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Abstract

A fundamental problem in conservation biology and fisheries management is the ability to

make educated decisions based on the data collected. Fish populations and their spatial

distributions need to be represented accurately for conversation efforts and management

decisions. Methods such as modeling, surveying, and tracking can all be used to collect data

on a particular fishery. To include the movement patterns in conservation and management,

one needs to work with and process fish tracking data or data exported from fish movement

simulation models. This data can often be difficult to process. This topic is becoming

increasingly popular as technology to accurately track and log fish did not exist in the

past. With all of this data being generated, real or simulated, tools need to be developed

to efficiently process it all, as many do not exist. Pytracks attempts to fill a currently

existing gap and help programmers who work with simulated and observed simulation data

by allowing them to visualize and analyze their data more efficiently. Pytracks, as presented

in this thesis, is a tool written in Python which wraps raw data files from field observations

or simulation models with an easy to use API. This allows programmers to spend less time

on trivial raw file processing and more time on data visualization and computation. The

code to visualize sample data can also be much shorter and easier to interpret. In this

thesis, pytracks was used to help solve a problem related to interpreting different movement

algorithms. This work has a focus on fish movement models, but can also be relevant for

any other type of animal if the data is compatible. Many examples have been included

in this thesis to justify the effectiveness of pytracks. Additional online documentation has

been written as well to show how to further utilize pytracks.

v



Chapter 1

Introduction

A trait which is common between almost all aquatic lifeforms is their ability to move (Dia-

mond et al. 2013). They could move on their own accord, or be forced by an external force

such as currents and other organisms (Campbell et al. 2011). When animals move, they

usually always have reasons to move. The most basic reasons behind animal movement

are to seek out more favorable conditions and avoid unfavorable ones (Crouse et al. 1987).

Collectively, because every organism is moving around, they transport nutrients, biomass,

and dynamic energy within ecosystems and across distinct ecosystems (Hussey et al. 2015).

To study this further, technology needs to be able to effectively track an animal. Recently

developed aquatic telemetry technology allows us now to effectively and cheaply track an-

imals (Creekmore 2011). Today, there are two main ways to track aquatic animals using

observations, acoustic and satellite telemetry (Hussey et al. 2015). Animals which are

tagged with acoustic devices are detected by receivers based on the ground, such as on a

buoy or boat. Other devices can communicate via satellites overhead which then relay the

data to a land based data collection facility (Xu et al. 2013). Along with the technology

to effectively track animals, high resolution satellite imagery has allowed us to accurately

capture and describe the environments these organisms live in (Yemane et al. 2009).

Individual based animal movement models usually have two components. The first compo-
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nent is the grid, or the simulated environment. The second component is the movement

model, which is then used to simulate the movements of individuals on the grid. An exam-

ple of a grid could be a lake or a section of a sea. This grid will be broken up into cells, each

containing data about the conditions in that cell (Khurana et al. 2012). For a model, the

two most basic metrics or indicators of habitat quality describing a cell is the mortality fac-

tor, which describes how detrimental the cell is to the individual, and the growth potential,

which describes how fruitful the cell is for the individuals which pass through it (Gu 2010).

Together, these two metrics can be subtracted to achieve the habitat quality (Watkins &

Rose 2014) which is the type of data used on the grids in this thesis:

(1) HabitatQuality = Growth − Mortality

The movement model portion of the simulation is more complex than the grid portion due to

there being more information calculations involved (Xu et al. 2013). These models usually

simulate and follow the entire lifetime of multiple tracks, with each track starting on the

grid at a determined location. These simulations usually have very complex calculations in

attempt to closely simulate what a real fish would do when put into a similar grid (Intel

IT Center 2013). In these models, multiple formulas are used which attempt to simulate

multiple aspects of a fish’s life (SAS 2012). Formulas and rules need to be derived for

components of the model such as the food uptake, biomass accumulation and predation.

