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ABSTRACT

With the increasing popularity of cloud computing and “Big data” applications, current data cen-

ters are often required to manage petabytes or exabytes of data. To store this huge amount of data,

thousands or tens of thousands storage nodes are required at a single site. This imposes three major

challenges for storage system designers: (1) Reliability—node failure in these datacenters is a nor-

mal occurrence rather than a rare situation. This makes data reliability a great concern [68, 70]. (2)

Energy efficiency—a data center can consume up to 100 times more energy than a standard office

building. More than 10% of this energy consumption can be attributed to storage systems. Thus,

reducing the energy consumption of the storage system is key to reducing the overall consump-

tion of the data center. (3) Scalability—with the continuously increasing size of data, maintaining

the scalability of the storage systems is essential. That is, the expansion of the storage system

should be completed efficiently and without limitations on the total number of storage nodes or

performance.

This thesis proposes three ways to improve the above three key features for current large-scale

storage systems. Firstly, we define the problem of “reverse lookup”, namely finding the list of

objects (blocks) for a failed node. As the first step of failure recovery, this process is directly re-

lated to the recovery/reconstruction time. While existing solutions use metadata traversal or data

distribution reversing methods for reverse lookup, which are either time consuming or expensive,

a deterministic block placement can achieve fast and efficient reverse lookup. However, the deter-

ministic placement solutions are designed for centralized, small-scale storage architectures such

as RAID etc.. Due to their lacking of scalability, they cannot be directly applied in large-scale

storage systems. In this paper, we propose Group-Shifted Declustering (G-SD), a deterministic

data layout for multi-way replication. G-SD addresses the scalability issue of our previous Shifted

Declustering layout and supports fast and efficient reverse lookup.
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Secondly, we define a problem: “how to balance the performance, energy, and recovery in degrada-

tion mode for an energy efficient storage system?”. While extensive researches have been proposed

to tradeoff performance for energy efficiency under normal mode [23, 46, 15, 56], the system en-

ters degradation mode when node failure occurs, in which node reconstruction is initiated. This

very process requires a number of disks to be spun up and requires a substantial amount of I/O

bandwidth, which will not only compromise energy efficiency but also performance. Without con-

sidering the I/O bandwidth contention between recovery and performance, we find that the current

energy proportional solutions cannot answer this question accurately. This thesis present PERP,

a mathematical model to minimize the energy consumption for a storage systems with respect to

performance and recovery. PERP answers this problem by providing the accurate number of nodes

and the assigned recovery bandwidth at each time frame.

Thirdly, current distributed file systems such as Google File System(GFS) [49] and Hadoop Dis-

tributed File System (HDFS) [18], employ a pseudo-random method for replica distribution and a

centralized lookup table (block map) to record all replica locations. This lookup table requires a

large amount of memory and consumes a considerable amount of CPU/network resources on the

metadata server. With the booming size of “Big Data”, the metadata server becomes a scalability

and performance bottleneck. While current approaches such as HDFS Federation attempt to “hor-

izontally” extend scalability by allowing multiple metadata servers, we believe a more promising

optimization option is to “vertically” scale up each metadata server. We propose Deister, a novel

block management scheme that builds on top of a deterministic declustering distribution method

Intersected Shifted Declustering (ISD). Thus both replica distribution and location lookup can be

achieved without a centralized lookup table.
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CHAPTER 1: INTRODUCTION

We are now entering the era of “Big Data”, in which mountains of data are generated and analyzed

every day by both scientific and industry applications. In astronomy, Sloan Digital Sky has stored

data for 215 million unique objects and they are still growing [12]; in geophysics, billions of photos

are captured of earth’s surface to the sun and it is still growing [4]. Facebook [5] is generating

55,000 images per second at peak usage [57], all of which require storage of the data. Under these

circumstances, system designers are developing ever-larger storage systems to meet the exploding

demands of data storage. These petabyte(exa)-scale data clusters usually consist of thousands or

tens of thousands of storage nodes.

In systems like this, three important factors needs to be taken into design consideration: reliabil-

ity, energy efficiency and scalability. In particular, we propose three new approaches to improve

the above three factors in distributed and parallel systems as shown in Figure 1.1, 1) implement-

ing reversible deterministic data layout Group-based Shifted Declustering (G-SD) to conduct fast

reverse lookup for boosting the recovery speed. 2) Perfect Energy, Recovery and Performance

(PERP) model to minimize energy consumption with respect to recovery and performance require-

ments. 3) a light-weight block management scheme using decoupled addressing mapping Inter-

sected Shifted Declustering to scale-up the metadata server and thus scale-out the whole distributed

file system.
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Large-scale
Storage Systems

High Reliability
High Power
Efficiency

High Scalability

Fast reverse
lookup using G-SD

PERP
ISD with decoupled

address mapping

Figure 1.1: Research Work Overview

1.1 G-SD: Achieving Fast Reverse Lookup using Scalable Deterministic Declustering Layout in

Large-scale File Systems

As illustrated above, mountains of data are generated and analyzed every day by various appli-

cations. To meet the ever increasing storage needs, current petabyte-scale data clusters usually

consist of thousands or tens of thousands of storage nodes. In system such as this, reliability be-

comes a great concern as node failure will be a daily occurrence instead of a rare situation [68, 70].

For some systems, such as email servers etc., minor data loss may be affordable. However, for

certain large storage systems, such as scientific/military-based storage systems, data loss is intol-

erable and will result in serious consequences. For instance, if one node containing only a part of

a large file fails, the entire file would be unavailable. This will result in a failure that impacts the

other nodes which store the remaining sections of the file.

To maintain a high level of data availability, multi-way replication is widely employed. For exam-

ple, Google File System (GFS) [49] and Hadoop File System (HDFS) [18] are adopting three-way

replication. However, in replication based architectures, a general but important question is yet left

open—how to find the whole content of the failed node before recovery. The answer to this prob-

2



lem is the key to recover the missing data or reconstructing the failed node. We call this specific

process as reverse lookup (RL). We define reverse lookup by considering it as an inverse process

to data distribution. While data distribution methods attempt to locate the storage nodes for one

piece of data, the RL process aims to locate all of the data given a failed node ID.

The current solutions to RL problem can be divided into three categories—metadata traversing,

data distribution reversing and deterministic data layout reversing. The major limitations of these

approaches are listed below. For simplicity, we use the term “object” to symbolize a data unit such

as “block” or “chunk” in different systems and the term “node” to symbolize a “storage server”.

Metadata traversing Metadata traversing is widely adopted by current parallel and distributed file

systems such as Ceph [61], Vesta [24], Panasas [63] etc. When a node failure occurs and a timeout

is detected by the metadata server, it will fire up a process that finds the object list by traversing its

whole index node (inode) table. The fundamental problem with this approach is that finding the

list of one node requires traversing the whole inode table, which is expensive and time consuming.

Scalable data distribution reversing Since RL is the exact reverse process of data distribution,

a more efficient solution is to locate the content by reversing the data distribution algorithms,

which can avoid the inefficient and time consuming traversing process. However, existing scalable

data distribution algorithms include table based (hierarchical lookup table) approaches [55, 18],

and computation based (pure hashing) approaches [61, 20]. Table based approach can achieve

reverse lookup but has limited scalability, while the hashing functions are typically irreversible.

Deterministic data layout reversing Deterministic data layout is developed to place replicas on

different nodes to achieve high reliability in a replication/parity based architecture. Representatives

are chained declustering [30], group-rotational declustering [22], and shifted declustering [77, 52].

In these schemes, RL can be well supported because the placement algorithms are pre-computed

and the distribution algorithm is reversible. However, in these systems, the object locations depend

on the total number of nodes. Thus when the system expands, adding storage nodes into an already

3



balanced layout will result in heavy data reorganization.

We propose Group-based Shifted Declustering (G-SD) layout, a scalable placement-ideal layout

that leverages the scalability issues for our previously developed deterministic layout—Shifted

Declustering(SD) [77]. The main idea is to take advantage of the support for fast and efficient

reverse lookup in the deterministic layout; and addresses its scalability issue. More specifically, G-

SD limits the reorganization overhead into a reasonable level such that SD can be extended into the

large scale file system. The preliminary design and simulation results are presented in my master

thesis [71]. This work continues the existing project and makes the following new contributions:

• We present a new practical design of G-SD distribution, namely, to distribute the data with

the awareness of G-SD groups utilization.

• We study the new method of reverse lookup in HDFS tree-reversing, which builds a quick

index in its block map. Even though recovery may not be time-sensitive, reverse lookup is

still an important in terms of metadata integrity. The namenode must locates the missing

blocks when node failure occurs as soon as possible. Comparison results are presented

showing that G-SD reverse lookup outperforms this approach. Also, we studied the reverse

lookup problem by incorporating a new category: deterministic data layout, which includes

centralized deterministic layout schemes and Group-based Shifted Declustering.

• We research a simple yet effective method to strike the tradeoff for determining the optimal

size of each group. Instead of considering the tradeoff between reorganization overhead and

recovery speed, we believe that a better approach to consider the optimal group size for a

stable group to tradeoff between recovery speed and failure rate. This is because most of the

the groups do not need to reorganize when system expansion occurs, for which the optimal

group size for a group does not need to consider reorganization overhead.

4



• We study the data layout impact on data availability by quantifying the most important pa-

rameter “probability of not losing data after l nodes fail”. Compared with the random distri-

bution (varies between 0%−99.9999%), the G-SD layout is able to maintain high and steady

availability (99.8%− 99.9999%).

• We completely redo the experiment section. Instead of using simulation results on PVFS2 as

shown in [71], we implement the prototype of the G-SD layout and its reverse lookup func-

tion in two open-source distributed file systems: Ceph and HDFS. Implementation of G-SD

on Ceph is done in CRUSH module, in which CRUSH map but substitute the CRUSH

distribution algorithm with G-SD [62]. Implementation on HDFS is done solely on namen-

ode. More specifically, we extend the BlockPlacementPolicy interface to modify the layout

mechanism. Evaluations of G-SDs impact on HDFS normal performance and RL lookup

speed are presented. A new indication from experiment results is shown that G-SD RL is

able to achieve better speedup with a larger scale experiment. Evaluation results collected

on PRObE Marmot clusters [7, 64] show that the average speed of G-SD reverse lookup is

over one order of magnitude faster that the existing metadata traversal and tree-reversing

methods. Moreover, the gap will continue increase with the growth of data size.

1.2 PERP: Attacking the Balance among Energy, Recovery and Performance in Storage Systems

Energy consumption of data centers has become a major concern with the consistent increase of

online services and cloud computing. Among all of the devices, energy consumption by the disk-

based storage subsystems takes a substantial fraction to keep thousands or tens of thousands of

disks spinning. It is reported that the storage devices contributed more than 10% of the data centers’

total power consumption [34]. Moreover, storage energy consumption may easily surpass the

energy consumed by the rest of the computing systems [46, 78] and this percentage will continue to
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grow, as data center expands with the increasing demand of storage capacity. Thus, it is imperative

to develop energy-efficient and high-performance storage systems to increase the revenue of data

center operators and promote environmental conservation, without violating the Quality of Service

(QoS) [11].

To address this problem, extensive research has been conducted for the purpose of saving energy

with a reasonable performance tradeoff. For example, Dynamic Rotations Per Minute (DRPM) [28]

can allowed disks to switch to a lower-energy state while serving requests with lower performance.

Massive array of inexpensive disks (MAID) [23] and Popularity Data Concentration (PDC) [46]

skew popular data into either some cache disks or a subset of disks, which serves requests with

a lower performance while the other disks can be spun down to conserve energy. Most recently,

Barroso et al [17] from Google presented an important metric called “energy proportional”, which

argued that the energy consumption should be in proportion to the system utilization/performance.

In a storage system, the implies that the total number of active disks should be proportional to

the total I/O throughput. Since the workload on the storage system is location-dependent, apply-

ing this metric in a storage system is closely related to the data layouts. As such, several power

proportional data layouts for storage systems are proposed, such as Rabbit [15] for distributed file

systems and Sierra [56] for web servers.

However, this tradeoff metric is only defined for normal mode where the system is functioning

normally without any node failures. When node failure occurs, the storage system enters the

degradation mode (for online recovery), in which node reconstruction is initialized. This process

needs to spin up a number of disks. Furthermore, Furthermore, node reconstruction requires a

substantial amount of I/O bandwidth, which creates a contention between the performing the re-

covery process and normal services. Hence both energy efficiency and normal performance will

be compromised. The following problem arises: how to balance the performance, energy, and

reliability in this degradation mode for an energy efficient storage system? One may argue that the
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recovery can be considered as a part of performance and the current power proportional solutions

are still applicable. However, as the recovery process is competing with the normal service for

I/O bandwidth, one important question is to decide that how much bandwidth should be assigned

to the recovery process, which cannot be answered well by current power proportional solutions.

Furthermore, the recovery process may demand some specific blocks that are also required by the

normal service nodes. This requires the corresponding solutions to determine how many nodes and

which specific nodes should be kept open at each time frame.
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Figure 1.2: Average percentage of the operation time for the storage system to stay in degradation

mode in 10,000-node, 50,000-node and 100,000-node cluster

The answer to these questions is the key for future system designs, as the degradation mode is

becoming a non-neglectable operational state in large-scale systems [65]. On one hand, with the

increasing amount of disk/node capacity, the recovery/reconstruction time is expected to grow in

the future. On the other hand, as thousands or tens of thousands of storage nodes are usually seen

in a data center [70], node failure is becoming a daily occurrence. According to the observation

of Gibson and Barroso [36, 48], the storage node failure rate in a data center is 6%-10% and

the time between node failures follows a Weibull distribution [50, 51]. Here we assume that the
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annual failure rate of a node is 8%, we run a Monte Carlo simulation to measure the average time

percentages of the storage system that stays in the degradation mode with various recovery time. As

shown in Figure 1.2, the percentage of time spent in the degradation mode increases significantly

with the growing size of the data cluster. e.g. when the recovery time is 40 minutes, this time

percentage increases from 8% for a 10, 000-node cluster to 44% for a 100, 000-node cluster.

Moreover, with three-way replication in current main-stream storage, more systems are inclin-

ing to adopt a “lazy recovery” scheme, which recovers the failed blocks based on the replication

threshold [18]. If the replica number for a block is still above the threshold, it will be recovered

at a relatively slower speed, and vice versa. This provides us an opportunity to reduce the en-

ergy consumption while satisfying both performance and recovery requirements. In this thesis, we

present a mathematical model called Perfect Energy, Recovery and Performance (PERP) [73, 74]

to help system designers balance the relationship among these three key characteristics, which

aims to minimize the energy cost based on certain performance and recovery constraints. PERP

dynamically adjusts the number of active nodes and the corresponding recovery speed. We then

study the adaptability of PERP on current well-accepted power proportional data layouts. Fur-

thermore, to better apply PERP in practice, we propose a new node selection algorithm GIA to

help choose nodes according to PERP’s results. Finally we validate the effectiveness of PERP by

comparing it with the maximum recovery scheme abstracted from Sierra, and the recovery group

scheme abstracted from Rabbit. Experimental results validate that our model outputs are optimal

and can achieve a considerable amount of energy savings while satisfying all of the performance

and recovery requirements.
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1.3 Deister: A Light-weighted Block Management Scheme in Data-intensive File Systems

using Scalable Deterministic Declustering Distribution

In the era of “Big Data”, these vast amount of data are analyzed by both scientists and Inter-

net companies to make scientific discoveries and study business trends etc. [2]. To speedup this

analysis process, data-intensive computing frameworks are proposed, in which computation job

tasks are scheduled to the data locations due to the large data set, i.e. MapReduce Framework.

Accompanied with this framework, a dedicated storage architecture, featured as high-throughput,

highly-reliably and cost-effective, is designed to provide high performance for these type of jobs.

We refer this storage architecture as Data-intensive File System (DiFS). Leading representatives

such as GFS [49] and HDFS [18], Quantcast File System (QFS) [45] are defined as this purpose-

built paradigm.

Current DiFS adopt a master-slave architecture and is built on top of the local file system, where

all the metadata is managed by the master nodes and the physical data is managed by the lo-

cal file systems on the slave (data) nodes. To maintain high availability, files are divided into

fixed-sized blocks (or chunks), which are replicated (usually three-way) and distributed pseudo-

randomly across the cluster with the consideration of the rack-awareness. To track these randomly

distributed replicas, the master nodes store the locations of all blocks. Moreover, to guarantee

the consistency between the stored location information and the physical data, the master nodes

receive periodical updates from the slave nodes, including block reports and heartbeats. We refer

these management scheme as DiFS block management (block management for simplicity in the

rest of this paper). This scheme offers great flexibility because each block is placed correlation-

free. However, this comes with a high cost in terms of memory and maintenance.

• Memory cost: the locations information of each block is required to be stored in the memory

of the master server, which can be referred as the block map. This block map costs a large
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proportion of the total memory taken by DiFS master node. It is observed that on each

master node, with a file-to-block ratio of 1 : 1, the block map takes more than 40% of the

total used memory; and the proportion will reach more than 60% with a file-to-block ratio of

1 : 5 [13, 53].

• Maintenance cost: as the physical replicas are managed in the local file system on the slave

nodes, the block management scheme requires a high cost on the master server’s CPU and

network bandwidth to synchronize the block map with the actual scenarios on the slaves

nodes [13]. For example, in a 10, 000-node cluster with a storage capacity of 60 PB (file

to block ratio is 1 : 1.5) [53], 30% of the namenode’s total processing capacity is used to

process the block reports.

