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ABSTRACT 

 

The human brain is unquestionably the most complex organ of the body as it controls and 

processes its movement and senses. A healthy brain is able to generate responses to the 

signals it receives, and transmit messages to the body. Some neural disorders can impair 

the communication between the brain and the body preventing the transmission of these 

messages. Brain Computer Interfaces (BCIs) are devices that hold immense potential to 

assist patients with such disorders by analyzing brain signals, translating and classifying 

various brain responses, and relaying them to external devices and potentially back to the 

body. 

 

 Classifying motor imagery brain signals where the signals are obtained based on 

imagined movement of the limbs is a major, yet very challenging, step in developing 

Brain Computer Interfaces (BCIs). Of primary importance is to use less data and 

computationally efficient algorithms to support real-time BCI. To this end, in this thesis 

we explore and develop algorithms that exploit the sparse characteristics of EEGs to 

classify these signals. Different feature vectors are extracted from EEG trials recorded by 

electrodes placed on the scalp. 
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In this thesis, features from a small spatial region are approximated by a sparse linear 

combination of few atoms from a multi-class dictionary constructed from the features of 

the EEG training signals for each class. This is used to classify the signals based on the 

pattern of their sparse representation using a minimum-residual decision rule. 

 

We first attempt to use all the available electrodes to verify the effectiveness of the 

proposed methods. To support real time BCI, the electrodes are reduced to those near the 

sensorimotor cortex which are believed to be crucial for motor preparation and 

imagination. 

 

In a second approach, we try to incorporate the effect of spatial correlation across the 

neighboring electrodes near the sensorimotor cortex. To this end, instead of considering 

one feature vector at a time, we use a collection of feature vectors simultaneously to find 

the joint sparse representation of these vectors. Although we were not able to see much 

improvement with respect to the first approach, we envision that such improvements 

could be achieved using more refined models that can be subject of future works. 

 

 The performance of the proposed approaches is evaluated using different features, 

including wavelet coefficients, energy of the signals in different frequency sub-bands, 

and also entropy of the signals. The results obtained from real data demonstrate that the 

combination of energy and entropy features enable efficient classification of motor 
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imagery EEG trials related to hand and foot movements. This underscores the relevance 

of the energies and their distribution in different frequency sub-bands for classifying 

movement-specific EEG patterns in agreement with the existence of different levels 

within the alpha band. The proposed approach is also shown to outperform the state-of-

the-art algorithm that uses feature vectors obtained from energies of multiple spatial 

projections. 
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CHAPTER 1. INTRODUCTION 

1.1 Brain Computer Interfaces 

The human brain is unquestionably the most complex organ of the body as it controls and 

processes its movement and senses. A healthy brain is able to generate responses to the signals it 

receives, and transmit messages to the body. Some neural disorders can impair the 

communication between the brain and the body preventing the transmission of these messages. 

Brain Computer Interfaces (BCIs) are devices that hold immense potential to assist patients with 

such disorders by analyzing brain signals, translating and classifying various brain responses, 

and relaying them to external devices and potentially back to the body. Therefore, such devices 

may be beneficial for patients suffering from disorders such as spinal cord injury, stroke, 

amyotrophic lateral sclerosis and a variety of neurological diseases [1]. 

 

Based on the signal recording modality, the BCI technology can be divided into two major 

categories: invasive technologies in which neurosurgeons implant arrays of microelectrodes 

directly into the brain, and non-invasive methods wherein the activity of neuronal populations 

can be recorded by placing electrodes on the scalp or using imaging techniques such as 

functional Magnetic resonance Imaging (fMRI).  

 

It is useful to provide some preliminary background about the anatomy and physiology of the 

brain to better understand brain signals and their relation to the activity of a single neuron. 
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1.2 Rest potentials 

Neurons and glial cells are the main building blocks for the central nervous system (CNS). 

Generally, a neuron in mammalian CNS consists of a cell body, called Soma, that contains the 

nucleus, dendrites and a long fibrous axon that originates from an area of the cell body called 

axon hillock [2]. Figure 1 illustrates a schematic view of a neuron. 

 

Electrical, chemical or mechanical stimuli can cause excitation in neurons. The responses of the 

cell to the stimuli can be categorized in two types: electrotonic potentials and action potentials. 

The former corresponds to non-propagated potentials and the latter refers to propagated 

potentials. 
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Figure 1 A schematic view of a neuron. 
By OpenStax College [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia 
Commons. 

 

Across the neuron membrane, there exists a variety of ions such as Potassium, Sodium and 

Calcium ions that have major role in the generation of electrical potentials along the axon. The 

concentration of these ions across the cell membrane is not uniform. These ions can move across 

the membrane through channels that are permeable to particular ion types. Because of these two 

reasons, a potential difference across the membrane, called the rest potential, can be observed. 

Typical values of the rest potential are equal to -70 mV [2]-[3]. Figure 2 depicts the rest potential 

across the cell membrane. 
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Figure 2 Rest potential across the cell membrane. OpenStax College, The Action Potential. 
OpenStax CNX. Nov 7, 2014 http://cnx.org/contents/401af334-2930-4731-ba9a-
14a346326e63@5. 
 

Potassium ions (K+) and Sodium ions (Na+) play an important role in the rest potential. K+ 

concentration inside the neurons is much higher than outside, whereas the concentration of Na+ 

is higher outside. The concentration gradient of the K+ ions makes these ions go towards the 

outside of the cell via the K+ channels. Similarly the Na+ ions move towards the inside of the 

membrane via Na+ channels. But since the number of open K+ channels is always greater than 

Na+ channels the flow of the K+ ions toward the outside of the membrane is greater. Meanwhile, 

the Na+-K+ ATPase actively moves the K+ and Na+ ions against their electrochemical gradient. 

Therefore the rest potential remains stable. [2]- [3]. 
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Figure 3  Voltage-Gated Channels. OpenStax College, The Action Potential. OpenStax 
CNX. Nov 7, 2014 http://cnx.org/contents/401af334-2930-4731-ba9a-14a346326e63@5. 

 
 

1.3 Action Potentials 

There are different types of ion channels in the cell membrane. Some of these channels are gated 

and sensitive to electrical or chemical stimulation, hence the name voltage-gated and ligand-

gated channels. A voltage-gated channel is depicted in Figure 3. When the Na+ gated channels 

become active, and when the threshold potential is reached, the Na+ ions move toward the inside 

of the membrane, which result in a great increase in the number of Na+ ions inside the cell and 

consequently creates a positive potential difference across the membrane that lasts for few 

milliseconds. This phenomenon is called depolarization. 
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During depolarization, the concentration of Na+ ions increases inside the membrane and changes 

the Na+ gradient toward the outside of the membrane. Meanwhile, K+ gated channels also get 

activated, and the K+ ions move to the outside of the membrane. As a result, the potential 

difference across the membrane decreases. This phenomenon is called repolarization. 

 

The opening procedure of the gated K+ ion channels is slower than the gated Na+ ion channels. 

Therefore the permeability to K+ ions increases following the increase in Na+ permeability. 

Moreover, the slow closing procedure of the gated K+ channels makes more K+ ions leave the 

membrane. This phenomenon is called hyperpolarization [2]-[3]. An action potential is 

illustrated in Figure 4. 

 

 

 

Figure 4  Action potential. OpenStax College, The Action Potential. OpenStax CNX. Nov 7, 
2014 http://cnx.org/contents/401af334-2930-4731-ba9a-14a346326e63@5. 
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So far, we have discussed the response of a single neuron. In the next section 

Electroencephalograms (EEGs) and their relation with a single neuron activity are introduced. 

 

1.4 Electroencephalography 

The background electrical activity of the brain in unanesthetized animals was first described 

qualitatively in the 19th century, but the German psychiatrist Hans Berger was the first to 

analyze the variations in the brain potential in a systematic way and introduced the term 

electroencephalogram (EEG) in 1924 [4]. EEG signals recorded from the scalp represent an 

important electrical activity on the cortex and dendrites of the pyramidal cortical cells. In fact, 

the EEG mostly measures an aggregate effect of dendritic postsynaptic potentials since the 

superficial layers of the cerebral cortex are covered by the dendrites as shown in Figure 5 [2]- 

[4]. 
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Figure 5 The pyramidal cells of cerebral cortex. By UC Regents Davis campus 
(http://brainmaps.org) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia 
Commons. 

 

The Brain electrical activity is usually recorded using three modalities [4]. 

1. Scalp electrodes that allow a non-invasive recording of the brain electrical activity. 

2. Cortical electrodes that are placed on the cortex of the brain. This method can be 

considered as an invasive approach. This recording is called Electrocorticography 

(ECoG). 

3. Depth recording, which is an invasive method that requires inserting needle electrodes 

into the brain.  

The recorded electrical potentials of the brain is a superposition of the electrical activity of all 

neuronal populations, but being close to the source of the activity can generate better spatial 
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resolution and also higher Signal to Noise Ratio (SNR). Owing to the non-invasive process 

whereby these signals are recorded, EEG is an attractive modality for BCI and is the main focus 

of this thesis. The international federation 10-20 system is typically used to record the EEG 

signals (Figure 6). This system was introduced to standardize the placement of the electrodes for 

all the subjects. Bipolar Montage refers to measuring the difference between two adjacent 

electrodes and referential montage describes the measurement with respect to a reference 

electrode.  