This is not the focus of this thesis. For further information, please refer to (Watkins & Rose

2014) which discuss the details of the movement models.

2



Chapter 2

Methods

2.1 Requirements

The goal of this thesis was to develop a tool which allows users to more easily deal with

the grid and tracks data generated by fish movement models. The tool is easily adapted

to more irregularly sampled tracks data from observations. Depending on the amount of

details required, these files are often quite large and have a lot of multivariate data for the

user to potentially utilize. If the proposed tool made wrapping this data in a format which

allows a user to more easily use it, then this type of data can be more accessible to more

people.

As the goal of this tool was to make the data from these models more accessible, the

programming language Python was chosen. Along with being a fairly easy language to

learn, Python is also very powerful. Due to its popularity, there are many libraries built

using Python. Python is also widely used in the scientific community because of its ease of

data calculation and visualization (Kumar 2015). Pytracks does this by building on what

Python does already; making programming accessible to more people. Pytracks expresses

the data raw text files exported by the modeling problems to the user in a pythonic way,

saving the user effort and development time for their potential research.

3



The place that pytracks fits into a user’s visualization research or project using data gener-

ated from a movement model can be shown in Figure 2.1 below.

Generation Input Processing Visualization

Model
(external/user)

Python
(pytracks)

Python
(pytracks/user)

Python
(matplotlib)

Generic Flow of Data

Sources and Tools Used for Each Layer

Figure 2.1: Four step flowchart describing steps required to visualize movement model data.
On the top are the steps, and on the bottom is what users usually use and what was also used
in this work. In the parenthesis shows that pytracks handles the input step and part of the
processing step. If pytracks is not used, then the user would have to write all the code to input
data and also some to process the data. This shows how much pytracks helps with the entire
process.
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2.2 Pytracks Structure

As Python libraries should be, pytracks was coded in a modular fashion. There are 4 sub-

modules and 7 main classes in pytracks, each wrapping a specific part of the raw data the

user specified to read in. Figure 2.2 shows a flowchart of how the data is processed by

pytracks. Table 2.1 gives a short description of each module and what classes that module

contains.

Model

Raw 
Data

input
module

grid
module

tracks
module

Visualization
and

Analysis

stats
module

API

Figure 2.2: A flowchart which shows the movement of data through pytracks. Raw data is
generated by a model and then passed to the input module. The input module then translates
the raw data into usable objects for the track and grid modules. These modules can then be
used to visualize the data. Also, the trackmodule has the ability to pass data to the statsmodule
to then allow the user to run simple statistical analysis on the data read in.
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Table 2.1: The modular structure of pytracks.

Module Class Description

input GridWrapper Wraps a grid data file into a Grid object

input TrackWrapper Wraps a track data file into a TrackSet object

grid Cell Describes a single cell in the grid

grid Grid Holds Cell classes used to describe the grid

track Track Describes the entire lifetime of a single track

track TrackSet Holds Track classes with internal methods

stats Stats Generates a statistical overview of the track data
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Chapter 3

Data

3.1 Source

In all of the examples shown, the data used was generated by movement models written by

Katherine Shepard Watkins and Kenneth A. Rose. Further detail about the construction

of this model can be found in (Watkins & Rose 2014). The data extracted for analysis in

this thesis was the first grid and both resolutions described in the paper.

3.2 Background

Pytracks is built around accepting data from individual based models which use super-

individuals. Super-individuals refers to a particle which represents some number of identical

individuals (could be a school) with all of the individuals of a super-individual assumed to

behave like the super-individual. (Barbaro et al. 2009). It is a method used by modelers

to create more statistically viable data for their analysis but also keeping computational

expense to a manageable level. This is why worth is included in the model’s output. Worth

is an intuitive name, and simply refers to the amount which that particular individual is

worth. For example, if a super-individual represents 1000 individuals, then it’s worth is 1000

whenever output statistics are computed about that individual. For example, the average

7



weight of two super-individuals with weights 10 and 20 and worths 1000 and 990 would be:

(2) 14.73 = (10x1000 + 20x900)/(1000 + 900)

3.3 Raw Data Requirements

This section explains the format in which the data must be in to be usable by pytracks.

