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ABSTRACT

As environmental concerns and portability of electronic devices move to the forefront of priori-

ties, innovative approaches which reduce processor energy consumption are sought. Approximate

arithmetic units are one of the avenues whereby significant energy savings can be achieved. Ap-

proximation of fundamental arithmetic units is achieved by judiciously reducing the number of

transistors in the circuit. A satisfactory tradeoff of energy vs. accuracy of the circuit can be deter-

mined by trial-and-error methods of each functional approximation. Although the accuracy of the

output is compromised, it is only decreased to an acceptable extent that can still fulfill processing

requirements.

A number of scenarios are evaluated with approximate arithmetic units to thoroughly cross-check

them with their accurate counterparts. Some of the attributes evaluated are energy consump-

tion, delay and process variation. Additionally, novel methods to create such approximate units

are developed. One such method developed uses a Genetic Algorithm (GA), which mimics the

biologically-inspired evolutionary techniques to obtain an optimal solution. A GA employs genetic

operators such as crossover and mutation to mix and match several different types of approximate

adders to find the best possible combination of such units for a given input set. As the GA usually

consumes a significant amount of time as the size of the input set increases, we tackled this prob-

lem by using various methods to parallelize the fitness computation process of the GA, which is

the most compute intensive task. The parallelization improved the computation time from 2,250

seconds to 1,370 seconds for up to 8 threads, using both OpenMP and Intel TBB. Apart from using

the GA with seeded multiple approximate units, other seeds such as basic logic gates with limited

logic space were used to develop completely new multi-bit approximate adders with good fitness

levels.
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The effect of process variation was also calculated. As the number of transistors is reduced, the

distribution of the transistor widths and gate oxide may shift away from a Gaussian Curve. This re-

sult was demonstrated in different types of single-bit adders with the delay sigma increasing from

6psec to 12psec, and when the voltage is scaled to Near-Threshold-Voltage (NTV) levels sigma

increases by up to 5psec. Approximate Arithmetic Units were not affected greatly by the change

in distribution of the thickness of the gate oxide. Even when considering the 3-sigma value, the

delay of an approximate adder remains below that of a precise adder with additional transistors.

Additionally, it is demonstrated that the GA obtains innovative solutions to the appropriate com-

bination of approximate arithmetic units, to achieve a good balance between energy savings and

accuracy.
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CHAPTER 1: INTRODUCTION

As environmental concerns and portability of electronic devices move to the forefront of priorities,

it is important for us to find ways to reduce the power consumption of our devices. A number of

ways have been proposed to reduce the power consumption of devices. The need for higher energy

efficiency in recent times has pushed the industry and academia to find various other avenues

to decrease power consumption. Some of the common methods of reducing energy consumptions

include voltage scaling, Probabilistic CMOS (PCMOS), algorithmic truncation and approximation.

These methods are reviewed briefly here. Various mechanisms are used to reduce errors due to

voltage overscaling, one of the mechanisms of particular interest is shown in [9] . In [9] slack

redistribution is used to gracefully degrade the circuit. Use of PCMOS is another way of reducing

the energy cost without compromising on accuracy by a large margin as shown in [10]. [10] states

that all MOS devices are inherently probabilistic rather than deterministic, it takes advantage of

this probability in cases where noise is present to yield accurate results. [10] Implements PCMOS

in System on Chips (SoC) to form a Probabilistic System on Chip (PSoC). The third method i.e.

algorithmic truncation is a software level based solution, this solution is usually compared with

hardware level approximation as shown in [7]. Algorithmic truncation usually refers to methods

of removing a fixed number of LSBs from the output or input. Another method of algorithmic

adaptation would be to skip certain steps in the algorithm in return for reduced accuracy and power

savings. Hardware approximation refers to reduction in the size of critical path by reducing the

number of transistors in the path.

The paper [15] illustrated the various ways a Genetic Algorithm can be parallelized, this paper

delves into four levels of parallelism i.e. Parallelism of fitness evaluation, Parallelism of repro-

duction (selection, crossover etc.), Parallelism of groups (Population is sub-divided into groups

and then they are evolved separately, with a chance of interaction after each generation), the paper
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also defines the various levels of details a parallel genetic algorithm can be implemented The sec-

ond paper uses a Cartesian Genetic Algorithm to develop various adders at design-time, also the

adders developed undergo testing under various error metrics, they also incorporate redundancy in

their method where not all the gates are used for obtaining an output, a downside to this could be

the area size, the paper does not describe how the other gates are excluded and how they can be

included i.e. the method used. It uses two levels of fitness calculation to test the error range of

the circuit. The third paper apart from developing their own parallel multiplier, they also compare

various types of multipliers and where they could be used, they give design guidelines to use when

implementing it in EDA tools.

Significance of the Problem

For most purposes nature seems to approximate in many situations, for example the flow of a fluid,

there are always a number of extraneous factors responsible for the flow of the fluid, unless the

fluid is under ideal conditions, only then is it possible for science to truly predict the flow of a

fluid. Signal Processing is similar to such a problem, analogous to a fluid, it is inherently tolerant

to approximations and error. We try to exploit this inherent tolerance to errors to reduce Power

consumption and area used by computation. Such kind of inherent tolerance can also be seen in

Machine Learning, and Data Mining, which show significant algorithmic resilience [3]. This trait

can be attributed to redundancies in input data-sets, lack of a definitive result or the ability of an

algorithm to average out the errors. In general, most of the signal processing applications require

high-end processing powers to compute precisely and expend large amounts of power to compute

precisely. Approximation could save a lot of power in applications where 100% accuracy is not

a necessity. As it removes the unnecessary slack of more than required accuracy using various

methods such as voltage over-scaling, functional approximation etc.
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We functionally approximate many arithmetic circuits to improve delay and power consumption in

adders. We also observe the effects of process variation as illustrated in the tables further into the

text. In combination with Genetic Algorithms(GA) we develop combinations of multi-bit adders

with a threshold accuracy and major savings in power. The GAs help us find the right combina-

tion of accuracy and power savings, where the trade-off is just right such that the accuracy is not

degraded too much and the power savings are maximum. Process variation also seems to play

a significant role in smaller bit-width adders, but as the size of the arithmetic unit increases, the

distribution evens out and the sigma value seems to remain within normal ranges in approximate

units.

Types of Approximations

Approximations can be broadly classified as over-scaling based approximation methods which

introduce errors due to timing constraints, some examples of over-scaling based approximations

include Voltage Approximation. Usually in over-scaling based approximations the slack time is

progressively decreased until there’s not enough time for the circuit to latch on to the value, which

causes the circuit to use the last value latched as the current value, in voltage approximation, the

VDD or VTH is progressively reduced until such temporal errors occur. For the sake of simplic-

ity we include Probabilistic Computing in this category and functional approximation methods,

which reduce the number of transistors in arithmetic units to introduce errors, maximum power

savings are usually obtained by functional approximations. This is due to the fact that the parasitic

capacitances, and dynamic, and static power consumption are drastically reduced as the number of

transistors reduces, as shown in the results. A beneficial side-effect of reduced transistors is that

the delay also decreases significantly, process variation does not seem to affect the delay enough

to increase the delay and power consumption to equal that of an accurate unit. Another type of
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approximation is known as algorithmic truncation, in this method a part of the code or number is

truncated, in case of code truncation, a for loop could be truncated by reducing the number of times

it needs to run, for example if a for loop needs to loop 1000 times to obtain an accurate result, it

could instead run for 200 loops and get a nearly accurate result in case of binary truncation a part

of the binary number is removed usually a set number of LSBs and replaced by 0’s, for example if

a binary number 111111112 is to be computed on instead of the hardware receiving 111111112 it

receives 111100002 and the hardware performs the arithmetic operation on the first four most sig-

nificant bits. The three examples of voltage over-scaling, Probabilistic Computing and functional

approximation are explained further in the following sections.

Voltage Over-scaling

Orthodox designs take into account various redundancies to select a high VDD to accommodate any

errors occurring due to process variation, timing errors, aging etc. However, when VDD is scaled

below the critical voltage, the number of errors drastically increase and hence in turn drastically

degrade the output quality One way to improve signal quality in such cases is to introduce error

correcting mechanisms. [11] introduces an approach under algorithmic noise tolerance. This type

of circuit contains two blocks namely the main computing circuit and an error correcting circuit.

