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ABSTRACT 

The diffuse-interface phase-field model is a powerful method to simulate and predict 

mesoscale microstructure evolution in materials using fundamental properties of 

thermodynamics and kinetics. The objective of this dissertation is to develop phase-field model 

for simulation and prediction of interdiffusion behavior and evolution of microstructure in multi-

phase binary and ternary systems under composition and/or temperature gradients. Simulations 

were carried out with emphasis on multicomponent diffusional interactions in single-phase 

system, and microstructure evolution in multiphase systems using thermodynamics and kinetics 

of real systems such as Ni-Al and Ni-Cr-Al. In addition, selected experimental studies were 

carried out to examine interdiffusion and microstructure evolution in Ni-Cr-Al and Fe-Ni-Al 

alloys at 1000°C. Based on Onsager’s formalism, a phase-field model was developed for the first 

time to simulate the diffusion process under an applied temperature gradient (i.e., 

thermotransport) in single- and two-phase binary alloys. 

Development of concentration profiles with uphill diffusion and the occurrence of zero-

flux planes were studied in single-phase diffusion couples using a regular solution model for a 

hypothetical ternary system. Zero-flux plane for a component was observed to develop for 

diffusion couples at the composition that corresponds to the activity of that component in one of 

the terminal alloys. Morphological evolution of interphase boundary in solid-to-solid two-phase 

diffusion couples (fcc-γ vs. B2-β) was examined in Ni-Cr-Al system with actual thermodynamic 

data and concentration dependent chemical mobility. With the instability introduced as a small 

initial compositional fluctuation at the interphase boundary, the evolution of the interface 

morphology was found to vary largely as a function of terminal alloys and related composition-
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dependent chemical mobility. In a binary Ni-Al system, multiphase diffusion couples of fcc-γ vs. 

L12-γ′, γ vs. γ+γ′ and γ+γ′ vs. γ+γ′ were simulated with alloys of varying compositions and 

volume fractions of second phase (i.e., γ′). Chemical mobility as a function of composition was 

employed in the study with constant gradient energy coefficient, and their effects on the final 

interdiffusion microstructure was examined. Interdiffusion microstructure was characterized by 

the type of boundaries formed, i.e. Type 0, Type I, and Type II boundaries, following various 

experimental observations in literature and thermodynamic considerations. Volume fraction 

profiles of alloy phases present in the diffusion couples were measured to quantitatively analyze 

the formation or dissolution of phases across the boundaries. Kinetics of dissolution of γ′ phase 

was found to be a function of interdiffusion coefficients that can vary with composition and 

temperature. 

The evolution of interdiffusion microstructures in ternary Ni-Cr-Al solid-to-solid 

diffusion couples containing fcc-γ and γ+β (fcc+B2) alloys was studied using a 2D phase-field 

model. Alloys of varying compositions and volume fractions of the second phase (β) were used 

to simulate the dissolution kinetics of the β phase. Semi-implicit Fourier-spectral method was 

used to solve the governing equations with chemical mobility as a function of compositions. The 

simulation results showed that the rate of dissolution of the β phase (i.e., recession of β+γ two-

phase region) was dependent on the composition of the single-phase γ alloy and the volume 

fraction of the β phase in the two-phase alloy of the couple. Higher Cr and Al content in the γ 

alloy and higher volume fraction of β in the γ+β alloy lower the rate of dissolution. Simulated 

results were found to be in good agreement with the experimental observations in ternary Ni-Cr-

Al solid-to-solid diffusion couples containing γ and γ+β alloys.  
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For the first time, a phase-field model was developed to simulate the diffusion process 

under an applied temperature gradient (i.e., thermotransport) in multiphase binary alloys. 

Starting from the phenomenological description of Onsager’s formalism, the field kinetic 

equations are derived and applied to single-phase and two-phase binary system. Simulation 

results show that a concentration gradient develops due to preferential movement of atoms 

towards the cold and hot end of an initially homogeneous single-phase binary alloy subjected to 

a temperature gradient. The temperature gradient causes the redistribution of both constituents 

and phases in the two-phase binary alloy. The direction of movement of elements depends on 

their atomic mobility and heat of transport values. 
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CHAPTER 1 
INTRODUCTION 

1.1. General Background 

The phenomenon of atomic migration or diffusion has been the subject of investigation 

for more than 150 years. Though diffusion is important in non-crystalline materials, the majority 

of diffusion studies are concerned with crystalline solids. The reason behind this can be 

attributed to the fact that diffusion plays an important and often a decisive role in many phase 

transformations and microstructure evolution processes, which generally control the properties 

and subsequently the performance of a crystalline solid. Experimental studies of diffusion 

generally pertain to the determination of diffusion coefficients that usually provide an 

understanding of the diffusional interactions among the components and the overall diffusion 

behavior of the material. The experimental procedure and the diffusion formalism used for these 

studies are fairly straightforward for a binary system. However, most of the commercial material 

systems usually contain more than two components where multicomponent diffusion is the norm. 

Due to manifold increase in interactions among the components the diffusion formalism as well 

as the experimental investigations become increasingly difficult and cumbersome as the number 

of components increases in a system. 

A basis for the study of interdiffusion behavior in multicomponent systems is Onsager’s 

formalism [1,2] that provides an extension of Fick’s law to enable the inclusion of more than two 

components in its description. This involves the determination of (n - 1)
2 interdiffusion 

coefficients in an n-component system. For example, description of diffusion in a ternary system 

requires the determination of four interdiffusion coefficients. These coefficients can be 
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determined experimentally by means of two independent isothermal diffusion couples, which 

have one common composition in their diffusion zone, or in other words their composition paths 

cross each other [3,4]. When the interdiffusion coefficients are assumed constant, an analytical 

solution to the diffusion equation by means of an error function can easily describe the 

isothermal composition profiles of a diffusion couple. But in practice, the interdiffusion 

coefficients are generally composition dependent and an analytical error function solution may 

not be adequate to describe the composition profiles. Hence, numerical methods are often sought 

for this purpose. Furthermore, because of the difficulty associated, the experimental 

determination of diffusion coefficients in a multicomponent system may not be always viable.  

Diffusion requires driving forces for the atomic migration. A single driving force or a 

combination of several driving forces may be present, which can influence the diffusion process. 

The driving force arises due to several factors including a chemical potential gradient, applied 

electrostatic field, and an applied temperature gradient. To attain thermodynamic equilibrium it 

is not only necessary that temperature and pressure be the same throughout, but also the chemical 

potentials of elements are the same everywhere in the system. Under such cases Fick’s law may 

not be adequate to describe the interdiffusion process and a more phenomenological approach is 

necessary, where the diffusion flux needs to be represented as a function of all the driving forces 

acting on the system [5]. In this approach the non-equilibrium diffusion fluxes are represented by 

the gradients in chemical potentials instead of the gradients in compositions as used in the Fick’s 

law. This theory of non-equilibrium thermodynamics known as thermodynamics of irreversible 

processes is based on certain fundamental postulates derived from Onsager’s phenomenological 

theorem. The approach expresses atomic fluxes of components as linear combinations of all the 



 3

relevant forces where more fundamental parameters such as atomic mobilities can be used 

instead of diffusivities. 

It is well known that being a thermally activated process, interdiffusion can significantly 

alter the microstructure of a material under high temperature, which can affect its performance. 

Such effects of interdiffusion are often encountered in various practical applications. One 

application where the effect of interdiffusion becomes evident is at the interface of two materials 

joined together to serve as a substrate-coating assembly for high temperature operations, as in 

gas turbine blades. In these systems the microstructure of the coating typically contains a high 

temperature resistant second phase dispersed in a matrix, which acts as a protective barrier for 

high temperature oxidation and corrosion, e.g. bond coats in thermal barrier coatings. As a 

specific example, Nickel based overlay coatings are extensively used in high temperature 

applications of aero and marine gas turbine engines. These coatings are generally used as 

external protective oxidation resistant coatings (ORCs) or as bond coats between the superalloy 

substrate and the ceramic layer in thermal barrier coatings (TBC). The primary role of ORCs and 

bond coats is to provide adequate Al for selective oxidation to form an external protective Al2O3 

layer or a thermally grown oxide (TGO) layer of Al2O3, respectively [6]. The performance and 

lifetime of these coatings depend on the stability of the Al-rich high temperature phase, e.g. B2-β 

(NiAl) or L12-γ′ (Ni3Al). It has been observed that the continuous oxidation and coating-

substrate interdiffusion simultaneously depletes the Al content in the coatings causing 

dissolution of β or γ′ phase that consequently results in the failure of coatings [7-9]. 

Interdiffusion can also cause Kirkendal porosity at the interface leading to the failure of the 

coating. Diffusion of additive elements in superalloy substrate for high temperature 

strengthening can adversely affect the thermo-mechanical properties at the interface, including 
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phase constituents and adherence qualities of the oxide scale. Extensive experimental studies 

have been carried out to study the interdiffusion behavior and lifetime of γ (Ni) + γ′ (L12) 

coatings on γ (Ni) substrates in Ni-Al alloys [9-14]. Similarly, dissolution of β (Β2) phase in γ 

vs. γ+β diffusion couples in the Ni-Cr-Al system has been investigated [15,16]. All these studies 

utilized diffusion couple experiments containing single-phase vs. single-phase, single-phase vs. 

two-phase and two-phase vs. two-phase couples under isothermal conditions. 

