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ABSTRACT 

Energy and performance improvements of continuous-time analog-based computation for 

selected applications offer an avenue to continue improving the computational ability of 

tomorrow’s electronic devices at current technology scaling limits. However, analog computation 

is plagued by the difficulty of designing complex computational circuits, programmability, as well 

as the inherent lack of accuracy and precision when compared to digital implementations. In this 

thesis, evolutionary algorithm-based techniques are utilized within a reconfigurable analog fabric 

to realize an automated method of designing analog-based computational circuits while adapting 

the functional range to improve performance.  

A Self-Scaling Genetic Algorithm is proposed to adapt solutions to computationally-

tractable ranges in hardware-constrained analog reconfigurable fabrics. It operates by utilizing a 

Particle Swarm Optimization (PSO) algorithm that operates synergistically with a Genetic 

Algorithm (GA) to adaptively scale and translate the functional range of computational circuits 

composed of high-level or low-level Computational Analog Elements to improve performance and 

realize functionality otherwise unobtainable on the intrinsic platform. The technique is 

demonstrated by evolving square, square-root, cube, and cube-root analog computational circuits 

on the Cypress PSoC-5LP System-on-Chip. Results indicate that the Self-Scaling Genetic 

Algorithm improves our error metric on average 7.18-fold, up to 12.92-fold for computational 

circuits that produce outputs beyond device range. Results were also favorable compared to 

previous works, which utilized extrinsic evolution of circuits with much greater complexity than 

was possible on the PSoC-5LP.  
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CHAPTER ONE: INTRODUCTION 

The exponential improvement in the ability of computers that we’ve observed over the past 

decades has led to a booming technology market, improvements in scientific understanding, and 

greater globalization as individuals are more able to connect with one another regardless of 

distance. With upcoming challenges facing the current status quo of Moore’s Law, new and 

innovative strategies to continue improving computational performance are sought. This chapter 

elucidates the significance of the problem, overviews current techniques for applying analog 

computation, and then delineates the proposed contributions in the Contribution of Thesis section. 

Need for Evolutionary Analog Computation 

As we continue to advance towards CMOS technology-scaling limits, new and innovative 

strategies to enhance computational performance at our current technology scaling limits are 

sought.  One possible approach for such enhancements lies in addressing the fundamental 

inefficiency in today’s computational models that utilize discretized digital computation to solve 

continuous real-world phenomena [1], such as signal processing and differential equation 

computation. An intriguing way of alleviating this inefficiency is to utilize a “let the physics do 

the computing” approach by employing analog devices to perform continuous time computations 

where applicable [1]. According to Gene’s Law as shown in Figure 1, utilizing analog computation 

for applicable applications could provide a 20-year leap in performance versus their digital 

counterparts, which translates into a theoretical 1,000 to 10,000 fold improvement [2]. Approaches 
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presented in [2, 3] demonstrated that analog computation reduced energy consumption by 8-fold 

compared to the corresponding digital implementation. However, complex analog circuits can be 

both challenging to design and lack precision.  

Precise and efficient complex analog circuits typically requires an expert with many years 

of design expertise and experience [4]. Nonetheless, [4-7] have demonstrated that evolutionary 

approaches such as Genetic Algorithms (GAs) are a viable candidate to  address the problem of 

automated analog design, having successfully evolved analog computational as well as analog 

circuits to perform digital functions, such as a NAND gate and a 2-input ALU [8]. In [4] it has 

been shown that it’s possible to evolve robust nonlinear analog circuits with GAs, demonstrating 

the strength of the technique. However, due to the stochastic nature of GAs, it can be challenging 

to determine how accurately the evolved analog circuits map to the desired function, especially on 

realistic commercial devices with constrained hardware. 
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Figure 1: Gene’s Law Curve Showing 20-year Leap in Performance of Analog SP Compared to 

Digital [9]. 

Characteristics of Analog Computational Circuits 

 Continuous-time analog computational circuits (CC) as well as discretized digital 

computers co-existed during the early stages of electronic computer development, as each domain 

offered benefits over the other for different computational needs [10-14]. However, digital-based 

computational models eventually won out over just about all their analog counterparts due to the 

benefits of noise-resilience, easy and sustainability of memory operation, and ease of 

programmability and reproducibility [1]. This does not imply that the benefits of analog 

computational models cannot be utilized in an intelligent fashion to improve current digital-only 

models in some hybrid fashion [2, 3]. The primary characteristics of analog-based computation to 

be considered when developing hybrid computing methods is shown in Figure 2, and is delineated 
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by 1) low-power, 2) speed of solution convergence, 3) low-precision, 4) noise-intolerance, and 5) 

difficulty of programmability or design [1].  

 

Figure 2: Characteristics of Analog Benefits and Challenges Explored Herein. 

Characteristics of Evolvable Analog Hardware 

 Evolvable Hardware (EHW) can generally be broadly classified into two different 

categories shown in Figure 3 whether the application is in either the digital or analog domain: 1) 

intrinsic evolution, which is the evolution of circuits evaluated on a physical platform, or 2) 

extrinsic evolution, which is where the evaluation is conducted in a simulation environment and 

then can be implemented onto a physical device if so desired and the evolved circuit is compatible 

[15]. The majority of analog EHW studies are implemented extrinsically as there are few 

reconfigurable analog platforms available [4-8, 16-18]. However, some groups have developed 

their own Field Programmable Transistor Array (FPTA) to implement EHW techniques in the 

analog domain intrinsically [19].  
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Figure 3: Extrinsic (left) and Intrinsic (right) Evolvable Hardware Techniques. 

 EHW techniques are applicable to more than just evolutionary design, as they can be 

utilized for intrinsic repair due to system faults. Faults can come in the form of soft-errors, which 

are caused when a bit in a register or along a datapath is flipped, or hard-errors, which are caused 

by the shorting or opening of wires in the hardware [20-23]. EHW techniques are typically utilized 

for hard faults by allowing the system to search for configurations which still provide the desired 

functionality even with the hardware faults in place [20, 22, 24-26].  

Genetic Algorithms 

GAs are a well-known class of metaheuristic EAs that emulate natural forms of survival-

of-the-fittest Darwinian evolution [27]. GAs utilize a population of configurations, denoted as 

individuals, the relative quality of their solutions, called fitness, and various bio-inspired genetic 



6 

 

operators, such as crossover and mutation, to find solutions in large search spaces [28]. The 

individuals “compete” via the selection method and their relative fitness levels in order to combine 

their genetic material to produce new individuals for the next generation. This cycle of testing, 

selecting, and breeding gives rise to individuals that have a very high fitness, and based on the 

fitness function used for evaluation these individuals should be very adept at their application. The 

most important things to consider when developing a GA is the genetic representation of the circuit 

configuration, the choice of fitness function for the particular application, the selection mechanism 

for choosing which individuals undergo genetic operators to produce new individuals, and the 

mutation rate as too low of a mutation rate can lead to early solution convergence to local minima, 

and too high of a mutation rate will devolve the GA into random search [29]. An extension to GAs 

called an Island GA evolves multiple populations in parallel and periodically exchanges 

individuals between them; this helps to preserve genetic diversity while each island is allowed to 

follow different trajectories in the search space [15].   

Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm inspired by 

bird or fish flocking and swarming theory [30, 31]. In operation, a population of particles is 

initialized with randomly-distributed optimization parameters within a specified range [pmin, 

pmax]. Each particle is then evaluated based on the quality of output given by the particles 

coordinates, or parameters, substituted into the function to be optimized. Each particle’s previous 

best parameter configuration is saved (pBest) along with the global best parameter configuration 
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(gBest), and the particles are moved towards pBest and gBest parameters with a particular velocity. 