 

 

Figure 6 The international 10-20 system to place the electrodes on the scalp. 
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1.5 Anatomic study of the brain 

The CNS consists of the spinal cord and the brain. The brain is divided into three main parts: 

Brainstem, Cerebellum and Cerebrum. The brainstem is a short extension of the spinal cord and 

is a connection between the cerebral cortex, the spinal cord and the cerebellum. It is also an 

integration center for motor refluxes. The cerebellum maintains the balance of the body muscle 

movement, while the cerebrum is responsible for conscious functions [2]-[3].  

 

Within the CNS, there are ascending nerve tracts originating from the spinal cord that deliver 

information to the brainstem (such as pain or touch) and descending nerve tracts that connect 

brain divisions such as cerebrum and cerebellum to the motor neurons and therefore control the 

activity of the skeletal muscles. 
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Figure 7 The primary motor cortex By BruceBlaus, Blausen.com staff. "Blausen gallery 2014". 
Wikiversity Journal of Medicine. DOI:10.15347/wjm/2014.010. ISSN 20018762. (Own work) 
[CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons. 

 

Motor imagery EEG signals, the primary focus of this thesis, are recorded when the subjects are 

asked to imagine the movement of a particular limb. Hence, preliminary background on how 

movement is planned in the brain is presented. The brain must plan the movement and maintain 

all the necessary motions at the same time before moving a limb. The cortex, the basal ganglia 

and the lateral portion of the cerebellar hemisphere are generally involved in planning the 

movement; therefore the electrical activity in this region highly increases before the movement. 

The motor cortex and premotor cortex receive the information via the thalamus, and then relay 

this information to the spinal cord via corticospinal tracts and corticobulbar tracts to motor 

neurons in the brain stem [2].  
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Figure 8 Bordmann's area numbers. 

 

It has been realized through stimulation experiments in craniotomy under local anesthesia, and 

also imaging techniques such as fMRI, that the primary motor cortex (Brodmann’s area 4 or M1 

Figure 8) is involved in voluntary movement. The primary motor cortex is located in the 

percentral gyrus as shown in Figure 7, and most of the body movement and postures are 

projected on this area such as face on the bottom and feet movement on the top of the gyrus. 

Figure 9 illustrates disproportionate map of the body in the motor cortex.  While the premotor 

cortex (Bordmann’s area 6) functionality is still not fully understood, it is believed that it is 

mostly involved in setting postures at the beginning of a planned movement [2]. 
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Figure 9 A figurative representation of the body map in the primary motor cortex. 

 

1.6 Thesis outline 

The primary objective of this work is to develop classification algorithms that are 

computationally efficient and that use a small number of measurements to support real-time BCI. 

In this thesis, we explore a range of techniques to extract useful features and to classify motor 

imagery EEG signals based on sparse representations [5] and multiresolution analysis. 
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Event-Related Synchronization/Desynchronization (ERS/ERD) are known as important 

phenomena that occur during movement, pre-movement and movement imagination. Therefore a 

preliminary background about the concepts of ERD/ERS is necessary and is described in chapter 

2.  

 

In the proposed approach, features from neighboring electrodes in a small spatial region are 

approximated by a sparse linear combination of a few atoms from a dictionary constructed from 

training sets corresponding to the different classes. The class of each EEG trial is then 

determined from the sparsity pattern of the recovered vector. 

 

Since electrodes in a small spatial neighborhood are recording activities related to neighboring 

neural populations, it is conceivable that leveraging the correlation between these recordings 

could enhance the classification performance. To this end, we propose a joint sparsity model that 

exploits correlation between neighboring electrodes [6]. Sparse representation of the signals and 

joint sparsity are presented in chapter 3.  

 

In this thesis, a variety of feature vectors based on wavelet characteristics of the EEG trials are 

extracted, including Wavelet coefficients, energy of the signals in different frequency sub-bands, 

entropy of the signals, and also a combination of energy and entropy. Power-related features 

have been employed in the classification of motor imagery EEG signals in related work [7]. In 

contrast to [7], which is based on the energies of spatial projections, in this work we use energies 
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in different frequency sub-bands motivated by the existence of different levels within the alpha 

band of interest. While [8] uses average power in various sub-bands, their classification approach 

is based on support vector machines unlike the sparsity approach proposed herein. 

 

Also, we use entropy as an additional feature for classification. Entropy as a single entry feature 

is able to capture the distribution of the trials and it was shown to be effective for classifying 

EEG recordings from normal subjects and epileptic patients [9]. Therefore, in the final approach 

the entropy is also concatenated to the energy vectors to enhance the feature vectors.  

 

The methodologies and simulation results are described in detail in chapter 3. Chapter 4 contains 

the summary and conclusion of this thesis as well as future directions. 
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CHAPTER 2. EVENT-RELATED DESYNCHRONIZATION 

 2.1 Introduction 

Using EEG signals as a non-invasive method to record and study the behavior of the brain is 

prevalent. Nevertheless, EEGs are highly sensitive to noise. This calls for advanced signal processing 

methods to extract meaningful features that are pertinent to different physiological phenomena. 

Moreover, knowledge of EEG signals and their characteristics (such as bandwidth and amplitude), 

can be very beneficial for extracting more useful and representative feature vectors. In this chapter, 

Event-Related Potentials (ERP) and Event-Related Desynchronization (ERD) are introduced. These 

are known oscillations in EEG signals that are associated with different events. 

 

Hans Berger discovered that the brain generates rhythmic potentials [10] and these oscillatory 

activities are believed to be the result of synchronous neuronal populations in different cortex 

areas. Generally speaking, the frequencies of these oscillations could depend on the membrane 

properties of different neurons, as well as how they are organized and connected in the 

underlying networks [11]. 

 

EEG signals can be classified into five categories, based on their frequency bands:  

1. Delta Waves: These are low frequency signals below 3.5 Hz and mostly occur when a person 

is asleep.  
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2. Theta Waves: These consist of signals in the frequency range 4-7 Hz. They can be observed in 

the Parietal and Temporal lobes in babies, as well as adults who are suffering from anxiety. 

Figure 10 shows the brain lobes.  

3. Alpha Waves: These are rhythmic waves in the frequency band 8-13 Hz and can be observed 

in normal people in a relaxed and conscious state. This class of waves occurs in the Occipital 

lobe with higher amplitude, but they can also be recorded in the Frontal and Parietal lobes.  

4. Beta Waves: These consist of signals in the frequency range 14-30 Hz and can be recorded in 

the Parietal and Frontal lobes. They are mostly present when a person has some high neural 

activity and tensions. When a conscious person concentrates on a subject, the Beta waves that are 

unsynchronized waves with lower amplitudes, will replace the Alpha waves.  

5. Gamma Waves: The frequency of this class is higher than 35 Hz.  

 

An important neural activity termed rolandic mu rhythm was later discovered (See [12] and 

references therein). This neural activity carries physiological information and is part of the alpha 

band recorded over the sensorimotor cortex. 
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Figure 10 Lobes of the brain. A. Frontal lobe, B. Temporal lobe, C. Parietal lobe and D. 
Occipital lobe (Image by MIT OpenCourseWare.) 

 

Brain activity is related to different events and types of stimuli. For example, a sensory stimulus can 

cause changes in the activity of neuronal populations. Such changes are called Event-Related 

Potentials (ERPs) [13]. Evoked Potentials such as Visual Evoked Potentials (VEP) and Auditory 

Evoked Potentials (AEP) are good examples of such changes. ERPs are phase-locked activities, 

i.e., evoked oscillations with a fixed time delay from the stimuli. Therefore, averaging techniques 

can enhance the signal to noise ratio and help to observe the ERPs [13]. 
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2.2 Event-Related Desynchronization 

 Certain events can induce a response such as blocking or desynchronizing the ongoing alpha 

activity, which may be observed in the EEG. The work in [13] provides an excellent review of 

two types of event-driven changes in the power of the EEG signals in particular frequency bands 

called Event-Related Desynchronization/Synchronization (ERD/ERS). 

 

1. Event-Related Desynchronization (ERD) that is based on decrease in power in given 

frequency bands.  

2. Event-Related Synchronization (ERS) that is based on an increase in power in given 

frequency bands. 

 

Pfurtscheller and Aranibar introduced the concept of ERD in 1977. Numerous studies have focused 

on developing and deriving features based on ERDs related to different events. Generally, ERD and 

ERS are non-phase locked or induced responses [14]. Pfurtscheller provided four processing steps 

for ERD and ERS: (i) Band pass filtering, (ii) squaring the amplitudes to obtain the instantaneous 

power of the samples in time, (iii) averaging over trials and (iv) time averaging for smoothing 

purposes [13]. 

 

As mentioned above, ERD is the desynchronization or decrease in EEG’s power in a specific 

frequency band that identifies activation of neuronal population in specific locations. On the other 

hand, ERS represents deactivation or inhibition in neuronal population. These phenomena are related 
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to the Cortical Activation (CA). According to [15], when there are considerable cortical activities in 

neuronal populations, there is a smaller number of non-occupied neurons, therefore an increase in 

CA can induce ERD. After the movement or motor imagery, when cortical activity is inhibited, there 

are more free neurons available and ERS can occur [15]. 