With the continuously increasing size of data, these cost becomes non-negligible, causing the mas-

ter node to become a scalability and performance bottleneck due to its hardware bound of the

master node’s memory heap size and processing capability. To address this bottleneck, Namenode

(master node) Federation [1] is proposed to split the single master node into many independent

master nodes and thus allows the metadata management to scale “horizontally”. While this ap-

proach is able to reduce the amount of memory taken on each master node and provide a work-

ing DiFS, we believe a more promising optimization option is to “vertically” scale each master

node—to improve the performance and scalability of each master node. More specifically, this can

be achieved by reducing the memory and maintenance cost of the block management module. For

example, the scalability of a DiFS can easily be doubled when the block map is separated from the

master node. To achieve this, standalone block management is proposed by a Y ahoo! team, which

aims to move the block management module out of the master node to some dedicated block man-

agement(BM) nodes [13]. With the memory and maintenance cost reduced on each master node,

this approach may slow down the metadata lookup operations because an extra hop of network

lookup is introduced.
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In this project, we propose Deister, an alternative light-weighted block management scheme that

can offers the same read/write speed and reliability; but much faster metadata lookup speed, lower

memory cost and much lower internal workloads on the master server. Deister consists of a deter-

ministic block distribution algorithm Intersected Shifted Declustering (ISD) and its corresponding

metadata management schemes, including calculable block lookup and self-reporting block report.

The basic idea of Deister is to distribute the data deterministically based on a reversible mathemat-

ical function so that each block location can be calculated, thus allowing the centralized/decentral-

ized block locations to be removed. Moreover, the block report is offloaded to datanodes—based

on the revere function of ISD, the block list of a certain node can also be calculated, which can

be compared with the generated block report for further operations. In this way, the two largest

overhead of block management, memory spaces and internal workloads, can be minimized. Our

results show that the placement policy has the identical I/O throughput with the HDFS default ran-

dom layout, while the memory space saving on the metadata node is 63% in a 1024-node cluster

with 500 million blocks.
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CHAPTER 2: BACKGROUND

In this chapter, we discuss the current solutions and their limitations for the reverse lookup problem

and storage power management.

2.1 Reverse Lookup Problem Assumptions and Backgrounds

Based on our investigation and to the best of our knowledge, the reverse lookup problem has not

been widely studied. Partially because in some cases, this problem is not vital. In Peer-to-Peer

(P2P) systems such as Chord [54] and Kademlia [44], there is no need to recover or reconstruct

the node when node failure happens because they are assumed insecure and employed high degree

of replications. Most of these systems make little attempt to guarantee long persistence of stored

objects because nodes are added and removed frequently. Losing one node simply means to lose

access to the data store on that node while other nodes are maintaining the same data and would

be able to provide query services. For example, Kademlia [44] keeps k replicas, which is usually

set to 20, for one file. Under these circumstances, recovery and reverse lookup is unnecessary.

For some other systems such as Google File System (GFS) [49] or Hadoop File System (HDFS) [18],

fast reverse lookup is important in terms of metadata integrity rather than recovery time. These

systems adopt a “lazy (passive) recovery” scheme. A certain threshold for block replicas is main-

tained on the Metadata Server (MDS). When the number of replicas for certain blocks are lower

than the predetermined threshold (which may be resulted from node failure), the system will ini-

tiate a re-replication for the missing chunk(s). In this case, recovering the missing blocks is not

time-sensitive if the replication threshold is not set as high the replica number. However, a fast re-

verse lookup is still required because the metadata servers need to locate the missing blocks within

its inode entries and update (replicationnumber− 1) the number of the existing replications. It is
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critical that this process is completed as soon as possible so to keep the consistency of the metadata

with the status of the data node; and furthermore the re-replication is conducted on time.

The reverse lookup problem resides in the system that follows the basic assumptions below:

1. The file system is at least a petabyte-scale storage system, which contains thousands to tens

of thousands of storage nodes. Each node holds a large number of data objects. Objects are

relatively large in terms of tens of megabytes to several gigabytes.

2. The storage servers and clients are tightly connected: this is different from the loosely con-

nected architecture such as peer-to-peer networks where communication latency varies from

node-to-node.

3. The system has a high requirement of system reliability and data availability.

4. A k-way replication scheme is employed, which means that each piece of data is copied k

times to keep up the availability and reliability.

2.1.1 Current Solutions for Reverse Lookup Problem

As mentioned in Chapter 1, there are three basic solutions for the Reverse Lookup problem: meta-

data traversing, data distribution reversing and deterministic layout reversing.

Metadata traversal Metadata traversing approaches vary among different metadata management

schemes. Existing metadata management approaches can be divided into two categories: central-

ized and decentralized metadata management. In centralized metadata management systems, such

as Lustre [19], the whole namespace are maintained in one or duplicated on multiple metadata

servers (for passive failover). Reverse lookup process is able to be conducted by traversing the
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whole inode table—suppose the system wants to construct the block list i, the operation is “find

the inode which has the owner ID i”.

In decentralized metadata management schemes, the system distributes the file metadata into mul-

tiple MDSs using different strategies, such as table-based mapping [55], hash-based mapping [62],

static-tree based mapping, dynamic-tree based mapping and bloom filter-based mapping [79]. As

file metadata from the same node could be distributed into different MDSs, the decentralized meta-

data management scheme divided the system namespace into multiple parts. In this way, metadata

queries and workloads are shared so that the central bottleneck can be effectively avoided. In case

of the above example, to retrieve the object list for node i, all metadata from every MDSs are

needed to be examined and the result from each MDS has to be pieced together.

For both architectures, this traversing process significantly increases the recovery time because

examining such a large amount of metadata for a petabyte-scale system will take a long time. Even

though parallel discovery in decentralized metadata management systems may be introduced to

reduce the lookup time, piecing the on-node data structures back together will take considerable

time. To make things worse, this time consuming process also increases the probability of data

loss due to the fact that other nodes may fail during the time of traversing and examining the meta-

data. As stated in paper [55], file systems of petabyte-scale and complexity cannot be practically

recovered by one process, which examines the file system metadata to reconstruct the file system.

This long lookup time makes this scheme not suitable for fast recovery.

Scalable Data Distribution Reversing A more reasonable solution for reverse lookup is to reverse

the process of data distribution algorithms, which aims to provide the proper location for a piece of

data. i.e. RUSH [29] is a decentralized data distribution algorithm that can map replicated objects

to a scalable collection of storage servers. Data distribution approaches could also be divided into

two categories: centralized control (table based) and decentralized control.
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The centralized control approach, adopted by file systems such as xFS [58] and HDFS [18], also

known as table based mapping method, uses a centralized directory for locating data in different

storage nodes. Reverse lookup could be easily implemented by scanning and querying the location

directory due to the fact that tables and directories are reversible. For example, HDFS maintains a

hash map called “block map” to record the data node locations of all blocks. Within each entry of

the block map, HDFS utilizes a double linked-list to locate its previous and next blocks on the same

node, which is able to achieve reverse lookup. We call this method “Map Reversing”. However, to

maintain this block map, this method consumes much memory of the namenode, which makes it a

centralize bottleneck in scalability and performance.

Decentralized control approaches, also called scalable distributed data algorithms, have come out

in recent years to solve the bottleneck problem in centralized architecture. The algorithms in the

decentralized control approaches distribute data following three properties which allows them to

provide good performance in large, scalable environment—dynamic, decentralized and no large

update.

While scalable data distribution algorithms are mainly utilizing two techniques: trees and hashing,

both methods have problems in adopting the reverse lookup problem. On one hand, tree based

distribution algorithms, including Distributed Random Trees(DRT) [32] and RP* [42], are not

supporting data replication which is a must for our recovery scheme. On the other hand, though

hash based distribution algorithms, such as LH* [39], RUSH [29], CRUSH [62] etc., support data

replication, the hash function itself is irreversible—given a node ID, we could not retrieve the block

list that has been distributed based on the distribution algorithms.

Deterministic Data Layout Reversing Deterministic data layout, such as Chained declustering

(CD) [30], Group Rotation (GR) [21], is widely used in small scale centralized storage systems

such as RAID etc. Unlike decentralized approaches, the object placement is predetermined and cal-
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culated by a certain reversible algorithm on the RAID controller, which makes RL feasible on these

deterministic data layouts. Moreover, the placement-ideal deterministic placement algorithm—

Shifted Declustering, satisfies the following properties [77]:1)Multiple Failures Correcting: a k-

way (k ≥ 2) replication architecture should provide (k − 1) failures correction. 2)Distributed

Replica Information: if we distinguish data between primary copies and secondary copies (repli-

cas), each node should hold the same number of replicas to satisfy this property. But this property

is satisfied by nature if the copies are equally important. 3)Distributed reconstruction: the work-

load that is supposed to be handled by the failed node will be dispatched evenly to all the surviving

nodes. 4)Large Write Optimization: requires writing a large number of continuous units without

pre-reading units for updating checksum information. It is satisfied in all replication-based archi-

tectures. 5)Maximal Parallelism: requires to access at most ⌈o/n⌉ addresses from each node is

accessed when o consecutive addresses is accessed. 6)Efficient Mapping: requires that the func-

tions that map client addresses to node system locations are efficiently computable.

Table 2.1: Comparison between Existing Solutions in finding object list for node i where N and

M are the total number of metadata entries and metadata servers, respectively. O(p) is the time for

piecing together list results. B is the total number of blocks of node i and t is the time of finding

one block in a deterministic data layout, respectively

Examples Feasibility Parallelism Scalability RL Time Storage Overhead

Metadata Centralized Lustre Yes No N/A O(N) O(i)

Traversal Decentralized PVFS2, Ceph Yes Yes N/A O(NM ) +O(p) O(i)

Scalable data Central directory HDFS, xFS Yes No N/A O(logN) O(i)
distribution Tree-based DRT, RP* No N/A N/A N/A N/A

reversing Hash-based LH*, CRUSH No N/A N/A N/A N/A

Deterministic CD,GR,SD RL Yes Yes No O(B ∗ t) 0

Layout Reversing G-SD RL Yes Yes Yes O(B ∗ t) 0

However, because of the determinism of the data layouts, this approach usually suffers scalability

problem that prevents it from being utilized in large scale file system—since object’s locations are

depending on the total number of nodes, system modification such as system expansion, will result

in a large amount of data reorganization.

As summarized in Table 2.1, all existing methods are either time consuming or not supportive
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enough for the reverse lookup problem. Our previous work SD layout, as one type of deterministic

data layout, can achieve fast reverse lookup problem but it is not suitable for applying into the large-

scale system due to the scalability issue aforementioned. In this paper, we propose Group-based

Shifted Declustering (G-SD) data layout, to efficiently place objects and replications and solve the

flexibility and scalability of SD. It obeys all six properties meanwhile supports the reverse lookup

process within a relatively small overhead.

2.2 Power Efficiency and Reliability in Storage Systems

Based on our investigation and to the best of our knowledge, balancing among these three key

characteristics in degradation mode is not well studied. Partially because it is too complicated—on

one hand, performance and energy can be measured in fixed numbers and optimized according

to them. On the other hand, reliability in a storage system has been long time measured by Mean

Time to Data Loss (MTTDL), which is a probabilistic metric that is affected by various factors such

as disk temperature, utilization, wear-and-tear and etc. [67]. Previous researchers model reliability

by computing MTTDL based on continuous-time Markov Chain [69], which is complicated when

optimizing with performance and energy. This paper will focus on one specific factor in reliability

“recovery speed” as a measurement and provide a first step tryout in balancing energy, performance

and reliability. In this section, we summarize a thorough background and present key observations

that motivates our research.

2.2.1 Energy vs. Reliability

Tao et. al. studied the relationships between energy and reliability for independent disks [67]. They

built an empirical model called “PRESS” fed by three energy-saving-related reliability affected
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factors: temperature, disk utilization, and disk speed transition frequency. As energy efficient

solutions skew data or requests into a subset of disks, the three factors are affected and thus the

reliability is influenced. For example, temperature for a skewed alive disk will become higher

and annual failure rate will increase. After evaluating each reliability factors, a general estimation

of reliability for the whole storage system will be generated by combining these factors together.

PRESS is able to help the following researchers to understand the reliability for each disks under

energy saving mode. Note that the reliability is measured in annual failure rate, a probabilistic

number. Our model, on the other hand, is looking at a different angle—the specific recovery

process.

2.2.2 Reliability vs. Performance

Suzhen et. al. discovered the relationship between reliability and performance in terms of node re-

construction speed and normal user requests for RAID systems [66]. As presented in the paper, the

reconstruction process has a mutually adversary impact on user I/O requests because they are com-

peting for I/O bandwidth. In order to avoid the performance degradation in node reconstruction,

they explored the data locality to determine the popular requests and redirect these requests into

surrogate RAID groups. In this work, energy is not included as only reliability and performance

are considered.

2.2.3 Energy vs. Performance

The trade-off energy versus performance has been studied for decades and extensive research has

been conducted. Before any formal metrics are defined for energy efficiency solutions, the key

idea is to put as many disks into low-power mode as possible within the acceptable performance

tradeoff. Given a large cluster of disks, only a portion of them are accessed at any time so that the
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rest can potentially be switched to the low-power mode. We summarized current solutions into the

following categories.

Hardware-based solutions adjust hardware configurations to achieve power savings. e.g. Guru-

murthi et al. introduced Dynamic Rotations Per Minute (DRPM) [28], attempting to save energy

by dynamically adjusting the disks’ speed. However, the feasibility of this solution is questionable

because it has not been widely adopted by the industry.

Software-based approaches use software schemes to conserve energy consumption of the storage

systems. The key problem is to seek solutions for extending the idle time so that a subset of

the storage system has enough time to switch the disks into low power mode. According to its

scheduling granularity, there are two major categories of the software-based solutions: 1) Storage-

level consolidation concentrates the data into part of the disks so that others have no/little workload

and can be spun down. For example, Popularity Data Concentation (PDC) [46], skews the popular

data into a few number of disks so that the others can be switched to a low power mode. Similar

to MAID [23], PDC introduced a large amount of data movement overhead into the system. 2)

Request-level consolidation is currently used in replication-based systems. Instead of skewing the

data into part of the storage, it manipulates requests and redirects them to replicas on active servers

when the others are in the low power mode. Representatives include EERAID [37] for RAID 1

and RAID 5 storage systems and Diverted Access [47] for replication-based storage systems.

Most recently, a specific metric named “energy proportional” is proposed by paper [17] to formally

define the relationships between energy and performance in a computer system. They developed

this idea after identifying an unpleasant fact that current servers will still consume more than 50

percent of the power even with no work conducted. The core principle is that system components

such as CPU, storage or router should consume an amount of energy compatible to the ratio of the

workload. Mathematically, wh

eh
= wc

ec
, where wh and wc are the heaviest workload and the current
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workload; and eh and ec are the energy consumption under the heaviest workload and the current

energy consumption, respectively. It is soon widely accepted by both industry engineers and aca-

demic researchers as a designing guideline. e.g. PARAID [59] introduced power proportionality

into a RAID storage, using gear-based scheme to manage the active disks based on different power

settings in a RAID system. Amur et al. proposed “Rabbit” [15], a data layout for cluster-based

storage that can achieve read power proportionality and near power proportionality when node

failure happens. Thereska et al. presented a power proportional layout “Sierra” [56] for cluster

storage that support not only read proportionality, but also write proportionality with the use of

Distributed Virtual Log (DVL). DVL absorbed updates to replicas that are on powered-down or

failed servers.

Although all current power proportion research considers fault-tolerant, only a part of the three

characteristics are taken into account in their design. For instance, Rabbit attempts to achieve

near power proportionality in degraded mode, which still focuses on saving energy after failure

happens. While Sierra aims to increase the recovery (rebuild) parallelism, which ignores energy

consumption in degradation mode. Furthermore, no proofs are provided why their solution can

achieve optimal tradeoffs under degraded mode. As recovery competing for I/O bandwidth with

normal performance and requiring specific nodes to open, the scenario is different with only con-

sidering power and performance. These three characteristics are mutually affected by each other.

This motivates us to conduct a theoretical study to explore their relationships by formulating a

multi-constraint problem “PERP”, which takes performance and recovery requirements as con-

straints and power consumption as optimization object. It dynamically provisions the alive nodes

number and recovery speed at each time frame.
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2.3 Block Management Schemes in Current DiFS

In this section, we examine the two possible solutions to reduce the BM costs for the master nodes,

including directory-based mapping and computation-based mapping.

2.3.1 Directory-based Mapping

As mentioned above, current DiFSs distribute the blocks pseudo-randomly with the consideration

of network topology and rack-awareness and then store the locations of all blocks in a lookup

table/tree. As the block distributed by pseudo-random placement is correlation-free, this directory-

based mapping can easily scale-out with little reorganization overhead.

However, this approach incurs high cost on memory space and maintenance cost to keep the

directory-based mapping. 1) It consumes a large memory heap of the master nodes. As each

block has multiple replications, the size of this block map grows much faster than the size of the

file/block inodes. 2) Extra cares are needed to be taken to maintain the consistency between the

block map and the actual status of the data nodes and blocks. This includes block reports and

replication monitor/queue, where the block reports is used for the sanity check caused by software

bugs or unauthorized access; and replication motnitor/queue tracks the actual replica numbers of

each block to prevent losing data from hardware/software failures. These services also consumes

a large number of resources on the master node. For example, block reports, replication queue and

namespace management shares the same coarse-grain locks, which slows down the master server’s

performance.

To reduce the memory and maintenance cost in current DiFS, D. Sharp et. al. proposed a stan-

dalone block management in HDFS, which aims to separate the block management out of the

namenode [13]. As the namenode in the approach is solely handling the namespace operations,
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this approach will improve the performance of the namenode and further improve the cluster’s

scalability. However, a slow metadata lookup may be resulted. Because compared with the origi-

nal lookup process that finishes within the namenode memory, each metadata lookup involves an

extra round of network messaging between namenodes and block manager nodes.

Evaluation of Existing Methods We briefly examine existing approaches used for block-to-node

mapping information management. As discussed in the first section, the major drawback of random

block placement methods [49, 18] and standone method [13] is the large memory space overhead

for storing block-to-node information. In comparison, computational-based methods such as Hash-

ing or Crush [26, 62] could reduce the memory space overhead but fail to maintain block-to-node

information efficiently. Methods such as declustering [30, 21] could reduce the memory space

overhead and support consistency checking efficiently. However, declustering techniques can’t be

directly applied to large-scale systems since they are not able to efficiently scale out during system

changes. We summarize how these methods satisfy the properties listed above in Table 2.2.