One of the most important focuses in recent years in many industrial applications has 

been to minimize the material volume used while increasing the efficiency and functionality. 

This has initiated a trend of continuously decreasing length scales of materials in various 

applications and increasing operating temperatures. With the mounting fuel constraints and the 

goal for higher integration and further miniaturization, the above trend is going to continue in the 

future. This could result in a tremendous increase in the temperature gradient under which 

materials operate in various applications. Some of the important areas of concern are the gas 

turbine blades, nuclear fuel materials and electronic circuits in microelectronic industries. 

As described earlier, diffusion can occur under the influence of various driving forces; 

one of them is an applied temperature gradient. Temperature-gradient induced mass transport is 

generally known as thermotransport or thermomigration. This can be defined as the development 

of a concentration gradient in an otherwise homogeneous material due to temperature gradient. 

Thermotransport can cause constituent and phase redistribution in a material, and therefore has 

the potential to induce unwanted phase transformations and/or changes in mechanical and 

physical properties of the materials. 
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The main objective of this research is to use computational methods to simulate and 

predict the interdiffusion behavior and microstructure evolution in materials in the presence of 

chemical and temperature gradients. Due to advances in numerical methods and computational 

power, many computational techniques are now frequently employed to model diffusional phase 

transformations and microstructure evolutions in multicomponent alloys. With the knowledge of 

materials properties and parameters, and with the help of the aforementioned phenomenological 

description these computational modeling techniques can also predict interdiffusion behavior in 

multicomponent material systems. The phase-field model over the past two decades has 

developed into a powerful tool for modeling meso-scale microstructure evolution in materials. 

Originally developed for modeling solidification [17-21], the phase-field model owing to its 

ability to treat multi-phase systems with complicated interface conditions, soon found its 

applicability in simulating a wide range of processes such as spinodal decomposition [22-29], 

order-disorder transformations [30-33], cubic to tetragonal transformation [34-39] grain growth 

and coarsening [40-47], martensitic transformation [48,49], etc. Based on a diffuse interface 

theory [50], phase-field model can describe the microstructure within the limit of the 

corresponding sharp interface description. In this model the microstructure is described by a set 

of field variables, which vary smoothly over the interfaces. Unlike sharp interface models, phase-

field model does not require explicit tracking of the interface and accommodates Gibbs-

Thompson effect in its description [51]. Moreover, the available thermodynamic and kinetic 

databases can be directly linked to the phase-field model [52-54] to perform simulations on real 

alloy systems. 

There are a limited number of works reported that simulate and predict the interdiffusion 

microstructure between the coating and substrate interface by computer modeling [55-56]. 
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Though phase-field model has been used in the past to predict microstructure evolution in 

various material systems, only recently Wu et al. [53,57] used the phase-field model to predict 

interdiffusion microstructure in multiphase diffusion couples. In this work the phase-field model 

is used to simulate the interdiffusion behavior in multicomponent diffusion couples under 

isothermal conditions. 

Most of the phase-field simulation studies reported in literature are concerned with the 

presence of chemical potential gradient under isothermal conditions. There are many studies on 

continuous transformations and heat treatment processes [58-59] and only a few have been 

attempted to simulate diffusion behavior under an applied electric field, i.e. electromigration [60-

61]. But to the authors knowledge there have been no predictive modeling works reported to 

account for the thermotransport phenomenon under an applied temperature gradient. In the 

second part of this work, a phase-field model has been developed for the first time to simulate 

thermotransport. 

1.2 Outline of the Dissertation 

The objective of this dissertation is to develop phase-field model for simulation and 

prediction of interdiffusion behavior and evolution of microstructure in multi-phase binary and 

ternary systems under composition and/or temperature gradients. Simulations were carried out 

with emphasis on multicomponent diffusional interactions in single-phase system, and 

microstructure evolution using thermodynamics and kinetics of real systems such as Ni-Al and 

Ni-Cr-Al. Selected experimental interdiffusion studies were carried out in Ni-Cr-Al and Fe-Ni-

Al alloys to examine the phenomena of demixing of two-phase diffusion couples. For the first 
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time, a phase-field model was developed to simulate thermotransport in multiphase binary alloys. 

The dissertation document has been organized into nine chapters. 

Chapter 1 contains a brief introduction to the interdiffusion process with some examples 

related to high temperature applications including thermotransport. The chapter also describes 

the objective of the present research and the applicability of the phase-field model to simulate 

solid-state phase transformations and microstructure evolutions under different driving forces.  

In Chapter 2, a classical phenomenological description of diffusion based on Fick’s law 

and irreversible thermodynamics is presented. Chapter 3 presents a concise description of the 

procedure for phase-field model in terms of free energy description and evolution equations 

along with various numerical techniques. Given this background, phase-field simulation carried 

out for single-phase and two-phase diffusion couples in one and two dimensions is reported in 

Chapter 4. Development and analysis of composition profiles in single-phase diffusion couples is 

described with respect to the thermodynamic description of the system. Also, the development of 

planar and non-planar interfaces in two-phase solid-to-solid diffusion couples is examined based 

on initial interface perturbation and composition-dependent chemical mobility. 

In Chapter 5, a 2D phase-field model is used to predict the interdiffusion microstructures 

in γ vs. γ′, γ vs. γ+γ′ and γ+γ′ vs. γ+γ′ solid-to-solid diffusion couples in Ni-Al system. Movement 

of boundaries and dissolution or formation of phases across the boundary is analyzed. Chapter 6 

reports the simulation of interdiffusion microstructure of γ vs. γ+β and γ+β  vs. γ+β diffusion 

couples in Ni-Cr-Al system. The dissolution of β phase as a function of composition was studied 

and compared with experimental results in the literature. 
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Results from experimental investigations of diffusion couples in Ni-Cr-Al and Fe-Ni-Al 

alloys are reported and examined with corresponding phase-field simulations in Chapter 7. 

In Chapter 8 presented a development of a phase-field model to investigate the diffusion 

process under an applied thermal gradient or the thermomigration for the first time. Starting from 

the phenomenological description of Onsager, the field kinetic equations are derived and applied 

to single-phase and two-phase systems. Constituents and phase redistribution under the gradient 

of concentration and temperature are presented and discussed with respect to thermo-kinetic 

coefficients. 

Chapter 9 summarizes the contribution of this study and discusses the future directions. 
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CHAPTER 2 
INTERDIFFUSION IN MULTICOMPONENT ALLOYS 

2.1 Diffusion Under a Concentration Gradient 

2.1.1 Fick’s Law of Diffusion 

In 1855 Adolf Fick described diffusion in solids by a simple yet powerful equation [1], 

which is known after him, and has been used in numerous diffusion studies. Fick’s 1st law relates 

the flux of a component to its concentration gradient, and is similar in form to Ohm’s law for 

current density or to the basic heat-flow equation. This was derived on the basis that matter flows 

from a region of higher to lower concentration to decrease the concentration gradient. The flow 

ceases when the concentration becomes the same everywhere. In one dimension Fick’s 1st law is 

written as 

Ji = −Di

∂ci

∂x
       (2.1) 

where, ci and Ji are, respectively, the concentration and flux of component i. Di is the diffusion 

coefficient and is assumed independent of the concentration gradient. In three dimensions, Fick’s 

law can be written as:  

Ji = −Di∇c        (2.2) 

where D is a second-rank tensor. Depending on the type of reference frame used to define the 

diffusion equation, the flux and the diffusion coefficients can have different annotations. In the 
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lattice fixed frame of reference, they represent the intrinsic flux and intrinsic diffusion 

coefficient, whereas in the laboratory fixed frame of reference, they are denoted as the 

interdiffusion flux and interdiffusion coefficient [2]. 

Apart from the concentration gradient, the flow of matter can also be caused by an 

external force or driving force if present in the system. Such a driving force can cause the 

particles to move with a velocity v and produce a flux contribution of vci. Therefore, the flux can 

be expressed in one dimension as a combination of the Fickian or diffusional flux due to 

concentration gradient and drift term due to the driving force [3]. 

Ji = −Di

∂ci

∂x
+ vci       (2.3) 

The effect of the driving force on diffusion will be discussed in more detail in the next section by 

means of thermodynamics of irreversible processes. 

 The flux equations described in Equation 2.1 through 2.3 do not provide information on 

the variation in composition with time. For the time-dependent case where the flux varies at 

every point with time in one dimension, the continuity equation can be invoked to describe the 

variation of concentration with time: 

∂ci

∂t
= −

∂J

∂x
=

∂
∂x

D
∂ci

∂x

⎛
⎝⎜

⎞
⎠⎟

−
∂
∂x

vc( )     (2.4) 

In the absence of the drift term the above equation would contain only the first term on its right 

hand side known as Fick’s 2nd law: 
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∂ci

∂t
=

∂
∂x

D
∂ci

∂x

⎛
⎝⎜

⎞
⎠⎟

       (2.5) 

This equation is a second-order partial differential equation for which, if the diffusivity is 

constant, it is possible to obtain explicit analytical solutions depending on the type of initial and 

boundary conditions [4]. When the diffusivity is a function of composition or position, as is the 

case in real situations, an analytical solution is difficult to obtain, and numerical methods are 

used [5]. 