The main computing circuit is run on a low VDD whereas the simpler error correcting circuit runs

on a higher voltage. As the error correcting circuit consists of lesser number of transistors than

the main computing circuit due to which the energy savings are notable. In certain cases Error

Correcting Codes (ECC) are used to compensate for the errors caused by over-scaling.
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Probabilistic Computing

As CMOS technology scales down to the 10nm region, hurdles due to noise pose several challenges

as explained in [10]. Probability based CMOS technology looks upon noise as a resource which

can be harnessed [12]. Probabilistic CMOS have been known to yield better Energy Performance

Product (EPP). EPP is defined as the product of energy consumed and running time. In [10]

PCMOS is defined as the CMOS which is affected by thermal (ambient) noise. The computation

in such circuits use probabilistic algorithms to reduce the effect of noise in the output. In addition

to the above qualities, PCMOS can also generate high quality random bits. These random bits

are important, as they are used extensively in probabilistic algorithms. The circuits implementing

PCMOS typically contain a deterministic host processor, which is used to compute most of the

control intensive components of an application and a probabilistic co-processor, which is used as

an accelerator.

Functional Approximation

The process of removing transistors from a circuit to obtain a less than accurate circuit can be

defined as Functional Approximation. The transistors removed are usually from the critical path to

reduce the delay along with power consumption, but if the critical path is untouchable especially

in cases where the MSB could be of significant importance, the transistors are removed from other

areas which affect LSBs more often than MSBs, functional approximation gives us the most sav-

ings, as it reduces the cascading effect most times, removes a number of unnecessary capacitances

present in the accurate circuits. In this thesis we concentrate on adders, we functionally approxi-

mate a number of adders including the CLA Adder and Ripple Carry Adder and determine their

delay under various conditions and process variation is also taken into account in these conditions.
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Evolutionary Algorithms

A number of evolutionary algorithms exist to obtain the optimal solution like Genetic Algorithms,

gene expression programming and Differential Evolution . Almost all of these follow a general

pattern as shown in Figure 1.1. Most Evolutionary Algorithms usually consist of an initial popula-

tion on which genetic operations such as mutation and crossover are performed. After the genetic

operations are performed the viability of the solution is evaluated this step is known as fitness

evaluation. This process is done until it has reached the required solution or when the requested

number of loops has reached.

1: procedure GENETIC ALGORITHM(a, b) . population consisting of a and b
2: while a&b > error constraint do
3: population allocation
4: genetic operators()
5: fitness evaluation()
6: end while
7: return c & d . c & d are the latest generation
8: end procedure

Figure 1.1: Evolutionary Algorithms

In our research we use Genetic Algorithms (GA) as an optimization technique to obtain the best

combination of power savings and accuracy. One of the advantages of the GA is its ability to

escape from a local minimum to global minimum, as shown in Fig. 1.2. This is mostly due to

the mutation factor, where a random mutation can flip the GA into the path of finding the global

minimum. Although it is not a certainty that the GA would find a globally optimum solution, there

is a high probability that the GA would find the global minimum.
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Figure 1.2: Solution Space [1]

Genetic Algorithms

Fundamentals of Genetic Algorithms

This section reviews some of the fundamental terms of the evolutionary-based computing approach

known as Genetic Algorithms.

A GA, at the genesis of the procedure contains a number of random individuals generated by the

system or pre-seeded by the user, depending on the extent of automation desired. The individuals

together create a population. When this population is manipulated over time, it defines a sequence

of generations, whereby the individuals of a population react with each other using Genetic Oper-

ators to form new individuals, these newly-created individual designs are referred to as offspring,

and the population of offspring is a generation. Usually the original population is denoted as ze-

roth generation. Every individual in the population can be represented as a binary string, which is

referred to as the chromosome of the individual. The chromosome is an important data structure

which determines the design characteristics including device selection and the interconnection of
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the individual circuit being represented. The performance of an individual can be evaluated by us-

ing a fitness function. Fitness can be specified as a cost function including mean error and resource

usage according to a user-defined value called the error criterion.

As the GA runs, it performs Genetic Operators such as a crossover, which is a method by which

interacting individuals exchange binary data, replacing the original data, to exchange subcircuits

from high-performing parents to offspring. To make sure that the GA does not converge to a local

solution, a mutation function is introduced, which randomly changes a value in the chromosome.

The probability of mutation is kept to low levels in the range of one random modification for every

1000000 bits. The mutation operator is kept to such low levels to prevent the GA from perform-

ing a random search. In certain GAs, the fittest individual of each generation is always retained

through successive generations without any modification, this process of selection is referred to as

elitism. In cases where elitism is not used, individuals are selected based on probability, which is

a function of its fitness. If the fitness level of an individual is high, then it has a higher chance of

being selected and vice-versa.

Parallelism in GAs

The power of GAs is given by schema theorem [13], the schema theorem is a set of symbols

used in a string {1*00*1} where * can either be one or zero. The order of the schema o(H) is

defined as the number of fixed positions in the schema, while δ(H) is the distance between the

first and the last specific positions. The order of the string 1*00*1 is four and the defining length

is five. The schema theorem states that the fitness of a short schemata with higher fitness than the

average population will increase exponentially in successive generations [14]. It is expressed by

the equation:

E(m(H, t+ 1)) ≥ m(H, t)f(H)

at
[1− p] (1.1)
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where, m(H, t) is the number of strings belonging to schema H , f(H) is the average fitness of

schema H , at is the average fitness at generation t and p is the probability that a mutation could

destroy a schema. Here p is defined from the following equation:

p =
δ(H)

l − 1
pc + o(H)pm (1.2)

where, o(H) is the order of the schema, l is the length of the code, pm is the probability of mutation

and pc is the probability of crossover [14]. From equation (1) and (2) it can be inferred that it is

advantageous to keep the chromosomes as short as possible. Also, from the schema theorem it

can be inferred that even in a sequential algorithm, it is possible for the algorithm to handle o(N3)

schema at a time for a population of N individuals. Thus the GAs can handle large number of

schema at a time, which can be considered as inherent parallelism [13].

Most GAs can be subdivided into four parts based on amount of computation namely:

• Population Selection

• Crossover and Mutation

• Fitness Evaluation

• Offspring Generation

The list also illustrates where a GA could be parallelized with greater efficiency overall. Apart

from this a GA can also be parallelized based on its detailed algorithmic flow [13]. Some of the

methods mentioned in [13] are

• Parallelism of Individual’s Fitness: The fitness evaluation of a population consumes the most

amount of power and time, depending on the algorithm and fitness dependencies, the fitness

calculation can be parallelized.
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• Parallelism of Occurrence of Offspring: Processes by which offspring are produced could

be parallelized, for example, when a crossover takes place only two parents are used in a

single crossover, while the rest of the population lies idle, this can be rectified in parallel

computation by performing crossover simultaneously over the entire population.

• Parallelism Based on Population Grouping: In certain cases, the population of individuals

could be subdivided into smaller sub-groups which could be assigned to different threads.

A number of methods have been proposed to quantify the errors occurring in approximate circuits,

some methods are similar to Hamming Distance. In this thesis we review three types of error

measurement techniques as mentioned in [2].

Error Distance

The measurement technique developed [2] measures the precision of approximate circuits.

This method is termed as Error Distance. Error Distance is the arithmetic distance between

two binary values i.e. the arithmetic distance between the predicted/required value and the

obtained/output value. For example, let us consider a Full Adder, if the exact output of the

Sum is 100101, but the circuit gives an output of 100100, then the error distance between the

two values is said to be one, similar to Hamming distance. But if the output was 101111”

then the error distance would be ten. It can be seen that the value of error distance (ED)

increases or decreases depending on the position of the incorrect bit. [2] defines ED with

equation(1.3)

ED(a, b) = |a− b| = |Σja[i] ∗ 2i − Σib[j] ∗ 2j| (1.3)

For a non-deterministic application, the output is probabilistic and usually follows a set

distribution for a given input ai. In this case ED is defined as the weighted average of all
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possible outputs to the nominal output. Assume that for a given input, the output has a

nominal value b, but it can take any value given in a set of vectors bj (1<j<r) [2]. The ED

of the output, in such cases, is given by equation (1.4) as shown in [2]

di = ΣjED(bj, b) ∗ pj (1.4)

where, pj is the output probability of bj (1<j<r)

Mean Error Distance

Mean Error Distance is used in cases where the inputs are probabilistic and thus each input

occurs only at a particular probability. The mean error distance (MED) of a circuit is defined

as the mean value of the EDs of all possible outputs for each input [2] . Assume that the

input is a set of vectors ai and that each vector occurs with a probability of qi [2]. Then, the

MED, dm of the circuit is given by

dm = Σdi ∗ qi (1.5)

Where, di is the ED of outputs for input ai which can be computed by (1.5).

