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ABSTRACT 

In modern power systems, renewable energy has become an increasingly 

popular form of energy generation as a result of all the rules and regulations that 

are being implemented towards achieving clean energy worldwide. However, 

clean energy can have drawbacks in several forms. Wind energy, for example 

can introduce intermittency. In this thesis, we discuss a method to deal with this 

intermittency. In particular, by shedding some specific amount of load we can 

avoid a total system breakdown of the entire power plant. The load shedding 

method discussed in this thesis utilizes a Markov Decision Process with 

backward policy iteration. This is based on a probabilistic method that chooses 

the best load-shedding path that minimizes the expected total cost to ensure no 

power failure. We compare our results with two control policies, a load-balancing 

policy and a less-load shedding policy. It is shown that the proposed MDP policy 

outperforms the other control policies and achieves the minimum total expected 

cost.  
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CHAPTER ONE: INTRODUCTION 

Renewable energy has become an increasingly popular source of energy, 

considering the increasing demand for additional electrical energy in the 21st 

century along with the limited fossil fuel reserves, which has enabled significant 

development in renewable energy resources. Furthermore, with all the new 

worldwide regulations and requirements to reduce greenhouse gas emissions, 

several methods are actively studied for renewable energy. At a recent World 

Energy Council (WEC), a study was presented that illustrated that without a 

change in our current energy demand usage, the world energy demand in 2020 

will increase by 50-80% from the 1990 levels [1]. Having such a significant 

increase in energy demand can exert serious pressure on the current energy 

configuration and cause more environmental health damage by the release of 

greenhouse gases such as Carbon Oxide, Carbon Dioxide, Sulfur Dioxide, Nitric 

Oxide, and Nitrogen Dioxide [1, 2].  

Energy Pollution 

The most effective way to reduce these greenhouse gas emissions is to make 

radical changes in the technology of energy production, conversion, distribution, 

and storage [3]. As shown in Figure 1, The US Electric Power produced 38% of 

all the US CO2 emissions in 2012 [4]. The majority of the emissions produced are 

coming from coal plants. The new regulations, Clean Air Act, on clean energy 

force power plants to have a carbon pollution standard [5]. This is measured as 
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tons of greenhouse gas emissions per Megawatt-Hour of electricity produced. 

The concentration of CO2 in the atmosphere should be kept below 445 and 490 

parts per million (ppm). This will ensure a maximum increase in temperature that 

will be held between 2 and 2.4℃. In 2007 the concentration of greenhouse gases 

has already reached 450 ppm CO2. In order to stay in the determined increase of 

2℃, the emission of greenhouse gases should peak as soon as possible, the 

latest being in 2015. Additionally the greenhouse gases should be reduced by 

50-80% of the value it was in 2010 to maintain the desired increase in 

temperature [6]. 

 

Figure 1: USA 2012 CO2 Emissions 

 

In order to reduce these greenhouse gas emissions, a significant body of 

ongoing research is devoted to develop different methods different approaches to 

address this problem. There have been several solutions proposed including 



3 
 

education and training on how to be more efficient with energy, replacing and 

upgrading power plants, insulation of houses, and usage of energy efficient 

lamps [6].  

Renewable Energy 

Another proposed solution is to make use of renewable energy. Renewable 

energy can come in various forms, including the sun, wind, biomass, oceans, fuel 

cells, geothermal, and hydro power.  It is estimated that around 19% of the world 

electricity generation is currently generated from renewable energy. This is 

projected to reach nearly 23% by 2035 [7]. In Figure 2, one can see that the 

production of global installed power generation capacity is rapidly increasing at a 

rate of 3.1% per year for hydro and other renewables generation methods. Solar 

power is expected to have the largest growth rate at 8.3% per year, followed by 

wind at 5.3% per year.  

 

In our research, we focus on the wind energy as a renewable source of energy. 

Since wind energy is the second fastest growing renewable energy, it attracted 

major attention over the past years. Indeed, the most globally utilized renewable 

energy technology in power systems at this moment is wind. In 2012, it delivered 

2.26% of the world’s electricity [8].  One drawback of wind energy, however, is 

that there is intermittency. In order to cope with this imperfection, there are 

several proposed solutions. It can be combined with other renewable energy 

generation to alleviate the effect of intermittency. Other alternatives can be used 
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such as adding an energy storage system or using load-shedding in situations 

when there is an excessive energy demand. 

 

 

Figure 2: Global installed power generation capacity by energy sources 

 

The occurrence of electric supply failure can have serious financial impact on the 

systems, customers, and power companies. If no action is taken rapidly, a power 

company may experience severe damage to expensive equipment. A power 

company that cannot supply sufficient power to cover the demand can activate 

back-up generators, energy storage devices, or can shed some load [9], for 

example, removing household electricity for a certain period of time in order to 

supply other company electricity during peak energy hours. Utilizing back-up 

generators is a reliable technique to handle excess energy demand, but requires 

time for generators to start and get to their optimum running standards. While 

implementing energy storage devices is a rapid method to cope with 
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intermittency, one drawback is that the expenses increase rapidly as the storage 

size increases [10].  

 

Load-shedding has been used to provide reliable and rapid power management 

in overload or intermittency. The downfall of load-shedding is that a cost is 

associated with every amount of load that is shed. By integrating an energy 

storage device with the power system we can reduce the costs associated with 

load- shedding.  

Load Shedding Methods and Applications 

There are several reasons that motivate the use of load-shedding. In particular, 

load-shedding may be used to reduce intermittency, to achieve maximal 

operation of a thermal unit or battery, and other controllable loads [11-16]. Load 

shedding can also be used to save money in industries, hospitals, universities, 

hotels, and other facilities. Objectives such as reducing the operational costs and 

maximizing the profit were also achieved with load-shedding [17]. 

 

Several methods were proposed to efficiently implement load-shedding. In [11], 

probabilistic modeling was proposed in the context of a study to integrate 

renewable resources into the electric power generation portfolio of an island, and 

investigate the feasibility of replacing diesel generation entirely with solar 

photovoltaics and wind energy, supplemented with energy storage. Another 

method to implement load-shedding is tabu-search for optimization [12, 13]. In 



6 
 

these papers the authors describe how to reduce the operational cost and 

maximize the profit by operating generators with higher efficiency. This is done 

by focusing on the reactive power schedule of the controllable load to determine 

the optimal operation of the thermal units that satisfy the voltage constraints. 

Other work focused on particle swarm optimization [14]. There, they modeled the 

load and generation of two microgrids with wind farms to implement optimal 

power flow using particle swarm optimization. The objective was to achieve 

optimal dispatch of controllable loads and generators, as well as to effectively 

utilize the battery storage of each microgrid. Another method implemented an 

algorithm using measured frequency and voltage [15]. In this paper, three 

adaptive combinational load shedding methods are proposed to improve the 

operation of the conventional under-frequency load shedding scheme in order to 

enhance power system stability following severe disturbances. In another paper 

stratified load shedding optimization is studied [16]. There the authors focus on 

the reactive power schedule of the controllable loads. Or stratifying the 

controllable loads into different levels based on the degree of load importance 

and load frequency regulation effect coefficient. Another method is genetic-based 

under-frequency load-shedding in stand-alone power systems considering fuzzy 

loads [18]. In this paper the focus is on the use of an under-frequency relay that 

protects the power system against blackout when the system frequency declines 

to predetermined settings. The genetic algorithm is employed to minimize the 

shed load and maximize the lowest swing frequency. 
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In this thesis, we study a probabilistic framework wherein an operator has to 

sequentially decide the amount of load shedding and resource allocation. We 

adopt a Markov Decision Process (MDP) framework, where load-shedding is 

implemented in order to handle the uncertainty and intermittency of the 

renewable energy source. In this work, windmills provide the renewable energy 

source. The MDP framework is leveraged to determine the most cost-effective 

path to take when considering load shedding in combination with an energy 

storage model. Our goal is to find an optimal or near-optimal policy for load 

shedding and resource allocation to minimize the total expected cost. This policy 

takes into account the probabilistic nature of the renewable energy source. In the 

scenario that we simulate, we incorporate an energy storage device, a power 

supply company with a constant load and generation capacity, and a stochastic 

renewable energy source. The system schematic is illustrated in Figure 3. The 

stochastic renewable energy corresponds to the time-varying wind energy 

available at each stage. 
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Figure 3: System Schematic 
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CHAPTER TWO: MARKOV DECISION PROCESSES  

In this chapter, we provide some necessary background about Markov Decision 

Processes (MDPs).  The described framework is used to implement load-

shedding policies as described in the next chapter. In an MDP we aim to find the 

most cost-effective decisions to make in an uncertain environment. In what 

follows, we outline the fundamentals of sequential decision-making and the main 

components of the MDP framework, namely the state space, the control space, 

and the costs (or rewards).  

