For example, one might expect a trend in which geo-tagged photos would only be 

recovered from instances when the GNSS services were active. However, in some instances 

where GNSS services were noted as enabled and photos were captured, no geo-tagged photos 

were recovered. Two of the test devices, the Galaxy S5 and the Galaxy S4 Mini, recorded no 

geo-tagged photos, even though they were configured to do so and used to capture images. 

Furthermore, in two sessions on two separate devices, geo-tagged photos were recovered despite 

the fact that no GNSS services were enabled at the time of the session. Thus, an empirical basis 

for inferring sensor status from the mere presence or absence of geo-tag metadata in recovered 

images could not be determined. 

 Contributing further to the ambiguity, there was also no discernable pattern regarding the 

geo-tagged images captured at times when test session notes indicate the GNSS services were 

disabled. For example, in one instance, the test phone was indoors with cellular service only 

enabled, and the error was within roughly 130 meters from actual location. In another instance, 

however, the same phone was indoors with cellular and WLAN enabled, and the error was 

around 30 meters. A second test phone used in the same area as the first in the same outdoor, 

cellular-only test session appears to have geo-tagged the photo with a location over a kilometer 

away from the actual site of the photo.  

 The camera apps for all devices were configured during device setup to geo-tag photos, 

so a settings issue in the camera should not be responsible for the absence of geo-tagged photos 

from sessions in which the GNSS services were enabled. Weather conditions during such 

sessions were noted as being partly cloudy or clear. One possibly notable factor could be that 

other location-sensitive applications were also used in the sessions in which geo-tagged images 
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were captured in spite of the disabled GNSS services. Such applications, like Life360, a location-

sharing app, could have permissions to change the WLAN connection state, for example. This 

could potentially activate another resource for devices to obtain their location, though it is 

unknown if such a phenomenon resulted in the results observed here.  

Identifying Location-Permitted Apps 

 Having revisited the topic of permissions, the focus now shifts to apps with access to the 

device location. By examining the file titled “packages.xml,” various apps were identified which 

have access to either coarse or fine location, or more often both. The “packages.xml” file is a 

simple XML text file in which details about the installed applications are stored, including the 

app permissions. The permissions appear as a list and are organized by app. The figure below 

provides a snapshot of the permissions list for the RunKeeper fitness app. Note that this 

particular app only has access to the device “FINE” location. Based on the previous discussion 

regarding the maximum accuracies of both “COARSE” and “FINE” location permissions, this 

could indicate that the RunKeeper app data, if recovered, is likely to be quite accurate.   

 This idea is corroborated by observations made during test sessions regarding the 

RunKeeper app, as well as several other apps. Both the RunKeeper and MapMyWalk apps, for 

example, were noted to display a distance of “0.0” upon conclusion of workouts in which GNSS 

sensors were not enabled. A review of the associated databases for these apps confirms that no 

location data was cached for those particular sessions, just start and end times. In addition, the 

Waze navigation app insisted on “High Accuracy” mode being enabled by the user (including 

GNSS sensors) before performing navigation functions. Intuitively, this makes sense for the 

apps’ various functions, as navigation instructions would not be helpful if they were not finely 
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attuned to the device’s actual location, and fitness apps aim to provide users a track of their 

workout waypoints to facilitate measurements of improvement over successive workouts. For 

this reason, an investigator may wish to test a particular application of possible interest on a 

control device for evidence of this type of app-specific settings requirement. Doing so may allow 

an examiner to gain some insight into the reliability of similar data recovered from the evidence 

item. 

 

Figure 4 - RunKeeper Permissions from “Packages.xml” with “ACCESS_FINE_LOCATION” 

 

 Returning to the topic of permissions, a couple of other comments on the “packages.xml” 

file are warranted. First, the Physical Analyzer software does parse out a list of installed 

applications, including a summary of their permissions. However, it does not go into detail about 

coarse versus fine locations and so on. A quick “Find” search of the “packages.xml” file in 
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Internet Explorer for the terms “ACCESS_FINE_LOCATION” and 

“ACCESS_COARSE_LOCATION” will enable an investigator to identify each app that could 

potentially store location information based on its permissions. The app name and path appear 

above the list of its associated permissions, as shown in Figure 4. It is also important to note that 

the “packages.xml” file appears to have been excluded from the Android backup for the Lollipop 

test devices. 

 Given that the apps used in the test sessions were specifically chosen because of their 

location permissions, the focus of this study shifted quickly to reviewing the SQLite databases 

associated with each app. In general, the examination of app databases quickly made clear that 

location-sharing and fitness apps seem to cache the most data, frequently with high update rates 

and accuracy. They also seem most likely to cache other location metadata, like accuracy and 

altitude. Navigation and mapping apps seemed to do less logging of actual track points, focusing 

more on search results and recent destinations, but Waze did have a database named “tts.db” that 

contains timestamped turn-by-turn directions. These could certainly play a key role in 

reconstructing an individual’s activity, though not necessarily with the minutiae of a true 

tracking device.  

 Many databases were found to store location-related content. The trick was in 

determining the nature of the cached information. Was it consistent with the device’s actual 

location as noted in the test session documentation? Or was it based more on searched locations 

or destinations? What metadata was cached within the databases? Table 6 below details twenty-

six of the recovered databases of possible interest by filename, along with a brief description of 

their content. The databases are presented with their associated app, with the apps divided into 
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seven distinct categories. A detailed description of SQLite database analysis follows, 

highlighting specific databases of interest that were recovered from the test devices. 

Table 6 - Databases of Interest 

App 

Category 

Database Name Source App Content 

Navigation/ 

Mapping 

 

gmm_storage.db Google Maps searched locations, 
directions. Stored in BLOB 

data. Manual review or 

strings/keyword searches 

required. 

suggestions.db Google Earth searched locations 

(addresses or points of 

interest), with timestamps 

tts.db Waze turn-by-turn directions 
(transcript), with 

timestamps 

user.db Waze recent locations with 
lat/long and timestamps 

Fitness 

 

mytracks.db MyTracks Workout session history, 

timestamped trackpoints, 

with metadata (accuracy, 
etc.  

RunKeeper.sqlite RunKeeper Workout session history, 

timestamped trackpoints, 

with metadata (accuracy, 
etc.) 

workout.db Map My 

Walk 

Workout session history, 

timestamped trackpoints, 
with metadata (accuracy, 

etc.) 

Location 

Sharing 

360LocationDB Life360, 

FriendLocator 

Location history with 

timestamps and metadata 
(accuracy, altitude, etc.) 

messaging.db Life360, 

FriendLocator 

Chat messages with lat/long 

and timestamps 

nc.db Life360 Notifications with extra text 
metadata (timestamps and 

lat/long) 

dumpLogsDatabase FriendLocator Detailed activity log, with 
connections, request details, 

and locations info, 

timestamps (lengthy text 

format, manual recovery or 
keyword searches needed) 
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App 

Category 

Database Name Source App Content 

Location 

Sharing 

fsq.db Swarm Recent locations with 
lat/long and timestamps 

Chat 

threads_db2 Facebook 

Messenger 

chat messages with user 

location (lat/long) and 
timestamps 

viber_messages Viber chat messages with user 

location (lat/long) and 

timestamps 

msgstore.db WhatsApp chat messages with user 

location (lat/long) and 

timestamps 

naver_line LINE chat messages with user 
location (lat/long) and 

timestamps 

Leisure 

scout.db FieldTrip Locations of viewed points 

of interest with view 
timestamp 

Weather 

oneweather.db OneWeather saved locations, including 

lat/long, timestamps of last 
hit 

weather.db GO Weather Recent locations, including 

lat/long and timestamp 

forecast_accu.db Accuweather saved location to display in 
widget (not necessarily 

current location) 

Other 

ContextLog_0.db Pre-installed 

Samsung 
app/feature 

Tracks app 

launches/sessions with 
timestamps and duration of 

activity 

event Pre-installed 

Amazon 
shopping app 

WLAN/cellular data usage 

stats with timestamp  

herrevad Google 

Mobile 
Services 

WLAN network history 

with BSSID (MAC address) 
and timestamps 

https_www.google.com_0.localstorage web browser searched terms, lat/long, 

with timestamps 

NetworkUsage.db Google 
Mobile 

Services 

some WLAN/cellular data 
usage stats with timestamp  

locdatabase Android 

Location 
Tracker 

logs with lat/long and 

timestamps 
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SQLite Database Analysis – Fitness App Example 

SQLite databases store content in tables, which in turn contain records associated with 

particular rows and columns. Often, content of interest is stored in multiple tables or in a format 

that is less intuitive to the human reader, such as timestamps stored in UNIX milliseconds format 

rather than the typical month/day/year, hour/minute/seconds format we are used to seeing. Many 

utilities exist for viewing and extracting data from these files. In this case, SQLite Studio was 

used to extract information of interest from the recovered databases. Custom queries were 

created to retrieve the relevant location content. To illustrate the method used, the following 

figures depict an example database, the RunKeeper app’s “RunKeeper.sqlite” database, as well 

as the query and its results. Query results were output into Excel spreadsheets to facilitate further 

data review, comparison, filtering, and the like. 

 

Figure 5 - RunKeeper.sqlite database, trips table 
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Figure 6 - RunKeeper.sqlite database, points table 

 

Figure 7 - RunKeeper.sqlite database, query converting timestamps and combining content from 

trips and points tables 
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Figure 8 - RunKeeper.sqlite database, query results 

This database offers a few noteworthy observations. First, the precision of the latitude 

and longitude values extends well beyond the cloud data’s thousandths-place level, all the way to 

eight places after the decimal, or to one hundred-millionths place. In addition, the timestamps are 

also incredibly precise, stored in UNIX epoch milliseconds format. This is typical of many 

Android applications and was noted in the majority of the examined databases. Furthermore, the 

update intervals, as noted in the “time_interval_at_point” column, are quite frequent, occurring 

multiple times per minute. This was also noted to be a common trait among databases associated 

with the other tested fitness apps, MyTracks and MapMyWalk. The other two fitness apps also 

exhibited the same behavior in test sessions, failing to report a distance or cache workout 

waypoints when the GNSS service was not active. If these observations are any indication, 

recovered fitness app data is likely to be quite precise to the actual device location, quite accurate 

due to GNSS sensor use requirement, and frequently updated, making it a potentially valuable 

resource in an investigation in which it is available. 
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Chat and Location-Sharing Apps 

The chat and location-sharing apps also seemed to cache the actual device location with 

significant precision. However, the chat apps seem more likely to be parsed by the commercial 

forensic software tools, such as Internet Evidence Finder and CelleBrite Physical Analyzer. The 

following tables display examples of the content obtained from the various chat applications 

which cached location data, as recovered by the commercial software tools used in this study.  

