
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2009 

Tertiary Creep Damage Modeling Of A Transversely Isotropic Ni-Tertiary Creep Damage Modeling Of A Transversely Isotropic Ni-

based Superalloy based Superalloy 

Calvin Stewart 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Stewart, Calvin, "Tertiary Creep Damage Modeling Of A Transversely Isotropic Ni-based Superalloy" 

(2009). Electronic Theses and Dissertations, 2004-2019. 4105. 

https://stars.library.ucf.edu/etd/4105 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd%2F4105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4105?utm_source=stars.library.ucf.edu%2Fetd%2F4105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


TERTIARY CREEP DAMAGE MODELING OF A  
TRANSVERSELY ISOTROPIC NI-BASED SUPERALLOY 

 
 
 
 
 
 
 
 
 

by 
 

CALVIN M STEWART 
B.S. University of Central Florida, 2008 

 
 
 
 

A thesis submitted in partial fulfillment of the requirements 
for the degree of Master of Science 

in the Department of Mechanical, Materials and Aerospace Engineering 
in the College of Engineering and Computer Science 

at the University of Central Florida 
Orlando, Florida 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fall Term 
2009 

  



ii 
 

 

 

 

 

 

 

 

© 2009 Calvin M Stewart 



iii 
 

ABSTRACT 

Anisotropic tertiary creep damage formulations have become an increasingly important 

prediction technique for high temperature components due to drives in the gas turbine industry 

for increased combustion chamber exit pressures, temperature, and the use of anisotropic 

materials such as metal matrix composites and directionally-solidified (DS) Ni-base superalloys. 

Typically, isotropic creep damage formulations are implemented for simple cases involving a 

uniaxial state of stress; however, these formulations can be further developed for multiaxial 

states of stress where materials are found to exhibit induced anisotropy. In addition, anisotropic 

materials necessitate a fully-developed creep strain tensor. This thesis describes the development 

of a new anisotropic tertiary creep damage formulation implemented in a general-purpose finite 

element analysis (FEA) software. Creep deformation and rupture tests are conducted on L, T, 

and 45°-oriented specimen of subject alloy DS GTD-111. Using the Kachanov-Rabotnov 

isotropic creep damage formulation and the optimization software uSHARP, the damage 

constants associated with the creep tests are determined. The damage constants, secondary creep, 

and derived Hill Constants are applied directly into the improved formulation. Comparison 

between the isotropic and improved anisotropic creep damage formulations demonstrates 

modeling accuracy. An examination of the off-axis creep strain terms using the improved 

formulation is conducted. Integration of the isotropic creep damage formulation provides time to 

failure predictions which are compared with rupture tests. Integration of the improved 

anisotropic creep damage produces time to failure predictions at intermediate orientations and 

any state of stress. A parametric study examining various states of stress, and materials 
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orientations is performed to verify the flexibility of the improved formulation. A parametric 

exercise of the time to failure predictions for various levels of uniaxial stress is conducted. 
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

 

As global power demands increase and the issue of meeting peak power requirements 

skyrockets, there is considerable interest in improving the efficiency of Industrial Gas Turbines 

(IGT). Industrial Gas Turbines produce power via high temperature and highly pressurized 

combustion gases that are driven through a series of turbine blades stages causing rotor rotation, 

spinning electric generators. Increasing firing temperature by 55°C has been shown to increase 

power generation by 10-13% and overall cycle efficiency by 4% [1]. Compressor pressure ratios 

greater than 23 coupled with combustion chamber exit temperatures of above 1425°C create a 

situation where material design and selection play a major role in the long term reliability of gas 

turbine components [2]. 

Nickel-base superalloys are excellent candidate materials for turbine blades, transition 

pieces, vanes, turbine discs, combustors, and boilers due to high temperature strength, corrosion 

resistance, and oxidation resistance. Historically, the firing temperature of turbine blade 

materials has increased on average 6°C per year due to improved metallurgical design, the 

introduction of advanced air cooling methods, and the evolution of thermal barrier coatings 

(TBC) [2]. 
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Figure 1.1 – Computer Aided Drawing (CAD) of the 340+ MW Siemens SGT5-8000H gas 
turbine. Developed using advanced materials and cooling methods, this turbine when used in a 

SCC5-8000H combined cycle power plant produces efficiency exceeding 60%. [3] 

Creep is the inelastic deformation of a material at high temperature. Typically, this form 

of strain of Ni-base superalloys is predicted via either steady state (e.g. secondary) creep 

deformation modeling with or without consideration of the tertiary creep regime. As temperature 

increases, the creep strain rate increases accordingly. Further development, geared towards 

including the non-linear strain experienced in the tertiary creep regime, leads to the inclusion of 

Low Pressure 
Compressor 

High Pressure 
Compressor 

High Pressure 
Turbine 

Low Pressure 
Turbine Exhaust 

Rotor 

Combustor 
Section 
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the concept of damage. It resulted in creep damage models where a damage evolution equation is 

coupled with the creep strain rate equation. 

 

Figure 1.2 – Out of service Siemens transition piece (a) inlet connection (b) external shot of the 
transition path leading to outlet 

Gas turbine transition pieces are components which conduct hot combustion gases into 

the first ring of stationary blades. They are design to deliver a uniformly distributed mass flow 

maintaining efficiency. Industry standard materials for this component include, Hastelloy X, 

Nimonic 263, HS-188, GTD-222, Haynes 230, and IN617 [2]. At the inlet, the connection is a 

donut section as seen in Figure 1.2a. Along the geometry a smooth transition occurs transforming 

the cross section to a circular hole at the outlet connection as shown in Figure 1.2b. There is a 

significant temperature gradient about the inlet connection but beyond it the temperature found 

along the body and at the outlet is mostly constant.  Transition pieces commonly experience 

temperatures between 40% to 60% of material melting temperature, Tm, and top panel stress at 

most 20% of the yield strength, σy. As such, this thermal activity accelerates the rate at which 

secondary and tertiary creep deformation modes become dominant. Although previous studies 

(a) (b) 
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suggest that for stress level between 20% to 40% of yield strength, σy, accurate prediction of the 

creep rupture life up to 106 hours is of importance, when considering that transition pieces 

undergo not only creep but high cyclic fatigue, accurately modeling the creep rupture life at 

lower stress levels is critical [4-6]. 

 

Figure 1.3. - Creep deformation of a IN617 transition piece. 

Transition pieces pulled from operation show a fatigue and creep induced buckling of the 

upper panel near the inlet including a deformation of the transition piece cross-section at the inlet 

as shown in Figure 1.3. It has been found that the principle causes of gas turbine transition piece 

failure are creep, high cycle fatigue, and environmental effects [7]. Thermal expansion of the 

transition piece leads to a loss of clearance between seals at the inlet producing mechanical stress 

on the top panel. Asymmetric thermal loading coupled with mechanical constraint on the top 

panel leads to a multiaxial state of stress. 
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Isotropic creep damage models work best when the mechanical load experienced by a 

component is similar to what is applied during uniaxial creep tests. Such models are 

inappropriate for modeling components which undergo complex states of stress. In most cases, 

the off-axis components of a stress tensor in the vicinity of stress raisers, cracks, and notches 

have non-zero values and the stress state is more complex than that which can be achieved in 

conventional creep testing. Moreover, the dependence of creep rate is strongly non-linear with 

stress; therefore, creep damage may also depend on the „direction‟ of the stress vector as well as 

on the absolute value of its components. Thus in the case of damage, complex states of stress 

induce an anisotropic material behavior. 

Isotropic constitutive modeling efforts for multiaxial/complex states of stress have 

focused on replacement of von Mises (equivalent tensile) effective with triaxial stress that 

relates, the first principal, hydrostatic, and von Mises stresses. However, these formulations do 

not account for induced anisotropic damage. 

Drives by the aerospace and power generation industries to increase turbine efficiency 

have produced a massive influx in the development of anisotropic alloys since the 1980‟s [8]. 

Through the process of directional solidification (DS), material manufacturers can directly 

control the alignment of grain boundaries. The established manufacturing process is the 

Bridgeman vacuum casting process, where a directional heat flow is generated via remove of the 

shell mould from a hot zone to a cooling zone at some prescribed rate. In the power generation 

industry alternative methods such as the liquid metal cooling (LMC) casting process are used due 

to casting issues inherit to larger components [9,11]. 
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Figure 1.4 - Turbine layers one to three of a 292+ MW Siemens SGT5-4000F Gas turbine. 
Thermal barrier coatings (TBC) and careful material design and selection allows operation at 
combustion exit temperatures of 1400°C for this turbine. [10] 

 

The result of directional solidification (DS) is a component which exhibits enhanced 

strength, stiffness, and/or creep resistance in a set orientation. Typically DS gas turbine blade 

materials are transversely-isotropic, where there is a plane of “transverse grain (T)” isotropy and 

an enhanced “long grain (L)” orientation. 

Turbine blades experience high temperatures, fuel and air contamination (in marine 

turbine chlorine due to salt water), and foreign object damage (FOD) an environment very 
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conducive to corrosion and oxidation. High stress due to centrifugal forces near the speed of 

sound, dynamic flutter and vibrations, flexural stresses due to combustion gases interfacing with 

blade surface area, and thermal gradient induced thermal stresses impart a complex state of stress 

on gas turbine blades [12]. Stress concentrations near the blade root are the frequent location of 

crack initiation. Fatigue, creep damage and the interactions of both are the principle cause of 

microstructural damage leading to eventual failure [13]. In the case of IGT turbine blades where 

the cycle duration and maintenance intervals can in the thousands of hours, DS materials have 

been implemented to minimize intergranular (brittle) creep cracking by alignment of long grains 

(L) with the first principal stress direction [14]. However, the regulation of thrust to produce 

lower or higher power output and the regular fluctuations in combustion exit exhaust velocity 

coupled with the existence of inherit vibration issues can result in a first principal stress direction 

not aligned with the enhanced (L) material orientation. 

Isotropic creep models are unable to model the orientation-dependence of anisotropic 

materials. An isotropic-scalar compliance term cannot replicate an anisotropic compliance tensor 

in symmetry classes such as triclinic, orthotropic, transversely-isotropic materials, and so on. 

Constitutive modeling efforts for creep deformation of anisotropic materials have been 

limited. Few models have been developed, optimized, and actually compared with creep test 

data. In the case of transversely-isotropic turbine blade materials with induced anisotropic 

damage, no models currently exist. 
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A number of creep rupture prediction models are implemented in industry; however, no 

models have been developed that are capable of predicting the creep rupture time under complex 

states of stress on a transversely-isotropic material. 

 

1.2 Approach 

 

In approaching this problem, a number of steps are taken. First, the commonly 

implemented Kachanov-Rabotnov isotropic tertiary creep damage model is written in 

FORTRAN and implemented in the finite element analysis (FEA) software, ANSYS as a user-

programmable feature (UPF). Second, taking available creep test data in longitudinal and 

transverse orientations of subject material DS GTD-111, the automated optimization software, 

uSHARP, is used to determine the necessary damage constants at various states of uniaxial stress 

and temperature. Next, a novel anisotropic tertiary creep damage model using a unique second-

order symmetric damage evolution tensor and a creep strain rate tensor with the Hill compliance 

tensor is developed and implemented in ANSYS. Comparison of the isotropic and novel 

anisotropic model to uniaxial creep test data shows the novel anisotropic model performs well in 

L and T orientation but not at intermediate rotations. An improved anisotropic creep damage 

formulation is produced based principally on application of the multiple hill compliance tensors 

in the damage evolution equation. The improved formulation is shown to outperform the novel 

anisotropic in modeling both damage evolution and creep deformation. Integration provides 

rupture time prediction equation for all three formulations. The isotropic model is found to 
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predict rupture time well for uniaxial specimen. The novel anisotropic formulation is found to 

produce good predictions at L and T orientation but not at intermediate material orientations. The 

improved anisotropic model succeeds in modeling any material orientation. Parametric creep 

deformation and damage evolution exercise of the improved anisotropic formulation shows it can 

account for any states of stress and/or material orientations. 

 

1.3 Organization 

 

This work is organized similar to the aforementioned approach. Chapter 2 introduces the 

fundamentals of creep deformation and reviews the existing isotropic and anisotropic creep 

deformation and rupture prediction models. Chapter 3 reviews directionally solidified Ni-base 

superalloys and goes into detail on the subject material, DS GTD-111. Chapter 4 describes the 

Kachanov-Rabotnov isotropic tertiary creep damage model, the derived rupture time prediction 

model, and the implementation of the model in FEA. Chapter 5 describes the novel anisotropic 

tertiary creep damage model, the derived rupture time prediction model, and the implementation 

of the model in FEA. Chapter 6 describes the improved anisotropic tertiary creep damage model, 

the derived rupture time prediction model, and the implementation of the model in FEA. 

Afterwards, in Chapter 7, the results of optimization and a comparison of the creep deformation 

and rupture prediction models to creep tests data is presented. In Chapter 8, a parametric exercise 

of the improved anisotropic model under various states of stress and material orientation is 

presented. Chapter 9 contains concluding remarks and recommendations for future work. 
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Appendix A contains screenshots of the optimization routine uSHARP. Appendix B covers the 

derivations necessary to determine Hill‟s constants. Appendix C contains an analytic stress and 

material orientation study of the novel anisotropic damage evolution tensor found in the novel 

anisotropic tertiary creep damage model. 
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CHAPTER TWO: BACKGROUND 

2.1 Fundamentals of Creep Deformation 

 

Creep is defined as time-dependent deformation that occurs below the yield strength of a 

material. The rate of creep deformation is dependent on material behavior (i.e., creep constants), 

temperature, time, and stress. Typically creep is discussed in terms of materials under high 

temperature as the creep rate increases sustainably as temperature increases. 

Classically, creep deformation is separated into three distinct stages, primary, secondary, 

and tertiary creep as depicted in Figure 2.1. Descriptively, this stages are associated with 

transient, steady-state, and accelerating creep, respectively [15].  

In the case of Ni-based superalloys, primary creep, is due to strain-hardening where pre-

existing dislocations encounter obstacles (solid solution atoms, dispersoids, precipitates, grain 

boundaries, etc.) and becoming immobilized [16,17]. It initially occurs at a high rate, but the 

eventual saturation of dislocation density inhibits further primary creep deformation. For Ni-base 

superalloys, primary creep is typically small when compared to the rupture strain (about 0.3%). 

After this stage, secondary creep is observed and is characterized by an almost constant strain 

rate (typically called the minimal strain rate) due to a balance between strain-hardening and 

recovery mechanics. Increased mobility enhanced by thermal activity (temperature induced 

diffusion) can cause cross slip where dislocations can diffuse away from obstacles [18]. In this 

region, the nucleation of grain boundaries and grain boundary sliding occur. Finally, tertiary 
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creep becomes dominant and is characterized by a rapid non-linear increase of strain rate until 

creep rupture. This stage is driven by the net area reduction due to elongation (substantial in 

ductile material) and the evolution of the phenomena called “damage” which has the effect of 

reducing material creep strength.  

 

 
Figure 2.1 - Depiction of creep deformation stages 

 

Creep deformation is accounted for in total strain as a decoupled plastic strain term. 

Unloading at a suitable rate will result in purely elastic behavior. Total strain takes the following 

form 
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e p     (2.1) 

where 
e  is the elastic strain and 

p  is the plastic strain. Typically instantaneous plastic strain 

and anelastic strain (due to delayed elasticity during unloading) are neglected. 

 

2.2 Primary Creep Modeling 

 

Traditionally, the transient creep observed in the primary creep stage is accounted for 

using Andrade‟s law for primary creep of the form. 

 1/
0

q

cr At    (2.2) 

where 0  is instantaneous creep, A (t -1/q) is a coefficient, and q is a unitless exponent. The 

constant q has been experimentally observed to be 3 for most materials [19,20]. A number of 

authors have attempted to disprove the uniformity of this constant with limited success [21]. A 

more advantageous formulation for primary creep is based around a power law of the simple 

form 

 n m

cr A t   (2.3) 

where  (MPa) is the applied load and A (MPa 
–n

hr 
-m), n, and m are temperature-dependent 

primary creep constants [22]. When stress is assumed to be constant, a primary creep time-

hardening strain rate equation can be developed of the form  
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 1cr n m

cr

d

dt
Am t

     
(2.4) 

where the units of A change to MPa 
–n

hr 
-(m-1). This relation is for uniaxial loading. To account 

for multiaxial states of stress a tensorial formulation is desired [23]. 

In the case of Ni-based alloys, the primary creep stage is short compared to rupture strain. 

A study was performed on the creep deformation in the polycrystalline wrought Ni-base alloy 

IN617 [24]. The melting temperature of IN617 is approximately 1300°C. At environmental 

temperatures below 0.4 mT , where 
mT  is the melting temperature, in most metals creep is largely a 

slip process observed as primary creep altered by thermal activity. As environmental 

temperatures reaches between 0.4 mT  to 0.5 mT , cross slip and recovery mechanism are arises 

leading to a reduction in strain hardening. For IN617 at the temperature 649°C (approximately

0.5 mT ) primary creep is observable as strain hardening before the onset secondary creep. It is 

equivalent to about 25-30% of the rupture strain. At higher temperatures of 0.6 mT , cross slip and 

recovery become balanced leading to secondary and tertiary creep behavior [18]. For IN617, as 

temperature increases, the contribution of primary creep to the final rupture strain becomes 

negligible. This same behavior is observed in most Ni-based alloys. 
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2.3 Secondary Creep Modeling 

 

The classical approach to modeling the secondary creep behavior for materials is the 

Norton power law for secondary creep [25] 

 
cr n

cr

d

dt
A

    
(2.5) 

where A and n are the secondary creep constants, and   is an equivalent stress. Typical the von 

Mises equivalent stress which is both isotropic and pressure insensitive is used of the form 

 3H kk 
 

ij ij H S σ
 

3

2vm ij ij  S S
 

(2.6) 

where H  is the hydrostatic (mean) stress and S is the deviatoric stress tensor. For anisotropic 

materials, the well known Hill‟s anisotropic equivalent stress is implemented of the form 

 T

Hill  s Ms
 

 

 VECs σ
 

 

(2.7) 
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M  

where s is the vector form of the Cauchy stress tensor,σ , and M is the Hill compliance tensor 

[26] consisting of the F, G, H, L, M, and N unitless material constants that can be obtained from 

creep tests [27]. Hill‟s equivalent stress reverts to von Mises when  

 1

2
F G H  

 

 
3

2
L M N  

 

(2.8) 

 

The Norton power law is sometimes referred to as the Norton-Bailey law. The secondary creep 

constants A and n exhibit temperature-dependence. Stress provides a substantial contribution to 

the creep strain rate as the n secondary creep constant is an exponent of stress. The deformation 

mechanism map for Pure Ni is provided in Figure 2.2. It demonstrates the influence that stress 

and temperature have on the onset of various deformation mechanisms and the rates at which 

deformation will occur. 
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Figure 2.2 - Deformation mechanism map for pure nickel with a grain size of 0.1mm [28] 

 

Dorn [32] suggested that temperature contributions can be accounted for by replacing the 

A constant with an Arrhenius equation 

 
  cr

Q
A T B exp

RT


  

 
 

 (2.9) 
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where B is the pre-exponential factor in units MPa
-1

 hr
-1, Qcr is the apparent activation energy for 

creep deformation in units J mol
-1, R is the universal gas constant 8.314 J mol

-1 
K, and T is 

temperature in units Kelvin. Introducing Eq. (2.5) into Eq. (2.9) leads to 

 
cr crn

cr

d Q
B exp

dt RT

      
 

 (2.10) 

Using this equation, stress and temperature contributions to the strain rate are obtained. The 

secondary creep constants can be determined from uniaxial creep tests by rearranged Eq. (2.10) 

into the following form  

 
cr

min

Q
ln ln B nln

RT
  

    (2.11) 

where the creep strain rate cr  is replaced with the minimum creep strain rate 
min . Plotting the 

log of the minimum creep strain versus 1/T, the apparent activation energy of creep, Qcr, can be 

determined as the slope. Plotting the log of the minimum creep strain versus von Mises 

equivalent stress, the secondary creep constant, n, can be determined as the slope. This method is 

graphically represented in Figure 2.3. 
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Figure 2.3 - Example of analytical method to determine (a) Qcr and (b) n secondary creep 
constants from experimental creep tests 
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 Historic application of this model has shown that the B, Qcr, and n secondary creep 

constants exhibit stress dependence when comparing constants obtain from high stress (high 

creep strain rate)  experiments with those at lower stress (low strain rate). A high stress 

modification was proposed as 

 
 cr cr

cr

d Q
B exp

dt RT
exp

      
 

 (2.12) 

where   is an additional secondary creep constant. An interface of Eq. (2.10) and Eq. (2.12) was 

proposed by Garofalo [33] as follows 

 
 cr cr

n

cr

d Q
B exp

dt RT
sinh

      
   

   

(2.13) 

where the model reverts to Eq. (2.10) when 0 8.   and reverts to Eq. (2.12) when 1 2.   