Using this method, particles are “flown” across the search space to realize optimizations within 

the problem space [30]. 

Platform Overview 

 

Figure 4: Cypress Semiconductor PSoC-5LP System Block Diagram. 

 The platform utilized for the research and development of the contributions herein is the 

PSoC-5LP programmable system on chip made by Cypress Semiconductor Inc. The PSoC-5LP is 
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a fantastic platform for the development of analog EHW techniques because it combines a Cortex-

M3 ARM microprocessor with reconfigurable analog fabric in the form of switched capacitor 

operational amplifier (op amp) blocks along with necessary peripheral and interface circuitry such 

as analog to digital converters, digital to analog converters, and a variety of routing circuitry. The 

overall system block diagram for the PSoC-5LP is depicted in figure 4. The PSoC-5LP also has a 

reconfigurable digital fabric in the form of Universal Digital Blocks (UDBs) for custom digital 

circuitry.  

Summary of the Thesis 

This thesis delineates a new technique that utilizes PSO to optimize and refine evolved 

analog computational circuits to the intrinsic device voltage range. In order to demonstrate the 

method, an analog Self-Scaling GA (SSGA) is developed on an intrinsic commercial prototyping 

platform. In particular, case studies are examined on the Cypress PSOC-5LP commercially-

available System on a Chip (SoC), which combines reconfigurable analog fabric in the form of 

four switched capacitor operational amplifier blocks, a PLD-based reconfigurable digital fabric, 

an ARM core, and other modules such as ADCs and DACs.  We describe how the proposed 

technique operates and demonstrates its capability to intrinsically evolve, adapt, and refine the 

same Computational Circuits (CCs) that [7] did, specifically the square, square-root, cube, and 

cube-root functions. 
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Contributions of the Thesis 

As far as the author is aware, this is the first demonstration of evolving analog 

computational circuits on a commercially-available platform. The techniques developed herein 

pave new ground for allowing research into exploring how analog circuits can improve the 

computational models that we use today. Previously, on-chip analog circuit design required analog 

circuit expertise to design un-reconfigurable ASICs, or to design using models which are then 

programmed onto a Field Programmable Analog Array (FPAA) [32]. Additionally, these solutions 

are inherently prone to process variations and device mismatch. In order to best utilize analog 

circuits to improve our computational models, a method for adapting such circuits to the desired 

functionality given all of the intrinsic device characteristics must be developed, and that is what 

was done herein.  

 

Figure 5: Contributions of the thesis. 
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The following research contributions are provided:  

1) pioneered an extension to analog domain evolution called Self-Scaling GA (SSGA) which 

utilizes both particle swarm optimization in tandem with analog genetic algorithms. This 

results in the first demonstration of self-scaling functional voltage, whereby the range of 

outputs is adapted to the device’s intrinsically tractable computational domain, 

2) extended a new Island-like GA methodology to explore multiple SSGA parameters sets in 

order to locate and exchange best-parameter information periodically, and 

3) providing a bitwise testing scheme along with normalized error metrics in preparation for 

digital refinement.  
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CHAPTER TWO: RELATED WORK 

Utilizing analog circuits to perform various continuous-time computations currently 

represent a niche application domain with potential for expansion. Accordingly, analog computers 

were the first computational devices invented, with some of the earliest demonstrations of analog 

computational systems dating back to 1929, where AC network analyzers were used to solve 

electrical power system calculations that were too large to solve using the numerical methods of 

the time [33]. Analog computers performance and scope continued to grow along with modern 

computers after their introduction by Alan Turing [14]. Analog computers were even used into the 

1960’s to solve nonlinear ordinary differential equations [12]. However, several hurdles existed 

such as the error-prone nature of analog computation, the difficulty in storing analog data, and the 

limited dynamic range available to analog computers. By circumventing these challenges, digital 

computers, which lacked these drawbacks, eventually became the predominant computational 

method [1]. Nonetheless, with transistor scaling limits fast approaching, analog computation is 

being revisited in conjunction with digital computation for its low power and high speed 

computational abilities [1].  

Hybrid Analog-Digital Computation 

Recently, the benefits of analog computation, such as low-power and high-speed operation, 

are becoming increasingly interesting due to the upcoming limitations of transistor size scaling on 

digital logic as well as the increasing need for low-power computation in mobile devices [1, 34, 
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35]. Instead of keeping the analog and digital computational domains separate, researchers are 

interested in researching how we may combine the benefits of both domains together to perform 

hybrid analog-digital computation [1, 36].  

For instance, an interesting platform developed for a hybrid approach is the Reconfigurable 

Analog Signal Processor (RASP) developed at the Georgia Institute of Technology over the last 

decade [2, 3, 34, 37, 38]. A hybrid approach using the RASP was demonstrated to improve 

particularly the energy required for a variety of computations, such as using analog components to 

compute the Discrete Fourier Transform block of an orthogonal frequency-division multiplexing 

system, achieving an 8.9 dB reduction in overall power consumption compared to the purely digital 

approach for just a 2-dB performance degradation [3]. It was also on the RASP that using analog 

components for Vector Matrix Multiplication could provide up to 1,000 times more 

computationally efficient in MMAC/µW (Million Multiply-Accumulate Computations per µW) 

compared to the digital approach [9].  

Proceeding the development of the RASP, Cowan et al. developed and demonstrated an 

analog co-processor that worked in tandem with a digital processor to compute ordinary 

differential equations, partial differential equations, and stochastic differential equations to 

accelerate computations by more than 10-fold while dissipating less than 1% of the energy of a 

general purpose digital microprocessor [39]. They were able to achieve this by developing a 

custom Integrated Circuit (IC) of 80 analog integrators, 336 other linear and nonlinear analog 

functional blocks, routing interconnects, and additional circuitry allowing the IC to be 

programmed, read, and controlled by a PC via a data acquisition card. These custom analog 
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development platforms provide a fascinating infrastructure for soft-computing techniques for 

adaptive analog computation, and while they are a representation of experimental programmable 

analog signal processor, in this thesis we investigate a commercial version for prototyping the 

methods developed herein. 

Recently, Huang et al. developed a chip architecture along with its corresponding 

Instruction Set Architecture (ISA) to implement Hybrid discrete-continuous computational 

systems to improve the performance of floating-point math, non-linear math, and differential 

equation computation [36]. The Hybrid Continous-Discrete Computer (HCDC) designed is a 

highly parallel tiled-based hardware design combining analog and digital functional units into an 

HCDC fabric. The HCDC has the capability to operate as a standalone processor for processing 

sensory input or directly controlling other physical devices. It can also be used in conjunction with 

a microcontroller for calibration, configuration, and adaptation. As the HCDC has not been 

implemented as of this writing, no results can be expounded on. However, the HCDC provides a 

novel and intriguing platform for future hybrid analog-digital computational methods.  

Evolvable Hardware 

Evolvable Hardware (EH) is a novel technique for the design of electronic systems by 

utilizing evolutionary algorithms in lieu of procedural hand-designed techniques. The purpose of 

EH is to utilize simulated evolution for composing systems in such a way that takes into account 

the possibility of configurations which might lie beyond human design capabilities [40]. Intrinsic 

EH takes this a couple steps further by providing a method of design which accounts for all of the 
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innate physical characteristics of each of the available resources [40-42]. Traditional hardware 

such as ASICs can be completely inflexibly, impossible to change its structure and functionality 

once the chip has been manufactured. This leads to issues when implemented in dynamic harsh 

environments or when the functionality needs to be changed or adapted.  