 

In essence, during motor execution and even motor imagery ERD represents a synchronous activity 

of the cortical area, and ERS represents deactivated or inhibited cortical networks [11]. While 

ERD/ERS are frequency band specific, ERPs are not, which is the main difference between ERP and 

ERD/ERS [13]. 

 

The ERD related to mu rhythm is most prominent over sensorimotor areas during motor 

preparation [12]. Two types of rolandic mu rhythm can be distinguished in the alpha band, the 

lower-frequency mu rhythm between 8-10 Hz and the higher frequency mu rhythm between 10-

13 Hz. While the lower frequency rhythm shows an ERD pattern that is indistinguishable for 

finger or foot movement, an ERD pattern that is movement-type specific (distinct for finger and 

foot movement) can be observed in the higher frequency mu rhythm [11]. 

 

It is well known that Desynchronizing the mu rhythm or enhancing the mu rhythm is a result of the 

movement-related events, and also imagination of limbs movement. Therefore, they can be 

considered as appropriate features to develop an EEG-based BCI with motor imagery. For instance, it 

was shown by Pfurtscheller and Neuper that foot and tongue movement, and also foot movement 
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imagination, can enhance the mu rhythm, but hand movements or finger movements and imagination 

of hand movements can desynchronize the mu rhythm [16]-[17]. 

 

Referring to ERD/ERS changes should be associated with frequency band specification. [13]- 

[18] have defined ERD as 

 

𝐸𝑅𝐷(𝑡) = 𝑃𝑜𝑤𝑒𝑟(𝑡)−𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑜𝑤𝑒𝑟
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑜𝑤𝑒𝑟

                         ( 1 )  

 

Here Reference power is defined as the pre-stimulus power of the signal and 𝑝𝑜𝑤𝑒𝑟(𝑡) denotes 

the instantaneous power. 

The features corresponding to ERD/ERS were defined in [19] as  

 

𝑓𝐸𝑅𝐷 = 𝑚𝑒𝑎𝑛(|𝑥𝐸𝑅𝐷|)                         ( 2 )  

 

where 𝑥 is the preprocessed EEG signal. 

 

We applied equation (2) on motor imagery EEG signals related to hand and tongue movements 

(Figure 11). In hand movement imagination illustrated in blue, we can see de-synchronization of 

the EEG whereas in tongue movement imagination we observe an increase in power.  
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Since feature vectors based on power and power changes such as ERD and ERS are helpful to 

make different motor imagery classes separable, in this work mostly power-related features are 

employed to perform the classification on the available datasets. 

 

 

 

 

 

 

 

 

 

 

Figure 11 ERD related to the class 1 and four of the dataset 3a. ERD related to hand movement      
is shown in blue and ERS related to tongue movement is shown in red color. 
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CHAPTER 3. CLASSIFICATION OF EEG SIGNALS USING SPARSE  
REPRESENTATIONS 

In this chapter, we begin with a brief review of sparse representation of signals, since it is the 

main part of the classification techniques in this thesis. Signal processing techniques relevant to 

EEGs, our proposed methods, and simulation results are provided in this chapter. 

 

3.1 Introduction to sparsity 

Sparse signal representations have received significant attention in recent years [20]- [21]- [6]. A 

vector is said to be sparse when most of its entries are zero or close to zero and only a few of 

them are nonzero. Consider an 𝑛 × 1 column vector 𝑠, with 𝐾 nonzero values. When 𝐾 ≪ 𝑛 

vector 𝑠 is called 𝐾-sparse. It is possible to compress this signal as follows 

𝑥 = A𝑠 

�

𝑥1
𝑥2
⋮
𝑥𝐵

� = �

𝑎11 𝑎12 … 𝑎1𝑛 

𝑎21 𝑎22 … 𝑎2𝑛 

⋮ ⋮ ⋮ ⋮
𝑎𝐵1 𝑎𝐵2 … 𝑎𝐵𝑛 

�  

⎣
⎢
⎢
⎢
⎢
⎡
𝑠1 
𝑠2 
.
.
.
𝑠𝑛 ⎦
⎥
⎥
⎥
⎥
⎤

                                                   ( 3 ) 

 

where 𝐴 is called the measurement matrix. Finding the vector 𝑠 from the measurements 𝑥 is 

generally not possible since (3) is an undetermined system of linear equations. However, if 𝑠 is 

known to be sparse, it may be uniquely recovered from 𝑥 [22]. Many sufficient conditions were 
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established to ensure perfect recovery of sparse vectors such as the celebrated Restricted 

Isometry Property (RIP) [20], [21]. 

 

A matrix 𝐴 obeys the RIP property of order 𝐾 if: 

 

(1 − 𝛿𝑘)‖𝑠‖ℓ22 ≤ ‖𝐴𝑠‖ℓ22 ≤ (1 + 𝛿𝑘)‖𝑠‖ℓ22               ( 4 ) 

 

is satisfied for all 𝐾-sparse vectors 𝑠. 𝛿𝐾  is the isometric constant of a matrix 𝐴. In a nutshell, 

RIP implies that all subsets of 𝐾 columns taken from matrix 𝐴 are nearly orthogonal [5]. 

 

3.2 Single sparse representation of EEG signals 

In this work, we approximate the measurement vectors by linear combinations of a small number 

of atoms from a dictionary. The EEG feature vector 𝑥𝜖ℝ𝑩 belonging to class 𝑚, is written as a 

linear combination of 𝑁𝑚 training samples in the dictionary from class 𝑚. Hence, 

 

𝑥 = �

𝑥1
𝑥2
⋮
𝑥𝐵

� ≈

⎣
⎢
⎢
⎢
⎡
𝑎11𝑚 𝑎21𝑚 … 𝑎𝑁𝑚1

𝑚

𝑎12𝑚 𝑎22𝑚 … 𝑎𝑁𝑚2
𝑚

⋮ ⋮ ⋮ ⋮
𝑎1𝐵𝑚 𝑎2𝐵𝑚 … 𝑎𝑁𝑚𝐵

𝑚 ⎦
⎥
⎥
⎥
⎤
 

⎣
⎢
⎢
⎢
⎢
⎡
𝛼1𝑚
𝛼2𝑚

.

.

.
𝛼𝑁𝑚
𝑚 ⎦
⎥
⎥
⎥
⎥
⎤

= 𝐴𝑚𝛼𝑚             ( 5 ) 
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where 𝐴𝑚 is a 𝐵 × 𝑁𝑚 matrix called the class 𝑚 subdictionary, and 𝛼𝑚 is the sparse 

representation of 𝑥 that has only 𝐾 non-zero values. 

 

The training set belonging to class 𝑚 is used to generate the columns of the 𝑚-th subdictionary. 

Training samples from 𝑀 classes generate 𝑀 subdictionaries of a 𝐵 × 𝑁 dictionary 𝐴, 

where 𝑁 = ∑ 𝑁𝑚𝑀
𝑚=1 . We can readily write the sparsity model as, 

 

𝑥 ≈ [𝐴1 𝐴2 … 𝐴𝑚]  

⎣
⎢
⎢
⎢
⎢
⎡𝛼

1

𝛼2
.
.
.
𝛼𝑀⎦

⎥
⎥
⎥
⎥
⎤

= 𝐴𝛼             ( 6 ) 

 

If the test trial belongs to class 𝑚, we anticipate the representation to be mostly supported on the 

𝑚-th subdictionary, i.e., that most of the non-zero values of the sparse vector 𝛼 would 

correspond to columns of the 𝑚-th subdictionary. 

Therefore, the test signal is approximated using 𝐾 atoms from the dictionary as 

 

𝑥 = 𝛼𝜆1𝑎𝜆1 + 𝛼𝜆2𝑎𝜆2 + ⋯+ 𝛼𝜆𝑘𝑎𝜆𝑘          ( 7 ) 
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where Λ = {𝜆1, 𝜆2, … , 𝜆𝑘},𝑘 = 1, … ,𝐾 is the support of the sparse vector. To recover the sparse 

vector 𝛼, we need to solve the following optimization problem 

𝑚𝑖𝑛‖𝛼‖0  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝛼 = 𝑥                  ( 8 )  

 

This problem is generally NP-hard. It can be written as 

 

𝑚𝑖𝑛‖𝐴𝛼 − 𝑥‖2  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝛼‖0 ≤ 𝐾0                                        ( 9 )  

 

where 𝐾0 is an upper bound on the sparsity level. In this work, the well-known Orthogonal 

Matching Pursuit (OMP) greedy algorithm [23] is used to solve this problem. 

 

After obtaining the sparse representation 𝛼� of a test signal, it can be classified by computing 𝑀 

residuals as 

 

𝑟𝑚(𝑥) = �𝑥 − 𝐴𝑖𝑎�𝑚�
2

,𝑚 = 1,2, … ,𝑀              ( 10 ) 

 

where 𝑎�𝑚 denotes the entries of the sparse vector associated with the 𝑚-th-class subdictionary. 