[28]. Typically extensive creep tests at both high and low stress levels are not available; 

therefore, the commonly implemented method is the simple Norton power law with the 

Arrhenius relation, Eq. (2.11). This selection is repeated in this thesis.  

Monkman and Grant [29] observed that creep rupture can be predicted for many alloy 

systems using the following expression 

    log logr min MGt m k 
 

(2.14) 
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where 
min  is the minimum creep strain rate,

rt  is the creep rupture time, m is a constant typically 

about 1.0, and kMG is the referred to as the Monkman-Grant constant. Assuming m is equal to 

unity furnishes a simplified form of Eq. (2.14) expressed as 

 
min r MGt k 

 
(2.15) 

Previous studies show that the Monkman-Grant relationship produces accurate rupture time 

predictions for various DS Ni-based superalloys [30,31]. 

 

2.4 Tertiary Creep Modeling (Isotropic Creep Damage) 

 

Microstructural damage mechanism occurring during creep can be manifested in a number of 

ways, such as microcracks, cavities, voids, etc. in increased scale. Typically, creep damage is 

classed into two forms: transgranular (ductile) damage and intergranular (brittle) damage. 

Transgranular (ductile) damage arises were slip bands of plasticity forming under high stress and 

low temperature. Intergranular (brittle) damage is a microcracking process at grain boundaries 

under high temperature and low stress [34]. Damage is an all inclusive non-recoverable 

accumulation that exhibits the same dependences as creep deformation: material behavior (i.e., 

creep constants), temperature, time, and stress. Generally, damage is considered to be in 

continuum, (i.e., homogenous thought a body) thereby the expression continuum damage 

mechanics (CDM) is used. The damage phenomenon is closely aligned with the creep cracking 

and has been used to in local and nonlocal CDM approaches to predict creep crack growth. Many 
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comprehensive lists of creep damage CDM-based formulations are available in literature 

[15,34,35]. 

Early work in the characterization of creep damage by Kachanov [5] and Rabotnov [6], 

introduced the concept of scalar-valued damage evolution expressed as  ,f   where   is 

uniaxial stress,  is the current state damage. Damage is coupled within the creep strain rate via 

current damage and is expressed as  ,cr f   . Within the creep strain equation, arises a 

net/effective stress which relates the physical space of damage where the presence of 

microcracks and voids reduces creep strength, to an effective space, where microstructural creep 

damage is replaced with an effective increase in the applied stress, as conceptualized in Figure 

2.4.  

 

Figure 2.4 - Schematic demonstrating the concept of a physical and effective space 

net net
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Creep damage can be considered equal to the reduction-in-area from microcrack, cavities, 

voids, and etc. as a structure undergoes creep deformation. This reduction-in area has been 

implemented into the net/effective stress of the form 

 

 
0

0

0

1
1net net

A

A A A

A

 
 


  

 
 

 

 
(2.16) 

where Anet is the current area, A0 is the initial area,   is the von Mises equivalent stress, and   

is the net/effective stress. Extensive studies have focused on experimental methods to determine 

the current state of creep damage within test specimen [36-38].  

Phenomenological formulations have been developed to account for damage evolution. 

Kachanov [5] and Rabotnov [6] followed later by various other authors proposed the following 

creep rate and damage evolution formulations 

 
1

cr
cr

n
d

A
dt

 


     
 (2.17) 

 

 1

Md

dt

 
 


 (2.18) 

where the creep strain rate is equal to Norton‟s power law for secondary, Eq. (2.5), with the same 

associated A and n constants,  is von Mises stress, and M, χ, and ϕ are tertiary creep damage 

constants. Numerous authors have developed specialized formulations based on this fundamental 

formulation [39-44]. These formulations based around von Mises equivalent stress, have also be 

generalized for multiaxial states of stress in isotropic materials using elastic compliance tensors 

and the stress deviator [23]. An isochoric creep behavior (incompressibility) is assumed. 
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2.5 Void Induced Anisotropy Modeling 

 

In the tertiary creep stage, damage causes the formulation of microcrack, cavities, voids, 

etc. within the material. It is important to note that void formulation and growth (arise from 

cavity growth at grain boundaries) is strongly driven by the state of applied stress. Under certain 

multiaxial conditions, this produces an anisotropic distribution of creep damage within the 

material; inducing anisotropy. 

Literature shows that intergranular damage must be represented by multiple principle 

damage variables due to induced anisotropy [45,46] in the form of ω a damage tensor 

 

1

2

3

0 0

ω 0 0
0 0






 
   
  

 (2.19) 

where each term of damage corresponds to the orthogonal planes of a material. Murakami and 

Ohno [47] proposed the concept of net-area-reduction into three-dimensions as a second order 

damage tensor restricted to three planes of symmetry defined  

  
3

1
i i i

i




 ω n n  (2.20) 

where n1, n2, and n3 unit normal vectors and 1 , 2 , and 3 are the associated principal damage 

variables as defined in Eq. (2.19). 
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Damage anisotropy can be indentified in two material classes, aluminum-like and copper-

like [34,48]. For aluminum-like materials, damage is mostly distributed isotropically (Figure 

2.5a). Aluminum-like materials with a simple stress state (i.e., uniaxial creep tests) can be 

modeled with isotropic creep damage models [46,49,50]. For copper-like materials, damage 

evolves independent on each orthogonal plane. The highest rate of damage is observed on the 

plane perpendicular to the first principal stress direction (Figure 2.5b). Copper-like materials and 

components undergoing a complex state of stress exhibit an induced anisotropic creep response 

which must be accounted for with more robust modeling techniques [4]. Models have been 

developed that can account for both aluminum-like and copper-like materials [45,51]. A number 

of non-local irreversible thermodynamically-based anisotropic creep damage formulations have 

been developed; however, numerical complexity has limited application of such techniques 

[52,53]. 

 

 

Figure 2.5 - Schematic of cavity growth on grain boundaries for (a) Aluminum and (b) Copper 
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From the damage tensor a new concept of the net/effective stress tensor arises. Various 

authors have proposed methods to introduce the damage tensor into a net/effective stress tensor, 

σ . [55]. The first method was proposed by Rabotnov [54] as follows 

 σ Ωσ  (2.21) 

where σ  is Cauchy stress and Ω  is a fourth order damage applied tensor assumed to be 

symmetric. Numerous alternative methods have been proposed in literature. Murakami and Ohno 

[47] proposed the following 

   1
 σ σ I ω  (2.22) 

where ω represents a second order damage tensor and I is a indentify tensor. This expression 

produces an asymmetric effective stress which violates the concept of symmetric stress and 

causes an asymmetric inelastic compliance tensors to form. To mitigate this issue Murakami and 

Ohno [56] proposed a form that includes only the symmetric part expressed as 

    1 11

2

 
      σ σ σI ω I ω

 
(2.23) 

This effective stress tensor has been used successfully in a number of creep-damage formulations 

[45,51,57].  

Cordebois and Sidoroff [58,59] proposed a symmetric effective stress tensor compatible 

with thermodynamical requirements of strain energy as follows 
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    1 2 1 2 
   σ σI ω I ω

 
(2.24) 

This formulation has also been used in later study [65]. The deformation of a component depends 

not only on void induced net-area reduction but also void arrangement. To that end, Murakami 

and Imaizumi [60] proposed that the deformation characteristics of a material should be fourth 

order leading to the following effective stress tensor 

  T1
: :

2
   σ Γ σ Γ σ

 
(2.25) 

where Γ  is a fourth order tensor corresponding to damage. Despite the additional numerical 

complexity require with 4th order tensors, this effective stress tensor has been used in a number 

of studies [60-62].   

Lemaitre and Chaboche [63] postulated that material damage is related to the change in 

elastic constants. When damage reaches unity elastic strain will not occur as the structural has 

reach rupture. This provides a method by which both elastic and plastic strains can be controlled 

and related to the material damage. Extending this concept to multiaxial stress results in an 

eighth order damage tensor. To reduce numerical complexity, Chaboche [64] proposed a 

condensed fourth order damage tensor, D is related to the elasticity tensor, E, in the following 

form  

 

    : E D I D E
 

1:  D I E E
 

(2.26) 
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  1
:

 σ σI D

 

where is the E is the effective elasticity tensor and (:) stands for a contraction of rank two.  

In general, most induced anisotropic formulations implicitly account for the multiaxial 

states of stress as induced anisotropy is driven by the multiaxial state of stress. In the case of 

thin-walled pipes used in power plants, considerable work has been focused around isotropic 

creep damage modeling [45]. Induced anisotropy has been observed in the creep rupture of pipes 

under biaxial loading [66]. A schematic of such a pipe is found in Figure 2.6. Literature has 

demonstrated that anisotropic strength in thin-walled tubular elements is common [67]. 

 

 

Figure 2.6 - Schematic of pipe under biaxial loading 
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2.6 Creep Damage Models of Anisotropic Materials 

 

Creep damage exhibits a strong dependence on the orientation of grain structure relative 

to the state of stress. A schematic of a transversely-isotropic material under multiaxial stress is 

provided in Figure 2.7. For directionally-solidified materials, where the grain structure is aligned 

to produce desire material properties, the effect of material orientation must be included in the 

coupled creep-damage formulation. Induced anisotropy and material anisotropy exacerbates the 

anisotropic creep damage behavior of anisotropic materials. To account for these issues recently 

a few authors have produced formulations. 

 

Figure 2.7 - Schematics of transversely-isotropical material under multiaxial loading 
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Kawai proposed a thermodynamically-based inelasticity model for metal matrix 

composites [68]. The composite anisotropy is described using a forth order transversely-isotropic 

tensor A of the following form 

 

   
 

 3 4

abcd ac bd ad cb ab c d

ac b d bc a d ad b c bd a c

a b c d

A h h

h h h h h h h h

h h h h

      

    

 

  

   

 
 

ab a b  e e
 

(2.27) 

where 
ab  is the kronecker delta, ha are components of the unit vector h (=haea) in the direction 

of the reinforcing fibers, and α, β, and μ are material constants. The concept of inelastic free 

energy is introduced. A damage-coupled kinematic hardening formulation is developed. The 

following kinematic hardening variables are assumed 

 
3

2
  n

   

3

2 vm


σ
n

 (2.28) 

where ρ is a scalar variable. Internal stress p is defined as 

 
2 3

3 2
H r p n

   
r H

 
(2.29) 

where   is not independent, ρ is an independent variable, and r is the associated thermodynamic 

force. Using the damage-coupled kinematic hardening model an isotropic hardening formulation 

is produced. To model the creep damage behavior the following assumptions are made 

 
vmr 

     

1/

1/ 1/

m

m m

K

K M
 

  
(2.30) 
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where K, M, and m are material constants. Taking the isotropic hardening formulation and 

introducing these assumptions the desired creep-damage formulation is produced 

 

1
3 1

2 1 3

2

m

p

sP



     

An

n An
 

   1
m m m

s vmP K    n An
 

1

1

k
n

N p


        
n Dn

 

(2.31) 

where p  is the creep strain rate,
sP  is a convenient rate related to isotropic hardening, and  is 

damage evolution. The Kawai formulation demonstrates a good correlation to the steady-state 

creep behavior of specimen from 0° to 90°-orientations; however, the tertiary creep-damage 

behavior at intermediate orientations has not been studied. The formulation is designed for 

composites materials with arbitrarily oriented reinforcing fibers. The damage mechanisms found 

in composite materials are not the same as those found in Ni-based superalloys. Within the 

formulation, damage is a scalar-valued term where anisotropy is applied post-evolution in the 

hardening rate. The necessary damage tensor does not arise. A better formulation is thus desired. 

Early work by Hyde developed a secondary creep model for anisotropic materials [69]. 

The formulation is based around a multiaxial form of the Norton creep law [25] where the von 

Mises equivalent stress is replaced with the Hill‟s anisotropic equivalent stress [26]. The creep 

strain rate tensor arises using the derivative of Hill‟s compliance tensor with respect to Cauchy 

stress. This formulation is a simple and yet powerful formulation for secondary creep of 

anisotropic materials 
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aniso

aniso

ncr hill
ij hill

ij

A
d

d




ε
 (2.32) 

This secondary creep formulation was extended by Peravali-Hyde et al [57] to account for 

tertiary creep damage. The creep damage behaviors of longitudinal and transverse material 

orientations are included within the damage evolution tensor as follows 

 
             1 1 1 1

2 11 1M M r r         ω ν n ν n I ν ν
 (2.33) 

where v is a vector representing the first principal stress direction, n is a vector corresponding to 

the longitudinal material behavior , r accounts for void induced anisotropy. The terms M1 and M2 

are related to the longitudinal and transverse material properties in the following form 

 

    11
1 1 1 11 eqM B S S


       

    21
2 2 2 21 eqM B S S


       

(2.34) 

where  1
S  is the first principal stress,

eqS  is some equivalent stress, B1 and B2 are material 

constants, and α1, α2, β1,and β2 are weight constants. Damage is related back to Cauchy stress via 

the Murakami symmetric effective stress tensor, Eq. (2.23). Damage is introduced into the creep 

rate by the effective Hill‟s equivalent stress, Hill , resulting the following 

   anispncr Hill
ij aniso Hill

ij

A
 





=
 (2.35) 

This formulation is powerful but examination shows a number of limitations. Within the damage 

evolution tensor, the creep damage properties are resolved into a scalar value. This leads to the 

assumption that the creep-damage behavior in a uniaxially loaded DS material specimen is the 
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same in all orientations and only modified by void induced anisotropy. This produces an 

inaccurate damage evolution under multiaxial conditions. Creep-damage behavior is orientation-

dependent and cannot be resolved as a scalar-valued term. The influence of the state of stress on 

damage evolution should be implemented more directly using Cauchy stress. The formulation 

does not include off-axis creep damage behavior. This limitation can be significant for materials 

that are sustainable to considerable slip plane damage. 

 

2.7 Limitations 

 

In the aerospace, power generation, and pressure vessel and piping industries, anisotropic 

composites and superalloys are becoming increasingly utilized. In the case of industrial gas 

turbines drives to increases temperature and pressure, have instigated further use of directionally-

solidified materials. Only a limited number of investigations have been performed on the 

anisotropic creep damage modeling of transversely-isotropic material. In the most recent 

investigations, either the formulation is not shown to account for off-axis oriented creep damage 

behavior or damage is considered a scalar-valued term. In this thesis, it is desired to develop a 

formulation which accurately accounts for tensorial damage evolution and creep deformation of 

transversely-isotropic materials under any material orientation or state of stress.  
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CHAPTER THREE: MATERIAL 

3.1 A Brief History of Directionally-Solidified Ni-base Superalloy 

 

Nickel-base superalloys are commonly used as turbine blade materials due to their 

strength, creep-resistance, and corrosion resistance at high temperature. Applying directional 

solidification techniques, it was discovered that grain boundaries could be minimized 

perpendicular to the principal load direction and improved rupture strength could be achieved 

[2]. Early on, application of directionally-solidified (DS) turbine blade technology was strictly 

found in the aerospace gas turbine industry. A number of DS Ni-base superalloys were 

developed for cast turbine blades; MAR-M 247, MAR-M 200 Hf (1970), MAR-M 002 (1975), 

DS IN-6203 (1981), and etc [2]. Nominal compositions are listed in Table 3.1 [72]. Their use in 

IGTs was restricted. Manufacturing capabilities prohibited the casting of large components in 

quantity and with significant enough yield to be economically viable. Between the 1960‟s to the 

1980‟s “aero-derivative” industrial gas turbines, were mainly used as peak power machines. 

Serious interest began in the 1980‟s where a series of government sponsored studies for marine 

IGTs and later land-based IGTs spurred industry development [14]. Drives to improve efficiency 

through higher firing temperatures and gas velocities necessitated creation of large scale DS 

turbine blades. General Electric‟s first application of DS blades in IGTs was on the first stage of 

the MS5001 unit in 1987 [2]. Over time, improvements in manufacturing techniques and the 

advent of computer-integrated manufacturing (CIM) has led to common implementation of DS 

and single-crystalline blades in modern IGTs. 
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Table 3.1 – Nominal chemical composition (wt%) of first-generation DS superalloys with extensive 
turbine blade applications [14] 

Alloy C Cr Co Mo W Nb Ta Al Ti B Zr Hf Ni 

MAR-M200Hf 0.13 8 9 ··· 12 1 ··· 5 1.9 0.015 0.03 2 Bal. 
René 80H 0.16 14 9 4 4 ··· ··· 3 4.7 0.015 0.01 0.8 Bal. 
MAR-M 002 0.15 8 10 ··· 10 ··· 2.6 5.5 1.5 0.015 0.03 1.5 Bal. 
MAR-M 247 0.15 8 10 0.6 10 ··· 3 5.5 1 0.015 0.03 1.5 Bal. 

 

3.2 Directionally-Solidified DS GTD-111 

 

The subject material superalloy DS GTD-111, a dual-phase Ni-base superalloy, was 

developed in the 1987 as a first stage bucket material from uniaxial GTD-111 (derived from 

Rene' 80 [73]). Directionally-solidified GTD-111 is commonly used in gas turbine applications 

[74]. General Electric uses the material on the first stage in MS7F/MS9F, MS3002 and 

MS5002C units [1]. The structure of the grains has been found to produce enhanced creep life, 

impact strength, corrosion and thermal fatigue resistance compared to its equiaxed counterpart 

[8,75-77].  The material is transversely-isotropic in the x1-x2 plane while different materials 

properties are found on the x3 normal plane (Figure 3.1). 