Table 7 - Selection of content recovered from Viber app's "viber_messages" database as reported 

by Internet Evidence Finder 

Sender Recipient(s) Message Sent 

Date/Time - 

(UTC) 

(MM/dd/yyyy) 

Message Message 

Status 

Latitude Longitude 

TestPhone 

Gsmone 

 09/16/2015 

01:55:16 PM 

Orlando today! Received 27.8014691 -82.3025061 

-Not Found- , TestPhone 

Gsmone 

09/16/2015 

01:55:35 PM 

Sho nuff! Sent / 

Delivered 

27.8014233 -82.3024485 

-Not Found- , TestPhone 

Gsmone 

09/16/2015 

01:56:18 PM 

No location 

now? 

Sent / 

Delivered 

n/a n/a 

TestPhone 

Gsmone 

 09/16/2015 

01:56:28 PM 

We'll see Received 27.8014691 -82.3025061 

-Not Found- , TestPhone 

Gsmone 

09/16/2015 

01:57:04 PM 

How bout now? 

I re-enabled it 

Sent / 

Delivered 

27.8014181 -82.3024472 

TestPhone 

Gsmone 

 09/16/2015 

01:57:11 PM 

Cool Received 27.8014691 -82.3025061 

TestPhone 

Gsmone 

 09/16/2015 

01:57:20 PM 

Mine is always 

enabled 

Received 27.8014691 -82.3025061 

-Not Found- , TestPhone 

Gsmone 

09/16/2015 

01:57:25 PM 

Nice Sent / 

Delivered 

27.8014181 -82.3024472 
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Table 8 - Selection of content recovered from Facebook Messenger app's "threads_db2" database 

as reported by CelleBrite Physical Analyzer 

From Body Location Timestamp: 

Date 

Timestamp: 

Time 

100009025428140 

Testphone Gsm 

1 - This message sent from A0001 to 

VS870 at 4211 N. Lois Ave. Tampa. 

Active services-  cellular, WiFi, and gnss 

(27.977825,  

-82.513403) 

5/27/2015 5/27/2015 

10:04:33 

PM(UTC+0) 

100009025428140 
Testphone Gsm 

2 - This message sent from A0001 to 
VS870 at 4211 N. Lois Ave. Tampa. 

Active services-  cellular, WiFi, and gnss 

(27.977825,  
-82.513403) 

5/27/2015 5/27/2015 
10:05:22 

PM(UTC+0) 

100009025428140 

Testphone Gsm 

3 - This message sent from A0001 to 

VS870 at 4211 N. Lois Ave. Tampa. 

Active services-  cellular, WiFi, and gnss 

(27.977825,  

-82.513403) 

5/27/2015 5/27/2015 

10:06:08 

PM(UTC+0) 

 

As illustrated in the tables, the cached latitude and longitude values are quite precise, 

with Viber recording up to the ten-millionths place and Facebook Messenger up to the 

millionths. However, although these location coordinates are quite precise, they are only cached 

when a message is sent. Locations can also be recovered for the remote conversation partner, not 

just the local device from which the data was retrieved, as seen as in the Viber messages above. 

No location data was recovered for messages sent during test sessions when the GNSS services 

were disabled, interestingly. Also, no locations were stored by the other two chat apps tested, 

WhatsApp and LINE, even though the apps were configured to share locations with chat 

conversation partners. 

In general, the location-sharing apps also report the device’s current location, and they do 

so with great precision. Although no SQLite databases containing location data were recovered 

for the Glympse app, several source databases were identified for the other applications. Life360 

and Locate My Friends are apps from the same developer, generating databases with the same 

names, just under different directory paths. Swarm is associated with Foursquare, so its primary 

database is named and formatted similarly, as well. One interesting finding from the review of 
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these databases is that the precision of the cached coordinates seemed to vary, with coordinates 

associated with messages sent via the apps’ interfaces reported with an even greater number of 

values after the decimal point. It’s also important to note that the coordinates appeared rounded 

to the nearest degree when viewed within the CelleBrite Physical Analyzer’s internal SQLite 

database view. The following figures show the precision with which the Locate My Friends app 

(and its sister application, Life360) records latitude and longitude values, as viewed from within 

the Physical Analyzer and SQLite Studio interfaces, for messages and cached locations. 

 

Figure 9 - Contents of the Locate My Friends app's "messaging.db" database as viewed within 

Physical Analyzer (coordinates rounded to nearest degree) 

 

Figure 10 - Contents of the Locate My Friends app's "messaging.db" database as viewed within 

SQLite Studio (more precise coordinates) 
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Figure 11 - Contents of the Locate My Friends app's "360LocationDB" database, SQLite query 

results. High precision coordinates noted, but less precise than those associated with messages 

found in "messaging.db." 

  These figures demonstrate the higher precision ascribed to coordinates associated with 

the app’s chat messages, as recorded in the “messages.db” database, versus the cached locations 

stored in the “360Location” database. The message coordinates may even be too precise to be 

genuine, based on the previous discussion of coordinate precision levels in consumer-grade 

devices. In addition, the timestamps reflect fairly frequent update intervals of roughly fifteen 

minutes for the stored location points, while the chat message coordinates are dependent on the 

sending of messages. It is also notable that the “provider” is noted as “fused” in the 

“360LocationDB” database, indicating that the Google location services’ Fused Location 

Provider API is used by this application.  

Other findings from the analysis of the location sharing apps’ databases included the 

obliteration of older records. Test session documentation shows these apps were used in multiple 

sessions prior to the earliest records recovered from the extracted databases. This was consistent 
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among the Locate My Friends, Life360, and Swarm apps, across all devices. Also, each of the 

aforementioned apps cached locations for sessions in which the GNSS services were noted as 

disabled in the test session documentation. In short, these apps cached very precise data, with 

moderate or conditional update intervals, appear not to store locations indefinitely, and will store 

coordinates even when GNSS sensors are not enabled by the user. 

Leisure and Navigation Apps 

Alternatively, the leisure apps tested seemed more likely to record searched destinations, 

rather than the actual device location. As an example, the Foursquare app caches recently viewed 

venues but does not specify the location of the device at the time the search was executed. 

Empirical use of these applications suggests that the viewed venues will generally be nearby 

points of interest, as related to the device location at the time of the search. However, in a 

retroactive analysis situation, this would be an inference and is not documented directly in the 

app’s databases. It could be corroborated with other sources, however, such as Google Location 

History or carrier cell tower location records. The table below displays the content retrieved from 

the Foursquare app’s “fsq.db” database, as recovered from the OnePlus One A0001 test device. 

Table 9 - Content of Foursquare's "fsq.db" database, extracted via SQLite query 

last_viewed Converted 

Time (UTC) 

name loc_lat loc_long loc_address loc_city 

1442418216 9/16/2015 15:43 East Coast 
Pizza 

27.79071808 -82.34282684 13340 Lincoln 
Rd 

Riverview 

1442606556 9/18/2015 20:02 Starbucks 27.98117065 -82.48847961 2720 W Dr 

Martin Luther 

King Jr Blvd 

Tampa 

1442606575 9/18/2015 20:02 Brio Tuscan 

Grille 

27.9652195 -82.52071381 2223 N West 

Shore Blvd 

Tampa 

1442606589 9/18/2015 20:03 Cigar City 

Brewing 

27.95913696 -82.50926971 3924 W Spruce 

St 

Tampa 
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 Other leisure apps stored location content in text-based XML files, as did the Field Trip 

app. Two files titled “lastLocation.xml” and “lastNotification.xml” were recovered from the 

Field Trip app’s directory. These files contained precise latitude and longitude values with 

timestamps but they were stored only for the most recent activity. The cached coordinates appear 

to relate to the actual device location and were consistent with the actual test session location, 

within 100 meters. Another noteworthy finding is that these coordinates were cached at times 

when the GNSS services were disabled on the test device, the LG VS870, in this case.  

 

Figure 12 - Content of the Field Trip app's "lastLocation.xml" file 
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Figure 13 - Content of the Field Trip app's "lastNotification.xml" file 

 Falling somewhere in between the fitness and leisure apps, the navigation apps store both 

searched locations and in some instances, the actual device location at the time of the search. 

Two databases among the Waze navigation app data demonstrate this dichotomy. The “user.db” 

database contains destinations to which the user has navigated via the Waze app. The “tts.db” 

offers a rather less conventional twist on pinpointing the device location, by transcribing the 

turn-by-turn directions with timestamps. Extracted content from both databases is displayed in 

the tables below to illustrate the different storage strategies, highlighting data for the same 

navigation session from each database. 

Table 10- Destination data extracted from the Waze app's "user.db" database, RECENTS and 

PLACES tables, using SQLite query 

name city state longitude latitude created_time Converted Created 

Time (UTC) 

The 

Proper Pie 
Company 

Davenport FL 

 

-81.638595 
 

28.214551 1442438167 9/16/2015 21:16:07 
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Table 11 - Turn-by-turn directions recovered from Waze app's "tts.db" database, using SQLite 

query 

text path Converted 

Time (UTC) 

145 Ridge Center Drive database//Jane//1442438170-504860-

238.tts 

9/16/2015 

21:16:11 

The Proper Pie Company database//Jane//1442438170-504890-
239.tts 

9/16/2015 
21:16:11 

Let's take SR-417 S, and I-4 W database//Jane//1442438170-504890-

240.tts 

9/16/2015 

21:16:11 

exit to Exit 3: Osceola Pkwy (toll) database//Jane//1442438170-517373-
241.tts 

9/16/2015 
21:16:11 

exit right to Exit 3: Osceola Pkwy (toll) database//Jane//1442438170-517373-

242.tts 

9/16/2015 

21:16:11 

stay to the right to Osceola Pkwy database//Jane//1442438170-517404-
243.tts 

9/16/2015 
21:16:11 

stay to the left to I-4 W / Tampa database//Jane//1442438170-517404-

244.tts 

9/16/2015 

21:16:11 

turn left on Citrus Ridge Dr database//Jane//1442438170-529093-
245.tts 

9/16/2015 
21:16:11 

turn left on Majesty Dr database//Jane//1442438170-529093-

246.tts 

9/16/2015 

21:16:11 

then turn left database//Jane//1442438170-529124-
247.tts 

9/16/2015 
21:16:11 

then turn left on Majesty Dr database//Jane//1442438170-529124-

248.tts 

9/16/2015 

21:16:11 

you'll arrive at The Proper Pie Company database//Jane//1442438170-531260-
249.tts 

9/16/2015 
21:16:11 

 

Clearly, there is some ambiguity regarding the timestamps of the turn-by-turn directions, 

with multiple instructions timestamped identically. However, they do show evidence of a 

navigation route request, which may be indicative of travel or intent to travel by the user. 