We choose the class that provides the minimum residual, i.e. 
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𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑎𝑟𝑔𝑚=1,2,…,𝑀𝑚𝑖𝑛 𝑟𝑚(𝑥)                      ( 11 ) 

 

3.3 Joint sparse representation of EEG trials 

Neighboring electrodes close to the sensorimotor cortex record the oscillations related to pre-

movement, movement, as well as movement imaginations. Based on the movement, these 

electrodes record the event-related changes. Assuming spatial correlation across neighboring 

electrodes, it is possible to define a joint sparsity model. To this end, instead of considering one 

feature vector at a time, we use a collection of feature vectors simultaneously to find the joint 

sparse representation of these vectors. While the atoms are common, the response of each 

electrode is formed using different values for the set of coefficients. To clarify, assume 𝑥𝑐  is a 

response from a center electrode and we have a 𝐵 × 𝑁 structured dictionary 𝐴. The sparse 

representation of 𝑥𝑐 can be written as: 

 

𝑥𝑐 = 𝐴𝛼𝑐 = 𝛼𝑐,𝜆1𝑎𝜆1 + 𝛼𝑐,𝜆2𝑎𝜆2 + ⋯+ 𝛼𝑐,𝜆𝑘𝑎𝜆𝑘                                  ( 12 ) 
 

where Λ𝑘 = {𝜆1, 𝜆2, … , 𝜆𝑘} is the support of the sparse vector. Since neighboring electrodes 

record similar oscillation patterns with respect to the cue, the response 𝑥𝑗  of a neighboring 

electrode can also be approximated using the same atoms from training set samples within the 

dictionary, but with different weights. Therefore, all the neighboring electrodes share a common 

support, but the responses from different electrodes assume different values on the support. Thus, 
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𝑥𝑗 = 𝐴𝛼𝑗 = 𝛼𝑗,𝜆1𝑎𝜆1 + 𝛼𝑗,𝜆2𝑎𝜆2 + ⋯+ 𝛼𝑗,𝜆𝑘𝑎𝜆𝑘          ( 13 ) 

 

Consider 𝑇 electrodes in a small neighborhood around the center electrode 𝑥𝑐, and a structured 

dictionary 𝐴. The responses can be represented by, 

 

𝑋 = [𝑥1 𝑥2 … 𝑥𝑇] = [𝐴𝛼1 𝐴𝛼2 … 𝐴𝛼𝑇] = 𝐴 [𝛼1 𝛼2 … 𝛼𝑇] = 𝐴𝑆        ( 14 )  

 

 where 𝑋 = [𝑥1 𝑥2 … 𝑥𝑇] is a 𝐵 × 𝑇 matrix, and 𝑥𝑗  is the feature vector of the EEG 

recorded by electrode 𝑗. The matrix 𝑆 is a row sparse matrix since [𝛼1 𝛼2 … 𝛼𝑇] share the 

same support. The jointly sparse matrix 𝑆 can be recovered by solving the following problem 

 

𝑚𝑖𝑛‖𝑆‖𝑟𝑜𝑤,0  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑆 = 𝑋                ( 15 ) 

 

‖𝑆‖𝑟𝑜𝑤,0 is the number of non-zero rows of 𝑆. Since the dictionary 𝐴 ∈ ℝ𝐵×𝑁, the recovered 

jointly sparse matrix �̂� is an 𝑁 × 𝑇 matrix. The problem can be rewritten as 

 

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛‖𝐴𝑆 − 𝑋‖𝐹  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑆‖𝑟𝑜𝑤,0 ≤ 𝐾0             ( 16 ) 
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where ‖. ‖𝐹 denotes the Frobenius norm. This problem can be solved approximately using greedy 

algorithms. In this work, we used a generalized OMP algorithm called simultaneous OMP 

(SOMP) [24]. The SOMP algorithm is quite similar to the OMP algorithm for the most part. The 

support is updated iteratively by solving, 

  

𝜆𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,2,…𝑁‖𝑅𝑘−1𝑇 𝛼𝑖‖2            ( 17 ) 

 

where 𝑅𝑘−1 is a residual matrix at the  𝑘-th iteration. A summary of The SOMP algorithm is as 

follows: 

Input: 𝐵 × 𝑁 dictionary and the measurement vectors from neighboring electrodes. 

 

𝑋 = [𝑥1 𝑥2 … 𝑥𝑇]                      ( 18 ) 

 

At the first step, the residual is initialized as 𝑅0 = 𝑋 , and support set as Λ0 = ∅. In each iteration 

the index of the atom in the dictionary that provides the best approximation for the measurement 

matrix is found as, 

 

𝜆𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,2,…𝑁‖𝑅𝑘−1𝑇 𝛼𝑖‖𝑝 ,𝑝 ≥ 1                      ( 19 ) 
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The index set is updated such that Λ𝑘 = Λ𝑘−1 ⋃{𝜆𝑘} where Λ𝑘 denotes the support set at the k-th 

iteration. Then a least-square problem is solved to obtain a new signal estimate or we simply 

compute 

 

P𝑘 = �𝐴Λ𝑘
𝑇 𝐴Λ𝑘�

−1
𝐴Λ𝑘
𝑇 𝑋            ( 20 ) 

 

where 𝐴Λ𝑘 consists of 𝑘 columns in 𝐴 indexed in Λ𝑘. The new residual is calculated 

   

𝑅𝑘 = 𝑋 − 𝐴Λ𝑘𝑃𝑘               ( 21 ) 

 

The iterations continue until a stopping criteria is met. At termination, the index set Λ identifies 

the nonzero rows of the sparse matrix �̂� and the values are the 𝐾 rows of the matrix 𝑃𝑘. 

 

To complete the classification, the error residual between the original test samples and the 

approximation obtained from sub-dictionaries can be calculated as, 

 

𝑟𝑚(𝑋) = �𝑋 − 𝐴𝑚�̂�𝑚�
𝐹

,𝑚 = 1,2, … ,𝑀          ( 22 ) 

 

where  �̂�𝑚 are the rows associated with the sub-dictionary of the 𝑚-th class. If atoms of a sub-

dictionary have greater weights in the recovered sparse matrix, the error residual for that 
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particular 𝑚th-class sub-dictionary would be smaller, therefore the label of the classes are 

chosen to minimize the residual, i.e., 

 

𝑐𝑙𝑎𝑠𝑠(𝑥𝑐) = 𝑎𝑟𝑔𝑚𝑖𝑛( 𝑟𝑛=1,2,…,𝑀
𝑚  (𝑋))           ( 23 ) 

 

3.4 Introduction to EEG processing 

Biomedical signals, especially EEGs are vulnerable to noise which calls for advanced signal 

processing methods to process these signals for applications such as monitoring, diagnostic 

devices and brain computer interfaces. Various noise sources can degrade the quality of EEG 

recordings, including external sources (outside of body), as well as some natural biomedical 

signals. For instance, biomedical signals close to the EEG electrodes such as Electromyograms 

(EMG) can interfere with EEG signals. Also, blinking and eye movement called electro-

oculogram (EOG) is a major source of noise for EEGs. Motion artifacts are also an important 

issue that has to be handled properly during the procedure of recording the signals of subjects. 

The quality and the material of the electrodes, the liquid that is used as the electrolyte on the 

skin, and even 50/60 Hz electrical noise induced by electricity lines are examples of external 

noise sources that can augment the EEGs processing difficulties [4]. 

 

Biomedical signal processing can be generally divided into three major steps: 1-Pre-Processing 

2-Feature extraction 3-Classification. 
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A general block-diagram of a Biomedical Signal Processing unit is shown in Figure 12. 

 

 

 

 

Figure 12 A block diagram of a BSP unit. 

 

Pre-processing is a major step in biomedical signal processing to enhance the SNR before the 

feature extraction and classification steps. For instance, it is usually recommended to employ 

Band Pass Filters (BPF) to remove the effects of EMGs, and also a notch filter on 50/60 Hertz to 

remove the 50/60 induced electrical noise. Two electrodes are usually placed near the eyes to 

record the EOGs to cancel their effect. Other electrodes on the scalp record the main EEG 

signals in addition to the unwanted EOG signals. Therefore, it is possible to remove the eye 

movement effect, by subtracting them from the signals recorded on the scalp. To solve the 

motion artifacts problem, silver/silver-chloride (Ag/AgCl) electrodes are widely used nowadays 

since they are more robust to motion [4]. 

 

EEG signals are very complex signals and different signal processing methods have been used 

individually or simultaneously to extract the best features possible for the appropriate 

application. Methods like Wavelet Transforms [8], and autoregressive coefficients [25] are some 

of the notable methodologies. Furthermore, choosing a classification technique best suited for the 
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feature vectors can improve the results in terms of accuracy and computational complexity. 

Linear Discriminant Analysis (LDA) [25] and Support Vector Machines (SVM) [26], are some 

of the most widely used classification methods. 

 

3.5 Dataset 

Two sets of data provided by BCI competitions, are used in this work.  

1. Dataset 3a: This is a multi-class, cued motor imagery EEG data with 4 classes (left hand, right 

hand, foot, and tongue). A 64-channel EEG amplifier from Neuroscan is used to record the 

signals. The left mastoid is used as reference and the right mastoid is considered as ground. The 

recorded signals are filtered between 1 and 50 Hz, and a notch-filter is used. 

  

Subjects performed motor imagery for left hand, right hand, foot and tongue movement 

according to a cue. Each subject completed the experiment for at least 6 runs; each run consists 

of 40 trials for each class. For instance, one of the subjects performed 9 runs; therefore there are 

90 trials for each class and 360 trials in total.  