Sequential Decision Making 

In a sequential decision-making setting we have an agent or a controller 

interacting with some stochastic environment. At consecutive time steps, the 

agent has to make sequential decisions. The controller aims to choose the 

actions (controls) that maximize an expected total reward or minimize an 

expected total cost, taking into consideration the current and future effect of 

these actions. The incurred costs depend on the states of the system, the actions 

taken, as well as randomness from the stochastic environment. The actions 

taken can influence the evolution of the environment states. This class of 

problems can be generally efficiently modeled using MDPs.  

 

Various real world situations can be modeled as MDPs. A key characteristic of a 

perfectly observable MDP is that, conditioned on the current state of the system 

and the current action of the controller, transitions from the present state to future 
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states are independent of previous states and previous actions [19]. In other 

words, at any given time k, the state of the system captures all information 

needed by the controller to compute the best action. In this thesis we focus on 

discrete time systems.  

 

MDPs have two principal features: (1) a discrete-time dynamic system, and (2) a 

cost (reward) function that is additive over time [20]. At each time, the controller 

observes the system state as its input and generates an action as its output. 

While the outcome of an action is not fully predictable due to the randomness of 

the environment, there is no uncertainty about the state we are currently in, 

hence the name “fully observable” MDP.  

An MDP is defined by a 4-tuple M = <X, U, T, G> [21], where 

 X is a state space, which has all the possible states the system can be in. 

In this thesis, we restrict ourselves to a finite state space. 

 U is the control space consisting of a finite set of permissible actions. We 

also focus on an MDP with a finite control space. 

 T is a state transition probability (TP), given for each state and action. The 

probability distribution T(i,u,j) is the probability of ending in state j є 𝒳 

given that we start from state i є 𝒳, and take action u є 𝒰. This is shown in 

equation (1).  

 𝑇(𝑖, 𝑢, 𝑗 ) = 𝑃{𝑋′ = 𝑗 | 𝑈 = 𝑢, 𝑋 = 𝑖 }  (1) 
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where X and X’ denote the current and next state, respectively. Hence, the 

TP is used to capture the probabilistic state evolution that depends on the 

system state and the control actions.  

 G is the Reward function. This is the expected immediate reward for 

taking an action in each state. Hence, G(x,u) is the reward for taking 

action u, if the system is in state x.  

 

For our research purpose, we focus on discrete MDPs. However, many of the 

approaches developed herein could be extended to more general settings at the 

expense of more computational complexity. 

 

MDPs have been extensively used in various applications. For example, MDPs 

were used in the optimization of grid-connected photovoltaic systems in [22-24]. 

In [25, 26] MDPs were used in systems with demand response technology. 

Optimal electricity supply bidding policies using MDPs were developed in [27]. 

Also, in [28] MDPs were also used to find optimal maintenance policies and in  

other applications in various fields [29-33]. Next, we provide more details about 

the mathematical structure and solution methodologies of MDPs.  

State Space 

As mentioned earlier, the state of the system captures all information needed by 

the controller to compute the optimal control actions. The state of the system 

changes in response to the controller actions. The set of all possible states of a 
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system are known as the state space. Figure 4: MDP Timeline illustrates the 

structure of an MDP at time k. The state evolution equation is shown in equation 

(2)  

 𝑋𝑘+1  = 𝑓𝑘(𝑋𝑘 , 𝑈𝑘 , 𝑊𝑘),         k=0,1, … , N-1, (2) 

where 𝑋k represents the state of the system at time k, 𝑈𝑘 є 𝒰 denotes the 

control, and Wk is an exogenous input known as disturbance or noise that 

captures the uncertainty in system evolution. N is the total number of stages so 

that the last control action is taken at stage N-1. It is important to note that (2) is 

an equivalent representation to the TP introduced earlier in (1). In particular, the 

state evolution describes the system dynamics through the probabilistic evolution 

to a future state based on the current state and control action. If the system is in 

state 𝑋k and we use action 𝑈𝑘 , since 𝑊𝑘  is random, the state evolution can also 

be represented using the aforementioned transition matrix T. The uncertainty 

stems from the disturbance, which is unknown to the controller prior to deciding 

on a particular control action. Based on the state, action, and the realization of 

the disturbance, a cost (or reward) is incurred, which is denoted 𝑔𝑘(𝑋𝑘, 𝑈𝑘 , 𝑊𝑘).  

 

Figure 4: MDP Timeline 
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Control Space 

We also need to define the control space. The control space 𝒰(𝑋𝑘) is the set of 

allowable control actions that a controller can take at time k when the system is 

in state 𝑋𝑘. We denote the control action at time k by 𝑈𝑘 . 

The cost function 𝑔𝑘(𝑋𝑘 , 𝑈𝑘 , 𝑊𝑘) takes into account the current state of the 

system and the action taken at this state. The total cost is additive, meaning that 

the cost incurred at time k, accumulates over time. If the MDP has only a finite 

number N of stages then we have a finite horizon problem. Also let 𝑔𝑁(𝑋𝑁) 

denote the terminal cost that is acquired at the last stage when the problem 

terminates. Note that, because of the randomness in the system, the total cost is 

a random variable. Hence, in order to optimize over the choice of controls we use 

an expected total cost, shown in (3). 

 

 

 𝐸 {𝑔𝑁(𝑋𝑁) +  ∑ 𝑔𝑘(𝑋𝑘 , 𝑈𝑘 , 𝑊𝑘  )𝑁−1
𝑘=0 } (3) 

The goal of the decision maker is to minimize the total expected cost (or 

maximize the total reward). The optimization problem is over the choice of 

policies. It is important to note that the actions can have a long term effect since 

the current control not only affects the current cost, but also the state evolution. 

As such, the decision-maker has to choose controls that balance the tradeoff 

between the current stage costs and the future rewards. 
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Finite Horizon 

In finite horizon problems we have a finite number N of stages after-which the 

problem terminates. In this case, the goal is to design N control policies  𝜇𝑘 , 𝑘 =0, 1, … , 𝑁 − 1. A policy at time k is denoted  𝜇𝑘 and is defined as a mapping from 

the state space to the control space, i.e.  𝜇𝑘:  𝒳𝑘  →  𝒰𝑘. Hence the optimization 

problem can be written as in (4). 

 𝐽∗(𝑋0) = min𝜇0,…,𝜇𝑁−1  𝐸 {𝑔𝑁(𝑋𝑁) +  ∑ 𝑔𝑘(𝑋𝑘,  𝜇𝑘(𝑋𝑘), 𝑊𝑘  )𝑁−1
𝑘=0 } (4) 

One of the most important features that characterize the optimal solution to a 

finite horizon problem is that the optimal policy is time-variant. This is rather 

intuitive since the optimal policy should change as we approach the termination. 

This is in clear distinction to infinite horizon problems, which will be discussed 

next.   

 

We note that it is convenient to use transition probabilities for discrete-state 

systems. The transition probability T(x,u,x’) is the probability of going from state x 

to state x’ taking action u. Here the probability of transition is shown in equation 

(5)  

 𝑃{𝑋𝑘+1 = 𝑥′ | 𝑈𝑘 = 𝑢, 𝑋𝑘 = 𝑥} =  𝑃(𝑥′|𝑥, 𝑢 )  (5) 

In conclusion a discrete-state system can be described in terms of transition 

probabilities or, equivalently a state evolution equation.  
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Infinite Horizon  

In some cases, we have an infinite number of stages. These problems are known 

as infinite horizon problems. These could also be used to approximate finite 

horizon problems involving a finite but extremely large number of stages. In 

contrast to finite horizon formulations, the optimal solution to infinite horizon 

problems is an time-invariant policy, i.e., the optimal rule for choosing actions 

does not change from one stage to the next [20].  