As an example assume a NOT gate, the probability of the input to the NOT gate being 1 is

0.7 and if the output of the NOT gate is 1 even if the input is 1. In this case the MED is given

by ED multiplied by the probability (0.7) which is equal to 0.7 as the ED is 1 in this case.

In case of multiple outputs, the ED is individually calculated and then multiplied with indi-

vidual probabilities and after the values are calculated, all the values are summed with each

other to obtain the final value.
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Figure 1.3: Normalized error distance versus the number of lower bits [2]

Normalized Error Distance

MED increases with increase in the number of lower bits. It is therefore biased to use MED

to compare between two adders with different lower bits as the maximum value of error that

can be effectively reached has also changed [2]. To overcome this limitation Normalized

Error Distance (NED) is used. NED is defined as

dn = dm/D (1.6)

Where, dm is the MED and D is the maximum value of the error. The maximum value

is usually 2n for n lower bits [2]. We use the fitness function used in [15]. It requires

multiplication of the number of combinations possible in a truth table multiplied by the

number of outputs to get the maximum fitness value. Hence, we can denote the formula as

given in equation (1.6).

12



Error
Distance

Multiply by Qi

Mean Error
Distance

Divide by D

Normalized
Error

Distance

Figure 1.4: Relation between error metrics

Challenges facing Evolution of Approximate Adders

Currently the important facet of a GA is the fitness evaluation, it is also the most computation

intensive task of the GA. One of the problems we have tried to tackle here is the evaluation

time of complex solutions. In this case it was a multi-bit adder where the input space is

enormous, in such cases we have used parallelism to generate the results faster by using

multiple threads and efficient programming.
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Figure 1.5: Normalized error distance [2]

Another problem is to generate sequential circuits using parallel methods due to which the inter-

connections are performed incorrectly. Additionally in some cases the GA would not converge to

a globally optimum solution, in such cases the mutation factor needs to be set by trial and error

method until a proper solution is obtained, this is an extremely time consuming process. Also

GA can be further optimized by combining them with other optimization algorithms, where the

coefficients can be altered by the GA or vice versa. Also some GAs face problems with random

seeds, where the seeds aren’t random enough for complex algorithms to take a different path at

every run. Fortunately the population size is relatively low in our algorithm, hence the effect of

pseudo-randomness is not pronounced. Some other challenges in implementing a GA is to iden-

tify portions of GA and areas where it could be potentially parallelized with gains, parallelizing

at every opportunity does not yield good results, as in some cases the overhead of multi-threading

is greater than the gains obtained from parallelizing a particular area. As such all the loops hence
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were not parallelized as it was more efficient to run them on a single thread rather than multi-

ple thread. Another issue faced was the placing of certain volatile variables in the cache, which

were being constantly modified during runtime, these variables had to me manually identified and

marked volatile to prevent invalidation of the cache line.

Contribution of Thesis

The contributions of this Thesis are:

• Effect of Process Variation on Approximate Adders at NTV: Determines the range of values

possible for delays and power consumption under the effect of process variation and analyzes

how it affects a larger system of approximate units,

• Evolution of approximate systems using GAs: Identifies various dependencies in Adder cir-

cuits and how it affects the performance of the GA and explores the various avenues through

which the GA could be parallelized to obtain higher efficiency and lower process time, and

• Development of Approximate Adders: Develops a new approximate adder from a CLA Adder

with better performance and lower delays for the sum output.

Organization of Thesis

The organization of thesis is depicted in Figure 1.6. First, related work is reviewed in Chapter 2.

Chapter 3 defines the research and experimental methodology which was employed, including GA

configuration for the approximate adder circuits being evaluated. Chapter 4 presents results for

variation in RCAs and CLAs. It also discusses lessons learned for using parallel GAs to optimize

these circuits.
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CHAPTER 2: RELATED WORK

Approximate computing offers a promising approach for reduced energy operation for applications

which can tolerate some imprecision. There are many types of approximate circuits, including

those constructed by voltage over-scaling and over-clocking [16] and others as mentioned in [17–

20]. However, this thesis uses approximate adders which utilize lesser number of transistors than

the original accurate design. The Adders used in this thesis are obtained from [7]. As these adders

are analyzed in a manner which is suited to the application presented in our research. In this

section we discuss and analyze the three different types of adders used and the accurate adder. The

accurate adder is the reference adder from which the other adders are derived.

Types of Functional Approximation

A number of methods to approximate circuits have been proposed including the trial and error

method. Most of the approximations have been done manually, carefully reducing the number of

transistors in a circuit using the trial and error method. Most of the efforts concentrate on reducing

the length of the critical path. Some other methods such as SALSA [3] and MACACO [4] use

automatic synthesis using iterative methods. In [3], the authors construct a Quality Constraint

Circuit (QCC) as shown in Figure 2.1, which is used to construct the approximate circuit. The

QCC contains three circuits, the original accurate circuit, the developed approximate circuit, and

the quality function circuit, which compares the output of the approximate circuit and the accurate

circuit and determines if the error of the approximate circuit matches with given quality constraint.

If the quality constraint is met i.e. the output of the quality circuit is ’1’, the program iterates

through don’t cares, removing each don’t care whenever the output of the QCC is 1. When the

QCC gives an output of ’0’ i.e. in a situation where the approximate circuit doesn’t meet quality

17



constraints, the platform reverses to its last valid state and this last output is considered as the valid

situation.

Figure 2.1: Quality Constraint Circuit [3]

In [4], the authors develop an automated method to check if the approximate circuits developed

meet the requirements set beforehand. In [4] the functionality of the circuit was determined by

overscaling the circuit, after obtaining the results from the over-scaled circuit, they create a plat-

form which functionally approximates the original circuit to meet the over-scaled circuit’s results.

This results in better power savings and delay, but this new circuit is equivalent to an un-timed

circuit of the same output. Next a virtual circuit for error analysis is constructed by instantiating

the equivalent un-timed circuit and the golden circuit. The outputs are then compared to quantify

the error. This virtual circuit computes the error between the developed approximate and golden

circuits for a given input set. A overview of the methodology used in [4] is given in Figure 2.2

In [2], the authors create two approximate adders by manually reducing the mirror adder. The

authors create a lower part OR adder, which uses OR gates for generating lower bits and an AND

gate to generate carry-ins for the more significant bits. The lower part OR adder (LOA) neglects

the carries of the LSBs, which results in the loss of precision. The adders developed by the authors

shows an improvement of upto 25% in dynamic power consumption. [5] proposes an accuracy

configurable multiplier, the multiplier makes use of redundant arithmetic units to get accuracy on
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demand. The authors in this paper have concentrated on improving the accuracy of the lower bits

instead of the higher bits, the authors claim that the more significant bits are largely accurate, and

the remaining bits are inaccurate. This paper divides the multiplier circuit into multiple parts an

accurate part and an inaccurate part. The paper then uses a carry-in prediction logic developed by

the authors to make the final output’s most significant bits accurate. The recursive method used

in [5] is shown in the following figure.

Figure 2.2: Quality Constraint Circuit [4]

Kahng et. al in [6] reduced the length of the carry chain to approximate the adders and reduce the

delay. The authors introduce an extra sub-adder to increase the accuracy of the unit when required.

The authors also propose a error correcting mechanism where absolute accuracy is needed.

This error correcting mechanism has an overhead in power and area. The error correction and

detection mechanism used in [6] can be seen in Figure 2.4. [6] also implements this system for

pipelined architecture as shown in Figure 2.5.

For the experiments performed in this research we used the adders from [7], which are explained

in detail in the following sections.
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Figure 2.3: Recursive multiplier used in [5]

Figure 2.4: Pipelined adder implementation of accurate adder and approximate adder used in [6]
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Figure 2.5: Error Detection and Correction Mechanism used in [6]

Conventional Mirror Adder

A Conventional Mirror Adder (CMA) consists of a total of 24 transistors [7], as shown in Figure

2.6. The other approximate adders are obtained from the CMA.

Approximation 1

The first approximate mirror adder is obtained by reducing the number of transistors in the schematic

one by one until the defined error constraints are breached. Once the error constraints are breached

the last modification is reverted to obtain the approximation [7], this method is applied to the other

approximate adders as well. AMA1 is shown in Figure 2.7.
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Figure 2.6: Conventional Mirror Adder [7]

Figure 2.7: Approximate Mirror Adder 1 [8]

Approximation 2

Approximate Mirror Adder 2 (AMA2) introduces two errors in Cout and three errors in Sum, as

shown in Table I.
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Figure 2.8: Approximate Mirror Adder 3 [8]

Approximation 3

Approximate Mirror Adder 3 (AMA3) Cout and Sum are accurate for four out of eight outputs,

the schematic for AMA3 is given in Figure 2.8.