EH can be used for the initial design of the system as well as allowing the system to self-

adapt in the presence of environmental changes or hardware faults [21, 24, 43]. The simulated 

evolution can be carried out by a variety of stochastic metaheuristic search algorithms including 

GAs, GPs, or other Evolutionary Strategies (ES). EH is typically implemented on reconfigurable 

platforms such as FPGAs, Field Programmable Analog Arrays (FPAAs), or FPTAs. EH uses a 

binary bit-stream to encode the architecture that is to be implemented on the reconfigurable 

platform [44]. Regardless of the evolutionary strategy chosen, the strategy is used to find the best 

performing bit-stream, and therefore architecture, for the desired application. 

Evolvable Hardware for Design 

EH was first demonstrated by Thompson in his seminal paper “Silicon Evolution” where 

he demonstrated that artificial evolution via a genetic algorithm implemented on a Field 

Programmable Gate Array (FPGA) could design digital logic circuits that would oscillate at a 

given frequency [40]. Koza et al. took EH further into the analog domain by using Genetic 

Programming (GP) to evolve analog circuit topologies, which were evaluated extrinsically using 

a Simulation Program with Integrated Circuit Emphasis (SPICE) [5]. Koza et al. showed that the 

use of EH techniques could realize analog circuits to perform a suite of different prototypical 
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circuits such as a low-pass filter, a crossover filter, a source identification circuit, a computational 

circuit, a time-optimal controller circuit, a temperature-sensing circuit, and a voltage reference 

circuit.  

A variety of Evolutionary Algorithms (EAs) have been used in tandem with reconfigurable 

fabrics to intrinsically realize novel electronic circuit designs. Numerous innovative works have 

contributed to the literature of which only a few are highlighted in Table 1 relating to analog and 

hybrid analog-digital domains. Mydlowec and others followed the path of Koza, evolving other 

CCs extrinsically [7, 16], in some cases using multiple time domain simulations to improve 

robustness. Later, Streeter et al. [17] also showed that GP was able to iteratively evolve circuits 

that could be attached to computational circuits to refine their performance. In [6] EAs were used 

to evolve four analog CCs as well as two digital circuits using analog components. In [12] 

swarming algorithms such as PSO were used to evolve analog circuit sizing.  Recently, Cornforth 

et al. evolved non-linear circuits by utilizing a strategic fitness evaluation scheme without 

necessarily optimizing them for area [4]. They were able to show that a variety of stimuli can 

extrinsically evolve nonlinear analog circuits, which conform to randomly generated black-box 

circuits, demonstrating the strength of the method. 

Deviating from the normal utilization of GAs and GP to run the evolutionary algorithms, a 

different ES called Univariate Marginal Distribution Algorithm (UMDA) was recently shown to 

be able to design the topology of desired analog circuits [45]. Slezak et al. showed that UMDA 

was an effective algorithm for designing the topology of circuits in conjunction with a local search 
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algorithm to determine device parameters [45]. By using a hybrid UMDA-local search algorithm, 

they were able to evolve fractional capacitor circuits with a given input impedance. 

Table 1: Selected Previous Works. 

 

 Evolvable Hardware for Reliability 

Using EH techniques to self-adapt systems for faults and environmental changes can be 

very useful for systems that need high survivability such as space missions and defense 

applications [46, 47]. These applications typically require a certain level of functionality for long 

durations in harsh environments [46]. Kim et al. showed that using ES with robustness evaluations 

could be used to automate the synthesis of robust analog circuits that maintain their functionality 

in the presence of faults [48]. Even though Kim el al. demonstrated their methods using extrinsic 

evolution, their evolved designs still showed similar characteristics to the simulations when 

implemented using physical components [48]. Keymeulen et al. demonstrated intrinsic EHW on 

FPAAs for population-based and fitness-based evolution of fault-tolerant analog circuits [18].   
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Analog EH techniques have also been shown in [49] to be able to automatically generate 

multiple analog circuits with similar functionality and then combine the solutions to generate 

robust outputs. They utilized the inherent populations generated by a GA to obtain multiple designs 

in order to implement a modularly redundant analog low-pass filter. Results show that the 

modularly redundant designs performed better than the best single module design. 

Taxonomy 

 The current state of research in analog computational systems is represented by the 

taxonomy shown in Figure 6. In the area of analog computation, there’s two major research scopes. 

One is aimed at addressing the potential benefits of using analog computational systems to improve 

the performance of our current computational systems. The other is aimed at the challenges of 

implementing analog computational systems. Utilizing the benefits of high-speed, low-power, and 

high-efficiency computation, the RASP processor developed in [37] and the analog accelerator co-

processor developed in [39] showed great merit. Both implementations were able to significantly 

improve the performance and efficiency of computations compared to the purely digital 

approaches. However, many of the challenges associated with analog computation have been 

largely left unanswered; having mostly been explored with extrinsic EH techniques in [4-7] and 

[16-17]. These extrinsic techniques showed us that EH techniques are a valid candidate in the 

automated design of analog computational systems. The research explored also showed that EH 

techniques can be utilized to improve the robustness and reliability of computational systems, 
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including analog. In this work, all of the challenges listed associated with analog computation is 

addressed in some fashion by using intelligent self-scaling intrinsic evolutionary techniques. 
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Figure 6: Analog Computation Taxonomy 
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Summary 

 In this chapter motivational applications of analog computation is explored, as well as 

current techniques and works in EH. The energy and performance benefits of analog computation 

was shown by the results obtained from analog implementations on the custom RASP platform 

developed in  [2, 3, 34, 37, 38] as well as the analog accelerator co-processor developed in [39]. 

Current research topics involving HCDC architectures were explored, providing the necessary 

framework for future flexible HCDC computational models to be developed. Then, the field of EH 

was broken down. Starting from using EH for design, we explored Thompson’s et al. seminal work 

using an FPGA to evolve circuits in the analog domain along with other EH techniques for 

evolving analog circuits on intrinsic, but primarily extrinsic, platforms. EH techniques for fault 

tolerance, redundancy, and self-repair was also explored. This chapter finished with a taxonomy 

relating the current research in the domain of analog computation.  

While several previous works in analog CC design using EAs have involved simulation, 

recent Programmable System on Chip (PSoC) devices providing reconfigurable analog fabric, 

digital logic, and ARM cores enable new capabilities.  Analog fabrics allow rapid evolution, but 

are limited by precision and/or accuracy, which may be refined with evolutionary techniques. The 

ARM core on the PSoC allows on-chip execution of EAs such as the GAs and PSO as developed 

herein. While this chapter introduced the prototypical infrastructures in EH approaches needed for 

this research, we now discuss how such capabilities can be utilized specifically for addressing the 

challenges of analog circuit evolution.  
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CHAPTER THREE: EVOLUTION OF ANALOG CIRCUITS  

 The evolutionary design of analog circuits typically consists of a GA used to evolve the 

circuit to a fitness function by either extrinsic or intrinsic means. This Chapter goes into greater 

detail of GA operation, implementation on the PSoC-5LP platform, and concludes with the issues 

facing intrinsic analog circuit evolution.  

Delineation of Genetic Algorithms 

 The general flow of a GA is delineated in figure 7, and will be described herein as 

applicable to analog circuit evolution. A GA typically begins by initializing a group of N circuit 

configurations called individuals to make up a population of such individuals. Initialization is 

generally carried out by generating random circuit configurations for each individual. All 

individuals adhere to a specific circuit coding template, called a genome, which describes the 

components of the circuit as well as the routing between component terminals and input/output.  