Table 2.2: Comparison among block-to-node mapping schemes, where N is the number of data

nodes, B is the number of blocks, c is the size of each block, and net means one round of network

Examples Memory space Maintenance cost Efficient addressing Scale-out Recoverability

Directory DiFS default GFS,HDFS O(B*c) High O(1)∼O(B) Y High

Standalone Standalone O(B*c) Low O(1)∼O(B) Y High

based BM BM +O(net)

Computation Hashing Ceph CRUSH O(CM) High O(log N) Y High

Declustering SD, Chain 0 Low O(1) N Low

based Deister Deister O(NM) Low O(1) Y High

2.3.2 Computational-based Mapping

A more reasonable solution for reducing the block management costs is to use computational-based

mapping, which uses a deterministic addressing function for both block distributing and locating.

Representatives include hashing and declustering.
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2.3.2.1 Hashing

Hashing is widely adopted by many distributed file systems, such as Amazon Dynamo [26],

OceanStore [35], Ceph [60] etc.. It allows the elimination of the cost for directory-based mapping

and the system can be balanced due to the random nature of hash functions. Based on the scope of

hash mapping, we divide the hash mapping methods into two categories: fully decentralized and

partially decentralized.

Fully decentralized hashing distributes both namespace information (file inodes etc.) and blocks

on all servers. For example, peer-to-peer system such as OceanStore [35], CFS [25] maintain a

distributed hash table (DHT) as the distribution method. It first hashes the directory/file names to

generate a key and distribute them across an unified key space across the cluster. To achieve scale-

out ability, linear hashing [40], extensible hashing [27] and consistent hashing [33] are proposed.

Among them, systems such as Amazon Dynamo [26] and GlusterFS [3] adopt consistent hashing.

While LH∗ [41, 39] uses linear hashing. However, it is hard to apply fully decentralized in DiFS

because the architecture is fundamentally different. While DiFS uses a master-slave model, in

which a few master servers manage and guarantee strong consistency, block replications etc., the

fully hashing scheme is a peer-to-peer model and eventual consistency [26].

Partially decentralized uses hash mapping to only distribute blocks across datanodes, while the

namespace is maintained by other methods such as tree/table mapping. For example, Ceph main-

tains its namespace on a few metadata servers using sub-tree partitioning; and distribute the blocks

using CRUSH [29], a decentralized data distribution algorithm. CRUSH is built upon a data struc-

ture called cluster map which keeps track of the hardware infrastructure and failure domains. Both

distribution and data lookup process uses CRUSH algorithm so no location information is needed

to be stored. As the blocks are distributed deterministically, finding each block can be achieved via

calculation on any data nodes. While CRUSH provides similar advantages as Deister, namely fast
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deterministic mapping and little storage cost on metadata servers, its essential distribution hash

function is not reversible. As CRUSH does not have a centralized point of block management, the

consistency of a block is maintained by “peering”, which exchanging block reports within the same

placement group. This process involves a considerable amount of network messaging. While the

consistency check of Deister can be achieved gracefully by using a reversible addressing function

with little computation overhead.

2.3.2.2 Deterministic Declustering

The deterministic declustering, such as Chain-declustering [30], group-rotational declustering [21]

etc., is widely adopted in small-sized structures such as RAID systems. Different from hashing,

the object placement is pre-determined and calculated by a certain reversible math function on

the RAID controller. Using these approaches, all the block locations can be fast and easily calcu-

lated and no mapping information needs to be maintained. Moreover, the maintenance cost can

be significantly reduced by offloading the internal workload to each datanode, reversing math dis-

tribution function, a large portion of the internal workload such as block report processing can be

offloaded to each datanode.

However, the declustering mapping cannot scale-out because the location of each block is cal-

culated based on the total number of nodes in the system, any changes such as node addition or

removal will result in large amount of data reshuffle. Also this layout is design for homogenous

environment where all nodes are identical. Moreover, declustering placement is designed for node

reconstruction, which takes far longer time than the DiFS re-replication time.
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CHAPTER 3: GROUP-BASED SHIFTED DECLUSTERING

In this section, we introduce an approach, called Group-based Shifted Declustering (G-SD), which

is an extension of Shifted declustering (SD) data layout scheme. It carries out a recovery-oriented

optimal data placement and can support the efficient reverse lookup process. SD layout, shown in

Figure 3.1 and Figure 3.2, is a recovery-oriented placement layout scheme in multi-way replication

based storage architectures. It aims to provide better workload balancing performance and achieve

maximum recovery performance when node failure occurs. As illustrated in [77], SD satisfied all

six properties of ideal-placement layout and can reach at most (n− 1) parallelism in recovery. By

using this scheme, the recovery time can be reduced and thus shorten the “time of vulnerability”.
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Figure 3.1: Example of Shifted Declustering Layout with total number of 9 nodes

However, applying this scheme in large-scale file systems would require one more functionality—

optimal reorganization. Same with the other deterministic layouts, the SD placement algorithm

is depending on the total number of nodes that exist in the system. When new storage nodes are

added into the system, most objects need to be moved in order to bring a system back into balance
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and optimal. This complete reshuffling process, which may take a system offline for hours or even

days, is unacceptable for a large-scale file system [29]. For instance, an one-petabyte file system

that is built from 2000 nodes, each with a 500 GB capacity and peak transfer rate of 25 MB/sec

would require nearly 12 hours to shuffle all of the data. Moreover, the reorganization process

would require an aggregate network bandwidth of 50GB/sec. In contrast, a system running G-

SD can complete reorganization in a rather less amount of time because only a small fraction of

existing node bandwidth is needed to participate in the reorganization.
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Figure 3.2: Example of Shifted Declustering Layout with total number of 6 nodes

3.1 Definitions and Notations

Before the design, we define several terminologies, as follows.

1. The redundancy group is the set of an object and all its replicas.

2. The Stable group (sub-cluster) is a group that has a stable number of nodes and will not
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influenced by the system expansion.

3. The unstable group (sub-cluster) is a group that does not have a stable number of nodes and

will be influenced by the system expansion.

4. The group reorganization is the process of moving objects to other storage nodes in order to

keep the original layout after new storage nodes are added into the group.

Table 3.1: Summary of Notation

Symbols Descriptions

m Total number of nodes in the cluster

n Number of stable nodes in each sub-cluster

n′ Number of Unstable nodes in each sub-cluster

k Number of units per redundancy group

a The address to denote a redundancy group

(a, i) The i-th unit in redundancy group a

q Number of iterations of a complete round

of layout

y, z Intermediate auxiliary parameters

node(a, i) The node where the unit (a, i) is distributed

offset(a, i) The offset within node(a, i) where the unit

(a, i) is distributed

There are four system configuration parameters for the G-SD layout: the total number of nodes in

the system m (m ≥ 2), number of nodes in a stable sub-cluster n (n ≤ m), number of nodes in an

unstable sub-cluster n′ (n′ ≤ n+ k+1) and the number of units per redundancy group k (k ≤ m).

Within a redundancy group, the units are named from 0 to k−1, and we view the unit 0 as the object

(primary copy), and other units as replica units (secondary copies). Distinguishing objects from

their replica is only for the ease of representation, although they are identical. We use an address

a (a ≥ 0) to denote a redundancy group, and a can also be considered as a redundancy group ID.

Each unit is identified by the name (a, i), where a is the redundancy group ID, and 0 ≤ i ≤ k − 1.

Without the loss of generality, (a, 0) represents the object, and (a, i) with i > 0 represents the i-th

replica unit. The location of the unit (a, i) is represented by a tuple (node(a, i), offset(a, i)). A

complete round of layout is obtained by q iterations, and in each iteration, one row of data units and
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k− 1 rows of replica units are placed, so that the total rows of units in a complete round is r = kq.

Repeating complete rounds of layouts also yields placement-ideal layouts. In the following, we

only consider the layouts within a complete round.

3.2 Group-based Shifted declustering Scheme

The G-SD is proposed to minimize the reorganization overhead of shifted declustering layout so

that this layout can be utilized in large-scale file systems. It is based upon a simple principle:

storage nodes or nodes are divided into groups (sub-clusters) so that when nodes are being added

or removed, the reorganization process would only influence the nodes within one group rather

than the whole file system, as traditional shifted declustering does.

In G-SD, suppose we have m nodes in the system and we divide them into multiple stable groups

with each group containing n nodes and one unstable group with n′ (n′ ≤ n + k + 1) nodes.

In each group, a shifted declustering scheme is applied to optimize the replica placement so that

maximum recovery performance can be achieved when node failure occurs. That is, if node j in

group a failed, the number of nodes that could participate in the recovery is maximized within the

group. While members in one group are correlated with each other, groups are independent— each

holding disjoint fractions of objects for the whole system. Replicas will not be placed among dif-

ferent group members. By keeping little relationships between different groups, the reorganization

process brought by node addition will only influence the members within one group, leaving other

groups unaffected. Figure 3.3 shows an example of G-SD scheme: nodes are divided into differ-

ent sub-clusters. Sub-cluster 1, 2, and 3 all consist of 9 nodes, which is the stable group number,

while sub-cluster 4 is unstable group with 6 nodes. Each sub-cluster is managed by local shifted

declustering layout—1, 2, 3 are shown as Figure 3.2, 4 is shown as Figure 3.1, respectively.
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Figure 3.3: Group-SD Scheme

3.3 Efficient Reorganization for Group Addition

While grouping can reduce the time consumption and reorganization overhead for large-scale file

systems, it needs improvement based on the observation mentioned in paper [29]—when a large

storage system is expanded, and new capacity is typically added multiple nodes at a time, rather

than by adding individual node. If updating occurs immediately after one new node comes, extra

reorganization overhead will be introduced. In this case, we introduce the “Lazy policy”. That is,

the reorganization process will wait until all newly added nodes are fully integrated into the system

to decide which group they join.

Figure 3.4 illustrates the flow of adding new nodes into the system. When one node λ1 joins the

system, it does not directly choose any group. Instead, the cluster maintains a tracking list for

newly added nodes. Then if new nodes λ2, ...λl are added into the cluster, the operation conducted

is the same as λ1. After the new nodes are fully integrated, groups are determined by the number

of nodes added: 1) we prioritize the group-based addition. If l > n (l is the newly added nodes, n

is the stable group size), ⌊l/n⌋ new stable groups are added into the system with each group having

n nodes. 2) After the stable group addition, if the remaining l%n + n′ (n′ is the unstable group

size) newly added nodes is no less than the stable group size n (l%n+n′ ≥ n), then a stable group

will be formed with n′ old nodes and n − n′ new nodes, remaining l%n − n + n′ nodes will be
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formed as an unstable group. If l%n + n′ < n, the l%n newly added nodes will join the unstable

group.

For instance, in a three-way replication system the optimal sub-cluster size n (Section 3.6) is 10

and there are 27 nodes already in the system, which are subsequently divided into three groups

(2*10 nodes stable groups, 7 nodes unstable group). If adding 23 new nodes into the cluster, the

newly added group will be divided into two stable groups first, which contains 10 nodes each. The

remaining 3 nodes will join the existing unstable group to produce a 10 nodes stable group. If 27

nodes are added into the cluster, the remaining 7 nodes will be divided into two parts, first, three

nodes will participate in the former unstable group to form a 10 nodes stable group. The left 4

nodes will form an unstable group due to the minimum node number local shifted declustering

layout requiring for three-way replication is n ≥ 4 for each group. Since node addition only

maintains the information about the number of newly added nodes and this process takes little

space, the total storage requirement of tracking this list could be negligible. By using the “lazy

policy”, tracking list and group “prior” methods, we are able to reduce the reorganization overhead

by merging several reorganization process into one or even totally eliminating the reorganization

process in some cases (will mention in Section 3.4).

We consider node retirement to be the same as node recovery because the retiring node has to

“shed” its data to other data nodes which will result in a temporary local shifted declustering un-

balance. Though node departure could be supported by our solution, it costs extra overhead is

needed to reorganize the replicas in an already balanced shifted declustering layout sub-cluster.

Since in our solution, recovery is parallelized and efficient, we believe that substituting the retired

node and transferring all the data to the new node is a better idea than nodes departure and rebal-

ancing of loads. Before substitution, if some nodes are not available, the workload could still be

evenly distributed into the existing nodes, which will not degrade the performance substantially.
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Figure 3.4: The Procedure of “Lazy Node Addition Policy”

3.4 Group Addition Guideline

By using the above schemes, we considerably reduce the reorganization overhead. In this section,

we give a simple and practical recommended configuration that allows the cluster to totally elim-

inate the reorganization costs without sacrificing the advantage of local shifted declustering. We

recommend to add or remove groups by a factor of n nodes at a time. Since each sub-cluster is not

related to others in the manner of object placement, adding or removing groups will not trigger the

reorganization process. All newly added nodes are formed as new sub-clusters.

G-SD does not recommend “Group merging or Splitting” [31] to add or remove new nodes due to

one main reason. These approaches involve too much overhead and can not efficiently support the

group reconfiguration. Group merging is to merge two groups when their sizes are both lower than

⌊n/2⌋. Group splitting process is equivalent to deleting ⌊n/2⌋ nodes from the existing sub-cluster

and inserting them into new groups. Applying deletion in an already balanced shifted declustering

group will result in reorganization.
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3.5 G-SD Distribution

Given that G-SD involves multiple stable groups as well as one unstable groups, we present the

distribution method of G-SD layout in this section.

As SD layout has enforced the load balance within each group, the design issue here is to distribute

data uniformly among the stable groups. We introduce a “utilization-aware” distribution based on

the amount of data stored in the stable group. More specifically, denote the total capacity of group

h as Ch, the used capacity in nodes from group h as Dh, we keep a simple utilization factor

ωh = Dh

Ch
. The distribution algorithm places objects in groups following an increasing order, as

shown in Algorithm 3.5.1.

Algorithm 3.5.1 Pseudocode of G-SD Distributing object x
Input: Object x.

Output: Find the redundancy group a with the nodeID and offset to store this object.

Steps:

Retrieve the weight factors for each group;

Choose group Gh with the lowest weight factor;

Map objectID x to group objectID xh;

Place xh using Shifted Declustering algorithm within Gh, return (nodeh(x), offseth(x));

Note the nodes within a G-SD group do not necessarily mean that they are on the same rack.

Instead, one can add preferable constraints to the grouping methods, i.e. rack-aware, etc. In our

implementation of HDFS, we select one node from each rack in a round-robin manner. We choose

this grouping method because it is simple to implement and makes the best-effort to guarantee the

rack-awareness, as illustrated in Figure 3.3.

3.6 Optimal Group Size Configuration

One of our key design issues in G-SD is to identify the optimal stable group number n, which

can attack different tradeoffs between recovery parallelism and failure rate. As n increases, the

recovery parallelism within one group is increasing and thus lower recovery and degradation time.
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In an extreme case, when the nodes are all in one group, n = m, recovery parallelism can reach to

the maximum m − 1. A larger n, however, typically leads to a higher possibility of node failure.

For instance, if the failure rate for one node is r, the failure rate for n nodes is increasing to

n ∗ r. To identify the optimal n, we use a simple benefit function that jointly presents failure rate

and recovery parallelism using overall recovery time. Since the recovery process will degrade the

system normal performance, we aim to determine an optimal stable group size n that can minimize

the total performance degradation time µ within each sub-cluster. Denote Pf as the probability of

having f nodes to fail, Tf as the recovery time for f -node failure event. Equation 3.1 shows the

function to evaluate the sub-cluster’s availability.

µ = E[n] =

⌊n/2⌋∑

f=1

Pf ∗ Tf (3.1)

The probability of node failure is associated with group size n and failure rate per node r, which

is shown in Equation 3.2.

Pf =

(
n

f

)
∗ rf ∗ (1− r)n−f , f ∈ [1, ⌊n

2
⌋] (3.2)

where f is the number of failed nodes in the same time. Based on pigeonhole principle [8], the

failed nodes number f can reach up to ⌊n
2
⌋ (n is the total number of nodes in the stable group);

otherwise this group will lose data which is considered as a group failure. Because based on pi-

geonhole principle [8], any bigger number will result in at least one group failure which is unre-

coverable. We will not consider this situation in this paper. Please note that ⌊n
2
⌋ only shows the

upper bound of f . It does not necessarily mean the scenario of the data loss. Because there are

possibilities that data loss happens before f reaches ⌊n
2
⌋. i.e. The object will be unavailable when

the three nodes in a redundancy group fail.
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The recovery time is influenced by the recovery parallelism. As objects are evenly distributed in

one group using local shifted declustering layout. All other nodes in the same group will partic-

ipate in the recovery in a parallel manner. Assume t is the time for recovering one failed node

sequentially, the parallel recovery (see Section 3.8.2 for detail) time is represented in Equation 3.3.

Tf =
t ∗ f
n− f

, 1 ≤ f ≤ ⌊n
2
⌋ (3.3)

So the optimal value of stable group size n is the one that could minimize the µ in Equation 3.1, as

shown follows.

µ =

⌊n/2⌋∑

f=1

Pf ∗ Tf (3.4)

=

⌊n
/
2⌋∑

f=1

(
n

f

)
∗ rf ∗ (1− r)n−f ∗ tf

n− f

=

(
n

1

)
r(1− r)n−1 t

n− 1
+

(
n

2

)
r2(1− r)n−2

∗ 2t

n− 2
+

(
n

3

)
r3(1− r)n−3 3t

n− 3
+ ...+

(
n

⌊n
2
⌋

)

∗r⌊n
2
⌋(1− r)n−⌊n

2
⌋ ⌊n

2
⌋t

n− ⌊n
2
⌋

where we ignore the cases that nodes fail in the middle of a recovery process.

