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ABSTRACT 

 

Industrial generator components experience high stresses and electrical fields during 

their service life. Material integrity is key in guaranteeing component performance. 

CuNi2SiZr, used as rotor wedges in generators, serve to maintain rotor slot content in 

place while experiencing high centrifugal stresses and low cycle fatigue during start 

and stop at elevated temperature. The quality and integrity of this material in service 

can be directly related to its microstructure, which is determined by the processing 

procedures of the wedges.  

 

In this study, the microstructure development in this material is evaluated to eliminate 

grain boundary defects by optimizing processing parameters, determining the best 

temperature/time combination for precipitation hardening, and determining cold work 

effect on aging parameters. Two chemistries containing Nickel-to-Silicon ratios of 3.2 

and 3.8 were selected for analysis. Cast samples were hot extruded, cold worked, 

and precipitation hardened. Parameters were varied at each processing step. Five 

different levels of cold work (4, 5, 7, 10 and 13%) were evaluated using 5 different 

aging temperatures (450, 460, 470, 490 and 500°C). Each processing parameters’ 

effect on microstructure and subsequently on hardness, conductivity, and tensile 

strength was recorded to assess material performance and identify grain boundary 

defects origination.   

 

Finding of this study identified observed grain boundary defects, using Transmission 

Electron Analysis, as voids/micro-tears. These defects on grain boundary are 

detrimental to low cycle fatigue, creep rupture and tensile strength properties and 
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important aspects of the material performance. Grain boundary defects were 

observed at all levels of cold work, however, origination of defects was only observed 

in grain sizes larger than 50µm. The strengthening phases for the CuNi2Si+Zr alloy 

system were identified as Ni2Si and Cr3Si.  The Nickel-to-Silicon ratio had an evident 

effect on the electrical conductivity of the material. However, aging benefits were not 

clearly established between the two Nickel-to-Silicon ratios. 
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INTRODUCTION 

 

Rotor Copper Wedges are an integral part of rotor designs in Generators. Their 

function is to provide structural restraint to rotor slot content and create an electrical 

bridge between the rotor teeth during service. The wedges are highly loaded 

components when running at speeds of up to 3600rpm. Therefore, the microstructure 

integrity of this material is scrutinized to meet quality standards required for the 

application.  

 

High strength copper alloys are selected for high strength applications when a 

moderate electrical conductivity is required. However, manipulation of mechanical 

properties while obtaining a defect free microstructure proves to be challenging tasks.  

 

 The aim of this program was to study the microstructure evolution of CuNi2SiZr, 

identify origination of grain boundary defects, determine best temperature/time 

combination for aging cycles and make adjustments to processing steps to eliminate 

grain boundary defects. Prior to studying the microstructure evolution, grain boundary 

species were to be identified and characterized. For this study two chemistries with 

different Nickel-to-Silicon ratios (3.2 and 3.8) were casted, extruded and drawn into 8 

configurations (4, 5, 7, 10 and 13% cold work), and precipitation hardened with 5 

different temperatures and time combinations (450, 460, 470, 490 and 500°C for 6 

hours). Hot formed samples were produce to contain grain sizes smaller and greater 

than 50µm. Hardness, conductivity, microstructure and grain size changes at each 

processing step were recorded.  
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Understanding microstructure evolution during each process step makes the task of 

manipulating material properties feasible. It also opens doors to other material 

options. It is the object of Materials Science & Engineering to study, understand and 

eventually manipulate the materials microstructure through processing in order to 

yield desired material properties.  
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LITERATURE REVIEW 

 

a. Casting 

Casting is the process by which a molten material, in this case a liquid metal, is 

poured or injected into a mold to obtain an object of particular shape. There are 

numerous methods for casting metals. The main processes for casting copper and 

copper alloys are continuous and semi-continuous castings. The former allows for 

continuous yield flow of material as the pour is withdrawn from the mold. Continuous 

production favors material with high quantity demands such as electrolytic tough pitch 

copper. Semi-continuous casting is commonly used when low quantity material yield 

is required. Specialized alloys, such as CuNi2SiZr, are produced in a semi-

continuous cast process due to low volume requirements. 

 

i. Semi-Continuous Casting 

Continuous and Semi-Continuous castings are normally performed in the horizontal 

or vertical direction. In 1942 Alcoa patented the vertical direct-chill process shown in 

figure 1 [1]. The process is used, in copper alloys, for preparation of billets and slabs 

to be hot formed through extrusion and rolling respectively. The schematic of the 

process shows the material being poured from the ladle into a distribution box that 

acts as a funnel delivering the molten liquid in a mold containing a graphite liner. The 

bottom hydraulic cylinder is moving down at a set speed to allow solidified material to 

enter into the cooling water inside the cylindrical concrete reinforced container.  



 

Figure 1. Vertical Semi-Continuous Cast [1] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 
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During semi-continuous cast the nature of the microstructure will resemble that of the 

direct mold cast microstructure with equiaxed grains at the mold wall and columnar 

grains in the center of the solidified material (Figure 2). The ratio of equiaxed to 

columnar grains will depend primarily on cooling rate and the thermal conductivity of 

the material. In the cast structure, however, the grain size is irrelevant when materials 

are to be hot worked and subsequently recrystrallized. 

 

Figure 2. Grain Structure in Solidified Mold Cast Metal [1] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 

 

ii. Hume-Rothery Rules 

Copper, an fcc-metal, in its pure and commercial form is very ductile and low in 

strength; and it is used for high conductivity low stress applications. However, in 

applications where both high strength and electrical conductivity are required, it must 

be alloyed with strengthening solid solution elements. Solid solubility is a 
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fundamental step in the subsequent precipitation hardening which assist in elastically 

straining the copper lattice and increasing its strength. The Hume-Rothery Rules are 

a set of guidelines which gives general criteria of determining if substitutional solid 

solution can take place over a range of composition and temperature for a 

solute/solvent system. These rules are as followed: 

 

a. Size Factor: Size difference between solute/solvent is no greater than 15% 

b. Electro-negativies of the type of atoms must be comparable 

c. Valence of the type of atoms must be similar 

d. Crystal structure of the type of atoms must be the same 

 

The hume-rothery, however, is not a set rules which will be applicable in all 

instances. These rules are obeyed, like phase-diagrams, under equilibrium conditions 

(ie. slow cooling and atmospheric temperature). The complete solid solubility of two 

elements in each other is named isomorphous system.  

Although, not necessarily applicable in ternary or multi-phase component systems, 

these can be used as a guideline when alloying with 2 or more constituents. In the 

CuNi2SiZr system, the main constituents Zr, Ni and Cr can act as solid solution 

solutes. Silicon can act as a precipitation assisting element or stay in solid solution in 

the interstices [2, 3, 4, 5, 6 and 7]. These can be observed in their interactions with 

copper in their respective phase diagrams (Figures 3-6) 



 

Figure 3. Copper-Zirconium Phase Diagram [8] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 

 

 

Figure 4. Copper- Nickel Phase Diagram [8] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 
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Figure 5. Copper-Chromium Phase Diagram [8] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 

 

 

 

Figure 6. Copper-Silicon Phase Diagram [8] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 
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iii. Solidification, Nucleation and Growth 

Thermodynamically it can simply be explained that nucleation will occur when a liquid 

has given up enough of the heat contained in it through particular areas to solidify 

slowly or at once depending on how quickly this heat is lost. This heat contained in 

the liquid is properly called the latent heat of fusion. In the case of pure metal liquids, 

if the temperature of the melt is monitored during its loss of temperature, it will be 

observed that the temperature will fall until just below the melting point is reached. At 

this point the temperature will remain constant until all the liquid metal transform into 

solid metal by releasing all of its latent heat of fusion. The temperature will then 

proceed to fall until it reaches that of the environment (Figure 7).  

 

 

Figure 7. Temperature Monitoring for Melt Solidification 
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Solidification is assumed to begin with the first instance of nucleation. Although 

super-cooling can be achieved, the conditions under which it occurs are non-

equilibrium conditions and any minimal disturbance will cause the rapid solidification 

at preferential sites. It is possible to methodically control the conditions for cooling of 
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a metal below its solidification temperature to allow under-cooling. In industrial 

applications equilibrium cooling is realistically impossible to accomplish since the 

capacity of the containers, for example for a large semi-continuous cast ingot, makes 

it difficult to control these non-equilibrium constants that allow for under-cooling. This 

is mainly due to the wall of the container of the melt being the preferential site of 

nucleation to occur since it has a lower temperature of that of the melt. Because the 

container is cooler than the melt, nucleation will occur at the surface of the mold due 

heat being dissipated convectively until the last area of liquid is transformed into a 

solid.  

 

Nucleation initiates a phase transformation and requires the formation of a stable 

particle called critical nucleus. The two main mechanisms by which nucleation can 

occur are homogeneous nucleation throughout the material, and heterogeneous 

nucleation, at preferred locations such as container walls, grain boundaries, 

dislocations, and precipitate particles. Heterogeneous nucleation is kinetically favored 

since it lowers the free-energy barrier and results in more rapid nucleation just under 

the transformation temperature. For liquid to solid transformations, nucleation is 

practically always heterogeneous. 

 

Nucleation can be thought as the creation of a zygote; once created it can only be 

changed or modified during growth. Most crystalline metals and alloys are produced 

by the process of solidification from the liquid phase. The microstructure is 

determined largely by the process of solidification. If solidification is sufficiently rapid 

the material remains in the state of an under-cooled and frozen melt. Crystallization 

begins with the formation of solid nuclei which then grow by consuming the melt [9, 

10, 11, and 12]. There are two processes which govern the formation of the new 
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phase, these are as mentioned previously the heterogeneous and homogeneous 

formation of nuclei.  

     

Nucleation and growth are involved in all commercial aging treatments in which 

small, second-phase particles form from a supersaturated solid solution. 

Precipitation, which in terms can be thought of as a secondary nucleation, is 

responsible for a great portion of the mechanical and physical properties obtained 

from different alloy systems whether they are subjected or not to the mixture rules 

(Hume-Rothery).  

 

During solidification a material in the liquid phase will transform into a solid phase. 

The phase transformation is possible and dependent on the change in the free 

energy for the reaction from liquid to solid phase (Figure 8).  Nucleation must take 

place for this phase change to occur.  

 

Homogeneous nucleation is the simplest case in which a liquid melt occurs when the 

metal itself provides the slow moving atoms bonding to form nuclei. A crystal is form 

when a nucleus stabilizes by reaching a critical size. A cluster of atoms which have 

not reached the critical size to form a nucleus is referred to as an embryo. These are 

continuously being formed and redissolved in the melt due to agitation of atoms.  

 



 

Figure 8. Gibbs Free Energy changes during solidification  

 

Reduction in Gibbs free energy is the phase transformation driver for solidification to 

occur. The Gibbs free energy is dependent on enthalpy and entropy changes as well 

as the system temperature by:  

 

SLSLSL STHG →→→ ∆∗−∆=∆   [12 and 13] 

T represents the temperature and ∆G, ∆H, and ∆S represent the changes in Gibbs 

free energy, enthalpy and entropy respectively from the liquid to the solid form.  At 

equilibrium temperature (TE) both the solid and liquid free energies are equal and 

therefore the change in free energy is zero. Using this condition and rearranging the 

above equation, it will yield that entropy is equal to the enthalpy change of the 

system divided by the temperature at equilibrium of the system. Assuming that the 

heat capacities are approximately the same (enthalpy of solids under constant 

pressure), the following expression can be derived: 
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Substituting ∆T=TE - T and rearranging this expression gives; 

)
T
H(TG

E

SL
SL

→
→ ∆∗∆=∆  [12 and 13] 

This shows that the magnitude of the change of free energy is directly proportional to 

the in change of temperature. Therefore, a decrease in temperature results in an 

increase in the driving force for the solidification of a pure substance. 