36 
 

 

Figure 3.1 - Grain structure of DS GTD-111 with microstructure imposed 

 

Figure 3.2 - Directional solidification method [78] 

 

During casting, a columnar-grained structure is achieved by controlled withdrawal of a 

water cooled mold from the hot zone of a furnace. Induction heating methods provide an 
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adequate thermal gradient that prevents non-uniformities due to solidification in advance of the 

liquid-solid interface (Figure 3.2) [78]. The long grains inhibit intergranular cracking in the x1-x2 

orientations, the major cause of failure in turbine blades. These long grains reduce the Young‟s 

modulus in the longitudinal (L) orientation, resulting in increased elastic strain and reduced 

thermal stresses. A consequence of long columnar grains is the (L) orientation exhibits enhanced 

strength, ductility, and the time before rupture compared to equiaxial (PC) GTD-111. 

 

 

 

Figure 3.3 - Grain structure of GTD-111 (a) T-oriented Specimen (b) L-oriented Specimen 

 

Through optical and scanning electron microscopy investigations, a closer look at the 

grain structure of the material was resolved. Figure 3.3 shows the grain structure of both (L) and 

(T) orientations. The long grains are observed in both (T) orientations. Solidification is shown to 

250 μm 500 μm 
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be in the same general direction. Tighter control of the thermal gradient could produce improved 

grain direction uniformity. The end of the long grains is observed in the (L) orientation. 

Microstructurally, DS GTD-111 is formed of a nickel austenite (γ) matrix, bimodal 

gamma prime (γ') precipitated particles, γ –γ' eutectic, carbides and small amounts of topological 

close-packed phases σ, δ, η and laves [30,76]. It is an intermetallic consisting of a matrix and (γ') 

precipitated particles are observed in Figure 3.4. It has a high volume fraction of gamma prime 

(γ') precipitated particles, (approximately 60%) which imparts enhanced impact strength, high 

temperature creep and fatigue resistance, and improved corrosion resistance. In the case of PC 

GTD-111 to obtain the desire microstructure, heat treatment is used then abruptly interrupted 

leading to a γ-γ' microstructure that is metastable. Polycrystalline GTD-111 contains 0.86 μm and 

0.1 μm primary and secondary precipitated particles, respectively. The γ' precipitated particles 

can morph (shape, arrangement, size, and etc.) to decrease the local energy state of the lattice 

[79]. In the case of DS GTD-111 the microstructure is formed at the liquid-solid interface, slow 

cooling during processing produces large grains, 0.5 μm width primary cooling γ' precipitated 

particles, and 0.05 μm width secondary cooling γ' precipitated particles. The average grain size is 

5x5x125 mm [80]. Components with this microstructure can be challenging to repair if 

extensively damaged, however; a number of methods are under investigation to mitigate this 

problem [73,77]. 
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Figure 3.4 - Dark areas are the bimodal γ‟ precipitated particles 

 

The nominal composition of DS GTD-111 is found in Table 3.2. The γ matrix phase is 

FCC austenitic Nickel (Ni), while the γ' precipitated phase is L12 structured nickel-aluminde 

(Ni3Al) with a bimodal distribution [80,81]. Nickel (Ni), aluminum (Al), and chromium (Cr) 

impart oxidation resistance. The elements titanium (Ti) and molybdenum (Mo) increase the 

volume fraction of γ' precipitate particles. Titanium is used to control lattice mismatch and the 

formation of anti-phase boundary energy (APBE). Carbides to pin grain boundaries are formed 

of carbon (C) and Ti, W, Mo, Cr, and Ta. Chromium (Cr) raises hot corrosion resistance. The 

elements Cr, Mo, and W are solid solution strengtheners. Various secondary elements are 

utilized to impart increased ductility, workability, and castability. 
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Table 3.2 - Nominal chemical composition (wt%) of DS GTD-111 superalloy [1] 
 
Element Cr Co Al Ti W Mo Ta C Zr B Fe Si Mn Cu P S Ni 

Min 13.7 9.0 2.8 4.7 3.5 1.4 2.5 0.08 0.005 - - - - - - - Bal. 

Max 14.3 10.0 3.2 5.1 4.1 1.7 3.1 0.12 0.040 0.020 0.35 0.3 0.1 0.1 0.015 0.005 Bal. 

 

3.3 Elastic Behavior 

 

In general linear elasticity can be described by the Hooke‟s law generalized by Cauchy as 

 
ij ijkl klc e =  

ELσ =C ε  

(3.1) 

where 
ij  are the components of the Cauchy stress tensor σ  (9 terms), 

kle  are the components of 

the Cauchy strain tensor ε (9 terms), and 
ijklc  are components of the elastic stiffness tensor 

ELC

(81 terms) containing the mechanical properties of the material. Symmetry of the Cauchy stress 

and strain shear terms (down to 6 independent terms) reduces the 81 components of the elastic 

stiffness tensor to 36. Rearranging Eq. (3.1) to 

 
ELε = S σ  

  1

EL EL


C = S  

(3.2) 

gives 
ELS , the elastic compliance tensor. In the case of isotropic (PC) materials linear elasticity 

takes the following form 

  1
tr

E E

 
ε = σ σ I  (3.3) 

and when taken into matrix form produces 
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 (3.4) 

where only two material properties are necessary to characterize the mechanical behavior; E, 

elastic modulus and  , Poisson‟s ratio. 

 In the case of the transversely-isotropic materials, first the generalized 36 term elastic 

stiffness tensor is considered. Symmetry of the elastic stiffness tensor itself demonstrates there 

are only 21 independent terms. Maxwell‟s reciprocal theorem brings this down to 9 terms. 

Symmetry on the x1-x2 plane further reduces this to 5 independent terms; however, for the 

purposes of this research, 6 material constants are available and used. In matrix form, the relation 

reads as follows 
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 (3.5) 

where the Young‟s moduli, Poisson‟s ratios, and shear modulus are Ep, Ez, p , 
zp , 

pz , and Gzp 

respectively. Reduction to 5 independent terms can be done with the following simple relation. 

 
zp pz

z pE E

 
  (3.6) 

The subscripts p and z refer to the x1-x2 plane of symmetry and the x3 normal plane, respectively. 

These elastic material properties for DS GTD-111 have been characterized for temperature-

dependence in Figures 3.6. Using regression analysis, temperature-dependent functions are 

defined using a third order polynomial of the form 

 
  3 2 1

3 2 1 0A T a T a T a T a     
(3.7) 

where the terms of the polynomial, ai, are in units divide by °C
i and temperature, T is in units °C. 

The terms of the polynomial for each elastic material property is provided in Table 3.3. 
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Table 3.3 - Polynomial terms for temperature-dependent function of elastic material properties  

Constant Units a3 a2 a1 a0 

Ep MPa -4.767361E-05 4.574147E-02 -5.474389E+01 1.706597E+05 
Ez MPa -4.030000E-05 3.202410E-02 -4.212748E+01 1.340900E+05 
Gzp MPa -4.327437E-05 4.898472E-02 -4.609633E+01 1.205202E+05 

p  unitless -8.019135E-11 8.250335E-08 4.378935E-05 1.495837E-01 

zp  unitless -2.073542E-10 3.524660E-07 -2.775134E-05 4.478843E-01 

pz  unitless 4.588126E-12 3.592104E-08 -2.145816E-05 3.951884E-01 

 

Figure 3.5 – Elastic material properties of DS GTD-111 (a) Young‟s moduli (b) shear modulus 
(c) Poisson‟s ratio 
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3.4 Plastic Behavior 

 

The morphology of γ' precipitated particles in the γ-γ' microstructure produces lattice 

mismatch between the γ matrix and γ' precipitated particles phases respectively. The coherency 

strain, δ, is the strain necessary to maintain a coherent interface between γ and γ' phases, i.e, 

 
2

a a

a a

 

 

 



 
    

 (3.8) 

where aγ' and aγ are lattice parameters of the precipitate particles and matrix respectively. 

Strengthening of the material stems from the cooling γ' precipitated particles. At low temperature 

dislocations can be found throughout the γ-γ' microstructure. These dislocations inhibit a 

coherent interface between the two phases. The coherency strain is high, thus the local internal 

energy at the lattice is high. At high temperature, the morphology of the γ' precipitated particles 

leads to dislocations mainly found across γ channels between γ' precipitated particles. 

Dislocations climb and loop around γ' precipitated particles. Dislocations are uniformly 

distributed within the matrix. The coherency strain is lowered, thus the local internal energy at 

the lattice is reduced. However, this effect peaks at a critical temperature, afterwards additional 

thermal energy leads to a degradation of the γ-γ' microstructure that results in rapid weakening of 

the material. 

 The morphology of the γ' precipitated particles has a profound effect on the material 

properties of DS GTD-111. The strength of γ' is found to increase as temperature increases while 

γ is found to weaken as temperature increases. In general, the law of mixtures for composite 
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materials can be adapted to estimate the strength developed due to solid-solution hardening; 

however, when precipitated particles account for 50%-70% of volume fraction, precipitation 

hardening has a great effect on the material strength [82]. In the case of DS GTD-111, γ' 

precipitated particles account for approximately 60% of the volume fraction. The material 

exhibits a slight strengthening behavior in both the ultimate tensile strength and 0.2% yield 

strength of DS GTD-111 that can be observed between 649 and 760°C in Table 3.4. 

 

Table 3.4 - Yield strength and ultimate tensile strength of DS GTD-111 

 

Temperature Yield Strength, 
YS  Ultimate Tensile Strength, 

UTS
  

(°C) (°F) (MPa) (ksi) (MPa) (ksi) 

(L) 

21 70 977 142 1115 162 
649 1200 825 120 1110 161 
760 1400 903 131 1108 161 
871 1600 669 97 802 116 

(T) 

21 70 817 119 837 121 
649 1200 731 106 876 127 
760 1400 776 113 974 141 
871 1600 666 97 834 121 

 

Figure 3.6 contains a comparison between equiaxial PC GTD-111 and DS GTD-111 [80]. 

For both materials γ' thermally activated strengthening is observed. The T orientation is found to 

be slightly less strong than the PC GTD-111 at low temperatures but is stronger at high 

temperature. The L orientation exhibits enhanced ductility and strength compared to PC GTD-

111. The directionally-solidified nature of the grain structure of DS GTD-111 improves creep 

resistance. 
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Figure 3.6 – Plastic material properties of DS GTD-111 (a) yield strength [80] (b) ultimate 
yensile strength [30] 
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3.5 Creep Test Data 

 

Creep deformation and rupture experiments were conducted on L, T, and 45°-oriented 

specimen of DS GTD-111 according to an ASTM standard E-139 [83] at temperatures ranging 

from 649 to 982C and various uniaxial tensile stress levels to determine the creep response of 

the material over a wide range of conditions. A list of all creep deformation and rupture tests 

used is shown in Table 3.5 [30,84]. It should be noted that the experiment at 649°C and 896MPa 

is above the yield strength and thus exhibits considerable plasticity. For all cases except those at 

649°C, time-independent plasticity is ignored. Generally, creep rupture time increases with either 

decreasing applied stress or decreasing temperature. Specimens were obtained from a three 

batches of DS GTD-111, where each batch exhibited a slightly different creep response. In all 

the creep rupture data, scatter is present. This form of scatter, which is common in creep rupture 

data, is due to inconsistency in the microstructure or inadequate control of the heat treatment 

process. It also is a result of very slight differences that occur during testing. Manufacturers 

commonly use least-square linear regression analysis to determine the minimum creep rupture 

life of an alloy while neglecting scatter. Advancements by Zuo and coworkers [85] show that the 

maximum likelihood method produces more accurate predictions of creep-rupture life. 
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Table 3.5 - Creep deformation and rupture data for DS GTD-111 [30] 

 

Orientation Temperature Stress 
Rupture 

Strain 

Rupture 

Time 

Estimated 

Primary 

Creep 

  (°C) (°F) MPa ksi (%) (hr) (%) 

1 L 649 1200 896 130 4.9 465.9 0.13% 

2 L 760 1400 408 60 15.0 5624.0 0.30% 

3 L 760 1400 613 89 13.2 243.6 0.24% 

4 T 760 1400 517 75 6.9 375.7 0.60% 

5 T 760 1400 613 89 1.8 42.6 0.36% 

6 L 816 1500 455 66 21.5 321.5 0.26% 

7 T 816 1500 455 66 4.6 127.0 0.21% 

8 L 871 1600 241 35 18.8 2149.0 NA 

9 L 871 1600 289 42 11.7 672.2 0.09% 

10 T 871 1600 241 35 7.6 980.2 NA 

11 T 871 1600 289 42 5.1 635.3 NA 

12 L 940 1724 244 35 14.1 68.7 0.07% 

13 T 940 1724 244 35 3.8 62.5 0.07% 

14 L 982 1800 124 18 17.8 821.3 0.01% 

15 L 982 1800 145 21 9.1 301.7 NA 

16* 45° 871 1600 289 42 6.0 455.0 0.50% 

*[84] 

From the creep deformation and rupture experiments, the subject material DS GTD-111 

exhibits primary, secondary, and tertiary creep strain depending on the combination of test 

temperature and stress, and material orientation. Based on these strain responses, the deformation 

mechanisms can be inferred from investigations that complemented mechanical experimentation 

with microscopic analysis. Deformation at 649C at low stresses and short times is mostly due to 

elastic strain, along with primary and secondary creep.  At higher temperatures (760C and 

above), deformation is dominated by secondary and tertiary creep facilitated by the coalescence 

of grain boundary voids into microcracks. 
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3.6 Secondary Creep Constants 

 

In order for the tertiary creep damage model to correctly predict creep deformation up to 

rupture, the secondary creep constants for DS GTD-111 need to be determined. Earlier work 

shows the classical Norton creep power law works well in predicting the steady-state strain 

found in the secondary regime. The Norton power law for secondary creep is as follows 

 𝜀 𝑐𝑟 = 𝐴𝜎 𝑛 , (3.9) 

where A and n are the creep strain coefficient and exponent, respectively, and   is the von 

Mises effective stress. Simple analytical methods can be used to determine the secondary creep 

constants, A and n at various temperatures [86]. These analytical methods, although good, 

require duplication of creep tests and then averaging to eliminate scatter. In the case of this 

study, limited test data is available, thus a numerical approach is used. The minimum creep strain 

rate and the specimen stress load are put into the Norton power law and a system solving 

algorithm is used to determine optimal A and n constants. For most materials, traditional methods 

tend to find A and n to be stress-independent but there are exceptions [87]. Hyde [88] showed for 

a Ni-base alloy Waspaloy that once a critical value of applied stress is reached the relationship 

between minimum creep strain and stress evolves. This leads to a two-stage relationship and 

stress dependence of the secondary material constants. Sajjadi and Nategh show that for 

equiaxial GTD-111 there is an abrupt shift in deformation mechanism at intermediate 

temperature and stress levels what causes a breakdown of power law creep [76]. Table 3.5 shows 

that for the collected creep deformation data, at the maximum two stress levels per temperature 
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were conducted. Any possible stress dependence of A and n is not visible in the current data; 

therefore, stress dependence of the secondary material constants is neglected. 

Dorn [32] suggested that temperature-dependence should take the form of an Arrhenius 

equation 

 
  cr

Q
A T B exp

RT


  

 
 

 
(3.10) 

where B is the pre-exponential factor in units MPa
-1

 hr
-1, Qcr is the activation energy for creep 

deformation in units J mol
-1, R is the universal gas constant 8.314 J mol

-1 
K, and T is temperature 

in units Kelvin. Jeong [89] demonstrated that while under stress relaxation short term transient 

behavior occurs where Qcr and n are both stress-dependent at relativity short times (e.g. less than 

10 minutes). After this transient stage, the Norton power law becomes independent of initial 

stress and strain. This transient behavior has been neglected here since the current study focuses 

on longer periods (e.g. 1-100,000 hours). For DS GTD-111, the activation energy for creep 

deformation, Qcr, has been found as 3773 and 3636 KJ/mol. These values are much higher than 

the activation energy of self diffusion for equaxial PC GTD-111 and other polycrystalline Ni-

base superalloys [76,24]. Ibanez suggests dislocation climbing is not a viable creep mechanism 

for DS GTD-111 [90]. The larger activation energy is a result of creep controlled dislocation 

motion, a common occurrence in multi-phase superalloys. Previously, efforts to model the 

secondary creep constants for DS GTD-111 were not easily fittable into temperature-dependent 

form [30]. Temperature-dependence of A and n in this study is proposed as 

    0 1A T A exp AT  (3.11) 
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   1 0n T n T n 
 (3.12) 

where A0, A1, n0, and n1 are constants and T is in units Celsius. A plot of these functions in Figure 

3.7 shows accurate predictions (R2>0.9672). Using these formulations temperature-dependence 

of secondary creep can be modeled. 

 

Figure 3.7 - Secondary creep constants for DS GTD-111 
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Limited creep test experimental data is available for 45°-oriented specimen; therefore, 

temperature-dependence of the secondary creep constants for a 45°-oriented specimen is not 

considered. Using traditional methods, the A and n constants at a temperature of 871°C are 

obtained as 1.374E-23 and 7.6 respectively and can be found in Figure 3.8. 
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Figure 3.8 - Secondary creep constants for DS GTD-111 (45°-oriented specimen) 
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CHAPTER FOUR: ISOTROPIC CREEP DAMAGE MODEL 

4.1 Introduction 

 

In order to produce an accurate multiaxial representation of the creep deformation of a 

transversely-isotropic material it is first necessary to accurately model the uniaxial x1-x2 plane of 

symmetry and x3 normal represented by L and T specimen, respectively.  

In the current study, the classical isotropic Kachanov-Rabotnov model for tertiary creep 

damage is implemented in the non-linear FEA software, ANSYS® [91]. Creep deformation and 

rupture experiments are conducted on samples of the DS GTD-111 Ni-base superalloy, tested at 

temperatures between 649 and 982°C and two orientations: longitudinally (L) and transversely 

(T) oriented (Table 3.5). The secondary creep constants previously determined in Chap. 3.5 are 

used. A rupture prediction model is derived from the Kachanov-Rabotnov model and used to 

determine an initial guess of damage constants. The simulated annealing optimization routine is 

utilized to determine the optimal damage constants. 

 

4.2 Constitutive Model 

 

A constitutive model must be developed which can account for several creep regimes: 

secondary and tertiary. In the current case, the development of a primary creep model is not 
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necessary due to the minimal amount of primary creep strain recorded during creep tests. The 

relatively short regime is approximated by a static primary creep strain applied upon loading. 

The first step in developing an adequate model is selection of a formulation which can account 

for steady-state secondary creep. The Norton Power law for creep, a first order differential 

equation for the creep strain rate is used 

 
cr

cr

nd
A

dt


    

(4.1) 

where A and n are the creep strain coefficient and exponent and  is the Von Mises effective 

stress. Temperature-dependence of the A and n constants is discussed in Chap. 3.5. 