Digging a little deeper, we see that Waze is actually caching the original location and timestamp 

of the search in a separate text file, titled “waze_log.txt.” This file actually does contain the 

device’s precise latitude and longitude value at the time the navigation request was initiated, as 

well as the coordinates of the destination. Figure 14 shows the relevant excerpt from this log file, 

with the timestamp (blue), origin coordinates (yellow), and destination coordinates (green) 
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highlighted. The recorded data is consistent with test session activity, and since this app’s 

navigation function requires the GNSS service, the cached location is quite accurate. 

[17:16:07.696 Warning] First routing id: 1442438168  [navigate_route_trans.c:381 

(navigate_route_init_context)] 
[17:16:07.696 Warning] 

UID,842961612,ChBWNTBHNnNYa2xZN2hvd3RBEJK3568FGAwiA3VzYSjMpfqRAw,203 

At,-81.301666,28.370980,-0.000006,257,3,53135374,53135286 

RoutingRequest,1442438168,3,-10,1,-1,1000,-81301679,28371032,-1,53135374,53135286,SR-417 
S,F,-81638595,28214551,-1,-1,-1,Ridge Center 

Drive,T,T,T,26,1,F,2,T,3,F,4,T,5,F,6,T,7,T,8,T,10,F,12,F,13,F,16,T,32,T,0,145,Davenport,FL,62167,0,

F,-1,4,257,-1,-1,-1,-1,-
81301679,28371032,257,F,2,twitter,0,facebook,0,0,googlePlaces.ChIJNUVHYI5w3YgRUB2XohCuq

bE,,,  [RealtimeNet.c:3902 (RTNet_RequestRoute)] 

Figure 14 - Navigation request from Waze app's "waze_log.txt" text file 

 

Browser, Weather Apps, and Games 

In addition, some less intuitive sources of location data include files associated with the 

web browser, weather apps, and ad-supported games. The web browser stores “localstorage” 

databases containing website-specific content cached for later visits, named with the website 

URL with the “.localstorage” extension. Other apps can store these databases within their own 

directories, as well, but the web browser’s collection are discussed here. The browser’s 

“localstorage” databases are specific to the particular website visited and can contain probative 

user-generated information. In the case of the www.google.com website’s “localstorage” 

database, this can include search terms and location data, as shown in the figure below. 
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Figure 15 - Content of web browser's "https_www.google.com_0.localstorage" database, 

showing search terms, location coordinates, and timestamps 

 The content is stored as BLOB data, and its organization makes the recovery of the data a 

bit cumbersome, but the data recovered from this database was consistent with the test session 

activity. This database was only recovered for the two non-Lollipop devices for which physical 

extraction without root privileges was supported, but in both instances, the cached coordinates 

had timestamps associated with test sessions in which the GNSS services were enabled, and their 

precision was at least millionths-place level. The data is only recorded when a user actually 

conducts a search via Google.  

 Weather apps also appeared to cache some locations, although there may be some 

ambiguity regarding whether they were the actual device location or just a user-requested 
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location. The OneWeather app did have one database that cached apparent device locations, but 

the precision was fairly low, only one hundredths-place level. Alternatively, the AccuWeather’s 

“forecast_accu.db” database stores more precise coordinates, but they may not be associated with 

the device’s actual location. Fortunately, in this case, the database actually flags whether or not 

the stored information is the device’s actual current location. The following tables display the 

varying types of location information recovered from the tested weather apps. 

Table 12 - OneWeather app's "oneweather.db" cached locations, from geocodes table, showing 

device location history 

city state country lat lng lastHit  

Converted Timestamp 

(UTC) 

hits 

Riverview FL US 27.8 -82.3 9/16/2015 15:11:24 4 

Tampa FL US 28.13 -82.38 6/6/2015 23:17:10 1 

Tampa FL US 27.98 -82.51 6/9/2015 17:26:24 1 

Tampa FL US 28.11 -82.37 6/9/2015 23:24:27 1 

Tampa FL US 27.98 -82.52 6/10/2015 13:57:22 1 

Durham NC US 35.94 -78.92 7/14/2015 15:41:23 3 

Hamptonville NC US 36.07 -80.81 7/15/2015 11:58:59 3 

Hamptonville NC US 36.05 -80.79 7/15/2015 15:01:54 1 

Goldsboro NC US 35.34 -77.9 7/17/2015 14:46:33 1 

New Bern NC US 35.14 -76.97 7/17/2015 15:52:07 1 

Tampa FL US 28.14 -82.33 9/5/2015 14:04:15 1 

Wesley 

Chapel 

FL US 28.19 -82.35 9/5/2015 15:09:51 1 

Wimauma FL US 27.76 -82.26 9/19/2015 14:18:41 1 

Tampa FL US 27.95 -82.46 9/19/2015 23:40:47 1 

  

Table 13 - AccuWeather app's "accu_forecast.db" database content showing stored user-

configured location, not actual device location 

current_city_flag Converted 

Timestamp (UTC) 

city country lat lon 

FALSE 10/2/2015 11:16:04 Bremen Germany 53.07561 8.80934 

 



63 

 

 Venturing beyond database review, the weather apps also seemed to cache location data 

within text-based files, such as the AccuWeather app’s “accuwx_locations” and 

“accuwx_geococder_cache” files. These files appear to contain historical location information 

for the device, including coordinates and addresses, but they do not appear to store associated 

timestamps for each entry. The following figures show snippets of some the content recovered 

from these files. 

{"adminAreaId":"FL","alias":"Balm","canonicalLocationKey":"2245533","canonicalPostalCo

de":"33598","countryId":"US","dmaId":"539","geocodedAddress":{"addressLine1":"13012 

CR-672","addressLines":[],"adminArea":"FL","country":"United 

States","formattedAddress":"13012 CR-672, Riverview, FL 

33579","latitude":27.7632628,"locality":"Riverview","longitude":-82.2658239, 

"maxAddressLineIndex":0} 

Figure 16 - Content of AccuWeather app's "accuwx_locations" file 

[{"Latitude":27.763,"Longitude":-82.266},[{"addressLine1":"13012 CR-

672","addressLines":[],"adminArea":"FL","country":"United 

States","formattedAddress":"13012 CR-672, Riverview, FL 

33579","latitude":27.7632628,"locality":"Riverview","longitude":-82.2658239, 

"maxAddressLineIndex":0}] 

Figure 17 - Content of AccuWeather app's "accuwx_geocoder_cache" file 

Finally, some ad-supported games obtain device location information, enabling 

advertisers to tailor their ads to a user’s surroundings. In the case of the apps tested, the location 

information was not found in SQLite databases but in various text-based files. One example 

involves the Words With Friends app’s “iad.dat” file, which was located in the 

“\data\com.zynga.wwf2.free\files\.mmsyscache” directory. This file contained some apparent 

location coordinates, however, they were not consistent with documented test session activity, 

though still within the same general geographic region (same county). This was true even though 

the device had access to the device FINE location, based on its permissions. The figure below 
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shows the content as recovered from the file, with very precise coordinates (yellow), as well as a 

notable reference to the device connection type (green). 

"pkid":"com.zynga.wwf2.free","campaignid":"172693","idfa":""}},"respo

nse":{"adType":"INTERSTITIAL","creativeHeight":-1,"creativeWidth":-

1,"cdfId":"e1e4a6d7-1780-46b3-9876-

616b5b1393c1"},"ruleVariableValues":{"portraitwpx":360,"osVersion":{"

versions":[4,1,2],"versionCount":3},"mobileOS":"ANDROID","compilersdk

":{"major":"FIVE","minor":"FOUR","subminor":"ZERO","type":"a"}},"inst

anceCompilerOptions":{},"creativeId":"e1e4a6d7-1780-46b3-9876-

616b5b1393c1","mobileOS":"ANDROID","osVersion":{"versions":[4,1,2],"v

ersionCount":3},"deviceHeight":640,"deviceWidth":360,"location":{"lat

itude":28.082199096679688,"longitude":-

82.5239028930664,"accuracy":0.0},"placementWidth":-

1,"placementHeight":-1,"userAgent":"Dalvik/1.6.0 (Linux; U; Android 

4.1.2; VS870 4G 

Build/JZO54K)","language":"en","connectionType":"WIFI"," 

Figure 18 - Content of Words With Friends app's "iad.dat" file, showing latitude and longitude 

values and connection type 

 

App Trends 

As the preceding analyses indicate, location data is cached on these devices in a variety 

of file types, and many different types of applications can be potential sources of valuable data. 

Searches for location data may be facilitated by manual review of database content, keyword 

searches for possible text content and database column names of interest, and of course, review 

of geo-tagged photos. The recovered location data may reflect the device’s location or 

destinations and points of interest searched for by the device user.  

Chat, location sharing, and fitness apps typically record the actual device location, with 

varying, usually frequent update intervals and typically requiring a user interaction to initiate the 

location caching. The web browser’s “localstorage” databases also seem to follow this trend. The 

chat and web browser apps only update location information upon a user action, such as a sent 
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message or a web search, respectively. These apps seem to save this data indefinitely or until 

user deletion, and they appear to require enabled GNSS services to cache location data.  

Leisure apps, on the other hand, seem more likely to store searched or viewed locations, 

with only most recent device location information cached. They do appear to retain points of 

interest permanently but do require user interaction to initiate any data caching, as well. They do 

not appear to require GNSS sensor activity. Navigation and weather apps present a hybrid 

approach, recording some actual device coordinates, not always with timestamps, but also 

including searched locations or destinations. These apps appear to preserve the cached 

information but also require user activity to initiate record keeping. The Waze navigation app 

specifically requires GNSS functionality to perform the navigation function. Location artifacts 

recovery from ad-supported game data proved somewhat nebulous, with the highlighted example 

demonstrating possible unreliability of the stored coordinates.  