 

There are two specific components which are associated with free-energy change on 

the liquid-solid transformation. These are the change in energy associated with 

creation of liquid-solid interface (4πr2*γSL,  the area of the sphere to be form times the 

interfacial energy per unit area), and the difference in bulk energies of the liquid and 

solid phases (4/3* πr3 *∆Gv, the product of the volume of the sphere to be form and 

the change in free energy per unit volume). Thus expressing the change in free 

energy as a function of r yields; 

)G(
3
4)4(G(r) v

32

SL
∆+∗=∆ rr πγπ  [12 and 13] 

Taking the derivative (rate of change of the free energy function) set it equal to zero 

solving for r gives the expression for the critical radius (r*); 

 

v

*

G

2
SL

∆

−
=

γ
r  [12 and 13] 

 

Where ∆Gv can be obtained from the expression above ∆GL→S, and therefore r* 

becomes: 
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The critical radius will yield the free energy necessary to obtain stable nuclei; this is 

obtained by substituting the r* into the free energy function in terms of r; 
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     Therefore, this amount of energy necessary to nucleate the new phase can be 

thought of as the size of the energy barrier or activation energy. The crucial point is 

that as the under-cooling increases, the energy barrier to nucleation decreases. With 

larger under-cooling, both r* and ∆G* are observed to decrease, suggesting that 

lowering the temperature of the system allows nucleation to occur ever more readily 

(theoretically), however, there is a maximum rate usually approached at an 

intermediate temperature. Figure 9 represents the critical radius size of copper nuclei 

vs. degree of under-cooling (∆T). The higher the temperature change, the smaller 

critical radius needed for nucleation to occur. 
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Figure 9.  Critical Copper Radius Nuclei vs. degree of under-cooling (∆T) [14] 

 

Heterogeneous nucleation occurs, in a liquid, on the surfaces of its container, 

insoluble impurities, or other structure material which lowers the critical free energy 

needed to form stable nuclei. Figure 10 shows a sketch of the solidification 

directionality produced in a cold mold. For heterogonous nucleation to take place, in 

contrast to homogeneous nucleation, the solid nucleating alloying element, whether it 

be an impurity solid or a container wall, must be wetted by the liquid metal allowing 

the liquid to solidify on the nucleating agent.   
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Figure 10. Mold Wall Heterogeneous Nucleation Evolution [14] 

 

 

Figure 11. Surface Wetting Characteristics in Heterogeneous Nucleation  

 

Surface wetting and critical parameters such as contact surface angle formation for 

nucleation determine directionality of heterogeneous nucleation (Figure11). 

Heterogeneous nucleation takes place on nucleating agents because of the lower 

surface energy forming a stable nucleus on the surface, than in the actual liquid itself. 

The total free energy change of the formation of a stable nucleus will be lower and 

therefore the critical size of the nucleus will be reduced. Hence, a smaller amount of 
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under-cooling is required to form a stable nucleus referred to as heterogeneous 

nucleation. 

 

Two important features are known to describe heterogeneous nucleation behavior. 

These are the features in a transforming microstructure acting as preferential sites for 

transformation process and how well heterogeneous and homogeneous 

mathematical models can be related. Many microstructural features can serve as 

preferential sites for nucleation. For example, crystals of higher melting temperature 

material may be intentionally added to the liquid to increase the nucleation rate. This 

latter class of nucleation agent is known as inoculants [13]. 

 

The major factor for predicting if a specific material will act as a heterogeneous 

nucleation site for a specific solidification event is referred to as wetting; the ability of 

a liquid to spread on a complete surface and/or penetrating into a material specifically 

by their oriented adsorption in such a way that the wetting liquid is no longer repelled 

by the surface static forces.  The interaction between a liquid and a solid surface 

(figure12) can be mathematically described as follows: 
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     Where θ represents the angle of contact between the surface and the liquid, γLM 

represents a function of the energy of the mold to liquid interface, γMS represents a 

function of the energy of the mold to solid interface and γLS represents a function of 

the energy of the liquid to solid interface. For which, any combination, the wetting 

behavior will lie at or in between the extremes. When the contact angle is zero, the 

nucleated solid completely wets the surface, when the angle approaches 180° there 

is no wetting. From the homogeneous nucleation mathematical model it is known that 

the homogeneous nucleation barrier ∆G*hom can be modified by a function factor 

which takes into account the effectiveness of a particular feature to heterogeneously 

nucleate new solid phases. Therefore, the barrier free energy for the heterogeneous 

nucleation has the general form; 

 

)()*G(*G homhet θf⋅∆∝∆  [1] 

 

     Where as a function of θ varies from 0 to 1. The value of this function is directly 

related to the value of the angle θ. Heterogeneous nucleation free energy will always 

be lower than that of the homogeneous nucleation due to the contact angle. 

Therefore, the barrier energy is less for the heterogeneous nucleation always due to 

the solid growing, the area of solid/liquid interface increasing, the mold/solid area 

increasing and the liquid/mold area decreasing. The energy release by the 

eliminating the liquid/mold interface can provide energy to form the liquid/solid and 

solid/mold interface. Consequently, the energy released by the elimination of any 

defect acting as a nucleation site can be used to reduce the energy needed for 

nucleation in the absence of that particular defect [12]. 

f
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Figure 12. Wetting Surface Liquid-Solid Interface Geometry  

 

The rate of growth of the melt is a function of the degree of super-cooling. It is difficult 

to maintain a constant solidification throughout the solid-liquid interface. This 

constitutional under-cooling will happen when the temperature of the interface is less 

or equal to that of the melt in a region extending from the interface to the position of 

the melt temperature in question. Each individual nucleation event will produce an 

individual crystal, or grain, which then will attempt to grow. These randomly oriented 

grains form a “chill zone” [1] close to the container wall; that is, the major axis of each 

grain is randomly oriented. As each metal grows thermodynamically favored in one 

principal plane of orientation, only those grains favorably oriented with their growth 

direction most perpendicular to the container wall will grow into the center of the 

casting. The final shape of the grains in a metal casting will be columnar due to the 

faster growth perpendicularly oriented to the mold wall forming parallel columns, 

growing progressively from the mold wall into the center of the casting.  
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b. Hot Forming – Extrusion 

i. Hot – Direct Extrusion 

Hot extrusion is the process of forcing a heated material to flow through a shaped die 

opening [15]. Commonly used as a manufacturing process to produce long length 

metals with a constant cross-section (ie. bars, tubes, wires). Extrusion can be either 

hot or cold with temperatures used dependent on the extruded material. Prior to hot 

working, however, material pre-heating serves in preparation for extrusion and in 

taking an amount of the secondary phases, not dissolved during casting, into 

solution. Solid solution homogenization also occurs during preheating provided 

temperature is high enough. This step is of considerable importance for precipitation 

hardening, as the strength of the material will be directly proportional to the 

precipitation that occurs from solid solution. The temperature rise also assists flow of 

metal decreasing shear friction contact forces between material and die.  

 

During extrusion, the material gets loaded with a significant amount of energy which 

assists in breaking off the bigger secondary phase, as well as dynamic 

recrystallization of the material. The extrusion ratio, force and speed are directly 

related to the extruded material grain size [16]. High stacking fault energy will give 

rise to smaller grains, consequently lower stacking fault energy will give rise to bigger 

grains. If insufficient force is applied un-recrystallized structures may arise.  

 

Once the material exits the extrusion press it can either be allowed to cool in air or 

can be extruded into a fast cooling medium such as water. In the case of water 

cooling microstructure “freezes” as there is no driving force to promote further 

dynamic recrystallization. Extruding into air causes static recrystallization, which 



should be avoided for precipitation hardenable materials due to the tendency of 

losing solid solution prior to aging operations.  

 

ii. Dynamic Recrystallization 

During dynamic recrystallization new grains nucleate and grow assisted by 

deformation of material. Static recrystallization, in the contrary, occurs in subsequent 

heat treatments or slow cooling during after hot forming of material. Dynamic 

recrystallization is assisted by flow of material. Hence, high stacking fault energies 

promote greater dynamic recrystallization and therefore smaller grains (Figure 13). 

  

  

Figure 13. Stacking Fault Energy Effect on Extruded Grain Size [16] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 

 

The extruded grain size, dependent on recrystallization, will be elongated in the axial 

direction and shrunken in transverse direction. The “extrusion effect” may take place 

where the microstructure has a strong texture because of the high deformation in the 

extrusion press, whereby the strength in the longitudinal direction is much higher than 

in the transverse direction [16]. 
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iii. Aspect Ratio – Effect on Grain Size & Secondary Phase Breakup 

Aspect ratio is the geometrical change that occurs as material goes through and exits 

the extrusion die.  It can be calculated as the initial cross-sectional divided by the 

final cross-sectional area. Grain size and secondary phase particle break-up can be 

controlled using an extrusion ratio. Higher extrusion ratios produce higher stacking 

fault energy assisting in reducing the grain size of the material at extrusion exit. 

Consequently, lower extrusion ratios produce material with larger grain sizes.  

 

c. Cold Work  

i. Formability of Copper 

Application of cold work has two primary objectives. The first is to give final geometry 

to the extruded material and a smooth finish not requiring additional surface finish 

operations. The second to work hardened material, increasing the internal stacking 

fault energy, subsequently to be precipitation hardened. Copper and Copper alloys 

are primarily strengthened by cold work or by alloying additions that solid solution 

strengthen and enhance strain hardening [17]. Formability of metals cannot be 

defined by one given parameter. Instead it can be rationalized by review of physical 

properties such as strength, ductility, work hardening, and percent elongation. 

Copper alloys compared to stronger materials (i.e. high carbon steels) has a 

relatively high formability, while pure copper has a higher formability than alloyed 

copper.   

 

Different tests can be used to judge the formability of a material. Tensile tests can 

provide the percent elongation as well as the strain hardening ability of the material. 

Bend test around mandrels, commonly used in Copper ASTM standards, produce 
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qualitative data such as spring back and necking susceptibility. The limiting draw ratio 

(LDR) measures the bulge height in conjunction with minimum forming radius [16].  

Drawing operations are conducted in draw benches capable of applying 5000 to 

450,000 psi pulling force [15]. Drawing speeds are dependent on the force capability 

of the unit, the stock cross-section, material type and length to be drawn. As material 

passes through the drawing die, plastic displacement deformation occurs in the 

transverse and longitudinal directions. Heat is generated during passage of the 

material through the cross-section reducing die. Heating during cold drawing is 

controlled by application of lubricants which decrease the friction between materials 

and die.  

 

Staining and/or corrosion are considerations when selecting lubricants for copper 

forming operations. The most common lubricants used for copper are water-base and 

oil-base lubricants. Oil-base, however, are preferred lubricants for their ability to keep 

a smooth and shinny finish while the water-base normally stains the copper. A 

vegetable oil base mixture is normally used for their ability to be dissolved readily 

from the worked piece.  

 

ii. Surface and Microstructure Defects  

As with any working hardening, drawing can cause defects if not done properly. The 

three most common drawing defects are surface inclusions, seems and center 

bursts. During lubrication directly applied to the material prior to entering the drawing 

die, if not properly filtered, metal inclusions become embedded in the worked piece 

during the draw pass. Seems are traced to defects in the material to be drawn. 

Defects become entrapped under the plastically displaced material, creating a 
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subsurface defect normally missed during visual inspection. Center bursts (chevron 

cracking) normally occurring in material being drawn to low in temperature. 

   

e. Precipitation Hardening (Aging) 

Precipitation Hardening, known as Aging, is a heat treatment process which 

promotes alloying elements in solid solution to precipitate out in the matrix lattice to 

manipulate physical properties of the material. These precipitates strain the matrix 

lattice serving to pin dislocations as well as other lattice defects, therefore increasing 

mechanical properties of the material. Aging, like diffusion processes, have 

exponential temperature dependence. Activation energy (temperature dependent) is 

normally reduced by cold work applied to the material.  

 

i. Strengthening Mechanisms 

Dislocation and lattice defect movement dictate the strength of metals. There are two 

primary ways of strengthening metals: eliminating lattice defects (i.e. dislocations) or 

blocking their relative movement throughout the lattice. If the presence of mobile 

dislocations decreases the strength of a metal, then perhaps we can use the inverse 

argument and alter the structure of a metal so that dislocation motion, and hence 

plastic deformation, is more difficult [13]. There is a stress increased to allow for 

dislocations to move around or cut through the path of precipitate particles [12]. 