There are various mathematically viable formulations for infinite horizon 

problems. One of the most well known formulations is the discounted cost 

formulation, where we aim to minimize the expected total discounted cost over 

an infinite number of stages. This formulation is given in equation (6). 

  𝐽𝜇(𝑋0) = lim𝑁→∞ 𝐸 {∑ 𝛼𝑘𝑔 (𝑋𝑘, 𝜇(𝑋𝑘), 𝑊𝑘  )𝑁−1
𝑘=0 }. (6) 

Here,  𝐽𝜇(𝑋0) represents the cost associated with the initial state X0 and a 

policy 𝜇 , and α is a positive number between 0 and 1, called the discount factor. 

The discount factor is less than one because the future costs have less weight 

than the cost incurred at the present time [34]. This formulation ensures that the 

problem is well-defined mathematically, i.e. the total cost does not grow to 

infinity, provided that the per-stage cost g is bounded above by a constant M 

and 𝛼 < 1. In this case, the cost  𝐽𝜇(𝑋0) is well defined because it is the infinite 

sum of a sequence of numbers that are bounded in absolute value by the 

decreasing geometric progress (αkM) [34].  
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Dynamic Programming 

Thus far, we have described the objective function in both finite and infinite 

horizon problems. The question remains as of how to solve the corresponding 

optimization problems given that the optimization is over the choice of policies, 

which are mappings from the state space to the control space.  

 

One algorithm known as Dynamic Programming transforms this complex problem 

into a sequence of simpler problems. Dynamic programming is based on the 

principle of optimality. The principle of optimality states that an optimal policy has 

the property that whatever the initial state and action are, the remaining actions 

must constitute an optimal policy with regards to the state resulting from the first 

action [35]. It is well known that the optimal policy 
  
p = {m

0
,m

1
,...,m

N- 1
} can be 

obtained using the recursive dynamic programming algorithm.  

For every initial state 𝑋0, the optimal cost 𝐽∗(𝑋0) of the basic problem is equal 

to 𝐽0(𝑋0), obtained through the recursive dynamic algorithm equation (7), which 

proceeds backward in time from period N-1 to 0. 

(7)    

 𝐽𝑁(𝑋𝑁) =  𝑔𝑁(𝑋𝑁) (8) 

𝐽𝑘(𝑋𝑘) = min𝑈𝑘∈ 𝒰𝑘(𝑥𝑘) 𝐸{𝑔𝑘(𝑋𝑘, 𝑈𝑘 , 𝑊𝑘) +  𝐽𝑘+1(𝑓𝑘(𝑋𝑘, 𝑈𝑘 , 𝑊𝑘  ))}, 
    𝑘 = 0,1, … , 𝑁 − 1, 
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In dynamic programming the combination of the current stage cost with the future 

cost is shown in equation (8). In the finite horizon setting, we have time-varying 

policies; hence, for each hour we have a different optimal policy.  

In the infinite horizon problem, the optimal solution satisfies the celebrated 

Bellman equation 

(9). This is a fixed-point equation that defines the optimal value function. In an 

infinite horizon problem, the optimal policy and the optimal value function are 

stationary (time-invariant). The optimal costs 𝐽∗(1), . . . , 𝐽∗(𝑛) are the unique 

solution of this equation in the discounted cost formulation, where n is the 

number of states, i.e., the State Space = {0,1, … , 𝑛}. 
𝐽∗(𝑋) = min𝑈∈𝒰(𝑋) 𝐸 [𝑔(𝑋, 𝑈)  + 𝛼 ∑ 𝑃(𝑋′|𝑋, 𝑈) 𝐽∗(𝑘)𝑛

𝑋′=1 ] , 
        𝑋 = 1, … , 𝑛, 

 

(9) 

Also, the costs 𝐽𝜇(1), . . .,  𝐽𝜇(𝑛) are the unique solution for the fixed-point 

equation given in 

(10) for an arbitrary stationary policy 𝜇.  

 𝐽𝜇(𝑋) = 𝑔(𝑋, 𝜇(𝑋)) + 𝛼 ∑ 𝑃(𝑋′|𝑋, 𝜇(𝑋) )  𝐽𝜇(𝑋′)𝑛
𝑋′=1 , 

    𝑋 = 1, … , 𝑛, 
 

(10) 
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CHAPTER THREE: LOAD SHEDDING AND RESOURCE 

ALLOCATION POLICIES BASED ON MDPs  

In this chapter, we formulate the load shedding and resource allocation problem 

in the presence of a renewable energy source and energy storage using the 

MDP framework. We show how the different elements of our problem (i.e, the 

battery, wind energy, and the hourly load demand) are mapped to the 

aforementioned MDP framework. 

State Space 

First, we need to define our state space. The state space in our experiment 

corresponds to the battery level. In our experiment we have a 1MW battery. We 

split this battery into 100kW levels. Hence, we have a total of 11 battery levels, 

which correspond to 11 different states. We assume that the battery has a 

maximal capacity that cannot be exceeded. Hence, the maximum charge the 

battery can hold is 1MW. The battery can be charged to any level in one time 

step. In other words, it can go from 0kW to 1MW after one time step if enough 

power is available to charge the battery. Figure 5, illustrates the battery and all its 

possible states. 



19 
 

 

Figure 5: Battery levels shown in kW 

 

One time step is equal to one hour. We will simulate one day, hence we will have 

24 time intervals. The control action determines how much of the battery will be 

used at a given stage. In equation (11), we define the state evolution equation as 

shown previously in equation (2): 

 𝑋𝑘+1 = 𝑚𝑖𝑛[𝑋𝑘 + 𝑊𝑘 − 𝐸(𝑈), 𝐶𝑚𝑎𝑥] (11) 

Here, 𝑋𝑘 is the current battery state, 𝑊𝑘 is the wind energy that we harness, 𝐸(𝑈) 
is the amount of battery power used in 1 hour by taking an action 𝑈. The table for 𝐸(𝑈) is shown in Table 1, and 𝐶𝑚𝑎𝑥 is the maximum battery capacity as 

mentioned earlier, i.e., 1000kW.  In other words, in order to determine the next 

battery level we need to know the previous battery level that we start with. We 

take an action that determines how much of the battery we will use. After we take 

an action the wind realizes itself and we know how much power we can harness 
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from the wind energy. This gets added to the battery and we obtain our new 

battery level. Depending on the action we chose we will have to pay a cost.  

Table 1: Power Used by Each Action possible 

Action (𝑈) Power Used (kW)  

1 500 

2 400 

3 300 

4 200 

5 100 

6 0 

 

Control Space 

As shown in the state evolution equation we have to take an action at the 

beginning of each time interval. These actions have to satisfy the load demand 

after each hour. The demand load is fixed at 500kW. With this in mind, we have 

six actions at each hour. These actions consist of either using the battery, 

shedding some load or a combination of both. Each action we take has an 

associated cost. Table 2 describes the six actions and the cost associated with 

each action. Under each action we can see how much of the battery (B) is used 

and how much of the load is shed (L). As mentioned before, the battery has 11 

states of 100kW increments and each has a cost associated with it. For example, 

if action 1 is used, we utilize the battery to supply the whole 500kW required for 1 

hour to satisfy the demand, hence utilizing 500 kWh. In comparison to action 1, 

action 5 utilizes only 100kW from the battery in 1 hour and we shed 400kW of 

load. The actions we take always add up to 500kW. 
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From each battery state we are currently in there is a probability that we will end 

up in a new battery state for every permissible action. We calculated these 

probabilities based on the probability of the wind speed V. Since we have 11 

battery states we create an 11x11 probability matrix for each action. In order to 

calculate the transition probability for each state, we first have to determine the 

wind speed probability. This is shown in equation (12), which has two parameters 

k and c, which represent the shape and scale parameters, respectively. We 

calculate the transition probabilities based on a Weibull probability density 

function in (13), which is typically used to model wind speed probability [36, 37].  