 

To record the signals, the subjects sat in a relaxing chair with armrests. At the beginning of the trials, 

the first 2 seconds were quiet. At t=2, the beginning of the trial was announced using an acoustic 

stimulus and a cross “+” on the screen, but still the cue to indicate the task was not shown. At t=3 

seconds, an arrow to the left, right, up or down was displayed for 1 second to indicate the motor 
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imagery task, and at this time the subjects were asked to imagine the indicated task (i.e. left hand, 

right hand, foot or tongue movement), until the cross disappeared at t=7 seconds. 60 channels were 

used in this experiment and the recorded EEG was down-sampled to 250 Hz. Figure 13 shows 

the position of the channels. In this thesis, only signals related to one of the subjects is used.  

 

 

Figure 13 Channel locations in database3a. 

 

2. The Second database is dataset 4a provided by Fraunhofer FIRST, Intelligent Data Analysis 

Group (Klaus-Robert Muller, Benjamin Blankertz), and Campus Benjamin Franklin of the 

Charite-University Medicine Berlin, Department of Neurology, Neurophysics Group (Gabriel 

Curio).  
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This data set consists of signals of five healthy subjects. Visual cues indicate the motor imagery 

task that each subject should perform, i.e., L for Left hand, R for right hand and F for foot 

movement. The visual indicator lasts for 3.5 seconds for every trial then a rest period begins with 

a random length of 1.75 to 2.25 seconds. Two different types of visual stimulation were used: 1) 

Cues are letters behind a fixation cross; 2) A randomly moving object indicated targets.  

 

Signals were recorded while subjects sat in a comfortable chair with armrests. The signals were 

recorded using BrainAmp amplifiers and a 128-channel Ag/AgCl electrode cap from ECL. 118 

EEG channels were measured at the positions of the extended international 10/20 system. Signals 

were band-pass filtered between 0.05 and 200 Hz and digitized at 1000 Hz with 16-bit accuracy. 

For each subject there are 280 trials with 118 EEG channels and the time positions of the 280 

cues are also provided for all of the subjects. It is important to note that, they have only provided 

the cues for classes “right hand” and “foot”, so there are 140 trials for class 1 and 140 trials for 

class 2. Figure 14 illustrates the location of the electrodes for dataset4a. 
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Figure 14 Location of electrodes for dataset 4a. 

 

3.6 Pre-Processing 

To enhance the SNR, using band-pass filters is inevitable. Chapter 2 underscored the importance 

of mu rhythms and their specifications in motor imagery EEGs. It is known that the brain 

responses to the movement and pre-movement planning mostly occur in mu rhythms. Therefore, 

a Butterworth band pass filter of order 700 with pass band between 8-12 Hz is used to preprocess 

the raw signals. The frequency response of the BPF is depicted in Figure 15. 
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Figure 15 BPF Frequency Response used in the pre-processing step. 

 

Using projection techniques such as Principle Component Analysis (PCA) can potentially reduce 

the dimensions of the data and may lead to better discriminant features. One of the most 

promising techniques in EEG signal processing is Common Spatial Patterns (CSP) [18]- [29]. 

This method has been introduced by Z. J. Koles [30] and then applied to the classification of 

movement related EEG by Muller-Gerking, et. Al [31]. Ramoser developed the technique to 

classify the hand motor imagery trials [29].  

 

CSP aims to project the data along a direction for which the trials from one class have maximum 

variance and the trials from the other class have minimum variance. We used this technique as a 

preprocessing step to project the trials from different classes, thereby reducing the 
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dimensionality of the data while maintaining the separation between the classes. To accomplish 

this goal, the method uses simultaneous diagonalization of two covariance matrices.  

 

In CSP, two normalized spatial covariance matrices of the EEG trials are calculated, one for each 

class. Let 𝑌 denote the 𝑁 × 𝑄  matrix of pre-processed single trial EEG data, where 𝑁 is the 

number of the channels and 𝑄 is the number of samples per channel. The normalized spatial 

covariance matrix of the EEG trial can be calculated as 

 

𝐶𝑖 = 𝑌𝑌𝑇

𝑇𝑟𝑎𝑐𝑒(𝑌𝑌𝑇)              ( 24 ) 

 

Here 𝑌 is the single trial signal, 𝑇𝑟𝑎𝑐𝑒(𝐴) is the summation of diagonal entries of a matrix 𝐴 

,and  𝑇 denotes transposition.  Then, the composite spatial covariance can be formed as 

 

𝐶𝑐 = 𝐶1̅ + 𝐶2̅                               ( 25 ) 

 

𝐶1̅ and 𝐶2̅ denote the average of the covariance matrices of all the trials in classes 1 and 2, 

respectively. The dimension of the obtained covariance matrices is 𝑁 × 𝑁. The covariance 

matrices are transformed to 𝑆1 and 𝑆2 by applying a whitening transformation derived from the 

eigenvector and eigenvalue factorization of the composite spatial covariance. As a result, 𝑆1and 
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𝑆2 share common eigenvectors, and for a common eigenvector the summation of the eigenvalues 

is one. In other words, since we can write 𝑆1and 𝑆2 as 

 

𝑆1 = 𝑉Σ1𝑉𝑇  and  𝑆2 = 𝑉Σ2𝑉𝑇            ( 26 ) 

 

then, Σ1 + Σ2 = 𝐼,  where 𝐼 is the identity matrix, 𝑉 is the matrix of eigenvectors, and Σ1 and Σ2 

are the diagonal matrices of eigenvalues for the two classes. 

 

Hence, the eigenvector that corresponds to the largest eigenvalue for one group also corresponds 

to the smallest eigenvalue for the second group. Therefore, for classification purposes the EEG 

signals are typically projected onto the first and last columns of the projection matrix W of 

spatial filters defined as    

 

W = P𝑇𝑉              ( 27 ) 

 

where P is the whitening transformation and can be written as 

 

𝑃 = √𝜆−1𝑈𝑇              ( 28 ) 
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where 𝑈 is the matrix of eigenvectors of the composite spatial covariance matrix 𝐶𝑐. Since EEG 

signals are nonstationary, we only consider samples after the cue. 

 

3.7 Methods and Results 

In this thesis, the goal is two folds. First, we would like to design favorable dictionaries that 

provide efficient sparse representation of EEG signals. Second, we use these representations to 

efficiently classify the motor imagery data. By obtaining the sparse representation of the signals, 

the class of the test trials can be determined by finding the mth residual defined in (10). The 

residual is the error between the test trials and the signal reconstructed by few atoms from the 

𝑚th subdictionary. The class of 𝑥 can be determined as the one with the minimal residual using 

(11). 

 

Dataset 3a, and Dataset 4a are used in this work to evaluate the performance of the proposed 

algorithms. As previously discussed, database3a is a 4-class EEG database, recorded using 60 

channels and 90 trials per class. These signals were checked by experts for artifacts and thus the 

marked trials were removed from experiment. Before using all four classes, the classification is 

performed using only two classes at a time. 

 

The performance of the proposed methods is evaluated using a 4-fold cross validation.  In this 

method, 75 % of the dataset is selected randomly as the training set and the remaining 25 % of 
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the data is considered as the test set. This procedure is repeated ten times to find a more realistic 

Correct Classification Percentage (CCP). The number of training examples from each class is 

fixed since having unequal number of columns from each class can degrade the sparse 

representation of the signals. The total number of trials for each class in dataset3a is shown in 

Table 1 after removing the marked trials. 

 

Table 1 Number of trials in training and test sets for each class. 

Dataset3a Class 1 
 

Class 2 Class 3 Class 4 

Total number of trials 74 75 75 74 

Training set 56 56 56 56 

Test set 18 19 19 18 

 

Each trial in dataset3a is a 60 × 1000 matrix, because 60 electrodes are used to record the 

signals and the used sampling frequency is 250 Hz. In dataset4a, the dimension of the trials is 

118 × 350 since signals are downsampled to 100 Hz. An example of an Epoch from dataset4a is 

shown in Figure 16. This figure was produced using the EEGLAB toolbox [32]. 
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Figure 16 An example of EEG trials recorded with 10 channels including C3 position electrode 
(# 52). 

 

Dataset4a consists of signals related to five healthy subjects, each with 280 trials. Since 25 

percent of the signals are randomly selected, the test set contains 70 trials and the training set 

comprises 210 epochs in every iteration. 

 

At the first step, trials recorded by all available electrodes (i.e. 60 in dataset3a and 118 in dataset 

4a) are employed to obtain the spatial filters. Second, to support real time BCI, the electrodes are 

reduced to thirty for both datasets and the spatial filters are computed using the thirty electrodes. 
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These set of electrodes are selected since they are located close to the sensorimotor cortex. To 

further reduce the number of electrodes, the electrode position C3 and four neighboring 

electrodes close to the sensorimotor cortex are used to obtain the spatial filters. 

 

In this thesis only the spatial filter corresponding to the largest eigenvalue is used in most of the 

approaches. By obtaining the spatial filter, the EEG training signals from each class are projected 

on this spatial direction and then feature vectors are extracted and used to populate the columns 

of a subdictionary. These subdictionaries are concatenated to form our final multi-class 

dictionary. To this end, feature vectors based on the wavelet characteristics of the projected EEG 

signals are obtained.  