 

Commercial strengthening mechanisms are based in the aforementioned idea of 

impeding dislocation movement. The main strengthening mechanisms are: 

Work/Strain hardening, solid solution/alloying strengthening, and grain boundary 

strengthening/refining. All of which increase the movement difficulty level of 

dislocations within the material lattice.  



 

Work/Strain hardening increases the density of dislocations which also increases the 

flow stress. The increased density of dislocation in fixed volume will cause 

interactions between, such as entanglements (jogs), making them harder to move. 

The flow stress and dislocation density relationship is established by a Hall-Petch 

type equation: 

 

disl
k

o
ρττ +=  [13] 

Where τ is the flow stress, τo and k are material constants and ρ is the dislocation 

density defined as: 

 

materialofcm

ndislocatio of scentimeter
 3

=ρ  [13] 

 

 Strengthening by alloying increases the flow stress, required for dislocation 

movement, creating obstacles and distorting the vicinity of the dislocation paths. 

Strain energy of the material is increased by the displacement from the equilibrium 

position of the solvent atoms caused by the alloying elements.  The interaction 

between the solute atoms and the type of dislocations (edge or screw) establishes 

the reaction the alloying element will have in the material. 
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Grain Boundary strengthening (refining) acts by increasing the amount of grain 

boundaries (decrease in grain size) and therefore impedes dislocation movement. 

Yield stress is the stress required in polycrystalline materials to induce plastic 

deformation. The relationship between yield stress and grain size is expressed by the 

Hall-Petch equation: 



d

k

oys
+= σσ  [14] 

 

where 
ys

σ  is the yield stress,  
o

σ and k are material constants and d is the average 

grain size or diameter of the sample in question. As grain size decreases, 
ys

σ will be 

a function of the summation of k and
o

σ ; while if grain size increases it will function of 

summation 
o

σ  and a fraction k.  

 

ii. Precipitation Hardening Mechanism 

Precipitation hardening takes advantage of the fact that solid solubility decreases 

with decreasing temperature.  Solid Solution elements that precipitate during a heat 

heat treating operation provide a significant method for strengthening copper alloys. 

Magnitude of strengthening depends on the type and level of addition [18 and 19].  

Dislocation motion, as in other strengthening mechanisms, is impeded by distortion in 

the lattice by species precipitated out of solid solution.  

 

In general, it may be said that an increase in hardness is synonymous with an 

increased difficulty of moving dislocations [9 and 14]. The Orowan mechanism to 

explain the movement around an obstacle a dislocation must overcome to continue 

on its flow path. Some dislocations are long enough to split in segments continuing 

on their path while leaving a dislocation loop in the vicinity of the precipitate particle. 

This latter postulate is known as the Frank-Read source.  
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Aging temperature at a constant time is directly related to precipitate size and density 

in the matrix. Under constant time, too low of a temperature yields and under-aged 
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structure in which particles are too small to interact with dislocations and effectively 

pin them; while too high of a temperature will cause precipitates to become too large 

to interact with matrix lattice defects. A peak age condition is obtained at a given 

temperature and time. 

The level of strengthening is dependent on the size and density of precipitates 

obtained during the aging operation. However, over-aging can occur as results of 

extended times softening the material due to precipitates loss of coherency in the 

lattice. Large precipitates continue to increase in size, at a constant temperature, 

while smaller one disappears. The relatively large size of these particles and their 

non-coherent boundaries not only do not contribute to hardening of the alloy but also 

tend to lower its overall strength [12].  

 

Precipitation, like nucleation in casting, can occur heterogeneously or 

homogeneously. Heterogeneous precipitation occurs at prefer sites like grain 

boundaries and slip planes, while homogeneous nucleation is mainly restricted to the 

matrix.  Cooling temperature speeds, as well as additional strain hardening of the 

matrix will shape the response of the material to aging conditions. Moderate cooling 

promotes homogeneous precipitation both at the grain boundaries and matrix. Slow 

cooling (i.e. quenching) promotes heterogeneous precipitation. Therefore, its 

expected that for slower cooling rate more grain boundary precipitates are present.  

Figure 14 shows the expected heterogeneous (slow cooling) and homogeneous 

(moderate cooling) precipitations at different cooling rates for age hardenable alloys. 



 

Figure 14. Heterogeneous (l) and Homogeneous (r) precipitations [12] 

 

iii. Copper Alloys Heat Treatment (CuNi2SiZr) 

Hardening in copper alloys is categorized in two general types: hardened through low 

temperature heat treatments and quench hardening alloys. The former, of interest in 

this study, includes spinodal hardening, order hardening and precipitation hardenable 

alloys.  Precipitation hardenable copper alloys find use mainly in electrical and high 

strength applications.  For copper, as dissolved atoms process through coagulation, 

coherency, and precipitation cycle in the quenched alloy lattice, hardness increases, 

reaches a peak, and then decreases with time; electrical conductivity increases 

continuously until attaining a maximum value [20]. In some alloys, such as CuNi2Si, 

CuNi2SiZr, CuNiMnSnAl, CuNiSiCr, CuNiSn, CuNiSiMg and CuNiSiCr two 

precipitation hardening cycles assist in increasing the electrical conductivity without 

lowering the strength of the alloy. This is due to activation temperature differences 

between different precipitates.  For example in the CuNi2SiZr system, Ni2Si 

precipitates age at temperatures ranging in the mid to upper 400°C, while Cr3Si 

precipitates come out of solid solution at temperature between 200-300°C 

[3,4,5,6,7,20 and 21]. Silicon in copper alloys also increases the solid solubility of 
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strengthening metal alloying element.  Temperature ranges for precipitation 

hardenable copper alloys varied according to composition, level of cold work and 

initial solution heat treatment. Figure 15 shows an ASM table used as guidelines for 

aging treatment on different precipitation hardenable copper alloys. 

 

 

Figure 15. Heat Treatments for low-temperatures hardening copper alloys [22] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 

 

Aging operations for copper can be done under ambient atmosphere or protected 

atmosphere. The latter being a combination of inert and reducing gasses (i.e. H2, N2, 

Ar) that protect the material from reacting with ambient atmosphere inside the 

furnace which tends to create a Cu2O layer. Inert atmospheres eliminate cleaning 

steps needed to eliminate oxide layer created in the furnace. In addition, reactions 

such as intergranular oxidation and hydrogen embrittlement are eliminated in inert 

atmospheres.  
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f. Electrical Conductivity 

i. Alloying elements effect in Copper 

Pure copper, after silver, has the highest in electrical and thermal conductivity. 

Impurities added to copper lower the conductivity scattering electrons and reducing 

the mean free path in the lattice. Silver has be smallest effect in conductivity in 

copper, and it is therefore widely used to increase the recrystallization temperature. 

Phosphorous, a second element with minimal effect if added in small quantities is 

used as a deoxidizer during melting and refining of Cu (Figure 16). The conductivity 

in copper is mainly related to electron mean free path (m.f.p.) and therefore chemistry 

of material. Cast material is expected to have a small m.f.p and therefore a low 

conductivity. Extrusion and drawing operations still in solid solution will experience 

little or no change in the m.f.p. During aging, material is brought out of solid solution, 

hence, the m.f.p. becomes longer resulting in higher conductivity.  

 

 

Figure 16. Effects of Impurities in Copper [22] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 
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ii. Nickel-Silicon Ratio 

Conductivity is sacrificed at times for higher strengths in copper alloys. However, not 

all conductivity is sacrifice when alloying elements are added to promote 

precipitation.  The combination of substitution solute solution and interstice atoms 

can create metal-silicides that precipitate out of solid solution and allows for higher 

electrical conductivity. CuNi2SiZr alloys can be manipulated to increase the electrical 

conductivity by the addition of silicon in higher quantities relative to nickel. Silicon, as 

disclosed in U.S. Pat. No. 4,260,435 is used in an amount slightly in excess of the 

stoichiometric amount necessary to form silicides of the nickel, thereby removing the 

nickel from solution and leaving excess silicon [4, 6, and 19]. Therefore, the higher 

the silicon content the more precipitation is expected and therefore higher 

conductivities can be attained. The combination of high hardness and conductivity 

has been found to be in the Ni/Si ratio of 3.4-4.5 [4].  

 

g. Hardness 

i. Definition 

Hardness implies resistance to deformation; in the case of metals, this characteristic 

is a measure of their resistance to permanent or plastic deformation [23].  

 

ii. Indenters 

Hardness is shortly defined as the ability of a material to resists surface plastic 

deformation. There are three main hardness tests used to measure surface hardness 

of metals. These are static, dynamic and scratch tests. Static tests relate the force 

applied to the depth and/or area created by the indentation.  Dynamic tests relate the 

bounce back height of an object of given dimension and size to the material tested. 



Scratch test is a relative hardness qualitative test, where one material with higher 

hardness can scratch the other.  

 

Static tests are normally used for hardness measurements of metals. There are 

different types of tests which vary by type of indenter and load applications. These 

include Rockwell, Brinell, Knoop, and Vickers. All of which relate the load applied to 

the indented depth and/or area. Test type selection depends on the material to be 

measured. In the case of copper and copper alloys Rockwell B with a spherical steel 

ball is the standard hardness test. Meyer’s Law, an empirical relation, relates the load 

and indentation size for spherical indenters. This statement was the basis for 

development for Rockwell B tests.  This relation establishes that for fixed a diameter 

ball, if W is the load and d the chordal diameter of the remaining indentation then: 

 

nkdW =  [24] 

 

where k and n are material constants [24]. This defines an exponential relation from 

the point of contact to the sinking of half the volume of the sphere in the material 

being tested.  

 

iii. Rockwell Hardness B 
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Rockwell hardness is the most widely used method for determining hardness, 

primarily because of its simplicity and lack of training required and short time needed 

for testing [23]. Rockwell number is derived from the inversed relationship between 

the difference of the minor and major load applied measured as a depth in a test 

step. The minor load applied is not enough to plastically deform the test specimen, 

but rather serves as a reference point from which the hardness can be measured. 
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Surface preparations are considered when surface hardness is to be measured. For 

loads of 100 and 150kgf, a ground surface with a 120-grit silicon carbide paper is 

sufficient. 

 

There are two main types of Rockwell test (Rockwell and Superficial Rockwell). 

These differentiate from each other in the indenter’s (conical or spherical) type and 

dimensions as well as the minor and major loads applied. Superficial tests are 

commonly used on sheet and strip product, while the normal Rockwell test is used on 

thicker specimens. Rockwell scales are defined based on these conditions with a 

nomenclature including the hardness number followed by HR, for hardness Rockwell 

test, and a final letter (i.e. B, C, F) which indicates the type of indenter, minor and 

major loads applied. In the case of superficial hardness tests a 2 digit number (i.e. 

15, 30, 45) and a letter (i.e. N, T) are added at the end.  

 

Bulk copper and copper alloys samples are normally tested in the Hardness Rockwell 

B scale. The B scale uses a spherical (ball) steel indenter with a diameter of 1/16in” 

and a major load of 100kgf. Hardness values for the B scale are limited to a range 

between 20 - 100. Tested specimens outside of this range should be tested on a  

more suitable scale. Figure 17 shows the schematic of a Rockwell testing machine. 

 



 

Figure 17. Schematic of Rockwell Testing Machine [23] 

Reprinted with permission of ASM International®. All rights reserved. 

www.asminternational.org 
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EXPERIMENTAL PROCEDURE 

 

a. Characterization of Grain Boundary Species and Strengthening Phases 

This study’s primary purpose was the identification and elimination of the grain 

boundary species observed in the CuNi2Si+Zr alloy system. The first phase of this 

work required characterizing secondary phases, and grain boundary species using 

scanning electron microscope (SEM), and alloy strengthening phases (precipitates) 

using electron diffraction by transmission electron microscope (TEM). Three samples 

with a geometrical 13% cold work area reduction known to exhibit these grain 

boundary species were used for characterization.  