Depending on the nature of the application, the recovered location data could be used to 

pinpoint a device’s location at a particular time, demonstrate dwelling or travel, or illustrate a 

user’s interest or intent to travel to a particular point of interest. The resulting findings could be 

used to implicate a particular individual, refute or confirm an alibi, or corroborate witness 

statements, as a few examples. While certain artifact or application types may be automatically 

parsed by commercial forensic tools, examiners should also target both SQLite databases and 

text-based files to recover possible location data of interest, focusing on apps with permissions to 

the device location. 

If a particular application is found to store data of interest, an examiner could further 

consider installing the app of interest on a test device to better understand its behavior. For 
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example, the examiner could attempt to determine if the app requires GNSS services to perform 

its function or cache location data. This could have implications regarding the accuracy of the 

recovered data. He or she could also evaluate if the application continues to cache data in the 

background, or if any recovered data must the result of direct user interaction. Of course, app 

functionality can vary from version to version, so an examiner would need to consider this 

limitation when attempting such evaluations. However, by making this effort, an examiner may 

be able to obtain greater insight into his/her findings and thus be equipped to present the results 

with greater confidence and clarity. 

 

Metadata and Logs 

 As seen in the previous review of the Waze app data, apps can and do store location data 

in text and log files, not just in SQLite databases. However, as shown in Table 6, some app files 

also appear to store metadata associated with device network connectivity that may be helpful in 

evaluating the accuracy of cached coordinates. For example, the Locate My Friends app’s 

“dumpLogsDatabase” from the OnePlus One A0001 device contained very detailed information 

on the location requests, accuracy figures, and location coordinates. An example entry is shown 

below, having been copied from the SQLite database record into Excel for easier viewing: 
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{"locationInfo":{"epochTime":1444228846496 

"dateTime":"Oct 7 2015 10:40:46 AM" 

"data":{"locDB":{"timestamp":1444228823366 

"provider":"fused" 

"lat":27.9778361 

"lon":-82.5132756 

"accuracy":43.5 

"alt":0 

"age":"23129"} 

"locNew":{"timestamp":1444228846236 

"provider":"fused" 

"lat":27.9778371 

"lon":-82.5132754 

"accuracy":36 

"alt":0 

"age":"259"} 

"geolocation_meta":{"emode":"storeLoc" 

"info":"DB: New loc with higher accuracy. Replacing loc in database"} 

"device":{"battery":"82" 

"charge":"1" 

"wifi_state":"1" 

"build":"10827"}}}} 

Figure 19 - Sample entry from "dumpLogsDatabase" file 

 Aside from the actual latitude and longitude values, this database was also caching the 

accuracy information, WLAN (“wifi”) state, altitude (“alt”), and battery status. Other entries 

detail the location request type, such as “PRIORITY_BALANCED_POWER_ACCURACY,” as 

well as cell tower connectivity, with one example reading "info":"New cell tower location 

detected. Notifying policies." This level of detail is certainly illuminating, especially since this 

log had such high granularity, sometimes recording multiple updates for a single second! Of 

course, the extreme detail of this particular log did have a significant tradeoff: it only covered the 

most recent day’s activity. Still, for one session running approximately 128 minutes, this log had 

over 3000 entries! A small window, surely, but it is a very detailed one. 
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 Another database associated with one of the ad-supported free games, QuizUp’s 

“mixpanel” database, as recovered from the Galaxy S5 test device, stored some information on 

the WLAN connectivity history, but it was embedded in lengthy text records and was limited in 

both quantity and scope. The information was timestamped, but the timestamps only pertained to 

sessions in which this game was actually in use. Furthermore, the entries reflect the wireless 

network connectivity state, not necessarily whether the WLAN sensor was active. As seen in the 

figure below, these entries show “$wifi:false” even though the WLAN services were enabled at 

the specified timestamps appearing toward the right side of each entry, based on test session 

documentation. However, the device was not connected to a network at the time, so the reported 

“false” status is consistent with the connectivity state. 

 

Figure 20 - Contents of the QuizUp game's "mixpanel" database showing WLAN network state 

with timestamp 

The Amazon shopping app’s “event” database recovered from the LG VS870 device, 

covered a much broader range of dates and times, and tags events with a plain-text 

“connectionType:” parameter, listing either “WIFI” or “mobile” for each entry. This database 

was reviewed to determine if the connection types reported were consistent with those noted in 

the test session documentation. In most cases, the recorded connection types matched the active 

services noted in the test session documentation. The exceptions again included sessions in 

which the WLAN sensor was enabled but the device was not actually connected to a network. 
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Exceptions are noted in the following table, which contains formatted samples of the data 

retrieved from the database to facilitate review of the information. Actual data pulled from the 

database is shown in the green columns, while author-added columns are presented in gray. 

Table 14 - Examples of connection types logged in the Amazon app's "event" database that are 

not consistent with test session documentation 

Connection Type Timestamp Converted 

Timestamp 

(UTC) 

Indoor/ 

Outdoor 

Reason for discrepancy 

connectionType:"mobile" 1433634088961 

6/6/2015 

23:41:28 Outdoor 

On but not connected to 

network 

connectionType:"mobile" 1436961354568 

7/15/2015 

11:55:54 Indoor 

On but not connected yet, 

immediately subsequent 

entries show connection 

connectionType:"mobile" 1436972419082 
7/15/2015 
15:00:19 Outdoor Driving 

connectionType:"mobile" 1436974483466 

7/15/2015 

15:34:43 Outdoor 

On but out of range of 

network access point 

connectionType:"mobile" 1437147300840 
7/17/2015 
15:35:00 Outdoor Driving 

connectionType:"mobile" 1442675854508 

9/19/2015 

15:17:34 Outdoor Driving 

connectionType:"mobile" 1442706821217 
9/19/2015 
23:53:41 Outdoor 

On but not connected to 
network 

 

 One more log file of possible interest was recovered from both of the non-Lollipop 

devices (the LG VS870 and Galaxy S4 Mini) and was stored in the Google Mobile Services 

directory. This database, titled “herrevad,” appears to track connections to saved WLAN 

networks, including SSID and BSSID (MAC address) info, as well as timestamps. This content 

could be valuable in placing a particular device within range of a known access point at a 

specific time. However, during a review of the databases’ contents, it became clear that the 

database did not capture all of the instances in which the devices were connected to WLAN 

networks, based on test session activity. However, for those instances it did report connectivity, 
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the information was consistent with test session documentation. An excerpt of the database 

content appears in the table below, with author-added content in gray. 

Table 15 - Excerpt of the Google Mobile Services' "herrevad" database showing WLAN network 

connection details 

ssid security_type bssid timestamp_millis Converted 

timestamp (UTC) 

COYG 4 20:aa:4b:32:21:3c 1436961710670 7/15/2015 12:01:50 

COYG 4 20:aa:4b:32:21:3c 1436961823419 7/15/2015 12:03:43 

COYG 4 20:aa:4b:32:21:3c 1436961964698 7/15/2015 12:06:04 

COYG 4 20:aa:4b:32:21:3c 1436962208837 7/15/2015 12:10:08 

COYG 4 20:aa:4b:32:21:3c 1436962385574 7/15/2015 12:13:05 

COYG 4 20:aa:4b:32:21:3c 1436964198663 7/15/2015 12:43:18 

COYG 4 20:aa:4b:32:21:3c 1436964362487 7/15/2015 12:46:02 

   

From these examinations, it seems clear that connectivity-related log artifacts may be 

quite useful in ruling out the possibility that the WLAN sensor was disabled at a particular time. 

However, it may be more difficult to affirm that the sensor was indeed enabled at a particular 

time, since these logs seem to only document when the device is actually connected to a network. 

A device may have the WLAN functionality enabled but be out of range or not connected due to 

wireless network security, for example. In situations like these, it seems the log files would not 

indicate that the device WLAN feature was active, since the device would then default to cellular 

data services.  

Knowing this, and knowing that the Waze app requires “High Accuracy” mode to be 

enabled for navigation functionality, it could be helpful to know when the Waze app is in use. 

Fortunately, one database recovered from the Galaxy S4 Mini test device seems to do just that. 

This database, titled “ContextLog_0.db,” tracks app usage in one of its tables, including start and 

stop times, as well as duration and activity type. It seems to be specific to Samsung devices, 
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located within the “/Root/data/com.samsung.android.providers.context/databases/” directory. 

Figure 21 below shows an excerpt of this database, filtered to show the Waze app’s activity on a 

particular test date.  

 

Figure 21 - Content of the "ContextLog_0.db" database, filtered to show Waze app activity 

The Waze “NavigateActivity” entries are particularly interesting, knowing that the Waze 

app requires all sensors to be enabled to perform the navigation function. Because the duration of 

this activity is also reported, it could be of value in evaluating not just Waze application data 

reliability, but also the potential accuracy of any location artifacts cached by other applications 

during the same timeframe. 

If another app had cached location data for a particular time, or if an investigator had 

obtained a timestamped location from either cellular service providers or the cloud resources 

previously discussed, a review of such metadata cached by seemingly unrelated apps could 
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provide insight into the reliability of the location artifact, even if the information pertains just to 

WLAN services. This would especially apply if the accuracy trends outlined in the literature 

review section hold true. The next section addresses the evaluated accuracy of the location data 

recovered in this study. 

  

Accuracy Evaluation 

 Large and disparate quantities of location artifacts were recovered from the various test 

devices. As previously reviewed, the location data is stored in varying formats and intervals. To 

evaluate the reliability of the device location services, the recovered geo-tagged photos were 

examined and compared to the actual locations documented both via the photos themselves and 

the test session documentation. Additional examinations of the recovered cloud data were 

performed to investigate its reliability, as well. From these reviews, a number of general trends 

were noted. 

Geo-Tagged Photos 

 As previously discussed, only two of the four test devices were found to store any geo-

tagged photos, despite all devices being configured to geo-tag camera images and being used in 

test sessions involving captured photos. Analysis of the geo-tagged photos from the LG VS870 

and the OnePlus One A0001 test phones was performed to determine if any accuracy 

determinations could be made. Each photograph’s embedded latitude and longitude values were 

compared to the known location as captured in the image and noted in the test session 

documentation, using an online distance calculator tool. A secondary tool was then used to verify 
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the calculated distance. The figure below shows an example coordinate from one A0001 geo-

tagged photo and its corresponding actual location, with the error distance displayed, as well. 