 𝑓(𝑉|𝑘, 𝑐) =  𝑘𝑐 (𝑉𝑐 )𝑘−1 𝑒−(𝑉/𝑐)𝑘
 (12) 

 

In order to represent the probability distribution for the wind velocity, we use the 

Rayleigh distribution, which is a special case of the Weibull probability 

distribution with k = 2, as shown in equation (13). Here, V is the velocity or the 

wind speed that is changing along the x-axis and c is the mean of the wind 

speed. Hence, the wind is stochastic and cannot be fully predicted; this 

corresponds to the disturbance or noise in the MDP model, which affects the 

state evolution and hence affects our hourly decisions.  

 

 𝑓(𝑉) =  2𝑉𝑐2 𝑒−(𝑉/𝑐)2
 (13) 
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Table 2: Cost Matrix for Each Action 

Action 1  Action 2  Action 3 

B=500 L=0 B=400 L=100 B=300 L=200 

States Cost States Cost States Cost 

0 NA 0 NA 0 NA 

100 NA 100 NA 100 NA 

200 NA 200 NA 200 NA 

300 NA 300 NA 300 500 

400 NA 400 500 400 400 

500 500 500 400 500 300 

600 400 600 300 600 200 

700 300 700 200 700 100 

800 200 800 100 800 100 

900 100 900 100 900 100 

1000 100 1000 100 1000 100 

 

Action 4  Action 5  Action 6 

B=200 L=300 B=100 L=400 B=0 L=500 

States Cost States Cost States Cost 

0 NA 0 NA 0 500 

100 NA 100 500 100 400 

200 500 200 400 200 300 

300 400 300 300 300 200 

400 300 400 200 400 100 

500 200 500 100 500 100 

600 100 600 100 600 100 

700 100 700 100 700 100 

800 100 800 100 800 100 

900 100 900 200 900 200 

1000 200 1000 200 1000 200 

 

Table 3 and Figure 6 show the hourly average wind speed based on 

measurements collected in a remote location in Montana over a period of two 

years [38, 39]. This is the daily average wind speed. By using this 24-hour window 

we can simulate the power system network on an average day. By knowing the 
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mean of each hour we can obtain their Rayleigh distribution functions with 

equation (13).  

Table 3: Hourly Wind Speed Mean 

Hour 1 2 3 4 5 6 7 8 

Avg wind speed 4.45 4.30 4.25 4.35 4.30 4.45 4.20 4.15 

         

Hour 9 10 11 12 13 14 15 16 

Avg wind speed 4.45 4.75 5.30 5.80 6.00 6.25 6.65 6.70 

         

Hour 17 18 19 20 21 22 23 24 

Avg wind speed 6.30 6.10 5.80 5.45 4.85 4.75 4.70 4.20 

 

 
Figure 6: Wind Generation Profile 

 

The power that the wind turbine generates can be calculated using equation (14). 

The power can be calculated if we know the two parameters V and R, where V 

denotes the velocity and R the radius of the wind turbine blades. The air density 

is denoted by 𝜌, which is a constant 1.2235 kg/m3. In this research, we chose a 

wind turbine with a wind blade radius R=45 meters. Using equations (13) and 
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(14) we can calculate the probability that a certain amount of power is generated 

at a specific time.  

 𝑃𝑤 =  0.5 ∙ 𝜌 ∙ 𝑉3 ∙ 𝜋 ∙ 𝑅2 (14) 

Table 4 shows how much power is generated at each wind speed. In Figure 7 

one can see that as the wind speed increases the wind power generated 

increases exponentially.  

 

Table 4: Power generated at different wind speed 

Wind speed (m/s) Power Generated (W)  Wind speed (m/s) Power Generated (W) 

1 3.89E+03  7 1.33E+06 

2 3.11E+04  8 1.99E+06 

3 1.05E+05  9 2.84E+06 

4 2.49E+05  10 3.89E+06 

5 4.86E+05  11 5.18E+06 

6 8.41E+05  12 6.73E+06 

 

 

Figure 7: Wind speed Power 
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Transition Probability 

Since the wind behaves in a stochastic manner, depending on the amount of 

power that we can extract from the wind we can either use power from the 

battery or store the power harnessed from the wind in the next stage. The wind 

distribution that we calculated for the first hour is shown in Figure 8.  

 

Each transition is based on the amount of wind power that is generated. 

Depending on that amount of power, the battery level can increase or decrease. 

With this wind probability we can create the transition probability for the first hour 

for action 1, as shown in Table 5. 

Table 5: Transition Probability 

 0 100 200 300 400 500 600 700 800 900 1000 

0 0.766 0.034 0.028 0.023 0.019 0.016 0.014 0.012 0.010 0.009 0.069 

100 0.724 0.042 0.034 0.028 0.023 0.019 0.016 0.014 0.012 0.010 0.078 

200 0.670 0.054 0.042 0.034 0.028 0.023 0.019 0.016 0.014 0.012 0.088 

300 0.600 0.070 0.054 0.042 0.034 0.028 0.023 0.019 0.016 0.014 0.100 

400 0.503 0.097 0.070 0.054 0.042 0.034 0.028 0.023 0.019 0.016 0.114 

500 0.356 0.147 0.097 0.070 0.054 0.042 0.034 0.028 0.023 0.019 0.130 

600 0.000 0.356 0.147 0.097 0.070 0.054 0.042 0.034 0.028 0.023 0.149 

700 0.000 0.000 0.356 0.147 0.097 0.070 0.054 0.042 0.034 0.028 0.172 

800 0.000 0.000 0.000 0.356 0.147 0.097 0.070 0.054 0.042 0.034 0.200 

900 0.000 0.000 0.000 0.000 0.356 0.147 0.097 0.070 0.054 0.042 0.234 

1000 0.000 0.000 0.000 0.000 0.000 0.356 0.147 0.097 0.070 0.054 0.276 

 

If the wind is blowing below 2.95 m/s we will not be generating enough power to 

increase the battery energy storage. In Figure 8, one can see that below the 2.95 

m/s threshold, we will not receive any additional power from wind power. This 

implies that in the next hour if we do not have 500kW of power in the battery we 
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would have to shed some additional load. But in a scenario where the wind blows 

faster than 2.95 m/s, we can use the additional power generated to charge the 

battery, since in this scenario we can generate power. 

 

For example, in the zone between 100kW and 500kW we are generating up to 

500kW of energy that can be used to store into the battery. As the wind speed 

increases we can generate more power, which can be stored in the battery for 

future use.  

 

Figure 8: Wind Speed Probability 
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Finite Horizon 

We consider both the finite and infinite horizon formulations. In the finite horizon 

problem we have a total of 24 stages. When solving the finite horizon problem we 

implement the dynamic programming algorithm using backward iterations. We 

start from the 24th hour and work our way backwards towards the 1st hour. At the 

24th hour we will have a terminal cost. Based on our previous discussion, in our 

problem we use equation (15). Here we calculate the cost function of each 

action. We choose the action that has the lowest cost—note that the total cost 

consists of the current stage cost and the future cost to go. This is shown in 

equation (4). We repeat this process for each battery state. Since we are 

implementing backward dynamic programming, once we are done calculating the 

cost for each state we proceed backwards to the previous hour. 

 𝐽𝑘(𝑋𝑘) = min𝑈𝑘∈𝒰(𝑋𝑘)[𝑔(𝑋𝑘 , 𝑈𝑘) + 𝐸{𝐽𝑘+1(𝑋𝑘+1)}] (15) 

 

Infinite Horizon 

In the infinite horizon formulation, we need to find a stationary value function and 

a stationary control policy. Each stationary policy 𝜇 is associated with a linear 

function 𝑔𝜇 + 𝛼𝑃𝜇𝐽 of the vector  𝐽, and 𝑇𝐽 is the piecewise linear 

function 𝑚𝑖𝑛𝜇[𝑔𝜇 + 𝛼𝑃𝜇𝐽]. The optimal cost 𝐽∗ satisfies 𝐽∗ = 𝑇𝐽∗.  𝑇𝜇 and 𝑇 are 

contraction mappings that converge to unique fixed points 𝐽𝜇 and  𝐽∗, where  𝐽∗ is 

the optimal value function. 
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In order to solve the infinite horizon problem we implement the policy iteration 

algorithm. The policy iteration algorithm generates a sequence of stationary 

policies. After each iteration, the cost is improved. This policy iteration algorithm 

consists of three steps.  