 

A Zeiss Ultra-55 FEG Scanning Electron Microscope (SEM) was used for 

characterization of grain boundary species. Prior to SEM work the samples were 

confirmed to contain the grain boundary species of interests with optical microscopy, 

using an Olympus Lext-OLS3000IR Laser Confocal Microscope. Once species were 

confirmed to be in the samples, these were re-polished to ‘erase’ etching effects for 

SEM observation. Secondary and backscattered electron images were used to 

identify presence of defects in the as polished/non-etched condition. The coordinates 

for the areas of observations on all three samples were recorded and samples kept in 

the same SEM mount.  Two of the samples were etched using an aqueous 

ammonium persulfate etchant and a potassium dichromate etchant respectively. The 

third sample was kept as the control sample. Table 1 contains etchant solution 

concentrations and etching time.  
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    Table 1. Etching solution concentration and time [25] 

Potassium Dichromate (50seconds) Ammonium Persulfate (30seconds) 

Quantity Chemical Mixture Quantity Chemical Mixture 

2g K2Cr2O7

8mL H2SO4
10g (NH4)2S2O8

4mL NaCl (saturated solution) 

100mL H2O 
90mL H2O 

 

After the etching was complete each sample was loaded in the SEM for observation 

in the areas recorded prior to the etching. This procedure served to establish the 

etchant effect differences on the Grain Boundary species of interest. Secondary and 

backscattered high magnification imaging was used to characterize the etched 

samples. EDS technique were used to characterize the relative composition of the 

observed secondary phases, grain boundary species and matrix.  

 

The sample etched with ammonium persulfate based etchant was selected for TEM 

characterization. TEM samples were taken from the etched material using in-situ 

sample preparation with a Focused Ion Beam (FEI 200 TEM FIB). Prior to TEM 

sample extraction, the ammonium etched material was lightly hand polished to 

“erase” the etching effects using a 0.05µm Alumina (Al2O3), therefore, leaving a 

minor trace of the location of grain boundaries.  As shown in Figure 18, the idea was 

to take samples from both the matrix and transverse through a grain boundary. 

Thereby, allowing observation of the matrix strengthening phase (precipitates) and 

the internal grain boundary structure without etchant effect. Grain boundaries are not 

observable in this material in the un-etch condition, this technique was used to 

increase the chances of cutting through a grain boundary. 



 

     Figure 18. FIB Cuts and TEM Sample Orientation  

 

Once enough material was removed erasing the majority of the grain boundaries, the 

focused ion beam was used to section and weld TEM specimens to a 3mm beryllium 

grid. Additional milling was required to thin the samples for high resolution TEM and 

electron diffraction analysis. Good high resolution TEM samples range in the pico-

meter scale.   

 

The samples were then analyzed using a FEI Technai F30 Transmission Electron 

Microscope. High resolution bright and dark field imaging of the matrix, precipitates 

and the grain boundary was recorded. EDS analysis was performed and recorded on 

both the matrix and secondary particles observed. Electron diffraction was used to 

obtain information on the strengthening phases of this alloy system.  

 

b. Experimental Processing Parameters  

i. Chemistry 

The two selected chemistries were produced using a semi-continuous cast process. 

These were selected on the basis of Nickel Silicon ratio. Samples were taken from 

the bottom and top of the semi-continuous cast for chemistry analysis. The 
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composition of the samples was analyzed by Inductively Coupled Plasma (ICP) 

techniques. The two chosen compositions are presented in Table 2, including the 

main constituents of the alloy, trace elements and the Nickel to Silicon Ratio. The 

sample material was identified as Q1- for the [3.8-3.9] Ni/Si Ratio, and Q2- for the 

[3.2 -3.3] Ni/Si Ratio. 

 

     Table 2. ICP Analysis for Q1-3.8Ni/Si and Q2-3.2Ni/Si Ratios 

Element, wt.% Top Bottom  Element, wt.% Top Bottom 
Cu 96.8285 96.7431  Cu 96.3869 96.3264
Ni 2.2479 2.2705  Ni 2.4206 2.429 
Si 0.5883 0.5793  Si 0.7553 0.7472 
Zr 0.155 0.1961  Zr 0.1883 0.245 
Cr 0.1454 0.1468  Cr 0.15 0.15 
Al 0.0015 0.0012  Al 0.0019 0.0016 
Fe 0.0159 0.0157  Fe 0.0231 0.0227 
Mg 0.0001 0.0002  Mg 0.0002 0.0002 
Mn 0.0001 0.0001  Mn 0.0158 0.0136 
P 0.0009 0.001  P 0.0009 0.0009 

Pb 0.001 0.0015  Pb 0.0017 0.0013 
Sn 0.0118 0.0112  Sn 0.0123 0.0119 
Zn 0.0078 0.0156  Zn 0.0132 0.0193 

Ni/Si Ratio 3.821 3.9194  Ni/Si Ratio 3.2049 3.2507 
  

ii. Extrusion and Cold Work Processing 

After the semi-continuous cast, the material was hot-extruded into chilled (20-25°C) 

water using a 20~30 to 1 geometric area ratio. The extrusion speed and force used 

were kept constant for both material compositions. Material samples were processed 

to contain large (≥ 50µm) and small (< 50µm) grain sizes.  Grain size, hardness and 

conductivity measurements were recorded for all samples after extrusion and 

drawing operations. Table 3 shows the identification of the extruded samples. 

 

    



   Table 3. Description of Extruded Samples 

Stamped 
ID 

Description   
Stamped 

ID 
Description 

2A Q2E4A   9A Q1E7A 
2X Q2E4X   9X Q1E7X 
3A Q1E4A   12A Q1E13A 
3X Q1E4X   12X Q1E13X 
4A Q2E5A   13A Q2E13A 
4X Q2E5X   13X Q2E13X 
5A Q1E5A   14A Q1E10A 
5X Q1E5X   14X Q1E10X 
8A Q2E7A   15A Q2E10A 
8X Q2E7X   15X Q2E10X 

 

Extrusion, drawn and heat treated sample pedigree was kept by assigning each 

stamp sample a description as shown in Figure 19. Each stamp contained the 

sample composition (Q1-3.8 Ni/Si Ratio, Q2-3.2Ni/Si Ratio), material processing step 

(E-extrusion or D-cold-drawn), percentage cold work to be imparted for extruded 

samples or applied for drawn samples - (4,5,7,10 or 13%), and the grain size type 

designation (A-Big≥ 50µm, X-Small<50µm). 

 

 

 

           Figure 19. Sample Stamp Description 
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Extruded samples were then drawn with five different levels of cold work (4, 5, 7, 10, 

and 13%). The drawing speed and a steady input of lubrication (vegetable oil) to the 

drawing die were kept constant for all samples. Material samples were taken from 

each of the drawing passes for microstructure examination, grain size, hardness and 

conductivity measurements. Table 4 shows the identification of the drawn samples. 

 

        Table 4. Description of Drawn Samples 

Stamped ID Description  Stamped ID Description 
2A Q2D4A  9A Q1D7A 
2X Q2D4X  9X Q1D7X 
3A Q1D4A  12A Q1D13A 
3X Q1D4X  12X Q1D13X 
4A Q2D5A  13A Q2D13A 
4X Q2D5X  13X Q2D13X 
5A Q1D5A  14A Q1D10A 
5X Q1D5X  14X Q1D10X 
8A Q2D7A  15A Q2D10A 
8X Q2D7X  15X Q2D10X 

 

iii. Heat Treatment Temperature and Time Determination 

Determination of heat treatment temperature and time intervals was done with a 

combination of literature review and a design of experiment analysis. The 

temperature range was established by aging temperatures used for similar age 

hardenable copper alloys [17 and 22]. A design of experiment, a tool to compile data 

by combination of variables (i.e. temperature, time, and percent cold work), was done 

using Mini-Tab software. Table 5 shows temperature, time, and cold work 

combinations used to establish a relationship between alloy microstructure and the 

processing parameters.  
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  Table 5. Taguchi Analysis for Aging Parameter Determination 

Temperature, °C Time, hrs 4% 7% 10% 13% 
400 4:15 2A -- -- 13A 
430 4:15 2A -- -- 13A 
450 4:15 2A -- -- 13A 
455 4:15 -- 10A -- -- 
470 4:15 2A 10A 16A 13A 
490 4:15 -- 10X -- -- 
400 6:00 2A -- -- 13A 
430 6:00 2A -- -- 13A 
450 6:00 2A -- -- 13A 
455 6:00 -- 11A 16X   
470 6:00 2A 11A 16X 13A 
490 6:00 -- 11X -- -- 

 

Aging curves were created by measuring hardness and conductivity values for each 

sample set at given temperatures for 4.25 hours and 6 hours. Figures 20 through 23 

show the hardness and conductivity results for the different aging treatments for each 

sample set. The graphs present the highest combination of conductivity and 

hardness to be not at the peak, but just over to the right indicating that a slight over-

aging temperature and time combinations are preferred. It is also observed that times 

selected for introductory aging curves do not greatly differ in the property yields of the 

alloy system. Therefore, the time in the remaining of the study was limited to 6 hours. 

Table 6 shows the time, temperature versus percentage of cold work chosen for the 

overall aging study for the 3.2-Ni/Si Q2 chemistry. 
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Figure 20. Hardness-Temperature Aging Curve (4:15hrs)  

 

Aging Curve 6:00hrs
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Figure 21. Hardness-Temperature Aging Curve (6:00hrs) 
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Figure 22. Conductivity (%IACS) -Temperature Aging Curve (4:15hrs) 
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Figure 23. Conductivity (%IACS) -Temperature Aging Curve (6:00hrs) 
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     Table 6. Aging Study Parameters  

Cold Work, % 450°C 460°C 470°C 490°C 500°C 

4 -- x x x x 
5 -- x x x -- 
7 -- x x -- x 
10 x x x x -- 
13 x x x -- -- 

 

c. Metallurgical Preparation of Sample  

All studied samples were prepared with an automatic grind, polish and final etch-

polish process. Samples were cut to an approximate thickness of 10mm, mounted on 

a six-way steel specimen holder wheel for automatic polishing and grinding. After 

each grinding and polishing steps the entire wheel with mounted samples was rinsed 

under running water. This allowed removal of grind or polish debris accumulated 

during each step on the samples and/or wheel detrimental to the next step. Liquid 

soap was then applied with a cotton swab to the sample faces exposed to the 

grind/polish papers. Soap cleaning was rinsed with running water and the samples 

were dried with pressurized air.  

 

Grinding operation was performed under a constant flow of water to ensure cooling of 

samples with 240, 320 and 400 Silicon Carbide grit paper. Each grinding sequence 

was maintained to less than 30 seconds and an applied 35kN pressure. After each 

grinding operation the samples were visually inspected to assure even ‘scratches’ 

and leveled surface.  

 

A Struers’ Magnetic Disk (MD-Largo) with a 9µm diamond paste suspension was the 

first step in the polishing operation. A pressure of 35kN with a constant drip of 

lubricant was applied during 3 minutes of the polishing step; reapplication of the 9µm 
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diamond paste suspension was applied during the process to ensure the disk did not 

become dry.  The next step used a Struers’ MD-Cloth with a 3µm diamond 

suspension, during 3 minutes with 35kN of pressure and constant drip of lubricant 

and diamond suspension reapplication to avoid dryness of the disk. 

 

The final polishing steps consisted of an etch-polish using a solution of 90mL of 

Struers’ OP-S suspension mixed with 3mL of distilled water, 3mL of Hydrogen 

Peroxide and 3mL of Ammonium Hydroxide. The samples were polished using this 

solution on a Struers’ OP-Chem Disk for 1 minute with a constant pressure of 35kN. 

During this step no water or lubricant was used, the solution was sufficient to keep 

material cool under the short period of time. After the final polishing step the samples, 

still mounted, and were washed with running water and soap using a cotton swab. A 

light spray of methanol was used to assist in drying the samples while applying 

pressurized air after the last rinsing operation.  This procedure yields a faint copper 

grain microstructure requiring additional etching.  