 

Time-Frequency Analysis such as Discrete Wavelet Transforms (DWT) and Wavelet Packet 

Transforms (WPT) are two promising techniques in biomedical signal processing, particularly 

EEGs. Using time-frequency methods for non-stationary signals such as EEGs can improve the 

performance of the classification techniques. Building a dictionary based on wavelets can 

provide better frequency resolution. WPT and DWT can be best described using a filter bank 

approach, whereby signals are decomposed using a high pass filter ℎ[ . ] and a low pass filter 

g[ . ] in each level of decomposition [33] .In contrast to the Discrete Wavelet Transform in which 

the decomposition of the signals continues only at the low frequency levels, in WPT the 

decomposition continues in both the high and low frequency sub-bands. The number of 

decomposition levels may vary based on the frequency characteristics of the signals. A wavelet 
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decomposition and also wavelet packet decomposition patterns are shown in Figure 17 and 

Figure 18 respectively.  

 

Figure 17 Discrete Wavelet decomposition in three levels using filterbank approach. 

 

 

Figure 18 Wavelet Packet Transform is shown using filterbank approach. 

 

In the first approach, a Daubechies-4 wavelet family is employed in four decomposition levels to 

obtain the wavelet coefficients of the Projected EEG trials. The wavelet coefficients generate the 

columns of the dictionary. In this approach, eight spatial filters corresponding to the four largest 



45 
 

 

and smallest eigenvalues are selected and the performance of the algorithm is evaluated using 

these filters individually. To reduce the dimension of the data, the wavelet coefficients in each 

frequency sub-bands are employed and the best results are presented. The block-diagram of this 

method is provided in Figure 19. 

 

In Table 2 and Table 3 results for dataset3a and dataset4a are shown, respectively. In these 

tables, results related to the best frequency sub-bands for each subject or classes are reported.  

 

 

Figure 19 The block diagram of classification based on sparse representation of wavelet 
coefficients related to the EEG trials. 
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Figure 20 Discrete wavelet decomposition in 4 levels. Coefficients in different frequency sub-
bands are used to find the sparse representation of the EEG trials. 

 

Table 2 Results obtained using wavelet coefficients of one of the spatial filters for dataset3a. 

Frequency 
sub-band 

1 2 3 4 5 6 7 8 

CCP% Class1 
Vs. 2 

58.38 55.00 54.59 53.11 49.73 47.09 62.77 69.99 

CCP% Class1 
Vs. 3 

84.39 75.68 66.89 62.91 50.95 60.00 77.50 76.35 

CCP% Class1 
Vs. 4 

90.28 77.01 71.81 65.90 52.71 53.96 54.65   54.31   

CCP% Class2 
Vs. 3 

89.41 70.59 69.41 55.13 56.25 60.53 75.59 82.70 

CCP% Class2 
Vs. 4 

55.54 57.09 48.18 51.62 66.01 74.80 69.12 93.92 

CCP% Class3 
Vs. 4 

58.51 49.05 51.01 50.95 52.84 66.89 79.73 82.77 
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Table 3 Results based on the wavelet coefficients of individual spatial filters for dataset4a. 

Frequency 
sub-band 

 
1 2 3 4 5 6 7 8 

Subject 1 
 

51.36 50.64 51.79 51.14 50.61 50.64 50.36 52.79 

Subject 2 
 

79.61 81.21 81.50 78.43 52.00 51.35 49.55 54.34 

Subject 3 
 

60.50 54.71 52.79 54.29 49.73 49.14 51.14 51.86 

Subject 4 
 

77.86 74.82 75.21 77.61 82.32 82.25 82.25 80.79 

Subject 5 
 

88.68 74.93 75.00 71.14 69.14 70.46 70.89 72.39 

 

As expected, results related to the first or last spatial filters appear to be the best in dataset3a. 

Table 2 shows promising classification results for most of the cases. Table 3 shows the results 

for dataset4a. It is observed that good classification performance is achieved for 3 subjects and 

the results are consistent. 

 

 In the second approach, we used the energy in the frequency sub-bands depicted in Figure 20 

instead of the wavelet coefficients. Figure 21 shows the diagram for the proposed method.  
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Figure 21 Block diagram of the energy-based feature vectors to find the sparse representation. 

 

Let 𝑌 denote the 𝑁 × 𝑄 EEG signal. After CSP an 𝑀 × 𝑄 matrix is obtained, where 𝑁 is the 

number of channels in the original EEG and 𝑀 is the number of spatial filters in the CSP 

algorithm. In this approach, only one of the spatial filters corresponding to the largest or smallest 

eigenvalues is employed. As a result, one energy value is obtained at the lowest frequency sub-

band called the approximation level, and 𝐿 energy values are obtained in higher frequency sub-

bands, where 𝐿 is the number of decomposition levels. In this approach, the feature extraction 

step proceeds as follows 

 

�
𝑦 1
1 𝑦 2

1 … 𝑦 𝑄
1

⋮    
𝑦 1
𝑁 𝑦2𝑁 … 𝑦 𝑄

𝑁
�
𝐶𝑆𝑃
�⎯� [𝑧1 … 𝑧𝑄]

𝑤𝑎𝑣𝑒𝑙𝑒𝑡 𝑐𝑜𝑒𝑓 𝑒𝑛𝑒𝑟𝑔𝑦
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� �𝑥1

𝑎𝑝𝑥
 𝑥1𝑑 … 𝑥𝐿𝑑�         ( 29 ) 

  

 Where 𝑥1
𝑎𝑝𝑥 is the energy entry for the approximation level and 𝑥𝐿𝑑 are the energy entries in the 

detail levels. In this thesis the trials are decomposed in four levels. Therefore, a 5 × (𝑇 ×
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𝑁𝑐) dictionary is developed where 𝑇 is the number of trials in each class and 𝑁𝑐 the number of 

classes. Results are provided in Table 4 and Table 5 for dataset3a and dataset4a, respectively. 

 

Table 4 Results for single sparsity of energies related to the five frequency sub-bands 
(dataset3a). 

Class1 Vs. 
Class2 

Class1 Vs. 
Class3 

Class1 Vs. 
Class4 

Class2 Vs. 
Class3 

Class2 Vs. 
Class4 

Class3 Vs. 
Class4 

55.88 82.57 88.68 83.62 54.73 61.62 
 

Table 5 Results for dataset4a using energies in five frequency sub-bands. 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 
70.46 86.82 57.61 82.39 62.64 

 

In the third approach, the energies in different frequency sub-bands are considered individually. 

For instance, only the energy entry related to the approximation level is used. To generate a 

vector of energies, all the eight spatial filters are employed instead of using only one of them. 

The EEGs are projected on the spatial filters. Then the energy values in a particular frequency 

sub-band can be obtained for all the projected EEGs. Concatenating the energy values, an 𝑀 × 1 

vector is obtained that represents the EEG trial. The idea of concatenating energies obtained by 

employing all the spatial filters, was proposed in [7] .The results are provided in Table 6 and 

Table 7 for dataset-3a and dataset-4a, respectively. 
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Table 6 Results (CCP%) based on energies in one of the frequency sub-bands for dataset3a. 

 Approximation 
level 

 

Detail-01 Detail-02 Detail-03 Detail-04 

Class1 
Vs. 2 

66.49 63.11 66.35 67.91 64.93 

Class1 
Vs. 3 

95.54 86.15 95.61 96.96 90.27 

Class1 
Vs. 4 

91.33 82.01 88.26 90.80 86.39 

Class2 
Vs. 3 

93.16 83.22 92.50 94.74 90.39 

Class2 
Vs. 4 

88.51 76.55 80.47 85.20 85.14 

Class3 
Vs. 4 

88.24 76.89 89.66 90.95 78.72 

 

Table 7 Results (CCP%) based on the energies of one of the frequency sub-bands for dataset4a. 

Frequency 
sub-band 

Approximation 
level 

Detail-01 Detail-02 Detail-03 Detail-04 

Subject 1 52.61 51.25 58.46 50.96 63.93 
Subject 2 70.36 86.68 89.50 63.64 72.82 
Subject 3 55.50 52.50 54.25 53.46 54.75 
Subject 4 60.57 88.43 85.04 53.29 73.46 
Subject 5 63.61 55.64 58.18 63.50 56.04 

 

 
3.8 M-Class problem 

Dataset3a gives us the opportunity to test the sparsity approach on multiple classes. CSP is a 

projection method whereby the dimension of the trials reduces significantly and also makes the 

data more separable but it works in two class problems. For multiple class problems an algorithm 

is introduced in [34], called One Versus the Rest CSP (OVR). In this method, to obtain the 
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spatial filters, one class is considered as one group and the remaining classes together form the 

other group. Solving the binary CSP, the spatial filters for that particular class are obtained. The 

OVR continues for all of the classes to find the spatial filters for each class. 

  

EEG trials are projected using one of the spatial filters. The wavelet coefficients of the projected 

EEG trials are extracted and classification is done using the set of coefficients. The results are 

reported in Table 8.  

 

Table 8 Classification of 4 classes using wavelet coefficients (dataset3a). 