2.1.2 Onsager’s Formalism of Fick’s Law 

The diffusion process becomes more complex in an n-component system. The complexity 

arises because all the elements interact with each other, and the diffusion of one element is no 

more only due to its own concentration gradient, but is also due to the concentration gradients of 

other elements present. Therefore, for a complete description of the diffusion process in an n-

component system, n − 1( )2
diffusion coefficients are necessary with n-1( ) independent 

composition variables and their gradients. This is described by invoking the phenomenological 

description of diffusion based on Onsager’s formalism that extends Fick’s law [6-8] into 

multicomponent systems. According to this formalism the interdiffusion flux  
%J i  of element i in 

an n-component system is expressed by: 

 

%J i = − %Dij
n

j=1

n−1

∑ ∂ci

∂x
            (i = 1, 2, ..., n-1),    (2.6) 
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where 
 
%Dij

n  are the interdiffusion coefficients and n is the dependent component. Similarly, in the 

lattice fixed frame of reference the intrinsic flux J i  of component i is expressed by: 

J i = − Dij
n

j=1

n−1

∑ ∂ci

∂x
            (i = 1, 2, ..., n-1),    (2.7) 

where Dij
n  are the intrinsic diffusion coefficients. The relationship between the interdiffusion and 

intrinsic diffusion fluxes is given by 

 
%J i = J i + civm ,        (2.8) 

where vm is the velocity of the lattice frame relative to the laboratory fixed frame of reference 

[2]. 

2.2 Diffusion Under a Temperature Gradient 

In addition to mass fluxes caused by the presence of composition gradients in an 

isothermal system, a temperature gradient alone can also produce such fluxes. This leads to the 

redistribution of compositions in an initially homogeneous system, and is known as the 

thermotransport or thermomigration effect. This phenomenon is also called the Ludwig-Soret 

effect or simply the Soret effect. 

 For a multicomponent system with a unidirectional temperature gradient, the intrinsic 

flux of an element in the direction parallel to the direction of temperature gradient can be 

obtained by the modification of Fick’s 1st law [9]: 
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J i = − Dij
n

j=1

n−1

∑ ∂ci

∂x
− ciβiQ i

* 1

T

∂T

∂x
       (i = 1, 2, ..., n-1), (2.9) 

where βi is the atomic mobility of the element i and Qi

*  is called the heat of transport term, 

which is a measure of the heat carrying capacity of an atom. Qi

*  can be either positive or 

negative and determines the direction and magnitude of the temperature gradient contribution to 

the total flux. The physical definition of Qi

*  arises from the concepts of irreversible 

thermodynamics, which will be considered in Chapter 8 in detail. Expressions for interdiffusion 

fluxes are similar to those of intrinsic fluxes and they are again related through Equation 2.8. 

It can be implied from Equation 2.9 that a steady state can be obtained in a closed system 

when J i = 0 . This happens when the flux contribution due to composition gradient becomes 

equal and opposite in direction to the contribution due to temperature gradient. Experimental 

determination of Q*  is generally done at steady state, as it does not require the knowledge of 

diffusion coefficient and the absolute value of composition. At steady state, using Einstein 

relationship Di = β iRT  Equation 2.9 can be written as:  

−
Q i

*

T

dT

dx
≅

RTdln ci( )
dx

      (2.10) 

or 

ln ci( )=
Q i

*

R
d

1

T
⎛
⎝⎜

⎞
⎠⎟

,      (2.11) 
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where R is the universal gas constant. With this equation Qi

*  values can be determined by 

plotting ln ci vs. 1/T. Qi

*  values in various materials have been reviewed by Oriani [10]. It 

should be noted here that for an interstitial binary solution thermotransport behavior could be 

described by means of one flux equation that requires only the Q*  value of the interstitial 

element. Whereas, in substitutional solutions, Q*  values of all the elements are required in order 

to describe the thermotransport flux [11]. 

2.2 Phenomenological Theory of Diffusion 

In Section 2.1, Fick’s law was introduced as the elementary law of diffusion on the basis 

of its analogy with other physical laws such as Ohm’s law. This was done without proper 

justification of the nature of the driving force for diffusion. The macroscopic nature of Fick’s law 

requires a more rigorous analysis to derive its exact relations with the type of driving forces 

present. Being an irreversible process, a general formulation for diffusion is therefore obtained 

from thermodynamics of irreversible processes [7]. The formalism is based on the Onsager 

reciprocity theorem, which has been the subject of many extensive analyses [12]. In this section 

a brief overview of the thermodynamics of irreversible processes is provided, while its 

applications to diffusion in the presence of chemical and thermal driving forces are described in 

Chapter 4 and Chapter 8, respectively. 

2.2.1 Definition of Fluxes, Forces and Rate of Entropy Production 

In order to approach equilibrium in a system that contains gradients of temperature, 

chemical potential, and other intensive thermodynamic driving forces, flow of extensive 
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quantities such as heat, mass, etc., is required. The gradients of intensive quantities are the 

driving forces, which are associated with the fluxes, and in general, the fluxes may be a function 

of all the driving forces acting in the system: 

JΦ = JΦ FΦ,Fq ,Fe,...,Fi( ),     (2.12) 

where FΦ  is the conjugate force of the flux JΦ . At near equilibrium, when the driving forces are 

small, a Taylor series expansion of fluxes near the equilibrium point [4] can produce a 

relationship between the flux and the driving forces, which can be represented in its abbreviated 

form: 

Jα = Lαβ Fβ
β
∑                            (α, β = φ, q, e,…,i),  (2.13) 

where, the coefficients Lαβ  are called phenomenological coefficients. The diagonal terms, Lαα , 

are called direct coefficients as they couple each flux to its conjugate driving force and the off-

diagonal terms, Lαβ , are called coupling coefficients which represent the cross effects.  

 Production of entropy is the characteristic feature of an irreversible process, and the basic 

postulate of irreversible thermodynamics is mainly based on the rate of entropy production. It 

states that near equilibrium or when the departure from thermodynamic equilibrium is 

sufficiently small, the entropy production is nonnegative: 

 
&σ ≡

∂s

∂t
+ ∇ ⋅

r
Js ≥ 0 ,      (2.14) 
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where, Js  is the entropy flux. 

Howard and Lidiard [14] extended the calculation of the rate of entropy production for 

fluids given by de Groot [12] and de Groot and Mazur [15] to solids with minor modification. 

The rate of entropy production per unit volume is given by  

Tσ = Jk ⋅ Xk + Jq ⋅ Xq + viscosity terms
k

n

∑ ,    (2.15) 

where, Jk  and Jq  are the fluxes of component k and heat, respectively. Xk  and Xq are the 

imbalances or forces that generate these fluxes. For solids the viscosity terms are generally 

negligible. If Fk  is the external force per atom of component k, and μk  is the chemical potential 

of k (i.e. the partial derivative of the Gibbs free energy with respect to the number of atoms of k), 

then  

Xk = Fk − T∇ μk T( )      (2.16) 

and 

Xq = −
1

T
∇ T( ) with ∇ ≡  gradient operator.   (2.17) 

2.2.2 Onsager Reciprocity Theorem 

Onsager reciprocity theorem governs the relationship between the fluxes and the forces 

through linear macroscopic laws. These linear laws include cross-phenomena, such as the 
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influence of concentration or chemical potential gradient of one component upon the flow of 

another, or the effect of temperature gradient on the flow of constituent components. Neglecting 

the viscous forces, the laws can be written as: 

Jk = Lki

i

n

∑ Xi + Lkq Xq       (2.18a) 

Jq = Lqi

i

n

∑ Xi + Lqq Xq .     (2.18b) 

According to Onsager’s theorem the matrix of the phenomenological coefficients L is symmetric 

if magnetic fields and rotations are absent, as expressed by: 

Lik = Lki  and Lqi = Liq .     (2.19) 

The second law of thermodynamics states that the rate of entropy production is always semi-

positive definite, i.e. the function in Equation 2.15 is greater than or equal to zero. Substitution of 

fluxes defined in Equation 2.18 into Equation 2.15 would the provide the following inequalities: 

Lii ≥ 0   (for all i)     (2.20a) 

Lqq ≥ 0        (2.20b) 

LiiLkk − Lik Lki ≥ 0       (2.20c) 

Lii Lqq − LiqLqi ≥ 0  (for all i, k)    (2.20d) 
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These phenomenological coefficients are kinetic parameters that are dependent on the 

thermodynamics of the system and are independent of the forces Xk to which the system may be 

subjected. 

2.2.3 Alternative Fluxes and Forces 

In certain cases it is useful to have alternative choices of fluxes and forces to represent 

the same phenomena. These alternate choices are made through the transformation of the original 

quantities. If the entropy production is given by the Equation 2.15 and the Onsager relations are 

obeyed, then for the symmetric L matrix:  

 L = %L  ( %L  is the transpose of L).    (2.21) 

The entropy production σ can be rewritten as: 

 Tσ = %JX = ′%J X = ′%J ′%X ,     (2.22) 

Here the new fluxes Ji′ and the new forces X′i are related to the original quantities through the 

transformations expressed by: 

′J = AJ        (2.23a) 

and 

 ′X = %A−1X ,       (2.23b) 
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where A is a non-singular matrix. Equation 2.22 is invariant under the transformations given in 

Equation 2.21. Rewriting the phenomenological equation 2.18 as: 

J = LX ,       (2.22) 

it follows that 

 ′J = AJ = ALX = AL %A ′X ≡ ′L ′X     (2.23) 

and if L is symmetric then so is L′. Thus, if the Onsager relations are valid for the original fluxes 

and forces, they are also valid for the transformed quantities. 