 

d. Grain Size, Hardness and Electrical Conductivity Measurements 

Data was recorded for every sample after each processing step. Rockwell Hardness 

B (HRB) was measured on the samples before metallographic preparation for 

microstructure analysis. An average hardness, for each sample, was calculated 

based on three readings. Hardness readings were completed on a digital deadweight 

loading system, Buehler Macromet 5101, using a 100kgf major load with a 1/16” steel 

ball indenter according to HRB standards.  

 

Metallographic preparation according to the “Metallurgical Preparation of Samples” 

section was performed prior to microstructure recording and analysis [25]. The grain 



size of each sample was measured and photographed. An Olympus Lext-OLS3000IR 

microscopes and its supporting software was employed to measure grain size of 

each microstructure. The software measures the linear distance between two 

selected points. Ten linear grain measurements were made for each microstructure 

to obtain a representative measure of the true grain size of the material.  The 

software automatically calculated and recorded descriptive statistics on the 

measurements for each sample. As shown in Figure 24, a linear measurement 

constitutes the longest distance visually observed for each grain.  

 

 

Figure 24. Grain Size linear measurements 

 

A LEICA DM IRM inverted microscope was used to record and photograph the 

microstructure of samples. After completion of the microstructure analysis, a surface 

electrical conductivity measurement was recorded using a SIVA Digital Conductivity 

Meter MK-III. All measurements were recorded and correlated to the chemistry, aging 

treatment and percentage cold work reduction for each specimen. 
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RESULTS 

 

a. Grain Boundary Species, Secondary Phase Particles and Precipitates 

Three samples with a 13% cold work area reduction were used for the initial 

characterization of grain boundary species, secondary phase particles and 

strengthening phases (precipitates).  All samples were prepared for observation 

under scanning electron microscope. Prior to SEM analysis the samples were etched 

with Ammonium Persulfate for 30 seconds and observed to contain the unidentified 

grain boundary species near the edges of the samples as seen in Figure 25. The 

microstructure of the samples showed blocky silver particles randomly dispersed 

through out the matrix. After initial recording of the microstructure the samples were 

re-polished to erase the etching effects for analysis in the scanning electron 

microscope.  

 

 

    Figure 25. 13%CW Samples showing unidentified grain boundary species 
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Prior to etching with ammonium persulfate, the first sample was observed in the SEM 

to contain no species in the patterns observed in the optical microscopy pictures. The 

coordinates of an area of interest were recorded for referencing after etching effects. 

The area was selected based on cross-sectional depth from the surface and 

surrounding features such as pull-outs and polishing marks. As shown in Figure 26, 

the area selected was marked with the SEM electron beam causing what appears to 

be a slight discoloration from the rest of the matrix. 

 

 

Figure 26. SEM - As Polished 13%CW Sample - Area Selected for Etching 
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Figure 27. SEM - 13%CW Sample – Etched Area 

 

The sample was kept in the SEM mount when taken out of the chamber for etching. 

The etched effects can be seen in Figure 27. The secondary particles are seen as 

bright blocky objects, while the grain boundary species of interests are shown as 

bright circular and sometimes elliptical profiles. Figure 28, shows a magnify view of 

the grain boundary species appearing to be a void or cavity.  
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Figure 28. SEM - 13%CW Sample – Grain Boundary Species  

 

The secondary phase particles main constituents, identified by energy dispersive 

spectroscopy (EDS), were Nickel, Silicon and Zirconium.  Figure 29 shows the 

secondary phase particles 1 and 2 analyzed by EDS. Figures 30 and 31 show the 

elemental energy dispersive analysis of particles 1 and 2 respectively.   

 

 

 50



 

Figure 29. Secondary Phase Particles selected for EDS 

 

 

Figure 30. EDS - Secondary Phase Particle 1  
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Figure 31. EDS - Secondary Phase Particle 2 

 

Observation on the grain boundary species could yield a void (Figure 28) or broken 

particles still attached to the matrix (Figure 32). The latter when analyzed through 

EDS shows the same energy peaks as the secondary phase particles (Ni, Si and Zr). 

Figures 33-35 show the EDS analysis performed on the embedded particle in the 

grain boundary void (33), on the internal wall of the void (34) and the matrix (35). The 

void walls and the particle still embedded exhibit the same energy peaks. This 

suggests the particle was at some point attached to the copper matrix.  
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Figure 32. G.B. Secondary Phase Particle still attached to the matrix  

 

 

Figure 33. EDS Peaks of Void Embedded Particle at Grain Boundary 
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Figure 34. EDS Peaks at the wall of the void in the grain boundary 

 

 

Figure 35. EDS Peaks for Matrix  
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The same exercise of imaging prior to and after etching was conducted using 

Potassium Dichromate as the etchant. The results agreed with those obtained with 

the ammonium persulfate etchant; Figures 36 and 37 present the backscattered and 



secondary electron images respectively. However, the ammonium persulfate was 

selected as the etchant of preference, for the rest of the study, based on the 

microstructure features presented in the optical microscope. The potassium 

dichromate is mainly used to show the level of cold work in copper alloy 

microstructures [22].  

  

 

Figure 36. Backscattered Electron Image after Potassium Dichromate Etching 
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Figure 37. Secondary Electron Image after Potassium Dichromate Etching 

 

Next, the ammonium persulfate SEM etched sample was polished in steps to erase 

the etchant effects leaving a small trace of the grain boundary locations for FIB in-situ 

TEM sample milling and extraction. Figure 38 shows the grain boundary trace left as 

well as the polished marks on the sample. The FIB was used to make a specimen 

through the matrix (Figure 39) and adjacent and transverse to a grain boundary 

(Figure 40).  
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Figure 38. FIB Sample with Grain Boundary  

 

 

Figure 39. FIB Matrix Cut In-Situ Sample welded to Beryllium Grid 
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Figure 40. FIB Grain Boundary Cut - In-Situ sample extraction 

 

Both samples were welded to a beryllium grid for additional milling to thin the sample 

to a TEM thickness specimen. The sample containing the grain boundary, after 

subsequent thinning, began to reveal void-like areas (Figure 41). These were 

identified and recorded as areas 1 and 2 for STEM Analysis. A dark field image of 

both areas 1 and 2 show incomplete particles still attached to the matrix (Figure 42). 

Figures 43-45 show the subsequent EDX analysis performed on the matrix, area 1 

and area 2 respectively. The main constituents of these particles were identified as 

Cu, Ni, Si and Zr.  
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Figure 41. FIB G.B. Cut - In-Situ sample extraction containing voids 

 

 

Figure 42. STEM Dark Field Image of Sample Areas 1 and 2  
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Figure 43. EDX – Matrix Peaks 

 

 

Figure 44. EDX – Area 1 Peaks 

 

 

Figure 45. EDX – Area 2 Peaks 

 

In addition to characterization of the grain boundary defects, the strengthening 

mechanism of the material was studied using TEM matrix diffraction. Results show 

that primary strengthening phases in the matrix are α-Ni2Si and Cr3Si. Figures 46 and 

47 show the electron diffraction pattern for the matrix/precipitates and EDX spectra 
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for the Chromium peaks not seen in the matrix or secondary phases in the SEM 

microstructure analysis. This indicates that chromium mainly exists in solid solution 

form. 

 

  

Figure 46. Copper Matrix (001)TEM Diffraction(l), Matrix Precipitates (r) 

 

  

Figure 47. Chromium Electron Diffraction Peaks from Matrix Precipitates 
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b. As-Cast Microstructure 

The as-cast samples for both chemistries (Q1 and Q2) were obtained and analyzed. 

Chemistry 1 was also heated and quenched at 970°C for 30 minutes to replicate the 

effects of pre-heating the material prior to hot working; these samples were identified 

as Q1S.  Table 7 presents the hardness readings of each of the samples; Figure 48 

shows the sample distribution range as well as the relative average hardness for 

each of the sample sets (Q1, Q1S, and Q2). Table 8 shows the average values for 

each of the sample sets. This data indicates that the as-cast samples with a Ni/Si 

ratio of 3.8 (Q1) have lower hardness range values compared to a Ni/Si ratio of 3.2 

(Q2). However, the average conductivity reading for Q1 is higher than Q2. This data 

indicates that chemistry modification starts making an effect on the material from the 

cast stages. The heated Q1S samples show lower hardness and conductivity values 

than the Q1 as-cast samples. This indicates the material is solutionizing during the 30 

minutes at 970°C of pre-heat prior to hot forming.  

 

Table 7. Hardness and Conductivity Measurements for As-Cast Samples 

I.D. HRB %IACS I.D. HRB %IACS I.D. HRB %IACS 
Q2 66.8 21.7 Q1S 44.9 20.1 Q1 59.4 24.5 
Q2 66.3 22.1 Q1S 45.4 20.7 Q1 57.7 24.3 
Q2 62.4 22.1 Q1S 49.3 20.6 Q1 54.5 24.3 
Q2 64.7 22.2 Q1S 55.6 21.3 Q1 59.3 24.3 
Q2 63.3 22.1 Q1S 52.9 21 Q1 54.4 24.5 
Q2 66.1 21 Q1S 41.6 20.3 Q1 50 24.1 

 



 

Figure 48. Average and Range Distribution of Cast Samples Hardness 

  

     Table 8. Average Hardness and Conductivity for As-Cast Samples 

Chemistry Average HRB Average Conductivity, % IACS 
Q1 55.9 24.33 

Q1S 48.3 20.67 
Q2 64.9 21.87 

 

The as-cast samples of Q1, Q2 and Q1S were polished and etched with ammonium 

persulfate. Figures 49-51 show the microstructure and secondary phase particle 

distribution of the Q1, Q1S and Q2 samples respectively. A measurement of cross-

sectional area of the secondary particle was recorded to establish particle size 

difference due to chemistries and solutionizing treatment (Figure 52). The line 

distribution for average secondary particle size is similar for both Q1 and Q2 ranging 

between 10-60µm2 in comparison with Q1S heated and quenched samples ranging 

between 20-30µm2. The microstructure recorded for Q1S when viewed at higher 

magnifications appeared to be more secondary phase dense.  
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Figure 49. Q1 As-Cast (500X) 

 

Figure 50. Q1S As-Cast (500X) 

    

Figure 51. Q2 As-Cast (500X)    
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      Figure 52. Average Particle Size Distribution - Q1, Q1S and Q2 

 

The as-cast Q1 samples were heated for one hour and quench with different 

temperatures to determine if there was particle density changes in the microstructure 

as seen in the Q1S sample. Figures 53-57 shows before (left) and after (right) 

microstructure of Q1 samples, which validate the increase in particle distribution 

across the field of view at 500X. This is consistent with homogenization of the 

material during pre-heat/solutionizing treatment prior to extrusion. A relationship 

between heating temperature and particle size could not be established. The average 

size measurements varied with values being high and/or low at both lower and higher 

temperatures (Appendix A).  
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Figure 53. Q1 – Sample 13 Heated at 1025°C (500X) 

 

Figure 54. Q1 – Sample 14 Heated at 1000°C (500X) 

 

Figure 55. Q1 – Sample 15 Heated at 975°C (500X) 

∆

∆

∆
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Figure 56. Q1 – Sample 16 Heated at 950°C (500X) 

 

Figure 57. Q1 – Sample 17 Heated at 925°C (500X) 

 

c. Extruded Microstructure 

After semi-continuous casting, both chemistries were hot-extruded into continuously 

chilled room temperature (20-25°C) water using a [20-30]:1 geometric area ratio. The 

extrusion speed and force used were kept constant for both material compositions. 

Material was extruded to contain large (≥ 50µm) and small (< 50µm) grain sizes for 

hardness, conductivity and grain size measurements as well as microstructure 

recording. Figures 58-62 show the microstructure of the as-extruded samples with a 

Ni/Si ratio of 3.2 (Q2-samples). The photos on the left and right represent the large 

and small grain sizes for the extruded material to be cold worked with a 4, 5, 7, 10 

∆

∆



and 13% reduction. The larger grain size microstructure exhibited at times blocky 

acicular particles at the grain boundaries.  