As t and r are all constant, to minimize µ we calculate the derivative (µ′) and let µ′ = 0 to

retrieve the extrema. For example, we choose r = 3% per year. According to Schroeder et al.’s

observation [50], in a real-world large storage and computing systems, the ARR (annual replace

rate) of hard drives is between 0.5% and 13.8%, and 3% on average. The reasonable and optimal

n is 9 if n is odd and 8 if n is even.
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3.7 G-SD Reverse Lookup

In this section, we present the reverse lookup mechanism in our G-SD. When a node fails in

a cluster, reverse lookup in G-SD may involve two hierarchical levels: acquiring the group ID

in which the failed node exists, and retrieving the object list from the local shifted declustering

reverse function. This hierarchical design is to provide fast and guaranteed reverse lookup that will

find out the objects needed to be recovered in a fairly short time.

Each query is performed in the following sequences. First, one node failure is detected by heart-

beats, and it will return the tuple < groupID, nodeID >. Given this tuple and the upper bound of

the block ID within this group, the system could conduct the reverse lookup. Second, retrieve the

object list by using the shifted declustering reverse function. We would like to give an example for

three-way replication. The reverse lookup algorithm can be abstracted as: assuming k (the number

of units per redundancy group) and n (the number of nodes in the sub-cluster) are known system

parameters, d (node/node ID) and o (offset) are given location, find out the redundancy group ID a

located on node d and offset o.

In three-way replication with n = 4 or n is odd, the local reverse lookup function could be sum-

marized in through Equation 3.5 to Equation 3.9.
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q =





1, if n = 4

(n− 1)/2, if n is odd

(3.5)

i = o%k (3.6)

z = (o− i)/k (3.7)

y = (z%q) + 1 (3.8)

a =





d− (zn + iy)%n+ zn, if (zn + iy)%n ≤ d

d− (zn + iy)%n+ (z + 1)n, otherwise

(3.9)

where Equation 3.5 to 3.8 is intermediate variables, and Equation 3.9 computes the redundancy

group ID a.

In three-way replication with n > 4 and n is even, the algorithm could be formulated as:

v = n− 1 (3.10)

q′ = (v − 1)/2 (3.11)

i = o%k (3.12)

z = (o− i)/k (3.13)

db = (v − z)%v (3.14)

y = (z%q′) + 1 (3.15)
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if (node(a, 0) < db and node(a, 0) + iy ≥ db)

or node(a, 0) > db and node(a, 0) + iy ≥ db + n′)

if (zn + iy + 1)%n ≤ d)

a = d− (zn + iy + 1)%v + zn

else a = d− (zn + iy + 1)%n+ zn

else if ((zn + iy)%n ≤ d)

a = d− (zn + iy)%n+ zn

else a = d− (zn + iy + 1)%n+ (z + 1)n

where a is different due to the fact that the placement for node(a, i) varies before or after the

bubble that is mentioned in [77].

3.8 Analysis

In this section, we conduct a comprehensive analysis on two key goals of G-SD: reorganization

overhead and data availability.

3.8.1 Reorganization Overhead Analysis

G-SD aims to take the advantage of the fast and efficient reverse lookup of the shifted decluster-

ing algorithm and minimize its reorganization overhead. Here we explicitly give the overhead of

adding new nodes into a shifted declustering layout and compare it with a system using G-SD.

Assume that there is a shifted declustering layout with α nodes and we are about to add β nodes

into this layout. The total number of objects that needs to be moved from one node to another is as
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follows.

R(α, β) =





[(q − 1)α+ (β + 1)]× 3, if βis even andαisodd

[(q − 1)α+ (β + 1)]× 3 + 2, if βis odd and αis even

[(q − 1)α]× 3, if β = 1and α is odd

[(q − 1)α+ β]× 3, if βis odd, α > 1andmis odd

[(q − 1)α+ β]× 3 + 2, if βis even, andαis even

(3.16)

In Equation 3.16, q = 1 if α is 4, q = (α− 1)/2 if α is odd, or q = (α− 2)/2 if v is even. R(α, β)

is mainly determined by the number of objects that need to be moved from one node to another.

The proof is provided in the Appendix. Suppose that the overhead of moving one object to another

node is v, the total reorganization overhead is v ∗ R(α, β). Then we compare the reorganization

overhead between SD and G-SD layout.

1. In a system with SD layout, the total number of nodes is m. When l nodes are added into

the system, the total overhead of balancing the shifted declustering layout is equal OSD =

v ∗R(m, l)

2. In G-SD with total of m nodes, at most one unstable group is affected when adding nodes

into the system. Thus the reorganization overhead will be limited to the unstable group size

n′ < n + 4. Specifically, when adding l new nodes into this system, the total overhead is

shown as follows.

OGSD =





v ∗R(n′, n− n′), if l%n + n′ ≥ n + 4

v ∗R(n′, l%n), if l%n + n′ < n+ 4
(3.17)

As shown in Figure 3.4, when l%n + n′ ≥ n + 4, the reorganization overhead is generated

from forming one stable group using n′original unstable group nodes and (n − n′) newly
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added nodes. When l%n + n′ < n + 4, the overhead is generated from adding l%n new

nodes into the original unstable group (n′ nodes).
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Figure 3.5: Reorganization overhead (number of objects reorganized) comparison in different

group size (n) and different number of nodes added (l)

Figure 3.5 presents the overhead comparisons of different group sizes and different numbers of

added nodes. In this figure, we assume that v as 1. We can see from Figure 3.5, the reorganization

overhead is directly related to the number of nodes in the system m and number of nodes added

l. Specifically, in a SD layout with the number of nodes m growing from 4 to 100, every line is

maintaining an increasing trend. Also, as the number of nodes added increases, the trend goes

sharper. On the other hand, reorganization overhead in a G-SD is in is fluctuating around a small

number and is not directly affected by m and l.

3.8.2 Analysis of Data Availability

With our mathematical proof, we have demonstrated that the reorganization overhead has been

bounded into a reasonable range and support fast reverse lookup to speed up the recovery process.
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In this section, we study and analyze the impact of G-SD from a different angle of data availabil-

ity,which is the system’s ability of providing sufficient and correct data throughout failures. High

data availability means that data replicas should still be available when failure happens. More

specifically, in a multi-way replication systems, the system runtime can still provide services by

redirecting the requests to other replicas when node failure happens. We quantify this property as

P (l) which means the probability that the system does not lose data after the l-th node fail-

ure. Suppose the failure rate for each node is λ. Apparently, P (l) = 1 if l < k, and P (l) = 0 if

l > lmax, where lmax is the possible maximum number of failed nodes without losing data. With l

failed nodes, there are m− l nodes which may fail, so the rate of another node failure is (m− l)λ,

where λ represents the node failure rate.

As the value of P (l) and the recovery rate µl when the system has l failed nodes are different

among different layouts. In the following two sub-sections, we will derive the values of P (l) and

µ(l).

Group-based Shifted Declustering G-SD layout divides the whole cluster into small groups so

that the reorganization overhead can be reasonably bounded when system expands. The data will

be lost if the failed nodes are in the same group. More specifically, in one sub-cluster, data loss

will happen upon l node failures if there exists a set of k failed nodes with a fixed distance between

neighboring nodes in a G-SD group. The value of P (l) (no data loss after l node failures)

is the probability that given l failed nodes, for any k out of the l nodes, there is no fixed

distance between neighboring ones in a G-SD group. Therefore, we are looking for the subset

{i0, i1, . . . , il−1} ⊆ [0, . . . , n − 1] (n is the number of nodes in one stable group) such that

∀{j0, j1, . . . , jk−1} ⊆ {i0, i1, . . . , il−1}, where {j0, j1, . . . , jk−1} is a combination of k

elements out of the subset {i0, i1, . . . , il−1}, and not exist d for all m ∈ {0, 1, . . . , k − 1},

j
(m+1) mod k

= (jm + d) mod n.
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Denote Sgsd(m, k, l) as the number of choices to select l nodes from a k-way replicated system with

m number of nodes; obeying the conditions shown above. Therefore, Pgsd(l) can be computed as

follows,

Pgsd(l) =





Sgsd(m, k, l)/C(m, l) if n is odd or n = 4

Sgsd(m
′, k, l)/C(n, l) if n is even and n > 4

(3.18)

where m′ is the maximum number that is smaller than m+ and there exists a basic solution for

m′-node. In our case when k = 3, m′ = m − 1. For both cases, if l = k, Pgsd(k) =
1−m(n+−1)]

2C(m,k)
,

because if the first failed node is chosen, there are (n− 1)/2 types of distances to decide the other

two failed nodes to cause data loss. There are m ways to select the first node, so there are in total

m(n− 1)/2 ways to select k failed nodes to lose data.

Random Distribution Many current enterprise-scale storage systems adopt random data layout

schemes to distribute data units among storage nodes [49, 18, 60]. There is also theoretical re-

search on algorithms for random data distribution in large-scale storage systems [29]. Random

layout attracts people’s interests because it brings a statistically balanced distribution of data, thus

providing optimal parallelism and load balancing in both normal and degraded mode.

The probability of losing (or not losing) data upon l failed nodes depends not only on l, the total

number of nodes (m), and the number of replicas in each redundancy group (k), but also on the

number of redundancy groups (r). The number of redundancy groups is a function of m, the used

capacity of nodes (S), and the size of a data unit (s). We assume that the used space of each node

is the same, and the size of a data unit is fixed. The number of redundancy groups can be derived

as r =
S ×m

s× k
, where S × n means the total used space for data storage, and s × 3 is the space

used by one redundancy group.

There are C(m, k) ways to distribute a redundancy group. We assume that an ideal random declus-
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Figure 3.6: The comparison of P (k) between G-SD and Random Distribution

tering algorithm has the ability to distribute redundancy groups to at most combinations of nodes

as possible. With this assumption, if r < C(m, 3), the redundancy groups are distributed to r

combinations of k nodes. If r ≥ C(m, k), all C(m, k) combinations are used for distributing re-

dundancy groups. Upon l node failure, the probability of losing data is the probability that three

failed nodes are one combination of the r combinations used for distributing redundancy groups.

When l = k, the probability of not losing data is:

P (k) = max(1− r/C(m, 3), 0) (3.19)

For l > k, due to the lack of mathematical regulations to describe the behavior of random declus-

tering. We use sampling techniques to obtain the values of P (l), as shown in Figure 3.6.

In Figure 3.6,we quantitatively compare the change of P (l) with the number of nodes (n) and the

number of redundancy groups (r).We assume k = 3, the number of nodes varies from 100 to 5,000,

and the number of redundancy groups varies from 5,000 to 5×109. The left diagram demonstrates

the dependence of P (k) on m (the total number of nodes) and r (the number of redundancy groups)
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in random declustering. Each line reflects the value change of P (k) for a certain r and a varying

m. We can see that with a fixed number of nodes, the more redundancy groups the system has, the

smaller is P (k), which means that it is easier for the system to lose data upon k node failures. A

recent work [16] shows similar results and developed CopySet based on this observation. In their

observation, a 1% of node failure will definitely result in a data loss when the node size is larger

than 300. We enlarge the portion near P (k) = 1 to the right diagram, and add the P (k) values of

G-SD. In this configuration, the group size is set as 9. We can see that P (k) of G-SD is constantly

approaching 1.

3.9 Evaluation

G-SD is a scalable layout that supports fast and efficient reverse lookup. In this section, we describe

our implementation of G-SD on two distributed file systems Ceph and HDFS. We also provide the

results of our experiments on a large-scale cluster on G-SD’s impact on the systems’ performance

and reverse lookup latency.

We set up the experiment environment using Marmot cluster [7, 64], which is a cluster of PRObE [64]

on-site project and housed at CMU in Pittsburgh. The system itself consists of 128 nodes/256 cores

and each node has dual 1.6 GHz AMD Opteron processors, 16 GB memory, Gigabit Ethernet, and

local storage of 2TB Western Digital SATA HDD.

In the evaluations, we make comparisons of G-SD reverse lookup with two widely adopted reverse

lookup methods: metadata traversal methods and tree-reversing methods. Firstly. we conduct ex-

periments to compare G-SD RL with the decentralized metadata traversal method on Ceph release

0.87 [60]. Ceph is an ever-popular open-source distributed object storage system. It has evolved

from Sage Weil et. al.’s Ph.D dissertation in the University of California at Santa Cruz (UCSC).

Ceph distributes its data using CRUSH algorithm to avoid a single point of failure and the data is
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replicated, making it fault tolerant. The experiments are run on 36 nodes of the marmot cluster

with 4 metadata servers and 32 Object Storage Daemons (OSDs).

Secondly, we perform two sets of experiments on HDFS 2.2.0 using 32 nodes of Marmot cluster.

HDFS is a distributed, scalable, and portable file-system written in Java for the Hadoop frame-

work [18]. It was originally developed by Yahoo! to facilitate its search-engine and now becomes

the foundation for the current big-data applications. Since HDFS support replication at the first

place. We first compare the performance of G-SD layout with the HDFS default rack-aware ran-

dom layout. Then series of experiments are conducted to compare the G-SD RL speed and HDFS

tree-reversing speed.

3.9.1 Implementation on Ceph

The implementation of G-SD on Ceph is mainly consist of two modules: 1) the G-SD distribution

algorithms modification on CRUSH module. More specifically, we still keep the CRUSH map run-

ning on each Ceph OSD but substitute the crush do rule() (that outputs the result vector) method

in class CrushWrapper (which is the exposed class for CRUSH) to call GSD distribute() so

that it outputs the results of G-SD distribution. Before doing that, we need to make sure that the

objects are not stored in hash keys because G-SD uses sequential number to distribute the objects.

In order to do so, we implement a method in class hash to just output the input number as the object

ID. 2) GSD RL() is implemented as an independent function that is called in class OSDMonitor

after the OSD is proposed to be marked “down” and receives positive response from Paxos service.

The native metadata traversal method of Ceph is a complicated process. When a monitor receives

notifications saying that an OSD node timeout, it will mark the node as “down” in its master cluster

map (more specifically, OSDMap) and increase its version number. Then it will send the updated

cluster map back to the reporting OSDs and also a random OSD, which will conduct a sync with

44



their current OSDMap to recognize the PGs that have been impacted by the “down” node. When a

PG is recognized as the impacted group by this node failure, it will be marked as degraded and start

to pile up the PG logs for its later recovery process. Note each failed node has many PG residing on

it and each PG handles its objects independently, thus this RL process can be time efficient because

it is done in parallel with the number of PGs in the cluster. However, the updated OSDMap will

need some time to propagate within the cluster before all impacted PG are recognized and there

are also message exchanges between monitor nodes and the OSDs. Compared with this approach,

our implementation directly goes to the OSDMonitor and prepares the object lists on the failed

node for later recovery (if necessary).

3.9.2 Evaluation on Ceph

To evaluate the performance and metadata traversing speed on Ceph, we use Ceph’s embedded

benchmarking tool RADOS bench to ingest different sizes of data into Ceph cluster. RADOS

bench is a part of RADOS object storage utility and supports different IO modes such as write,

sequential read and random read. If not specified, the default object size is 4 MB, and the default

number of simulated threads (parallel writes) is 16. In all tests, the number of replications is set to

three. This set of experiments are run on 36 nodes on Marmot cluster with four monitor nodes and

32 OSDs.

For the throughput test, we run the RAODS bench utility on both clusters and the results (MB/s)

are shown at the end of each run. For reverse lookup tests, we monitor the time after a node is

manually bring down using “ceph osd out osd-xx” command. This guarantees that an updated

OSD map will be sent out by the OSDMonitor and the recovery will be initiated. To monitor

the reverse lookup time, we insert a timer between the function On Ceph, we monitor the reverse

lookup time by set a timer for the function call getlog.get missing() within OSD class, which
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digs in the log and finds the missing blocks with the “out” OSD.

3.9.2.1 I/O Throughput Test

We conduct three sets of RADOS bench tests, each of which reflects a supported IO mode as

mentioned above. Figure 3.7 shows the results comparison of CRUSH and G-SD in terms of IO

throughput (MB/s). The write has a default of 16 parallel threads and we did not configure any

journal nodes. To run the benchmark, we first create the pool with 2048 PGs (for Ceph CRUSH).

Then we run RADOS bench “write”, which will write data on Ceph storage. Finally, we run the

two sets of read tests, sequential read and random read. For each test, we run each test five minutes

with 256 threads. We can see that the difference of the average I/O throughput between G-SD and

Ceph within 4%. This means that objects in G-SD is evenly distributed.

Figure 3.7: I/O throughput comparison between G-SD and Ceph CRUSH pseudo-random layout
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3.9.2.2 Decentralized Metadata Traversing vs. G-SD Reverse Lookup

In this section, we compare the response latency of G-SD RL with the decentralized metadata

traversal scheme used by Ceph. We set the object sizes as 256KB, 1MB, and 4 MB; write a total

amount of data size as 66 GB (total ≈ 200 GB), 166 GB (total ≈ 500 GB) and 333 GB (total ≈ 1

TB) and 666GB (total ≈ 2 TB) using RADOS bench. The number of PGs are 2048.

Figure 3.8 presents a comparison of the average response latency between G-SD RL and Ceph

PG decentralized metadata traversing (DMT) in different configurations. Although both methods

can find the missing objects in seconds, the curves representing G-SD RL times are always at the

bottom of the diagram. So G-SD RL provides faster reverse lookup than Ceph PG DMT in our

setup. Overall the average speedup of G-SD RL is 6x faster. With the same setup, we expect

that Ceph DMT to complete faster if the number of OSDs increase while the number of PGs stays

the same. This is because the number of PGs located on each node is less, meaning DMT needs

to find fewer missing objects. However, as discussed above, Ceph recovery is not simple process

which involves in OSD map update, map prorogation, find incremental on primary and then get the

missing objects. This whole process can be long comparing with only G-SD RL directly finding

the missing object list.