To account for tertiary creep a continuum damage mechanics model was applied. This 

involves the use of a damage variable which accounts for microstructural evolution. During the 

transition from secondary to tertiary creep, microcracks along grain boundaries of polycrystalline 

materials act as stress concentrations.  The amplified stress due to local reduction of cross-

sectional area is the phenomenological basis of the damage variable, , that is coupled with the 

creep strain rate and has a stress-dependent evolution, i.e., 

  
 

cr cr
,T , ,...

,T , ,...

   

   




 (4.2) 

A straightforward formulation implies that the damage variable is the net reduction in cross-

sectional area due to the presence of defects such as voids and/or cracks, e.g.  
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 

 

 
(4.3) 

where 
net  is called the net (area reduction) stress, A0 is the undeformed area, Anet is the reduced 

area due to deformation,  and ω is the damage variable. Some models account for the variety of 

physically observed creep damage mechanisms with multiple damage variables [92]. An 

essential feature of damage required for application of continuum damage mechanics concepts is 

a continuous distribution of damage.  Generally, micro-defect interaction (in terms of stress 

fields, strain fields, driving forces) is relatively weak until impingement or coalescence is 

imminent. 

The damage variable is applied in a first order differential equation for the damage 

evolution and coupled with the creep strain rate. Work by Kachanov [5] and later Rabotnov [6] 

led to the coupled Kachanov-Rabotnov equations of creep 

 
 

1
cr

cr

n
d

A
dt

 



 


 
 
 

  (4.4) 

 
 

 1

Md

dt









 


  (4.5) 

where the coefficient A and M and the exponents n, χ, and ϕ are damage constants. Johnson and 

colleagues [96] show the importance of modeling beyond simple uniaxial tension conditions and 

focused on multi-axial states of stress. A model which can implement complex states of stress is 

necessary to accurately model gas turbine components. Tensile/compressive asymmetry and 
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multi-axial behavior can be accounted for by using the damage evolution equation developed by 

Hayhurst [95] 

 

 1

r
Md

dt









 


 (4.6) 

  1 3 1
r m

            (4.7) 

where the Von Mises stress, 𝜎  is replaced by the Hayhurst triaxial stress, σr. The Hayhurst 

triaxial stress is related to the principal stress, σ1, hydrostatic (mean) stress, σm, and the Von 

Mises effective stress, 𝜎 , and includes two weight factors  and  that are determined from 

multiaxial creep experiments. The Hayhurst triaxial stress becomes incompressible when 𝛼 + 2𝛽 ≥ 1. More recent investigations have extended this damage evolution description to 

account for anisotropic damage of isotropic materials resulting from multiaxial states of stress 

[47,[51].  In these cases, damage is described by a second-rank tensor. 

Using Eqs. (4.4), (4.6), and (4.7), a suitable tertiary creep damage model is resolved. The 

tertiary creep damage model can be reverted back to secondary creep when M = 0. Damage 

evolution becomes zero and the strain rate reverts back to the Norton power law for secondary 

creep with the exception that 𝜎  is replaced by 𝜎𝑟 . This is a useful property that has been 

exploited in a previous study to determine the transition time when the dominant creep regime 

shifts from secondary to tertiary creep [24]. 

This tertiary creep damage model has been used in a variety of studies of turbine and 

rotor materials.  The constants A, n, M, , and  are considered material properties.  For example, 
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in Waspaloy at 700C, A = 9.2310-34 MPa
-n

hr
-1, n = 10.65, M = 1.1810-25 MPa

-
hr

-1,  = 8.13, 

and  = 13.0 [93].  For stainless steel at 650C, A = 2.1310-13 MPa
-n

hr
-1, n = 3.5, M = 9.010-10 

1
MPa hr

  , and  =  = 2.8 [94]. Stewart and Gordon show that by determining the creep material 

constants at multiple temperatures for Ni-base alloy IN-617, functions can be developed that 

introducing temperature-dependence to the tertiary creep damage model [24].  This has the effect 

of making the creep strain rate and damage evolution equations temperature dependent. As 

temperature changes over time, the material constants change, altering the creep strain rate and 

damage evolution predicted at the current time step. 

 

4.3 Rupture Prediction Model 

 

A prediction of the rupture time can be achieved using the damage evolution equation (4.6). 

Integration of the equation leads to the following 

 
 1 rd M dt

    
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t
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











 


 

(4.8) 

where under creep experiment conditions, stress is constant and to and ωo equal 0.0. 

Simplification leads to the rupture time and damage predictions 

     11
1 1 1

r
t M

   


          (4.9) 



58 
 

    
1

11 1 1
r

t M t
           (4.10) 

When adequate damage constants are determined, a quality prediction of rupture time can be 

achieved. Plotting stress versus rupture time on a log scale produces a linear relationship similar 

to what is observed for brittle failure of other PC Ni-base superalloys [43]. However; under short 

life and high stress conditions (particularly near the ultimate tensile strength) the rupture time 

predictions deteriorate. This is due to the formulation not directly including the effects of the 

ultimate tensile strength in damage evolution. Applying it would provide a criterion by which the 

model could converge to the instantaneous failure when loaded beyond the ultimate tensile 

strength. Under actual service conditions, components are typically under significantly less stress 

and designed for longer life than the typical creep test. Secondary creep is dominant therefore; 

the rupture time equation is quite useful in predicting failure. Additionally, the rupture time 

equation can be applied to determine an initial guess set of damage constants. This can be done 

through optimization when it is assumed that ω(t) equals 1.0 at the experimental rupture time, tr. 

 

4.4 Numerical Approach 

 

The constitutive model described in Eqs. (4.4), (4.6), and (4.7) has been implemented in a 

general-purpose finite element analysis (FEA) software in order to determine the constants for 

the constitutive model used in the secondary-tertiary creep formulation.  The formulation was 

implemented into a FORTRAN subroutine in the form of a usercreep.f user-programmable 
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feature (UPF) in ANSYS. The subroutine is incorporated with an implicit integration algorithm.  

This backward Euler integration algorithm is more accurate over long time periods than other 

practical numerical integration methods. This allows larger time steps that reduce the numerical 

solve time. Since the viscoplastic/creep behavior of materials is significant at extended histories, 

the backward Euler method is the desired method for integration of creep constitutive models 

[97]. 

This implementation allows for the update of the internal state variable, .  Initially,  

equals 0.0 and during loading,  increases.  To prevent the singularity that is caused by rupture 

(e.g.  equals 1.0), the damage is restricted to a maximum of 0.90. Comparison of creep rupture 

data to numerical simulations shows that rupture occurs at  between 0.4 and 0.6; therefore, 

rupture can be achieved before a singularity occurs. To prevent an excessive model solve time 

and large deformation errors, a simulation was terminated once the total strain reached 100%. If 

needed, this model can be applied with time-independent and time-dependent plasticity models 

in a straightforward manner. 
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Figure 4.1 - Single element FEM geometry used with force and displacement applied 

 

The UPF has been used to simulate the temperature and stress loading conditions of a 

series of uniaxial creep and rupture experiments.  A single, solid, three-dimensional, 8-noded 

element was used, and the appropriate initial and boundary conditions were applied to 

numerically simulate a uniaxial creep tests. The loads and temperatures applied numerically 

simulated those of the obtained creep rupture experiments. Figure 4.1 demonstrates how these 

conditions are applied on the FEM geometry. The constant axial force load experience during 

tensile testing was applied as a force load on the top surface of the element. A uniform 

temperature was applied across the element. Displacement controls were set to match the 

constraints experienced during tensile testing. These conditions lead to an accurate assessment of 

the creep deformation within a single element model. Histories of creep deformation, 𝜀𝑐𝑟 (𝑡), 

were recorded to a data file and subsequently compared with experiments.  Using this method, 
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expansion beyond a single element to multi-element simulations will produce an accurate 

measure of creep deformation. 

 

4.5 Optimization 

 

To determine the creep damage parameters , χ, and ϕ, an automated optimization 

routine, called uSHARP, was used [98]. Screenshots of this optimization software are available 

in Appendix A. Finite element model (FEM) simulations were carried out and compared with 

their corresponding experimental data sets. In each case, the stress and temperature specified in 

the ANSYS simulation matched those of the corresponding experimental data set. ANSYS 

simulations were then executed in an iterative optimization process until the least squares values 

between the simulated and experimental datasets were minimized. The least squares objective 

function was based on creep strain, and is presented as 

 
 2

1

m

FEM ,i EXP ,i

iS
m

 






 
(4.11) 

where FEM,i and EXP,i are the strain values obtained by FEM simulation and experimental 

testing, respectively. The parameter m is the total number of data points resulting from an 

individual simulation used to determine the least squares value during a single iteration. In Eq. 

(4.11), the objective function assumes the strains correspond to an identical load time.  Since the 
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cardinality of the data sets always differed, an automated smoothing routine was carefully 

developed to unify time basis of the data. This feature is built into uSHARP. 

 

 

Figure 4.2 - uSHARP optimization procedure [98] 

 

The Corana et al. simulated annealing multimodal algorithm was used as the optimization 

algorithm [99]. It is a robust optimizer which has the capability to find the global optimal by both 

uphill and downhill moves. This capability allows it to effectively climb out of local minima 

when necessary. Additionally, its implementation into the uSHARP routine was very 

straightforward [100]. The uSHARP code automatically executes ANSYS at each iteration, 

evaluates the objective function, and updates the guess for the material constants on the basis of 

the simulated annealing algorithm. An overview of the optimization procedure used can be seen 

in Figure 4.2. 
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Due to simulated annealing being a non-conventional algorithm, it requires an extensive 

number of iterations before final convergence to the global optima occurs. To reduce solve time, 

the solve space or target range to be optimized needed to be determined. To do this, the lowest 

and highest temperature experiments were conducted first. The solve space was set such that the 

lower and upper bound for all three damage constants was ±1.0x1010. The results of these 

simulations were analyzed and target ranges for the intermediate temperature experiments was 

set as 0.0 ≤ M ≤ 700, 1.7 ≤ χ ≤ 2.3, and 0.0 ≤ ϕ ≤ 60. The simulated annealing routine requires an 

initial guess. To determine a suitable set of initial constants the derived rupture time model, Eq. 

(4.9), was compared with experimental data. Manual iteration of the M, χ, and ϕ was performed 

until the relative error between experimental and simulated rupture time was minimized. This 

produced constants which were readily applicable in the uSHARP routine.  

The Kachanov-Rabotnov damage evolution equations do not account for primary creep. 

Primary creep strain was therefore approximated from experimental data and added to the finite 

element solution. These modified creep strain values were applied in the least squares 

calculations and plotted with the experimental data. As a result, the secondary creep regions of 

each curve conferred a better fit on the tertiary creep region. This ensured that more accurate 

material constants were determined. The primary creep values used for each dataset are 

presented in Table 4.1. 

As the optimization routine progressed, the least squares values were recorded at every 

iteration. This provided a clear display of convergence using the simulated annealing algorithm, 

as presented for every tenth iteration in Figure 4.3. It is observed that simulated annealing 
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continuously moved both up and downhill towards a minimal least squares value. Depending on 

the quality of the initial guess the number of iterations till convergence greatly varies. A least 

square value less than 10 was necessary during each optimization run. Otherwise, an improved 

initial guess would be selected and optimization preformed again until a suitable value was 

obtained. 
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Figure 4.3. Least squares values presented for every tenth iteration during optimization 
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Table 4.1 – Primary creep and least squares values for DS GTD-111 

 Orientation Temperature Stress 

Primary 

Creep 
Strain 

Least Squares Value 

  
( °C ) ( °F ) MPa Ksi (%)  

1* L 649 1200 896 130 0.13 2.0588 

2* L 760 1400 408 60 0.30 9.6451 

3 L 760 1400 613 89 0.24 1.6003 

4 T 760 1400 517 75 0.60 9.029 

5 T 760 1400 613 89 0.36 9.2964 

6 L 816 1500 455 66 0.26 0.4058 

7 T 816 1500 455 66 0.21 2.9972 

8 L 871 1600 241 35 NA 3.7922 

9 L 871 1600 289 42 0.09 4.1546 

10 T 871 1600 241 35 NA 8.3388 

11 T 871 1600 289 42 NA 4.2331 

12 L 940 1724 244 35 0.07 0.8296 

13* T 940 1724 244 35 0.07 7.7568 

14 L 982 1800 124 18 0.01 5.7186 

15 L 982 1800 145 21 NA 0.6798 

16 45 871 1600 289 42 0.005 1.8893 

*Manually Fit 

 

A list of the least squares values found is in Table 4.1. In all cases, the optimization 

routine on average produces better least square values for the L-orientation. This can be 

attributed to the slight variability in alignment of the long grains between different specimens. 

Further discussion of the optimized constants can be found later in Chap. 7.1. For a number of 

experimental datasets, simulated annealing was unable to determine a suitable set of constants. In 

these experiments, strain softening beyond the minimum creep rate was minimal. As a 

consequence, the creep damage parameters could not properly be optimized by uSHARP. 

Instead, the values for the material constants were obtained manually until a suitable set of 

constants could be realized. Then the least squares formulation was applied to determine the 

quality of fit. Damage constants were optimized for every combination of temperature and stress. 
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CHAPTER FIVE: NOVEL ANISOTROPIC CREEP DAMAGE MODEL 

5.1 Introduction 

 

In order to produce an accurate multiaxial representation of the creep deformation of a 

transversely-isotropic material it is first necessary to accurately model the uniaxial x1-x2 plane of 

symmetry and x3 normal represented by L and T specimen, respectively. Isotropic creep damage 

models are commonly implemented for simple cases involving uniaxially loaded isotropic 

materials. Anisotropic models can be developed for complex states of stress and anisotropic 

materials. 

This chapter describes the development of a novel anisotropic creep damage model for 

transversely-isotropic materials implemented in a general-purpose finite element analysis (FEA) 

software. An advanced tensorial damage formulation is implemented which includes both 

material orientation relative to loading and the degree of damage anisotropy in the model. A 

variation of the Norton-power law for steady state (e.g. secondary) is implemented which 

includes the Hill‟s anisotropic analogy for equivalent stress [26]. The new model is found to 

regress to the Kachanov-Rabotnov isotropic tertiary creep damage model allowing the direct 

implementation of previously determined constants.  Rupture time and damage prediction 

models are derived from the damage rate tensor. The theoretical model is implemented in a user-

programmable feature (UPF) in the non-linear FEA software, ANSYS® [91]. 
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5.2 Constitutive Model 

 

This novel anisotropic creep damage model for transversely-isotropic materials is based 

on the isotropic Kachanov-Rabotnov creep damage model [5,6]. The influence of the state of 

damage, ω  is accounted for via the effective (net) stress tensor, σ . A number of formulations for 

the effective stress have been proposed [34]. Murakami [50] and Murakami and Ohno [47] 

proposed the symmetric effective (net) stress, σ and damage applied, Ω  as 

   1 Ω I ω
 

 1

2
 σ σΩ Ωσ

 

(5.1) 

where 𝛔  is the Cauchy stress tensor and Ω is damage applied. 

For anisotropic materials, the orientation of the material grain structure relative to the 

general coordinates system can significantly alter the damage developed.  Thus to account for 

material orientation the material damage constants need to be formulated into a tensor that alters 

each tensorial term based on a material orientation vector, ν  where the vector represents the 

direction of longitudinal grains. The rotated damage constant tensor, B is defined here as 

        2 1
2 1Hill HillM M

       B I νν νν  (5.2) 

where M1, M2, χ1, χ2 are damage constants and 
Hill is the Hill equivalent stress [26] from the 

Cauchy stress defined as 

 T

Hill  s Ms
 

 

(5.3) 
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where s is the vector form of the Cauchy stress tensor,σ , and M is the Hill compliance tensor 

consisting of the F, G, H, L, M, and N unitless material constants that can be obtained from creep 

tests [27]. The derivations needed to determine the Hill constants are found in Appendix B. The 

rotated damage constant tensor, Φ is defined as 

    2 1

R       Φ I νν νν
 

 ABS RΦ Φ
   

or
    

R

ij ij
  

 

(5.4) 

where ϕ1, and ϕ2 are damage constants. The rotated damage constant tensor, Φ is used as an 

element-wise exponent in later mathematics so it is necessary to ensure each element remains 

positive. The ABS function is introduced which represents an element-wise absolute value of the 

argument tensor. This is necessary to prevent possible inversion in later mathematics dependent 

on the selected isotropy plane. The rotated damage constant tensors allow the creep material 

properties to be directly related to the orientation of the material grain structure. 

In the isotropic damage formulation Eq. (4.6), it is observed that previous scalar-valued 

damage is related by  1   . An equivalent tensor form is produced by use of the 
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elementwise Schur (or Hadamard) power of the damage applied tensor, Ω and the rotated 

damage constant tensor, Φ as follows 

  
 

ΦΦ
D Ω Ω  

1311 12

2321 22

31 32 33

11 12 13

21 22 23

31 32 33
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   
    
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D
 

(5.5) 

where the convenient tensor, D is later implemented in the damage rate tensor [101,102]. To 

account for both aluminum and copper-like, the damage control variable, γ is introduced. This 

term is applied in the first principal stress influence tensor as follows 

    1 1
1       X I n n  

0 0 1 0. .   
(5.6) 

where n1 represents the first principal stress direction vector. When γ = 0.0 isotropic damage is 

isotropically distributed while when γ = 1.0 damage induced anisotropy is allowed to occur. 