 The importance of this kind of transformation as given in Equation 2.23 is realized when 

a temperature gradient exists in the system. A commonly used transformation for this purpose is 

as follows: 

′Jk = Jk        (2.24a) 

′Jq = Jq − hk
k

n

∑ Jk       (2.24b) 

with 

′Xk = Xk + hk Xq       (2.24c) 

′Xq = Xq ,       (2.24d) 
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where hk is the partial enthalpy of component k and J′q is the reduced heat flow, which is 

obtained by subtracting from the total heat flow the part that is associated with the mass flow. 

Now the new forces can be defined explicitly by 

′Xk = Fk − ∇μk( )
T

      (2.25a) 

and 

′Xq = −
1

T
∇T,       (2.25b) 

where ∇μk( )
T
is the part of the gradient of μk due to gradients in pressure or concentration, but 

not temperature. This transformation is utilized in the simulation of the thermotransport effect 

described in Chapter 8. 

2.2.4 Diffusion Coefficients and Phenomenological Coefficients   

To show how the intrinsic diffusion coefficients and interdiffusion coefficients are related 

through the phenomenological coefficients, a simple isothermal binary system is used where a 

vacancy mechanism of diffusion is assumed to operate and vacancies are everywhere present in 

their equilibrium concentrations, i.e. μv = 0  and Xv = 0 . For an isothermal system in the 

absence of any external fields, fluxes of atoms of A and B relative to the local lattice frame of 

reference can be defined as: 

JA = LAAXA + LABXB ,     (2.26a) 

JB = LBAXA + LBBXB ,     (2.26b) 
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where XA and XB are the chemical potential gradients of A and B. Using Gibbs-Duhem relation 

cAXA + cBXB = 0  in which cA and cB are the mole fractions of A and B respectively, JA becomes 

JA = LAA −
cA

cB

LAB

⎛

⎝⎜
⎞

⎠⎟
XA .     (2.27) 

Defining chemical potential as: 

 μA = μA
o T,P( )+ kTln cAγ A( ),     (2.28) 

where k is the Boltzmann constant and γA is the activity coefficient, the following expression is 

obtained. 

JA = −
LAA

cA

−
LAB

cB

⎛

⎝⎜
⎞

⎠⎟
kT 1 +

∂ lnγ A

∂ lncA

⎛

⎝⎜
⎞

⎠⎟
∇cA .   (2.29) 

Comparing this with Fick’s 1st law given in Equation 2.1, the intrinsic diffusion coefficient of A 

can be defined as: 

DA =
kT

n

LAA

cA

−
LAB

cB

⎛

⎝⎜
⎞

⎠⎟
1 +

∂ lnγ A

∂ ln cA

⎛

⎝⎜
⎞

⎠⎟
 ,   (2.30a) 

where n is the total number of lattice sites per unit volume. A similar equation is obtained for the 

intrinsic diffusion coefficient of component B, as: 

DB =
kT

n

LBB

cB

−
LBA

cA

⎛

⎝⎜
⎞

⎠⎟
1 +

∂ lnγ B

∂ ln cB

⎛

⎝⎜
⎞

⎠⎟
    (2.30b) 
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2.3 Summary 

The purpose of the present chapter was to provide a very basic introduction of the general 

diffusion equations namely, Fick’s 1st and 2nd laws, and also to briefly review the theory of 

irreversible thermodynamics as applicable to the diffusion process. Diffusion in solids is a very 

well documented subject and detailed description can be found from many sources [2-4,13]. 

Nevertheless, there are few comments to be made before closing this chapter.  

In solids, the rate of diffusion can vary significantly in the regions of structural 

irregularities such as grain boundaries, dislocations, etc., and the applicability of Equations 2.1 

through 2.4 depends on the length scale of the irregularities. If the scale is appreciably small 

compared to the size of the diffusion zone, the above equations can be used to provide an overall 

description of the diffusion process in the system with an effective diffusion coefficient that is an 

average over those distinct regions. This work is concerned only with the diffusion in a regular 

crystal lattice, and diffusion through grain boundaries, dislocations and other irregularities are 

neglected.  

Diffusion coefficients of components are not directly used in this work. Instead chemical 

mobilities are used, which are functions of atomic mobilities and compositions. Though the 

proper analogy between them will be shown in the following chapters, it can be said at this point 

that the chemical mobilities are related to diffusivities in the actual system. In many crystal 

lattice the diffusion coefficient, being a second-rank tensor, can have different values in different 

directions. Hence, for simplicity, the diffusion coefficients and other mobilities in the present 

work are considered isotropic and diffusion is assumed to occur along one principal direction. 

Such approximations make it possible to use only one diffusion coefficient for each element and 
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treat them as scalars. Wherever appropriate, the temperature and the concentration dependence of 

diffusion coefficients has been considered through the description of atomic and chemical 

mobilities. The last factors in Equation 2.30a and 2.30b are equal to one another by Gibbs-

Duhem relation, but this generally does not hold for ternary and higher order alloys. 

Nevertheless, the description shown in Section 2.2.4 can easily be extended to ternary systems 

and will be shown in Chapter 4. A similar treatment is presented in Chapter 8 to include 

temperature gradient or thermotransport effect. 
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CHAPTER 3 
THEORY OF THE PHASE-FIELD MODEL 

The field of computational materials science and engineering has made fast progress in 

last couple of decades owing to the tremendous advancements in computational methods and 

power. Among various modeling methods used at different length scales, the phase-field method 

has emerged as a powerful computational approach to model and predict mesoscale 

morphological and microstructure evolution in materials. The phase-field model is based on the 

diffuse-interface description, which was developed mainly by Cahn and Hilliard [1] almost 40 

years ago. The term “phase-field” is derived from the way the spatial and temporal order 

parameter fields are defined in a continuum diffuse-interface model. In other words, the phase-

field model uses a set of conserved and/or non-conserved field variables that are continuous 

across the interfacial regions and their spatial distribution describes the microstructure in the 

material. It is worth mentioning here that a parallel advancement in the field of computational 

thermodynamics and kinetics led to the development of various packages like ThermoCalc™ and 

DICTRA™. The ability of the phase-field model to directly link to the database of the packages 

made it possible to predict the evolution of arbitrary morphologies and complex microstructures 

in many real material systems and processes.  

Microstructure is compositional and structural inhomogeneity that may consist of 

spatially distributed phases of different compositions and/or crystal structures, grains of different 

orientations, domains of different structural variants, domains of different electric or magnetic 

polarizations, and structural defects. The size, shape, and spatial arrangement of these structural 

features usually have a length scale in nanometers to micrometers range, and they play a critical 

role in determining the physical and mechanical properties of materials. Microstructure evolution 
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in materials occurs to reduce the total free energy of the system, and the phase-field model is 

based on the minimization of this energy. 

Mathematically the microstructure evolution process is nonlinear in nature and numerical 

methods are often required to find the solution. Conventional approaches known as sharp 

interface models treat the boundary between two compositional or structural domains as a sharp 

interface, over which a field variable varies discontinuously. This treatment requires explicit 

tracking of the interface position, which can be possible in one-dimensional systems, but 

becomes impractical in two- or three-dimensions. In contrast to the conventional sharp interface 

models, the phase-field model does not require the explicit tracking of the positions of a moving 

interface and contains the corresponding sharp- or thin-interface descriptions as a particular limit 

[2]. The temporal evolution of the field variables is governed by the Cahn-Hilliard nonlinear 

diffusion equation [3], and the Allen-Cahn relaxation equation or time-dependent Ginzburg-

Landau equation [4].  

Applications of phase-field models are divided into two main categories depending on the 

nature of field variables. One is the interface-tracking approach, where field variables have no 

physical meaning and are merely introduced for the sole purpose of avoiding tracking of 

interfaces. This approach is used in all solidification modeling. In the other case, the field 

variables correspond to well-defined physical order parameters such as long-range order 

parameters for order-disorder transformations and the composition fields for phase separations. 

Phase-field models can also be classified as those derived from a thermodynamic formulation 

and those derived from geometrical arguments. A brief overview of phase-field model is 

provided in this chapter. 
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3.1 General Overview 

The following steps can describe a general procedure for the phase-field model. The first 

step involves the determination of the number and the type of field variables in order to properly 

describe the microstructure. As mentioned earlier, simulation of the temporal and spatial 

microstructure evolutions requires knowledge of the total free energy of the inhomogeneous 

microstructure. In the second step the total free energy of microstructure G is defined as a 

function of field variables, which can be a sum of the chemical free energy density (fc), the 

gradient energy density (fgrad), the elastic strain energy density (fel), and the energy contributions 

(fex) due to the presence of any external force fields such as electric and magnetic fields. The 

total energy functional G can be written as: 

G c i r, t( ),η r,t( )[ ]= fc c i,η j( )+ fgrad c i,η j( )+ fel c i,η j( )+ fex c i,η j( )[ ]
r

∫ dr3   (3.1) 

where ci(r,t) and ηi(r,t) are the order parameters of the conserved and non-conserved fields, 

respectively, and are functions of spatial position r and time t. The subscripts i and j are used to 

distinguish different species, phases or domains. The chemical free energy and gradient energy 

are the contributions to total energy caused by the short-range chemical interactions. The 

gradient energy term is non-zero only at and around the interfaces, and it defines the interfacial 

energy. The other two energy contributions (fel and fex) are from any one or more of the long-

range interactions, such as elastic interactions, dipole-dipole interactions, electrostatic 

interactions, etc. The treatment of various contributions to the total energy distinguishes one 

phase-field model from the other. Finally, the temporal evolution of field variables are obtained 
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by applying Cahn-Hilliard and Allen-Cahn or Ginzburg-Landau (TGL) equations and finding 

their numerical solutions with the available materials parameters as input.  