Once the initial population has been generated, each individual is evaluated against a fitness 

function to determine each individual’s quality of solution, or fitness. After the fitness of each 

individual has been evaluated, a selection process occurs, which chooses individuals for breeding 

the next generation. Once individuals are selected for breeding, the genetic operators are used to 

produce offspring consisting of a combination of the genetic makeup of their parent’s genomes. 

These offspring move on to populate the next generation of the population. In many GAs, 

designers choose to save the best individual(s) from being altered by the GA operators; this is 
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called Elitism. Elitism does not remove the best individuals from being potential parents as their 

genes are very valuable. After this stage, the new population is reevaluated based on the same 

fitness function that was used for the first, and then the subsequent population undergoes selection 

and GA operators as well as elitism and repeats until the maximum fitness is reached or the 

maximum generations allowed by the designer has been reached.  

 

 

Figure 7: Genetic Algorithm Flow Chart. 
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Genes 

 Each individual’s genome is broken down further into Genes, which describe the 

fundamental building block of the circuit the GA is operating on. Genes can describe high level 

components such as various op amp topologies like integrators, adders, filters, etc, or they can 

describe lower level components such as individual transistors, resistors, and capacitors as shown 

in Figure 8. Typically, the genes constitute the level of granularity the GA is able to operate on, 

by either device limitations or design choice. 

 

Figure 8: Genes used to represent high-level and/or low-level circuit components. Their 

configuration is determined by a binary string as shown. 

 For this study, each gene is corresponds to a Computational Analog Element (CAE). Each 

CAE contains the functionality, parameters, and routing necessary to fully configure a single 

Switched Capacitor (SC) op amp block (SC block) found in the PSoC-5LP. The representation for 

these parameters are encoded in binary form as shown in Figure 10 to allow easy integration with 

the genetic operations. There are eight topologies available to choose from for each of the SC 

blocks that are shown in Figure 9. The selection of each resistor and capacitor value is 
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programmable within a palette of discrete values set by the manufacturer. Meanwhile, the routing 

between inputs, outputs, and other blocks is further explained later this Chapter.  

 

Figure 9: Eight different topologies possible for PSoC-5LP SC Opamp blocks. 

Genome 

 Each individual’s genome consists of all the genes necessary to configure the circuit’s 

building blocks as well as the routing between the building blocks. The routing can be either 

encoded into each gene by choosing which routing lines the gene’s terminals connect to, or 
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designated by a separate encoding within the genome but outside of the genes. Genomes are 

usually encoded into a binary representation as that is straighforward for computer software driven 

GAs to operate with as shown in Figure 10. 

 

Figure 10: Breakdown of individual genome, gene expression, and binary representation for 

SSGA. 

Fitness Evaluation 

 As the fitness function is what determines the quality of a candidate circuit, the definition 

of the fitness function is one of the most important aspects of the GA. The fitness evaluation stage 

of a GA can take on a variety of forms of which need to be chosen and tailored to the desired 

application. Often, and in this research, the process of fitness evaluation takes the form of applying 

a number of inputs to the circuit under evaluation and comparing the outputs with the pre-defined 

correct outputs for the particular input called the oracle. For the above case, fitness can be defined 

as 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑖𝑛𝑝𝑢𝑡(𝑡)) − 𝑜𝑟𝑎𝑐𝑙𝑒(𝑡)𝑇−1𝑡=0 , where t is the particular test case, input(t) is 

the input value for test case t, output() is the circuit output for a given input, and oracle(t) is the 

predefined output that we desire our circuit to produce given our test case.  
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Selection 

 Individuals are selected for undergoing genetic operators to produce offspring based on 

their relative fitness levels. Tournament Selection is a popular method which randomly chooses 

tournament_size individuals from the population, and then chooses the best-fit individual as 

shown in Figure 11. This process is repeated again to select a second individual. Those two 

individuals are then chosen as parents to undergo genetic operators to produce two new individuals 

with similar genetic material to the parents. It can be advantageous to choose a tournament_size 

of just 2 in order to improve diversity, which generally provides greater GA performance. 

 

Figure 11: Pictorial representation of Tournament Selection.  

Genetic Operators 

 The two primary genetic operators used in GAs are crossover and mutation. Crossover is 

performed on two individuals that have undergone the selection process by splitting the parent’s 

genomes into one or more partitions as shown in Figure 12 and then recombining the genome 

components to produce two new offspring that contain the mixed genetic material of the two 
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parents. Partitions generally occur on the boundary between genes so that the functionality of the 

genetic makeup remains intact. 

 The mutation operation operates by scanning through each bit in each offspring’s genome 

and with a low probability of mutation_rate, flips the bit as shown in Figure 13. Mutation_rate 

is generally in the range of around 1%, i.e. a probability of 0.001 to 0.05 on a scale from 0.0 to 

1.0. The mutation operation provides an avenue for the GA to overcome limitations in the initial 

population’s gene pool. For instance, the initial population rarely contains all possible genes 

available and may lack some genes which can provide better performance than the initial pool. If 

only crossover were used in the GA, these better-performing genes would never be realized as 

crossover would just be mixing genes around from the initial population. Mutation allows the 

opportunity for all genes to possibly be realized and utilized by the GA without devolving into 

random search. 
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Figure 12: Pictorial Representation of the Crossover Genetic Operator. Both Single-Point and 

Two-Point variations are shown. 

 

Figure 13: Mutation operation showing 2 different bit flips. 

Elitism 

Due to the stochastic nature of GAs, it becomes possible for the best fitness observed in 

each generation to degrade as the best-fit individual has the potential to produce offspring which 

have a lower fitness due to the crossover operation generating poor gene combinations or the 

mutation operator altering the genome to a less-fit configuration. For this reason, it’s common for 
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GAs to implement elitism. Elitism transfers the best fit individual(s) to the next generation without 

altering their genomes. This will not exclude the best-fit individuals from the selection process, as 

their genes are valuable for the gene pool. When the GA is designed to transfer only the best-fit 

individual to the next generation, the GA is considered to have an elitism of one. If the GA retains 

the top two best-fit individuals, then it has an elitism of two, and so on. Although elitism is shown 

to improve GA-based hardware evolution, too much elitism decreases genetic diversity and can 

actually have negative effects on the evolution by causing early convergence. For this study the 

GA uses an elitism of two. 

Routing Encoding 

 The routing scheme used for any EHW project needs to be tailored to the specific platform 

as different platforms have different resources and capabilities. Generally though, routing is 

encoded into the gene by choosing whether a particular terminal connects to an available routing 

wire or to another terminal on the same gene or a different one. For this study, the PSoC-5LP’s 

analog routing capabilities can be summarized in Figure 14.  

There are 4 primary analog busses, each of which consist of multiple wires that each 

available terminal in an SC block can connect to. The left and right analog buses each contain 4 

wires, and the left and right global analog buses contain 8. Additionally, the left and right local 

buses can be connected together such that 𝑎𝑛𝑎𝑙𝑜𝑔𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑓𝑡[0] = 𝑎𝑛𝑎𝑙𝑜𝑔𝑙𝑜𝑐𝑎𝑙_𝑟𝑖𝑔ℎ𝑡[0]  up to 𝑎𝑛𝑎𝑙𝑜𝑔𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑓𝑡[3] = 𝑎𝑛𝑎𝑙𝑜𝑔𝑙𝑜𝑐𝑎𝑙_𝑟𝑖𝑔ℎ𝑡[3]; the left and right global buses can also be connected 

in such a manner. These buses are connected in this fashion for the experiments in this study 
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leading to a total of 12 common wires available for routing signals amongst the circuit. The routing 

in our genome is encoded as binary connection/no-connection values for each available terminal 

to each of the available analog wires in the local bus as well as the global bus. The routing bits 

correlate to configuration registers that handle the connections. 