3.3.1 File Requirements

1. Raw text file

2. One entry per line

3. Tab or white-space delimited

4. File can hold multiple sets of data. See the Sectioned parameter in the input methods

in pytracks.input.

Table 3.1 and Table 3.2 below show the format pytracks expects the data to be in by default.

The values below are the default ids used in the program. Every column ID can be changed

except Section, or Sect, which must be the first column and thus have an ID of 0. The user

can have multiple extra data columns, which must be specified when wrapping the data file

with the appropriate function.

3.3.2 Grid File

Table 3.1: The structure of a grid data file pytracks expects by default. This format can be
modified when wrapping the file with GridWrapper.

Sect X Y Extra

0 1 2 3-N

8



3.3.3 Tracks File

Table 3.2: The structure of a tracks data file pytracks expects by default. This format can be
modified when wrapping the file with TrackWrapper.

Sect Tick Track X Y Grow Mort Worth Weight Extra

0 1 2 3 4 5 6 7 8 9-N

9



Chapter 4

Example Usage

4.1 Introduction

As the major use of pytracks is to make it easier for people to use data exported by simulation

models or collected from field observations, it has the potential to be used in a variety of

ways. Users can take the data and run statistical analysis on it. They can also visualize

the data using various well known Python visualization modules. Although pytracks has

many uses besides just visualization, most of the examples which will be discussed below

will only be centered around pytracks helping users visualize data.

One major module which is used by many people who use Python to visualize data is

a module called matplotlib. This allows the user to visualize data similar to one would

visualize data in the fairly well known program called MatLab. Pytracks is built to closely

work with matplotlib to help users create visualizations more efficiently. Multiple examples

were written in this work to show how one can use matplotlib with pytracks.

4.1.1 Note

The examples below will not go into much detail about the matplotlib code used. If one is

to use pytracks, they need to be familiar with a visualization module or tool. The user can

10



then graph or process it using whichever utility they may desire. The focus of the examples

below is to show pytrack’s potential.

4.2 Grid Visualization

This example shows how pytracks makes it easier for a user to read raw data from a file

and visualize a two-dimensional grid using matplotlib.

4.2.1 Data Input

Firstly, a user needs to read in the raw data. Pytracks has the built in ability to easily read

in data which follows a flexible formatting scheme:

grid_wrapper = pytracks.input.GridWrapper(”grid_data.out”, extra_ids=[3, 4])

Check the Data chapter for the data format requirements. Pytracks allows the user to specify

exactly the data they require in their script, as specified by the extra_ids parameter.

4.2.2 Data Processing

The previous method created a GridWrapper class, which allows us to access the data in

raw form if one desires, or generate a Grid class::

grid = grid_wrapper.gen_grid()

Using the Grid class we generated, under the variable name grid, we can now generate data

usable by matplotlib:

plot_data = numpy.zeros(grid.size)

for cell in grid.cells:

plot_data[cell.y - 1][cell.x - 1] = (cell[0] - cell[1])

11



This generates data and stores it in the plot_data variable for use in the visualization code.

4.2.3 Visualization

The data generated earlier is used to generate a graph displaying the simulated grid using

matplotlib:

axis.set_title(”Grid Visualization”)

colorbar = plot.colorbar(grid_image)

colorbar.set_ticks([-1, 0, 1])

colorbar.set_ticklabels([-1, 0, 1])

colorbar.set_label(”Habitat Quality”)

plot.savefig(”export/grid.pdf”, bbox_inches=’tight’, transparent=True)

plot.show()

4.2.4 Output

Output from this example can be seen in Figure 4.1.