3.2. Free Energy Description 

3.2.1 Chemical Free Energy 

One of the important components in a phase-field model is the chemical free energy or 

local free energy density function. Depending on the requirements of the system, several types of 

description for chemical free energy are used, but they can be mainly classified into two 

categories. One is based on the Landau expansion method [5] that expresses the chemical free 

energy as a polynomial expansion with respect to the order parameters. The other is the case 

where the chemical free energies of different phases are well defined and are connected to each 

other continuously by phase-field variables. 

Landau Expansion for a System with Different Crystal Structure Phases: 

A Landau expansion can be used in those solid-state phase transformations where the 

field variables correspond to well-defined physical order parameters. The local free energy 

density function is then expressed as a polynomial of order parameters, where all the terms in the 

expansion are required to be invariant with respect to the symmetry operations of the high-

temperature phase [6]. Precipitation of an ordered phase (L12) from a disordered face-centered-

cubic (FCC) matrix in a binary alloy is an example of such transformations, for which the 

chemical free energy can be described by a polynomial with expansion terms up to the fourth 

order as given by [7-11]: 
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f c,η1,η2 ,η3( )= fo c,T( )+
1

2
B2 c,T( ) η1

2 + η2
2 + η3

2( )+
1

3
B3 c,T( )η1η2η3

+
1

4
B41 c,T( ) η1

4 + η2
4 + η3

4( )+
1

4
B42 c,T( ) η1

2η2
2 + η2

2η3
2 + η1

2η3
2( )

  (3.2) 

where fo c,T( ) is the free energy of the disordered phase, and B1, B2, B3, B41 and B42 are the 

expansion coefficients that are functions of composition and temperature. This free energy 

corresponds to a non-equilibrium free energy of a spatially homogeneous state. To obtain the 

equilibrium state, the coefficients Bi need to be chosen in such a way that they provide a global 

minimum corresponding to the L12 phase. If B3 c,T( )< 0 , the free energy minima would be 

located at 

ηo ,ηo,ηo( ), ηo ,−ηo,−ηo( ), −ηo,ηo ,−ηo( ), −ηo ,−ηo,ηo( ),   (3.3) 

where ηo is the equilibrium long-range order parameter at a given composition and temperature 

and is determined by the solution of the following equation. 

∂ f c,η1,η2 ,η3( )
∂ηp

= 0 , where p = 1,2,3      (3.4) 

The free energy of the ordered phase, as a function of composition, is obtained by substituting 

the equilibrium order parameter values from Equation 3.4, which also describes the four 

energetically and structurally equivalent antiphase domains of L12 ordered phase 

Use of Thermodynamic Database for a system with Different Crystal Structure Phases 
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If the free energy expressions for the phases present in the alloy are known, then they can 

be combined by means of the order parameters to construct a continuous chemical free energy 

function. This approach was first proposed for the phase-field model for alloy solidification [12-

14], but can be used for solid-state transformations. The basic methodology of this approach is as 

follows. 

Consider a two-phase binary A-B alloy where phases α and β have different crystal 

structures and their chemical free energies are denoted by f α c,T( ) and f β c,T( ), respectively. 

Here, c is the composition of the component B and T is the temperature. The free energy data can 

be obtained from various thermodynamic databases such as ThermoCalcTM, PandatTM, etc. The 

phase-field variable φ r,t( ), which corresponds to the probability of finding the β phase at 

position r and time t, varies between 0 and 1. Therefore, the conditions φ = 0  and φ = 1  

correspond to α and β single phases, respectively. Now the total chemical free energy of the two-

phase mixture can be obtained as a function of c and φ, which is expressed as 

f c,φ,T( )= f α c,T( ) 1 − p φ( )⎡⎣ ⎤⎦ + f β c,T( )p φ( )+ wαβ T( )g φ( ) (3.5) 

where g φ( ) is a double-well function, p φ( ) is an interpolating function [15], and wαβ  is the 

height of the energy barrier or the double well potential. A common choice for these two 

functions is 

g φ( )= φ 2 1 − φ( )2
      (3.6) 

and  

p φ( )= φ 3 6φ2 − 15φ + 10( ).     (3.7) 
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Note that the functions are chosen in such a way that g φ( ) and p φ( ) become 0 and 1 when 

φ = 0  and φ = 1 , respectively. They also ensure that ∂ f ∂φ = 0  when φ = 0  and φ = 1 . The free 

energy surface defined by Equation 3.6 has no strict physical meaning. For instance, the atomic 

arrangement that corresponds to the state of φ = 0.5  is not defined in the phase-field model, and 

is not necessary due to the continuum nature of the model where only the energy is evaluated 

depending on the local order parameter values. 

 This model can easily be extended to define the chemical free energy of a 

multicomponent and multiphase system: 

f c1,c2 ,...,cn ,φ1,φ2 ,...,φp ,T( )= f αi c1,c2 ,...,cn ,T( )
i=1

p

∑ p φi( )+
1

2
w

α iα j

j =1

p

∑
i=1

p

∑ T( )g φi ,φ j( ), (3.8) 

where n and p are the number of components and phases, respectively. The function 

f α i c1,c2 ,...,cn ,T( ) is the free energy of the phase αI, and the phase-field variable φi r, t( ) again 

corresponds to the probability of finding the phase αi at position r and time t. Therefore, the 

following condition must be satisfied along with the condition for conservation of mass as: 

φii=1

p∑ r, t( )= 1.      (3.9) 

For a binary system the g φi ,φ j( )≡ 1− δ ij( )φi

2φ j

2  and for other multicomponent systems 

g φi ,φ j( )≡ 1− δ ij( )φiφ j , where δij is Kronecker’s delta, given by δ ij = 1  for i = j  and δ ij = 0  for 

i ≠ j . 
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3.2.2 Gradient Energy 

Interfaces are associated with compositional and/or structural inhomogeneities and are 

inherent features of a microstructure. Interfaces are often the sites of excess free energy known 

as the interfacial energy. In phase-field approach, the interfacial energy is expressed by means of 

gradient energy terms, which are generally derived by the gradient square approximation of the 

order parameter profile as described by Cahn and Hilliard in their classic work [1]. The gradient 

energy is expressed as: 

Fgrad = 1
2 κ c ∇ci( )2

+ 1
2

i=1

n

∑ κ Φ ∇Φi

2

i=1

p

∑⎡

⎣
⎢

⎤

⎦
⎥

r

∫ dr ,   (3.10) 

where κc and κφ are the gradient energy coefficients. For composition or long-range order 

parameter fields, the gradient energy coefficients can be expressed in terms of pair-wise 

interactions. In diffuse interface theory, as will be shown later, the interfacial energy is a 

combination of gradient energy and chemical free energy.  

Free Energy of a Flat Interface 

Following Cahn and Hilliard [1], the energy of a flat interface between two phases, α and 

β, can be considered as described below. Let us consider a binary alloy A-B system where the 

solute composition of B component is referred to c(r,t). Assuming the composition gradient ∇c  

and the curvature ∇2c  as independent variables, the chemical free energy of an inhomogeneous 

solution can be expanded in Taylor series form as: 

f c,∇c,∇2c( )≅ f0 c,0,0( )+ K0 c( ) ∇c( )+ K1 c( ) ∇2c( )+ K2 c( ) ∇c( )2
, (3.11) 
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where the higher order terms have been ignored and the function f0 c,0,0( ) corresponds to 

chemical free energy of a homogeneous solution. Ki(c) is an expansion coefficient considered as 

a function of composition. These coefficients, in general, are tensors reflecting crystal symmetry 

(tensor notations have been omitted for simplicity) and for a cubic or an isotropic case K0 = 0. 

Then, Equation 3.11 reduces to: 

f c,∇c,∇2c( )≅ f0 c,0,0( )+ K1 c( ) ∇2c( )+ K2 c( ) ∇c( )2
.  (3.12) 

By integrating the gradient terms over a volume V of the solution, the gradient energy can now 

be expressed as: 

Fgrad = K1 c( ) ∇2c( )+ K2 c( ) ∇c( )2⎡⎣ ⎤⎦
V

∫ dV

= K2 c( )−
∂K1

∂c

⎡
⎣⎢

⎤
⎦⎥

∇c( )2

V

∫ dV

   (3.13) 

where, Gauss’s divergence theorem f ∇ ⋅gdV = fg ⋅ ndS − ∇f ⋅gdV
V∫S∫V∫ is used. By choosing a 

boundary of integration in such a manner that ∇c ⋅ n = 0  at the boundary, the first term on the 

right hand side of Equation 3.13 is represented as: 

K1 c( ) ∇2c( )dV
V

∫ = −
∂K1

∂c
V

∫ ∇c( )2
dV .    (3.14) 

Defining the gradient energy coefficient κ(c) by: 

κ c( )= K2 c( )−
∂K1

∂c
,      (3.15) 
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the expression for the gradient energy is finally obtained as:  

Fgrad = κ c( ) ∇c( )
V

∫
2
dV .     (3.16) 

κ(c) is often assumed to be constant in many applications. 