 

Figure 14: Routing architecture for PSoC-5LP Switched-Capacitor Op-Amp Blocks showing 

left/right local and global analog buses. 

Analog Evolution Issues 

When initially evolving analog CCs with a rudimentary GA, the evolution was observed 

to converge to solutions, which showed characteristics of the desired CC, but was limited by the 

available voltage range of the platform. Figure 15 shows a typical rudimentary GA-evolved cube 

circuit output measured on the PSOC-5LP intrinsic platform compared to the ideal curve. Since 
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the PSoC device on our prototype platform is limited to a 4.08V peak signal level, any input over 

1.6V would exceed the platform’s range for a cube CC. The evolved circuits were also observed 

to have fluctuations in their accuracy as indicated by the deviations from the ideal curve. The 

limited device range is mitigated using a SSGA, which is developed herein in Chapter 4, and the 

accuracy issues are addressed using Differential Digital Correction, which is a technique 

developed in conjunction with the SSGA techniques in this thesis; details are provided in a recent 

Master’s thesis [50]. 

 

Figure 15: Analog Cube CC Evolved with Unrefined GA Compared to Ideal Curve. 

Summary 

 This chapter went into depth concerning current techniques for EH that will be used in the 

research herein, specifically these aspects of the GA: 

 genes: genetic representation of the constituent computational blocks utilized by the GA, 
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 genome: combination of genetic material to fully realize a circuit, 

 fitness function: the function which is to be optimized by the GA, 

 selection: the method of choosing which individuals are to breed individuals for the next 

generation, 

 genetic operators: the operators which mix and randomly alter the genomes of selected 

individuals to generate two new individuals made up of the genetic material of parents, 

 and elitism: the aspect of saving top performing individuals to ensure there’s never a 

reduction in best fitness. 

 This chapter also went over how routing can be encoded in GAs as well as how it’s 

specifically implemented on the PSoC-5LP platform used in this research. The chapter was then 

wrapped up by delineating the issues encountered when evolving analog CCs and how this 

research plans to address these challenges. 
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CHAPTER FOUR: SELF-SCALING GENETIC ALGORITHM SUITABLE 

FOR ANALOG CIRCUIT EVOLUTION 

As discussed in Chapter 3, one of the primary issues involved with utilizing an analog 

platform for CCs is that the dynamic range of computation available is limited to the maximum 

device voltage level. It is challenging to scale the inputs in such a way that the maximum output 

voltage would be within our device range limit, thus we seek an intelligent adaptive approach. We 

also consider that there may be particular atypical output voltage ranges that more effectively map 

our available resources to our desired CC, and we would like to allow the evolutionary algorithms 

to search for such exploitations.  

To realize these objectives, the Self-Scaling Genetic Algorithm (SSGA) is proposed as an 

extension to GAs that interweaves PSO amongst the GA operation to search, adapt, and refine 

scaling and translation factors, which alter the CC output to improve dynamic range as well as 

search for possibly more computationally-tractable ranges. In order to develop the SSGA 

extension, a PSO algorithm must be tailored for our application, the GA fitness function needs to 

be adjusted to include the scaling and translation factors, and the individual’s genome can be 

adapted to keep track of and utilize the scaling and translation factors. Two other alterations to the 

standard GA are developed to improve SSGA-based circuit evolution. Those include the 

development of an island-like GA and tailoring a hypermutation genetic operator to the SSGA. 

The SSGA is one of two techniques developed to work in relay to realize Scaling Evolutionary 

Refinement (SCALER) as proposed in [51] and shown in Figure 16. 
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Figure 16: Scaling Evolutionary Refinement. 

While SSGA is the primary focus of this thesis, the interested reader is referred to [50] for 

details on the design and operation of Differential Digital Correction (DDC).  

Self-Scaling Parameters 

 As shown in Figure 17, the flow to develop the SSGA consists of three major research 

objectives highlighted in blue. The leftmost step denotes the standard GA developed for analog 

CC evolution on the PSoC-5LP platform. The middle step denotes the development of a self-

scaling functionality optimization scheme utilizing PSO. The rightmost step denotes the extensions 

developed to circumvent premature convergence and improve SSGA evolution.  

The Self-Scaling Parameters, or SS parameters are the scaling (A) and translation (B) 

parameters. The scaling parameter is a real, positive, non-zero number that is multiplied to the 

output of the analog circuit under evaluation or operation to scale the circuit functionality to a 

particular range determined by the SSGA. The translation parameter is a real number that’s added 
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to the analog circuit in order to translate the device range as determined by the SSGA. The output 

of a CC evolved by the SSGA becomes 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑓(𝑥) + 𝐵, where 𝑓(𝑥) is the original voltage 

level output from the analog CC.  

 

Figure 17: SSGA design flow. 

 

 

Figure 18: Implementation of scaling (A) and translation (B) parameters into circuit output. 

Delineation of Particle Swarm Optimization 

 PSO is utilized in the SSGA to optimize the SS parameters expounded on in the previous 

section. The PSO algorithm operates by iteratively maneuvering candidate solutions within the 

search-space, testing each candidate each iteration, and then updating the candidates’ positions 

based on their previous best as well as the global best solution found.  



36 

 

For this study, a two-dimensional PSO algorithm is implemented within a GA to optimize 

the two SS parameters while the population is under evolution. It was tested whether the PSO 

algorithm was best implemented separately from the GA, as in the GA would evolve the best 

candidate circuit that it could, and then the PSO algorithm would commence to optimize that 

particular circuit, which would improve the fitness of the candidate circuit, but it was observed 

that operating the PSO algorithm while the populations were evolving produced the best-fit and 

most interesting solutions. The SS parameters A and B are initialized for each individual when the 

populations are initialized by randomly assigning values between pmin and pmax.  

 

Figure 19: PSO particle forces (shown left) and cumulative velocity vectors (shown right). 

Alterations of the Fitness Function 

The fitness function utilized in the SSGA for our study is very similar to the general fitness 

scheme, that is, a number of test inputs are applied to the circuit under test, then the outputs are 

measured and compared against a pre-defined oracle. The fitness is then calculated as the sum of 

errors for all of the test points. This means that for this study a lower fitness value corresponds to 

a better fit candidate circuit as it has fewer errors.  
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One particular adaptation developed for the fitness function is the use of a penalty 

operation. The penalty operation is implemented by adding penalty points to the fitness of a 

candidate circuit under test for each error larger than penalty_case. This was shown to greatly 

improve the evolution of the population because circuits that deviated heavily from the desired 

functionality were penalized, and therefore had smaller chances to be selected for breeding. 

To implement our SSGA, a two-dimensional PSO algorithm is used to optimize two Self-

Scaling parameters, a scaling factor, A, and a translation factor, B, such that  𝑆𝑆{𝑓(𝑥)} = 𝐴𝑓(𝑥) +  𝐵          (1) 

is more accurately mapped to our desired function, i.e. has a better fitness, where f(x) is our raw 

output from the evolved analog circuit and SS is our Self-Scaling transformation. The GA is 

extended to a SSGA by altering the fitness function, as shown in Equation 2, and updating the SS 

parameters with PSO as the GA is running. The flow of SSGA is shown in Algorithm 1. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ |𝑆𝑆(𝑜𝑢𝑡𝑝𝑢𝑡(𝑖𝑛𝑝𝑢𝑡(𝑡))) − 𝑜𝑟𝑎𝑐𝑙𝑒(𝑡)|𝑇−1𝑡=0   (2) 

Initial tests attempted to adjust the fitness function to include a weighted combination, 

fixed or adaptive, of both the raw analog circuit fitness and the SSGA adapted fitness, which 

showed improvements in fitness. However, the best fitness improvement was obtained when we 

only considered the SSGA adapted fitness to evaluate our individuals.  