The performance in terms of boolean values can be determined by using the truth table shown

in Table 2.1. These values are later on used in a GA to test the fitness values of the developed

multi-bit adders.

Energy Evaluation

In this thesis, we define error based on the accuracy of the output, we do not consider delay,

although all the approximate adders here perform much better in terms of delay and power when

compared to the fully exact adder.
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Figure 2.9: Approximate Mirror Adder 4 [8]

Table 2.1: Truth Table for Conventional Full Adder and Approximations 1, 2 and 3 [7]

Inputs Accurate Outputs Approximate Outputs
A B Cin Sum Cout Sum1 Cout1 Sum2 Cout2 Sum3 Cout3

0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0
0 1 0 1 0 0 1 0 0 1 0
0 1 1 0 1 0 1 1 0 1 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1 1

The dynamic power dissipation of the system is given by equation (7) and the static power dis-

sipation is given by equation (8). Although power dissipation is not explicitly used in evaluation

it enables us to understand where the transistors could be removed to maximize power savings.

Additionally dynamic power dissipation which is currently gaining prominence in academia can
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be considered in addition to static power consumption for the approximation of the circuits.

PD = Cpd ∗ V 2
CC ∗ fI ∗NSW (2.1)

Where,

PD is the dynamic power consumption

VCC is the supply voltage

fI is the input signal frequency

NSW is the number of bits switching

Cpd = dynamic power-dissipation capacitance The total static power consumption of this device

can be given as:

PS = VCC ∗ Ileakage (2.2)

Where,

PS is the static power consumption

VCC is the supply voltage

Ileakage is the current into a device (sum of leakage currents)

From, equation 2.1 and 2.2, we can derive equation 2.3,

PT = Σ(PD + PS) (2.3)

The next factor we consider is the average propagation delay of an adder which is given in equation

(2.4).
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tp =
tPHL + tPLH

2
(2.4)

Where,

tPHL is the time delay from High to Low

tPHL is the time delay from Low to High

In chapter 2 we discuss previous work associated with the experiments performed in this thesis.

We also discuss the various formulas used in the analysis of the performance of the approximate

adders developed in this thesis and other related works.
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CHAPTER 3: METHODOLOGY

Process variation in the described adders is simulated on HSPICE. The process variation is sim-

ulated by varying the threshold voltages. The values for threshold voltage follows the Gaussian

curve shown in the figure below. The hypothesis is that when the number of transistors is reduced

in a system the Gaussian curve tends to become flat.

The adders were translated into HSPICE language. The library files used were for 22nm process

CMOS. These files were created by 3rd party at the PTM website created by Arizona State Uni-

versity. The 22nm CMOS used in this experiment were based on the latest Intel models using

the FinFET technology. The library files were modified to accommodate the various threshold

voltages obtained by Monte Carlo simulations. The Monte Carlo simulations were done over a

thousand times to obtain the mean value of the delay and power consumption of the accurate and

approximate adders. The values for the threshold voltage for each transistor was randomly picked

from each run of 5 times in addition to a 1000 time simulation of all the values , also each nMOS

and pMOS device was given a different threshold voltage even within the same system. This sys-

tem was used to recreate an environment closest to that of a real world system. After the results

were obtained the means for all the parameters were calculated to give a fair idea about the results

versus the results obtained at different values.

The modification of the HSPICE values were performed for every single simulation. This could be

made possible using the line of code dev vth0 = agauss (0, abs val, 1), this gives us various values

within the range of the values specified. Writing the above line of code does not guarantee Monte

Carlo analysis, apart from this we also need to include DC sweep analysis so that HSPICE uses

the values obtained above during simulation. Another option which needs to be used to make sure

that each of the transistors in the system are simulated with different values from the Monte Carlo

simulation is to use the line of code modmonte = 1.
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Figure 3.1: Gaussian uniform distribution

Once the circuit is translated into HSPICE code and all the Monte Carlo simulations are performed

the .lis files obtained from the simulation are used to obtain the values for delays for Sum and

Carry. The .lis file also contains the mean values of the 1000 Monte Carlo simulations performed.

The number 1000 was chosen to give us a statistical probability of matching the real world setup

at 99.9%. The mean values are noted down, along with the calculated sigma values, these values

are then analyzed to determine if they conform to our hypothesis.

Experimental Results

The GA used to find the optimal solution is entirely written in C++. The program takes its input

from a .txt file generated from another program. The other program is standalone and does not

depend on the main program. This secondary program is used to generate the truth table which

is used as input to the main program. This program can produce truth tables of varying lengths
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depending on the input bit-width. This program is used because it would be a tedious process to

create the truth table on a 8 bit adder manually.

The program used here tries to mimic an FPGAs architecture which includes CLBs, LUTs etc. The

GA constructs its chromosome from the available resources, and the original population is instan-

tiated, with each LUT assigned to a random individual. The LUT in the program is instantiated

as a class, within another class. Each LUT object consists of three vectors and a variable to store

its function type. The vectors of the LUT object map its outputs and inputs , all of the inputs and

outputs are binary values.

The LUT class is in turn instantiated in the individual class, the other vectors store the input and

output values. The function CalculateFitness calculates the fitness of the individual by going

through each LUT and compares the port values to the value given in the input golden truth table.

the fitness value is incremented by one for each value matching the original golden output. For

example, an individual representing a circuit with y inputs and x outputs will have a maximum

fitness value of 2y ∗ x. If the fitness of the individual is at a maximum, it indicates that all the

outputs of the individual are perfect. The individual class is not the primary class, it is superseded

by a larger class called the generation class.

The generation class contains the current population of individuals. The generation class consists

of a Crossover function, depending on the prescribed rate of crossover, it selects two individuals

at random and randomly picks a crossover point in a way that the LUT objects are not violated.

The LUTs before the crossover point are from Parent A and beyond the point are from Parent B.

If the crossover fails to take place due to some random chance, either one of the individuals is

directly copied on to the next generation.
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Figure 3.3: Crossover Operation

The next function, Mutation, performs a random mutation on an individual. The function chooses

an individual and based on the user-defined mutation rate, assigns it a randomly chosen entity.

Interconnection mutation wasn’t performed because the Adders especially Ripple Carry Adders,

which take their input from the previous single-bit adders do not form recognizable circuits when

interconnections are randomly switched.

The Selection function randomly selects a defined number of individuals from the original parent

population and the evolved offspring population. The individual with the highest fitness is moved

directly to the next generation of individuals, irrespective if it was from parent generation or off-

spring generation. This process is repeated until the user-defined size of the generation is reached.

The DelayedElitism function performs elitism every 10 generations to pick the best individual

and stores it in a designated object for elite individual.
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Figure 3.4: Carry Dependencies in RCA

Parallel Genetic Algorithm

Parallel Genetic Algorithms, henceforth referred to as PGAs can be subdivided into three groups

based on the resolution at which the PGA works, namely

• Global PGA (GPGA): A GPGA model uses the master slave method to divide the workload

among threads. The slave threads calculate the fitness of an individual and perform genetic

operations in parallel, whereas the master thread operates serially, assigning individuals to

the slave threads. It is one of the most simple and effective PGAs to implement, but in

GPGAs there is a high chance of uneven distribution of the workload. [13]

• Coarse-grained PGA (CPGA): In a coarse grained model the population is sub-divided into

groups and genetic operations are performed independently within a sub-population [13].
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This type of PGA introduces a new function Migration. Migration defines the rate at which

individuals from one group move from one sub-population to another sub-population.