 

Figure 22 - Geo-tagged photo example latitude and longitude accuracy check 

 Via this method, each coordinate recovered from the test devices’ geo-tagged photos was 

evaluated for accuracy and an average value was calculated for the various test sessions. Test 

session environmental and sensor parameters were also examined, with the results for each 

device documented in the tables below. Fifty-eight photos from the A0001 and sixteen photos 

from the VS870 were evaluated. 
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Table 16 - LG VS870 geo-tagged photos, average accuracy 

Device Date 

Number 

of Photos Environment 

Indoor/ 

Outdoor Cell/WLAN/GNSS 

Average 

Accuracy (m) 

VS870 9-Jun 3 Suburban Outdoor Cell 130 
VS870 16-Sep 2 Suburban Indoor Cell+WLAN 29.5 

VS870 19-Sep 3 Urban Outdoor Cell+WLAN 67.3 

VS870 15-Jul 3 Rural Outdoor Cell+WLAN+GNSS 19.7 
VS870 6-Jun 2 Suburban Outdoor Cell+WLAN+GNSS 28.5 

VS870 15-Jul 3 Rural Indoor Cell+WLAN+GNSS 30.3 

 

Table 17 - OnePlus One A0001 geo-tagged photos, average accuracy 

Device Date 

Number 

of Photos Environment 

Indoor 

/Outdoor Cell/WLAN/GNSS 

Average 

Accuracy (m) 
A0001 14-Jul 3 Suburban Indoor Cell 24 

A0001 9-Jun 3 Suburban Outdoor Cell 1373.3 

A0001 6-Jun 3 Suburban Outdoor Cell+WLAN+GNSS 3.7 
A0001 8-Sep 6 Suburban Indoor Cell+WLAN+GNSS 3.7 

A0001 15-Jul 3 Rural Outdoor Cell+WLAN+GNSS 4.3 

A0001 19-Jul 3 Rural Outdoor Cell+WLAN+GNSS 5.7 

A0001 6-Sep 3 Suburban Indoor Cell+WLAN+GNSS 10.7 
A0001 6-Aug 25 Suburban Outdoor Cell+WLAN+GNSS 10.9 

A0001 19-Jul 1 Rural Indoor Cell+WLAN+GNSS 15 

A0001 15-Jul 3 Rural Indoor Cell+WLAN+GNSS 16 
A0001 27-May 5 Suburban Indoor Cell+WLAN+GNSS 118 

 

 The results seem to support the notion that cellular-only derived locations are less reliable 

than those in which the GNSS resources are active. Results from the two test sessions for which 

geo-tagged photos were captured when only cellular and WLAN sensors were active also seem 

to corroborate the notion that location data reliability does not suffer from a device’s use indoors. 

Indeed, these results seem to indicate that the location data may be more accurate when WLAN 

services are used indoors, but due to the small sample size, more testing would likely be needed 

to determine if this observation can be applied generally. 
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Cloud Data Limitations 

 Two preliminary issues present potential obstacles to the utility of the Google Location 

History cloud data. The first involves the user’s choice to utilize Google’s location services. A 

user may opt not to do so, though this option could severely limit the device’s functionality in the 

conventional sense of how consumers utilize their smartphones. For example, a user would not 

be able to utilize the Google Maps app. In short, most users likely do choose to use Google’s 

location services, making this particular issue probably less significant. The “googlesettings.db” 

database appears to store a record indicating whether a user has opted to allow Google’s services 

access to the device location, as shown in the figure below. 

 

Figure 23- Content of the "googlesettings.db" database 

 The “use_location_for_services” option is set to “1,” indicating that the feature is 

enabled. This should indicate that Google Location History should be stored on Google’s servers 

and therefore be retrievable using the Cloud Analyzer software or legal process to Google. 
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However, this database was located in the Google Services Framework directory 

(“/Root/data/com.google.android.gsf/databases/”) as recovered from two of the test devices. This 

is not a coincidence, as these were the two non-Lollipop devices. This brings up the second 

fundamental issue. 

 In the newer versions of Android, as previously discussed, many of the core Google 

application data is excluded from the ADB backup process. This not only includes the database 

that indicates whether a user’s location history may be recoverable using the Cloud Analyzer 

software, but it also extends to a key resource used to generate the account package file 

containing the necessary credentials to obtain the information: the “accounts.db” database. This 

database stores the Google account information, with the login email address and an encrypted 

form of the password, as shown in the following figure. 

 

Figure 24 - Content of the "accounts.db" database 

 This database is stored under the “/Root/system/users/” directory, which evidently is also 

excluded from the ADB backup process, as it was not recovered for either of the Lollipop 

devices for which physical extraction was not supported. Without this file, the account package 

file cannot be created, meaning credentials will have to be manually entered in the Cloud 

Analyzer extraction process. Of course, this would require the examiner to know the user’s 
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credentials or obtain them somehow. Furthermore, the manual entry of credentials does prompt 

the notification email to the user that a new login from an unrecognized device has occurred. 

Without a non-disclosure order of some kind, investigators risk alerting a suspect of their 

activity, even if they are fortunate enough to have obtained the credentials somehow. Still worse, 

if investigators cannot gain root access, obtain a physical extraction of the device data, or 

ascertain the Google account credentials, they may not be able to retrieve the cloud data at all.  

 However, even presuming that the extraction of the cloud data is successful, another 

limitation of its utility presents itself. This stems from the relatively less precise nature of the 

retrieved coordinates. As described before, the Google Location History data extracted via the 

Cloud Analyzer software appears restricted to a precision level of one thousandth of a degree. 

This means the coordinates should be roughly within 100 meters of the actual device location. 

Contrast this level of reliability with that obtained via the various apps reviewed, many of which 

were caching coordinates on the order of millionths-level precision or better, and that makes the 

Google Location History seem more of a general outline than a specific track. Note the higher 

frequency and precision of the RunKeeper app’s cached data for the same timeframe as shown in 

the figure below. 
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Figure 25 - Cloud Analyzer (left) and RunKeeper (right) location data for same timeframe 

 Curiously, this same discrepancy in precision seems also to extend to the Google location 

data obtained by downloading a .kml file via the Google account web interface. This involves 

logging into the Google user account and selecting the “Control My Content” option from the 

menu, then navigating to the “Manage Activity” option for the “Places you go” category, as 

shown in the figure below. Notably, users can also opt to delete content via this utility, as well. 
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Figure 26 - Google user account interface content management 

 From there, a user may view their Google location history for a specified day, or they 

may opt to download or delete the content. Presumably, any such downloaded content would 

resemble the corresponding timeframe’s data obtained via the Cloud Analyzer software for the 

same device/user. To test this notion, the content for the date referenced in Figure 25 above was 

saved to a .kml file, as shown below. 
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Figure 27 - Option to save timeframe as KML file via Google user account web interface 

 Once this data was downloaded, it was mapped along with the corresponding data from 

the RunKeeper app and the Cloud Analyzer locations. Curiously, the data downloaded directly 

from Google’s user account interface appears far more precise than the associated Cloud 

Analyzer data. So the initial assumption that the Cloud Analyzer data’s precision level was due 

to a limitation imposed by Google appears to be incorrect. Google’s servers appear to be storing 

much more precise information. Additional testing or inquiry would be needed to determine if 

this is a limitation inherent to the Cloud Analyzer software, or some other reason. Figure 28 

displays the map comparing the RunKeeper, Google account KML file, and Cloud Analyzer data 

for the same timeframe. 
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Figure 28 - Comparison of cached coordinates for same timeframe from RunKeeper (purple), 

Google user location history (yellow), and Cloud Analyzer (cyan) 

 A number of clear observations can be made from this map. First, the Google user 

account location history is clearly more precise than the Cloud Analyzer data obtained, even 

though the Cloud Analyzer theoretically should be accessing and retrieving the very same 

Google account data. Furthermore, the Google user data appears to correspond more closely to 

the RunKeeper app’s data, with the Cloud Analyzer data forming broad geometric patterns 

surrounding the more detailed tracks presented by the other sources. Given that the more 

accurate location is likely to be the more precise one, it seems that the Cloud Analyzer data may 

be limited to the 100 meter range imposed by its thousandths-level precision. Still, this level of 
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accuracy will certainly be enough in many cases, and the high update interval would still be 

useful in establishing patterns of movement or dwelling.  

 At a minimum, the Cloud Analyzer software offers another tool to investigators for 

corroborating data or testimony from other sources. It is very dense, timewise, voluminous, and 

it is clearly accurate enough to place an individual device within a block or so of a particular 

location, at worst. Witness statements, suspect alibis, call detail records, or other resources could 

all be better evaluated with this information. Given that the majority of Android users likely 

utilize the Google location services that render this software’s function possible, it seems that the 

cloud data resource could become a potential boon for investigators in criminal cases, provided 

they are able to extract the necessary data to access the content or otherwise obtain the user’s 

credentials. 

 

General Trends 

 To evaluate the accuracy of the location data, content from both the information 

recovered from the device and the Google Location History cloud data were reviewed for 

coordinates with corresponding timestamps, then compared to actual locations documented in 

test session records. Overall, the results seemed to support the previously stated trends involving 

accuracy based on resource type. For example, locations obtained when only cellular service was 

active were significantly less accurate than the same location information recorded in the same 

place at approximately the same time when all sensors were active, as illustrated in Figures 29 

and 30 below. 
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Figure 29 - Actual versus Cloud location with cellular service only (error of over 1.5 kilometers) 
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Figure 30 - Actual, Device, & Cloud locations with all sensors active (errors from 5 to 45 

meters) 

 These figures depict how significant the impact of sensor activity can be. With all of the 

sensors active, the error margin was reduced from over a kilometer down to a few meters for the 

device cached information, a little more for the corresponding cloud location. Interestingly, the 

cloud data point was not quite as accurate as what the device cached, even though all services 

were active. This could very well be the result of the cloud data’s limitation to thousandths-level 

precision. Figure 31 again illustrates the way in which cloud points, even with high frequency 

and volume of locations, are hampered by the lower precision. The device is caching coordinates 

on the order of ten-thousandths in the Map My Walk app’s “workout.db” database, and just that 

extra power of ten clearly shows a much more refined track of the actual device location. 
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Figure 31 - Map My Walk device (green) versus cloud (red) locations 

 The cloud track clearly is more angular and less precise, but it does capture the basic 

outline of the movement, with errors generally in the 20 to 50 meter range. In another instance, 

when only cellular and WLAN sensors were active, the error was in the over a kilometer range. 