 Using Equation 3.16 for a one dimensional composition change across the interface, the 

total free energy of the system can be written as: 

F = A f0 c( )+κ ∇c( )2⎡⎣ ⎤⎦
−∞

+∞

∫ dx .     (3.17) 

Cahn and Hilliard defined the specific interfacial energy, σ, as the difference per unit area of 

interface between the actual free energy of the system and that which it would have if the 

properties of the phases were continuous throughout. Therefore, σ is defined by: 

σ = Δf c( )+κ ∇c( )2⎡⎣ ⎤⎦
−∞

+∞

∫ dx ,     (3.18) 

where Δf(c) is defined as the free energy referred to a standard state of an equilibrium mixture of 

two phases, i.e.,  

Δf c( )= f0 c( )− cμB e( )+ 1− c( )μA e( )⎡⎣ ⎤⎦
= c μB c( )− μB e( )⎡⎣ ⎤⎦ + 1− c( ) μA c( )− μA e( )⎡⎣ ⎤⎦

  (3.19) 

where μA e( ) and μB e( ) are the chemical potentials of species A and B in the two phases. 
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 In practice, it is difficult to measure interfacial free energy by direct experimental 

techniques, but the fact that measurable quantities are sensitive to the interfacial free energy has 

made it possible for the development of indirect techniques. Most of these techniques have been 

used for pure materials and binary alloys, and have been reviewed comprehensively [16-18]. 

Recently, grain boundary groove technique [19,20] is applied to determine both the solid/liquid 

and solid/solid interfacial energy. Computationally, atomistic simulation has emerged as a 

promising technique [21] for the determination of interfacial energy. In most phase-field 

calculations, the gradient energy coefficient is generally obtained by relating it to the known 

interfacial energy and other parameters, or used as pure approximations such that it meets the 

requirements of the system under consideration. Nevertheless, phase-field methods have been 

used extensively to address interfaces in binary, ternary, and three phase systems [22-24]. 

3.2.3 Elastic Strain Energy 

During coherent phase transformations in solids, lattice mismatch between phases and 

domains are accommodated by elastic displacements in order to maintain continuity of lattice 

planes and directions across the interfaces. This causes the transformation-induced elastic strain, 

which is particularly essential in the development of some important microstructural features 

such as multiphase patterns in alloys responsible for many technologically important properties. 

Though the strain effect has not been considered in this work, a general description on its 

incorporation into the phase-field equations will be provided here for the sake of completeness of 

this chapter. 
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 The strain effect is generally incorporated into the phase-field equations by means of the 

strain energy (Fel) as a functional of concentration or order parameter fields, which forms a part 

of the total free energy functional, F. The description is based on Khachaturyan’s general theory 

of elastic strain energy [6], which can be reformulated to write the strain energy as a functional 

of phase-field variables. In Khachaturyan’s approach, the multiphase heterogeneous 

microstructure is treated as a coherent aggregate of discrete and internally homogeneous particles 

of constituent phases and their orientation variants, with the local crystalline state corresponding 

to either the parent or product phase. Hence, the strain energy of an arbitrary distribution of 

coherent precipitates of arbitrary geometry is represented as a functional of the stress-free strain 

field, εij

0 r( ). If the point r lies within the parent phase, εij

0 r( )= 0 , otherwise it takes one of the 

values, ε ij

00 p( ),  p=1,2,...,n( ), if the point r is within the pth type of particle. The tensor εij

00 p( ) 

describes the stress-free transformation strain that transforms the parent phase into the new phase 

particle of pth type at the stress-free state. However, in the phase-field approach, the multiphase 

microstructure is described by continuous concentration (c(r)) and/or structure order parameter 

(η(r)) fields, and the strain energy needs to be expressed through these fields. Therefore, 

following a similar approach to Equation 3.11, and writing only the first non-vanishing term of 

the Taylor expansion of the strain with respect to composition or order parameter, the stress-free 

strain can be written as: 

εij

0 r( )= c r( )− c0⎡⎣ ⎤⎦ε ij

00 ,     (3.20) 

ε ij

0 r( )= ηp

2 r( )εij

00 p( )
p=1

n

∑ ,     (3.21) 
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where co is the average composition and  

εij

00 =
1

a

da

dc
       (3.22) 

εij

00 p( )=
1

ηp

0( )2

ap − am

am

     (3.23) 

Here, ηp

0  is the equilibrium value of the structure order parameter, ap and am are the lattice 

parameters of the equilibrium product and matrix phases at the stress-free state, respectively. The 

elastic strain energy density is calculated by: 

fel c,η( )=
1

2
σ ij ε ij − εij

0( ),     (3.24) 

where σij is the local elastic stress and the unknown total local train εij is determined by solving 

the following mechanical equilibrium condition, 

∂σ ij

∂rj

= 0 ,       (3.25) 

Based on the linear elasticity theory and Hook’s law 

σ ij = λijkl εkl r( )− εkl

0 r( )( ),     (3.26) 

where λijkl is the elastic moduli tensor. 

The strain energy functional can be written as 



 41

 

Fel =
1

2

d 3k

2π( )3∫ B
k

k

⎛
⎝⎜

⎞
⎠⎟

%c k( )2
     (3.27) 

if the strain is associated with the concentration heterogeneity, or 

Fel =
1

2

d 3k

2π( )3∫ Bpq

k

k

⎛
⎝⎜

⎞
⎠⎟

ηp

2 r( ){ }
k

ηq

2 r( ){ }
k

*

pq

∑    (3.28) 

if the strain is associated with the structure order parameters heterogeneity resulting in symmetry 

changes. In Equation 3.27 and 3.28, e = k k  is a unit vector in the reciprocal space and ei is the 

i
th component,  %c k( )  and ηp

2 r( ){ }
k
are the Fourier transform of c(r) and η2(r), respectively, and 

ηq

2 r( ){ }
k

*
 is the complex conjugate of ηp

2 r( ){ }
k
. The functions B and Bpq are given by 

B = λijklεij

00εkl

00 − eiσ ij

0Ω jk e( )σ kl

0 el     (3.29) 

and 

Bpq = λijklε ij

00 p( )εkl

00 q( )− eiσ ij

0 p( )Ω jk e( )σ kl

0 q( )el ,  (3.30) 

respectively, where Ωij e( ) is a Green function tensor, which is the inverse to the tensor 

Ω e( )
ij

−1 = λijklekel . These functions carry all the information on the elastic properties of a system 

and the crystallography of the phase transformation. 
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3.3. Evolution Equations and Numerical Solutions 

The total free energy of the microstructure (G) is defined as the combination of all the 

energy contributions, as discussed above. Utilizing this total free energy, the evolution of field 

variables in a phase-field model can be obtained by solving the following Cahn-Hilliard [1] and 

Allen-Cahn [4] or time-dependent Ginzburg-Landau (TDGL) equations expressed by: 

∂ci r, t( )
∂t

= ∇ ⋅ M ij ∇
δG

δc j r,t( )
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    (3.31) 

∂ηp r,t( )
∂t

= −Lpq

δG

δηq

= Lpq κη∇2ηp −
∂f

∂ηq

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    (3.32) 

where the M ij  and Lpq  are the atom or interface mobility associated with the conserved and non-

conserved field variables, respectively. They can be functions of the order parameters, but in 

many calculations, the mobilities are considered as constants for simplicity. The symbol ‘δ’ in 

Equation 3.31 and 3.32 denotes variational derivative. The simulation of microstructure 

evolution is then reduced to finding solutions to the kinetic Equations 3.31 and 3.32.  

The non-linear nature of these equations makes it imperative to use numerical methods to 

obtain their solutions. Though many numerical methods have been proposed and implemented, a 

simple second-order finite difference method using a uniform spatial grid and explicit time 

stepping is used in most phase-field models. This explicit scheme suffers from the constraint of a 

smaller time step to maintain numerical stability. In another method, fast Fourier transformation 

technique can be used along with periodic boundary conditions to convert the integral-
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differential equations into algebraic equations [25-27]. In the reciprocal space, the method 

provides spectral accuracy for spatial discretization, but is only first-order accurate in time as it 

uses an explicit forward Euler differencing scheme for time-stepping. This method again suffers 

from the issues of numerical stability.  

Recently, semi-implicit Fourier-spectral methods have been developed [28,29], which are 

more efficient and accurate in solving the phase-field kinetic equations. Adaptive nonuniform 

meshing techniques have also been developed which overcome the difficulty of resolving 

extremely sharp interfaces with moderate number of grid points in uniform grid techniques. 

Implementation of these real-space adaptive grid algorithms significantly reduces the number of 

variables, which allows for the use of much larger system and longer simulation time, but at the 

cost of increased complexities. 

3.3.1 Finite Difference Method 

Finite difference method (FDM) is based on the discretization of apace and time into 

finite grids or steps. In FDM, the differential equations are solved on a system discretized into a 

uniform grid (mesh) of points in real space. FDMs are often categorized on the basis of the 

discretization scheme used for time, i.e. explicit and implicit.  When values at subsequent time 

step is estimated based on the values from previous time step estimates while moving forward in 

time, it is called explicit time scheme. Whereas, for implicit schemes progression in time is 

achieved by estimating the values for subsequent time step based on the estimates from the 

previous time step and the time step at which the calculation is done. The accuracy of the 

solutions to the differential equations depends on the degree of discretization; higher order 
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discretizations provide higher accuracy, but at the cost of computational time. In FDM, forward, 

central or backward difference algorithms can be used for the spatial discretization, where each 

scheme has its own advantages and disadvantages, and is suited for specific applications.  