 

  

Figure 58. Q2 – 4%CW Extruded (l) Small, (r) Large Grain Size (500X) 

 

  

Figure 59. Q2 – 5%CW Extruded (l) Small, (r) Large Grain Size (500X) 

 

 68



  

Figure 60. Q2 – 7%CW Extruded (l) Small, (r) Large Grain Size (500X) 

 

  

Figure 61. Q2 – 10%CW Extruded (l) Small, (r) Large Grain Size (500X) 

 

  

Figure 62. Q2 – 13%CW Extruded (l) Small, (r) Large Grain Size (500X) 
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Grain size measurements on the center and edge of the samples were within margin 

of variability. The grain size measurements, however, for the extrusion large and 

small grain sizes are shown as low as 20% to 300% difference. This corroborates the 

grain size difference observed in the microstructures recorded for all sample runs. 

These results, as shown in Table 9 are consistent for both Ni/Si ratio chemistries (Q1 

and Q2).  

 

Table 9. Extruded Samples Grain Size Measurements 

Q1 Grain Size  Q2 Grain Size 

%CW ID 
Edge 
(µm) 

Center 
(µm) 

 %CW ID 
Edge 
(µm) 

Center 
(µm) 

4 3A 99 104  4 2A 112 106 
4 3X 33 28  4 2X 39 42 
5 5A 57 78  5 4A 88 82 
5 5X 23 32  5 4X 31 29 
7 9A 87 115  7 8A 63 88 
7 9X 31 27  7 8X 36 44 
13 12A 36 52  13 13A 52 62 
13 12X 32 26  13 13X 22 32 
10 14A 36 31  10 15A 48 59 
10 14X 30 46  10 15X 26 34 

 

The Hardness Rockwell B and conductivity of the samples was recorded (Table 10). 

The conductivity was higher for Q1 chemistry (Ni/Si = 3.8). The hardness, however, 

was higher for the Q2-chemistry samples (Ni/Si=3.2) when taking the average for the 

larger grain sizes (HRB-Q2-25.6 vs. HRB-Q1-15.5). However, in the lower and higher 

extrusion ratios the hardness values cross when the average of the small and large 

grain size samples, for each level of cold work to be imparted, is graphed (Figure 63). 

A further look, when separating the large and small grain size extruded samples into 

Figures 64 and 65 respectively show higher hardness for both chemistries on the 



smaller grain size samples. Results are consistent with the Hall-Petch relation, where 

smaller grains result in higher hardness. 

 

                 Table 10. Extruded Samples Conductivity Measurements 

%CW Q1-ID HRB IACS% Q2-ID HRB IACS% 
4 3A 29.2 21.5 2A 26 19.9 
4 3X 12.3 21.1 2X 13.3 18.4 
5 5A 10.2 20.5 4A 25.8 19.7 
5 5X 15.5 20.9 4X 15 18.5 
7 9A 11 21.7 8A 21.1 19.6 
7 9X 10.2 20.4 8X 15.4 18.6 
10 14A 14.9 20.5 15A 34.6 18.8 
10 14X 11.6 20.6 15X 17.5 19.1 
13 12A 11 20.5 13A 20.4 19.1 
13 12X 28 22.7 13X 16.3 18.9 
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Figure 63. Q1, Q2 Average Extruded HRB vs. %CW  
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Extrusion Grain Size ≥ 50µm 
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Figure 64. Q1, Q2 Average Extruded HRB vs. %CW for Grain Size ≥ 50µm 

 

Extrusion Grain Size < 50µm 
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Figure 65. Q1, Q2 Average Extruded HRB vs. %CW for Grain Size < 50µm 
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d. Cold Worked Microstructure 

The extruded material was cold worked with 5 different levels of cross-sectional 

reductions (4, 5, 7, 10, and 13%). Hardness, conductivity and grain size 

measurements were recorded for both chemistries. The microstructure was analyzed 

and recorded for each grain size measurement. Figures 66-70 show the 

microstructure for the as-drawn samples in the perimeter of the samples with a Ni/Si 

ratio of 3.2 (Q2-samples). The photos on the left and right represent the small and 

large extruded grain sizes.  

 

       

Figure 66. Q2 – 4% Cold Worked (l) Large, (r) Small Grain Size (500X) 

       

Figure 67. Q2 – 5% Cold Worked (l) Large, (r) Small Grain Size (500X) 
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Figure 68. Q2 – 7% Cold Worked (l) Large, (r) Small Grain Size (500X) 

      

Figure 69. Q2 – 10% Cold Worked (l) Large, (r) Small Grain Size (500X) 

       

Figure 70. Q2 – 13% Cold Worked (l) Large, (r) Small Grain Size (500X) 

 

The larger grain size microstructure exhibited larger secondary phase particles.  

Grain size measurements on the center and edge of the samples were within margin 

of variability. The grain size differences, however, for the large and small grain sizes 
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was not as significant as that seen in the extruded material only varying from 8-51% 

of the original size. These results as shown in Table 11 are consistent for both Ni/Si 

ratio chemistries (Q1 and Q2).  

 

Table 11. Cold Worked Samples Grain Size Measurements 

Q1 Grain Size  Q2 Grain Size 

%CW ID 
Edge 
(µm) 

Center 
(µm) 

 %CW ID 
Edge 
(µm) 

Center 
(µm) 

4 3A 46 41  4 2A 58 61 
4 3X 31 31  4 2X 31 30 
5 5A 62 48  5 4A 73 67 
5 5X 20 22  5 4X 36 39 
7 9A 55 47  7 8A 57 67 
7 9X 22 26  7 8X 31 29 
10 14A 42 29  10 15A 48 35 
10 14X 32 23  10 15X 22 18 
13 12A 62 33  13 13A 44 45 
13 12X 24 19  13 13X 46 41 

 

The Hardness Rockwell B and conductivity of the samples was recorded (Table 12). 

The conductivity remained the same for both chemistries as in the extruded 

condition. The Q2-chemistry (3.2Ni/Si) still held a slight advantage over Q1 (3.8Ni/Si). 

Hardness measurements, presented in Figure71, show higher hardness values for 

Q2 when taking the average of the large and small extruded samples (HRB-Q2-48 

vs. HRB-Q1-43). The hardness data was still consistent when comparing against 

grain sizes after cold work for both chemistries. The smaller grain sizes correspond to 

higher hardness measurements (Figures 72 and 73). Results are consistent with the 

Hall-Petch relation. 

 

 

 



Table 12. Cold Worked Samples Conductivity Measurements 

%CW 
Q1-

Samples 
Average 

HRB 
Conductivity, 

IACS% 
Q2-

Samples
Average 

HRB 
Conductivity, 

IACS% 
4 3A 33.2 21.7 2A 40.8 20.5 
4 3X 28.3 20.2 2X 34.3 19.1 
5 5A 37.1 20.9 4A 44.3 20 
5 5X 31.6 20.3 4X 37.7 18.4 
7 9A 45.1 21.6 8A 48.8 19.5 
7 9X 41.4 20.6 8X 47 18.8 
10 14A 52.6 20.5 15A 51.7 18.6 
10 14X 51.6 21.1 15X 51.3 18.6 
13 12A 55.2 20.6 13A 57 18.8 
13 12X 60 21.8 13X 62.3 19.4 
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Figure 71. Q1, Q2 Average Drawn HRB vs. %CW 
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Q1 Average HRB vs. %CW 
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Figure 72. Q1 Average Drawn HRB vs. %CW for Large and Small Grain Sizes 

 

Q2 Average HRB vs. %CW
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Figure 73. Q2 Average Drawn HRB vs. %CW for Large and Small Grain Sizes 
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e. Grain Size Changes and Characterization during Aging 

Aging cycle study was performed according to table 6 (Aging Study Parameters).  

Higher levels of cold work were aged at lower temperature cycles, conversely lower 

levels of cold work were aged at higher temperature cycles. The mid-range 

temperature cycles were conducted with all levels of cold work to distinguish 

strengthening time and grain size change effect. Hardness and grain size changes 

were recorded and compared as drawn against the aged condition, chemistry, and 

extruded grain size smaller and greater than 50µm. The characterization observed 

shown in figures 74-93 represent manufactured grain sizes greater and smaller than 

50 µm at the extrusion operation. The drawn grain size is smaller than the original 

extruded grain size.  

 

i. Aging at 450°C, 6hrs 

 

    

Figure 74. HRB vs. %CW/Chemistry for Extruded Grains <50 µm (450°C) 
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Figure 75. HRB vs. %CW/Chemistry for Extruded Grains >50 µm (450°C)  

 

    

Figure 76. Grain Size vs. %CW/Chemistry for Extruded Grains <50 µm (450°C) 
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Figure 77. Grain Size vs. %CW/Chemistry for Extruded Grains >50 µm (450°C) 

 

ii. Aging at 460°C, 6hrs 

  

Figure 78. HRB vs. %CW/Chemistry for Extruded Grains <50 µm (460°C) 
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Figure 79. HRB vs. %CW/Chemistry for Extruded Grains >50 µm (460°C) 

 

  

Figure 80. Grain Size vs. %CW/Chemistry for Extruded Grains <50 µm (460°C) 
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Figure 81. Grain Size vs. %CW/Chemistry for Extruded Grains >50 µm (460°C) 

 

iii. Aging at 470°C, 6hrs 

 

Figure 82. HRB vs. %CW/Chemistry for Extruded Grains <50 µm (470°C) 
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Figure 83. HRB vs. %CW/Chemistry for Extruded Grains >50 µm (470°C) 

 

 

Figure 84. Grain Size vs. %CW/Chemistry for Extruded Grains <50 µm (470°C) 
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Figure 85. Grain Size vs. %CW/Chemistry for Extruded Grains >50 µm (470°C) 

 

iv. Aging at 490°C, 6hrs 

   

Figure 86. HRB vs. %CW/Chemistry for Extruded Grains <50 µm (490°C) 

 84



 

Figure 87. HRB vs. %CW/Chemistry for Extruded Grains >50 µm (490°C) 

 

  

Figure 88. Grain Size vs. %CW/Chemistry for Extruded Grains <50 µm (490°C) 
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Figure 89. Grain Size vs. %CW/Chemistry for Extruded Grains >50 µm (490°C) 

 

v. Aging at 500°C, 6hrs 

  

Figure 90. HRB vs. %CW/Chemistry for Extruded Grains <50 µm (500°C) 
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Figure 91. HRB vs. %CW/Chemistry for Extruded Grains >50 µm (500°C) 

 

 

Figure 92. Grain Size vs. %CW/Chemistry for Extruded Grains <50 µm (500°C) 
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Figure 93. Grain Size vs. %CW/Chemistry for Extruded Grains >50 µm (500°C) 

 

f. Electrical Conductivity of Alloy (Ni/Si Ratio Effects) 

Electrical conductivity was measured before and after aging. Figures 94 and 95 show 

conductivity measurements at different aging temperatures for Q1 and Q2 

respectively. Q1-3.8Ni/Si ratio shows higher conductivity for the same level of cold 

work and equal aging conditions.  This correlation shows more dependency on the 

Ni/Si ratio in comparison to the aging temperature and level of cold work.  In previous 

studies [5], the lower conductivity for lower Ni/Si ratio has been attributed to the 

higher level of silicon left behind in solid solution after aging treatment occurs.  
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3.8 Ni/Si - Conductivity vs. Aging Temperature
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Figure 94. Q1-3.8Ni/Si Conductivity (%IACS) after Aging 

 

3.2 Ni/Si - Conductivity vs. Aging Temperature
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Figure 95. Q2-3.2Ni/Si Conductivity (%IACS) after Aging 
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g. Grain Size and Cold Work Reduction Effect on Grain Boundary Defects 

Grain boundary defects were first observed in the drawn condition. Figure 96 shows 

a 7% cold worked sample with grain boundary defects near the edge of the sample. 

Grain boundary defects, indentified as voids, were observed with all different levels of 

cold work (5, 7, 10, 13%) in the samples containing the larger extruded grain sizes 

(GS>50µm) independent of aging conditions. SEM imaging confirmed void-like 

defects on the grain boundaries seen in the optical microscopy (Figure 97). 