Figures 32 and 33 demonstrate how much of an impact activating the GNSS services had for the 

particular area in question (traversed during a drive along the junction of Interstates 10 and 75, 

and back again). In Figure 32, the error reaches up to about 1.5 kilometers without the GNSS 

services. However, with the GNSS sensor enabled, the max error appears to go down to roughly 

300 meters, though it is generally much less than that, as shown in Figure 33. 
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Figure 32 - Location Tracker device data (yellow) versus cloud data (magenta) - no GNSS 

 

Figure 33 - Location Tracker device data (purple) versus cloud data (green) - with GNSS 
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 The above figures demonstrate the relative accuracies in suburban and rural 

environments, with and without GNSS services enabled. In general, there was no notable cost to 

accuracy of cached device data when GNSS services were enabled, regardless of whether the 

surrounding were rural or suburban, and very little cost noted for indoor use. In urban areas, 

there did appear to be relatively little tradeoff for disabling GNSS services, perhaps due to the 

higher density of cell towers and WLAN access points, as well as the possible interference with 

GNSS signals due to concentrations of tall buildings. Figures 34 and 35 show some examples of 

the location data obtained from testing in an urban environment with GNSS disabled and 

enabled, respectively. 

 

Figure 34 - Device versus actual versus cloud locations in urban environment without GNSS 
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Figure 35 - Device (purple) versus cloud (green) locations in urban environment with GNSS 

 The purple route in Figure 35 reflects the more accurate route based on the test session 

activity and was cached on the device by the Run Keeper app. There certainly is some 

improvement over the relative locations displayed in Figure 34, in which only cellular and 

WLAN services were enabled, at least for the device data. The cloud data is clearly less precise 

and curiously less frequently updated (roughly every three minutes) for this particular timeframe. 

The relatively less accurate cloud data for this instance could again be attributed to the 

thousandths-level precision that characterizes it. Furthermore, the device was in transit in this 

test session, and in similar sessions involving transit, the cloud locations also displayed a small 

time lag.  
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 Efforts to evaluate the reliability of recovered location data using the cached accuracy 

metadata focused on applications that reported their accuracy in real time via the user interface 

during test sessions. These accuracy estimates were noted in the test session documentation and 

later compared to the cached accuracy values. In the user interface, the accuracy values were 

reported in feet. No units are specified in the accuracy metadata recovered from device SQLite 

databases for the apps in question, namely Life360 and Locate My Friends, but numerically, they 

were roughly in line with those reported via the user interface. These locations were plotted on 

maps along with cloud location points with similar timestamps, then compared to documented 

test session locations. In general, the calculated error values noted in the maps seemed as though 

they’d be more consistent with device and user interface values if the reported error were 

measured in meters rather than feet.  

 Overall, however, the general trends in terms of a hierarchy of source accuracy seemed to 

hold true, with GNSS-enabled sessions recording the most accurate data. In some instances, 

individual location points appeared to be within just a few feet of the actual test location. This 

was especially true when GNSS services were enabled, but was also noted a few times when 

cellular and WLAN services were running without GNSS. The maximum error range noted in 

this study was still less than two kilometers off, and it was noted in test sessions involving only 

cellular service and in less populated areas. Thus, even in the worst case scenarios of this study’s 

conditions, both cloud and device-cached location data proved reliable enough to place a device 

within a city, at the very least, and possibly into specific buildings, under ideal circumstances. As 

both cell tower and WLAN access point infrastructure expands and increases in concentration 

accordingly, it seems only likely that mobile device location data will become even more precise. 
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Location Data Recovery and Evaluation Strategy 

 First, if an examiner has access to the various paid, specialized mobile device forensics 

tools, a good deal of location of artifacts will be parsed automatically, including geo-tagged 

photos, Google Maps searches, Waze recent destinations, and coordinates from various 

messaging apps like Facebook or WhatsApp. If not, these are relatively easy to identify via the 

use of free metadata parsers, in the case of geo-tagged media files, or SQLite database viewers, 

for the various navigation and chat apps mentioned. 

 From there, Internet Explorer can be used to examine the “packages.xml” file, using a 

simple “find” search for “ACCESS_FINE_LOCATION” and 

“ACCESS_COARSE_LOCATION” to identify applications with location permissions and the 

directory paths in which their data is cached. The examiner may then target these directories for 

further review, especially SQLite databases and XML configuration files. SQLite databases may 

contain detailed caches of latitude and longitude coordinates, with metadata, and they may also 

contain embedded images like map tiles.  

It is also important to remember that some SQLite databases may store content of value 

in BLOB data, which may be less intuitive to examine. Google Maps’ “gmm_storage.db” 

database is a prime example, storing search terms and possible navigation history amongst other 

proprietary content in BLOB data records. Keyword searches are appropriate for analyzing this 

file, if an examiner is attempting to recover evidence regarding a particular location. 

Alternatively, a very primitive approach could begin with using the Strings command-line tool to 

output string content from the database to a text file, then filter the data in Excel to display 

content beginning with “/dir/” to identify searches for directions with latitude and longitude of 
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the position from which the search initiated, as well as the latitude and longitude of the searched 

destination. Figure 36 shows some of the content recovered in this way from one test device’s 

“gmm_storage.db” database.  

 

Figure 36 - Google Maps directions artifacts recovered via Strings command utility from 

"gmm_storage.db" database 

It’s also important to note that embedded toward the end of these entries is a UNIX epoch 

timestamp. Figure 37 shows this timestamp highlighted for record number 5236, which when 

converted to readable time using DCode is: Saturday, 27 June 2015 at 22:40:00. UTC. A review 

of test session documentation confirms that a Google Maps search was indeed performed using 

the test device from which this database was recovered. Curiously, the timestamp converts to a 

UTC value which should be four hours ahead of local time for the test location timezone, but the 

converted timestamp is actually consistent with the actual local time at the time of the Google 

Maps search. Incidentally, the source latitude and longitude from which the search was executed 

appear at the beginning of the record and are extremely accurate based on the test session 
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documentation. The corresponding cloud location for the same time was also quite accurate, with 

all sensors active and the device located outdoors in an urban environment. 

 

Figure 37 - Timestamp from Google Maps "gmm_storage.db" database directions search record 

This is just one example of how examiners need to remain open to digging deeper than 

what the paid forensic tools automatically parse, in their efforts to recover Android location data. 

Beginning with SQLite databases and XML configuration files associated with known location-

accessing apps, examiners should perhaps worry less about reconstructing the particular activity 

or resources associated with recovered location information and more about the details of the app 

they have recovered the data from. 

For example, based on this study’s results, it would seem that location sharing and fitness 

apps cache extremely precise and reliable data, typically. Furthermore, navigation apps, which 

are designed for safety reasons to provide a very accurate idea of the user’s location, store very 

reliable information, though perhaps with less extensive local caching. This makes sense, since 

users of fitness apps may want to review old workout routes and times to track their progress, but 

users of navigation apps are more likely to search their current destination of choice each 

session. Furthermore, if an app has only coarse location permissions, it may not be the most 

reliable of sources of location data, though certainly still good enough to refute an individual’s 

argument that they were in another town at the time, for example. Weather apps and ad-

supported games can fall into this latter category. 
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In cases where investigators are particularly determined to use device location data to 

pinpoint a user’s whereabouts, it could be helpful to check for files that may contain 

timestamped logs of network connectivity or sensor states, even though these logs could be 

associated with other apps that stored no location information. Keyword searches will do little to 

directly recover latitude and longitude coordinates, but searching for terms like “latitude REAL” 

or “lat DOUBLE” may help identify active or deleted SQLite database content that may be of 

value. Databases and unallocated space can be carved for geo-tagged pictures or map tile images, 

as well, though attributing context to these can be difficult, as it is hard to say if they reflect a 

device’s actual location or just a browsing session or location search.  

Also, if an examiner has a particular artifact of interest recovered from a known 

application, he or she could utilize a test device, install the application of interest, and run some 

tests to try to evaluate that app’s reliability in terms of location accuracy. From this study, it was 

noted that some apps will not perform their designated function unless all location resources are 

enabled, like Waze navigation, for example. Furthermore, some apps actually inform the user 

during the use of accuracy estimates, as noted for Life360 and Friend Locator. Table 18 

summarizes some location data recovery and evaluation strategies utilized in this study. 

Table 18 - Recovery and evaluation strategies 

Tier 1 – The obvious Tier 2 – Dig deeper Tier 3 – Beyond the deep end 

Forensic tools’ parsed 
artifacts 

 

SQLite databases 

 

Geo-tagged media files 

 

Map Tiles 

Identify apps with location 

permissions 

 

Examine SQLite databases 

and XML configuration files 

associated with these apps 

 

Carve for images, SQLite 

databases 

 

Keyword searches for possible 

metadata/code terms 

 

Test device analysis on app of 

interest   
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 Finally, examiners may wish to think beyond the device itself. Using call detail records 

and cloud resources may allow for the corroboration of points recovered from the device, as well 

as an expansion of the location data set. Although the data obtained via Cloud Analyzer was less 

precise, it has a number of advantages. First, the user does not need to initiate any process for the 

Google location service to begin collecting device location information, beyond agreeing to use 

Google’s location services. So the process occurs in the background, virtually all of the time, 

unlike most apps that cache location data which require a user to initiate a session or event. 

Furthermore, the coordinates are updated almost every minute or so, so the information is very 

dense and can indicate dwelling or travel, etc. Finally, because it is a background service, it is 

unlikely a user could or would disable it, leading to potentially large volumes of location data 

during timeframes when the device might otherwise not cache any.  