To produce the damage rate tensor, ω , a multiplicative superposition of the rotated 

damage constant tensor, B and the convenient tensor, D which both account for material 

orientation is performed. This is followed by a symmetric product with the first principal stress 

influence tensor, X. The elementwise Schur (or Hadamard) product is used 

 
    1

2
   ω B D X X B D

 
(5.7) 
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The B and D tensors are both rotations of the material orientation [101,102]. As discussed earlier 

undesirable terms develop in tensor D. The Schur product with B eliminates them. An analytical 

exercise of the damage rate tensor for various material and stress rotations is provided Appendix 

C. The damage rate tensor is coupled with the anisotropic creep strain rate equation defined as 

follows 

 cr aniso
aniso Hill

Hill

n
A 




Ms
e

 
(5.8) 

where Aaniso, naniso are secondary creep material constants found via creep tests, M is the Hill 

compliance tensor, s is the Cauchy stress vector, and 
Hill

 is the Hill equivalent (net) stress due to 

the effective stress tensor, σ . To ease the implementation of the model into finite element code, 

the symmetric stress and strain tensors are converted back and forth to stress and strain vectors 

(e.g. σ s , cr crε e ). Material rotation can be performed in the creep strain rate equation as 

follows 

 
aniso

T
n

cr T T

aniso
T T

A
TMT s

e s TMT s

s TMT s  
(5.9) 

where T represents a material orientation transformation tensor about the x1 axis of the form 
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(5.10) 

 

5.3 Rupture Prediction Model 

 

A prediction of the rupture time can be achieved using the damage evolution equation 

(5.7). First it is assumed that the material behaves isotropically (γ = 0.0). Induced anisotropy is 

disabled for the purpose of simplicity in integration. Assuming an isotropic behavior provides the 

most conservatism as well as a damage rate tensor along the diagonal of the following form 
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An examination of first principal influence tensor is provided 

  0 0.    0 5.    1 0.   
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where rotation of the principal stress is observed to create shear term when γ ≠ 0.0. Thus γ = 0.0 

provides a simple more workable damage rate tensor. Now it is assumed that the material 

experiences an arbitrary rotation about the x1 axis at an angle α via the material orientation 

vector, ν . This produces a damage rate tensor of the following form 
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It is observed that each term of the damage rate tensor can be taken independently. Separation of 

variables provides 
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where integration and further simplification leads to rupture time predictions as followings 
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(5.11) 

And rearrangement provides damage predictions 
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(5.12) 
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The influence of the first principal stress direction can be optionally be re-introduced as follows 
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such that a scalar-valued solution for rupture time and damage can be obtained under both 

material reorientation and stress rotation. However, it is suggested that the minimum value in the 

diagonal of the tensor be set as rupture time and critical damage. When adequate damage 

constants are determined, a quality prediction of rupture time can be achieved for L and T 

specimen. In the case of intermediate orientations, data is not available to quantify rupture time 

and damage prediction accuracy. 
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5.4 Numerical Approach 

 

The novel anisotropic creep damage model for transversely-isotropic material is 

implemented into the finite element analysis (FEA) software ANSYS®. This is achieved by 

coding a usermat3d.f user-programmable feature (UPF) in FORTRAN. The usermat3d.f UPF 

allows coding of unique material constitutive equations within the ANSYS general material 

framework. For each Newton-Raphson iteration, at every material integration point, the 

USERMAT UPF is called. At the beginning time increment the state of stress, strain, and state 

variables are provided. An updated state of stress, state variables, and the material Jacobian 

matrix (total stiffness tensor) are required outputs [103]. In the current code the material 

Jacobian matrix is described as follows 

 Ttot

EL INEL  ε = TS T σ S σ  
   1 1

EL EL INEL INEL

 
C = S C = S

  
TOT EL INELC = C C

 

(5.13) 

where totε is the total strain tensor, σ  is the Cauchy stress tensor, T is a material orientation 

transformation tensor that coincides with the material orientation vector, ν , SEL and SINEL are the 

elastic and inelastic compliance tensors, CEL and CINEL are the elastic and inelastic stiffness 

tensors, and CTOT is the total stiffness tensor. In the case of transversely-isotropic materials the 

elastic compliance tensor, SEL is provided as 
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where the Young‟s moduli, Poisson‟s ratios, and shear modulus are Ep, Ez, νp, νzp, νpz, and Gzp 

respectively.  The inelastic compliance tensor is derived using the creep strain rate tensor Eq. 

(5.8) and Cauchy stress tensor,σ  into the following symmetric form. 
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CHAPTER SIX: IMPROVED ANISOTROPIC CREEP DAMAGE MODEL 

6.1 Introduction 

 

The previously developed anisotropic creep damage formulations for transversely-

isotropic assume state of stress induced anisotropy through an attached influence tensor. Damage 

evolution is based on material rotation where only the L and T material properties are utilized. 

This produces a less than ideal tensorial prediction of damage which does not account for 

possible strain hardening due to slip planes at arbitrary intermediate orientations nor does it 

implicitly include state of stress induced anisotropy. 

This chapter describes the development of an improved anisotropic creep damage model 

for transversely-isotropic materials implemented in a general-purpose finite element analysis 

(FEA) software. An advanced tensorial damage formulation is implemented which implicitly 

includes the effect of material rotation and stress transformation using the Cauchy stress tensor 

and two Hill compliance tensors. A variation of the Norton-power law for steady state (e.g. 

secondary) is implemented which includes the Hill‟s anisotropic analogy for equivalent stress 

[26]. The new model is found to regress to the Kachanov-Rabotnov isotropic tertiary creep 

damage model allowing the direct implementation of previously determined constants.  Rupture 

time and damage prediction models are derived from the damage rate tensor. The theoretical 

model is implemented in a user-programmable feature (UPF) in the non-linear FEA software, 

ANSYS® [91]. 
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6.2 Continuum Damage Mechanics Theory 

 

In the development of an improved constitutive model, it is necessary to first dissect the 

problem. To do so, a theoretical examination of fracture in transverse-isotropic materials and its 

application in continuum damage mechanics (CDM) is necessary. In typical CDM, the subject 

material is assumed to be homogenous. Grain boundaries are neglected. Local creep strain 

softening is accounted for via the damage variable which increases the net/effective stress thus 

equivalence is achieved between the physical and effective space.  

In the case that creep test experimental data is available, the damage evolution and 

rupture time can be optimized using the isotropic Kachanov-Rabotnov creep damage 

formulation. As depicted in Figure 6.1, this creates material properties dependent on the 

materials orientation.  

In terms of early creep crack propagation of transversely-isotropic materials rupture 

behavior is driven by the interaction of orthotropic and slip plane damage. Fracture occurs along 

planes of weakness; directions where the energy release rate is maximized. Material weakness is 

found between grain boundaries, a common location of crack propagation.  
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Figure 6.1 - Equivalence of Physical and Effective (CDM) space 

 

An L-oriented specimen under tensile is shown in Figure 6.2a. Fracture occurs across the 

long grains in either a transgranular or intergranular fashion dependent on grain size relative to 

gage length. For the subject material, DS GTD-111, the gage length is smaller than the average 

grain size resulting in transgranular factor. However, in the case of intergranular fracture the 

crack path moves up and down grain boundaries until a suitable weakness (energy release rate 

maximized) is found in the adjacent grain resulting in mixed mode spitting between grain 

boundaries. 
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A T-oriented specimen under tensile is shown in Figure 6.2b. Fracture occurs along the 

available grain boundary until failure occurs. In transversely-isotropic materials this orientation 

of intergranular fracture is extensively studied due to the minimal amount of inelastic strain is 

found in this orientation before failure. 

An arbitrary angled specimen under tensile is shown in Figure 6.3. The arbitrary angled 

specimen exhibits a mixed mode fracture. Early stage creep crack growth is dependent on the 

stress field and the damage parameters attributed to long and transverse orientations. Crack 

propagation can occur across the long grains when the energy release rate is maximized. The 

direction of crack growth is strongly driven by grain boundary orientation [112]. 

 

Figure 6.2 - Intergranular fracture of an (a) L and (b) T specimen 
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Figure 6.3 - Intergranular fracture of an arbitrary angled specimen 

 

When considering continuum damage mechanics, grain boundary orientation must be 

considered. For transversely-isotropic materials, identical damage mechanisms exist on 

orthotropic directions but they evolve uniquely for each orientation (except on the plane of 

symmetry). Additionally, different damage mechanisms can exist on intermediate orientation 

where lattice mismatch induces slip plane damage. 

Examining the developed novel anisotropic damage mechanics formulation, it is 

observed that the tertiary creep damage constants tensors Eqs. (5.2) and (5.4) account for 

dominant damage mechanism along L and T orientations; however, the model neglects possible 
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interaction between terms which would arise due to lattice mismatch acting on the slip plane. 

The slip induces strain hardening which increases the creep strain rate, and decreases time till 

rupture. Not accounting for this behavior leads to an inaccurate prediction of damage evolution 

and rupture time at intermediate orientations; therefore, an improved tensorial damage 

formulation is required to better prediction damage evolution, the creep strain rate, and rupture 

time.  

 

6.3 Constitutive Model 

 

The foundation of the improved anisotropic creep model is very similar to the previously 

developed novel anisotropic creep model. The improved model is based on the isotropic 

Kachanov-Rabotnov creep damage model [5,6]. The influence of the state of damage, ω  is 

accounted for via the effective (net) stress tensor, σ . The Murakami and Ohno [47] symmetric 

effective (net) stress, σ and a simplified damage applied, Ω  are applied 

   1 Ω I ω
 

 1

2
 σ σΩ Ωσ

 

(6.1) 

where 𝛔 is the Cauchy stress tensor and Ω is damage applied. Damage is represented by multiple 

principle damage variables due to induced anisotropy [45,46] in the form of a damage tensor 
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 (6.2) 

where each term of damage corresponds to the orthogonal planes of a material.  

Creep damage anisotropy is introduced via two damage constant tensors. The tertiary 

creep damage constants are generalized into a vector (6x1) form using the anisotropic Hill 

potential theory transformed into damage constant tensors (3x3). The vectors take the following 

form 

 
b pR aniso

aniso Hillb

Hillb

M





M s
b  

 ABS Rb b  
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 ABS Rλ λ  

 VECλ Φ  

(6.3) 

where Maniso, χaniso, and ϕaniso are tertiary creep damage constants and sp is the vector form of the 

principal stress which can be found solving the following 

  det 0n σ I
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 p pVECs σ

 

(6.4) 
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where 
pσ is a tensor of the principal stress where the subscripts (1,2,3) denote the orthogonal 

material plane on which each principal stress lies. For example, an imposed Cauchy stress of 
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would resolve into the following principal stress tensor form 
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(6.5) 
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where s is the vector form of the Cauchy stress tensor,σ  and M is the Hill compliance tensor 

[26] consisting of the F, G, H, L, M, and N unitless material constants that can be obtained from 

creep tests [27]. The damage constant vectors, b (hr
-1) and λ (unitless), require a unique Hill 

compliance tensor, Mb and Mλ, respectively. Each compliance tensor requires 6 unitless material 

constants that can be determined analytically. Using a generalized form of the derivation outlined 

in APPENDIX B, the material constants for the compliance tensors can easily be analytically 

determined and are based on the uniaxial tertiary creep constants, M1, M2, χ1, χ2, ϕ1, and ϕ2. The 

strength of this new method is that induced anisotropy is implicitly stated through the direct use 

of the Cauchy stress vector and the Hill compliance tensor. The ABS function, which represents 

an element-wise absolute value of the argument vector, is introduced to enforce damage 

accumulation. 

In the isotropic damage formulation Eq. (4.6), it is observed that previous scalar-valued 

damage is related by  1   . An equivalent tensor form is produced by use of the 

elementwise Schur (or Hadamard) power of the damage applied tensor, Ω and the rotated 

damage constant tensor, Φ as follows 

  
 

ΦΦ
D Ω Ω  

1311 12

2321 22

31 32 33

11 12 13

21 22 23

31 32 33

 

 

  



   
    
    

D
 

(6.6) 

where the convenient tensor, D is later implemented in the damage rate tensor [101,102].  
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The damage rate tensor,ω , is multiplicative superposition of the damage constant tensors, 

B and the convenient tensor, D using the elementwise Schur (or Hadamard) product as follows 

 ω B D
 

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

B D B D B D

B D B D B D

B D B D B D

 
   
  

B D  
(6.7) 

The damage rate tensor is coupled with the anisotropic creep strain rate equation defined as 

follows 

 cr aniso
aniso Hill

Hill

n
A 




Ms
e

 
(6.8) 

where Aaniso, naniso are secondary creep material constants found via creep tests, M is the Hill 

compliance tensor, s is the Cauchy stress vector, and Hill is the Hill equivalent (net) stress due to 

the effective stress tensor, σ . To ease the implementation of the model into finite element code, 

the symmetric stress and strain tensors are converted back and forth to stress and strain vectors 

(e.g. σ s , cr crε e ). Material rotation can be performed in the damage rate tensor as follows 

 

T
aniso b pR T T

aniso p p
T T

p b p

M



TM T s

b s TMT s
s TM T s

 

T

pR

aniso
T T

p p




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TM T s

λ
s TM T s  

(6.9) 

and in the creep strain rate equation as follows 
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where T represents a material orientation transformation tensor about the x1 axis of the form 
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(6.11) 

The strengths of the improved model is that induced anisotropy is directly included. 

Changing the state of stress directly modifies the damage rate through the Hill compliance 

tensors. Damage evolution is thus dependent on the direction of principal loading. The use of 

Hill compliance tensors provide a great method by which both the secondary and tertiary creep 

behavior of the material can be modeled under material reorientation. 

To apply this model a fair number of constants are necessary. Six secondary creep 

constants need to be analytically determine and can be easily found via uniaxial creep tests (AL, 

AT, A45, nL, nT, and n45). The method is discussed in Section 3.6. Using the ISO formulation and 

an iterative optimization scheme, nine tertiary creep constants need to be numerically determined 

(M1, M2, M45, χ1, χ2, χ45, ϕ1, ϕ2, and ϕ45). For the subject material, these constants were obtained 

using the uSHARP automated optimization software and is discussed in Section 4.5. Lastly, three 

sets of six Hill constants need to be analytically determined for the M, Mb, and Mλ Hill 
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compliance tensors. The analytical solutions for these sets of constants are found in APPENDIX 

B. 

 

6.4 Rupture Prediction Model 

 

The improved anisotropic creep damage formulation greatly simplifies prediction of 

rupture time and critical damage for transversely-isotropic materials. Symbolic expansion of the 

damage rate tensor Eq. (6.7), provides the following 
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where bi (hr
-1) and λi are expressed in Eq. (6.3). The apriori disappears of shear damage rate due 

to the use of principal stresses occurs. Assuming that each term of damage is independent, 

component wise derivation provides 

 

    11
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i i i it b
 
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(6.12) 
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1 2 3i , ,  

where full vector predictions are produced. Rupture time, tr, can be considered equal to the 

minimal component found in the t vector. Additionally, rupture time could be determined using 

some effective approach but this is left for future study. Critical damage is assumed to be equal 

to that found in the ω component where rupture is expected to occur. Additionally, the final 

direction of rupture can be estimated based on the critical damage tensor. 

 The strength of the improved anisotropic model is that it provides the ability to predict 

rupture time and/or critical damage for any state of stress or material orientation. 

 

6.5 Numerical Approach 

 

The improved anisotropic creep damage model for transversely-isotropic materials is 

implemented into the finite element analysis (FEA) software ANSYS® identical to the previous 

model outlined in Section 5.4. 
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CHAPTER SEVEN: RESULTS 

7.1 Introduction 

 

This chapter presents and discusses the finite element and analytical results produced by 

using the isotropic and novel anisotropic creep damage deformation and life prediction 

formulations. The tertiary creep damage constants optimized using the isotropic creep damage 

formulation are listed. Using the optimized tertiary creep damage constants, the isotropic creep 

damage FE solutions are compared to available creep test experimental data. The tertiary creep 

damage constants are then characterized for temperature-dependence. Next, the method 

employed to determine the secondary, tertiary creep damage, and Hill constants required for the 

novel anisotropic novel anisotropic creep damage formulation is outlined. The secondary creep 

behavior of the novel formulation is analytically verified using the known minimum creep strain 

rates for L, T, and 45°-oriented specimen. An examination of damage evolution is performed. 

The novel formulation is shown to produce an accurate creep strain tensor for transversely-

isotropic materials. Finally, the two previously discussed life prediction models are compared to 

rupture times from experiments. Finite element, analytical, and MacLachlan-Knowles damage 

estimates are used to determined life and compared. 
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7.2 Isotropic Model 

 

Optimization of the Kachanov-Rabotnov isotropic creep damage formulation to the creep 

test experimental data has been used to determine the tertiary creep damage constants, M, χ, and 

ϕ as mentioned in Chapter 4. A list of these optimized constants is presented in Table 7.1. For 

each of the available creep tests, the final optimized finite element solution has been 

superimposed with creep deformation data, as shown in Figure 7.1. It should be noted that 

primary creep approximations where added directly to the collected FEM deformation data to 

account for the primary creep regime. It is observed that for all 16 creep tests, high-caliber fits to 

the creep deformation data was achieved. The isotropic creep damage model is found to 

accurately model the creep deformation as measured from a uniaxial specimen. 

The behavior of the tertiary creep damage constants with respect to temperature is very 

important. Temperature-dependent functions of the tertiary creep damage constants for both L 

and T orientations of DS GTD-111, would allow accurate modeling of creep strain that develops 

in directionally-solidified components under a thermal gradient. Taking the results of the 

optimization routine, an automated curving-fitting tool was used to determine suitable functions 

for the damage evolution constants. The tertiary creep damage coefficient, M, was found to work 

well in an exponential equation of the form 

 

   1 1 2 0M T M exp M T 
 

1 2

1 2

1

1 2128 93265
orientation

. , .

 

 

 


 
 
 

  

L

T  

(7.1) 
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Table 7.1– Tertiary creep damage constants for DS GTD-111 

Matl. Orient.  Temperature Stress Tertiary creep damage constants Functional fit, f(T)    

α (°C) (°F) (MPa) (ksi) 
M 

 (MPa
-χ

hr
-1) 

χ ϕ 
M 

(MPa
-χ

hr
-1) 

χ ϕ 
Relative 

Error 
Relative 

Error 
Relative 

Error 

L (0°) 649 1200 896 130 10.000 1.880 55.000 6.009 2.129 55.093 66.42% -11.70% -0.17% 

L (0°) 760 1400 408 60 20.847 1.900 8.500 28.556 2.129 10.342 -27.00% -10.76% -17.81% 

L (0°) 760 1400 613 89 19.784 2.231 13.261 28.556 2.129 10.342 -30.72% 4.80% 28.22% 

T (90°) 760 1400 517 75 36.161 2.106 14.810 50.881 2.099 29.210 -28.93% 0.30% -49.30% 

T (90°) 760 1400 613 89 51.801 2.203 39.931 50.881 2.099 29.210 1.81% 4.93% 36.70% 

L (0°) 816 1500 455 66 64.127 2.257 3.792 62.686 2.129 6.249 2.30% 5.99% -39.32% 

T (90°) 816 1500 455 66 167.590 1.981 28.224 118.221 2.099 17.444 41.76% -5.64% 61.80% 

L (0°) 871 1600 241 35 96.015 2.022 7.161 135.691 2.129 7.351 -29.24% -5.06% -2.58% 

L (0°) 871 1600 289 42 131.010 2.054 9.698 135.691 2.129 7.351 -3.45% -3.53% 31.93% 

T (90°) 871 1600 241 35 263.010 2.098 2.296 270.579 2.099 9.446 -2.80% -0.05% -75.70% 

T (90°) 871 1600 289 42 345.840 1.919 6.823 270.579 2.099 9.446 27.81% -8.61% -27.77% 

L (0°) 940 1724 244 35 579.120 2.310 7.069 357.522 2.129 8.018 61.98% 8.51% -11.84% 

T (90°) 940 1724 244 35 600.000 2.290 7.069 764.588 2.099 4.396 -21.53% 9.07% 60.81% 

L (0°) 982 1800 124 18 655.930 2.221 3.278 644.780 2.129 4.070 1.73% 4.30% -19.46% 

L (0°) 982 1800 145 21 665.200 2.288 5.126 644.780 2.129 4.070 3.17% 7.45% 25.95% 

45°* 871 1600 289 42 53.296 2.156 20.933 --- --- --- --- --- --- 

*[84] 
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Figure 7.1 - Creep deformation fits of L (open), T (filled), and 45°-oriented (half-filled) DS 
GTD-111 at temperatures from 649-982°C using the isotropic Kachanov-Rabotnov formulation 
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where T is in unit Celsius and M1 (MPa
-χ

hr
-1

) and M0 (unitless) are constants. The unitless weight 

values λ1 and λ2, were used to implement the formulation for both L and T orientations. Ideally, 

the creep constants would be expressed in terms of tensile data (e.g yield strength, UTS, etc); 

however, that is saved for future study. Figure 7.2 shows the regression fit of the temperature-

dependent function to the optimized constants. The temperature-dependent functions for the 

tertiary creep damage coefficient, M, carry an R2 value of 0.9593 and 0.9409 for L and T-

oriented specimen, respectively. 
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Figure 7.2 – Temperature-dependence of the M tertiary creep damage constants for DS GTD-111 
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The tertiary creep damage exponent, χ (unitless), was found to exhibit no perceivable 

temperature-dependence. The average value for L and T was observed as 2.1292 ± 0.2160 and 

2.0994 ± 0.2834, respectively. Small changes in the χ tertiary creep damage exponent have a 

strong effect on the damage rate and consequently the M and ϕ tertiary creep damage constants. 