3.9.3 Implementation on HDFS

We implement G-SD layout solely on the block management module of HDFS Namenode (meta-

data server). The implementation is relatively straightforward because HDFS has provided the

interface to support a configurable data placement policy in version 2.2.0. G-SD forms its groups,

assigns G-SD group IDs and maintains a mapping from datanode ID to GSDdatanode ID (datan-

ode ID within a G-SD group). After all the nodes have been added into the cluster, the Namenode
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Figure 3.8: Average response latency comparison between G-SD RL and DMT on Ceph

starts to assign blocks to G-SD groups and maintains a mapping from block ID to GSDblock ID

(block ID within the G-SD group). Although we maintain two mappings (datanode ID to GSD-

datanode ID and block ID to GSDblock ID), the search scope is only within each group which

is much smaller than the scope of global per-block mapping. Thus the lookup time is faster. For

example, finding a GSDdatanode ID can be achieved in O(n) time complexity (n is the number

of data nodes in a G-SD stable group); and finding block ID from GSDblock ID (used in G-SD

RL) will only need O(logBn), where B is the number of blocks in each datanode. While the time

complexity of tree-reversing varies from O(logBm) to O(Bm), where m is the number of nodes

in the cluster. The G-SD reverse lookup scheme is implemented as an alternative of BlockIterator

inner class in “DatanodeDescriptor.java”, which iterates over the list of blocks belonging to a given

datanode.

48



3.9.4 Evaluation on HDFS

We evaluate the impact of G-SD and G-SD RL in the following two set of experiments: 1) com-

paring the performance of G-SD layout with the default HDFS random layout. In this set of exper-

iments, we run a random writer and sort benchmark to compare the performance of two different

layouts. 2) comparing the G-SD RL speed with the default HDFS metadata traversal. As datan-

ode failure is expensive in practice, we use an alternative way to evaluate the metadata traversing

time. We first use Randomwriter to generate a large number of junk data. Then we decommission

a datanode, which will trigger a check on the replication numbers of all its blocks. Finally we

retrieve the tree-traversing time from the namenode log. In this experiment, we use 32 node of

Marmot Cluster, among which one node is configured as master node and 31 nodes are configured

as datanodes.

3.9.4.1 I/O Performance Test

We configure the random writer job as follows: each node runs 10 mappers; each mapper writes

1GB random data with a file name, and each file has 3 replicas. Therefore, there are 310 map

tasks in total, and 930GB (310GB with 3 copies) data will be generated by the job. Then the sort

example is used to sort the generated data.

Figure 3.9 shows the results comparison of two layouts in terms of execution time. The random

writer is a solely write job, while the sort mapper for sort is a read/write combined job. We can see

that the execution time for all three runs are almost same. We expected a larger gap between G-SD

and random layout resulted by our round-robin group-rack policy. In the random writer example,

the job based on G-SD data layout encountered more failed tasks. However, its running time is

still 2% less than the job based on random data layout. One interesting thing to notice is that we

49



Figure 3.9: Execution time comparison between G-SD and HDFS default random layout

are expecting a slower execution time for G-SD on the randomwrite run because the round-robin

rack distinct grouping method cannot take advantage of the inner-rack transfer speed. One possible

explanation can be that the 31 nodes are located closely in the cluster network.

3.9.4.2 Reverse Lookup Latency

In this section, we evaluate the performance through comparing the response latency of our pro-

posed G-SD RL scheme with the HDFS tree-reversing. We configure the block sizes of HDFS as

8MB, 16MB and 64MB; and the total data size written to HDFS are set as 50GB, 250GB, 500GB,

1TB, 1.5TB and 2TB respectively in randomwriter.

We can see from Figure 3.10 that the G-SD RL outperforms the tree-reversing process in every

configuration. The lines of tree-reversing latencies are all above the lines of G-SD RL. The maxi-

mum speedup of G-SD RL is over 20× of faster than HDFS TR when block size is 8MB and total

data size is 2TB. The average improvement of G-SD is also over one order of magnitude faster.
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Figure 3.10: RL time comparison between G-SD RL and HDFS Tree-Reversing (TR)

Compared with Ceph DMT, the speedup of G-SD RL to HDFS tree-traversing is larger because

HDFS namenode is a single point. Although HDFS tree-reversing does not traverse the whole in-

ode tree and finds one blocks that belongs to the failed node, then uses the double linked-list to find

the rest block IDs, the parallelism of reverse lookup is not as high as Ceph DMT. Moreover, based

on the curve trend, it is reasonable to anticipate that the gap between tree-reversing and G-SD RL

is going to increase with the growing data size. The difference in time will be more significant

when the system data size reaches to petabyte scale.
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CHAPTER 4: PERFECT ENERGY, RECOVERY AND PERFORMANCE

MODEL

4.1 Problem Formulation

In this section, we introduce “PERP” to explore the energy savings via adjusting recovery speed

and the number of spinning-up disks. In a normal energy/performance tradeoff, the usual optimiza-

tion goal is to minimize the energy consumption with respect to certain performance constraints.

While under degradation mode where recovery is initialized, there are three different requirements

that are mutually affected by the other two: energy efficiency, performance and recovery. For

example, to speed up the recovery, the system can: 1) activate more storage nodes to increase the

recovery parallelism, which will increase the energy consumption, or 2) assign more I/O bandwidth

to increase the recovery speed, which will have an adverse affect on the normal performance. Sim-

ilarly, 3) if we want to reduce the energy consumption, a certain number of disks need to be shut

down and this will decrease both performance and recovery speed. Given the knowledge of perfor-

mance constraints, our goal in PERP is to find a balance point between performance and recovery

speed that is able to minimize energy consumption within their constraints (see Section 4.1.2 for

detail).

4.1.1 Workload Model and Assumptions

We define the time interval of interest as t ∈ 1, 2, ..., T . Thus, the workload can be illustrated by

user request arrival rate λ(t). The variants we want to determine are: number of active disks in

storage systems x(t) and recovery arrival rate (recovery speed) γ(t).
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Table 4.1: Notation summary

Boundaries

N Total number of nodes in the cluster

T Time of recovering the disks(total time)

d Data capacity stored in the failed disk(s)

n number of recovery disks

Workload Parameters

t time interval

λt User requests arrival rate in time t

Variants

xt number of active disks

γt recovery speed

As shown in Figure 4.1, the model has a start point at the time when the system enters degradation

mode and recovery is initialized. The end point is arbitrarily longer than the recovery completion

time. We consider a storage system with N disks, denoted by D = {D1, D2, ..., DN}, where the

system operates in slot time t ∈ {1, 2, ..., T}, and disk Di stored αi amount of data. In every

time interval t, requests arrive at the system and each disk. We denote the amount of the user

requests workload arriving at disk Di as λi(t) where
∑x(t)

i=1 λi(t) = λ(t); the amount of recovery

workload arrival rate at disk Di as γi(t) and
∑n

i=1 γi(t) = γ(t) where n is the number of disks that

participates in recovery.

Normal Degraded

T

t

Figure 4.1: Illustration of start point, end point time scales

Before the model itself, we make several assumptions, shown as follows.
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• In the model, we do not consider cascading failures, which means that there are no failures

happening during the recovery process.

• We assume the storage nodes are homogenous and the network transfer speed among each

node is the same. This means the recovery speeds for all nodes are the same.

4.1.2 The Energy Cost Model

As in degradation mode, adjusting one character among energy, performance and reliability will

automatically affects the other two. We are interested in identifying equilibrium points for the

following scenario: given certain performance constraints (required by SLA) and reliability con-

straints (required by the storage system) at each time slot t, find the solution for the number of

active nodes x(t), and recovery speed γ(t) that is able to minimize the energy consumption during

the degradation process. Then, denote the overall throughput of one node as 1 without loss of

generality. Mathematically, we can formulated

minimize E = EO + ES (4.1)

subject to λ(t) ≥ η, R(γ(t), l) = ξ (4.2)

0 ≤ x(t) ≤ N, ξ ≤ T

where E is the total energy consumption during the recovery process; η is the performance con-

straint, and ξ is the recovery time constraint, which means the recovery process should be com-

pleted by a certain amount of time. R(γ(t), l) is the recovery time function, which outputs the

time for recovering l failed disks using γ(t) recovery speed within T total time. Our definitions

on performance constraint and recovery constraint are feasible due to the following reasons—first,
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we define performance constraint based on SLA requirement, which can be measured in response

time or throughput. From the system perspective, each response time can be mapped into a spe-

cific throughput value. The mapping mechanism is introduced in paper [75]. Second, the recovery

constraint is defined based on recovery time, which means that the recovery process should be

completed within a certain amount of time ξ that is no longer than T . Note that when deriving

function R, both multi-disk failure and parallel recovery will be considered (see Section 4.1.4 for

details).

To model the storage system, operational energy cost E consists of two major parts: Operational

energy cost (EO) and Switching energy cost (ES) [38]. Operational energy cost is the energy

consumption during operation time. According to literature [38], operational cost under normal

mode (with no failure) in a homogeneous server center can be modeled using a convex function

f(x(t), λi(t)) with x(t) active servers and λi(t) assigned throughput for node i. This is because

all active storage nodes serves the user requests. However, when a node failure occurs, the sys-

tem will enter the degraded mode and wake up a certain number of storage nodes based on the

data layout schemes to conduct the recovery process. In this situation, the storage nodes can be

easily divided into three parts—1) normal service nodes, which only serve normal user requests;

2) mixed nodes, which handles both normal user requests and the recovery process; and 3) re-

covery nodes, which only conduct recovery process to maintain the level of system reliability and

data availability. Here we model the operational energy cost using three time-varying functions:

f(x(t), λi(t))(i ∈ (n, x(t)]) for normal service nodes, g(x(t), λj(t), γj(t))(j ∈ (m,n]) for mixed

nodes, and h(x(t), γk(t))(k ∈ [1, m]) for recovery nodes. Together in time slot t they use x(t)

active disks, serving a throughput of λ(t) = λ1(t), λ2(t), ..., λx(t)(t) for incoming requests and

γ(t) = γ1(t), γ2(t), ..., γx(t)(t) for the recovery process. Thus, the energy cost EO can be calcu-

lated as follows.
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EO =
T∑
t=1

x(t)∑
i=n

f(x(t), λi(t)) +
T∑
t=1

n∑
j=m

g(x(t), λj(t), γj(t)) (4.3)

+
T∑
t=1

m∑
k=1

h(x(t), γk(t))

In Equation 4.3, f and g can be considered calculated in two parts: compulsory energy cost and

service energy consumption.

It is well-acknowledged that the current Hard Disk Drive(HDD) has three states: busy, idle and

standby [28]. Busy state means the disk is serving requests, which includes rotating the disk’s

plate, seeking data parts and transferring data. While the disk is in idle state, it only spins the plate

without seeking. Standby mode means the disk is spun down, which consumes far less energy than

the previous two. In this model, we assume an active disk is either in idle or busy state; and each

disk is identical.

• Compulsory energy cost is the energy consumption when the disk is not serving any requests

(only spinning the disk plate). As this operation is not related to the incoming requests, we

model it using a fixed parameter p for each disk. Thus, the compulsory energy consumption

for the whole storage system in time slot t is p ∗ x(t).

• Servicing energy cost is the energy consumption for serving the incoming requests (seeking,

accessing and transferring). Let q be the average energy consumption for each request, the

servicing energy cost for node i is qλi(t) if node i is a normal service node (i ∈ [n, x(t)]);

q(λj(t) + γj(t)) if node j is a mixed node (j ∈ [m,n]); qγk(t) if node k is a recovery node

(k ∈ [1, m]). Especially, since both normal requests and recovery requests will arrive mixed

node j with the arrival rate of λj(t) and γj(t), respectively, q((λj(t) + γj(t)) calculates the

total energy consumption to deal with these request.

Combining them together, the operational energy cost for the three types of nodes can be calculated
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as

f(x(t), λi(t)) = p+ qλi(t) (4.4)

g(x(t), λj(t), γj(t) = p+ q(λj(t) + γj(t)) (4.5)

h(x(t), γk(t)) = p+ qγk(t) (4.6)

where p and q are constant numbers.

Note that we do not consider from the request level queueing delay as previous works did [38, 43]

due to the overlap between queueing time and service time among requests in each disk queueing

model, which we find unable to depict the scenario of the disk energy cost. In a typical storage

system, incoming requests will first be placed in a disk queue before being processed. For each

incoming request, the operational energy cost includes queueing delay-based energy costs and

service energy costs. However, when considering the energy cost for each storage node in our

model, there is an overlap between queueing time and servicing time. e.g. when one request is

queued, it means other requests are under processing at this time. Thus we believe simply adding

the queueing delay for each request together cannot accurately illustrate the scenario of our energy

cost model. Instead, we find the following affine function f(λi(t)) = p + qλi(t) for modeling

energy cost in typical servers more suitable for modeling the storage system [38], where p and q

are constant numbers that symbolize the parameters for two costs mentioned above.

The switching energy cost is the energy consumption for spinning the disks up and down. The

most straightforward way is to compute the differences between the active node number in time

slot t − 1 and t, which is |x(t) − x(t − 1)|. Here we define the energy cost of spinning one node

up as υ1 and the energy cost of spinning it down as υ2. ES can be modeled as S(x(t − 1), x(t)),
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which is calculated as follows.

S(x(t− 1), x(t)) = υ1 ∗ [x(t)− x(t− 1)]+ + υ2 ∗ [x(t− 1)− x(t)]+ (4.7)

where [·]+ means that the result is [·] if it is positive and 0 if it is negative. When deciding the

value of υ1 and υ2, we consider the energy cost related to the switching up/down of the storage

nodes and calculate it based on its proportion to the constant energy consumption (of spinning a

disk) p during one time slot. For example, based on the results of our testbed, the time and energy

consumption for switching up a disk from the standby mode to active mode is 10.9 seconds and

13.5 W , while switching down needs 2 seconds and 4.9 W . Thus the total energy consumption

of switching up and down one disk are 13.5 × 10.9 = 147.15 J and 2 × 4.9 = 9.8 J, respectively.

Since the energy consumption of the idle state is p = 10.2 W, the above two energy consumptions

equal to running the disk at idle state for 14 and 0.96 seconds. If each time slot is 14 seconds, we

can set υ1 = 1 and υ2 = 0.07.

4.1.3 The PERP Minimization Problem

Based on the above models, the goal of this energy cost optimization problem is twofold. Subject

to performance and reliability constraints, the model is aiming to: 1) choose the optimal number

of active nodes x(t), and 2) assign the optimal recovery speed γ(t) in each time slot t to minimize
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the total energy consumption during the recovery time [1, T ]. Let γi(t) shown as follows.

min.
T∑
t=1

x(t)∑
i=n

f(x(t), λi(t)) +
T∑
t=1

n∑
j=m

g(x(t), γj(t), λj(t)) (4.8)

T∑
t=1

m∑
k=1

h(x(t), γk(t)) +
T∑
t=1

S(x(t− 1), x(t))

s.t. 0 ≤ m ≤ n ≤ x(t) ≤ N (4.9)

λi(t) ≤ 1, ∀i ∈ [n, x(t)] (4.10)

λj(t) + γj(t) ≤ 1, ∀j ∈ [m,n] (4.11)

γk(t) ≤ 1, ∀k ∈ [1, m] (4.12)

λ(t) ≥ η, R(γ(t), l) = ξ, ξ ≤ T (4.13)

where constraint 4.9 is setting the basic boundaries for x(t); constraint 4.10 to 4.12 define the

throughput bounds for each node; constraint 4.13 defines the performance constraint that satisfies

the SLA requirement and recovery speed constraint that will maintain the considerable level of

reliability, meaning the storage system should recover the failed nodes in less than a certain amount

of time to limit the “time of vulnerability”.

We refer this optimization problem as Perfect Energy, Reliability, and Performance (PERP) Bal-

ance Problem in the remainder of this paper. Among all of the parameters, the input includes the

workload λ, the data capacity of the failed node αi, and the failed node number f . The recovery

node number n is dependent on the data layout scheme. For example, in a chain-declustering data

layout with two-way replication, n is 2 for one data node failure. Note in this model, we do not

explicitly consider the bounds for the active node number x(t) because we will see in Section 4.1.4

that x(t) will always have a relationship with the incoming workload based on constraint 4.10

and 4.11.

In contrast to the prior works which are focusing on trading off energy/performance, PERP is the
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first, to the best of our knowledge, that incorporates reliability factors into the traditional ener-

gy/performance model, and jointly studies the relationships among these three key characteristics.

4.1.4 Solving PERP

By combining the previous Equations 4.4 and 4.6 together, the objective function 4.9 can be derived

as

min.
T∑
t=1

(
x(t)∑
i=n

qλi(t) +
n∑

j=m

q(λj(t) + γj(t)) +
m∑
k=1

qγk(t)

)
(4.14)

+
T∑
t=1

px(t) +
T∑
t=1

S(x(t− 1), x(t))

which subjects to the same constraints from 4.9 to 4.13. To simplify the object function, we merge

the polynomial in 4.14.

min.
T∑
t=1

(px(t) + qλ(t) + qγ(t)) +
T∑
t=1

S(x(t− 1), x(t)) (4.15)

where λ(t) and γ(t) are the summations of each λ∗(t) and γ∗(t), respectively. Define F (x(t), λ(t), γ(t)) =
T∑
t=1

(px(t) + qλ(t) + qγ(t)), the object function turns into the function of x(t), λ(t) and γ(t) in-

stead of λi(t) and γi(t).

Now we want to reduce i and j in constraints 4.10 to 4.12, so that they coincide with the merged

object function 4.15.

Lemma 1 Denote ν∗
i (t) where i ∈ {1, 2, ..., x(t)} as the optimal workload assignment for node i

at time slot t. Then ν1(t) = ν2(t) = ... = νx(t)(t) =
λ(t)+γ(t)

x(t)
.