 

Limitations and Future Research 

 This research was performed with some fundamental limitations. First, it obviously 

utilized a small sample size of just four unrooted test devices, and the device and application 

settings were optimized for location caching, which may not be typical configurations. Second, 

the number and variety of test sessions clearly cannot account for all possible conditions in 

which devices are used. Testing was mostly performed in suburban (residential) areas, with 

access to rural and urban areas less frequent. Finally, devices were obviously accessible and in 

an unlocked state, mitigating the potential hurdles to data extraction one might encounter in 

forensic casework. This study does not address means of gaining access to locked devices or 

encrypted data.  
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 Based on the emerging trends noted, these last issues could become serious impediments 

to data recovery from Android devices. It remains to be seen how encryption will impact 

Android forensics in the future. Furthermore, the shift to cloud storage definitely warrants future 

study. Investigators and legal professionals need to be aware of these potential resources. Google 

Location History, for example, could be used to refute or confirm an individual’s alibi, especially 

if there is corroborating evidence showing the individual was in possession of the device at the 

time of the incident. However, confusion about legal issues of jurisdiction and authority 

surrounding the retrieval of this data certainly suggest that the criminal justice community will 

need to continue learning about the technical and logistical details involved in the process.  

Additional research into the Cloud Analyzer’s thousandths place precision level and its 

relationship to the Google user account location history could also be interesting and beneficial. 

Furthermore, one could investigate how long Google location history is maintained and if any 

data can be retrieved using the Cloud Analyzer software after a user opts to delete it via the 

Google account interface. It may also be of interest to further study the cloud data to determine if 

the trend of no cloud data points being collected when cellular service is inactive holds true, 

including whether or not airplane mode impacts this. 

Perhaps some evolution in both investigative strategies and legal statutes is needed. 

Certainly, this issue will only become more prominent as providers continue to emphasize 

security and move toward cloud-based data storage. It would also be a very useful study to 

develop a method for automating some of the techniques outlined in this paper. The volume and 

complexity of data cached on these devices means manual review and correlation is tedious and 

time-consuming. Finally, because there are now varied resources, from the carrier records to the 
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device data to the cloud information, investigators should consider exploring all of these avenues 

in their cases. An automated solution capable of incorporating all of these different resources and 

streamlining their review would be a very valuable tool indeed. 
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CHAPTER FIVE: CONCLUSION 

 Smartphones and tablets are becoming more and more entrenched in everyday life, and 

users knowingly and unknowingly store intimate information within these devices. Because of 

the location aware features offered by mobile devices, as well as users’ tendency to keep them on 

their person much of the time, device location history is both a real phenomenon and a 

potentially valuable resource in criminal investigations. Android devices make up a majority of 

the mobile market share, and this study’s exploration of their capabilities, strategies, and stored 

data indicates that they do indeed possess large amounts of historical location data associated 

with a particular device, and by extension, its owner.  

 One critical point to consider is that mobile device investigations now go beyond the 

phone itself, extending not just to carrier records but also to potential cloud artifacts. As this 

study demonstrated, vast quantities of Android device location points are archived on Google’s 

servers. This information is updated often enough to demonstrate if a user is dwelling or 

traveling, and to provide an estimate of their location likely accurate to within 100 meters, or 

less. Furthermore, what really sets this resource apart is its omnipresent activity, running in the 

background without any need for user-initiated sessions or events. Potential impediments to the 

acquisition and use of the cloud resource include issues involving access or credentials, as well 

as perceived ambiguity regarding the legality of obtaining the cloud data via a commercial tool, 

such as CelleBrite’s Cloud Analyzer software. 

 In terms of the devices themselves, examiners should begin by examining data associated 

with applications known to have permissions to the device location. Text-based files may be 

triaged via keyword searching, and this technique may also extend to SQLite database column 



98 

 

headers, though not floating point values, which is typically how latitude and longitude 

coordinates are stored within the databases. Databases should be reviewed for location artifacts. 

This study describes a number of example databases and their content. Depending on the type of 

application, the cached location points could reflect the device’s actual location, or some 

searched point of interest or destination. In other words, a device’s location at a particular time 

may be either directly documented, or it may be inferred based on a viewed point of interest 

nearby, or a navigation route with transcribed directions.  

 Different types of apps seemed to handle location data differently, with almost all 

requiring some sort of user-initiated impetus to record the information. Fitness, location sharing, 

and chat apps appear to store device locations with high precision. In general, these apps also 

seem to require GNSS sensors to be enabled, although perhaps less so for the location sharing 

apps. The update intervals are tied to the user activity. When a user employs a fitness app, the 

device location may be updated up to every few seconds, as opposed to a chat app in which the 

location is recorded only when a message is sent, with the proper settings configured to enable 

location sharing.  

 Navigation and leisure apps also require user interaction, but these apps may store 

locations more likely to be searched or viewed by the user, not necessarily the location of the 

device itself. The cached locations do appear to be quite precise, but update intervals are again 

tied to the user’s activity. In the case of leisure apps, and the Waze navigation app’s transcribed 

turn-by-turn directions, the device’s location could possibly be inferred from these apps’ data. 

Weather apps and ad-supported games did cache some location artifacts but were not as reliable 

in terms of accuracy, and the update intervals were intermittent. 
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 It may also benefit an examiner to look further than the files or apps that may store 

location data itself. Various log files may offer additional information regarding sensor activity 

that could prove valuable in evaluating the accuracy of any other recovered device locations. 

While GNSS sensor activity logs were lacking in this research, WLAN connectivity was 

documented by several apps in several different contexts. Other log files monitored app usage, 

which could be of interest when dealing with an app that requires GNSS operations to perform 

particular functions or cache data. For example, if a coordinate pair of interest is found in an 

examination, and then details from such a seemingly unrelated log files regarding app usage 

reveal that a separate app, which requires GNSS services, was active at the time, it may bolster 

confidence in the reliability or accuracy of the particular point. 

 Previous studies regarding accuracy trends noted during live tracking of test devices 

noted that reliability improved whenever GNSS resources are used, with location points derived 

merely from cell tower signals proving least accurate. Somewhere in between either extreme, 

WLAN-supplemented services were reported as having decent accuracy of within 100 meters or 

so. Perhaps unsurprisingly, these trends were corroborated in this study by the location data 

recovered from the mobile devices themselves. The maximum error in this testing was roughly 

around 1.5 kilometers, with a minimum error of within 3 meters noted. The maximum error was 

in fact obtained when only cellular services were active, and in a rural area. The minimum, 

however, was associated with a test session in which cellular, WLAN, and GNSS sensors were 

all active, and in a suburban area. 

 Such an accuracy range is likely adequate for refuting an alibi, but investigators may 

wish to have a better idea of how accurate a particular cached coordinate pair may be. 
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Fortunately, multiple resources exist to facilitate such an effort, in the form of metadata and logs 

stored on the devices themselves, to the option to review carrier records and cloud data as 

corroborative sources. Examiners should not rely solely on commercial tools to parse location 

data for them. They should actively search application data for possible contemporaneous 

artifacts that may provide insight or verify a particular point, focusing especially on databases 

and text files. The search should initially focus on apps with location permissions, but one should 

not overlook the potentially valuable logging contributions of the other app types. 

 These strategies, along with the incorporation of external resources such as carrier 

records and cloud data, may enable an examiner to be able to do more than just recover the 

location artifacts, but also comment on their potential reliability as well. As device storage and 

extraction techniques evolve, and cloud storage becomes more prominent, mobile device 

forensic examinations will need to evolve, as well. Understanding the device functionality and 

all of the possible resources available will help ensure that practitioners perform the most 

effective and complete analyses they can, improving investigations and promoting informed 

adjudication of civil investigations or criminal cases. 
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APPENDIX A: TEST SESSION WORKSHEET 
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APPENDIX B: APPS AND SETTINGS INFORMATION 

 

  



104 

 

Table 19 - Apps and Settings Information 

Category Apps Tested Custom Location Settings Location Permissions 

Navigation Google Maps 

Waze 

Google Location Settings enabled 

No track log settings noted 
☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

Fitness RunKeeper 

Map My Walk 

My Tracks 

Linked to Facebook account 

Linked to Facebook account 

Set recording time interval to 

smallest option 

Recording distance interval set to 

32 feet 

Default track name set to Date 

and Location 

☐ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

 

Location 

Sharing 

Glympse 

 

Life360 

Locate My Friends 

Swarm 

No logging options noted 

Linked to Facebook 

Location sharing enabled 

Location sharing enabled 

Linked to Facebook 

☒ Coarse  ☒ Fine  

 

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

Chat Facebook Messenger 

WhatsApp 

Viber 

LINE 

Messages include location 

No location options noted 

No location options noted 

No location options noted 

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

Weather AccuWeather 

 

One Weather 

GO Weather 

Weather Bug 

Enabled alerts, Use current 

location 

“Follow my location” enabled 

Use current location 

“Enable my location” checked 

☒ Coarse  ☒ Fine  

 

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

Ad-

Supported 

Games 

Words With Friends 

Trivia Crack 

Quiz Up 

Linked to Facebook 

Linked to Facebook 

Linked to Facebook 

☐ Coarse  ☒ Fine  

☒ Coarse  ☐ Fine  

☐ Coarse  ☒ Fine  

Leisure Yelp 

Foursquare 

Field Trip 

No location options noted 

Location services enabled 

No location options noted 

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

☒ Coarse  ☒ Fine  

Other 
  

*(OnePlus 

One A0001 

only) 

Location Tracker 

 

 

 

GPS Status Tracker 

Time interval set to smallest 

(every 5 minutes) 

Location resource options: 

Mobile/WLAN, GPS, or Both 

NMEA logging enabled 

☒ Coarse  ☒ Fine  

 

 

 

☒ Coarse  ☒ Fine  
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APPENDIX C: TEST SESSIONS 
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Table 20 - Test Session Information 

Date  Device(s) Used Environment Setting Category Active Sensors 

May 27 OnePlus One 

LG VS870 
☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

June 6 OnePlus One 

LG VS870 
☐ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

June 9 OnePlus One 

LG VS870 
☐ Indoor 

☒ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☐ GNSS 

☐ WLAN 

☒ Cellular 

June 13 SM-G900P S5 ☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☐ GNSS 

☒ WLAN 

☒ Cellular 

June 14 SM-G900P S5 

SGH-i257 S4 

Mini 

☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

June 19 SGH-i257 S4 

Mini 

 

☐ Indoor 

☒ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

June 27 SGH-i257 S4 

Mini 

SM-G900P S5 

☐ Indoor 

☒ Outdoor 

☐ Rural 

☐ Suburban 

☒ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

July 14 OnePlus One 

LG VS870 
☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☐ GNSS 

☐ WLAN 

☒ Cellular 

July 15 OnePlus One 

LG VS870 
☒ Indoor 

☐ Outdoor 

☒ Rural 

☐ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

July 15 OnePlus One 

LG VS870 
☐ Indoor 

☒ Outdoor 

☒ Rural 

☐ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

July 17 OnePlus One 

LG VS870 
☐ Indoor 

☒ Outdoor 

☒ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

July 19 OnePlus One 

 
☐ Indoor 

☒ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 
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Date  Device(s) Used Environment Setting Category Active Sensors 