The placement of the tertiary creep damage exponent, χ as a power of stress, σ, sets the χ 

constant as a stress sensitivity factor. The fluctuations in the χ tertiary creep damage constants 

found in the optimized fits (Table 7.1) have a detrimental effect on the caliber of the 

temperature-dependent regression fits for the M and ϕ tertiary creep damage constants. 
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Figure 7.3 – Temperature-dependence of the ϕ tertiary creep damage constants for DS GTD-111 
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Again, ideally, the temperature-dependence of creep constants would be expressed in 

terms of tensile data but this is saved for future study. In the current study, the tertiary creep 

damage exponent, ϕ, was found to produce a less than ideal fit to temperature in a polynomial 

equation of the form 

   3 2

3 2 1 0T T T          (7.2) 

where T is in units Celcius, and ϕ0, ϕ1, ϕ2, and ϕ3 are constants (independent sets for both L and 

T). Figure 7.3 shows the regression fit of the temperature-dependent function to the optimized 

constants. The temperature-dependent functions for the tertiary creep damage constants, ϕ, carry 

an R2 value of 0.9876 and 0.5309 for L and T-oriented specimen, respectively. The low R2 value 

in the T-oriented specimen data is likely due to the fluctuations observed in the χ tertiary creep 

damage constants. These slight fluctuations necessitate an observable shift in the ϕ tertiary creep 

damage constants to produce an accurate damage rate. This issue could be eliminated by 

conducting another batch optimization where the χ tertiary creep damage constants is negated as 

a possible temperature-dependent variable. Setting the χ tertiary creep damage constants as the 

known average from the initial optimization, could improve the modeling of temperature-

dependence of the tertiary creep damage constants. Additionally, the weak dependence could be 

a symptom of the lower number of experimental tests available for the T orientation and/or 

microstructural inconsistency due to the use of three different material batches. In general, the R2 

achieved could be improved by conducting additional experiments in the L and T orientations 

and removing outlier data points.  
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The formulation could be modified by relating the tertiary creep damage constants as a 

function of temperature-dependent material properties. This could be done with quantitative 

analysis of the correlation between elastic and plastic material properties with the M and ϕ 

constants. 

The implication of using these temperature-dependent functions is that it allows model 

structures whose boundary conditions include thermal gradients. Regions at elevated temperature 

will undergo a higher level of creep deformation compared to those at lower temperature. Using 

these functions leads to simulations that more accurately predict the locally critical points. Along 

similar lines, creep deformation during thermal cycling can be considered. 

 

7.3 Anisotropic Model  

 

Previous optimization using the isotropic Kachanov-Rabotnov formulation produced 

tertiary creep damage constants which can be directly applied in the novel anisotropic creep 

damage formulation. The anisotropic creep damage formulation requires uniaxial creep test 

experimental data for L, T, and 45°-oriented specimen in order to work correctly. This is due to 

the use of Hill‟s analogy as both a compliance tensor and equivalent stress in the creep strain rate 

Eq. (5.9). To determine the Hill constants, the creep strain rate, Eq. (5.9), is taken with the 

damage rate, Eq. (5.7), disabled via M1=0.0 and M2=0.0. Various stress transformations and 

material orientation transformations (about the x1 normal) are performed. The Hill constants are 

found to be dependent on the uniaxial Norton power law for L, T, and 45°-oriented specimen. 
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Subsequently, the Hill constants can be referred back to the minimum strain rates found for L, T, 

and 45°-oriented specimen.  The derivation of the Hill constants with an extended discussion can 

be found in Appendix B. For this study, L, T, and 45°-oriented specimen creep tests were 

conducted at a temperature of 871°C and 289 MPa uniaxial load. The secondary and tertiary 

creep, and derived Hill constants for DS GTD-111 required by the novel anisotropic creep 

damage formulation under these conditions are found in Table 7.2. 

 

 

Table 7.2 - Secondary, Hill, and tertiary creep damage constants for DS GTD-111 at 871°C 
1 ( )anison

anisoA MPa hr
 

 naniso 

5.7639 x 10
-21

 6.5068 

      

F G H L M N 

0.5 0.5 0.3866 1.6413 1.6413 1.2731 

      
1

1 ( )M MPa hr
 

 
1

2 ( )M MPa hr
 

 χ1 χ2 ϕ1 ϕ2 

131.01 x 10
-11

 345.84 x 10
-11

 2.054 1.9186 9.698 6.8226 
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Figure 7.4 - Material orientation study of x3 normal minimum creep strain rate at 871°C for 

various DS Ni-based materials 

 

Verification of the secondary creep behavior can be achieved using the creep strain rate, 

Eq. (5.9), with the damage rate, Eq. (5.7), disabled. In general, the secondary creep response of 

the material is controlled by the Aaniso, naniso and Hill constants F, G, H, L, M, and N. Disabling 

damage (M1=M2=0.0) leads to the minimum creep strain rates found in Figure 7.4. The observed 

curve follows the trend expected of a Hill potential based model compared to other DS Ni-based 

superalloys [106-109]. The FEM prediction of minimum creep strain rates pass through the 

known rates for L, T, and 45°-oriented specimen at 289MPa. The material behavior observed in 

the 279 MPa experiment at α=0.0° is inconsistent with the study response. Pre-existing flaws in 

the specimen account for the observed high minimum creep strain rate.  

Accurate estimates of damage evolution lead to high quality fits of the creep deformation 

data. For these purposes, the damage rate Eq. (5.7) is enabled. Simulations of L, T, and 45°-
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oriented specimen are executed and compared with those developed using the isotropic creep 

damage formulation. Figure 7.5 shows that the novel anisotropic formulation produces similar 

damage evolution to the isotropic Kachanov-Rabotnov damage evolution for L and T-oriented 

specimen; however, the behavior of the 45°-oriented specimen is not accurately modeled. This 

disconnect is expected. Not directly including the tertiary creep damage constants associated 

with the 45°-oriented specimen will naturally lead to a less than ideal estimation of damage 

evolution when compared to the isotropic creep damage model. The damage behavior embedded 

in the novel anisotropic model considers a linear relationship between the L and T-oriented 

specimen based on material orientation transformation; however, the behavior of DS GTD-111 

exhibits a maximized creep strain rate at an orientation between 35°-45°. While, the predicted 

damage evolution is not necessarily the same, it is found through examination of the available 

creep tests data that only slight tertiary creep behavior is found at 45° allowing for a good 

prediction of the creep strain rate at this orientation. 

With the aid of available the creep test data, the creep strain versus time from 

experimental data is compared with both isotropic and novel anisotropic creep damage 

formulations. Figure 7.6 shows the novel anisotropic formulation performs very well in modeling 

the creep test experimental data. The accurate prediction of creep strain for a 45°-oriented 

specimen demonstrates that despite a damage evolution that diverges from the isotropic solution, 

the novel anisotropic creep damage formulation can accurately predict the creep deformation that 

develops in transversely-isotropic materials under arbitrary material orientations. Thus the 

relationship between creep behavior, material orientation, and state of stress are taken into 

account. 
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Figure 7.5 – Damage evolution on the x3 normal of the isotropic and novel anisotropic creep 
damage formulations under 289MPa uniaxial load and 871°C 
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Figure 7.6 - Creep deformation on the x3 normal of novel anisotropic and isotropic creep damage 
formulations compared with creep test data for DS GTD-111 under 289MPa uniaxial load and 

871°C  
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The tensor creep strain behavior of the novel anisotropic creep damage model is of high 

importance. An accurate creep strain tensor for the subject material proves considerably 

improved estimations of creep deformation for directionally solidified components compared to 

the isotropic creep damage formulation. 

Assuming γ = 0.0, the creep strain tensor response of L, T, and 45°-oriented specimens 

are presented in Figure 7.7. In the case of an L specimen (Figure 7.7a), the creep strains found on 

the x2 and x3 normals are equivalent. This is suitable as it shows that isotropy is found on the x1-

x2 plane as expected of an L specimen. In the case of a T specimen (Figure 7.7b), the creep strain 

on the x2 normal is higher than what develops on the x3 normal. This is suitable because isotropic 

behavior is now found on the x1-x3 plane. The L grains produce a higher creep strain rate thus the 

x2 normal is higher than the x3 normal.  In the case of a 45°-oriented specimen (Figure 7.7c), the 

creep behavior on the x2 normal and x3 normal is the same, however; due to uniaxial loading the 

creep strain that develops in the x2 normal is compressive due to the deviatoric response.  

In the case of the isotropic creep damage formulation, most FEM codes generalize a full 

strain tensor via isotropic material properties [110]. In the case of a transversely-isotropic 

material this would not produce an accurate result. Thus the novel anisotropic model is found to 

produce a more accurate strain tensor. 
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Figure 7.7 – Components of the creep deformation using the novel anisotropic creep damage 
formulation for (a) L, (b) T, and (c) 45°-oriented specimen under 289MPa uniaxial load and 

871°C (note: primary creep is neglected) 
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7.4 Improved Anisotropic Model 

 

The novel anisotropic model produced improved results over the isotropic model; 

however, the damage evolution in intermediate orientations is not accurate. This inaccuracy in 

damage evolution will later be shown to lead to inaccurate rupture time predictions. Therefore, it 

is necessary to develop an improved anisotropic creep damage formulation.  

For the improved anisotropic formulation, the creep strain rate, Eq. (6.10), is exactly the 

same one used in the novel anisotropic formulation, Eq. (5.9). This leads to the secondary creep 

behavior (when disabled via M1=0.0 and M2=0.0) being identical to that previously found in 

Figure 7.4. The same secondary and tertiary creep, and derived Hill constants for DS GTD-111 

are required and listed in Table 7.2l; however, additional constants associated with the 45°-

oriented specimen are necessary, M45 = 53.296x10-11 MPa
-χ

hr
-1, χ45 = 2.1563,and ϕ45=20.933 at 

289MPa and 871°C. Three versions of Hill‟s compliance tensor are developed, one for secondary 

creep, M, and two that account for the damage behavior, Mb and Mλ, respectively. All three 

require a unique set of Hill constants. The derivation to find the Hill constants is found in 

APPENDIX B. For Mb and Mλ, the following modification is necessary in the derivation. 

 Mb Mλ 
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Figure 7.8 - Damage evolution on the x3 normal of the ISO, ANI, and IM-ANI formulations 
under 289MPa uniaxial load and 871°C 
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Figure 7.9 - Creep deformation on the x3 normal of the ISO, ANI, and IM-ANI formulations 
compared with creep test data for DS GTD-111 under 289MPa uniaxial load and 871°C 
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Accurate modeling of damage evolution is critical to determine rupture time and a quality 

prediction of creep deformation. The improved anisotropic model (IM-ANI), produces greatly 

improved results over the anisotropic model (ANI) in terms of damage at intermediated 

orientations, particular at 45° as depicted in Figure 7.8. As observed IM-ANI matches exactly the 

damage evolution produced using the isotropic Kachanov-Rabotnov formulation (ISO) with 

optimized tertiary creep constants. Interestingly, IM-ANI produces the same damage evolution in 

the L orientation and a higher damage rate in the T orientation. The increase in the T orientation 

can be attributed to round of error due to rotation of the two (6x6) Hill compliance tensor 

associated with damage, in addition to slightly convergence differences between formulations. 

The damage evolution produce is highly accurate and while facilitate quality predictions of 

rupture. 

 Accurate modeling of creep deformation using IM-ANI is easily achieved. Figure 7.9 

provides creep deformation using the ISO, ANI, and IM-ANI models compared to uniaxial creep 

tests experiments. It is observed that IM-ANI produces improved predictions in the 45° and T 

orientations compared to the ANI formulation. The modeling of the 45°-oriented tertiary creep 

behavior is greatly improved. 

 An examination of the tensorial creep deformation using IM-ANI is now necessary. 

Figure 7.10 depicts the components of creep deformation for L, T, and 45°-oriented specimen. 

IM-ANI produces components very similar to that produced using ANI. Slight changes are 

observed in the 45° and T-oriented specimen. This is due to increased damage rates compared to 

ANI. 
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Figure 7.10 - Components of the creep deformation using the IM-ANI formulation for (a) L, (b) 
T, and (c) 45°-oriented specimen under 289MPa uniaxial load and 871°C (note: primary creep is 

neglected) 

 

The use of the Cauchy stress vector and Hill compliance tensor directly in damage evolution, 

Eq. (6.7), results in implicit induced anisotropy. Thus the effect of multiaxial states of stress can 

be directly produced. A parametric look at various states of stress is provided in Chapter 8. 
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7.5 Isotropic Rupture Prediction 

 

Before analyzing the rupture time predictions using the isotropic rupture time prediction 

model Eq. (4.9), it is necessary to study the isotropic damage prediction Eq. (4.10), which will 

help facilitate an accurate estimate of critical damage. Work by MacLachlan and Knowles [43] 

suggests that critical damage is a limited by the ultimate tensile strength (UTS). Since the UTS is 

the maximum resistance to fracture it is a justly assumed criterion. Failure is reached when the 

net/effective stress Eq. (4.3) is equivalent to the UTS and takes the form 

 

 1net f

UTS

UTS

 
 




  


 (7.4) 

where simplification provides a estimate of critical damage. Table 7.3 provides a comparison of 

the isotropic (ISO), MacLachlan-Knowles (M-K), and half M-K damage predictions. The 

negative values of relative error demonstrate that the isotropic model (ISO) produces much lower 

values of critical damage when compared to M-K estimates. This inconsistency can be 

explained. The MacLachlan and Knowles damage formulation directly includes the UTS in the 

form 

 
net

netUTS

d
C

dt










 
 
 

 (7.5) 

where C and ν are constants. This provides a method by which failure is assumed when 

net/effective stress is equal UTS. The UTS directly influences not only the point of critical 

damage but also the rate of damage. The isotropic creep damage formulation does not directly 
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included UTS, thus the net/effective stress nears infinity at failure and the damage evolution is 

not altered. For the purposes of this study, it is found that reducing the M-K estimate by half 

greatly reduced the error between predicted critical damage. This has substantial benefits. 

Of importance is the relationship between stress and critical damage. Inspection of the 

applied stress versus critical damage is provided in Figure 7.11. It is observed that the ISO 

critical damage prediction produces a similar trend to the half M-K estimates. With additional 

creep tests a well defined stress-critical damage curve can be obtained. A function could be 

created using either prediction methods to determine critical damage at a set temperature and 

orientation. 

Table 7.3 - Damage Predictions for DS GTD-111 

Matl. Orient. Temperature Stress 
Ultimate Tensile 
Strength (UTS) 

Critical Damage, ωf Relative Error 

α (°C) (°F) (MPa) (ksi) (MPa) M-K M-K/2 ISO  M-K M-K/2 

L (0°) 649 1200 896 130 1110.00 0.19 0.10 0.05 -76.39% -52.77% 

L (0°) 760 1400 408 60 1108.00 0.63 0.32 0.35 -44.41% 11.18% 

L (0°) 760 1400 613 89 1108.00 0.45 0.22 0.13 -71.20% -42.39% 

T (90°) 760 1400 517 75 974.00 0.47 0.23 0.13 -72.29% -44.58% 

T (90°) 760 1400 613 89 974.00 0.37 0.19 0.03 -91.00% -81.99% 

L (0°) 816 1500 455 66 991.16 0.54 0.27 0.58 7.71% 115.43% 

T (90°) 816 1500 455 66 932.72 0.51 0.26 0.06 -87.56% -75.12% 

L (0°) 871 1600 241 35 802.00 0.70 0.35 0.25 -64.92% -29.84% 

L (0°) 871 1600 289 42 802.00 0.64 0.32 0.22 -65.35% -30.71% 

T (90°) 871 1600 241 35 834.00 0.71 0.36 0.43 -39.07% 21.85% 

T (90°) 871 1600 289 42 834.00 0.65 0.33 0.26 -60.22% -20.44% 

L (0°) 940 1724 244 35 457.99** 0.47 0.29 0.31 -34.33% 6.98% 

T (90°) 940 1724 244 35 626.57** 0.61 0.26 0.24 -61.24% -10.37% 

L (0°) 982 1800 124 18 191.38** 0.35 0.37 0.57 62.25% 54.53% 

L (0°) 982 1800 145 21 191.38** 0.24 0.35 0.33 37.97% -3.81% 

45°* 871 1600 289 42 641.21** 0.55 0.27 0.11 -79.92% -59.84% 

*[84], **[111] 
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Figure 7.11 – Stress-Damage curves for (a) L and (b) T orientations at 760 and 871°C 

 

 Taking the lessons learned from critical damage prediction, rupture time predictions 

using Eq. (4.9) are performed. Table 7.4 provides rupture time predictions at various set levels of 

critical damage. The least conservative estimate is when critical damage is set to unity (ωf = 1.0). 

This assumes failure occurs at a net/effective stress of infinity. Four rupture predictions were 

non-conservative with the highest at 1.182tf . Next the critical damage is set to 0.25. This is 

approximately the average value produced using the isotropic critical damage predictions in 

Table 7.3. This provides the second best predictions in terms of conservatism, with only two 

non-conservative predictions the highest being 1.0794tf. Next critical damage is set to M-K. This 

generates the results similar to critical damage at unity. Four rupture predictions were non-

conservative with the highest at 1.1622tf.  Reducing to half M-K, generates the most conservative 

predictions with three non-conservative rupture predictions the highest at 1.0757tf.  
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Table 7.4 – Rupture Time Predictions for DS GTD-111 

Matl. Orient. Temperature Stress 
Experimental 
Rupture Time, 

tf 
Predicted Rupture Time, trup (hr) 

α (°C) (°F) (MPa) (ksi) (hr) ω = 1.0 ω = 0.25 ω = M-K ω = M-K/2  

L (0°) 649 1200 896 130 465.9 502.9 502.9 502.9 501.2 

L (0°) 760 1400 408 60 5624.0 5533.2 5173.4 5532.8 5383.0 

L (0°) 760 1400 613 89 243.6 213.6 210.1 213.6 207.8 

T (90°) 760 1400 517 75 375.7 338.3 334.7 338.3 333.4 

T (90°) 760 1400 613 89 42.6 34.1 34.1 34.1 34.1 

L (0°) 816 1500 455 66 321.5 326.5 244.2 318.6 254.4 

T (90°) 816 1500 455 66 127.0 110.8 110.8 110.8 110.8 

L (0°) 871 1600 241 35 2149.0 1952.8 1766.2 1952.7 1894.6 

L (0°) 871 1600 289 42 672.2 629.1 600.1 629.1 618.9 

T (90°) 871 1600 241 35 980.2 1158.5 709.6 1139.2 886.2 

T (90°) 871 1600 289 42 635.3 701.9 628.0 701.8 670.1 

L (0°) 940 1724 244 35 68.7 65.3 58.9 64.9 61.0 

T (90°) 940 1724 244 35 62.5 70.5 63.6 70.5 64.6 

L (0°) 982 1800 124 18 821.3 799.9 566.3 675.0 688.9 

L (0°) 982 1800 145 21 301.7 278.7 230.8 227.8 258.3 

*45° 871 1600 289 42 455.0 422.4 421.7 422.4 422.1 

*[84] 

 

In most cases where non-conservative estimates were found, the least squares value at the 

end of optimization was high. This signifies that additional optimization using a more advanced 

routine could produce improved constants resulting in a better estimate of rupture time. In all 

cases, the rupture time predictions are within a factor of 1.2. When applying a factor of 1.2 or 

greater, rupture time predictions using a critical damage of unity can be taken as is. Figure 7.12 

provides a visual representation of the rupture time predictions compared to experimental. It 

shows that reducing the value of critical damage increases the conservatism of rupture time 
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predictions. It also shows predictions with critical damage at unity, although the least 

conservative, are acceptable. 