• Fine-Grained PGA (FGPGA): FGPGA assigns each individual to a thread and this individual

interacts with another individual within a hamming distance of 1. This type of PGA could

maintain diversity based on the neighborhood chosen. [13]

We implement a GA with three different modules: (1) Evolution of the circuit, (2) Selection of

the offspring, and (3) maximum fitness calculation as shown in Figure 5. Each module consists

of a for loop which loops through Look Up Tables (LUT) assigning different functionalities to

each LUT based on a random number between zero to four each corresponding to AMA 1-4. The

three for loops were parallelized using Intel TBB [21] parallel for loop, also vectors were used

wherever possible to give flexibility to the program. We also used OpenMP in conjunction with the

Intel TBB library to test out how it affects performance relative to only using TBB, the outcome

of this is illustrated in the results section. The main program was already designed by [15], we

modified it to change the operation of the GA extensively. The original GA in [15] could only

design MUX decoders, we changed the functionality of this Algorithm by modifying the LUTs

used in the original program to map the different Approximate Adders as single LUTs. The LUTs

considered in this program can handle 3 inputs and 2 outputs, analogous to a full adder. The

LUTs are lowest grain level the program could go. The interconnection mutation was switched off

for these genetic operations as this resulted in the two outputs being mapped to the wrong adder

occasionally. The implemented algorithm produced designs which outperform the other adders,for

example it obtains a fitness value of up to 40 for a maximum fitness value of 48.

The program uses a hierarchical approach; first the Individuals containing CLBs were designed,

each CLB has a vector of LUTs. The individuals, CLBs and LUTs are initialized as classes as

shown in [15]. The LUT class contains a function calledCalculateOutputwhich takes in the input
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vector to calculate the output based on the functionality chosen, this is done for each individual.

The vector of individuals are initialized based on the initial population given in the input file.

We use a master slave method to generate workloads in the program. The workload is automatically

distributed by OpenMP and Intel TBB. The compilation was done in Microsoft Visual Studio

Express 2013. With the Intel TBB Plugin attached to the source of the program, as this is needed

to parallelize the program, the number of threads to run the program is taken from an input file.

This input file contains other information such as number of Configuration Logic Blocks (CLBs),

number of Look Up Tables, number of LUT select Lines, number of LUT output lines, number

of circuit input lines, number of circuit output lines, population size, mutation rate, crossover rate,

number of elite individuals, number of generations, number of threads and number of runs.

Number of CLBs

This defines the number of Configurable Logic Blocks to be used in the simulation of GA.

Number of LUTs

This defines the number of Look Up Tables to be used in the simulation of GA.

Number of LUT select lines

This defines the number of Select Lines in each LUT to be used in the simulation of GA.

Number of LUT output lines

This defines the number of outputs in each LUT to be used in the simulation of GA.

Number of Circuit Input lines

This defines the total number of input lines for the entire circuit to be developed by the GA.

Number of Circuit Input lines

This defines the total number of input lines for the entire circuit to be developed by the GA.
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Number of Circuit Output lines

This defines the total number of output lines for the entire circuit to be developed by the GA.

Population Size

This defines the total number of individuals initialized at the start of the GA.

Crossover Rate

This defines the probability at which two parents would be crossed over to produce offspring.

If crossover does not happen then the parents are directly copied to the next generation.

Mutation Rate

This defines the probability at which mutation would take place after the crossover is done.

Number of Generations

This defines the number of generations at which the simulation stops

Number of Threads

This defines the number of cores/threads to be used when the simulation is running

Number of Runs

This defines the number of times the simulation needs to be run.

In this chapter we identified the various dependencies in the Ripple Carry Adders and Carry Looka-

head Adders and mapped them to the GA. These dependencies if not taken into account cannot be

simulated on a computer program.

For Parallel GAs we looked at a number of API’s including POSIX, OpenMP and Intel TBB along

with their overheads when they are implemented. From the analysis we can conclude that although

OpenMP and Intel TBB provide coarse grain control over multi-threading, they remove the burden
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of the programmer to manually divide the tasks among threads, whereas OpenMP and Intel TBB

do this automatically with greater efficiency.
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CHAPTER 4: EXPERIMENTAL RESULTS

The four approximate mirror adders and the accurate adder were analyzed using HSPICE . Apart

from simulation of process variation the adders were also subjected to varying Vdd voltages rang-

ing from 0.65V to 0.8V (Nominal Voltage). The analysis was done on worst case scenarios where

all the inputs were ones. In certain cases, the delay was not available because the output would

not rise in such cases the inputs with the most number of ones which yielded an appropriate output

such that the output delay could be measured. The results obtained for various adders are tabulated

and explained here.

As VTH variation does not affect all the Approximate Adders equally, then one of the ideas which

can be implemented is logic diversity. Logic diversity involves using different sets of systems to

gain the best overall performance.

In this case a GA could be used to involve a search space to determine which adders could perform

best in a certain scenario. It is not always necessary for similar adders in a system to perform better

than different types of adders in a system. For e.g. in a 16 bit Adder AMA-I and AMA-II may

perform better in cases of DSP applications, but when only approximate calculations are required

then a 16 bit adder containing solely AMA-I may perform better. In [22] soft resiliency has been

mentioned, which can be defined as the property of a system to gracefully degrade the quality of

the output as the components of a system malfunction. For a system to gracefully degrade, the

system would require an underlying GA to perform an analysis of the search space and assign

fitness value to each component during runtime. The fitness values can then be used to identify

functioning components and use them instead of the malfunctioning items. Another method would

be to use a partially malfunctioning LUT as an approximate gate. This could be especially useful

in DSP applications where the loss of quality cannot be distinguished by humans.
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RCA Adders

Table 4.1: Results of Accurate Mirror Adder

Voltage Sum Carry Sum Carry Sum Carry Sum Carry
Worst Worst Mean Mean Variance Variance Sigma Sigma

0.8 148ps 58.09ps 131.46ps 43.41ps 8.36E-23 4.78E-23 9.14ps 6.91ps

0.75 152.8ps 66.04ps 133.82ps 48.76ps 1.05E-22 6.03E-23 10.24ps 7.63ps

0.7 160.4ps 79.45ps 138.48ps 55.61ps 1.52E-22 8.04E-23 12.32ps 8.96ps

0.65 173.3p 103.4p 145.1ps 65.83ps 2.83E-22 1.25E-22 16.81ps 11.19ps

Multi-bit approximate adder circuits are designed using the proposed methodology. Other bench-

marks can also be designed if the multiple versions of approximate designs are available. For the

benchmark utilized, the maximum fitness of the circuit is dependent on the number of inputs n and

is equal to 2n+1.

Table 4.2: Results of Approximate Mirror Adder I

Voltage Sum Carry Sum Carry Sum Carry Sum Carry
Worst Worst Mean Mean Variance Variance Sigma Sigma

0.8 49.04ps 37.54ps 31.33ps 20.77ps 4.59E-23 6.83E-23 8.26ps 6.77ps

0.75 55.84ps 43.06ps 36.32ps 25.26ps 5.73E-23 8.35E-23 9.15ps 7.56ps

0.7 66.69ps 48.93ps 42.5ps 30.8ps 6.83E-23 1.08E-22 10.4ps 8.26ps

0.65 87.47ps 56.99ps 50.79ps 37.41ps 8.07E-23 1.85E-22 13.58ps 8.98ps

The GA was executed for a maximum of 5000 generations with a population size of 20 circuits con-

sisting of randomly instantiated individuals. The GA selects a random set of individuals (parents)

from the population after which tbb evolve is invoked which evolves the circuit in parallel, which

is followed by tbb postselect and maxfit which are the processes for selecting the offspring and
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calculating the maximum fitness respectively.

Figure 4.1: Performance without OpenMP

Figure 4.2: Performance with OpenMP included
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One of the important observations was that the GA took as much time to evolve as to calculate the

fitness, sometimes the time to evolve was greater than the time to calculate the fitness. This is a

context-dependent observation as the time to evolve or to calculate the fitness values depends on

the complexity of the calculation within each function.

Table 4.3: Results of Approximate Mirror Adder II

Voltage Sum Carry Sum Carry Sum Carry Sum Carry
Worst) Worst) Mean) Mean Variance Variance Sigma Sigma

0.8 56.41ps 49.15ps 41.98ps 32.78ps 3.70E-23 2.83E-23 6.08ps 5.32ps

0.75 64.44ps 55.16ps 47.69ps 36.71ps 4.59E-23 3.52E-23 6.77ps 5.93ps

0.7 77.21ps 64.37ps 54.79ps 41.40ps 6.28E-23 4.45E-23 7.92ps 6.66ps

0.65 102.3ps 82.55ps 64.56 47.30ps 1.15E-22 6.77E-23 10.71ps 8.23ps

The most-intriguing result obtained was for a 2-bit adder including the carry with a fitness value

of 40 out of the maximum fitness value of 48, also the MSBs were the least affected by the combi-

nation of approximate adders. Additionally, if a redundant adder is added then the fitness could be

improved to 45, this is because the third adder could be better in certain cases, this could be useful

when the output does not meet desired application criteria.