Genetic Operators Details 

The next generation for each population is developed by selecting 2 parents via tournament 

selection and performing crossover with their genomes to make two offspring, which contain the 
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mixed genes of their parents. Crossover has a 50/50 chance to perform single-point or 2-point 

crossover. Once selection and crossover has been completed N/2-1 times to generate a total of N 

new individuals combined with the best fit and second best fit, mutation is performed on all except 

the best fit individual.  

Adaptive Mutation Rate 

Mutation is designed as a low probability chance, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, of flipping a single bit in each 

of the parameters in the genome, excluding the SS parameters. In order to help lift the GA out of 

local minimums, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛is varied dynamically based on convergence, which we define as as the 

fitness difference between the best fit individual and the average fitness. 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  is doubled 

when |𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡| < 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡  and tripled when |𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 −𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡| < 0.5 × 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡. 

Alterations to the Genome 

 Figure 20 shows the complete individual genome consisting of n genes, which specifies 

configurable characteristics of all CAEs for the target application, as well as the SS parameters for 

scaling and translation, A and B, their velocity parameters, vA and vB, as well and their previous 

best value pBest. Each CAE requires f bits to describe its function, p bits to describe the various 

parameters of the components contained within, such as resistance values, and the r bits to 

determine routing. 
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Figure 20: Breakdown of individual genome, gene expression, and binary representation for 

SSGA 

Island-Like Genetic Algorithm 

 Due to the stochastic nature of such algorithms, it’s observed that the SSGA sometimes 

converges to poor solutions. To alleviate this issue, an island-like GA is used with SSGA. We 

consider it island-like because neither individual’s genomes nor genes are shared, but only SS 

parameters. At every gen_share generations, all of the island populations are checked, and the 

best-fit island’s SS parameters are shared. This greatly increases the chance of finding high quality 

solutions and SS parameters, and allows populations consisting of different genes and genomes to 

evolve with known good SS parameters, possibly giving rise to further improvements. 

Hypermutation Genetic Operator 

Because PSO is now being performed on a dynamic population whose functional ranges 

are changing, we implement a hypermutation function, similar to [16], to help circumvent local 

minima and find new optimization parameters for new generations. The hypermutation simply 

reinitializes the scaling and translation factors (A and B) of all the particles to random values within 
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the range [pmin, pmax], and reinitializes half of the population to random individuals so that there 

is enough genetic diversity to possibly make use of the new SS parameters. The hypermutation 

function does not modify the gBest parameters, so the SSGA has the chance to explore new 

parameters without sacrificing current best parameters. Hypermutation is performed when gBest 

hasn’t improved for hypermutation_condition generations. 

Self-Scaling Genetic Algorithm 

 All of the techniques developed in this chapter are merged into the complete SSGA shown 

below in Algorithm 1. Starting with line one, both of the timer variables are initialized, which keep 

track of the current generation (t), as well as the number of generations without any improvement 

in the globally best fit individual (gBest_time). Then, the first generation of the population (P(0)) 

is initialized using the Initialize_population() function, which simply generates all of the 

individuals in the population randomly using the built in rand() functionality in C. One the first 

population is generated, each individual in the population is evaluated using the 

Evaluate_Fitness() function. Once all of the fitness’ are calculated, we use lines 6-14 to update 

our previous best values for each of the particles in the PSO as well as the globally best value. Line 

16 updates the SS parameters for each particle according to the PSO algorithm delineated earlier. 

Lines 17-20 check for an update to the globally best fit value, and if found true, it increments 

gBest_time. If not found true, that means the globally best fit value has improve, and therefore 

it resets gBest_time back to 0. Lines 21-22 hypermutate the population according to the 

hupermutation genetic operator delineated earlier if the globally best fit value hasn’t changed for 
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a certain condition, that is gBest_time == hypermuation_condition. Line 23 performs the core 

GA operators of crossover and mutation on the population to generate the next generation. Line 

24 increments our generation counter as well as updates our prev_gBest to our current gBest.The 

final line simply checks for our termination condition, which is when we reach max_generation 

generations. 
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Summary 

 This Chapter introduced the techniques developed in this Thesis as they are integrated into 

the SSGA. The SS parameters are defined and expounded upon how they interact with the outputs 

generated from the analog circuits. The PSO algorithm is also further delineated as it is 

implemented within a GA framework to adapt the SS parameters during GA driven evolution of 

the reconfigurable analog fabric on the PSoC-5LP. The alterations to the fitness function, genome, 

and genetic operators necessary for successful implementation of the SSGA is also described. The 

island-like GA utilized in this study is also defined and its benefits are expressed. The 

hypermutation genetic operator is also defined. Finally, the chapter is wrapped up with the full 

SSGA shown in a step-wise fashion.  
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CHAPTER FIVE: SELF-SCALING GENETIC ALGORITHM 

PERFORMANCE ANALYSIS 

Experimental Setup 

To determine the parameters to be used for the study, a variety of configurations are 

explored and the best performing parameters are then utilized. Based on these findings, the global 

parameters are determined as follows. The maximum number of generations permitted for the GA 

to run is 500, as more generations did not produce a significant improvement in fitness, if at all. 

The minimum value that the scaling SS parameter can take is 0, and the minimum value the 

translation SS parameter can take is the negative of the pmax value shown in Table 2. The number 

of populations in the island-like GA is 4. The number of individuals in each population is 30. The 

level of elitism is 2. A tournament selection based selection scheme is utilized with a 

tournament_size of 2. The amount of penalty points that’s added to the fitness of individuals with 

test outputs greater than penalty_case is 10. The number of stagnant generations that the 

hypermutation function is to occur is 100, and the number of generations before SS parameters are 

shared amongst the islands is 200. Parameters pmax and penalty_case are altered for each test 

case and are delineated in Table 2. All parameters chosen are roughly optimized values based on 

trial experimentation as described later.  
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Standard Genetic Algorithm Setup 

 In order to compare the results of using SSGA to standard GA evolution, we develop a 

standard GA that is as similar to our SSGA as possible, but with no scaling or translating, no 

island-like sharing of parameters, and no hypermutation. Since there’s no islands in this GA, we 

utilize a single population of 120 individuals, which is the same total number of individuals for 

the SSGA. The fitness function used for the standard GA is simply 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =∑ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑖𝑛𝑝𝑢𝑡(𝑡)) − 𝑜𝑟𝑎𝑐𝑙𝑒(𝑡)𝑇−1𝑡=0 .  

Circuit Complexity 

 In order to compare our circuit complexity to [5, 7, 16] , all of which used an unconstrained 

quantity of resistors and Bipolar Junction Transistors (BJTs) to evolve their CCs, we’ve identified 

a complexity cost metric, which relates roughly to computational capability. The complexity of a 

component is assigned according to the range of operations it can perform. Since resistors can only 

perform 1 operation, they are assigned a complexity of 1. BJTs can be wired up in 4 different 

configurations, and therefore have a complexity of 4. The SC blocks of the PSoC 5LP can perform 

8 functions, and therefore it has a complexity of 8. Since we have 4 SC blocks for our CCs, our 

circuits have a fixed complexity of 32. 
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Test Cases 

The input/output ranges in Table 2 show the difference between attempting to evolve CCs 

with SSGA versus a standard GA running on the PSoC-5LP. Due to the native range of the device, 

evolving without any form of scaling would severely reduce computational range for square and 

cube circuits. Each test case is evolved a total of 5 times each with both a standard GA and the 

SSGA and the average error and average fitness is computed and compared.  