12
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40

60

80

100
Grid Visualization

-1 0 1
Habitat Quality

Figure 4.1: Example of visualizing a grid using pytracks. The data above was taken from
simulated movement data generated by the model in (Watkins & Rose 2014) and shows the
habitat quality in each cell using the color map technique. The habitat quality can range from
(-1) to 1, as shown on the colorbar. A habitat quality of 1 is favorable, and a habitat quality of
(-1) is unfavorable. This means that fish will avoid the dark blue areas and try to move to the
white areas. All of the further examples will use track data generated from a model running on
this grid.
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4.3 Track Visualization

This example shows how a user can use pytracks to extract data from a grid to show how

well a individual does over its lifetime. The biomass of each individual is encoded along

the fish tracks using the color-map technique. The brown shading relates to the biomass

amount as it moves through the grid. Darker means lower biomass, and lighter means

higher biomass. The green and red dots refer to the start and end points respectfully.

4.3.1 Setup Functions

To create the lines which track the biomass magnitude, we need two functions which help

us with that. One function creates the line using arrays of coordinates and the data, while

the other creates the segments:

def colorline(x, y, data, normalize=plot.Normalize(0.0, 1.0)):

z = numpy.asarray(data)

segments = make_segments(x, y)

lc = LineCollection(segments, array=z, cmap=plot.get_cmap(’copper’),

norm=normalize)

ax = plot.gca()

ax.add_collection(lc)

return lc

def make_segments(x, y):

points = numpy.array([x, y]).T.reshape(-1, 1, 2)

segments = numpy.concatenate([points[:-1], points[1:]], axis=1)

return segments

14



4.3.2 Data Input

As before, the user needs to read in the raw data and generate the pytracks classes.

grid_wrapper = pytracks.input.GridWrapper(”event_25/grid.out”, extra_ids=[3, 4])

tracks_wrapper = pytracks.input.TrackWrapper(”event_25/Event_5.out”, id_column=2,

weight_column=3, worth_column=4, x_column=5, y_column=7, g_column=14,

m_column=15)

grid = grid_wrapper.gen_grid()

trackset = tracks_wrapper.gen_trackset()

4.3.3 Grid Visualization

As done in the previous example, the Grid needs to be visualized again:

plot_data = numpy.zeros(grid.size)

for cell in grid.cells:

plot_data[cell.y - 1][cell.x - 1] = (cell[0] - cell[1])

4.3.4 Figure Setup

The user needs to initialize the figure so it can be drawn on:

figure, axis = plot.subplots(figsize=(6, 10))

4.3.5 Fetching a Sample Track

The following line fetches a random track from the TrackSet created with the data read

in. We then get the only track in the set.

15



newset = trackset.get_tracks_random(1)

track = newset[0]

4.3.6 Drawing Start and End Points

We then need to indicate where the Track started and where it ended:

area = numpy.pi * (5)**2 # dot radius of 5

plot.scatter(track.x[0]/25, track.y[0]/25, c=”green”, s=area, zorder=3)

plot.scatter(track.x[-1]/25, track.y[-1]/25, c=”red”, s=area, zorder=3)

4.3.7 Drawing the Path

Then, we will draw the path and save the figure:

path = Path(numpy.column_stack([track.x/25, track.y/25]))

verts = path.interpolated(steps=3).vertices

x, y = verts[:, 0], verts[:, 1]

data = numpy.true_divide(track.biomasses, max_biomass)

max_ratio = max(data)

min_ratio = min(data)

axis.add_collection(colorline(x, y, data, plot.Normalize(min_ratio, max_ratio)))

axis.set_title(”Lifetime - Biomass”)

axis.set_xlim([0, 100])

axis.set_ylim([0, 100])

figure.subplots_adjust(bottom=0.235)
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colorbar_axis = figure.add_axes([0.15, .22, .73, .05])

grid_image = axis.imshow(plot_data, interpolation=’none’, origin=”lower”,

cmap=plot.get_cmap(”Blues_r”), vmin=-1, vmax=1,

extent=[0, 100, 0, 100], aspect=”equal”)