Even when a redundant adder is used or swapped with the current adder component, the power

consumption would be less than that required for an accurate adder. The power savings may

extend up to 63.8 % when compared to cases when an accurate adder is used in ideal conditions.

For example if we consider a 2 bit adder composed entirely of accurate adders the total power

consumption would be 517.9 nW as shown in Table II. In the same scenario if two approximate

adders are to be used for example the AMA3 adder, then the power consumption would be 187.552

nW and if we add another redundant AMA4 adder, then the total power consumption would be

284.434 nW, which is still much lesser than the combined power consumption of the 2-bit accurate
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adders.

Table 4.4: Results of Approximate Mirror Adder III

Voltage Sum Carry Sum Carry Sum Carry Sum Carry
Worst Worst Mean Mean Variance Variance Sigma Sigma

0.8 59.39ps 51.09ps 43.68ps 34.32ps 3.62E-23 3.76E-23 6.01ps 6.13ps

0.75 68.01ps 57.09ps 49.5ps 38.37ps 4.67E-23 4.72E-23 6.83ps 6.86ps

0.7 82.28ps 66.75ps 56.90ps 43.19ps 6.80E-23 6.00E-23 8.24ps 7.74ps

0.65 106.5 86.2 67.39ps 49.46ps 1.30E-22 9.22E-23 11.40ps 9.60ps

Execution times for the design of approximate adders with and without OpenMP are shown in

Figures 6 and 7 respectively. A speed-up of about 1.61-fold using four threads is achieved on a

quad-core processor, which is far less than linear. A speedup of at least two on four threads would

have been promising. We believe this could be possible with the introduction of larger generation

gap in Delayed Elitism.

Table 4.5: Results of Approximate Mirror Adder IV

Voltage Sum Carry Sum Carry Sum Carry Sum Carry
Worst Worst Mean Mean Variance Variance Sigma Sigma

0.8 151.1ps 27.36ps 137.21ps 14.29ps 3.13E-23 4.59E-23 5.59ps 6.77ps

0.75 157.5ps 31.8ps 141.74ps 17.3287ps 3.95E-23 5.83E-23 6.29ps 7.64ps

0.7 167.2ps 37.29ps 147.38ps 21.15ps 5.71E-23 7.37E-23 7.56ps 8.59ps

0.65 184.8ps 42.85ps 155.41ps 25.81ps 1.15E-22 9.07E-23 10.7ps 9.54ps

When mutation was introduced in interconnections between LUTs, the developed circuit did not

match the required configuration; the interconnections are important, as in a multiple bit adder, it

is required for single bit adders to be in sequence so that the carry is propagated appropriately. The
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power and performance numbers for individual approximate adder designs are listed in Table II.

These numbers are obtained by HSPICE simulations.

Table 4.6: Propagation Delay and Power Consumption for Approximate Adders

Adder Sum Worst(pS) Carry Worst(pS) Power (nW)
CMA 58.09 148 258.9419
AMA1 37.54 49.04 242.408
AMA2 56.41 49.15 122.37
AMA3 59.39 51.09 93.776
AMA4 58.78 52.12 96.882

From Figure 4.2, we can see that the difference between the GA run in a uniprocessor environment

takes up to 700 seconds more than if it was run in a parallel environment. The speed up in such

an environment is up to 1.6, this is the maximum we could achieve, [15] achieves a speedup of

more than four for a 3:8 multiplexer, but this paper has been implemented using an adder in mind

which consists of larger sub-elements and the order in which connections take place are important,

hence parallelism cannot be implemented as frequently. Additionally, the results obtained by in-

cluding OpenMP are shown in Figure 7. It can be observed that there is only a minimal increase in

performance by using OpenMP.

The fitness of the evolved 4-bit Adder circuit is shown in Figure 8. It can be seen that the GA

quickly converges to a fitness value of 303 out of a maximum fitness value of 424. In this case, the

fitness evaluation takes up bulk of the execution time.

As approximate designs are targeted in this thesis, the adders are also evolved using a subset of the

input space. In this case, the output is only calculated for 40% of the input space. Another attempt

to restrict the design space of the GA was made by restricting the total number of gates to 16. The

results for this case are shown in Figure 4.3. It can be observed that the highest fitness value is

obtained in this case.

42



Figure 4.3: Fitness Evolved when on a subset of inputs restricted to maximum fitness value of 220

From Table 4.1 it can interpreted that the worst delays are observed in the critical paths of the

adder, this is because the number of transistors in the critical path are the highest, which in turn

increases the capacitance of the path which causes the larger delay also the 3 sigma value of the

system is also very high. Table 4.2 shows better performance in terms of carry delay and even with

3 sigma values, the delay seems to be better than that of the accurate adder.

From Table 4.3 we can see that the performance of AMA-II is similar to that of AMA-I in terms

of carry delay, but the sum delay is similar to that of the accurate adder, this is due to the fact that

the sum path in the approximate adders analyzed here have more transistors than the carry path.

Hence the carry is calculated faster than the sum. The data from Table 4.4 states that the Worst

case delay of the sum over all the four voltages is worse than that of the accurate adder, but the

worst case delay for carry is the best among the described adders.
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Figure 4.4: Fitness Evolved when the number of gates was restricted to 16 for a 4 bit adder

From Table 4.5 it can be inferred that AMA-IV has the best performance of the adders analyzed

here in terms of carry delay performance, but the sum delay is very large, larger than even the

accurate adder, this can again be explained due to the fact that the sum path is longer and has more

transistors than the carry path, hence the delay is much larger.

Although the performance of the approximate adders surpasses that of the accurate adder even with

process variation it should be noted that the approximate adders cannot replace accurate adders

in all cases. They are only ideal in cases where there is no strict regimen on the accuracy of

calculations, such as low quality video processing etc.

From the analysis of the results we can conclude that, process variation does not affect every adder

equally. This gave us the idea of using logic diversity, to obtain the power/performance ratio, along

with specified accuracy.
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Table 4.7: Truth Table for Conventional CLA and Approximate CLA

Inputs Accurate Outputs Approximate Outputs
A B Cin Sum Cout Sum1 Cout1

0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 1 0 1 0
0 1 1 0 1 1 1
1 0 0 1 0 1 0
1 0 1 0 1 1 1
1 1 0 0 1 0 1
1 1 1 1 1 0 1

Figure 4.5: Fitness Evolved when Approximate Adders are used to implement a 4-bit Adder

This can be done using a GA which can be used to perform a search on the sample space and

complete a number of iterations to determine the best candidates for each stage of the system.
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Figure 4.6: Approximate CLA Adder

CLA Adder

We created a new type of CLA Adder which produces approximate output, the results for the

proposed CLA Adder are given in the table below. The CLA adder consists of all the elements

usually associated with it.

We reduced the number of transistors in the sum part, where we directly tapped the input A as sum.

This saves us around 16 transistors in total, with significant power and area savings. The Table 4.8

illustrates the changes in sigma value as the voltages are scaled to lower values. It shows that as

the voltages decrease the variation in the expected delays increases drastically. For a decrease in

voltage from 0.8V for 22nm prototype to 0.65V the sigma values increase from 7.51 to 18.4, which

is almost two times that of the original value, making the circuit behavior even more unpredictable,

on the other hand, this could be used to our advantage in approximate computing, by decreasing
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the voltage and reducing the time required to latch on to the values could lead to interesting results.

Figure 4.7: Accurate CLA Adder

Table 4.8: Results of Approximate CLA

Voltage Sum Carry Sum Carry Sum Carry Sum Carry
Worst Worst Mean Mean Variance Variance Sigma Sigma

0.8 0 64.22ps 0 36.8215ps 0.00E+00 5.64E-23 0 7.51ps

0.75 0 81.59ps 0 47.0368ps 0.00E+00 8.50E-23 0 9.2181ps

0.7 0 119.3ps 0 61.5858ps 0.00E+00 1.49E-22 0 12.1989ps

0.65 0 199.5ps 0 83.8076ps 0.00E+00 3.39E-22 0 18.4029ps

There could be other areas to approximate in this type of adder, especially the carry propagation
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part, which increases with complexity as the number of computation bits increase, but modifying

the carry part could lead to changes in the carry output, as carry usually amounts to MSB, the

output could be severely compromised even for small changes, which could not be satisfactory as

the power saved would not be proportional to the accuracy lost.
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CHAPTER 5: CONCLUSION

This thesis indicates benefit for parallelizing the GA and exploration of creative cascaded circuits

such as adders where the current stage is heavily-dependent on the previous stage. Although

we were able to achieve a modest speed-up of 1.61, in most cases, when the population size is

increased then the effects of parallelization tends to be more pronounced.