 

Step 1: The Initialization. In this step we start with a guess of an initial policy μ0.  

 

Step 2: Policy Evaluation. In the second step we compute the corresponding 

cost function Jμk from the linear system of equations (16) (initially k = 0). In this 

equation I, is an identity matrix, Pμk is the transition probability for each policy, 

and gμk is the cost associated with each decision made at each state. α is the 

discount factor. The dimension of this system is equal to the number of states. 

This implies that when there are a large number of states, this approach may be 

too computational.  

 (I − αPμk) Jμk  = gμk  (16) 

 

Step 3: Policy Improvement. In the final step we obtain a new policy μk+1 that 

satisfies equation (17).  Tμk+1 Jμk  = TJμk  (17) 

If the cost of the new policy μk+1 is different from the previous policy μk we go 

back to step 2 and perform policy evaluation again. We keep iterating over these 
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2 steps until we attain the optimal policy. When the new policy is equal to the 

previous policy, the cost will not change. At this point, we would reach the 

optimal policy. 
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CHAPTER FOUR: NUMERICAL RESULTS 

In this section, we present numerical results using the proposed approach. 

Finite Horizon 

The MDP evolution schematic that we used is illustrated in Figure 9. This is a 

simplified schematic showing the first two stages. The battery can increase, 

decrease or maintain its current power level depending on the action taken by 

the operator, as well as the power obtained from the wind. For each action we 

created a transition probability matrix.  

 

Since we are doing backwards iteration, the first step is to choose the policy at 

the last stage and the cost associated with that policy. The policy chosen is 

shown in Table 6. The cost for this hour is the terminal cost, which requires no 

calculation, since each state has its own terminal cost. 
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Figure 9: MDP State Diagram 

 

Table 6: Cost and policy for 24
th

 hour 

State 0 100 200 300 400 500 600 700 800 900 1000 

Cost 500 400 300 200 100 100 100 100 100 100 100 

 

The next step is to calculate the cost for each state from the previous hour. 

Starting with the first state we compute the expected cost for each action. In 

Table 7 we can see the expected cost for each action for state 1 (0 battery level). 

The next step is to apply equation (15) to choose the minimum cost, which in this 

scenario would be to take action 6. We go through all eleven states and record 

the action with the lowest cost. Once we go through all eleven states we obtain 

an optimized policy for that hour. In Table 78 we display the result after 
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optimizing each state for the 23rd hour. We can also see the expected cost 

obtained from Table 7 in the first state value function, shown in Table 8. 

Table 7: State 1 Expected costs  

Action 1 2 3 4 5 6 

Cost NA NA NA NA NA 798.02 

 

Table 8: Cost and Policy for 23
rd

 hour 

State 0 100 200 300 400 500 600 700 800 900 1000 

Action 6 5 6 6 6 5 4 3 2 1 1 

Cost 798.02 798.02 479.1 332.58 200 200 200 200 200 200 200 

 

These steps are repeated until we reach the first hour using the dynamic 

programming recursion in equation (17). To illustrate how the actions are chosen 

for six particular states, Figure 10 shows the optimal control actions for states 

500 to 1000 for the different hours. Every hour a new action is chosen. The 

states 100 to 400 are not illustrated since the main action chosen in these states 

is action 6. This way we obtain 24 different optimized policies corresponding to 

the different hours that will minimize the total cost as shown in Table 9. This table 

shows the optimal actions if we are in any given state at each hour. With this we 

also generate a cost for each state. By adding up the costs at each hour we 

obtain the value function, which is a vector of length n, i.e., one entry for each 

state. The value function (expected total cost) is shown in Figure 11 and in Table 

10. Intuitively, the expected total cost is smaller for higher initial battery levels.  
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Figure 10: Action Chosen for each State 

 

 

Figure 11: Finite Total Cost per State 
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Table 9: Policy for each hour 

Hour 0 100 200 300 400 500 600 700 800 900 1000 

1 6 5 6 6 6 5 6 5 4 3 2 

2 6 5 6 6 6 5 4 3 2 1 1 

3 6 5 6 6 6 5 4 4 2 1 1 

4 6 5 6 6 6 6 5 4 3 2 1 

5 6 5 6 6 6 6 6 5 4 3 2 

6 6 5 6 6 6 5 6 5 4 3 2 

7 6 5 6 6 6 5 4 3 2 1 2 

8 6 5 6 6 6 5 6 5 4 3 2 

9 6 5 6 6 6 6 6 5 4 3 2 

10 6 5 6 6 6 6 5 4 3 2 1 

11 6 5 6 6 6 6 5 4 3 2 1 

12 6 5 6 6 6 5 4 3 2 1 1 

13 6 5 6 6 6 5 4 3 2 1 1 

14 6 5 6 6 6 5 4 3 2 1 1 

15 6 5 6 6 6 5 4 3 2 1 2 

16 6 5 6 6 6 6 6 5 4 3 2 

17 6 5 6 6 6 5 6 5 4 3 2 

18 6 5 6 6 6 5 4 3 2 1 1 

19 6 5 6 6 6 5 4 3 2 1 1 

20 6 5 6 6 6 5 4 3 2 1 1 

21 6 5 6 6 6 6 5 4 3 2 1 

22 6 5 6 6 6 6 5 4 3 2 1 

23 6 5 6 6 6 5 4 3 2 1 1 

 

Table 10: Total Expected Cost after 24 hours. 

State 0 100 200 300 400 500 600 700 800 900 1000 

Cost 3318.4 3318.4 2750.1 2555.8 2398.8 2398.8 2398.5 2398.5 2398.5 2398.5 2398.5 

 

Simulation – Finite Horizon 

Despite the complexity of the DP recursions, it is very important to note that the 

computational burden is all carried out offline since the controller computes the 

policies (mappings) not the actions. Once the mappings are determined, the 
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control actions are simply obtained in real time by mapping the actual state to the 

optimal action.  

 

Now that we obtained the optimal policy for each hour, we can perform a 

simulation of multiple trajectories and observe the average cost over a large 

number of Monte-Carlo runs. In each simulation we simulate one day and 

observe the cost associated with each action that is taken at each hour. By 

adding the costs at each hour we obtain the total cost for 24 hours, which in this 

experiment is the cost of 1 simulation run. In this analysis we ran the experiment 

1000 times and took the average of the 24 hours simulated. We ran the 

simulation for each battery state and observed the average cost, which is 

demonstrated in Table 11 and in Figure 12. The average cost for each state is 

compared to the optimal value function obtained in Figure 11. It is shown that the 

results of analysis and simulation are in agreement.  

Table 11: Average Simulation Cost for Each State 

 State 0 100 200 300 400 500 600 700 800 900 1000 

Sim Cost 3413.2 3307.2 3091.2 2758.3 2560 2400 2400 2400 2400 2400 2400 
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Figure 12: Finite Horizon Simulation vs Optimal Policy Cost 

 

In these simulations we also observed the wind speed with the corresponding 

wind power generated. Note that the wind speed is not stationary as it depends 

on the time of the day. Every hour has a different probability distribution. 

Therefore, the probability to generate a certain amount of energy keeps 

changing. Figure 13 depicts a realization (a sample path) of the wind speed and 

generated energy over the course of one day. The blue axis corresponds to the 

wind speed as it changes throughout the day. The wind speeds at different hours 

are independent random variables but not identically distributed as they are 

drawn from different probability distributions. This simulation is consistent with 

the average wind speed that we obtained in the previous section Figure 6. 