PROOF. As aforementioned, in a system with x active nodes and ν total request rates, the opera-
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tional energy consumption E for disk i can be modeled as a convex function Ei(νi) = e0 + e1νi

where e0 and e1 are both constants and
∑x

i=1 νi = ν. Then the energy consumption for the whole

storage system is equal to the sum of energy consumption for all disks E(νi) =
∑x

i=1Ei(νi) =

∑x
i=1(e0+e1∗νi). As the sum of convex functions, E(νi) is clearly a convex function of νi. Based

on Jensen’s inequality [6], we have

E(νi) =

x∑

i=1

Ei(νi) =

x∑

i=1

(e0 + e1 ∗ νi) (4.16)

≥ xE(

∑x
i=1 νi
x

) = e0x+ e1x

∑x
i=1 νi
x

which implies that in order to achieve the minimum energy consumption, all servers should be

dispatched the same amount of workload. The optimal workload dispatching rule in minimizing

the system energy cost is to distribute the workload evenly. �
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Figure 4.2: Recovery illustration with non-overlapping nodes and overlapping nodes

The last step is to specify the recovery function R(γ(t), l). As mentioned in Section 4.1.2, we

consider both parallel recovery and multi-node failure. For recovery parallelism, we assume the

recovery speed increase linearly with the recovery parallelism. Take recovering one disk as a
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simple example, two-disk parallel recovery will double the recovery speed of one disk recovery.

Mathematically, it is easy to get
∑ξ

t=1 γ(t) = d from 4.13 due to all recovery speed contributing

to reconstruct one disk. When there are multi-node failures in the system, there are two basic

situations:

1. The failed nodes are recovered on non-overlapping nodes, as shown in Figure 4.2 a). Based

on the weakest link principle [9], the total recovery time is decided by the longest recovery

time of each failed node (ξ = max(T1, T2, ...Tl) where T∗ is the recovery time for each failed

disk). We prove that the recovery time is minimized when T1 = T2 = ... = ξ, as shown

in Lemma 1. In this scenario, we can sum up and get
∑ξ

t=1 γ(t) = d, where d is the total

amount of data to be recovery.

2. The failed nodes are recovered by overlapping nodes, as shown in Figure 4.2 b) and c). The

total recovery time is decided by the shortest time of all possible combinations (ξ = min(all

possible recovery combinations)). Using same proof, T1 = T2 = ... = ξ can achieve the

minimum recovery time, where we can get
∑ξ

t=1 γ(t) = d.

Theorem 1 Let d =
∑l

i=1 γi(t)Ti and γ(t) =
∑l

i=1 γi(t). T = max{T1, T2 . . . Tl}. We will get

minimum recovery time T when T1 = T2 = · · · = Tl.

PROOF. We prove it by enumerating all possible cases. As γ(t) =
∑l

i=1 γi(t), we have γ1(t) =

γ(t)− γ2(t)− · · · − γl(t). Then

d = (γ(t)− γ2(t)− · · · − γl(t))T1 + γ2(t)T2 + · · ·+ γl(t)Tl (4.17)

= γ(t)T1 + γ2(t)(T2 − T1) + · · ·+ γl(t)(Tl − T1).

Case 1: T1 = T2 = · · · = Tl, we have T = T1 = T2 · · · = Tl and d = γ(t)T1. This implies
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T = d
γ(t)

;

Case 2: when not all of them are equal, there must be a one largest T∗. Let the largest be T1, then

we have T = T1 > T2 . . . Tl. Putting this inequation in Equation 4.18, we will derive γ2(t)(T2 −

T1) + · · · + γl(t)(Tl − T1) < 0 and T1 > d
γ(t)

. Thus the value of T is larger than T from case 1,

which means that case 2 cannot achieve minimum recovery time.

Case 3: if T1 < T2 . . . Tl, let Tk be the maximum of all Ti, then we have d = γ1(t)T1 + γ2(t)T2 +

· · · + γl(t)Tl < γ1(t)Tk + γ2(t)Tk + · · · + γl(t)Tk = Tk

∑l
i=1 γi(t) = Tkγ(t). This implies that

Tk > d
γ(t)

.

Therefore, the minimum recovery time minT = d
γ(t)

when T1 = T2 = · · · = Tl. �

According to Lemma 1 and recovery results, the PERP energy cost minimization problem can be

derived as

min.
T∑
t=1

F (x(t), γ(t), λ(t)) +
T∑
t=1

S(x(t− 1), x(t)) (4.18)

s.t. 0 ≤ x(t) ≤ N (4.19)

x(t) ≥ λ(t) + γ(t) (4.20)

λ(t) ≥ η,
∑ξ

t=1 γ(t) = d, ξ ≤ T (4.21)

where constraint 4.20 is yielded by the inequality constraints 4.10,4.11, 4.12. The other con-

straint 4.10 yields x(t) ≥ λ(t), which we ignore in our model due to it being a subset of 4.11. As

is shown in optimization 4.18, F (x) is an affine function and all of the constraints are linear. To

solve this model, we first characterize the object function. It is the sum of two different functions:

linear function F (x(t), λ(t), γ(t)) and iterative function S(x(t), x(t − 1)) with the penalty term

(coefficients) υ1 and υ2. This problem is a typical linear problem that can be easily solved. One

optimal solution output for this linear problem can be presented as x̃(t) = λ(t) + γ(t) while γ(t)
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is the minimum number that achieves
∑ξ

t=1 γ(t) = d. This means that the number of active nodes

should be in proportion to the total throughput of the system (including both normal performance

service and recovery service).

Figure 4.3 shows the example results under a real workload (see Section 4.3 for trace details), in

which the total node number is 120 and the maximum number of mix and recovery nodes is 40,

performance constraint ξ is set equal to the incoming workloads; and recovery time constraints are

always set within 24 time slots, while we increase the recovery amount from Figure 4.3 a) to b).

As shown in Figure 4.3, x(t) = λ(t) + γ(t) holds when the linear equation can derive a feasible

solution, and the recovery speed follows the reverse trends from the normal performance.

(a) recovery time constraint 240, recovery amount 240 (b) recovery time constraint 240, recovery amount 720

Figure 4.3: Illustration of the optimal solutions of Financial I trace with maximum of 120 total

nodes, 30 recovery nodes, the assigned recovery speed for each recovery node. The parameters are

defined as p = 1, q = 0.3, υ1 = 1, υ2 = 0.07.

4.2 PERP and Data Placement Schemes

In general, the PERP model derives a a theoretical guideline that outputs the ideal number of active

nodes x and recovery speed γ at each time slot. However, in a storage system, only having x and
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γ is not enough for practical usage because data layout is the basis of the model. As PERP makes

several mathematical assumptions and ignore the block location information when retrieving the

optimal solution, the results may not be applicable in some data layouts. For example, the ran-

dom data layout, in which objects are randomly distributed to each node, cannot work with PERP

because shutting down any three disks will have 99.9% probability of resulting in data unavail-

ability [16]. In this section, we first explicitly specify the PERP assumptions and implications.

Second, we study the adaptability of PERP on four different data layouts: group-rotational [22],

shifted-declustering [77] and power proportional layouts such as Sierra “power-aware” layout [56]

and Rabbit “equal-workload” layout [15]. Finally we provide an algorithm of choosing active

nodes based on PERP indicated x and the applicable layouts.

4.2.1 PERP Properties

PERP is solved using two assumptions—even workload and equal time recovery. Also, the optimal

solution of active node number follows x(t) = λ(t) + γ(t). We summarize them as preconditions

for data layouts to achieve the PERP optimal solution. In this section, we explicitly define the

preconditions and explain how it is related to data layouts.

• Precondition 1 Even workload: as defined in Theorem 1, the power cost will be minimized

if each node shares the same amount of workload.

• Precondition 2 Equal time recovery: In a multiple node reconstruct scenario, the recovery

time is minimized if the recovery time for each failed node is the same.

• Precondition 3 Power proportional: In degradation mode, the PERP solution x(t) = λ(t) +

γ(t) indicates that the number of active nodes should be in proportion to the total I/O

throughput, which includes both normal performance and recovery. In normal mode with-
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out recovery process, we can get x(t) = λ(t), which means the number of active nodes is

in proportion to the incoming workload. This result agrees with the previous works [17].

Thus this precondition can be achieved if the data layout belongs to one of the current power

proportional layout definitions [15, 56]. 1) “in a k-way replicated storage system, the layout

can maintain g available replicas for each chunk using g
k

proportion of the total nodes.” 2)

“Except the arbitrary replica group, the size of r-th gear is per−1 with each node holding B/i

blocks where i is the number of nodes and B is the number of blocks of a complete replica.”

Note in the second scenario, nodes from different groups store different number of blocks.

Table 4.2: Summary of PERP adaptability study

Equal Equal time Power

workload recovery proportional

Shifted declustering
√ √ ×

Group rotational
√ √ √

Sierra “power-aware”
√ √ √

Rabbit “equal work”
√ √ √

4.2.2 Applicability of Data Layout Schemes

In this section, we study the adaptability to apply PERP on four data layouts: shifted-declustering [77],

group-rotational [22], Sierra “power-aware” layout [56] and Rabbit “equal-workload” layout [15].

A summary of PERP applicability on each layout is shown in Table 4.2.

Shifted declustering is proposed for multi-way replication storage systems. The essential idea is to

evenly distributed the blocks of each node into all other nodes so that the recovery parallelism can

be maximized and the workload can be evenly distributed to other nodes without overloading the

recovery disks, which meets Precondition 1 and 2. However, as the blocks are distributed evenly

on other nodes, this layout meets neither of the power proportional definitions.
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Figure 4.4: Example of Group-rotational Declustering Data Layout with 9 total nodes, 3 replica

groups

Group rotational declustering was first introduced to improve the performance of standard mir-

roring, and then extended to multi-way replication for high throughput media server systems. It

partitions all disks into several groups, and the number of groups equals to the number of data

copies. Each group stores a complete copy of all the data. Sierra “power-aware” layout is pro-

posed to increase the recovery parallelism with respect to power proportionality, which naturally

satisfies power proportional condition. Similar to group rotational layout, it also involves declus-

tering technique to distribute blocks evenly among the recovery nodes to improve the recovery

parallelism.

PERP can work with both layouts because 1) they both maintain the same number of blocks in each

node. If the workload is distributed unbiased, the workload is even, which satisfies Precondition

1. 2) the blocks are replicated evenly on a group of nodes, which means that the blocks from the

failed data node will be recovered evenly, leading to equal time recovery (satisfying precondition

2). 3) They meet the first power proportional condition—the nodes can be divided into k (replica

number) groups with each group containing a complete replica set.

Rabbit “equal work” layout was presented as an “ideal” power proportional layout with each node

containing B/i number of blocks. when opening x disks in this layout, each node can provide

an equal B/x blocks, which means each node is sharing x fraction of the whole workload. This

satisfies precondition 3 naturally. Also, the replicas of each block are placed randomly inside the
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“recovery group”, which means the recovery time for recovering the failed node is statistically

equal (satisfy Precondition 1). Finally, Precondition 2 is also satisfied because even if the nodes in

different gear fails, it is possible to schedule the recovery bandwidth so that each failed node can

be recovered in the same time.

4.2.3 Selecting the Active Nodes

This section presents an Gradual Increasing/Decreasing Algorithm that can specify x(t) number

of active nodes at each time frame t based on data layouts. The basic idea is to increase/decrease

the number of active nodes gradually with the various performance/recovery requirements. At time

slot t, one of the following four scenarios can happen,

1. Case 1: Required number of active nodes increasing x(t) ≥ x(t−1) and recovery bandwidth

increasing γ(t) ≥ γ(t− 1) means both normal performance and recovery requires a higher

throughput. As the recovery is location-dependent, our algorithm first active the nodes that

is able to recover the failed nodes, and then increase the number of nodes correspondingly

based on x(t).

2. Case 2: Required number of active nodes increasing x(t) ≥ x(t−1) and recovery bandwidth

reducing γ(t) < γ(t − 1) means that the normal performance requires a higher throughput

while the recovery process can satisfy the requirement and have room to be slowed down at

time slot t. In this case, we can first active normal performance nodes and then the nodes

that can participate in recovery.

3. Case 3: Required number of active nodes increasing x(t) < x(t−1) and recovery bandwidth

increasing γ(t) < γ(t−1) means that the system can be adjusted to a lower power state with

both performance and recovery requirement reducing. To achieve this, we first seek to spin
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down nodes that does not participate in the recovery, and then spin down the recovery-related

nodes.

4. Case 4: Required number of active nodes reducing x(t) < x(t− 1) and recovery bandwidth

increasing γ(t) ≥ γ(t − 1) means that the system can be adjusted to a lower power state

while the recovery bandwidth requirement is increasing. In this case we first determine if the

system needs more nodes to do recovery and then spin down disk with the order of “normal

performance nodes to recovery-related nodes”.

To better illustrate the algorithm, we provide a case study of finding x number of active nodes on

a group-rotational declustering layout [22] based on PERP results. Figure 4.4 shows the example

data layout with a total number of 9 nodes and 6 maximum mix/recovery nodes. As shown in

Figure 4.5, we denote (i, j) as the jth replica for ith block. Suppose node 1 is under reconstruction;

we randomly generate a workload and calculate the optimal number of active nodes in each time by

using PERP. Then we find the corresponding nodes in the layout following PERP’s output using the

above algorithm, as shown in the table of Figure 4.5. At time slot 1, the minimum number of active

nodes is 4 because of the recovery requirements (Case 1). At time slot 3, the total number of nodes

are increased by one and the recovery speed deceases (Case 2). Since the recovery requirement

can be satisfied by current number of recovery-related nodes, a normal service node 2 is picked.

At time slot 4, case 2 also applies so the nodes 2 and 3 are first added and then spin up 7 since the

required number of active nodes is 7. At time slot 5, both x and γ decreases (Case 3), so normal

service nodes 2 and 3 are spun down and then node 7 is spun down because of the required x is 3.
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Number of
active nodes

x(t)

Active
nodes

Recovery
bandwidth
required

Lower bound
of the number

of recovery
nodes

Actual
number of
recovery

nodes

Recovery
nodes

Mixed
nodes

Normal
service
nodes

3 {1,4,5,6} 0.3 1 3 1 {4,5,6} N/A

4 {1,4,5,6} 0.3 1 3 1 {4,5,6} N/A

5 {1,2,4,5,6} 0.25 1 3 1 {4,5,6} 2

7
{1,2,3,4,5,6,

7}
0.2 1 3 1 {4,5,6,7} N/A

3 {1,4,5,6} 0.2 1 3 1 {4,5,6} N/A

Figure 4.5: Case study of finding the active nodes in group rotational declustering layout. PERP

derives the desired number of active nodes and recovery bandwidth at each time slot (as shown in

the above figure and column with red font in the below table); and the algorithm find the desired

nodes list shown in the table’s second column.

4.3 Methodology

This section describes the experimental methodology, workload, testbed and detailed experimental

setups. Essentially, PERP provides a theoretical guideline of active node number and recovery

speed at each time slot that is able to minimize the power consumption to satisfy the performance

and recovery constraints. Thus some of the following three scenarios are expected to happen

without the guideline of PERP.
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• Performance requirement cannot be reached.

• Recovery requirement cannot be achieved.

• Performance and recovery constraints are both satisfied but more power is consumed.

This power cost function is characterized by four parameters: p, q, υ1 and υ2. Same with the

parameters used in Figure 4.3, we choose p = 1, q = 0.3, υ1 = 1 and υ2 = 0.6.

Workload Our experiments are driven by an OLTP I/O trace named Financial I trace, which is

a typical storage I/O traces from the UMass Trace Repository [14]. This trace is collaboratively

collected by HP and the Storage Performance Council. The workload statistics are shown in Fig-

ure 4.3. In our experimental setup, we make necessary a speedup(∗120) so that the workload can

be applied into our testbed.

Table 4.3: CASS Cluster Configuration

Node Configurations

Make & Model Dell PowerEdge 1950

CPU 2 Intel Xeon 5140, Dual Core,

2.23 GHz

RAM 4.0 GB DDR2, PC2-5300, 667 MHz

Internal HD 2 SATA 500 GB (7200RPM) or

2 SAS 147 GB (15K RPM)

Network Connection Intel Pro/1000 NIC

Operating System Rocks 5.0 (Cent OS 5.1), Kernel:

2.6.1853.1.14.e15

Cluster Network

Switch Make & Model Nortel BayStack 5510-48T Gigabit

Switch

Testbed The experiments are set up in our CASS cluster, which includes one rack of 25 nodes(one

head node and 24 compute nodes). Each node has its own internal storage. Table 4.3 shows the

CASS cluster configuration. In our experiment, we use head nodes as a central control and operate

the internal storage from all other nodes using remotefs [10]. We configure the compute nodes as

servers and head node as a client so that the head node can mount all internal disks of the compute
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nodes. When closing the storage nodes, they are set to hibernate state which consumes 4 W. Each

node is configured to store 80 GB data with a block size 100 MB. In the following experiments,

two nodes are assumed to be under reconstruction, which is 160 GB in total.

Trace Replay Framework A simulation framework was developed to replay traces and operate on

the disks based on the trace workload. The trace replay framework is implemented, which has 2k C

code. The main idea of this framework is to use “Libaio” programming library to asynchronously

access the I/O of each storage node (sending read/write requests).

The trace replay framework consists of six key components: trace parser, replay driver, data layout,

node manager, recovery thread and I/O scheduler. Among them, the trace parser interprets different

kinds of trace formats. The replay driver interacts with the disks and sends the traces to the layout

module. The data layout policy defines the mapping algorithms from logical addresses to the

physical address. The node manager reads the PERP output and adjusts node status based on x. The

recovery thread simulates the recovery process by sending “write” requests to reconstructed nodes

and sending “read” requests to mix/recovery nodes. I/O scheduler also reads from PERP output

recovery speed and tries to assign recovery workloads evenly on the mix/recovery nodes. In our

experiments, we implement Sierra “power-aware” data layout and group-rotational declustering

layout as the initial data layout. In order to test PERP outputs with other configurations. It requires

the active node number x to exactly follows the PERP results. Thus the node manager will not

open nodes as the example shown in Section 4.2.3. Instead, it first maintains one copy of the whole

dataset and opens up the corresponding number of nodes without considering the data location.

Baselines We compare PERP with two power proportional work: Sierra, which aims to maximize

the recovery parallelism (speed) and Rabbit, which recovers the failed data using a fixed number

of nodes within a recovery group. We implement the data layouts in the simulation framework,

mimic their policies and compared the power, performance and recovery with PERP on our CASS
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cluster.