Future work could include implementation of DelayedElitism which could improve the avenues

where parallelism could be improved, in case of DelayedElitism the parallel invoke method in

TBB could be used to run fitness evaluation function and Evolution in parallel, this could improve

the design-time significantly. Also, the GA could be modified to design larger circuits than the

ones currently designed, these could then be implemented in chips where manual intervention for

hardware faults is not possible, in such cases a GA could be remotely used to reconfigure the

circuits when the systems aren’t functioning appropriately.

The effect of process variation was also calculated. As the number of transistors is reduced, the

distribution of the transistor widths and gate oxide may shift away from a Gaussian Curve. This

result was demonstrated in different types of single-bit adders with the delay sigma increasing

from 6psec to 12psec, and when the voltage is scaled to Near-Threshold-Voltage (NTV) levels the

sigma increases by up to 5psec. Approximate Arithmetic Units were not affected more greatly by

the change in distribution of the thickness of the gate oxide. Even when considering the 3-sigma

value, the delay of an approximate adder remains below that of a precise adder with additional

transistors. Additionally, it is demonstrated that the GA obtains innovative solutions to the ap-

propriate combination of approximate arithmetic units, to achieve a good balance between energy

savings and accuracy.

49



In the future, further enhancements could be implemented. Including testing out the 10nm FinFET

as well as the 7nm FinFET which is currently on the road-map for Intel, as the sizes move towards

the lower end the effect of process variation could be more pronounced in approximate circuits,

but the current generation of transistors used in approximate adders have minimal effect on the

performance of such adders.

Table 5.1: Summary of Approximate Adder Performance

Adder Type Power Variability Test Inputs NTV Performance
RCA (AMA-I) Poor High Truth Table Average
RCA (AMA-II) Average Low Truth Table Excellent
RCA (AMA-III) Excellent Average Truth Table Good
RCA (AMA-IV) Excellent Average Truth Table Average
CLA Adder Average Low Truth Table Poor

From Table 5.1, it can be inferred that when the approximate adders are carefully selected to be

used in systems, the yields could be much higher than when only accurate circuits are used. It

can also be noted that in certain cases the NTV performances of some of the approximate adders

is much better than that of the accurate adder. In addition to approximate adders providing better

power savings, their delays are also significantly lower than that of their accurate counterparts.

An approximate ripple carry adder in certain could be faster than an accurate CLA Adder. As

the variability of the approximate adders has also been proven to be not as high as to invalidate

it in comparison to accurate adder, it is an added advantage to directly manufacture approximate

adders. The worst case delay of an approximate adder with variability is still lower than that of the

accurate adder, hence in cases where there is no strict need to obtain accurate results, the use of

approximate adders could be promoted. In cases where the requirements in the output are variable

and there is area redundancy then accuracy configurable units could be implemented, where the

required accuracy of the output could be obtained on demand.
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The comparison of OpenMP and Intel TBB is also done here. The results show that OpenMP is

slightly faster than Intel TBB on eight threads, but it is not faster by a significant amount. This

result could also be due to the workload of the CPU at any given time. Under certain circumstances

when the OS is using up more resources, the allocation of work could become a bit skewed, this

could result in different results when the number of threads is greater than the number of cores,

but we repeated the experiment a number of times to obtain this result. It can also be confidently

said that under normal circumstances when the APIs OpenMP and Intel TBB are used when the

number of threads is equal to the number of cores available on the machine. This is due the fact that

when the number of threads is greater than the number of cores the data is assigned in a random

order over four cores, which causes slight overhead due to assignment of data in the pipeline.

The methods of parallelizing either way is also different, the OpenMP concept uses barriers and

pragmas to implement parallelism whereas Intel TBB uses a method which is also used in POSIX

implementation i.e. it uses functions as a way of implementing parallelism. The functions are then

appropriately multiplied and assigned to different threads automatically.

Future work could include implementation of a GA which could also perform HSPICE simulations

to calculate its fitness value and use the results from the HSPICE simulation to determine the

correct circuit to be implemented. This could be parallelized by running multiple instances of

HSPICE. The main issue with such an implementation would be the ability of the simulation

environment to create a netlist and to make sure that any netlist produced by such an environment

follows the rules of HSPICE syntax with a high degree accuracy, the other challenge would be

obtain the results from the output of HSPICE, this should be easier than generating the netlist, as

the output usually contains the results after a certain keyword. Hence the environment could be

programmed to perform a keyword search to find the required results. The third major issue with

such a setup would be the time required to perform a fitness calculation, with a sample of 1000
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Monte Carlo simulations, the simulation on HSPICE of any sizable circuit would be greater than

5 hours depending on the processing power of the machine used. If these challenges were to be

solved a feasible GA could be made, which could make highly efficient circuits on demand.
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APPENDIX : SIMULATION CODE
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/******************************************************************************************

File - TestGen.cpp *

*

Function - Generates the input test vectors for a given multi bit adder

*

*

******************************************************************************************/

#include <iostream>

#include <vector>

#include <cstdlib>

#include <fstream>

int const n = 16;

int const x = pow(2, n);

//const int NoofInputLines = 4;

using namespace std;

void calculateoutput(vector<vector< int > > &vInput, int &carry, vector< int > &bResult);

int main()

{

ofstream TruthTable;

ofstream Outputonly;

ofstream bResultonly;

using namespace std;

//int const n = 4;

//int x = pow(2, n);

int const nBits = 1 << n;

vector<vector< int >> InputVals;

int powerOf2 = 1;

vector <int> bResult;

vector <int> bResult1;

vector <int> bResult2;

int carry = 1;

TruthTable.open("./TruthTable n-bit.txt");

Outputonly.open("./Outputonly.txt");

bResultonly.open("./BResult.txt");
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int counter = 0;

int loopCounter = n / 2 - 1;

for (int i = 0; i < n; ++i)

{

InputVals.push_back(vector < int >());

for (int bitNum = 0; bitNum < nBits; ++bitNum)

{

//cout << 1 - bitNum / powerOf2 % 2;

InputVals.at(i).push_back(1 - bitNum / powerOf2 % 2);

cout << InputVals.at(i).at(bitNum);

//cout << " ";

}

cout << endl;

powerOf2 *= 2;

}

calculateoutput(InputVals, carry, bResult);

/*for (int i = x*2 - 2 ; i >= 0 ; i= i - 2)

{

bResult2.push_back(bResult[i]);

}

for (int i = x*2 - 1; i >= 0; i = i - 2)

{

bResult1.push_back(bResult[i]);

}*/

//InputVals.insert(InputVals.begin(),bResult);

//InputVals.insert(InputVals.begin(), bResult2);

//cout << bResult.size();

55



//InputVals.push_back(bResult1);

//InputVals.push_back(bResult2);

// for (i = 0; i)

for (int j = x - 1; j >= 0; j--)

{

for (int i = n - 1; i >= 0; i = i--)

{

//cout << InputVals.at(i).at(j) << " ";

TruthTable << InputVals.at(i).at(j) << " ";

}

//cout << InputVals.at(i).at(j + 1);

for (int i = loopCounter; i >= (loopCounter - n/2 - 1) ; i--)

{

counter++;

cout << counter << endl;

cout << loopCounter << endl;

if (counter >= n / 2 )

{

cout << " "<< bResult[i] << " ";

TruthTable << bResult[i] << " ";

Outputonly << bResult[i] << " ";

loopCounter += counter;

counter = 0;

break;

}

if (loopCounter > x*n)

break;

//cout << bResult[i] << " ";

TruthTable << bResult[i] << " ";

Outputonly << bResult[i] << " ";

}
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cout << endl;

TruthTable << endl;

}

for (int i = 0; i < x * 2 - 1; i++)

bResultonly << bResult[i] << " ";

cout << bResult.size();

TruthTable.close();

Outputonly.close();

bResultonly.close();

system("pause");

}

/******************************************************************************************

File - SPFit.cpp

Function - Makes the TestGen output readable for the Main Program

******************************************************************************************/

# include<stdio.h>

# include<iostream>

#include <fstream>

#include <vector>

#include <string>

using namespace std;

void main()

{

int inputs;

ifstream input;

ofstream output;

char temp[256];

string pushed[1000];

input.open("./FPGA.txt");

output.open("./Output.txt");
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if (!input)

{

cerr << "Couldn’t Open the Settings File" << endl;

}

for (int j = 0; j < 120; j++)

{

//for (int i = 0; i < 5; i++)