Frequency sub-band Approximation 
level 

Detail-01 Detail-02 

CCP% 42.06 39.97 38.14 
 

In M-class problems, using only one of the spatial filters cannot improve the results. The reason 

is that the spatial filter is obtained to increase the separability of one class versus all the rest, so 

the separability of other groups is not considered. To enhance the algorithm, we used all of the 

eight spatial filters. To this end, energies related to each frequency sub-bands are obtained. A 

vector of 5 × 1 is derived for each of the spatial filters. Concatenating them, a 40 × 1 vector 

represents the feature vector. Results are shown in Table 9. 
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Table 9 Classification of 4 classes using Wavelet coefficients energy. 

Frequency 
sub-band 

One Spatial 
Filter 

All spatial 
Filters 

CCP% 36.49 63.89 
 

Based on the results from Table 9  it can be concluded that, using all the spatial filters in M-class 

problems is necessary to enhance the performance of classification. Using less data can decrease 

the computational complexity and can support real time BCI. Furthermore, execution and 

imagination of movement change the neuronal population activity over the sensorimotor areas. 

Therefore, instead of using all the channels, those near to the sensorimotor cortex are used. The 

position of the selected electrodes near the sensorimotor cortex is shown in Figure 22. 

 

Figure 22 Thirty electrode close to the sensorimotor cortex are selected. This illustration belongs 
to dataset3a. 
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Instead of employing all 60 electrodes, only thirty electrodes near the sensorimotor cortex are 

used to obtain spatial filters (Figure 22). To classify the signals the sparse representation of the 

projected trials are obtained. Also, thirty electrodes are selected near the sensorimotor area in 

dataset4a to test the accuracy of the methods. The selected electrodes are shown in Figure 23. 

Table 10 and Table 11 show the results for using thirty electrodes. 

  

Table 10 dataset3a results using thirty electrodes. 

Methods CCP 
Wavelet Coefficients 40.24 

Wavelet Coefficients Energy 63.41 
 

Table 11 Dataset4a results obtained using thirty electrodes. 

Sparse 
representation 

Energy obtained using 
wavelet decomposition 

Wavelet coefficients 

Subject 1 68.43 71.11 
Subject 2 86.93 87.39 
Subject 3 57.11 63.18 
Subject 4 74.96 76.00 
Subject 5 64.21 74.07 
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Figure 23 Thirty electrodes selected in dataset4a near the sensorimotor cortex. 

 

3.9 Joint Sparsity Structure  

Leveraging the correlation between neighboring electrodes is the motivation for finding the joint 

sparse representation. But avoiding the CSP algorithm to use the original EEG signals, 

deteriorate the classification performance. The joint sparsity structure is not preserved if the 

signals are projected along different spatial directions. Therefore jointly measurements are 

derived using one of the spatial filters. 

 

We proposed two approaches to generate the dictionary. First, the five central electrodes 

including C3 and four neighboring electrodes are projected along the spatial filter direction. 

Similar to the previous methods, wavelet coefficients can be obtained to generate the columns of 

the dictionary. 
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In the second approach, we generate the columns of the dictionary using a linear combination of 

all five neighborhoods around the C3 electrode (Figure 24). As a matter of fact, all the colored 

electrodes in Figure 24  are involved, but the weight of the electrodes increases, as we get closer 

to the center C3 because close neighborhoods share common electrodes. 

 

In the Left Hand Side (LHS) of equation (3), instead of using one measurement, we need  𝑇 

vectors to be able to find the joint sparse representation of the measurements. To this end, 𝑇 

neighborhoods across the C3 are projected along the spatial filter and then wavelet coefficients 

are computed. As a result a 𝐵 × 𝑇 matrix is generated in the LHS of (3), where each column 

represents one of the neighborhoods. Classification results of EEGs using joint sparse 

representation are shown in Table 12. 
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Figure 24 Central neighborhood and four close neighborhoods are selected for joint sparse 
recovery. 

 

Table 12 Results for Joint sparse representation. 

 Joint sparsity 
C3 electrode 

Joint sparsity 
Linear-comb 

Single 
sparsity 

Subject-1 60.82 60.36 59.75 
Subject-2 71.11 74.93 85.93 
Subject-3 57.36 59.04 56.39 
Subject-4 74.36 77.43 76.96 
Subject-5 61.93 60.57 68.07 

 

 



57 
 

 

3.10 Energy and Entropy 

Using only five electrodes near the sensorimotor cortex makes the classification more 

challenging. Our approach for feature extraction is motivated by the aforementioned fact that 

there exist different levels within the alpha band carrying movement-specific patterns [11] that 

could potentially be captured through the energies, as well as their distribution in different 

frequency sub-bands.  

 

The energies in different frequency sub-bands are computed using DWT and WPT. Employing 

WPT, the energy is computed in 𝐿 = 2𝑛 frequency sub-bands to generate feature vectors for the 

EEG trials in ℝ𝐿, where 𝑛 is the level of decomposition. In the second approach, we obtain 

feature vectors using the energy and the entropy of the signals. In particular, we append the 

entropy of the signals computed using the wavelet coefficients to the energy vectors. In this case, 

the features vectors are in ℝ𝐿+1. 

 

The entropy of a signal 𝑧 is calculated from the wavelet coefficients, using 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑧) = −∑ 𝑠𝑖2 log 𝑠𝑖2𝑖              ( 30 ) 

 

where 𝑠𝑖  is the 𝑖-th wavelet coefficient of 𝑧 obtained from WPT. In the third approach, we 

generate the feature vectors directly from the wavelet coefficients. 
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The electrode position C3 and four neighboring electrodes close to the sensorimotor cortex are 

used to obtain the spatial filters as shown Figure 25. We only use the spatial filter corresponding 

to the largest eigenvalue. The EEG training signals from each class are projected along this 

spatial direction and then the aforementioned feature vectors are extracted and used to populate 

the columns of a subdictionary. These subdictionaries are concatenated to form our final multi-

class dictionary. Figure 26  shows the block diagram of this method. 

 

Figure 25  C3 and its four neighboring electrodes. 

 

Figure 26 Block Diagram of the proposed classification algorithm based on sparse 
representation. 
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Results for this set of electrodes are reported in Table 13 and Table 14 for dataset4a and 

dataset3a respectively. Since dataset3a is an M-class problem, it was necessary to use all spatial 

filters; therefore the entropy and energy feature vectors related to spatial filters are concatenated 

to find the corresponding sparse representation. Figure 27 illustrates the wavelet packet 

decomposition into four levels and the frequency sub-bands wherein the energies are computed. 

 

 The proposed method in [7] is also simulated using the same set of electrodes and the results are 

provided in Table 15. In [7] power of the projected EEG trials are computed and then the power 

values are concatenated to form an 𝑀 × 1 vector where 𝑀 is the number of spatial filters. Since 

there are only five electrodes, the number of spatial filters is four. Moreover, SVM as a well-

known binary classifier is employed to classify the signals based on the extracted feature vectors. 

Results are provided in Table 16. 
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Figure 27 Wavelet Packet decomposition in four levels. 
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Table 13 Classification is done based on the sparse representation of the energy features and 
entropy. 

Sparse 
representation 

Energy obtained using 
wavelet decomposition 

Energy obtained using 
wavelet packet 

Energy and entropy 
concatenated 

Subject 1 62.46 64.79 64.71 
Subject 2 86.29 85.50 89.71 
Subject 3 57.75 61.50 64.25 
Subject 4 73.96 73.11 93.07 
Subject 5 61.98 59.36 83.71 

 

Table 14 Results for dataset3a classification, based on Sparse Representation where energy and 
entropy are extracted. 

Methods 
Energy obtained using 

wavelet decomposition 

Energy obtained using 

wavelet packet 

Energy and entropy 

concatenated 

Dataset3a 43.07 39.70 58.28 

 

Table 15 Results for method in [7]. 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

57.29 87.25 60.14 75.07 83.43 
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Table 16 Support Vector Machine is employed to classify the EEG trials. 

SVM 
Energy obtained 

using wavelet 
decomposition 

Energy 
obtained using 
wavelet packet 

Entropy 
Energy and 

entropy 
concatenated 

Subject 1 75.00 74.64 67.82 76.93 
Subject 2 91.89 93.86 91.07 95.54 
Subject 3 67.71 67.11 66.54 66.21 
Subject 4 82.54 88.00 85.71 96.29 
Subject 5 73.64 81.43 88.28 89.32 
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CHAPTER 4. SUMMARY AND CONCLUSION 

In this work, an algorithm to classify motor imagery EEG signals to support real-time BCI was 

proposed. First, all the available electrodes are used to classify the signals. Then, dimensionality 

is reduced by selecting only thirty and then five significant electrodes near the sensorimotor 

cortex out of 118 available electrodes in dataset4a and 60 electrodes in dataset3a. Then, we 

leverage the sparse representation of the EEG trials in a multi-class dictionary learned from the 

wavelet characteristics of the signals.  

 

Different feature vectors are extracted based on the wavelet coefficients, energies in different 

frequency sub-bands of the Wavelet Packet Decomposition or Discrete Wavelet Decomposition 

and the signal entropy. The results obtained from real data demonstrate that the combination of 

energy and entropy features enables efficient classification of motor imagery EEG trials related 

to hand and foot movement. This underscores the relevance of the energies and their distribution 

in different frequency sub-bands for classifying movement- specific EEG patterns in agreement 

with the existence of different levels within the alpha band.  