The following method should be used when attempting to produce the most conservative 

estimates of rupture time. The MacLachlan-Knowles (M-K) critical damage Eq. (7.4) should be 

found using the materials UTS. The M-K estimates should be reduced by half and applied within 

the rupture time prediction. The advantage of the M-K method is that it provides critical damage 

estimates for the temperature range of available UTS data and at level of applied stress. The 

disadvantage however, is that UTS data is needed at intermediate material orientations when 

estimate rupture time between 0° ≤ α ≤ 90°. For transversely-isotropic materials, the 

MacLachlan-Knowles estimate is not applicable without extensive mechanical testing. 
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Figure 7.12 – Rupture Time Comparison 
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7.6 Anisotropic Rupture Prediction 

 

Before analyzing the rupture time predictions using the derived anisotropic rupture time 

prediction model Eq. (5.11), it is necessary to study the derived anisotropic damage prediction 

Eq. (5.12), which will help facilitate an accurate estimate of critical damage. The anisotropic 

formulation requires creep test experimental data for L, T, and 45°-oriented specimen in order to 

function properly. Taking the material constants listed in Table 7.2 and the derived anisotropic 

damage prediction model Eq. (5.11), critical damage is predicted. Table 7.5 provides a 

comparison of the derived anisotropic (ANI), isotropic (ISO), and half M-K critical damage 

predictions at 871°C and 289 MPa. Similarly, Figure 7.13 presents this data in a graphical form. 

It is observed that in terms of critical damage the ANI model predictions aligned with that of the 

ISO model. It is similarly discovered that at intermediate orientations the critical damage is 

found to reducing using half M-K. This suggests that the creep rupture strength of the material 

between L and T orientations is reduced. The ANI and ISO models both successfully model this 

behavior but with higher reductions in critical damage at intermediate orientations. It should be 

noted that both the ANI and ISO prediction models require the experimental rupture time to 

predict critical damage; therefore, they cannot be used to predict critical damage at orientations 

where rupture time data is not available. It should also be noted that the M-K method requires 

UTS material data; therefore, it cannot be used to predict critical damage at orientations where 

UTS data is not available. In all situations extensive mechanical and/or creep tests are required to 

estimate critical damage at intermediate orientations. As suggested in the previous subsection, 
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using a critical damage of unity can provide a viable estimate of rupture time, despite slight non-

conservatism in some cases. 

 

 Table 7.5 – Anisotropic Damage Predictions for DS GTD-111 at 871°C 

 
Temperature Stress 

Ultimate Tensile Strength 
(UTS) 

Critical Damage, ωf 

 
(°C) (°F) (MPa) (ksi) (MPa) M-K/2 ISO prediction ANI prediction 

L 871 1600 289 42 802.00 0.32 0.255 0.255 

45°* 871 1600 289 42 641.21** 0.27 0.11 0.121 

T 871 1600 289 42 834.00 0.33 0.26 0.26 

*[84], **[111] 
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Figure 7.13 - Critical damage versus material orientation 
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Taking the lessons learned from critical damage prediction, rupture time predictions 

using Eq. (5.11) are performed. Table 7.6 provides rupture time predictions at critical damage of 

unity and half M-K. Examining the data, it is found that for L and T orientations, the ANI and 

ISO rupture time predictions are equal. The derived ANI rupture model, regresses to the ISO 

model at 0° and 90° material orientations. Thus the same predicted values found using ISO are 

found using ANI. A problem arises at the 45° material orientation. The ANI prediction is not 

similar to the ISO prediction. This inconsistency is a result of the damage formulation not 

accurately modeling damage evolution at 45° as discussed in subsection 6.3. In all cases, (L, T,  

and 45°-oriented) further optimization of the tertiary creep damage constants could improve 

rupture time predictions. 

A parametric study of the rupture prediction with critical damage set to unity is provided 

in comparison to ISO predictions and experimental data is provided in Figure 7.14. The behavior 

observed is not consistent with the known behavior exhibited in transversely isotropic materials. 

This behavior should be similar to that found for minimum creep strain rate versus orientation 

(Figure 7.4) where strain hardening occurs. The strain hardening will cause a reduction in rupture 

time found at intermediate orientations. Using the half M-K critical damage it is found that there 

is a slight reduction in rupture time prediction at the 45° orientation but not enough to be 

applicable. 

From the results of rupture time prediction (Figure 7.14) and of damage evolution (Figure 

7.5) it is observed that a damage evolution formulation that can account for the strain hardening 

at intermediate orientations requires development. 
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Table 7.6 – Anisotropic Rupture Time Predictions for DS GTD-111 

 
Temperature Stress 

Experimental 
Rupture Time, 

tf 

Predicted Rupture Time, trup 

ISO ANI 

 
(°C) (°F) (MPa) (ksi) (hr) ω = 1.0 ω = M-K/2 ω = 1.0 ω = M-K/2 

L 871 1600 289 42 672.2 629.1 618.9 629.1 618.9 

45°* 871 1600 289 42 455.0 422.4 422.1 653.071 617.7 

T 871 1600 289 42 635.3 701.9 670.1 701.9 670.1 

*[84] 
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Figure 7.14 – Novel anisotropic rupture time predictions at various material orientations 
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7.7 Improved Anisotropic Rupture Prediction 

 

As discussed in the previous section, the M-K method is not readily applicable to 

transversely-isotropic materials due to the requirement of UTS data which may not be available 

at intermediate material orientations. Thus for IM-ANI, M-K is not evaluated. 

First an examination of critical damage predictions using IM-ANI, Eq. (6.12), is performed. 

A comparison of ISO, ANI, and IM-ANI is proved in Table 7.7. Again it is observed that the 

critical damage predictions only vary slightly between the three formulations. In the case of IM-

ANI critical damage is assumed to be equal to that found in the component where fracture is 

expected to occur. In the current case, this is on the plane parallel to uniaxial loading. As 

previously states, the ISO, ANI, and IM-ANI formulations all require the final rupture time to be 

know in order to prediction critical damage, therefore critical damage predictions are not 

particularly useful because they require creep test data before a prediction can be made. 

However, when test data creep is available, a numerical formulation can be developed where 

critical damage is calculated for every element in a finite element component. Then as elements 

reach critical damage they can be removed, leading to a finite element creep-crack propagation 

method. 
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Table 7.7 – Improved Anisotropic Damage Predictions for DS GTD-111 at 871°C 

 
Temperature Stress Critical Damage, ωf 

 
(°C) (°F) (MPa) (ksi) ISO ANI IM-ANI 

L 871 1600 289 42 0.255 0.255 0.255 

45°* 871 1600 289 42 0.112 0.121 0.119 

T 871 1600 289 42 0.26 0.26 0.26 

*[84] 

 

An examination of the rupture time prediction using IM-ANI is conducted. Using the 

derived analytical rupture time prediction model, Eq. (6.12), predictions are found for L, T, and 

intermediately oriented specimen. As observed in Figure 7.15, IM-ANI is able to produce results 

which intersect with ISO predictions at L(0°) ,T (90°), and 45°. Interestingly, the minimal 

rupture time is found at approximately 60°. This can be contributed to the state of stress. A 

Uniaxial loading is applied on the x3 axis. The orientation of the material relative to the first 

principal stress direction contributes to a reduction in time before failure. 

The remarkable ability of this rupture time prediction model to work for any arbitrary 

state of stress and/or material orientation allows interesting possibility in modeling. For instance, 

an elastic FE solution of a component can be found. Then using the known state of stress and 

material orientation, the time to rupture of each element can be predicted. 
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Figure 7.15 - Improved anisotropic rupture time predictions at various material orientations 



121 
 

CHAPTER EIGHT: PARAMETRIC STUDY 

8.1 Introduction 

 

Examining the results found in Chapter 7, it is determined that the improved anisotropic 

creep damage formulation (IM-ANI) produces the most accurate tensors for damage and creep 

strain compared to the isotropic Kachanov-Rabotnov formulation (ISO) and the developed novel 

anisotropic creep damage formulation (ANI). 

It is important to note that the performance of the IM-ANI formulation when it is applied 

to various material orientations and states of stress. It is an important feature that the formulation 

accurately predicts damage evolution and creep deformation under these various conditions. First 

a material orientation study is performed under both uniaxial tension and compression. Rotation 

about the x1 axis is performed where the body is rotated from L to T (0° ≤ α ≤ 90°) and where 

creep deformation and damage evolution on the x3 normal are collected. Next, a uniaxial stress 

rotation is performed on L, 45°, and T-oriented specimen (0° ≤ β ≤ 90°) where creep deformation 

and damage evolution on the x3 normal are collected. This stress rotation process is repeated for 

biaxial, pure shear, and triaxial states of stress. Finally, rupture time predictions using Eq. (6.12), 

are performed for uniaxial, biaxial, pure shear, and triaxial states of stress for L,45°, and T-

oriented specimen. 

 

 



122 
 

8.2 Material Orientations under Uniaxial Tension and Compression 

 

Using the novel anisotropic model, a parametric study of the damage and creep strain that 

develops under different material orientations was performed (where an L specimen coincides 

with 0° and a T specimen with 90°). The material transformation tensor, T takes the following 

form 

 

       
       

   
   

           

2 2

2 2

2 2

1 0 0 0 0 0

0 cos sin 0 0 cos sin

0 sin cos 0 0 cos sin

0 0 0 cos sin 0

0 0 0 sin cos 0

0 2cos sin 2cos sin 0 0 cos sin

   

   
 
 

     

 
 
 
 

 
 
 
 
 

   

T

 

(8.1) 

where α represents an angle relative to the x3 normal (L-orientation). Uniaxial loading is applied 

in on the x3 normal. 

 Under 289MPa tensile loading and 871°C, the damage evolution and creep deformation 

is shown in Figure 8.1. It is observed that the most rapid damage evolution occurs at 60° while 

the least rapid occurs at 90°. Creep deformation in the L, 45°, and T orientations correspond to 

experimental data and the ISO formulation. Interestingly, the creep deformation at 30° and 45° 

orientations are very similar. While at 60° the damage evolution is maximized, the creep 

deformation is minimal. This is of major concern. 
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Under 289MPa compressive loading and 871°C, the damage evolution and creep 

deformation is shown in Figure 8.1. The damage evolution is shown to be exactly the same as 

that produce for tensile loading. In experimental data, it is observed that damage is reduced 

under compressive loading. Traditionally, this reduction in damage is neglected due to limited 

compressive creep test data being available; therefore, the absolute values of tensile and 

compressive creep deformation correspond. 
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Figure 8.1 - Parametric material rotation study of creep deformation and damage evolution on 

the x3 normal for tensile and compressive tests at 289MPa and 871°C 
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8.3 States of Stress 

 

It is critical that the improved anisotropic creep damage (IM-ANI) formulation be able to 

successfully account for any applied state of stress; therefore, a parametric study under uniaxial, 

biaxial, pure shear, and triaxial loading conditions is performed. 

First, a parametric uniaxial stress rotation study is performed for L, 45°, and T-oriented 

specimen under 289MPa and 871°C. The stress transformation tensor, Q, takes the following 

form 

 

0

0 0 0

0 0 0

0 0

T



  

 
 
 
  

σ QσQ

      

0vm 

       

   
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 





 
 
 
  

Q

 
(8.2) 

where rotation occurs about the x1 axis. The creep deformation and damage evolution on the x3 

normal are collected and shown in Figure 8.5. Examining the damage evolution for all three 

specimen, the principal damage on the material x3 orthogonal plane is found to reduce past β=45° 

as the first principal orientation switches to the material x2 orthogonal plane. In the case of creep 

deformation, at β = 0°, for L,45°, and T-oriented specimen, the deformation is equivalent to that 

observed in the available experimental data, and predicted using the ISO formulation. For the 

remaining studies of biaxial, pure shear, and triaxial states of stress, tensorial terms of damage 

evolution and creep deformation may arise. To simplify interpretation of these results, the 

coordinate system (x1,x2,x3) is replaced with the traditional to (X,Y,Z). This change is depicted 

in Figure 8.2.  
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Figure 8.2 – Coordinate system transformation 

 

Next, a study of the creep deformation and damage evolution tensors produced under 

biaxial loading of L, 45°, and T-oriented specimen is performed. The state of stress applied is in 

the following form 

 

0

0

0 0 0

3

0 3 0

3
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σ
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0m 
 

(8.3) 

where σ0 equals 289MPa. The creep deformation and damage evolution tensors are collected and 

shown in Figure 8.6. Examining the damage evolution of all three specimen it is observed that 

the L and T specimen produce the same principal values with the exception that due to material 

rotation, the evolution in the L orientation on Y and Z switches to, in the T orientation, as Z and 
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Y. This is consistent with what is expected when under an equi-biaxial loading condition. Again 

it is observed that the 45° specimen produces an increased damage evolution compared to L and 

T. Creep deformation and damage evolution are still dependent on material orientation. In creep 

deformation, it is observed that the compressive stress on the Y normal produces a compressive 

creep strain on the Y normal. Under equibiaxial loading, the mean stress is zero thus the damage 

evolution on the X and Y normals is identical for the 45°-oriented specimen where damage 

behaviors the same on the X and Y normals. For the L and T-oriented specimen, the damage and 

creep deformation behavior is not identical. This can be attributed to the uniaxial creep damage 

behavior in associated with each normal. This slightly alters the damage evolution on each 

normal. A robustness of the IM-ANI formulation is observed. 

A study of the creep deformation and damage evolution tensors produced under pure 

shear loading of L, 45°, and T-oriented specimen is performed. The state of stress applied is in 

the following form 

 

0

0

0 0 0

3
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3

3
0 0
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(8.4) 

where σ0 equals 289MPa. The creep deformation and damage evolution tensors are collected and 

shown in Figure 8.7. The shear creep deformation observed in all three specimen is very near 

linear. This behavior is expected and is observed in other Ni-based superalloys [114]. It is 
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observed that for all three pure shear specimens, principal damage develops exactly the same as 

observed under biaxial loading. Under pure shear conditions, shear damage is shown by as 

 

D

F F
         

A A
    1 D

s

A
D

A
 

 
(8.5) 

where τ is the nominal shear strain,   represents the effective shear strain, F is the nominal load, 

A is the undamaged area, and AD is the reduced area. Similar to the assumptions made in ISO, 

ANI, and IM-ANI, the net are reduction is generalized into a phenomenological term, damage, 

ω, and is resolved on normal planes. Below is a figure that represents shear damage development 

in a single shear specimen (Figure 8.3). 

 

 
Figure 8.3 - Single shear specimen (a) shearing region (b) damage in representative element 

under pure shear strain [113] 
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Figure 8.4 - Schematic of triaxial state of stress with visible material grain (note: under 
equitriaxial loading) 

 

Finally, a study of the creep deformation and damage evolution tensors produced under 

triaxial loading of L, 45°, and T-oriented specimen is performed. The state of stress applied is in 

the following form 
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(8.6) 

where σ0 equals 289MPa. The creep deformation and damage evolution tensors are collected and 

shown in Figure 8.8. Under triaxial loading conditions, the triaxiality of stress, (or the influence 

of mean stress and/or first principal stress on tensorial damage formation) can induce slightly 

counter intuitive results. Most famously, Hayhurst developed the following triaxial stress that 

replaces the effective stress in the isotropic formulations damage evolution [51,47]. 
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  1 3 1
r m

            (8.7) 

The Hayhurst triaxial stress, σr, is related to the principal stress, σ1, hydrostatic (mean) stress, σm, 

and the Von Mises effective stress, 𝜎 , and includes two weight factors  and  that are 

determined from multiaxial creep experiments. Damage is found to evolve most briskly on the 

compressively loaded Y normal. Contributions from tensile loading on the X and Z normals 

accelerate Y normal damage evolution. For the L-oriented specimen (Figure 8.4a), equal tensile 

loading is found on the X and Z normals. The tensorial creep damage on X and Z are not the 

same. This is because the X and Z normals correspond to T and L uniaxial creep damage 

behaviors, respectively. For the 45°-oriented specimen (Figure 8.4b), again equal tensile loading 

is found on the X and Z normals. Similarly, the behavior on X and Z are not the same. This is 

because the X and Z normals correspond to T and 45° uniaxial creep damage behaviors, 

respectively. For the T-oriented specimen (Figure 8.4c), the exact same uniaxial creep damage 

behavior is expected and observed on the X and Z normals. This is due to equal tensile loading 

and uniaxial T creep damage behavior on both normals. 
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Figure 8.5 - Parametric uniaxial stress rotation study of creep deformation and damage evolution on the x3 normal for an L, 45°,and T-

oriented specimen (a), (b), and (c) respectively 
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Figure 8.6 – Biaxially loaded creep deformation and damage evolution for an L, 45°,and T-oriented specimen (a), (b), and (c) 

respectively 
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Figure 8.7 – Pure shear loaded creep deformation and damage evolution for an L, 45°,and T-oriented specimen (a), (b), and (c) 

respectively 
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Figure 8.8 – Triaxially loaded creep deformation and damage evolution for an L, 45°,and T-oriented specimen (a), (b), and (c) 

respectively
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8.4 Rupture Prediction 

 

The improved anisotropic creep damage (IM-ANI) formulation contains a highly accurate 

damage mechanics formulation that when integrated produces rupture time predictions. The 

rupture time prediction, Eq. (6.12), requires a value of critical damage, ωcr , to be assumed. In the 

current case ωcr = 1.0. 

The strength of the IM-ANI rupture time prediction equation is that any state of stress 

and material orientation can be applied. Additionally, it can be used to predict the orientation 

upon which rupture will occur. The orientation with the minimal value of rupture time is the 

failure direction. To demonstrate, predictions of rupture time for uniaxial, biaxial, pure shear, 

and triaxial states of stress were applied for L, 45°, and T oriented specimen at 871°C and are 

listed in Table 8.1 through Table 8.4. 