colorbar_hq = plot.colorbar(grid_image, cax=colorbar_axis, orientation=’horizontal’)

colorbar_hq.set_ticks([-1, 0, 1])

colorbar_hq.set_ticklabels([-1, 0, 1])

colorbar_hq.set_label(”Habitat Quality”)

colorbar_tq_axis = figure.add_axes([0.15, .09, .73, .05])

colorbar_tq = ColorbarBase(ax=colorbar_tq_axis, cmap=plot.get_cmap(’copper’),

norm=matplotlib.colors.Normalize(0, 1), orientation=’horizontal’)

colorbar_tq.set_ticks([0, 1])

colorbar_tq.set_ticklabels([”Low”, ”High”])

colorbar_tq.set_label(”Biomass”)

plot.savefig(”export/track_lifetime.pdf”, bbox_inches=’tight’, transparent=True)

plot.show()

4.3.8 Output

Output from this example can be seen in Figure 4.2.
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Figure 4.2: Example of visualizing a grid and the biomass over time using pytracks. The start
and end points of the track are shown with a green and red dot respectively.
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4.4 Heat-map

This example looks at the data in an Eulerian point of view. Below we create a graph which

shows four snapshots of the overall biomass distribution at specific ticks of the simulation.

4.4.1 Initialization Code

As before, most of the code to initialize and prepare for processing is the same:

grid_wrapper = pytracks.input.GridWrapper(”HMRC_100/grid.out”, extra_ids=[3, 4])

tracks_wrapper = pytracks.input.TrackWrapper(”HMRC_100/HMRC_20.out”, id_column=2,

x_column=5, y_column=7, extra_ids=[10, 11])

grid = grid_wrapper.gen_grid()

trackset = tracks_wrapper.gen_trackset()

figure, axlist = plot.subplots(nrows=2, ncols=2, sharex=”col”, sharey=”row”,

figsize=(6, 7))

4.4.2 Initializing a Array for Data

This code creates a length 4 array which will allow us to create maps for each plot. In this

code we also prepare the titles and select the specific ticks we want to look at.

titles = [”Biomass - Tick ”, ”Biomass - Tick ”, ”Biomass - Tick ”, ”Biomass - Tick ”]

plots_data = numpy.array([numpy.zeros(grid.size) for _ in range(4)])

tl = len(trackset[0]) - 1

ticks = [0, int(round(tl * 0.33)), int(round(tl * 0.66)), tl]
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4.4.3 Calculations

This code calculates the biomass density for each cell and stores it in the variables we

initialized earlier. We also set the titles to the tick number.

for i in range(4):

for track in trackset:

x_coord = math.floor(track.x[ticks[i]]/100)

y_coord = math.floor(track.y[ticks[i]]/100)

plots_data[i][y_coord - 1][x_coord - 1] += track.biomasses[ticks[i]]

titles[i] += str(ticks[i])

4.4.4 Visualization Code

The below code has a line which finds the maximum biomass of every cell, to assure that

the colorbar range is valid for each plot. To make it so the lower concentrations are visible

with the color, we choose the 99.75 percentile, so the extreme top end values are excluded.

Other than that, typical matplotlib code is below.

max_biomass = int(round(numpy.percentile(plots_data.flatten(), 99.75)))

for axis, plot_data, title in zip(axlist.flat, plots_data, titles):

axis.set_xlim([0, 25])

axis.set_ylim([0, 25])

axis.set_title(title)

cbar = axis.imshow(plot_data, interpolation=’none’, origin=”lower”,

cmap=plot.get_cmap(”afmhot”), vmin=0, vmax=max_biomass,

extent=[0, 25, 0, 25], aspect=”equal”)

figure.subplots_adjust(bottom=0.235)

colorbar_axis = figure.add_axes([0.15, .12, .73, .05])

20



colorbar = plot.colorbar(cbar, cax=colorbar_axis, orientation=”horizontal”)

colorbar.set_ticks([0, max_biomass])

colorbar.set_ticklabels([”Low”, ”High”])

colorbar.set_label(”Biomass Concentration”)

plot.savefig(”export/ticks_heatmap.pdf”, bbox_inches=’tight’, transparent=True)

plot.show()

4.4.5 Output

Output from this example can be seen in Figure 4.3.
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Figure 4.3: Example of visualizing the biomass density in the grid at specific ticks.