Between the 10th and the 20th hour there is an increase in wind speed in 
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agreement with the average behavior of the wind speed that we measured and 

described in the previous section. The green axis is for the power generated 

based on these wind speeds. 

 

Figure 13: Wind Speed and Power Simulation 

 

As we take an action we recognize that when we store the wind power it is 

generated back into the battery. During the course of the day one can see the 

power level fluctuates depending on the usage and storage, as shown in Figure 

14. As mentioned before, the maximum storage is 1000kW so there are certain 

times when the battery stays at its maximum. The majority of those times come 

between the 10th and 15th hour, where the peak power is generated throughout 

the day.   
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Figure 14: Battery Level during 24 Hours 

 

Policy Iteration – Infinite Horizon 

In this section, we carry out more experiments for the infinite horizon setting and 

adopt a discounted cost formulation. We used a discount factor 𝛼 = 0.9. Solving 

equation (16) gives the value functions for policy iteration for a fixed policy 𝜇. The 

result of one iteration is shown in Table 12 for illustration. For the last hour we 

can start with the policy evaluation, equation (16), and then finish with policy 

improvement, equation (17). 

Table 12: Value Functions for policy Iteration after one iteration 

State 0 100 200 300 400 500 600 700 800 900 1000 

Expected 

Cost 
4298.8 4083.3 4082.2 1411.3 2360 1000.1 1000.1 1000.1 1000.1 1000.4 1000.1 

Policy 2 3 2 6 4 6 5 4 3 2 1 
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Once we calculate the value function we can start calculating the cost for each 

state for each action chosen. This is done by utilizing equation (16). Since we are 

dealing with probabilistic evolutions we get an expected cost for each state. From 

here we chose the lowest cost per state, which defines the policy that achieves 

the minimum cost. The costs computed in the second iteration for each state are 

shown in Table 13. We can observe that the policy has changed and that the 

costs have reduced. We perform another iteration and obtain new values for the 

cost as shown in Table 14. Since this is an infinite horizon formulation we 

calculate the difference between the costs at consecutive iterations until we 

reach a point where the cost does not change anymore upon which the algorithm 

has converged to the optimal solution. The optimal action for each state is shown 

in Figure 15. The error between iterations is calculated until the mean square 

error falls below a small threshold. The difference between consecutive iterations 

is shown in Table 15. The mean square error keeps reducing to a point where 

the difference between iterations is negligible.  

Table 13: Second Iteration Results 

State 0 100 200 300 400 500 600 700 800 900 1000 

Expected Cost 1770.2 1549.6 1352.4 1181.9 1181.9 999.2 999.1 999.1 999.1 999.1 999.1 

Policy 6 6 6 6 6 6 6 5 4 3 3 

 

Table 14: Third Iteration Results 

State 0 100 200 300 400 500 600 700 800 900 1000 

Expected Cost 1744.6 1522.2 1322.1 1146.4 999.3 999.2 999.1 999.1 999.1 999.1 999.1 

Policy 6 6 6 6 6 6 6 5 4 3 3 
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Table 15: Error Mean Square 

Iteration Error 

1 6.62E+06 

2 1.54E+04 

3 3.75E-25 

 

 

Figure 15: Infinite Horizon each State Action 

 

Simulation – Infinite Horizon 

In this section, we simulate trajectories in the infinite horizon setting using the 

optimal policy obtained through policy iteration. Ideally, we would be simulating 

the problem for an infinite number of stages. However, since we have a discount 

factor, equation (10), after a certain number of stages the cumulative cost will 

increase at a very negligible rate since costs further away in the future are 

heavily discounted. We used the policy obtained in Table 14.  
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We ran the simulation for each battery state and recorded the cost incurred 

averaged over a large number of Monte Carlo simulations. The results are shown 

in Table 16 and Figure 16. Again, one can observe that as the battery level 

increases the cost decreases.  

Table 16: Infinite Horizon Cost Simulation 

State 0 100 200 300 400 500 600 700 800 900 1000 

Cost 5000 5000 4000 3000 2000 1000 1000 1000 1000 1000 1000 

 

 

Figure 16: Infinite Horizon Simulation and Optimal Policy Cost for Each State 

 

We can observe how the battery changes every hour as we simulate one day in 

Figure 17.  
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Figure 17: Infinite Horizon Hourly Battery Level 

 

Control Policy – A: Load balancing Policy 

In this section, we compare the computed policy to other policies. To this end, we 

calculated the average cost at each initial battery level for all policies. In order to 

test multiple scenarios we tested a policy that is inspired from the average daily 

consumer load curve. As shown in Figure 18 we can see the average daily 

commercial load curve [40, 41]. From this we can observe that from 8am to 6pm 

there is a big spike in the load curve. During this time it would be best to not 

perform load-shedding because it would interrupt businesses that require 

electrical power in order to continue normal operation.  
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Figure 18: Average Daily Commercial Load 

 

We term this policy, Control policy A. For this policy we take the action to load-

shed when the battery is below 500kW. However, when we are between 8am 

and 6pm, we use the battery as much as possible. This means that if we are at 

100kW, we use that remaining 100kW and shed the remaining load. During this 

time we drain the battery every hour if needed, to load-shed as little as possible. 

Here we also ran 11 different simulations that represent each battery level. The 

first simulation we ran started at 0kW battery charge. With this simulation we 

went through 1000 runs.  Subsequently we kept increasing the initial battery level 

by 100kW for each simulation until we reached 100% battery charge level.  

 

Control policy A consists of two policies of actions. We implement one policy 

between 8am until 6pm and another policy throughout the rest of the day. The 

actions taken in each policy for each state is shown in Figure 19. The main 

difference is that during the mid-day we are more aggressive in utilizing the 

battery than preserving it for when it is needed the most. One method to observe 
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these policies in action is to look how the battery level evolves throughout the 

day.  

 

Figure 19: Actions for Normal and Mid-Day Policies 

 

In Table 17 and Figure 20 we can see the result of this simulation in comparison 

to our MDP optimization policy results. We can see the average cost associated 

with each battery level. Figure 20 and Table 17 show the expected cost for each 

battery level of our simulated MDP policy along with that of Control policy A. This 

figure shows that the MDP policy is significantly better and more cost-effective in 

comparison to Control policy A. As the battery level increases the gap between 

the costs of the MDP and Control policy A also increases.  
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Table 17: Average cost at each state comparison for policy A 

State 0 100 200 300 400 500 600 700 800 900 1000 

Control 

Cost 

5802 5563 5327 5136 4957 4967 5021 5009 4954 4986 4966 

Optimal 

Policy Cost 

3318 3318 2750 2556 2399 2399 2399 2399 2399 2399 2399 

 

 

Figure 20: Control Policy A vs Optimal Policy Cost 

 

In Figure 21 we can observe the battery level evolution throughout the day. 

During the early part of the day we can observe how we are more concerned 

about maintaining a power level above 500kW. Once we have reached 8am we 

are more aggressive with the battery utilization until we reach the end of the peak 

power consumer consumption. After 6pm we become again more conservative 
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with the battery power storage and try to maintain an average around 500kW or 

higher. 

 

Figure 21: Control Policy Battery Level 

 

Control Policy – B: Less Load-Shedding 

The second control policy we compare to aims to maximize the usage of the 

battery throughout the day and to reduce load-shedding. When we reach a 

battery level below 300kW we shed the whole load. This policy is shown below in 

Figure 22. This figure shows that as soon as the battery level reaches 400kW we 

will only take action two. This is the action that uses 400kW of the battery and 

sheds 100kW. In this policy we do not worry if the battery is depleted. Our main 
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focus is to use load-shedding less frequently. When we reach a battery level 

above 500kW we only take action one, which is to use 500kW of battery.  

 

Figure 22: Actions for Control Policy 2 

 

We simulate this policy to observe the average cost in each state in comparison 

to the optimal MDP policy. After running the simulation for each state around 

1000 times we get the average cost that is shown in Figure 23. There is a clear 

difference in the cost for each state in comparison to our optimal policy. If we 

observe the costs incurred for the battery states between 400kW and 600kW we 

can see an increase in costs in comparison with the rest of the states. This is 

because the actions taken at those states have a higher cost than the other 

permissible actions. We also compare both policies A and B with the optimal 
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policy. Control B has a much higher cost than Control A, but both have a much 

higher cost when compared to the optimal policy. 