Table 2: Computational Circuit test cases used in literature and herein. 

 
*Computational range falls within native device range 

Test Case Results 

 In this section, each test case is evaluated along with a graph of the scaled and translated 

output from a typical SSGA evolutionary case is shown along with the fitness versus time graphs 

for a representative example.  
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Square-Root Computational Circuit 

 

Figure 21: SSGA Evolved Square-Root Circuit Compared to Ideal Curve. 

 The first CC evolved with the SSGA was the square-root function, with a typical SSGA 

evolved output and ideal curve shown in Figure 21. The average error of the best solution found 

after 500 generations is only 30mV, which is much better compared to [5], that had an average 

error of 183.57mV, but worse when compared to [16] and [7], which had an average error of 

20.0mV and 9.23mV, respectively. Even though the SSGA evolved square-root circuit on the 

PSoC-5LP performed comparably worse than [16] and [7], consider that those papers used 

extrinsic evolution in a simulation environment and developed circuits with much greater 

complexity (84 and 60, respectively) than the SSGA evolved CC. When evolving the square-root 

CC with a standard GA, the average fitness was 9.45. The average fitness when the square-root 



47 

 

CC was evolved with a SSGA was 1.35, leading to a 7x improvement in fitness when utilizing the 

SSGA versus the standard GA. Figure 22 shows a typical fitness versus generation graph for the 

SSGA evolution of the square-root circuit. Each island’s average fitness value is plotted in red 

along with the best fitness in the island, which is plotted in blue.   

 

Figure 22: Typical Fitness Over Time Graph for Square-root CC Evolution with SSGA. 
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Cube-Root Computational Circuit 

 

Figure 23: SSGA Evolved Cube-Root Circuit Compared to Ideal Curve. 

 The next CC studied is the cube-root function with a typical SSGA evolved output and 

ideal curve shown in Figure 23. The average error for the best solution evolved with the SSGA 

was found to be 23mV, which compares favorably to [5], which had an average error of 80mV, 

and is similar, albeit slightly poorer, to [7], which had an average error of 11.9mV. The complexity 

for both [5] and [7] were much greater than the complexity of the circuit evolved in this study, 

having a circuit complexity of 164 and 116, respectively. The average fitness of the cube-root CC 

evolved with a standard GA is 7.54. When evolved with the SSGA, average fitness was 1.49, 

giving a 5.07x improvement in circuit fitness. Figure 24 shows a typical fitness versus generation 
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graph for the SSGA evolution of the cube-root circuit. Each island’s average fitness value is plotted 

in red along with the best fitness in the island, which is plotted in blue.   

 

 

Figure 24: Typical Fitness Over Time Graph for Cube-root CC Evolution with SSGA. 
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Square Computational Circuit 

 

Figure 25: SSGA Evolved Square Circuit Compared to Ideal Curve. 

 The previous two CCs evolved were functions which could be evolved to the PSoC-5LP 

fabric without any self-scaling necessary to accommodate the device’s voltage range. Now the 

square CC is evolved with a standard GA as well as the SSGA to demonstrate the SSGA’s dynamic 

range scaling properties, as the square circuit does not natively map to the PSoC-5LP’s voltage 

range. When evolved with a standard GA, the square CC had an average fitness of 506.95, but 

when evolved with the SSGA, the square CC had an average fitness of 39.23, leading to an 

improvement of 12.92-fold, the greatest improvement observed. The average error for the SSGA 

evolved square CC was determined to be 140mV, which is worse than in [5] and [7], which had 

an average error of 27mV and 1.44mV, respectively. However, consider that the circuit 
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complexities were 72 and 118, respectively, and that they were evolved extrinsically in a 

simulation environment. Figure 26 shows a typical fitness versus generation graph for the SSGA 

evolution of the square circuit. Each island’s average fitness value is plotted in red along with the 

best fitness in the island, which is plotted in blue.   

 

 

Figure 26: Typical Fitness Over Time Graph for Square CC Evolution with SSGA. 
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Cube Computational Circuit 

 

Figure 27: SSGA Evolved Cube Circuit Compared to Ideal Curve. 

 The final test case in this study is the cube CC, which has a functional range much larger 

than the intrinsic voltage range of the PSoC-5LP, so this test case is the best demonstration of the 

SSGA’s scaling functionality. For the evolution of a cube CC with a standard GA, the average 

fitness was found to be 1084.45, while the average fitness when evolved with the SSGA was found 

to be 291.56, leading to an improvement of 3.72-fold. The high, and therefore relatively poor, 

fitness value of the SSGA evolved cube CC can be attributed to penalization. The average error 

was found to be 1.16V, and since the circuit is penalized whenever a test point is more than 0.5V 

different then the oracle, the cube CC is heavily penalized, even for the best evolved solution. This 

can be attributed to the fact that the cube CC required the greatest scaling, and therefore any errors 
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are scaled as well. Figure 28 shows a typical fitness versus generation graph for the SSGA 

evolution of the cube circuit. Each island’s average fitness value is plotted in red along with the 

best fitness in the island, which is plotted in blue. 

 

Figure 28: Typical Fitness Over Time Graph for Cube CC Evolution with SSGA. 

Overall Results Including Differential Digital Correction  

 As the companion technique to the SSGA, the results of DDC is delineated herein. DDC 

was able to improve the average error in all test cases as shown in Table 4. For the square-root CC, 

DDC was able to reduce the average error from 30mV to 26.8mV. For the cube-root CC, DDC 

reduced the average error from 23mV to 19.25mV. For the square CC test case, DDC reduced the 

average error from 140mV to 100mV. And for the cube CC, DDC reduced the average error from 

1160mV to 732mV. A typical complete evolutionary run including both SSGA and DDC is shown 

in Figure 29. First, the analog evolution phase shows the generation-by-generation best-fit 
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individual’s total error (shown in blue) and average total error (shown in red) for each of the island 

populations, and then after 500 generations, the digital refinement phase uses DDC to significantly 

reduce the total error. 

 These results indicate that digital refinement techniques are an intriguing method of using 

analog and digital resources in tandem to produce improved results in new and interesting 

computational fashions.  

 

Figure 29: Average total error (red) and best total error (blue) evolution shown for both SSGA 

(analog evolution phase) and DDC (Digital Refinement Phase). During the analog evolution 

phase, the multiple average and best fitness lines are for each of the islands. 

Results Overview 

Table 3 shows the overall fitness scores of the four CCs evolved, indicating significant 

improvements of using the SSGA versus an unrefined GA. Each of the evolved CC produced 

solutions, which closely matched their ideal outputs as shown in the previous sections. The worst 

performing circuit, as far as fitness is concerned, is the cube circuit, which is understandable 

considering it required the greatest scaling beyond its native range. Considering that test points are 

penalized when they are more than 0.5V away from the oracle, and the cube circuit had an average 
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error of 1.19V, the penalization kept the cube circuit from obtaining better fitness values, even 

though it is relatively accurate as can be seen in Figure 27. Even though the cube circuit had the 

worst fitness, it was the best demonstration of the SSGA as it was able to increase its effective 

range by 17-fold.  

 

 

Table 3: Standard GA and SSGA Evolved CC Fitness Results 

Circuit GA Average Fitness SSGA Average Fitness Improvement 

Square 506.95 39.23 12.92 

Square-root 9.45 1.35 7.00 

Cube 1084.45 291.56 3.72 

Cube-root 7.54 1.49 5.07 

    Average Improvement: 7.18 

 

The square circuit showed the most significant improvements, which is reasonable 

considering that the square circuits’ effective range is unobtainable with an unrefined GA, but does 

not have to be scaled as greatly as the cube circuit required. Furthermore, the square circuit only 

had an average error of 187 mV, so it is rarely penalized. Square-root and cube-root both were 

able to evolve good solutions with the unrefined GA, but still showed significant improvements 

when evolved with the SSGA. Interestingly, the best observed fitness amongst all of our tests was 

a standard GA evolution of cube-root, which gave a fitness of 0.85. However, this was an atypical 



56 

 

case, as the average fitness scores show significant improvements from using the SSGA versus the 

unrefined GA. 