A central difference for Laplacian and an explicit forward difference scheme in time for 

Ginzburg-Landau equation (Equation 3.32), gives rise to a discretized equation of the form (in 

two-dimension): 

ηi

n +1 x, y( )− ηi

n x, y( )
Δt

= −L
∂f

∂ηi

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

n

x, y( )−κη
1

Δ2

ηi

n x + Δ,y( )− ηi

n x − Δ,y( )
+ηi

n x, y + Δ( )+ ηi

n x, y − Δ( )− 4ηi

n x, y( )
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (3.33) 

where n represents the time discretization and x, y( ) represents the spatial discretization. The 

time step Δt( ) used for solving this scheme depends on the grid spacing Δ( ), and the magnitude 

of time step is proportional to the square of grid spacing Δ( )2
 for each Laplacian operator 

involved. Therefore, the time step is proportional to fourth power of Δ( )4
 for the Cahn-Hilliard 

equation, which involves two Laplacian operators. The advantages of finite-difference method 

lies in its flexibility for use with any kind of boundary condition, and also the use of adaptive 

grid spacing over uniform grid spacing without further mathematical complexities, if required. 

The disadvantage is the requirement of small time step and hence large computation time. 

3.3.2 Semi-implicit Fourier-spectral Method 

It is well known that the second and higher order explicit Euler finite difference methods 

have a time step constraint, which is a consequence of explicit treatment of the biharmonic and 
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Laplacian operators encountered in the expanded versions of Equations 3.31 and 3.32. For the 

Cahn-Hilliard equation, the constraint is dictated by Δt ≈ Δx( )4
, and for Allen-Cahn or TGL 

equation by Δt ≈ Δx( )2
. The semi-implicit technique proposed by Chen et al [28,29] can provide 

more efficient and accurate solutions with less number of grid points and larger time steps. A 

brief description of the method is provided below. 

 The Cahn-Hilliard equation for a system without elastic energy terms for a binary system 

can be written as 

∂c

∂t
= ∇ ⋅ M c( )∇ g c( )−κ∇2c( )⎡⎣ ⎤⎦ ,    (3.34) 

where g c( )= ∂ f ∂c  is the bulk driving force term. If the mobility, M, is a constant, the Fourier 

transform of Equation 3.324 can be written as 

∂ ˜ c k, t( )
∂t

= −k 2M ˜ g c( )−κMk 4 ˜ c k, t( ),    (3.35) 

where k = (k1, k2) is a vector in the Fourier space with magnitude k = k1
2 + k2

2 ,  %c k, t( )  and 

 
%g c( ) are the Fourier transform of c(r,t) and g(c), respectively. The semi-implicit treatment 

involves treating the linear fourth order operator explicitly and non-linear terms implicitly. 

Applying the first order semi-implicit scheme to Equation 3.35, one gets: 

 
%ct + Δt =

%ct − Δtk2M %g ct( )
1 + Mκ k 4Δt

,     (3.36) 
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where Δt  is the time step. In case of a variable mobility in Cahn-Hilliard equation, the semi-

implicit scheme produces 

 

%ct + Δt k, t( )− %ct k, t( )
Δt

= ik ⋅ M c( ) i ′k %g c( )t +κ ′k 2 %ct k,t( )( )⎡
⎣

⎤
⎦r

{ }
k

,  (3.37) 

where .[]k
 and .[]

r
 represent the forward and reverse Fourier transforms, respectively. However, 

as described by Chen et al, the above scheme has a severe time constraint dictated by: 

Δtκ k 4 ≤ 1      (3.38) 

This constraint can be eliminated by adding the terms Aκ k 4 %ct + Δt k,t( ) and  Aκ k 4 %ct k, t( ) to the 

left and right hand side of the Equation 3.37, where A is a suitable constant. 

 Following the above approach, implementation of the semi-implicit Fourier-spectral 

method to the Allen-Cahn or TDGL equation is fairly straightforward. For a system with single 

structure order parameter field, η, the TDGL Equation 3.32 can be written as 

∂η r,t( )
∂t

= −L gη −κη∇2η( ),     (3.39) 

where gη =
∂ f

∂η
. The Fourier transform of the above equation has the following form: 

 

∂ %η k, t( )
∂t

= −L %gη +κ k2 %η k, t( )⎡⎣ ⎤⎦     (3.40) 



 47

where  
%η k,t( )  and 

 
%gη  are the Fourier transform of η r, t( )  and gη , respectively. Applying the 

semi-implicit scheme to Equation 3.40 and rearranging the terms, yield: 

 

%ηt + Δt =
%ηt − ΔtL %gη

t

1 +κηk2LΔt
      (3.41) 

The accuracy in time for the semi-implicit Fourier-spectral method can be improved by using 

higher order semi-implicit schemes, such as a second order backward difference for ∂ %c ∂t  or 

 ∂ %η ∂t  and a second order Adams-Bashforth for the explicit treatment of non-linear terms. 

3.4 Summary 

The chapter provides a brief description on the general methodology utilized in 

formulating a phase-field model. The model can deal with arbitrary microstructures produced by 

diffusional and/or displacive phase transformations without any priori assumptions on the 

microstructure. Within the same physical and mathematical formalism, the phase-field approach 

can describe different processes such as phase transformations and coarsening. One issue 

concerning the phase-field model is the length scale of computation. For numerical stability the 

phase-field model requires the interface to be properly resolved into at least a few grid spacing. 

This requirement is difficult to meet when the interface is relatively sharp, as in most material 

systems. Hence, in the phase-field model, the interface width is usually increased artificially, 

which makes the system size large requiring very long computational time. Nevertheless, the 

advantages associated with the phase-field approach make it a very attractive tool for modeling 

microstructure evolutions in materials. 
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CHAPTER 4 
CONCENTRATION PROFILES, ZERO-FLUX PLANES AND INTERFACE 

MORPHOLOGY IN SINGLE-PHASE AND TWO-PHASE TERNARY 
DIFFUSION COUPLES 

4.1 Introduction 

The limited number of studies on modeling and prediction of multicomponent diffusion 

behavior is, first, due to the difficulty associated with determining the diffusion coefficients 

experimentally, second, due to lack of reliable analytical and numerical methods to handle the 

composition dependence of the diffusion coefficients, and third, due to the lack of sufficient 

thermodynamic and kinetic data. Many analytical methods and solutions are available on 

literature based on the error functions [1-5]. These analytical methods can be used when the 

diffusion coefficients are assumed constants and is valid only for small compositional 

heterogeneities. Therefore, numerical methods are necessary to describe the interdiffusion 

behavior in diffusion couples with concentration-dependent interdiffusion coefficients and large 

concentration gradients. 

Generally, the isothermal interdiffusion in ternary systems is described by means of 

composition profiles and diffusion paths between the two terminal alloys. A diffusion path, by 

definition is the locus of the average compositions in planes parallel to the original interface in 

the diffusion zone of the diffusion couple and is drawn on the ternary isotherm [6]. The diffusion 

path maps the sequence of compositions developed between the two terminal alloys and is 

considered time-invariant [7]. It depends on the chemical potential gradient and atomic 

mobilities of each component. The construction of diffusion path follows a set of general rules 

[8-13]. For single-phase diffusion couples: (i) a diffusion path is uniquely defined by the 
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terminal compositions on a ternary isotherm, (ii) for solid-solid diffusion couples under infinite 

boundary conditions, the diffusion paths must cross the straight line joining the terminal 

compositions at least once, and (iii) for vapor-solid diffusion couples, the diffusion path need not 

cross the straight line joining the terminal compositions. A schematic representation of two 

diffusion paths on a ternary isotherm is shown in Figure 1. The path-I is an s-shaped path that 

corresponds to a solid-solid diffusion couple a vs. b, and path-II is for a solid-vapor diffusion 

couple a vs. v. For multiphase diffusion couples, there are additional rules that apply to diffusion 

paths. For example, when a diffusion path passes through a two-phase region parallel to an 

equilibrium tie-line, it corresponds to a planar interface whose local equilibrium is specified by 

that tie-line (e.g. path-III for x vs. z couple in Figure 1). If the diffusion path crosses the two-

phase region inclined to an equilibrium tie-line, it corresponds to a wavy or non-planar interface 

whose local equilibrium is specified by the series of tie-lines (e.g. path-IV for y vs. z couple in 

Figure 1). Isolated particles of the second phase can develop in the diffusion zone if the diffusion 

path exits to the same single-phase region it has originated before passing the two-phase region 

at an angle to tie-lines (e.g. path-V for y vs. p couple in Figure 1). 

There are interesting and important phenomena such as occurrence of up-hill diffusion 

and zero-flux planes that can occur in a ternary diffusion couple during isothermal interdiffusion. 

The up-hill diffusion, as the name suggests, occurs against the concentration gradient, but down 

the chemical potential gradient. It was first illustrated by Darken’s famous experiment on Fe-C-

Si system where up-hill diffusion was observed in the concentration profile of carbon. The 

reason for this was ascribed to the diffusion of the second solute, silicon, which drives the 

diffusion of the first, i.e. carbon. A schematic concentration profile illustrating an up-hill 

diffusion is presented in Figure 2. 
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Figure 1: A schematic representation of diffusion paths between single-phase and two-phase 
diffusion couples depicting various attributes of diffusion paths. 