 

Figure 23: Cost for Control Policy B 

 

Effect of Wind Speed 

In this section, we study the effect of wind speed on the performance. To study 

the effect of wind on the system performance, we analyze the problem with an 

increase and decrease in wind speed. In order the study the decrease in wind 

speed we decrease the average wind speed by 1 at each time interval and for 

the increased wind speed we increase the wind speed average at each hour by 

1. We first observe how the wind power changes for all three scenarios. As 

shown in Figure 24, we can see the amount of power generated under different 

wind speeds. In comparison to the original setting, the increased wind speed 
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results in higher wind power on average, especially in the middle of the day. The 

reduced wind speeds generate much lower average power throughout the day in 

comparison to the original wind speed.  

 

Figure 24: Different Wind Speeds 

 

 

Next, we analyze the effect of wind speed on the control policies by looking at the 

actions for different battery levels. We observe the battery at 100kW, 300kW, 

600kW, and 1MW charge level.  In Figure 25, the hourly action taken for each 

battery level is shown. One main observation is that as the battery level 

increases the actions taken are more aggressive towards utilizing the battery.  
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Figure 25: Hourly Action for Original Wind Speed 

 

Now we consider the actions at reduced wind speed, which is shown in Figure 

26. In comparison to the original wind speed the actions taken in a reduced wind 

speed region are less aggressive towards utilizing the battery. Since the wind 

does not deliver as much power we utilize the battery less often, especially 

during the hours of low wind probability, which run from 4 to 10 in the morning. 

Observing the 600kW battery line, it is seen that we shed more load throughout 

the day, especially in the morning hours in comparison to the original wind 

speed. 
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Figure 26: Hourly Action for Reduced Wind Speed 

 

We conduct similar experiments to compare to the case where we have an 

increase in wind speed. As shown in Figure 27, since we have a higher 

probability to receive wind power at each hour we can be more aggressive at 

certain battery levels. At levels 100kW and 300kW, the actions do not undergo 

any change due since it is not recommended to utilize the remaining battery at 

low battery levels given that shedding some load is more cost-effective. The main 

difference shows at higher battery levels. When the wind probability is higher 

throughout the day we can utilize more battery at almost every hour when 

comparing to the original wind speed.  
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Figure 27: Hourly Action for Increased Wind Speed 

 

If we take a closer look at the actions for the 600kW and 1MW battery level, 

shown in Figure 28, we can observe how the action changes at different wind 

speed regions. At 600kW in the reduced wind setting we utilize action 6 more 

often in comparison to the other two wind regions. This action corresponds to 

shedding the entire load. As the wind probability increases we are more disposed 

to use actions that use more of the battery.  

At the 1MW battery level we observe that with the increase in wind speed we 

tend to utilize one action throughout the day. As we decrease the wind probability 

we start switching actions more frequently to minimize the cost.  
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Figure 28: Actions for 600kW and 1MW 

In Table 18, we can see the number of times a particular action is chosen at two 

different battery levels at different times of the day. These frequencies are 

obtained from Figure 28. At the 600kW battery level we focus on actions 4-6 and 

at 1MW we observe actions 1-3. We can see that at a reduced wind speed more 

load-shedding is used and as the wind speed increases we utilize more of the 

battery. At 1MW we can clearly see that load shedding is very minimal. We only 

load shed 100kW at an increased wind speed and at a reduced wind speed we 

chose to load shed more than at original wind speed.  

Table 18: Frequency of Action Taken at Different Battery Levels 

Actions Chosen at 600kW 4 5 6  Actions Chosen at 1MW 1 2 3 

Original  6 5 13  Original 8 11 5 

Reduced 5 5 14  Reduced 8 10 6 

Increased 10 5 9  Increased 6 18 0 
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Another way to examine how the wind affects performance is to observe the 

battery charge level at each hour. As we observed the actions at each wind 

region, in this section we observe the four initial battery levels. At the first battery 

level, i.e., 100kW, we obtain the result shown in Figure 29. We start the battery 

level at 100kW in each wind region and simulate the battery level change 

throughout the day for one sample trajectory. We can observe that in the reduced 

wind region we are less likely to be aggressive in using the battery compared to 

the original wind speed. Since there is less probability of receiving wind we take 

actions that use the least amount of battery as possible. On the other hand when 

we compare the increased wind region to the original we can take actions that 

utilize more of the battery than in the original region. With a higher probability of 

wind for the coming hours we can take actions that deplete half of the battery 

while being certain that later on enough wind power would be generated to 

replenish the used power.  
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Figure 29: Hourly Battery Level at 100 kW for Different Wind Speed 
 

 

We also consider an initial battery level of 300kW. In Figure 30 we show the 

results of simulation for the different wind regions. It is evident that at the early 

hours the reduced wind region has a slower starting wind power generation. This 

is due to more load-shedding being used in the early stages. When the wind is at 

its peak, i.e., around mid-day, the actions that are taken are not as aggressive as 

for the original wind speed. With increased wind speed, we can be more 

aggressive again in using the battery. We tend to utilize more battery charge 

each hour knowing that getting power back from the wind is more likely.  
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Figure 30: Hourly Battery Level at 300 kW for Different Wind Speed 

 

Going to higher initial battery levels we observe that the optimal policy is 

increasingly more aggressive in battery usage in comparison to the previously 

observed battery level. In Figure 31, we notice that the battery is more 

aggressively utilized for all wind speeds. However, if we compare the reduced 

and the original we can see that when we take action to utilize the battery we use 

400kw of the battery rather than in the reduced wind regions, where we use 

mostly 300kW. On the other hand comparing the increased wind region with the 

original we utilize 500kW more frequently with the battery than the original wind 

region. This shows again the same intuitive trend that as we get into a region 

with a higher wind probability we can be more aggressive utilizing the battery. 
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Figure 31: Hourly Battery Level at 600 kW for Different Wind Speed 
 

 

Finally, we repeat the experiment when the initial battery level is the maximum 

capacity, i.e., 1MW and the results of one trajectory are shown in Figure 32. 

Since we began with higher initial battery storage we begin using the battery 

regardless of the wind setting. Again, at the original wind speed we are more 

aggressive that at reduced wind speeds in using the battery. On the other hand, 

at the higher initial battery level even for the reduced wind region, the battery is 

more utilized that at lower battery levels. In other words, we take the same 

amount of risk utilizing the battery as the original wind region in this level. We 

tend to take more risks at increased wind speeds.  



58 
 

 

Figure 32: Hourly Battery Level at 1000 kW for Different Wind Speed 

 

In Figure 33 we study the effects of different wind speeds on the total cost 

incurred. We show the total average cost for different initial battery level for the 

different wind settings. At 100kW, we notice that in the reduced wind region we 

have a higher total average cost than the original wind region. This is mostly 

because it costs more to shed some load than to use the battery, and since we 

do not have enough wind power to replenish the battery we have to resort to 

load-shedding more often. On the other hand, we can use the battery more 

frequently at increased wind speeds, hence the total cost is lower than the 

original wind region. The same pattern is observed at 300kW. However, in this 

case the differences between the costs corresponding to different wind regions 

are substantially reduced. As we move to higher battery levels these differences 
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are further reduced until the total average costs are equal. This is because we 

have more freedom in using the battery when we start from higher initial battery 

levels, thereby producing a reduced total cost at the end of the day. This starts 

around an initial battery level of 500kW.  

 

Figure 33: Total Cost for Different Wind Speed and Initial Battery Level 
 

Effects of Demand 

In this section, we study the effects of the daily demand on the control policy and 

the associated costs. We compare three different demands. The original demand 

was 500kW, so now we also consider 400kW and 300kW. Note that changing the 

demand requires us to also change the control space. In particular, originally we 

had 6 actions for a demand of 500kW. For the 400kw and 300kW demands, we 

will have a control space consisting of a total of 5 and 4 actions, respectively.  