22



Chapter 5

Analysis

5.1 Introduction

As described earlier, properly simulating the movement of organisms is an important topic

and component of modeling. For each individual to decide where to move next, an algorithm

needs to be used. There are many different algorithms used now. Some have been developed

for other applications and adapted for fish movement (K. A. Rose, Sable, et al. 2015).

Others have been specifically developed for fish movement models. Either way, the goal

is to find an algorithm which is the most effective. Often this can not be determined

just by looking at tracks graphed on a grid and having a person analyze them. One may

need to analyze the tracks in other ways to discover the differences between the movement

algorithms.

The data for this analysis was taken from the runs which used the 25x25 cell grid.
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5.2 Algorithms

In the paper (Watkins & Rose 2014) five movement algorithms were used. Their names are

as follows, in no particular order:

1) Restricted-area Search

2) Kinesis

3) Event based

4) Run and Tumble (RT)

5) HMRC

Each movement algorithm is described in more detail in the (Watkins & Rose 2014) paper.

Each algorithm uses a different method to attempt to find favorable conditions for the

individual. In this analysis we will see if and how these algorithms differ.
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5.3 Population Success

The metric which shows how well a population did overall is the total biomass of the

population. For each movement algorithm, the total biomass is shown in Figure 5.1.
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Figure 5.1: The total biomass of each movement algorithm’s population over the entire run.

The populations are slightly different in their outcome, but some populations are too close

to each other to fully see if they are different. Now we need to look at the energistics of the

algorithms to show the differences more clearly.
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5.4 Energy Input

In this model and these various movement algorithms, we can define energy input as the

growth rate experienced (K. A. Rose, Fiechter, et al. 2015). For each movement algorithm,

Figure 5.2 shows the average growth rate experienced. As specified before, the grid in which

this model was ran on is made up of cells which each contain a growth and mortality factor.

Each factor affects how well the individual will do while it is in that particular cell. The

algorithms are designed to find the cells which have the best growth factor.
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Figure 5.2: The average growth rate experienced for each tick of each movement algorithm’s
population over the entire run.

As we can relate the growth factor to the overall quality of the algorithm, the analysis of

the energy input is relevant. We can see that the Kinesis algorithm performs the best at

finding and staying in cells with a high growth factor. On the opposite side, we see that
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Kinesis does a poor job at finding and staying in cells with a high growth factor. This

confirms out findings in our first analysis of biomass, which shows that total biomass and

the growth factor experienced by the individual is directly related.

5.5 Energy Output

Energy output in this model can be defined as the distance traveled. This is shown in

Figure 5.3. This makes sense, as it takes energy to travel and on average the more time an

individual spends moving, the more energy they will expend (Rose et al. 2010).
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Figure 5.3: The total distance traveled by tick for each movement algorithm’s population over
the entire run.

We can see that Kinesis very quickly finds cells that it likes, further proving its adeptness

as an excellent movement algorithm. Restricted-area search spends a lot of time wandering
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around though, as demonstrated in Figure 5.4. It also will more often than not decide that

the cell that it currently inhabits is not good enough, so it endlessly searches for cells with

a more favorable environment, unlike Kinesis.
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Figure 5.4: The average distance traveled by tick for each movement algorithm’s population
over the entire run.
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5.6 Energy Efficiency

Efficiency in this model is defined by the average biomass of each tick divided by the average

distance traveled by the individuals in that tick. This gives us a metric which shows how

efficient with energy each movement algorithm was.
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Figure 5.5: A metric which shows us how efficient each movement algorithm is.