For uniaxial loading, load is applied on the Z normal. Naturally, rupture was found to 

occur on the Z normal in all cases. Under biaxial loading distinct rupture direction are found for 

the three specimen. For the L-oriented specimen, rupture is found on the Z normal. For the 45°-

oriented specimen, rupture is found on both Y and Z normals. For the T-oriented specimen, 

rupture occurs on the Y normal. These are all due to the specific material behavior at the current 

material orientation and the applied states of stress. Under pure shear stress, load is applied on 

the YZ shear component. Naturally, rupture was found to occur on the YZ shear component in 

all cases. Interesting, under triaxial stress, rupture was found in all cases to occur on the Y 
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normal. This can be an attributed to the triaxiality of stress inducing a strong anisotropic 

response on the Y normal. 

A plot of the stress against rupture time can be observed in Figure 8.9. Pure shear was 

found to produce the shortest rupture times while triaxial the longest. This is due to the loading 

conditions being based around von Mises equivalent stress instead of the internally used Hill‟s 

equivalent stress. This should be corrected in later studies. For all loading conditions, and at each 

material orientation (L, 45°, and T), the maximum load applied was equal to material ultimate 

tensile strength (UTS). At every instance a rupture time prediction was found at less than 200 

hrs. Under UTS equivalent loading the rupture time should be minimal and related to ductile 

necking until rupture. Additional creep tests should be performed at the UTS in L, 45°, and T 

oriented specimen to determine the short time before failure. Then a comparison of the rupture 

predictions are this stress level can be performed. 

A potentially useful property of the IM-ANI rupture time prediction equation is that it 

provides a method by which specimen rupture time can be predicted for conditions which may 

have been determined under purely elastic loading. When it is necessary to conduct multiple tests 

and available lab experiment time is limited. It can be used to produce states of stress and 

temperature that can be done within lab time limits. 
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Table 8.1 - Rupture predictions under uniaxial loading of DS GTD-111 specimens at 871°C  

L 45° T 

Stress Time Stress Time Stress Time 

(MPa) (hr) (MPa) (hr) (MPa) (hr) 

802 77 641 82 834 80 

600 140 600 94 600 157 

400 323 400 217 400 360 

289 629 289 422 289 702 

200 1340 200 900 200 1495 

10 630100 10 423100 10 703000 

 

Table 8.2 - Rupture predictions under biaxial loading of DS GTD-111 specimens at 871°C 

L 45° T 

Stress Time Stress Time Stress Time 

(MPa) (hr) (MPa) (hr) (MPa) (hr) 

802 91 641 120 834 91 

600 166 600 138 600 166 

400 381 400 317 400 381 

289 743 289 618 289 743 

200 1582 200 1316 200 1582 

10 743900 10 618900 10 743900 

 

Table 8.3 - Rupture predictions under pure shear loading of DS GTD-111 specimens at 871°C 

L 45° T 

Stress Time Stress Time Stress Time 

(MPa) (hr) (MPa) (hr) (MPa) (hr) 

802 91 641 120 834 91 

600 166 600 138 600 166 

400 381 400 317 400 381 

289 743 289 618 289 743 

200 1582 200 1316 200 1582 

10 743900 10 618900 10 743900 
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Table 8.4 - Rupture predictions under triaxial loading of DS GTD-111 specimens at 871°C 

L 45° T 

Stress Time Stress Time Stress Time 

(MPa) (hr) (MPa) (hr) (MPa) (hr) 

802 87 641 82 834 71 

600 157 600 94 600 140 

400 360 400 217 400 323 

289 702 289 422 289 629 

200 1495 200 900 200 1340 

10 703000 10 423100 10 630100 

 

 

Rupture Time, t
f  

(hr)

101 102 103 104 105 106

U
n
ia

x
ia

l 
S

tr
e
s
s
, 

M

P
a


200

400

600

800

1000

L (FEM)

45 (FEM)

T (FEM)

L (EXP)

45 (EXP)

T (EXP)

 
Figure 8.9 – Stress-rupture time curves for DS GTD-111 for L, 45°, and T-oriented specimen at 

871°C with (a) unaixial – circle (b) biaxial – square , (c) pure shear – diamond , and (d) triaxial – 
hex  
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CHAPTER NINE: CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

 

The damage evolution and creep deformation of DS GTD-111 has been characterized 

using three different creep damage constitutive models. Integration of these formulations has 

provided time to failure predictions at a high caliber of accuracy. The following conclusions can 

be drawn. 

The Kachanov-Rabotnov isotropic creep damage formulation is found to successfully 

model the creep deformation behavior of DS GTD-111 in the uniaxial L, T, and 45° orientations. 

Using the available creep deformation data, secondary creep constants were analytically 

determined. Utilizing the uSHARP software, optimization with the simulated annealing 

algorithm produced tertiary creep constants that accurately predict the creep deformation at 

various stress and temperature conditions. The obtained secondary and tertiary creep constants 

were regression fit into a temperature-dependent form. These temperature-dependent functions 

are found to accurately and moderately match the optimized tertiary creep constants in the L and 

T orientations, respectively. Integration of the creep damage formulation provided critical 

damage and rupture time prediction models. A study of the predicted critical damage compared 

with MacLachlan-Knowles estimates shows that in general critical damage predicts are below 

the ultimate tensile strength equivalent net/effective stress. Rupture time predictions accurately 

matched the available creep rupture data when a priori critical damage was assumed unity. 
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Setting a priori critical damage to half the MacLachlan-Knowles critical damage estimate 

provides additional conservation in rupture time predictions. The isotropic creep damage 

formulation does not provide a full creep strain tensor for transversely-isotropic materials; 

therefore, it was necessary to develop the novel anisotropic tertiary creep damage formulation. 

The novel anisotropic tertiary creep damage formulation (ANI) for transversely-isotropic 

materials performs equal to the Kachanov-Rabotnov isotropic tertiary creep damage formulation 

at modeling the creep response of L and T-oriented specimen of DS GTD-111. The novel 

formulation provides a full creep strain tensor for transversely isotropic materials based on a 

generalization of the Kachanov-Rabotnov formulation using the Hill‟s compliance tensor and a 

unique damage mechanics model. The developed damage mechanics model is analytical shown 

to work under various states of material orientation and stress. Using the creep deformation 

equation, an analytical method has been developed to determine the required Hill constants. The 

ANI formulation produces accurate creep strain tensor that accounts for elongation and angular 

distortions for L and T orientations but does not function correctly for intermediate material 

orientations (0°< α <90°). Slip plane damage is not accounted for; therefore, the damage 

mechanics model is inaccurate under material rotation. The inaccurate damage mechanics model 

leads to inaccurate and complicated critical damage and rupture time prediction models; 

therefore, it was necessary to develop the improved anisotropic creep damage formulation.  

The improved anisotropic tertiary creep damage formulation for transversely-isotropic 

materials is able to accurately model the creep deformation in L, T, and 45°-oriented specimen. 

The improved formulation provides a full creep strain tensor for transversely-isotropic materials 
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based on a generalization of the Kachanov-Rabotnov formulation using the Hill compliance 

tensor in both the creep deformation and damage evolution equations. The model is able to 

accurately predict damage evolution and creep deformation under any state of stress and/or 

material orientation. Integration provides simple critical damage and rupture time prediction 

vectors where rupture time is equal to the minimal value. The orientation upon which failure is 

reached is assumed to be associated with the component where the minimal value is found. 

Rupture time predictions are accurate when compared with creep test data. The parametric study 

shows the model is well behaved under various materials orientations and uniaxial, biaxial, pure 

shear, and triaxial states of stress. 

 

9.2 Future Work 

Overall, the improved anisotropic creep damage formulation provides a solid foundation 

for modeling the creep damage behavior of transversely-isotropic materials. Additional work 

could be performed to improve the characterization of material behavior. Following are some 

recommendations for future work. 

 

1) Limited uniaxial tensile creep test data is available for DS GTD-111. Scatter cannot be 

clearly identified and accounted for unless additional creep tests are performed. The 

number of creep test in the L, T, and 45° orientations are not equal. The temperature-

dependence of creep constants for the T orientation suffers due to a lack of creep tests. 

The creep damage behavior in the 45° orientation is not well understood. To improved 
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damage evolution and creep deformation and rupture time predictions, additional creep 

tests are desired. At each temperature level for L, T, and 45°-oriented specimen, tests 

should be conducted at the same applied load. 

 

2) No compressive creep tests are available for DS GTD-111. The tensile/compressive 

behavior of the subject material is not known. Modified net/effective stress equations, 

such as the Hayhurst triaxial stress, have been developed to account for 

tensile/compressive asymmetry. Compressive creep tests need to be conducted such that a 

modified net/effective stress can be implemented within the improved anisotropic creep 

damage formulation. Any required tensile/compressive weight factors could be obtained 

using uSHARP optimization. 

 

3) Optimization was performed for each uniaxial creep test independently. This results in 

creep damage constants dependent on the individual behavior of a single creep test and 

not the generalized behavior observed from a set of tests. The optimization method 

should be modified such that all specimen at a particular orientation (L, T, or 45°) and 

temperature level are optimized within the same batch. This can be done utilizing the 

uSHARP software (Figure A.3).This would produce creep damage constants that are not 

specialize per-test but account for the generalized behavior of the material in a particular 

orientation and temperature at any stress level. 
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APPENDIX A: uSHARP SCREENSHOTS 
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Figure A.1 – uSHARP Logo 

 

 

Figure A.2 - uSHARP main menu  (single test optimization) 
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Figure A.3 - uSHARP main menu (batch test optimization) 
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APPENDIX B: HILL CONSTANTS DERIVATION 
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The material used to verify the model is the Ni-based superalloy DS GTD-111. DS GTD-

11 is an “directionally-solidified” material commonly used in gas turbine applications [74]. It has 

been found to produce enhanced creep life, impact strength, corrosion and thermal fatigue 

resistance compared to its equiaxed counterpart [75-77].  The material is transversely-isotropic 

where isotropy is found in the x1-x2 plane while different materials properties are found on the x3 

normal plane (Figure B.1a). 

 

 

Figure B.1 - Grain schematic of DS GTD-111 (a) unit volume and grain structure (b) L-oriented 
(c) T-oriented (d) and 45°-oriented 

 

To determine the secondary creep constants, Aaniso and nansio, and the Hill constants F, G, 

H, L, M, and N the authors derived constants from tensile specimen [27,104]. Previous research 
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by the authors has provided uniaxial A and n constants for DS GTD-111 [105]. These results 

where formulated as follows 

 

33

33

45
33 45

min L
L

min T
T

min

n
A

n
A

n
A

 

 

  








 

 

(B.1) 

where 33
min describes the minimum creep strain rate found in the specimen depicted in Figure 

B.1a, b, and c. Creep test data for DS GTD-111 oriented at 45° is not available. Following trends 

in 0°, 45°, and 90° data for comparable DS Ni-based superalloys a set of constants at 45° is 

deduced for DS GTD-111 [105-108]. Since the desire is to model secondary creep, damage 

evolution is neglected leading to the following form of the creep strain rate equation 
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(B.2) 

where T represents a material orientation transformation tensor about the x1 axis of the form 
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It is assumed that initially the L orientation is aligned with normal x3 and the isotropic T 

orientations are found on x1 and x2 normals.  For the L specimen, α = 0°, leading to a creep strain 

rate in the x3 normal of 
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2
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where it is assumed that F=G and G is chosen arbitrarily. For the T specimen, θ = 90°, thus the 

creep strain rate in the x3 normal is 
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(B.5) 

where rearranging equation (B.4) to solve for Aaniso and apply it in equation (B.5) leads to 
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(B.6) 

For the 45° specimen, θ = 45°, thus the creep strain rate in the x3 normal is 
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(B.7) 

using equations (B.5) leads to 
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(B.8) 

where it is assumed that L=M. To determine the final constant, N, a symbolic plane stress 

rotation is applied. Initially the state of stress is set as 
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where the Hill equivalent stress resolves to the following 

  2 22 4Hill 33 0 0G H     
 

(B.9) 

In the case where the state of stress is rotated by 45° about the x3 axis, pure shear stress develops 

in the x1-x2 plane of the form 
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where the Hill equivalent stress resolves to the following 

  2 22 2Hill 33 0G N   
 

(B.10) 

then by equating Eqns. (B.9)-(B.10) , the N constant can be determined. 
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   14 1N t G 
 

(B.11) 

Implementation of Eqns. (B.4), (B.6), (B.8), and (B.11) leads to the constants found in Table 

B.1. 

 

Table B.1 - Secondary, Hill, and tertiary creep damage constants for DS GTD-111 at 871°C 
Aaniso 1( )anison

MPa hr
   naniso 

5.7639 x 10
-21

 6.5068 

  

F G H L M N 

0.5 0.5 0.3866 1.6413 1.6413 1.2731 

  

M1 
1( )MPa hr

   M2 
1( )MPa hr

   χ1 χ2 ϕ1 ϕ2 

131.01 x 10
-11

 345.84 x 10
-11

 2.054 1.9186 9.698 6.8226 

To determine the tertiary creep damage constants M1, M2, χ1, χ2 , ϕ1, and ϕ2 an automated 

optimization routine uSHARP was used [98]. Finite element simulations using the isotropic 

Kachanov-Rabotnov model Eqns. (4.4)-(4.6) where performed and compared with corresponding 

creep test data in L and T orientations. The Corona et al. simulated annealing multimodal global 

optimization algorithm was utilized [99]. The applied constants can be found in Table B.1. 

Additional results can be found in another paper by the authors [105]. 
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To determine constants for the Mb and Mλ tensors, the only requirements are the 

following modifications 

 Mb Mλ 

(B.12) 
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APPENDIX C: ANALYTICAL EXERCISE OF THE NOVEL DAMAGE 
MODEL 
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Figure C.1 - Symbolic rotation study configuration schematics 

 

In order to verify the functionality of the developed damage rate equation, an analytic 

study was performed. Since the first principal stress direction and/or the material orientation may 

not be aligned with a normal of the representative volume element (RVE) local coordinate 

system, the damage rate must be determined via rotation. In addition, use of the damage control 

variable, γ significantly alters the damage rate tensor. Seven configurations of rotation are 

presented in Figure C.1. The material under consideration is transversely-isotropic thus only 2D 

schematics are necessary. The conditions of these configurations are listed in Table C.1. Both 
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material and stress are reoriented about the x1 axis, where material coincides with angle α and 

stress transformation with angle β.  

 

Table C.1 – Material and stress orientation cases 

Case No. Configuration 
First Principal Stress 

Direction, n1
T
 

Material Orientation 

Vector, νT
 

1 No Rotation (α=0°, β=0°)  0 0 1   0 0 1  

2 
Material 45° Rotation Only 

(α=45.0°, β=0°) 
 0 0 1   1 2 1 20  

3 
Stress 45° Rotation Only 

(α=45.0°, β=45.0°)  1 2 1 20   0 0 1  

4 

Stress and Material 45° 

Rotation (α=45.0°, 
β=45.0°) 

 1 2 1 20   1 2 1 20  

5 
Reference Frame Shift 

(α=90.0°, β=90.0°) 
 0 1 0   0 1 0  

6 
Material 90° Rotation Only 

(α=90.0°, β=0°) 
 0 0 1   0 1 0  

7 
Stress 90° Rotation Only 

(α=0°, β=90.0°) 
 0 1 0   0 0 1  

 

In Case 1, neither stress nor material rotations are performed. The rotated damage 

constant tensors and first principal stress influence tensor are along the diagonal; therefore it is 

assumed that the shear damage rate elements 12 13 23, , 0.0ω ω ω
 
and

 12 13 23, , 0.0    . The 

following damage rate tensors are produced 
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where isotropically (γ = 0.0) damaging materials develop x1, x2, and x3 normal damage rate terms 

and anisotropically (γ = 1.0) damaging materials only develop damage in the normal aligned with 

the first principal stress direction. This result matches the Kachanov-Rabotnov isotropic 

formulation [5,6]. 

In Case 2, the material orientation alone is rotated at 45°. When the material is reoriented 

but the first principal stress direction is still aligned with x3 of the RVE local coordinate system, 

effective damage rate terms developed due to the rotated damage constant tensors, B and D. It is 

symbolically found a posteriori that shear damage rate elements 12 13 23, , 0.0ω ω ω . Thus it can 

be assumed a priori that 12 13 23, , 0.0     to produce the following 
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where again it is found that isotropically (γ = 0.0) damaging materials develop x1, x2, and x3 

normal damage rate terms and anisotropically (γ = 1.0) damaging materials only develop damage 

in the first principal stress direction. 

In Case 3, the state of stress is modified such that the first principal stress direction is 

rotated at 45°. When the first principal stress direction is not aligned with a normal of the RVE 

local coordinate system, shear damage terms will appear. Due to the development of shear terms 

the damage applied tensor,  becomes more complex. It is symbolically found a posteriori that 

shear damage rate elements 12 13, 0.0ω ω . Thus it can be assumed a priori that 12 13, 0.0    (It 

should be noted that for γ = 0.0 it was found also that 23 23, 0.0 ω ) to produce the following 
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where the stress rotation results in a rotation of the isotropically expected damage rate (seen in 

Case 1) based on first principal stress direction. Physically this is an accurate representation, 

similar to the results of a stress transformation of the form 
T σ QσQ but applied on the damage 

rate tensor. 

In Case 4, both the state of stress and material orientation are rotated. Reorientation in 

both the rotated damage constant tensors and first principal stress influence tensor cause shear 

terms to develop in addition to transformed damage rate terms. It is symbolically found a 

posteriori that shear damage rate elements 12 13, 0.0ω ω . Thus it can be assumed a priori that 

12 13, 0.0    (It should be noted that for γ = 0.0 it was found also that 23 23, 0.0 ω ) to produce 
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where the rotation of the material orientation leads to effective damage rate terms. For 

isotropically damaging materials the model reacts similar to Case 2, while for anisotropically 

damaging materials the coupled stress rotation leads to a highly complex calculation. 

Conveniently, Tensor mathematics simplifies implementation. Due to the complexity of this 

solution, it is difficult to derive any relevant physical interpretation. However careful 

examination shows a rotation of the effective damage terms found in Case 2. 

In Case 5, a 90° rotation of both the state of stress and material orientation occurs. It is 

resolved as follows 
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showing a pure plane shift of the system can accurately be performed. 

In Case 6, the material orientation alone is rotated at 90°. When the material is reoriented 

(90°) while the first principal stress direction is still aligned (0°), it is found that the T orientation 

is parallel to the first principal stress. It is symbolically found a posteriori that shear damage rate 

elements 12 13 23, , 0.0ω ω ω . Thus it can be assumed a priori that 12 13 23, , 0.0     to produce 

the following 
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where for isotropically damaging materials the Case 5 tensor is found again. However, for 

anisotropic damaging materials only the element coinciding with the first principal stress 

direction arises.  

 In Case 7, the state of stress is modified such that the first principal stress direction is 

rotated at 90° while material orientation is still aligned (0°). Using the same assumptions as Case 

6 the following is produced 
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where for isotropically damaging materials the Case 1 tensor is found again. However, for 

anisotropic damaging materials only the element coinciding with the first principal stress 

direction arises.  

Examining the results of Cases 1-7, it is shown that the model performs robustly under 

various rotation configurations. Damage rates are not only determined by the induce anisotropy 

controlled by the first principal stress direction via,γ , but also the material orientation both 

relative to a normal of the RVE local coordinate system. 
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