{

input >> inputs;

input.getline(temp,255);

pushed[j] = temp;

cout << pushed[j].size();

}

}

cout << pushed[0][4];

for (int j = 0; j < 120; j++)

{

for (int i = 1; i < 4; i++)

{

output << pushed[j][i];

}

output << endl;

}

output.close();

input.close();

system("pause");

}
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/******************************************************************************************

File - DataStructures.h

Function - Provides Scaffolding for the main loop

******************************************************************************************/

#include <vector>

#include <string.h>

#include <fstream>

#include <iostream>

#include <math.h>

#include <time.h>

#include "tbb/parallel_for.h"

#include "tbb/blocked_range.h"

#include "tbb/concurrent_vector.h"

#include "tbb/spin_mutex.h"

#include <cstdlib>

using namespace std;

using namespace tbb;

using std::vector;

//Settings for FPGA and GA parameters

class ClsSettings

{

public:

//FPGA settings

string FilePath;//the settings input file path

int NoOfCLBs;

int NoOfLUTsPerCLB;

int NoOfLUTSelectLines;

int NoOfLUTOutputLines;

int NoOfInputLines;

int NoOfOutputLines;

int nthreads; // number of threads
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int nruns; // number of runs

//GA parameters settings

int PopulationSize;

int OffSpringSize;

float MutationRate;

float CrossoverRate;

int NoOfGenerations;

int TournamentSize;

int ElitismSize;

//Input and Output settings

int NoOfConfigFiles;

int NoOfGenerationOutput;

//Read input file and fill into the parameters above

bool ReadFile();

};

class ClsPortValue

{

public:

vector <bool> vbTruthTableInput;

vector <bool> vbTruthTableOutput;

};

/***********************************************************************************************/

//Defines the truth table inputs and outputs and reads their values from file

class ClsTruthTable

{

public:

string FilePath; //the truth table’s input file path

string ModuleName;

int NoOfInputPorts;

int NoOfOutputPorts;

int NoOfRows;

vector <ClsPortValue> vcPortValue;

//Read input file and fill values into Truth Table
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bool ReadFile();

˜ClsTruthTable();

};

/***********************************************************************************************/

//Defines FPGA basic block unit (Look_Up_Table)

class ClsLUT

{

public:

vector <bool> vInputValue;

vector <int> vInputLine;

vector <bool> vOutputValue;

int FunctionType;

bool CalculateOutput(vector <bool>,volatile int [], int carry);

bool LutCopy(ClsLUT *, ClsLUT *, ClsSettings *);

};

/***********************************************************************************************/

//each Configurable_Logic_Block is given an ID

class ClsCLB

{

public:

vector <ClsLUT *> LUTs;//each CLB is an array of LUTs

//Functions

bool DeleteCls();

};

/***********************************************************************************************/

//Each Individual has an ID and a chromosome

class ClsIndividual

{

public:

vector <ClsCLB *> CLBS;

vector <bool> vInput;

vector <int> vOutputLine;

vector <bool> vOutputValue;

int iFitness;

bool ConfigurationIndivi(ClsSettings * Object);
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//Generate a Boolean function randomly

int AssignBooleanFunction();

//calculates each individual’s fitness relative to the truth table output

bool CalculateFitness(ClsTruthTable * , ClsSettings *,bool );

bool ClsCleanAll();

//Does Copy operation for an individual

bool PerformCopy(ClsIndividual *,ClsSettings * );

//Output the Configuration of Individual

void ConfigOutput(ClsSettings * Object);

//Convert the function type to string

string FunctionType(int);

};

/***********************************************************************************************/

//defines a generation as a vector of individuals

class ClsGeneration

{

public:

int ID;

tbb::concurrent_vector<ClsIndividual *> Individuals;

tbb::concurrent_vector<ClsIndividual *> vOffSpring;

tbb::concurrent_vector<int> vOffSpringIndex;

//tbb::concurrent_vector<int> vSelected;

tbb::concurrent_vector<int> vIndividual;

spin_mutex FitnessMutex;

int MaxCalculatedFitness;

int iMaxIndivi;

bool InitializeGeneration(ClsSettings *);

int Selection(ClsSettings *, ClsGeneration * );

bool PerformCrossover(ClsIndividual *,ClsIndividual *,ClsIndividual *,ClsSettings *);
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bool PerformMutation(ClsIndividual *,ClsSettings *);

bool PerformElitism(ClsIndividual *,ClsSettings *);

private:

};

/******************************************************************************************

File - Coutput.cpp

Function - Calculates the Output and compares the output with the input

******************************************************************************************/

#include "DataStructures.h"

/********AA(Note to Self) - Do Not Modify!! Checked !********/

//According to the inputs and lut functionality

//get the LUT output

bool ClsLUT::CalculateOutput (vector <bool> vInput,volatile int bResult[], int carry)

{

bool bReturn=false;

//int iIndex=0;

volatile int caser;

vInput[2] = carry;

if ((vInput[0] == 0 && vInput[1] == 0 && vInput[2] == 0))

caser = 0;

else if ((vInput[0] == 0 && vInput[1] == 0 && vInput[2] == 1))

caser = 1;

else if ((vInput[0] == 0 && vInput[1] == 1 && vInput[2] == 0))

caser = 2;

else if (vInput[0] == 0 && vInput[1] == 1 && vInput[2] == 1)

caser = 3;

else if (vInput[0] == 1 && vInput[1] == 0 && vInput[2] == 0)

caser = 4;

else if (vInput[0] == 1 && vInput[1] == 0 && vInput[2] == 1)
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caser = 5;

else if (vInput[0] == 1 && vInput[1] == 1 && vInput[2] == 0)

caser = 6;

else if (vInput[0] == 1 && vInput[1] == 1 && vInput[2] == 1)

caser = 7;

switch (FunctionType)

{

//AMA 1

case 0:

if (vInput.size() < 3)

{

cout<< "InputSize error";

return bReturn;

exit(0);

}

// begin truth table

else

{

if (caser == 0 || caser == 4)

{

bResult[0] = 0;

bResult[1] = 0;

}

else if (caser == 1)

{

bResult[0] = 1;

bResult[1] = 0;

}

else if (caser == 2 || caser == 3 || caser == 5 || caser == 6)

{

bResult[0] = 0;

bResult[1] = 1;

}

else if (caser == 7)

{

bResult[0] = 1;

bResult[1] = 1;
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}

}

// end truth table

break;

// Approximate Adders 2

case 1:

if (vInput.size() < 3)

{

cout<< "InputSize error";

return bReturn;

exit(0);

}

else

{

if (caser == 3 || caser == 5 || caser == 6 || caser == 7)

{

bResult[0] = 0;

bResult[1] = 1;

}

else if (caser == 0 || caser == 1 || caser == 2 || caser == 4)

{

bResult[0] = 1;

bResult[1] = 0;

}

}

bReturn=true;

break;

// Approx Adder 3

case 2:

if (vInput.size() < 3)

{

cout<< "InputSize error";

return bReturn;

exit(0);

}
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else

{

if (caser == 0 || caser == 1 || caser == 4)

{

bResult[0] = 1;

bResult[1] = 0;

}

else if (caser == 2 || caser == 3 || caser == 5 || caser == 6 || caser == 7)

{

bResult[0] = 0;

bResult[1] = 1;

}

}

bReturn=true;

break;

// Approx Adder 4

case 3:

if (vInput.size() < 3)

{

cout<< "InputSize error";

return bReturn;

exit(0);

}

else

{

if (caser == 0 || caser == 2)

{

bResult[0] = 0;

bResult[1] = 0;

}

else if (caser == 1 || caser == 3)

{

bResult[0] = 1;

bResult[1] = 0;

}

else if (caser == 4 || caser == 5 || caser == 6)
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{

bResult[0] = 0;

bResult[1] = 1;

}

else if (caser == 7)

{

bResult[0] = 1;

bResult[1] = 1;

}

}

bReturn=true;

break;

default:

cout << "Error in the LUT calculation function"<<endl;

bReturn=false;

break;

}

return bReturn;

}

//Copy current LUT to secondLut LUT

bool ClsLUT::LutCopy (ClsLUT * FirstLut, ClsLUT * SecondLut, ClsSettings * Settings)

{

bool bResult=true;

int iIndex=0;

SecondLut->FunctionType = FirstLut->FunctionType;

for (iIndex=0; iIndex < Settings->NoOfLUTSelectLines ; iIndex++)

{

SecondLut->vInputLine[iIndex]= FirstLut->vInputLine[iIndex];

}

return bResult;

}
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