As the reader can see, Kinesis once again is exceptional. It has the ability to use the

least energy possible to achieve a particular goal biomass. This is due to its excellent path

finding movement algorithm, which reflects in the total distance traveled. Once the Kinesis

algorithm finds a particular cell it likes, it tends to stick there. This works well for grids

with multiple good areas, but what happens if the grid is different?
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5.7 Verdict

As we have shown above, Kinesis seems to be the best movement algorithm. As questioned

before though, is it really the best overall? Kinesis may possibly not be the best movement

algorithm for other grids due to it’s safe style of searching. It’s characteristic of staying in a

cell once it finds a cell which is deemed good enough may be detrimental in other situations.

To determine if that is the case, further analysis of other grids can be done. That was not

done so in this analysis, as this requires much more data than is available to come to a solid

conclusion.

Every movement algorithm is different and will perform differently when put on a different

grid (Rose 2012). Another movement algorithm might out-perform Kinesis on a different

grid. Many different grids would need to be analyzed to see which movement algorithm per-

forms best or most life-like overall. This is why the post analysis, which pytracks attempts

to help with, needs to be as easy to possible.
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Chapter 6

Conclusion

6.1 Summary

Pytracks, as presented in this thesis, is a tool which took a lot of learning to create. It took

a lot of research to be able to create a tool which was both easy to use, and thus simple, but

also intricate and expandable. The requirements specified in the methods were achieved. It

allowed the users to write code which visualizes data which is much shorter and easier to

read and interpret than without it.

The major limit of pytracks is its scope of usability is quite small in the grand scheme of

things. The problem is that for something to be effective at what it does, it has to be

specific and tailored to solving one problem. The questions that were attempted to answer

were centered around using only two dimensional grids, which is what pytracks is limited

to at the moment. Pytracks has the potential to solve many other problems, but that takes

extra effort by another developer to implement solutions for that.

After using several examples and answering a research question, pytracks has been shown

to be effective in solving the problem at hand. It was able to allow developers to create

visualizations much easier than if they were just trying to use the file without this library.

The ultimate goal of pytracks was to let it do the work of wrapping these raw data files,
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which saves a developer’s time and energy. All this leaves is the visualization work left for

the user to do. As shown above, pytracks fills this gap, which means it achieved its goal.

6.2 Future Work

The question asked in this thesis and the tool developed for it can be expanded further in

multiple ways. First, as I feel examples are the most useful for other users to learn how

to use a tool, more could be written to demonstrate the usefulness of the tool. Second,

more built in flexibility for reading and inputting the raw data input files and processing

methods could be developed as well. This is where many people could contribute a library

of their own methods to the pytracks code-base, which then simply just increases pytracks’s

usefulness. Lastly, the library could be expanded to actually visualize the data and not

just wrap it. This is a good idea, but it also shifts pytracks from being a library and

development tool to an application. This way may not be a good direction for pytracks.

Currently pytracks is only accessible as a library and the user must program to use it. This

keeps pytracks flexible, which was the goal from the beginning. An alternative to this is to

keep pytracks as a library, but an application could be developed which wraps it and makes

specific visualizations and calculations easier to the end user. This approach keeps the

pytracks library flexible, and also makes it more accessible to more users. This hypothetical

application may not require the user to program at all, which greatly expands its potential

user-base.
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Appendix 1: Source Code

The source code for pytracks can be found on Github: https://github.com/rosspf/pytracks

To run the code, a user can learn from the examples listed in this paper or look at the Quick

Start Guide in the additional online documentation. A link to the online documentation is

in Appendix 2.

33

https://github.com/rosspf/pytracks


Appendix 2: Further

Documentation

Sphinx 1.3.1 (http://sphinx-doc.org/) was used to to document pytracks further. The

HTML based documentation can be found here: http://pytracks.readthedocs.org/en/

latest/
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