60 
 

In Figure 34 we show the costs for the different demands. When comparing the 

cost in the 100kW battery level we can see that the 500kW demands has a 

slightly higher cost than the other two demands. But, as we increase the battery 

charge level the costs do not seem to depend much on the demand. This is due 

to the fact that the costs for the actions do not change. Even with less demand 

we can see that we have an equal cost at higher battery levels. Since at each 

hour we have to pay a minimum of 100, over a 24-hour period the minimum total 

cost will be 2400. This is the reason we get those values at battery levels 600 

and 1000kW.  

 

Figure 34: Different Demand Costs 
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Effect of Load Shedding Costs 

In this section, we study the change in performance as we increase the cost of 

load-shedding. We compare the total cost of the optimal policy to the other 

control policies. We test the four previous battery states again, namely, 100 kW, 

300kW, 600 kW, and 1MW. At each battery state we simulate our policy a large 

number of times to get an estimate of the average cost. We change the load-

shedding cost two times to study its effect on the optimal policy. We have three 

load-shedding costs. The first cost, termed original, is the load-shedding cost that 

was initially used. The second cost is calculated from the percentage of the load 

we are shedding and multiply the cost by 1.2. Finally, the third cost is computed 

from the percentage of the load we are shedding, but this time we multiply the 

cost by 1.4. In Table 19, for example, for action 2 we load-shed 100kw of the 

500kW total demand. This means, we load-shed 1/5 of the load. By multiplying 

the original cost time 1.2 we get the new cost. When it comes to multiplying the 

cost 1.4 times we have to make sure that we put a heavy penalty on the first four 

stages of the battery. Since these actions are not possible we must increase the 

value in the first four battery states. 
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Table 19: New Costs Example 

Action 2 

B=400 & L=100 

States Cost 1.2x LS Cost 1.4x LS Cost 

0 1000 1200 3400 

100 1000 1200 3400 

200 1000 1200 3400 

300 1000 1200 3400 

400 500 600 700 

500 400 480 560 

600 300 360 420 

700 200 240 280 

800 100 120 140 

900 100 120 140 

1000 100 120 140 

 

If we compare our original policy with the two control policies costs we can 

clearly see the difference in total costs in each battery state. In Figure 35 we can 

see this difference. The original cost shown in black is the one with the lowest 

total cost in each battery level. In green we can see the cost of control policy one, 

here we use the daily load demand curve as policy rule. During business hours 

we implement load-shedding as minimal as possible. In the blue control policy 

two, we implement load-shedding whenever we are below 300kW power level. 

Otherwise we use as much of the battery as possible. 
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Figure 35: Original Load Shedding Cost Comparison 

 

In our second comparison where we start increasing the cost of load-shedding, 

we first obtain a new cost for each action in each state as shown previously. In 

Figure 36 we can see the result of this simulation. By increasing the load-

shedding cost we can see an increase in the overall total costs. When comparing 

the two control policies with the original policy it shows that the original policy has 

a total cost that is a lot less than the control policies. By increasing the cost of 

load-shedding our method of solving is still providing optimal results. Not only is it 

less costly in comparison to the other two control policies, but it is a significant 

difference in cost.  
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Figure 36: 1.2x Load-Shedding Cost Comparison   

 

Finally for our final simulation, we simulate the cost of load-shedding with an 

increase in load-shedding cost of 1.4 times. The result of simulation is shown in 

Figure 37. In these results we can clearly see that our optimal policy that we 

obtain is performing a lot better than our control policies. Our total costs keep 

increasing due to the increase in cost of load-shedding. But if we compare the 

total cost of our optimal policy to the other two control policy the control costs do 

not even come close to the original policy for all costs that we simulated. 
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Figure 37: 1.4x Load-Shedding Cost Comparison    

  



66 
 

CHAPTER FIVE: CONCLUSIONS & FUTURE WORKS 

Due to the recent rapid expansion in renewable energy sources, various 

challenges arise when we try to integrate renewable energies with the current 

generation methods from power plants that use, for example, diesel engines or 

nuclear energy. In this thesis, the renewable energy source is the wind energy. 

This can cause intermittency on the power generation that could lead to various 

problems, such as increased costs for power generation companies or severe 

equipment failures. In this thesis, we proposed a method to minimize the cost 

stemming from this problem. 

 

We proposed a methodology based on an MDP formulation whereby we 

obtained optimal load-shedding policies that can be potentially reduce the total 

cost incurred by the power company. In order to study the stochastic behavior 

and intermittency of the wind energy, we assumed a constant demand. We also 

used an energy storage model to help reduce the load shedding by supplying 

power when needed and storing power if we were generating a surplus.  

 

To this end, we first obtained the average wind speed from data collected over a 

two-year period. The average wind speed was then used to generate a 

probabilistic model for the power generation at various wind speeds. Specifically, 

the wind velocity probability was modeled using a Rayleigh distribution, which is 

a special case of the Weibull probability distribution.  
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Next, we considered the finite horizon formulation wherein the optimal control 

policies are obtained for 24 hours. The problem was mapped to an MDP 

framework with suitably defined state, space, control space, state evolution and 

cost functions. Using Dynamic programming, we started from the 24th hour of the 

day, obtained our cost function and worked our way backwards towards the first 

hour of the day generating the optimal time-varying policy. By solving the MDP 

problem with backwards dynamic programming, we calculated at each hour the 

optimal policy defined as a mapping from the state space to the control space. 

The optimal value function obtained from dynamic programming was compared 

with the total average cost from simulations where we average over a number of 

Monte Carlo runs and these were shown to match for the different states.  

 

We also considered an infinite horizon formulation with discounted cost. For this 

setting, we implemented policy iteration to obtain the optimal policy as a solution 

to the discounted Bellman equation. The costs from simulations and policy 

iteration were shown to closely match. A major difference from the finite horizon 

counterpart is that the policy in this setting is time-invariant (stationary).  

 

We compared the finite horizon optimal policy to other control policies, namely a 

load balancing policy and another policy that uses minimal load shedding. The 
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proposed MDP policy was shown to significantly outperform the other policies, 

i.e., produces a significantly lower average cost for each state.  

 

We studied the effect of various system parameters on the performance of the 

optimal policy. In particular, we investigated the effect of different wind speeds on 

the average cost and the control policy. It was shown that higher wind speeds 

result in lower costs. At lower wind speeds, the average costs increase since we 

have a reduced capability of replenishing the power used from the battery. We 

also concluded that the optimal policy tends to be more aggressive in utilizing the 

battery at higher average wind speeds.  

 

We also studied the effect of demand, and observed that the optimal cost is not 

too sensitive to the demand level especially at higher battery levels where the 

cost cannot be reduced any further.  

 

Finally, we investigated the effect of the load-shedding cost on the system 

performance. First, it was observed that the total cost increases for the optimal 

policy, as well as for the other control policies. Nevertheless, the optimal policy 

was shown to be significantly better than the aforementioned control policies in 

terms of total costs. Control policy B, which uses less load shedding, has a much 

higher cost than control policy A, which uses load balancing.  
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In the future, we would like to consider problems with a larger state space by 

having finer battery levels, as well as a larger control space with more 

permissible actions. However, in such settings we have to deal with the so-called 

curse of dimensionality. One way to approach this problem is to resort to 

techniques of approximate Dynamic programming [42]. Moreover, in this thesis 

we considered states that are perfectly observable. The same techniques can be 

extended to situations with a richer state space, wherein parts of the states may 

be only partially observed. In this case, we can invoke tools from the theory of 

Partially Observable Markov Decision Processes (POMDPs). In such settings, 

the state can be replaced with a sufficient statistic known as the belief, which is 

the posterior distribution of the state given all past information. We can then 

leverage solution methodologies such as point-based value iteration to find the 

optimal allocation and load-shedding policies. Finally, we could consider 

scenarios where certain parameters of the wind distribution are unknown. This 

requires combining DP with learning using techniques of reinforcement learning 

which are known to strike favorable tradeoffs between exploration and 

exploitation.  
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