4.4 Experiments

In this section, we present the experiment results. To prove the effectiveness of PERP, the following

tests are conducted. First, we validate PERP’s optimality by changing one of its outputs while

fixing the other one. This includes two scenarios: fixed x, varied γ or fixed γ, varied x. Second,

we compare PERP with baseline policies abstracted from Sierra [56], which is trying to maximize

the recovery parallelism (speed).

4.4.1 PERP optimality

This set of experiments is aiming to show that the PERP outputs x(t) and γ(t) at each time slot are

optimal. We first output the desired x(t) (number of active nodes) and γ(t) (recovery speed) based

on 24 nodes and incoming workloads, then we compare the performance, energy consumption with

fixing one output while adjust the other.

4.4.1.1 PERP vs. Fixed recovery speed γ, varied active node number x

In these experiments, we compare the power and performance for PERP outputs (active node

number x, recovery speed γ) with fixed recovery speed, varied number of active nodes, denoted

as x′. There are three possibilities for x′: 1) x′ < x means x′(t) as active node number is smaller

than x(t) at each time frame. 2) x′ > x, means all x′(t) is larger than x(t) at each time slot. 3)

x′ <> x, means x′(t) is smaller than x(t) at some time frames while larger than x(t) at other

time frames. From x(t) = λ(t) + γ(t), we can easily tell that scenario 1) and 3) are not feasible
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because they cannot satisfy the performance constraints. These scenarios are ignored. To achieve

scenario 2) with a minimum change, we intentionally make x′ = x+i where i = 1, 2. Figure 4.6 a)

and b) show the performance ratio and power consumption comparison for scenario 2). To better

illustrate the performance, we define the performance ratio ratio = pfi/max(pf1, pf2, ...pf24)

where pfi is the performance in bandwidth (IOPS) of node i. As all three configurations satisfy the

trace requirement, the trace is running at its desired speed so the performance difference is small

as shown in Figure 4.6 a)—less than 5% difference among all x′ and PERP x. Meanwhile, with the

increasing number of active nodes, the total energy consumption increases as shown in Figure 4.6

b)—PERP is able to achieve 5% to 10% energy saving comparing to the variant solution.

(a) Performance comparison between
PERP x and x' > x

(b) Total energy consumption between
PERP x and x' > x

Figure 4.6: Comparisons of performance and power consumption when recovery speed is fixed

and number of active nodes varies
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4.4.1.2 PERP vs. Fixed active node number x, varied recovery speed γ

In this experiment, we compare the power and recovery status between PERP x and γ and fixed

x and varied γ, which we refer as “γ′”. Similar with above, γ′ has three possibilities: 1) γ′ <

γ, means the varied recovery speed at each time slot γ(t) is always less than PERP γ(t). This

scenario is apparently not possible because it violates the recovery requirements. 2) γ′ > γ,

means γ′(t) is always larger than γ(t) at each time slot. As the active node number is fixed and

x(t) = λ(t)+γ(t), increasing γ(t) will decrease the performance, which will result in violating the

performance constraint. 3) γ′ <> γ, means γ′(t) in some time frames is larger than γ(t) while in

other time frames it is smaller than γ(t). This scenario is also not feasible because the performance

requirement will not be met when γ′(t) > γ(t). All scenarios violates the constraints thus proving

the optimality of PERP outputs.

4.4.2 Comparison between PERP, Maximum Recovery and Recovery Group

In this section, we compare PERP with two recovery policies abstracted from current power pro-

portional works: Maximum Recovery (MR) policy abstracted from “Sierra”, and Recovery Group

(RG) policy abstracted from “Rabbit”. The key idea of MR is to achieve maximum recovery par-

allelism (speed), which is N/3 in a N total nodes with three-way replication system. That means,

all of the nodes that are participated in the recovery (maximum 16 nodes in our testbed) should be

opened and the recovery speed for each mix/recovery node should be 1 (1300 IOPS). In Rabbit,

the recovery group size is determined by the gear size gsize and number of primary nodes psize

according to the equation groupS = e(psize−gsize)−psize
gsize

. According to Rabbit’s calculation, in a

25-node cluster, the size of the primary group is 3, the number of nodes in the second replica is

6, and the number of nodes in the third replica group is 16. Thus with the gear size of 1, the

size of recovery group can be calculated as 6, which we use for the following sets of experiments.
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We compare these two policies with PERP on recovery speed, number of recovery nodes, energy

consumption and normal performance. Note if the normal performance can not be met even with

all nodes activated, the I/O scheduler will prioritize the normal performance instead of recovery.

We conduct experiments with two recovery amount configurations, one with 3 disks and 240GB

needed to be recovered, and the other one with 4 disks and 320GB needed to be recovered.

(a)  Recovery speed comparison (b)  Number of active nodes comparison

(c)  Energy consumption comparison (d)  Performance comparison

Figure 4.7: Comparison of recovery speed, performance, energy consumption and number of active

nodes between PERP, MR and RG when recovery amount is 240GB

The results shown in Figure 4.7 and 4.8 illustrate the comparison between PERP, MR and RG in

recovery speed, number of active nodes, power consumption and normal performance. In both

sets of experiments, to achieve the maximum recovery speed while maintaining a certain level of

performance constraint, MR opens up all recovery-related nodes in the first several time slots. e.g.

7 time slots for 240GB test and 8 time slots for 320GB test. After that, when all recovery processes

are completed, it goes back to normal mode following its power proportional layout solution. RG

on the other hand, activates one recovery group with 6 fixed number of disks to recover the failed
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nodes. As the trace is not intensive, PERP, MR and RG all satisfy the performance requirements

thus they are running at the trace speed, as shown in Figure 4.7 (d) and 4.8 (d). The largest power

saving of PERP compared with MR and RG are 25% and 20% in 320GB test. And the average

power savings of PERP in these two experiments are 23% comparing with MR and 21% comparing

with RG.

(a)  Recovery speed comparison (b)  Number of active nodes comparison

(c)  Energy consumption comparison (d)  Performance comparison

Figure 4.8: Comparisons of recovery speed, performance, energy consumption and number of

active nodes between PERP, MR and RG when recovery amount is 320GB

4.5 Conclusions

In this chapter, we have proposed “PERP” which minimizes the energy consumption while sat-

isfying the performance and recovery constraints and outputs the provisioning of proper number

of active nodes and recovery speed. The model is motivated by taking recovery process into con-

sideration of the current power-efficiency storage because the degradation mode is becoming an
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non-neglectable operational state, which is overlooked by previous researches. We summarize the

preconditions of deriving PERP results and study the applicability of working with current data lay-

outs. Group-rotational declustering layout is studied as an example of choosing the proper nodes

to activate. According to the comprehensive experiments on the in-house CASS cluster with 25

nodes, we first prove the optimality by comparing PERP with various configurations based on the

original output. Moreover, experiments of comparing PERP with the maximum recovery policy

and recovery group policy indicate that with satisfying both performance and recovery constraints,

our solution saves up to 25% and 20%, respectively.
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CHAPTER 5: DEISTER: A LIGHT-WEIGHT BLOCK MANAGEMENT

SCHEME

Deister is built upon an architecture that consists of M (M ≥ 1) master nodes and N (N >> M)

data nodes, where each node has one or more locally attached disks for storing data. The master

nodes and data nodes are connected by high-speed network switches in a local area network. We

refer each logical data unit as a block. Each master node manages a single namespace, which does

not need any coordinations with other master nodes.

Before the design, we define several terminologies, as follows.

1. The redundancy set is the set of one block and all its replicas.

2. The ISD node is a group of blocks that belongs to one physical data node. Each physical

node can have multiple ISD nodes.

3. The Logic group contains a group of ISD nodes, in which the block to node mapping is

realized using SD layout.

4. The reverse lookup is the process of finding the whole block list that resides on this data

node given a data node ID.

5.1 Overall Design

The Intersected Shifted Declustering distribution algorithm is extended from our previous work

Shifted Declustering (SD) [77, 72], which is an ideal declustering data placement algorithm [77]

and can reach at most (n − 1) parallelism in node reconstruction. Similar to other deterministic

layouts, both data distribution and data lookup is derived using the placement algorithm, which can
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significantly reduce the memory space and maintenance cost. However, as this layout is initially

designed for small-scale RAID like systems, there are two major design challenges when applying

ISD in the DiFS:

1. Low-overhead scale-out ability. When storage nodes are added or removed, the block-to-

node remapping should be incrementally built on the existing block-to-node mapping such

that the data shuffled can be minimized.

2. High recoverability. This contains two aspects: i)Multiple failure recovery. A r-way (r ≥

2) replication architecture is able to provide (r−1) failure recovery. ii) Parallelism recovery.

In the event of node failure, the lost blocks are able to be recovered (re-replicated) in parallel.

block ID 1st host 2nd host 3rd host

blk1 node 1 node 4 node 8

blk2 node 3 node 4 node 7

... ... ... ...

node 1

blk1

blk4

...

Block ManagementBlocks Mapping Table

Datanodes Management Table

Hierachical
Namespace

/

foo bar

file1 file2 file3 file4

blk1 blk2 blk3 blk4 blk5 blk6 blk7 blk8

node 2

blk3

blk9

...

node N

blk10

blk42

...

...

... ...

Figure 5.1: Metadata management method

in HDFS, a typical DiFS

nt

al
ce

k8

node j

Node_to_block_lookup (node j)
=> {blk1,blk4,...}

Datanodes Management Function

Block_to_node_mapping(blk i)

=> {node x, node y, node z}

Block Management

/*Employ deterministic
function to compute

block locations*/

/*Employ deterministic
inverse function

to compute block list*/

Blocks Mapping Function

Hierachical
Namespace

/

foo bar

file1 file2 file3 file4

blk1 blk2 blk3 blk4 blk5 blk6 blk7 blk8

Figure 5.2: Proposed metadata manage-

ment solution

We develop a new block-to-node management system named Deister that aims to achieve three

desirable properties and also effectively address two challenges, as shown in Figure 5.2. Deister

exploits a deterministic block mapping function, which is composed of a series of math functions,

for block-to-node distribution and retrieval. This technique will allow for millions or billions of
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block-to-node records to be removed. Therefore, Deister will achieve light-weight block manage-

ment for large-scale data-intensive file systems, e.g, HDFS. Deister consists of a block distribution

scheme, Intersected Shifted Declustering mapping and its corresponding block management.

1) Intersected SD Mapping adds an abstract mapping layer named Logic Group (LG) between

the original block-to-node mapping. Each data node can belong to multiple logic groups and

blocks are mapped to these groups before they are placed on the data nodes. Thus while the block

distribution and lookup are deterministic, the mapping itself is flexible with a various choices

of choosing nodes to a logical group. The mapping information between a node and a LG is

recorded in a compact table called datanode map, which can be stored on any nodes in the cluster.

Moreover, system changes, such as node addition or node removal, will only influence a subset

of nodes rather than the whole file system. To avoid physical movement of re-mapped blocks, we

propose a smart node-group mapping algorithm to ensure that existing data nodes in each new

logic group are the same as those in one existing group. Thus, most of the blocks re-mapped to

the new logic groups will remain on the original data node, involving no physical data movement.

This mapping ensures high recovery parallelism when node failure happens and minimized block

reshuffle overhead during system expansion, which resolves the scale-out challenge.

2) Self-examining Block Report A reverse lookup function can be achieve, which is able to find the

whole block list given a node number. Based on reverse lookup, we present a corresponding block

management scheme called self-examining block report, which enables each node to identify its

missing blocks. Compared with sending the block reports to master servers for further processing,

self-examining block report can save a large percentage of the maintenance cost on the master

servers.
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5.2 Intersected Shifted Declustering with Decoupled Address Mapping

Our proposed deterministic mapping function Intersected Shifted Declustering (ISD)1 provides

block-to-node lookup by only referring to the low-overhead map of logic groups, which is proposed

to deal with the scale-out challenge. Given a block id, our methods firstly identify its mapped

groups, then obtain the inner group ID and lastly return the nodes containing the given block. The

Equations in the following section constitute our deterministic calculation methods detailed in later

block-to-node mapping steps.

The notation summary is shown in Table 5.1.

Table 5.1: Summary of Notation

Symbols Descriptions

Physical cluster configuration parameters

m Total number of nodes in the cluster

b The block ID

k Number of units per redundancy group

Logic group parameters

X The total number of logic groups

s The number of newly added groups

n The number of nodes in each logic group

Computation output

g(b) The logic group ID that block b is distributed

a(g(b), b) The inner group block ID for block b in LG g(b)

5.2.1 Block-to-node Mapping

Given the block ID, the block-to-node distribution process can be resolved into block-to-group

mapping and inner group block distribution.

Step 1 Block-to-group mapping maps the blocks into a logic group. Denote the total number of

1This section is a close collaboration within our lab. My colleague Xuhong Zhang and I share equal contributions

on the decoupled address mapping algorithm.
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groups as X , the group ID g and the block ID as b. This mapping can be simply implemented

by a module function, such as g = b%X . However, this mapping function will result in heavy

re-mapping when X changes (such as adding new logic groups into the system). In ISD, we

use a modified version of linear hashing [40] due to its ability to accommodate this change.

For instance, with respect to the first group added, only the blocks with g%(2 ·X) = X will

be remapped from group 0 to the newly added group, labeled as X , while all other blocks

will not be affected. Assume that the number of newly added groups s, the group g that a

block b will be mapped to is

g(b) =





b%(X · 2l), if b%(X · 2l) ≥ s

b%(2l+1 ·X), if b%(X · 2l) < s
(5.1)

where l always lies within the bounds 2l ≤ s
X
+ 1 < 2l+1.

Step 2(a) In-group mapping After mapping block b to group g, we will map b to a node within a

group using SD distribution algorithm. Prior to that, we need to transfer the block ID b into

the in-group block ID a because the SD layout arranges its data using a sequential number.

This block ID reassignment step is shown as follows.

a(g(b), b) =





⌊b/(X · 2l)⌋, if b%(X · 2l) ≥ s

⌊b/(2l+1 ·X)⌋, if b%(X · 2l) < s
(5.2)

After this block ID reassignment, the blocks and its replicas will be distributed to nodes

within each LG using SD distribution. SD takes the input of a and outputs three deterministic

locations within the group. The detailed algorithm can be found in [77]. Here we show an

example when the group has 4 nodes and each block has three replicas. The node ID d to put

the in-group block ID a is d = (a+ i)%4, where i is the replica number for a.

83



Logical group Physical node

LG-0 node-1,2,3,4

..... .....

LG-22 node-1,156,23,475

..... .....

LG-1000 node-....

b=22

Datanode Map

block ID

a=0

Inner group
block ID

1 156 23 475

(0,0) (1,0) (2,0) (3,0)

(3,1) (0,1) (1,1) (2,1)

(2,2) (3,2) (0,2) (1,2)

.... .... .... ....

Output node #

1

156

23

In-group

SD mapping

(a,i)

Figure 5.3: Example of block-to-node mapping with LG size of four. Assume that there are 1000
LGs in the system and each LG contains 4 nodes. Instead of maintaining billions of block-to-node

entries, our proposed deterministic methods only record the logic groups to provide block-to-node

mapping.

5.2.2 Reverse Lookup

Contrary to the Block-to-Node mapping, the reverse lookup process finds the ids of all blocks that

reside on a physical node ID. With this process, the missing blocks can be immediately retrieved

in case of a node failure. Also, it is a key process for reducing the maintenance cost of handling

blockreports on the master node.

Step 1 Inner group block IDs reverse lookup. As a mathematical function that has an inverse

function, SD can find the inner group block IDs given the failed node number. For a simple

example, when the group size is four and replication number is three, the inner group block

ID can be calculated as a = 4 · j + (d − i)%4 where i iterates through 0, 1, 2 for each

j = 0, 1, 2..., n.A more detailed inverse function of shifted declustered can be found in

Section 3 [72].
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Step 2 Inner group block IDs to Actual Block IDs. This step reverses the function of block ID

reassignments. With the inner group block IDs a, we find the actual block IDs b by reversing

Equation 5.2.

b =





(2l ·X · a) + g, if b%(X · 2l) ≥ s

(2l+1 ·X · a) + g, otherwise
(5.3)

After this step, an array of all block IDs b[] can be located of the given node ID.

Node
156

Logical group Physical node

LG-0 node-1,2,3,4

..... .....

LG-22 node-1,156,23,475

LG-23 node-156,463,723,5

.... ....

LG-999 node-....

Datanode Map

Which

LGs has

156?

Inner group

node ID

LG-22 1

LG-23 0

Step 1:

Inner Block ID

reverse lookup

LG-22 1,0,3,...

LG-23 0,3,2,...

Step 2:

Inner Block ID

to Actual Block ID
Output Block IDs

1022,22,3022

23,3023,2023

Figure 5.4: An example of reverse lookup for node 156. Assume that the number of LGs is 1000
and each LG has 4 nodes. Reverse lookup can calculated the blocks number that should be on node

156.

5.3 Load-aware Node-to-Group Mapping

By using the above mapping schemes, we can deterministically find three nodes for each given

block. A more important design challenge is to achieve load balancing and data node heterogeneity.

As load balance is automatically guaranteed within each logic group, this problem is transformed

to the level of “assigning proper nodes to a number of logical groups with the consideration of
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data node capacity and load balancing”. Using our block-to-node mapping, this problem can be

determined by the number of logic groups laid on one data node.

More specifically, we define a factor named “Logic Group Coverage (LGC)” factor to symbolize

the number of groups that resides on one data node. Assume that one data node j is covered by α

logic groups where α1 is the number of groups that belongs to [1, s] or (X,X + s]; and α2 is the

number of groups that belongs to (s,X ], the logic group coverage for data node j is:

covj = (α1/2 + α2)/(X + s) (5.4)

Using this LGC factor, we develop a load-aware policy to assign nodes to logic groups, as shown

in Algorithm 5.3.1. The key idea is to iteratively choose the data nodes with less LGC factor so

that the number of blocks distributed on this node can be similar with the others.