Compared to the results of the previous works in Table 4, the square-root and cube-root 

CCs evolved with SSGA achieved an average error of 19.6mV and 20mV, respectively, and 

performed better than Koza et al. The square-root CC evolved in this paper performed marginally 

better than Mydlowee et al., with an average error of 20mV, but the square CC did not outperform. 

All test cases performed worse than Sapargaliyev et al., but considering their work evolved CCs 

extrinsically without device constraints, this is understandable. As far as the authors are aware, 

this is the first realization of intrinsic evolution of analog CCs on a commercial PSoC device 

utilizing a compact fabric of 4 SC op-amp Blocks. 
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Table 4: Results compared to previous works. 

 

Summary 

 This chapter laid out the results generated from SSGA-driven intrinsic evolution of four 

computational circuits. All standard GA and SSGA parameters are described along with a 

definition of the complexity metric that is used to compare the constrained reconfigurable analog 

fabric on the PSoC-5LP to the circuits generated extrinsically by previous works. The results for 

evolving the cube, cube-root, square, and square-root CCs are then described. Each CC showed 

strong improvements when evolved with the SSGA versus the standard GA. Some of the results 

showed a reduced average error compared to previous works, but not for others. This can be 
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attributed to the small amount of components available on the PSoC-5LP compared to the 

simulation environments used in the compared previous works. A representative example of the 

digital refinement technique called DDC is then shown to reduce the average error of an evolved 

square circuit significantly.  
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CHAPTER SIX: CONCLUSION 

This thesis developed the Self-Scaling Genetic Algorithm (SSGA), a method to scale, translate, 

and adapt evolved analog computational circuits. The SSGA supports the implementation of 

analog circuits on a resource-constrained and voltage-range restricted platform by utilizing PSO 

to optimize scaling and translation factors during the evolution of circuit topologies using a GA. 

As shown in Figure 30, several conclusions can be drawn from the results developed herein. First, 

extending GAs with PSO has proved to be an effective method of adapting analog solutions to the 

platform’s computationally-tractable range. Next, it was demonstrated in this thesis that it is 

possible to use relatively limited reconfigurable resources to realize intrinsic analog CC evolution. 

Finally, results compared favorably to previous works using metrics of average error, fitness, and 

circuit complexity. A conclusion drawn from these results is that intrinsic evolution is clearly 

beneficial to minimizing these errors on a physical device, as will be discussed below. 

 

Figure 30: Conclusions drawn from study herein. 
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Technical Summary 

 The use of SSGA was shown to improve the fitness of four analog computational circuits 

by an average of 7.18-fold, up to 12.92-fold in the case of the square CC. Results were comparable 

to previous works, which used extrinsic evolution in simulation environments and a much greater 

number of resources as well as reconfiguration options. In all cases, the intrinsic evolution of 

analog CCs using SSGA reduced the average error compared to the 1997 results in [5]. However, 

all test cases showed poorer results compared to the 2012 results in [7].  

 In summary, we addressed three of the challenges related to analog computation as 

depicted in Figure 31. First, we utilized a GA to automate the analog circuit design to address the 

challenging task of designing analog CCs, especially on resource constrained devices. Next, the 

GA developed is able to intrinsically adapt for the device characteristics present on whatever 

platform is being utilized. Finally, we developed the SSGA which is able to improve the accuracy 

and precision of our analog CCs by adapting the outputs to the most computationally tractable 

range as shown in the results. 

 

Figure 31: Summary of Challenges Addressed With Techniques Developed Herein 
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Technical Insights Gained 

 The intrinsic evolution of analog CCs on a reconfigurable fabric has shown great merit to 

realize functionality that would be incredibly difficult to hand-design given a resource-constrained 

platform. Extrinsic evolution has far too many luxuries that avoid many of the challenges of real 

implementation. Some of these luxuries include a lack of process variation, temperature variations, 

and device mismatch, as well as a possibly unconstrained amount of resources. Intrinsic evolution 

allows all of these characteristics to be considered during evolution as the fitness of the circuits 

are innately manipulated by all of them. Intrinsic evolution does allow the luxury of a reduced 

evaluation time as it’s much faster to evaluate a real implementation rather than a simulation.  

 The PSoC-5LP provides an interesting platform to explore how analog and digital systems 

can cooperate in innovative ways. The onboard microcontroller allows adaptive design and refine 

algorithms to be implemented with the reconfigurable analog fabric in a single independent closed-

loop package. The reconfigurable digital fabric allows the exploration of how reconfigurable 

analog and digital circuits can be synergistically utilized to improve old applications and explore 

the possibility of new applications.  

 When developing the techniques herein, the aspects which were the most straightforward 

to develop were: 

 computational CCs which fell within the PSoC-5LP’s native voltage range, as it was 

achievable with only the standard GA framework, 

 implementing the PSO, as it only required a small modification to the fitness function and 

genome, as well as an additional small function to update the PSO parameters, 
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 the hypermutation function, as it only required a reinitialization of individuals genomes, 

which is just a simple function call in the framework developed, 

 observing intra-evolutionary un-scaled functional tests as it only required a pin connected 

to the output routing line which was then connected to an oscilloscope for real-time 

observations,  

 and the control of the EAs, as the onboard ARM microcontroller was able to store and run 

the algorithms with good speed and no external interfacing necessary. 

Some of the most challenging aspects faced when developing the techniques herein include: 

 developing the initial GA framework, as there were a large amount of registers and data to 

be stored and manipulated to configure each analog block, and bugs in the framework 

prevented good evolution until they were all found and addressed 

 and observing intra-evolutionary details such as SS parameters and circuit topologies as it 

required manual halting of the evolutionary process in debug mode.  

Scope and Limitations 

 The scope of this research centers around the automated synthesis of analog CCs on 

intrinsic reconfigurable fabrics for the potential benefit of greater efficiency in computation at 

current technology scaling limits as shown in Figure 32. Analog-based computation has interesting 

properties that could allow computational devices up to four orders of magnitude more efficient 

than purely-digital implementations, but there are still issues associated with their use. Although 

these efficiency improvements are a benefit, they lie outside the scope of this project.  
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Figure 32: Analog-based computation benefits and challenges with the thesis scope outlined. 

Future Directions 

The performance of SSGA could benefit by more exploration by applying SSGA 

techniques to larger Field Programmable Analog Array platforms with additional computational 

analog blocks. Using such devices could perhaps show that a large of a range of accurate 

computation is possible, and that complex computational circuits such as differential equations 

could be accurately evolved. 

Although the SSGA is used as a design technique, it could also function as a repair 

technique to sustain availability in long missions where a small number of resources are available 

by self-adapting faulty hardware to best map to the desired functionality. Additionally, an 

integrated reconfigurable analog platform and development environment with built in SSGA 

design functionality could allow analog-based computation to become more widely adopted.  

Another interesting exploration would also be to conduct power measuring experiments on 



64 

 

SSGA evolved analog circuits compared to digital implementations; perhaps utilizing a multi-

objective GA within the SSGA to account for power dissipation could lead to interesting findings. 

Finally, the SSGA could be applied to frequency domain analysis via adjustment of FFT 

coefficients.  
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