 

 

    Figure 96. 7%CW Drawn Sample – GB Defect (500X) 
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        Figure 97. 7%CW Drawn Sample – GB Defect (SEM) 
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DISCUSSION OF RESULTS 

 

a. Heat Treated CuNi2Si+Zr Physical Properties  

Drawn samples were heat treated with pre-selected temperatures for 6 hours as 

shown in Figure 98. Higher cold worked material was heat treated at only the lower 

and middle range temperatures (450-470°C); while the lower cold worked material 

was heat treated at middle to higher temperatures (460-500°C). The higher cold work 

requires a lower temperature for precipitation to be activated, conversely the lower 

cold works require a higher temperature. Hardness, conductivity and grain size 

measurements were recorded for both chemistries at the different heat treatments. 

The microstructure was analyzed and recorded for each grain size measurement.  

 

 

Figure 98. Heat Treatment for Different Levels of Cold Work 
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Aging curves where constructed for both chemistries at the different levels of cold 

works and temperature/time cycles (Figures 99 and 100). These show temperature 

ranges between 470-490°C reaching highest hardness levels for aging this material 

for levels of cold work from 4-13%. The conductivity (Figures 101 and 102), however, 

slightly affected by aging treatments for different levels of cold work, is shown to be 

dependent on the Nickel to Silicon ratio. The higher hardness in Q2 is explained by 

the higher content of silicon which assists in precipitating out Ni2Si precipitates out of 

solid solution; and the conductivity affected by the higher silicon left behind in solid 

solution which decreases electron mean free paths and therefore electrical 

conductivity.  

 

3.8 Ni/Si Hardness (HRB) vs. Aging Temperature
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Figure 99. 3.8Ni/Si (Q1) Hardness Aging Curves (4-13%CW) 
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3.2 Ni/Si Hardness (HRB) vs. Aging Temperature
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Figure 100. 3.2Ni/Si (Q2) Hardness Aging Curves (4-13%CW) 

 

3.8 Ni/Si - Conductivity vs. Aging Temperature
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Figure 101.  3.8Ni/Si (Q1) Conductivity Aging Curves (4-13%CW) 
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3.2 Ni/Si - Conductivity vs. Aging Temperature
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Figure 102. 3.2Ni/Si (Q2) Conductivity Aging Curves (4-13%CW) 

 

Based on the aging temperatures above, it was concluded that 4% cold work could 

attain mechanical properties comparable to 13% cold work with the proper heat 

treatment and grain size. A small trial was conducted to corroborate the hardness-

aging results. 3.2Ni/Si samples with average grain size of 31µm were heat treated at 

480°C for 3, 4, 5, 6 hours respectively and mechanically tested. Table 13 gives the 

average results shown in Figure 103 for ultimate tensile and yield strengths. These 

heat treat results for material strength indicate peak properties between 4½ - 5½ 

hours at 480°C. A hardness correlation was not developed. Tensile strength data 

obtained was not sufficient to establish a hardness correlation. In addition, all 

hardness readings were obtained with an aging cycle of 6 hours.  
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    Table 13. Q2 - 4%CW Aging Trial Results (GS≈31µm) 

Chemistry Cold Work Time (hrs) UTS (MPa) YS (MPa) 

Q2 4% 3 646.90 468.62 

Q2 4% 4 684.48 536.21 

Q2 4% 5 700.00 572.07 

Q2 4% 6 702.76 568.97 
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      Figure 103. Q2- 4%CW & Aged - Ultimate & Yield Strength (GS≈31µm) 

 

b. Microstructure Evolution of CuNi2Si+Zr – Processing Parameters Effect 

Microstructure and grain size during each processing step changed according to the 

parameters used to prepare the samples. Material properties and behavior can be 

related to different microstructures (i.e. grain size to hardness); however, other 
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properties such as conductivity cannot be correlated directly with microstructure 

observation. During casting it is shown that chemistry difference does not play a role 

in microstructure differences observed. However, chemistry gives a hardness 

advantage to the 3.2Ni/Si (Q2). Microstructure in the cast stages changes when 

heated and quench prior to extrusion increasing the particle density observed 

(Figures 53-57).  Homogenization was identified by the apparent increase in matrix 

particle density. The hardness decrease shown in figure 48 and the conductivity 

decrease results in table 8 confirm that the material is partly solutionizing while the 

microstructure shows homogenization of the secondary phase particles throughout 

the cast matrix. 

 

In the cast stages the grain size is too large to measure under optical microscope. 

After extrusion (hot work), during which material undergoes dynamic recrystallization, 

grains can be observed and measured. In grain boundaries for larger grain sizes 

(GS≥ 50µm) a higher number and larger secondary phase particles are observed. 

Also, the particles tend to be acicular elongating along the length of the grain 

boundary (Figure 59). The manufacturing process was setup to produce samples 

categorized into large (≥50µm) and small grains (<50µm).  

 

Grain size measurements for cold worked samples revealed a significant decrease in 

size in the processing transverse plane. Grain size was not measured in the 

longitudinal extrusion direction. Differences in grain size were not established 

between drawn samples with different levels of cold work. The extrusion to drawing 

ratio decreased the grain size proportionality between extruded and drawn samples 

(Figures 69 and 70). This was not the case for lower level cold work (4, 5 and 7%) 

drawn samples with grain sizes greater than 50µm (Figures 66-68). This indicates 
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that grains for higher level cold work are heavily cold worked at levels above 7% 

reduction. While the variability for the extruded samples was observed as high as 

300%, the variability for the drawn samples varied only from 8-51%. Grain boundary 

defects were evident during the cold reduction (Figure 69-r). 

 

After heat treatment (aging), little to no change can be observed in the microstructure 

with the exception of the higher content of grain boundary defects in the larger grain 

size samples. Analytical grain size measurements prior to and after aging assist in 

characterizing the changes that occur during this process. Section “e” of the results 

includes bar charts for grain size changes prior to and after heat treatment at the 

given temperature for both large and small grain sizes combined. Tables 14 to 18 

summarize the changes for each set of samples at given temperatures characterized 

by temperature. Grain size increase was observed in samples with higher cold work 

extruded with small grain size (smaller than 50µm). While larger grain size (greater 

than 50µm) decreased for the higher level of reductions (10 and 13%). The latter 

could be attributed to the average grain size decreasing to the higher number of 

smaller grains due to recrystallization. However, overall no consistent conclusion 

could be deduced from the data obtained as the variability between aging 

temperature and grain sizes was not consistent. 

 

Table 14. Post-Aging Grain Size Change (450°C) 

450°C 
GS<50µm GS≥ 50µm 

10% 13% 10% 13% 

↑ ↑ ↓ ↓ 
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Table 15. Post-Aging Grain Size Change (460°C) 

460°C 
GS<50µm GS≥ 50µm 

4% 5% 7% 10% 13% 4% 5% 7% 10% 13% 

↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ 
 

Table 16. Post-Aging Grain Size Change (470°C) 

470°C 
GS<50µm GS≥ 50µm 

4% 5% 7% 10% 13% 4% 5% 7% 10% 13% 
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

 

Table 17. Post-Aging Grain Size Change (490°C) 

490°C 
GS<50µm GS≥ 50µm 

4% 5% 10% 4% 5% 10% 
↑ ↑ ↑ ↑ ↓ ↑ 

 

Table 18. Post-Aging Grain Size Change (500°C) 

500°C 
GS<50µm GS≥ 50µm 

4% 7% 4% 7% 
↑ ↓ ↑ ↑ 

 



c. Expected behaviors due to changes in processing parameters 

Material reactions during manufacturing processes make it possible to manipulate the 

final physical properties desired. Three material properties (hardness, conductivity 

and grain size) were used to map the changes observed at the casting, extrusion, 

drawing and aging operations. These assisted in comparing the effects in final 

physical properties, when processing parameters were varied. Figure 104 shows the 

behavior of each of the properties during the manufacturing steps.  
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   Figure 104. Hardness, Conductivity and Grain Size during Processing 

 

i. Hardness  

During the casting operation, alloying elements are in solid solution, and have effect 

increasing hardness of the copper alloy. After extrusion the material has 

recrystallized and still contains the alloying elements in solid solution; these two 

effects help to reduce hardness level of the material. Once the material is drawn it 

 100



 101

contains internal tensile stress that counter act the hardness indenter making the 

material slightly harder. Aging brings the material out of saturated solid solution 

increasing the hardness significantly (up to 4 times that of the extruded material). 

 

ii. Conductivity

 Conductivity in copper is mainly related to electron mean free path (m.f.p.) and 

material chemistry. However, in figure 104 the mean free path dominates. The as-

cast material has a small m.f.p., the conductivity of the material will be low; 

subsequent extrusion and drawing operations still in solid solution will experience 

little to no change in the m.f.p. The aging operation brings these m.f.p. obstacles out 

of solid solution allowing for a longer m.f.p and hence the increase in electrical 

conductivity.  

 

iii. Grain Size

 In the micro-scale grain size is not of interest in the as-cast material, as it cannot be 

measure for they are too big. Mechanical properties are related to the grain size of a 

material. The first measure of interest in grain size, which has an effect in the rest of 

the manufacturing process and subsequently the mechanical properties, comes at 

the material extrusion exit. During drawing, grain size will be mainly reduced in the 

axis of the highest cold work application; slightly changed in the axis of less cold 

work; and slightly elongated in the axial drawing direction. During aging a 

combination of growth and recrystallization occurs. If growth dominates, larger grain 

sizes will be observed. Recrystallization, however, will decrease the average grain 

size in the microstructure. However, no consistent pattern could be concluded from 

the data measured. Overall the grain size was not larger than the exit extrusion grain 

size after aging operation is complete. Appendix B contains the grain size 



measurements before and after aging for the different levels of cold work and aged 

temperatures. 

 

d. Grain Boundary Defects Development 

Grain Boundary defects previously identified as voids in the axial processing direction 

were only observed in the larger grain samples (G.S.≥ 50µm). The higher level of 

cold work increased the amount of defects present in the grain boundaries. However, 

lower level of cold work (4 and 5%) still contained grain boundary defects. In addition, 

grain boundaries in larger grain size specimens harbor higher and larger numbers of 

secondary phases and precipitate. Figures 105 and 106 show microstructures with 

grain boundary voids samples cold worked with 4 and 13% reduction, both samples 

having a greater than 50µm grain size after extrusion.  

 

     

Figure 105. 4%CW Aged (460°C) – G.S. ≥ 50µm (L), G.S.<50µm (R) – 500X   
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Figure 106. 13%CW Aged (470°C) – G.S. ≥ 50µm (L), G.S. <50µm(R) – 500X 

 

Study of the SEM and TEM imaging establishes secondary phases in the grain 

boundary voids during one of the manufacturing operations. The features observed in 

Figures 32, 34, 41 and 44 indicate these defects and secondary phase particles still 

attached to the voids elongated in the axial processing direction. This study 

establishes that relative movement between larger copper grain sizes with 

intermetallic secondary phase particles in their respective grain boundaries tear the 

grain boundaries in the axial processing direction of the material. Grain boundary 

tears may or may not contain secondary phase particles still attached, possibly as a 

by consequence of metallographic preparation techniques. However, still traces of 

these particles are identified with lower EDS intensity peaks in the void walls.  

 

Defects were first observed in larger grains after drawing. Aging increased the 

amount of defects observed, indicating the negative effect of relative movement 

between grains had on the grain boundaries. Although no defects were observed on 

the extruded samples, grain size established during this step is the critical variable in 

eliminating grain boundary defects created during the cold work and aging cycles. 
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 CONCLUSION 

 

In this study, characterization of grain boundary species identified them as micro-

tears/voids. These voids at times could contain parts of secondary phases still 

attached to the void walls from the casting operation. Secondary particles were 

identified to contain Nickel, Silicon and Zirconium. Defect sizes ranged in the micro-

scale (1-10µm). The strengthening phase sizes range in the nano-scale. Precipitates 

were identified using EDX/STEM analysis as Ni2Si and Cr3Si.  