Algorithm 5.3.1 Pseudocode of load-aware nodes-to-group mapping

Input: The cluster has m number of nodes, each with a LGC factor cov[];
Output: Assign these m nodes to X equal sized logic groups with the consideration of equal distribution on each node.

Steps:

if cov[] == NULL then

randomly choose one node to put in the first logic group g[0];
end if

Retrieve and sort the LGC factors from all data nodes;

put the sorted nodes into coverageQueue;

int i = 0;

//choose the data node for each logic group g
while i ≤ X do

if coverageQueue.peek() matches the rack requirement then

select fitDataNode = coverageQueue.poll() as one member for the group g[i];
update coverage for fitDataNode;

update coverageuQueue;

if g[i] is full then

i++; continue; //continue for next group

end if

else

update coverageQueue;

end if

end while

When new nodes are added to the system, we choose to add the number of groups. Originally from

linear hashing, for each newly added group (i.e. group gnew is added), half of the data from one of
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the original groups (i.e. group g3) will need to be transferred to the new group. In order to reduce

the amount of data reorganization, we only replace one of the g3’s node with the newly added node

and keep the other nodes the same. In this way, although logically, the data are transferred within

different groups, the amount of physical data transferred is only between the replaced node and the

newly added node.

5.4 Fast and Parallel Data Recovery

In today’s commodity clusters, node failure is a daily situation. In this section, we present the

Deister’s fast and parallel data recovery scheme.

In Deister, each group containing the failed node will find a distinct live node to replace the failed

one in order to achieve parallel recovery. For each affected group gj , the set of live nodes that are

not in gj will be selected as candidate nodes L. Then, the noder with the smallest coverage in L

will be used to replace the failed node for gj . Finally, the coverage of nodes COVN and X will be

updated accordingly before selecting the replacement node for the next affected group.

Figure 5.5 shows an example of choosing recovery targets when Node 2 fails. As Node 2 is initially

covered by Group 0, 1, 2, and 3, each group independently chooses its recovery target—Group

0, 1, 2, and 3 choose to reconstruct their missing blocks to Node 6, 3, 1, and 5 respectively. The

recovery parallelism of our proposed approach is determined by the number of groups that covers

a failed node.
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Logic
group (g)

Physical nodes
in groups

g = 0 1 2 3 4

g = 1 5 6 1 2

g = 3 2 3 4 5

g = 5 1 2 4 6

... ... ... ... ...

Original Block IDs # b
on Node2

{ 0, 128, 384, 512, ...

129, 257, 385, 641, ...

3, 259, 387, 515, ...

5, 133, 389, 516, ...}

Node 2
fails

Logic
group (g)

Physical nodes
in groups

g = 0 1 6 3 4

g = 1 5 6 1 3

g = 3 1 3 4 5

g = 5 1 5 4 6

... ... ... ... ...

Reverse
lookup

Parallel Reconstruction

{0, 128, 384, 512, ...} => Node 6

{29, 257, 385, 641, ...} => Node 3

{3, 259, 387, 515, ...} => Node 1

{5, 133, 389, 516, ...} => Node 5

Smart Group
Remapping

recovery

Figure 5.5: Parallel reconstruction for Node 2 which is covered by Group 0, 1, 3, and 5. Each

group replaced Node 2 with Node 6, 3, 1 and 5 respectively.

5.5 Self-report Block Management

In previous sections, we use deterministic methods to replace the block-to-node mapping table in

Figure 5.1 in order to save memory space on the metadata servers. However, ISD itself cannot

solve the problem at the block management level. In this section, we propose self-examining block

report to minimize the block management and maintenance overhead in current DiFS.

Despite the functions of block distribution and location, the block map needs block maintenance

functions to keep the block-to-node mapping up-to-date in the current DiFS, such as handling data

node block reports. The block-to-node mapping will be synchronized with the block reports that

are sent periodically from data nodes. This brings network overhead.

To avoid this overhead, we propose a self-report block management mechanism, which aims to let
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each data node check its own block report. The key idea is that given a block id and the datanode

map, the previously “recorded location information” can now be calculated locally on any data

node and thus be compared with its own block report locally to recognize the missing blocks.

The block report process is conducted in the following steps:

• The block reports are generated by scanning the data nodes’ local file system, which contains

the physical block location information.

• The list of blocks that resides on each node is calculated locally using the reverse lookup

function.

• The comparison is conducted between the block report and recorded block information. The

physical block locations will be adjusted based on the calculated location information if

differences are detected, meaning that the locations of the physical blocks should uncondi-

tionally follow the distribution function.

5.6 Evaluations

In our this section, we compare Deister with HDFS from two different perspectives. We first

compare the performance of ISD distribution with HDFS default random distribution. Then, we

present the comparison of memory space between ISD datanode map and HDFS block map. More

detailed experimental results can be found in [76].

5.6.1 Testbed

We employ a HDFS cluster with one, two and five nodes serving as masters while 15 nodes serve

as clients and slaves for MapReduce and HDFS. Each node contains two quad-core 2.23GHz Xeon
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processors, 4 GB of memory, and four 7200 rpm SATA 500GB disks. Nodes are interconnected by

1 Gigabit Ethernet. The default block size is set to 64MB, but it varies in each set of experiments.

Each logic group is set as 5 nodes and we initialize 9 ISD groups that guarantee that each node is

covered by three logic groups.

Figure 5.6: Performance comparison between random and ISD replica parament. TeraGen is all

write while TeraSort has read and write.

5.6.2 ISD Placement vs. Random Placement

We run TeraSort benchmarks under one namenode. TeraGen benchmarks are run as follows: a

total amount of 200GB data is written using 90 mappers; and each file has 3 replicas. Therefore,

there are 600GB data generated by the TeraGen job. Then the sort example is used to sort the

generated data with the same number of mappers assigned.

We can see from Figure 5.6 that the execution time on both TeraGen and TeraSort jobs are almost

the same. In the TeraGen run 3 example, the job based on ISD data layout encountered more failed

90



tasks. However, its running time is still 2% less than the job based on random data layout.

Figure 5.7: Performance Comparison of locating one block, where NN is namenode.

5.6.3 ISD calculation vs. HDFS Block Map Lookup

In this experiment, we run HDFS Federation with one, two and five nodes. We shrink the de-

fault block size of each block to 1 MB and write 200GB data to HDFS using TeraGen, which

means that the 200000 entries of blocks are stored in the block map. The time taken to locate

a block and find its hosts is measured by adding a timer before and after the method DFSU-

til.locatedBlocks2Locations() in DFSClient.getBlockLocations. The comparison of the measured

time is shown in Figure 5.7, where the time of ISD calculation is shorter than block map lookup

in all cases. The average speedup of ISD location is 3.7× faster and it stays relatively the same

in all settings. This is because the HDFS Federation handles the metadata independently without

any sharing, which means that the TeraGen jobs and the generated blocks are still handled by one

namenode. Moreover, we expect the lookup time to continue to increase with a larger dataset,
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because the HDFS block map is essentially a hash map, which has the lookup time of O(1) to O(B)

where B is the total number of entries in the namenode. With a larger dataset, the rate of hash

collision also increases.

5.6.4 Memory Space

Here we provide a detailed calculation of the memory space savings of ISD compared with HDFS

block map. Memory space cost in block management has two parts, one part is used for block-

to-node mapping, the other part is used for block information maintenance. We estimate that the

memory space cost for block-to-node mapping in HDFS as detailed in Figure 5.8 (a) and our

proposed Deister as detailed in Figure 5.8 (b). N denotes the total number of blocks stored in

the system. As reported in [53, 13], the total amount of metadata for storing 500 million blocks in

HDFS will occupy about 130 GB RAM on a name node, among which block management accounts

for about 63% of total RAM used. However, in our Deister, only the logic groups information needs

to be kept in memory for block-to-node mapping, which is often less than hundreds of MBs. As

for block information maintenance, it’s offloaded to data nodes by self-reporting scheme, costing

no space on metadata server.

Number of

Blocks

Blocks Map

(used for block to

node mapping)

Block linked list

(used for node to

block mapping)

Total memory

space cost

1024 40KB 48KB 88KB

(1024)
2

40MB 48MB 88MB

(1024)
3

40GB 48GB 88GB

... ... ... ...

N 40-byte * N 16-byte * N * 3 88-byte * N

Number of

Blocks

Total memory space cost

(1024 data nodes, 2048 logic groups,

512 data nodes per logic group )

1024 8-byte * 512 * 2048 = 8MB

(1024)
2

8MB

(1024)
3

8MB

... ...

N 8MB

(a) Block-node mapping memory space cost in HDFS (b) Block-node mapping memory space cost in Deister

Figure 5.8: Memory space cost for block-to-node mapping
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CHAPTER 6: CONCLUSION

In this section, we present concluding remarks of the proposed designs.

Firstly, we have proposed a Group-shifted declustering layout, which can be used in the large

file system and support a fast and efficient reverse lookup scheme. We have summarized the

importance of the reverse lookup problem, which were overlooked in previous researches. We

also examined the current reverse lookup solutions, presented their limitations and proposed a

scalable reverse lookup scheme. G-SD extends our previous work shifted declustering so that this

multi-way replication-based data layout can be adapted in large file systems. According to the

comprehensive mathematical proofs and availability analysis, G-SD is scalable and can largely

reduce the data reorganization overhead of SD when node joining. Moreover, by comparing with

the traditional reverse lookup method including centralized and decentralized metadata traversing,

we conducted real-life experiments to show that the G-SD RL effectively reduced the reverse

lookup response time by more than three orders of magnitude times faster.

Secondly, we have proposed “PERP” which minimizes the energy consumption while satisfying

the performance and recovery constraints and outputs the provisioning of proper active node num-

ber and recovery speed. The model is motivated by taking recovery process into consideration of

the current power-efficiency storage because the degradation mode is becoming an non-neglectable

operational state, which is overlooked by previous researches. We summarize the preconditions

of deriving PERP results and study the applicability of working with current data layouts. Group-

rotational declustering layout is studied as an example of how to choose the proper nodes to open.

According to comprehensive experiments on our CASS cluster with 24 nodes, we first prove the

optimality by comparing PERP with various configurations based on the original output. More-

over, experiments of comparing PERP with the maximum recovery policy indicate that with both
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satisfying performance and recovery constraints, our solution saves up to 25% of energy.

Finally, we are developed a light-weight block management scheme Deister, which uses ISD, a

deterministic declustering block distribution method to scale-up each metadata server by reducing

the memory space overhead and offloading the block report handling to the data nodes. Our exper-

iments and calculations show that the I/O speed of the ISD placement is comparable with HDFS

random placement. The calculation shows that 63% memory space can be saved by ISD in a 1024

node and 500 million blocks.
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APPENDIX : PROOF OF REORGANIZATION OVERHEAD
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In Section 3, we explicitly present the overhead of adding nodes in an already balanced group.

Here we give the proof that how many objects are moved from the original disk to another one.

The addition process could be divided into four scenarios, as shown follows.

Case 1: α is odd, β is even.

In this case, the added group will still have an odd (α + β) number of storage nodes which will

not generate “bubbles” as the case of even number nodes do. So all added nodes are required to

fulfilled with the objects.

PROOF. According to the shifted declustering layout, the layout scenario after addition process is

as follows.

q1 = (α + β − 1)/2 (.1)

z1 = ⌊a/(α + β)⌋ (.2)

y1 = (z1%q1) + 1 (.3)

disk(a, i)1 = (a+ iy)%(α + β) (.4)

In order to calculate the objects moved, we will compare disk(a, i) (before addition) anddisk(a, i)1

(after addition) when a and i are the same in both case.

1. In the first iteration (z1 = 0, y1 = 1), disk(a, i)1 = (a + i)%(α + β) (after addition) while

disk(a, i) = (a + i)%α (before addition). When (a + i) ≤ α, the objects will not moved.

When m < (a + i) ≤ (α + β) the objects will be moved from the following iterations and

three more objects are substituted in the front by the coming objects. e.g. in Figure 3.1, if

β = 2, redundancy group (9,i) and (10,i)(i = 0, 1 or 2) will be moved to the newly added

nodes and (7,2), (8,1) and (8,2) are moved to the newly added nodes. So the number of
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moved objects is 3 ∗ (β + 1).

2. In the following iterations (z1 ≥ 1,y1 ≥ 1), we can consider it as stuffing empty slots—each

iterations’ first β ∗ z slots will be empty because they are moved to the previous iterations.

Moreover, since the total node number is odd and the empty slots’ number are even, there

is no chance for disk1(a, i) = disk(a, i). So every following objects in this iteration are

needed to move to the previous slots and fill them. In this case the moved objects are (q −

1)α ∗ 3.

Add up the above results, the total reorganized objects are [(q − 1)α + (β + 1)]× 3. �

Case 2: α is odd, β is odd.

In this case, the group number will change from odd to even, and “bubbles” are added to maintain

the SD layout.

PROOF. After addition, the layout equations are as follows.

q2 = (α + β − 2)/2 (.5)

z2 = ⌊a/α+ β − 2⌋ (.6)

y2 = (z%q′) + 1 (.7)

db2 = (α + β − 1− z)%(m+ l) (.8)

disk(a, 0)2 = a%(α + l) (.9)

disk(a, i)2 =





(a + iy + 1)%(α + β)∗

(a + iy)%(α+ β)∗∗
, (i ≥ 1) (.10)
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*: if one of the following applies:

i) disk(a, 0)2 < db2 and disk(a, 0) + iy ≥ db2

ii) disk(a, 0)2 > db2 and disk(a, 0) + iy ≥ db2 + n

***:otherwise

where disk(a, i)2 is the disk position for

object (a,i). Then we compare the disk(a, i) (before) and disk(a, i)2 (after) to determine how

many objects are needed to be reorganized.

1. In the first iteration (z2 = 0, y2 = 1), disk(a, i)2 = (a + i)%(α + β) and the “bubble”

db2 = (α + β − 1). While the original disk(a, i) = (a + i)%α and no “bubble” is in it.

So normally the total number of objects moved are 3 ∗ l. Except one case: when β = 1,

there is no need to change any object position, so the number of moved objects are 0 as

Equation 3.16∗∗∗ shows.

2. In the following iterations (z2 ≥ 1,y2 ≥ 1), no matter l is one or not, “bubble”s are generated

in each iteration. The first z column of objects are moving after the “bubble”, which makes

the reorganization process similar as Case 1—all the objects are reorganized to other nodes.

The reorganization overhead is (q − 1)α ∗ 3.

So the total number of reorganized objects is (q − 1)α × 3 when β = 1 and [(q − 1)α+ β] × 3

when β ≤ 1. �

Case 3: α is even, β is odd. In this case, the group number is becoming to odd (α+β) after addition.

Since there are “bubbles” in the layout before addition, they will be filled out after adding nodes
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into the group. PROOF. After addition, the layout equations are as follows.

q3 = (α + β − 1)/2 (.11)

z3 = ⌊a/(α + β)⌋ (.12)

y3 = (z3%q3) + 1 (.13)

disk(a, i)3 = (a+ iy)%(α + β) (.14)

where disk(a, i)3 is the disk position for object (a,i). We compare the disk position disk(a, i)

(before) and disk(a, i)3 (after)for the object (a,i).

1. In the first iteration (z3 = 0, y3 = 1), disk(a, i)3 = (a + i)%(α + β) (after addition)

while disk(a, i) = (a + i)%m (before addition) and db = (α − 1). This means there are

3 ∗ (β + 1) objects from the second iteration as Case 1 did and 3 extra objects to fill the

“bubble”. However, there is one exception: when a = m − 1, disk(a, 0) = α − 1 and

disk(a, 0)3 = α− 1, this object (m-1,0) is moved from second iteration to the first iteration

with a different offset but a same disk. So the total number of objects reorganized for the

first iteration is (β + 1) ∗ 3 + 2

2. In the following iterations (z3 ≥ 1,y3 ≥ 1), disk(a, i)3 = (a+ iy3)%(α+β) (after addition)

while disk(a, i) = (a+ iy)%mor (a+ iy+1)%m (before addition). The situation is similar

to Case 1, all objects are needed to be reorganized to a different disk location.

So the total number of reorganized objects is [(q − 1)α+ (β + 1)]× 3 + 2. �

Case 4: m is even, l is even. In this case, the group will still have even (m + 2) number of nodes.

Adding nodes will not result in the fulfillment of the “bubbles”. PROOF. After addition, the layout
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equations are as follows.

q4 = (α + β − 2)/2 (.15)

z4 = ⌊a/α+ β − 2⌋ (.16)

y4 = (z%q′) + 1 (.17)

db4 = (α + β − 1− z)%(α + β) (.18)

disk(a, 0)4 = a%(α + β) (.19)

disk(a, i)4 =





(a + iy + 1)%(α + β)∗

(a + iy)%(α+ β)∗∗
, (i ≥ 1) (.20)

*: if one of the following applies:

i) disk4(a, 0) < db4 and disk(a, 0) + iy ≥ db4

ii) disk4(a, 0) > db4 and disk(a, 0) + iy ≥ db4 + α

**:otherwise

where disk(a, i)2 is the disk position for

object (a,i). Then we compare the disk(a, i) (before addition) and disk(a, i)4 (after addition) to

determine how many objects are needed to be reorganized.

1. In the first iteration (z4 = 0, y4 = 1), disk(a, i)4 = (a + i)%(α + β) and the “bubble”

db4 = α + β − 1. While the original disk(a, i) = (a + i)%(α − 1) and the “bubble”

db = α − 1. So the total number of objects moved are 3 ∗ (β + 1). Also, we have to the

similar exception as the one in Case 3 Proof 1): when a = α− 1, disk(a, 0) = disk(a, 0)4.

So the number of moved objects 3 ∗ β + 2.

2. In the following iterations (z2 ≥ 1,y2 ≥ 1), the reorganization process is similar to Case 1—

all the objects are reorganized to other nodes. The reorganization overhead is (q − 1)α ∗ 3.

So the total number of reorganized objects is [(q − 1)α+ β]× 3 + 2 �
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