August 6 OnePlus One 

SM-G900P S5 
☐ Indoor 

☒ Outdoor 

☒ Rural 

☐ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

September 6 OnePlus One 

 
☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

September 8 OnePlus One 

 
☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

September 16 OnePlus One 

LG VS870 
☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☐ GNSS 

☒ WLAN 

☒ Cellular 

September 16 SGH-i257 S4 

Mini 
☐ Indoor 

☒ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS* 

☒ WLAN 

☒ Cellular 

September 18 OnePlus One 

SM-G900P S5 
☒ Indoor 

☐ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☐ GNSS 

☒ WLAN 

☐ Cellular 

September 19 LG VS870 

SGH-i257 S4 

Mini 

☐ Indoor 

☒ Outdoor 

☒ Rural 

☐ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

September 19 LG VS870 ☐ Indoor 

☒ Outdoor 

☒ Rural 

☐ Suburban 

☐ Urban 

☐ GNSS 

☐ WLAN 

☒ Cellular 

September 19 SGH-i257 S4 

Mini 
☐ Indoor 

☒ Outdoor 

☐ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☐ WLAN 

☒ Cellular 

September 19 LG VS870 

SGH-i257 S4 

Mini 

☐ Indoor 

☒ Outdoor 

☐ Rural 

☐ Suburban 

☒ Urban 

☒ GNSS* 

☒ WLAN 

☒ Cellular 

October 8 OnePlus One ☐ Indoor 

☒ Outdoor 

☒ Rural 

☒ Suburban 

☐ Urban 

☒ GNSS 

☒ WLAN 

☒ Cellular 

October 8 OnePlus One ☐ Indoor 

☒ Outdoor 

☒ Rural 

☒ Suburban 

☐ Urban 

☐ GNSS 

☒ WLAN 

☒ Cellular 

*GNSS enabled for navigation sessions only. All other test activity performed with no GNSS. 
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APPENDIX D: ANALYSIS TOOLS 
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Table 21 - Analysis tools used in this study 

Tool (Vendor/Tool Name) Version Purpose/Usage 

CelleBrite UFED 4PC 4.2.2.86 Extraction of data from test 

devices 

CelleBrite Physical Analyzer 4.2.6.4 Analysis of data extracted from 

test devices 

CelleBrite UFED Cloud 

Analyzer 

4.3.0.412 Collection of Google Location 

History data for test devices 

Magnet Forensics  

Internet Evidence Finder 

6.6.3.0736 Analysis of data extracted from 

test devices 

Magnet Forensics ACQUIRE 0.6.0.0351 Extraction of data from test 

devices 

Kali Linux  1.0 (64-bit) Extraction of data from test 

device 

Guidance Software EnCase 7.10.05.11 Analysis of data extracted from 

test devices 

SQLite Studio 2.1.4 Analysis of databases extracted 

from test devices 

DCode  4.02a Timestamp conversion/analysis 

Microsoft Excel Pro 2013 Analysis of databases and cloud 

data extracted from test devices 

Earth Point Excel to KML  2015 Conversion of Excel content to 

KML format for use in Google 

Earth 

Google Earth 7.1.5.1557 Import of recovered location 

data for creation of figures 

X-Ways Forensics 18.5 SQLite database carving, 

keyword searches 

Strings 2.51 Analysis of Google Maps 

“gmm_storage.db” database 

Coordinate Distance Calculator N/A  

(web tool) 

Web-based calculator to 

determine distance between two 

sets of latitude/longitude 

coordinates 

Movable Type Scripts – 
Calculate Distance between 

Latitude/Longitude Coordinate 

Points 

N/A  

(web tool) 

Secondary (verification) tool for 

distance between two sets of 

latitude/longitude coordinates 
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APPENDIX E: POSSIBLE KEYWORD SEARCH TERMS 
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Table 22 - Suggested keywords for recovery of metadata, application code, or sensor activity 

Request Types Metadata Active Services Databases of 

Interest 

PRIORITY_BALANCED_POWER_ACCURACY 
PRIORITY_HIGH_ACCURACY 

PRIORITY_LOW_POWER 

PRIORITY_NO_POWER 

accuracy 
altitude 

elevation 

recent 

connectionType 
mobile 

WIFI 

BSSID 

SSID 

latitude REAL 
latitude 

DOUBLE 

latitude 

INTEGER 
lat REAL 

lat DOUBLE 

lat INTEGER 
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APPENDIX F: SQLITE QUERIES USED 
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Table 23 - SQLite query details 

Database Filename Associated 

App 

Query Used 

360LocationDB Life360, 

Locate My 

Friends 

select locations.time, 

datetime((locations.time)/1000,'unixepoch') as "Converted 

Time (UTC)", locations.lat, locations.lon, 

locations.accuracy, locations.speed, locations.altitude, 

locations.bearing, locations.provider 

from locations 

order by locations.time asc 

dumpLogsDatabase Locate My 

Friends 

select logsTable.log, logsTable.utc, 

datetime((logsTable.utc)/1000,'unixepoch') as "Converted 

Time (UTC)" 

from logsTable 

order by logsTable.utc asc 

event Amazon 

preinstalled 

app 

select events.body, events.timestamp, 

datetime((events.timestamp)/1000,'unixepoch') as 

"Converted Timestamp (UTC)" 

from events 

order by events.timestamp asc 

Forecast_accu.db AccuWeather select forecasts.current_city_flag, 

forecasts.device_updated_millis, 

datetime((forecasts.device_updated_millis)/1000,'unixepoch'

) as "Converted Timestamp (UTC)", forecasts.city, 

forecasts.country, forecasts.lat, forecasts.lon 

from forecasts 

Fsq.db Foursquare, 

Swarm 

select comments.createdAT, 

datetime((comments.createdAt),'unixepoch') as "Converted 

Time (UTC)", comments.lat, comments.lng, 

comments.geoId, comments.contextLine 

from comments 

order by comments.createdAT asc 

herrevad Google 

Mobile 

Services 

select local_reports.network_type, local_reports.ssid, 

local_reports.security_type, local_reports.bssid, 

local_reports.timestamp_millis, 

datetime((local_reports.timestamp_millis)/1000,'unixepoch') 

as "Converted timestamp (UTC)" 

from local_reports 

order by local_reports.timestamp_millis asc 
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Database Filename Associated 

App 

Query Used 

Messaging.db Life360, 

Locate My 

Friends 

select message.content, thread_participant.participant_name, 

message.created_at, 

datetime((message.created_at),'unixepoch') as "Converted 

Time (UTC)", message.has_location, 

message.location_latitude, message.location_longitude, 

message.location_timestamp, 

datetime((message.location_timestamp),'unixepoch') as 

"Converted Time (UTC)", message.location_accuracy, 

message.location_address1, message.location_address2 

from message, thread_participant 

where message.sender_id=thread_participant.participant_id 

order by message.created_at asc 

Mytracks.db My Tracks select tracks.name, trackpoints.longitude, 

trackpoints.latitude, trackpoints.time, 

datetime((trackpoints.time)/1000,'unixepoch') as "Converted 

Time (UTC)", trackpoints.elevation, trackpoints.accuracy, 

trackpoints.speed, trackpoints.bearing, trackpoints.sensor 

from tracks, trackpoints 

where tracks._id=trackpoints.trackid 

order by trackpoints.time asc 

Oneweather.db 1 Weather select geocodes.city, geocodes.state, geocodes.country, 

geocodes.lat, geocodes.lng, geocodes.lastHit, 

datetime((geocodes.lastHit)/1000,'unixepoch') as "Converted 

Timestamp (UTC)", geocodes.hits 

from geocodes 

order by geocodes._id asc 

RunKeeper.sqlite RunKeeper select points.trip_id, trips.start_date, 

datetime((trips.start_date+points.time_interval_at_point*100

0)/1000,'unixepoch') as "Converted Time", points.latitude, 

points.longitude, points.altitude, 

points.time_interval_at_point, points.speed_from_last_point, 

points.distance_from_last_point, points.point_type, 

points.accuracy, points.distance_at_point 

from points, trips 

where points.trip_id=trips._id 

order by points._id asc 

Tts.db Waze select Jane.text, Jane.path, Jane.update_time, 

datetime((Jane.update_time),'unixepoch') as "Converted 

Time (UTC)" 

from Jane 

order by Jane.update_time asc 
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Database Filename Associated 

App 

Query Used 

User.db Waze select places.name, places.street, places.city, places.state, 

places.house, places.longitude, places.latitude, 

places.venue_id, places.created_time, 

datetime((places.created_time),'unixepoch') as "Converted 

Created Time (UTC)", recents.access_time, 

datetime((recents.access_time),'unixepoch') as "Converted 

Access Time (UTC)" 

from places, recents 

where places.id=recents.place_id 

order by places.id asc 

Viber_messages Viber select messages.date, 

datetime((messages.date)/1000,'unixepoch') as "Converted 

Time (UTC)", messages.type, messages.body, 

messages.location_lat, messages.location_lng, 

participants_info.display_name, messages.deleted 

from messages, participants_info 

where messages.participant_id=participants_info._id 

order by messages.date asc 

Weather.db GO Weather select citynow.myLocation, citynow.cityName, 

citynow.updateTime, 

datetime((citynow.updateTime)/1000,'unixepoch') as 

"Converted Time (UTC)", citynow.city_my_location, 

citynow.state, citynow.country, citynow.timestamp, 

datetime((citynow.timestamp)/1000,'unixepoch') as 

"Converted Timestamp (UTC)", citynow.latitude, 

citynow.longitude 

from citynow 

order by citynow.updateTime asc 

Workout.db Map My 

Walk 

select workouts.name, timeSeries.timestamp, 

datetime((timeSeries.timestamp)/1000,'unixepoch') as 

"Converted Time (UTC)", timeSeries.distance, 

timeSeries.speed, timeSeries.longitude, timeSeries.latitude, 

timeSeries.altitude 

from timeSeries, workouts 

where timeSeries.localID=workouts.localId 

order by timeSeries.timestamp asc 
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