 

Extruded material was processed to contain large (≥ 50µm) and small (≤ 50µm) grain 

size microstructure in differences as large as 300% between extruded samples. 

Grain Boundary defects were consistently observed in the large grain size extruded 

material with grain sizes greater than 50µm. Lower mechanical properties were also 

attributed to the large grain size factor and improper aging cycles.  

 

The pre-heat operation was confirmed to have both a homogenizing effect as well as 

a solutionizing effect. Prior to hot working material heated and quenched for 1 hour 

had a lower conductivity and hardness, with an apparent increase in particle density 

in the matrix. Higher stacking fault energies produced smaller grain sizes through 

dynamic recrystallization breaking up NiSiZr rich secondary particles more readily 

than lower stacking fault energy used for larger grain sizes.  

 

The drawing operation completed on large grain size material increased the amount 

of grain boundary defects observed in the final microstructure. This effect was 

minimized with grain size reduction at the extrusion step. The conductivity was shown 
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to be directly related to the Nickel-to-Silicon ratio, where higher values (i.e. 3.8Ni/Si) 

corresponded to higher conductivity after aging. This is theorized to be a by-product 

of decrease in silicon content left in solid solution after the aging operation in the 

higher Ni/Si ratios.  

 

Reduction in grain size and proper heat treatment cycles for each level of cold work 

was confirmed to develop similar mechanical properties at lower cold work in 

comparison to higher cold work rates. An increase in density of grain boundary 

defects was observed in aged samples for larger grain size samples. This is 

theorized to be a by-product of grain growth and/or movement between adjacent 

grains containing secondary phase particles. Grain size increase seems to be 

observed in higher cold work material with smaller extruded grain sizes, while larger 

extruded grain sizes with higher cold work reductions seem to decrease. However, 

due to variability no valid conclusion could be deduced from grain size 

measurements after the aging operation.  

 

While chemistry, Nickel-to-Silicon ratios, controls the electrical conductivity of the 

material; grain size is concluded to be the corrective factor not only for mechanical 

properties, but also microstructure integrity and therefore elimination of grain 

boundary defects.  

 



 106

APPENDIX A: AS CAST SECONDARY PHASE PARTICLE SIZE 
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Q2 1 2 3 4 5 6

Average 43.3262 49.6986 21.7201 18.2542 62.8317 22.8276
Max. 126.044 236.791 82.2725 44.6714 174.251 44.6071
Min. 5.8491 6.9417 7.4559 5.9133 11.6981 8.5486
Range 120.195 229.849 74.8165 38.7581 162.552 36.0585
Sigma 40.3808 61.7751 20.6006 11.8973 55.269 11.2462
3 Sigma 121.142 185.325 61.8018 35.692 165.807 33.7386

   
#  [um2]  [um2] [um2] [um2] [um2] [um2] 
1 56.0481 37.7296 44.2215 35.2872 84.7792 44.6071
2 35.3515 53.0915 23.5891 16.5188 154.454 38.9509
3 82.5939 52.6415 19.7968 18.7041 110.232 32.5233
4 14.462 44.5428 17.5472 44.6714 71.2171 31.045
5 24.1675 17.1615 82.2725 33.3589 174.251 29.5024
6 21.468 35.3515 13.305 12.3409 41.4576 8.5486
7 13.4978 54.4412 18.447 9.8984 58.812 16.7759
8 32.3948 9.6413 17.2901 15.2333 57.9121 13.3693
9 14.1406 11.3125 7.4559 8.2272 13.8192 13.3693

10 44.2857 8.9986 9.7056 10.1555 12.0838 15.2333
11 126.044 119.167 9.1271 12.598 14.0763 15.3618
12 5.8491 236.791 11.1196 5.9133 12.0195 21.0823
13 124.759 6.9417 8.4843 14.3977 11.6981 16.3902
14 11.5053 7.9701  
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Q1 7 8 9 10 11 12
Average 31.4059 30.5492 19.1219 26.183 20.3661 21.7113
Max. 55.3411 72.7597 50.8418 58.362 43.7073 36.0585
Min. 13.7549 14.9762 7.9701 15.0404 9.4485 11.0554
Range 41.5862 57.7836 42.8717 43.3216 34.2588 25.0031
Sigma 13.9614 15.3901 11.1059 14.5679 9.1599 9.6518
3 Sigma 41.8843 46.1702 33.3178 43.7036 27.4797 28.9555

   
# [um2] [um2] [um2] [um2] [um2] [um2] 
1 51.4203 42.2289 18.3185 42.8074 43.7073 35.48
2 50.2633 14.9762 7.9701 17.1615 17.5472 34.7087
3 20.6324 28.6025 28.0241 24.8103 9.4485 20.8895
4 31.6878 45.6355 9.3842 53.6057 16.0046 11.0554
5 29.8238 72.7597 18.5756 26.8671 19.604 13.2407
6 26.1601 21.018 15.0404 58.362 29.2453 24.3604
7 19.2183 32.3305 18.7041 23.5248 13.6264 18.2542
8 13.7549 17.0973 26.8671 17.8686 18.1899 12.4051
9 19.1541 22.9463 13.4336 20.7609 16.0046 13.1765

10 18.5113 37.344 50.8418 17.0973 34.3873 11.1839
11 40.7506 17.2901 10.0912 16.7759 18.7041 25.453
12 31.5592 26.1601 12.7908 15.3618 16.1331 15.2333
13 55.3411 19.9896 24.6175 15.0404 16.583 32.4591
14  29.3096 13.0479 16.5188 15.9403 36.0585
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Q1S 13 14 15 16 17 18
Average 11.7165 22.074 31.1564 13.6126 20.9079 66.4745
Max. 26.4815 64.5968 127.651 40.5578 54.1841 123.216
Min. 5.0135 9.6413 7.0703 6.7489 9.0628 23.5248
Range 21.468 54.9554 120.581 33.8088 45.1213 99.6911
Sigma 5.7989 14.7285 35.867 8.8427 11.9388 32.4304
3 Sigma 17.3967 44.1856 107.601 26.5282 35.8163 97.2912

   
# [um2] [um2] [um2] [um2] [um2] [um2] 
1 26.4815 30.2737 96.0917 40.5578 54.1841 123.216
2 10.734 29.8238 127.651 15.876 29.8881 110.682
3 16.7116 25.3888 20.9538 8.9343 31.4949 89.5356
4 16.9687 9.9627 32.9733 10.7983 16.9687 41.3933
5 7.006 9.9627 16.1974 8.87 14.9762 54.1841
6 9.1271 64.5968 59.0048 6.7489 19.2183 75.7164
7 17.2901 17.0973 23.1391 14.5905 28.2169 66.7821
8 11.8909 24.1033 21.2752 9.3199 11.3767 82.7867
9 7.713 31.3021 17.6115 7.006 21.7251 104.062

10 5.0135 11.1839 10.9911 7.3917 17.0973 60.7402
11 9.5128 9.6413 8.8057 16.0046 12.148 27.4456
12 8.9986 11.9552 10.7983 11.3125 9.0628 23.5248
13 6.1704 12.598 7.0703 21.8536 11.8909 41.4576
14 10.4126 21.1466 7.3274 11.3125 14.462 29.1167
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%CW Chemistry Extrusion Drawn Aged 450°C 
4  Grain Size Grain Size Grain Size 

Large Q1 102 43  
Small Q1 30 31  
Large Q2 109 60  
Small Q2 41 31  

5  Grain Size Grain Size Grain Size 
Large Q1 68 55  
Small Q1 28 21  
Large Q2 85 70  
Small Q2 30 38  

7  Grain Size Grain Size Grain Size 
Large Q1 101 51  
Small Q1 29 24  
Large Q2 76 62  
Small Q2 40 30  

10  Grain Size Grain Size Grain Size 
Large Q1 33 36 33 
Small Q1 38 27 32 
Large Q2 53 42 32 
Small Q2 30 20 28 

13  Grain Size Grain Size Grain Size 
Large Q1 44 48 46 
Small Q1 29 21 29 
Large Q2 57 44 47 
Small Q2 27 43 58 
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%CW Chemistry Extrusion Drawn Aged 460°C 
4   Grain Size Grain Size Grain Size 

Large Q1 102 43 74 
Small Q1 30 31 30 
Large Q2 109 60 56 
Small Q2 41 31 29 

5   Grain Size Grain Size Grain Size 
Large Q1 68 55 51 
Small Q1 28 21 21 
Large Q2 85 70 67 
Small Q2 30 38 37 

7   Grain Size Grain Size Grain Size 
Large Q1 101 51 48 
Small Q1 29 24 40 
Large Q2 76 62 59 
Small Q2 40 30 38 

10   Grain Size Grain Size Grain Size 
Large Q1 33 36 35 
Small Q1 38 27 30 
Large Q2 53 42 60 
Small Q2 30 20 27 

13   Grain Size Grain Size Grain Size 
Large Q1 44 48 69 
Small Q1 29 21 24 
Large Q2 57 44 60 
Small Q2 27 43 32 
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%CW Chemistry Extrusion Drawn Aged 470°C 
4  Grain Size Grain Size Grain Size 

Large Q1 102 43.32 76.24 
Small Q1 30 31.08 30.02 
Large Q2 109 59.63 95.99 
Small Q2 41 30.61 55.65 

5  Grain Size Grain Size Grain Size 
Large Q1 68 54.83 63.29 
Small Q1 28 20.96 27.49 
Large Q2 85 69.65 72.60 
Small Q2 30 37.79 35.72 

7  Grain Size Grain Size Grain Size 
Large Q1 101 51.06 72.33 
Small Q1 29 23.82 32.22 
Large Q2 76 61.69 84.02 
Small Q2 40 30.22 37.63 

10  Grain Size Grain Size Grain Size 
Large Q1 33 35.84 43.25 
Small Q1 38 27.41 25.21 
Large Q2 53 41.86 50.93 
Small Q2 30 20.15 26.37 

13  Grain Size Grain Size Grain Size 
Large Q1 44 47.60 63.04 
Small Q1 29 21.47 27.88 
Large Q2 57 44.18 72.29 
Small Q2 27 43.46 37.81 
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%CW Chemistry Extrusion Drawn Aged 490°C 
4   Grain Size Grain Size Grain Size 

Large Q1 102 43.32   
Small Q1 30 31.08   
Large Q2 109 59.63 67.71 
Small Q2 41 30.61 41.77 

5   Grain Size Grain Size Grain Size 
Large Q1 68 54.83   
Small Q1 28 20.96   
Large Q2 85 69.65 57.98 
Small Q2 30 37.79 40.75 

7   Grain Size Grain Size Grain Size 
Large Q1 101 51.06   
Small Q1 29 23.82   
Large Q2 76 61.69   
Small Q2 40 30.22   

10   Grain Size Grain Size Grain Size 
Large Q1 33 35.84   
Small Q1 38 27.41   
Large Q2 53 41.86 45.20 
Small Q2 30 20.15 23.39 

13   Grain Size Grain Size Grain Size 
Large Q1 44 47.60   
Small Q1 29 21.47   
Large Q2 57 44.18   
Small Q2 27 43.46   
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%CW Chemistry Extrusion Drawn Aged 500°C 
4  Grain Size Grain Size Grain Size 

Large Q1 102 43.32  
Small Q1 30 31.08  
Large Q2 109 59.63 68.40 
Small Q2 41 30.61 40.03 

5  Grain Size Grain Size Grain Size 
Large Q1 68 54.83  
Small Q1 28 20.96  
Large Q2 85 69.65  
Small Q2 30 37.79  

7  Grain Size Grain Size Grain Size 
Large Q1 101 51.06  
Small Q1 29 23.82  
Large Q2 76 61.69 66.35 
Small Q2 40 30.22 28.67 

10  Grain Size Grain Size Grain Size 
Large Q1 33 35.84  
Small Q1 38 27.41  
Large Q2 53 41.86  
Small Q2 30 20.15  

13  Grain Size Grain Size Grain Size 
Large Q1 44 47.60  
Small Q1 29 21.47  
Large Q2 57 44.18  
Small Q2 27 43.46  
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