 

Based on our results, it is seen that using thirty electrodes near the sensorimotor cortex does not 

degrade the performance in comparison to using all of the electrodes, yet leads to significant 

dimensionality reduction to support real-time BCI. Furthermore, it is possible to extend the 

dictionary-based classification method to M-class problems by concatenating the new training 
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sets related to new classes into the dictionary. Results for Dataset3a demonstrate that the 

combination of energy and entropy can enhance the classification of motor imagery EEG signals 

in M-class problems. Although the number of electrodes is reduced from 60 to 5, considering the 

energies and their distribution could preserve the separability among the four classes. 

 

Future work will focus on more refined models to exploit the spatial correlation, and will 

investigate techniques that are robust to noise. Another direction of future research will explore 

similar sparse representation in other brain signal classification problems such as epilepsy. 

 

 

 

 

 

 

 

 

 

 

 



65 
 

 

LIST OF REFERENCES 

[1] T. W. Berger, J. K. Chapin, G. A. Gerhardt, D. J. McFarland, J. C. Principe, W. V. 

Soussou, D. M. Taylor and P. A. Tresco, An international assessment of research 

and development trends.: Springer Netherlands, 2008. 

[2] W. F. Ganong and K. E. Barrett, Review of medical physiology. New york: New 

York: McGraw-Hill Medical, 2005, vol. 21. 

[3] J. E. Hall, Guyton and Hall textbook of medical physiology.: Elsevier Health 

Sciences, 2010. 

[4] J. Webster, Medical instrumentation: application and design.: John Wiley & Sons, 

2009. 

[5] E. J. Candès and M. B. Wakin, "An introduction to compressive sampling.," IEEE 

Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, 2008. 

[6] C. Yi, N. M. Nasrabadi and T. D. Tran, "Hyperspectral image classification using 

dictionary-based sparse representation," IEEE Transactions on Geoscience and 

Remote Sensing, vol. 49, no. 10, pp. 3973-3985, 2011. 

[7] Y. Shin, S. Lee, J. Lee, and H. N. Lee, "Sparse representation-based classification 

scheme for motor imagery-based brain–computer interface systems," Journal of 

neural engineering, vol. 9, no. 5, p. 056002, 2012. 

[8] A. Subasi, and M. I. Gursoy, "EEG signal classification using PCA, ICA, LDA and 



66 
 

 

support vector machines," Expert Systems with Applications, vol. 37, no. 12, pp. 

8659-8666, 2010. 

[9] H. Ocak, "Automatic detection of epileptic seizures in EEG using discrete wavelet 

transform and approximate entropy," Expert Systems with Applications, vol. 36, no. 

2, pp. 2027-2036, 2009. 

[10] P. L. Nunez, and R. Srinivasan, Electric fields of the brain: the neurophysics of 

EEG.: Oxford university press, 2006. 

[11] G. Pfurtscheller, "Induced oscillations in the alpha band: functional meaning," 

Epilepsia, vol. 44, no. s12, pp. 2-8, 2003. 

[12] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. L. D. Silva, "Mu rhythm (de) 

synchronization and EEG single-trial classification of different motor imagery 

tasks," Neuroimage, vol. 31, no. 5, pp. 153-159, 2006. 

[13] G. Pfurtscheller, and D. F. L. Silva, "Event-related EEG/MEG synchronization and 

desynchronization: basic principles," Clinical neurophysiology, vol. 110, no. 11, 

pp. 1842-1857, 1999. 

[14] G. Pfurtscheller, and A. Aranibar, "Event-related cortical desynchronization 

detected by power measurements of scalp EEG," Electroencephalography and 

clinical neurophysiology, vol. 42, no. 6, pp. 817-826, 1977. 

[15] G. Pfurtscheller, "the cortical activation model (CAM)," in Progress in Brain 

Research-Event-Related Dynamics of Brain Oscillations, Christa Neuper & 



67 
 

 

Wolfgang Kimesch, Ed.: Elsevier, 2006, vol. 159, pp. 19-27. 

[16] G. Pfurtscheller, and C. Neuper, "Motor imagery activates primary sensorimotor 

area in humans," Neuroscience letters, vol. 239, no. 2, pp. 65-68, 1997. 

[17] G. Pfurtscheller and C. Neuper, "Event-related synchronization of mu rhythm in the 

EEG over the cortical hand area in man," Neuroscience letters, vol. 174, no. 1, pp. 

93-96, 1994. 

[18] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe and K. R. Muller, "Optimizing 

spatial filters for robust EEG single-trial analysis," IEEE Signal Processing 

Magazine, vol. 25, no. 1, pp. 41-56, 2008. 

[19] Y. Wang, S. Gao and X. Gao, "Common spatial pattern method for channel 

selelction in motor imagery based brain-computer interface," in 27th Annual 

International Conference of the Engineering in Medicine and Biology Society 

IEEE-EMBS, 2005, pp. 5392-5395. 

[20] D. L. Donoho, "Compressed sensing," IEEE Transactions onInformation Theory, 

vol. 52, no. 4, pp. 1289-1306, 2006. 

[21] E. J. Candès, J. Romberg and T. Tao, "Robust uncertainty principles: Exact signal 

reconstruction from highly incomplete frequency information. ," Information 

Theory, IEEE Transactions, vol. 52, no. 2, pp. 489-509, 2006. 

[22] R. G. Baraniuk, "Compressive sensing," IEEE signal processing magazine, vol. 24, 

no. 4, 2007. 



68 
 

 

[23] J. A. Tropp and A. C. Gilbert, "IEEE Transactions on Information Theory," Signal 

recovery from random measurements via orthogonal matching pursuit., vol. 53, no. 

12, pp. 4655-4666, 2007. 

[24] J. A. Tropp, A. C. Gilbert and M. J. Strauss, "Algorithms for simultaneous sparse 

approximation. Part I: Greedy pursuit," Signal Processing, vol. 86, no. 3, pp. 572-

588, 2006. 

[25] R. Boostani, B. Graimann, M. H. Moradi and G. Pfurtscheller, "A comparison 

approach toward finding the best feature and classifier in cue-based BCI.," Medical 

& biological engineering & computing, vol. 45, no. 4, pp. 403-412, 2007. 

[26] G. Garcia, T. Ebrahimi and J. Vesin, "Support Vector EEG Classification in the 

Fourier and Time-Frequency Correlation," in In Proceedings of the IEEE-EMBS 

First International Conference on Neural Engineering, 2003, pp. 591-594. 

[27] A. Schlögl and G. Pfurtscheller, BCI competition. [Online]. 

http://www.bbci.de/competition/iii/desc_IIIa.pdf 

[28] B. Blankertz, Berlin brin-computer interface. [Online]. 

http://www.bbci.de/competition/iii/desc_IVa.html 

[29] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, "Optimal spatial filtering of 

single trial EEG during imagined hand movement," IEEE Transactions on 

Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446., 2000. 

[30] Z. J. Koles, M. S. Lazar, and S. Z. Zhou, "Spatial patterns underlying population 

http://www.bbci.de/competition/iii/desc_IIIa.pdf
http://www.bbci.de/competition/iii/desc_IIIa.pdf
http://www.bbci.de/competition/iii/desc_IVa.html
http://www.bbci.de/competition/iii/desc_IVa.html


69 
 

 

differences in the background EEG.," Brain topography, vol. 2, no. 4, pp. 275-284, 

1990. 

[31] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, "Designing optimal spatial 

filters for single-trial EEG classification in a movement task," Clinical 

neurophysiology, vol. 110, no. 5, pp. 787-798, 1999. 

[32] A Delorme and S Makeig., "EEGLAB: an open source toolbox for analysis of 

single-trial EEG dynamics," Journal of Neuroscience Methods, vol. 134, pp. 9-21. 

[33] S. Mallat, A wavelet tour of signal processing.: Academic press, 1999. 

[34] G. Dornhege, B. Blankertz, G. Curio, and K. R. Müller, "Boosting bit rates in 

noninvasive EEG single-trial classifications by feature combination and multiclass 

paradigms," EEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 993-

1002, 2004. 

 


	Motor imagery classification using sparse representation of EEG signals
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	CHAPTER 1. INTRODUCTION
	1.1 Brain Computer Interfaces
	1.2 Rest potentials
	1.3 Action Potentials
	1.4 Electroencephalography
	1.5 Anatomic study of the brain
	1.6 Thesis outline

	CHAPTER 2. EVENT-RELATED DESYNCHRONIZATION
	2.1 Introduction
	2.2 Event-Related Desynchronization

	CHAPTER 3. CLASSIFICATION OF EEG SIGNALS USING SPARSE  REPRESENTATIONS
	3.1 Introduction to sparsity
	3.2 Single sparse representation of EEG signals
	3.3 Joint sparse representation of EEG trials
	3.4 Introduction to EEG processing
	3.5 Dataset
	3.6 Pre-Processing
	3.7 Methods and Results
	3.8 M-Class problem
	3.9 Joint Sparsity Structure
	3.10 Energy and Entropy

	CHAPTER 4. SUMMARY AND CONCLUSION
	LIST OF REFERENCES