The zero-flux planes (ZFPs) first observed by Dayananda and Kim [14] are the planes in 

a diffusion couple where the interdiffusion flux of a component goes to zero. A change or 

reversal in the flux direction occurs on either side of the ZFP. Occurrence of ZFPs has been 

reported in many ternary alloy systems [15-18], but they are not found in all diffusion couples. 

Based on their investigations, Dayananda et al. have suggested that ZFPs occur only when the 

diffusion path drawn on a ternary isotherm intersects one of the isoactivity lines that pass 

through the terminal alloy compositions, and the composition of the point of intersection 

corresponds to the composition at the ZFP. 
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Figure 2: A schematic representation of a composition profile showing up-hill diffusion. 
Location of the zero flux plane (ZFP) is the point where area A = area B and area C = area D. X0 
is the Matano plane determined by mass balance. 

 

Figure 3: A schematic representation of a flux profile showing one zero flux plane (ZFP) and 
flux reversal. x0 is the Matano plane determined by mass balance. 
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Further, based on theoretical analysis, Thompson et al. [19] have shown that the ZFPs 

occur when the initial concentration differences fall on a specific range. Form the schematic 

composition profile presented in Figure 2, the location of a zero flux plane can be determined 

using Boltzmann-Matano analysis [20], which gives the flux of a component at any position in a 

diffusion couple as being proportional to the integral of its concentration profile. As the 

interdiffusion flux is zero at the ZFP, according to Matano, Area A = Area B and Area C = Area 

D, as shown in Figure 2. A schematic of the interdiffusion flux profile is shown in Figure 3, 

which shows the location of the ZFP and reversal in flux direction. 

 In multiphase diffusion couples, the regions near the joining interface undergo various 

morphological and structural changes, which may affect the stability of the interface. Many 

experimental investigations have been carried out to understand the development of diffusion 

structures and diffusion paths in various alloy systems such as Ni-Cr-Al and Fe-Ni-Al [21-26]. In 

these studies different interface structures were observed such as non-planar or wavy interfaces, 

lamellar two-phase region or particles of second phase in the diffusion zone. 

In this work a phase-field model is developed to assess and predict the development of 

concentration profiles and microstructures in multicomponent single- and multi-phase solid-to-

solid diffusion couples. Interdiffusion in hypothetical ternary single-phase and two-phase 

diffusion couples are examined using phase-field model by numerically solving the nonlinear 

Cahn-Hilliard and Ginzburg-Landau equations. For diffusion couples assembled with a regular 

single-phase solution, constant chemical mobilities were employed to examine the development 

of concentration profiles including uphill diffusion and zero-flux plane. Zero-flux plane for a 

component was observed to develop for a diffusion couple at the composition that corresponds 
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the activity of that component in one of the terminal alloys. Experimental thermodynamic 

parameters and composition-dependent chemical mobilities were employed to examine the 

morphological evolution of interphase boundary in solid-to-solid two-phase diffusion couples. 

Instability at the interphase boundary was introduced initially (t=0) by a small compositional 

fluctuation at diffuse-interface, and its evolution varied largely as a function of terminal alloys 

and corresponding composition-dependent chemical mobility. 

 The work has been divided into two parts. First, development of zero-flux planes in 

single-phase diffusion couples is examined with respect to the thermodynamic description. 

Specifically addressed in this work is the development of zero-flux plane for a component and its 

relation to the activity of that component in one of the terminal alloys. In the second part, 

development of planar and non-planar interfaces in two-phase solid-to-solid diffusion couples is 

examined based on initial interface perturbation and composition-dependent chemical mobility. 

4.2 Phase-field Model Description 

4.2.1 Thermodynamic Descriptions 

 Two models were employed in this study, one used for the simulation of single-phase 

diffusion couples, and the other used for the two-phase diffusion couples. While the basic 

framework of the formulation is the same, formulation for the single-phase couples is 

characterized by a difference in the composition only, whereas that for the two-phase couples is 

characterized by a difference in composition as well as structure. 
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 For a ternary substitutional alloy containing elements A, B and C, compositionally 

distinct phases are represented by the conserved composition field variable, the mole or atom 

fraction of individual element, ci(x,t). A non-conserved field variable, η(x,t) is used along with 

the composition variable to represent chemically as well as structurally distinct phases. 

Hereafter, η is referred as the structure order (SO) parameter. The constraint of ‘conservation of 

mass’ leads to: 

ci

i=0

n

∑ x,t( )= 1.0,c x, t( )≥ 0      (4.1) 

where x and t are the position and time variables, respectively. Assuming that the lattice 

mismatch between different phases is negligible and externally applied force fields are absent, 

the total chemical free energy, Fchem of the system can be expressed as the sum of the bulk 

chemical free energy, Fbulk, and total interfacial energy, Fint. This total energy of the system is 

represented as the Helmoltz free energy, F by using the extended Cahn-Hilliard free energy 

functional [27-28]: 

Fchem = Fbulk + Fint = F = NV f c i,η( )+κ i ∇c i( )2
+κη ∇η( )2[ ]

V

∫ dV ,i = A,B,C  (4.2) 

where f (cA, cB, η) is the bulk chemical free energy per atom of the homogeneous alloy, and NV 

is the number of atoms per unit volume, assumed to be constant. In Equation 4.2, Ki and Κη are 

the gradient energy coefficients associated with gradients of compositions of individual elements 

and η, respectively. The system evolves into its equilibrium condition by minimizing the total 
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chemical free energy, F. For single-phase diffusion couples in this study, a simple regular 

solution approximation for f (ci) is employed [29] as given by: 

f cA ,cB ,cc( )= RT ci ln ci + ϖ ijcic j

i≠ j

∑
i

∑     (4.3) 

where ωij are the binary regular solution parameters. In this study it wa assumed ωij = ωji = 2.0, 

which produces a single-phase solid solution without any miscibility gap [29].  

 For two-phase diffusion couples, the free energy was derived by directly using the 

procedure described by Wu et al [30] and Wang et al [31]. Here the bulk chemical free energy is 

approximated by a Landau polynomial expansion as a function of composition and SO parameter 

given by: 

 
f cA ,cB ,η( )= f γ cA ,cB ,0( )+

A2 cA ,cB( )
2

η2 +
A4 cA ,cB( )

4
η4 +K (4.4) 

Molar volume for the system is assumed constant, and component C is taken as the dependent 

component. Thus, there are only two composition variables in the equation. Fγ
(cA,cB,0) is the free 

energy of one phase (namely γ), calculated from the thermodynamic data available [32]. The 

equilibrium free energy of the second phase (namely β) is obtained from Equation 4.4 by 

substituting the equilibrium SO parameter value, η0(cA, cB) determined by: 

∂f cA ,cB ,η( )
∂η

= 0       (4.5) 

A2(cA, cB) in Equation 4.4 is represented by a polynomial, which was obtained from [30]. 
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4.2.2 Diffusion Equations 

 Kinetic equations that govern the temporal evolution of the composition variables and SO 

parameter were employed following Huang [29] and Mohanty [33]. The intrinsic flux of 

individual components relative to a lattice-frame of reference is expressed using a linear and 

homogeneous function of the gradient in its chemical potential as: 

Ji = −M i∇μi        (4.6) 

where Mi is the intrinsic mobility of the component i, which is always positive. The 

interdiffusion flux of each component %Ji  in a laboratory frame of reference is given by [8]: 

 
%Ji = Ji − ci JA + JB + JC( )     (4.7) 

where 
 

%Ji

i

∑ = 0 . Substituting Equation 4.6 into Equation 4.7 yields: 

 

%Ji = − 1 − ci( )M i∇μi − ci M j

j ≠ i

∑ ∇μ j , where j = A, B, C  (4.8) 

Using Gibbs-Duhem relation, ci

i

∑ ∇μi = 0  with Equation 4.8 yields: 

∇μA = 1 − cA( )∇μA

eff − cB∇μB

eff

∇μB = 1 − cB( )∇μB

eff − cA∇μA

eff

∇μc = −cA∇μA

eff − cB∇μB

eff

     (4.9) 
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where μA

eff = μA − μC( ) and μB

eff = μB − μC( ). Now substitution of Equation 4.9 into Equation 4.8 

gives: 

 

%JA = − 1− cA( )2
M A + cA

2 M B + cA

2 MC
⎡
⎣

⎤
⎦∇μA

eff

      + cB 1− cA( )M A + cA 1 − cB( )M B − cAcBMC
⎡⎣ ⎤⎦∇μB

eff

   (4.10a) 

and 

 

%JB = − 1− cB( )2
M B + cB

2 M A + cB

2 MC
⎡
⎣

⎤
⎦∇μB

eff

      + cB 1 − cA( )M A + cA 1− cB( )M B − cAcBMC
⎡⎣ ⎤⎦∇μA

eff

   (4.10b) 

 In this study, the intrinsic mobility of each element was introduced as a linear function of 

its composition, i.e. M i = βici , where βi is the atomic mobility of individual element. Then, 

Equation 4.10 for interdiffusion flux of individual component becomes: 

 

%JA = − 1− cA( )2 βAcA + cA

2βBcB + cA

2βCcC
⎡
⎣

⎤
⎦∇μA

eff

      + cB 1− cA( )βAcA + cA 1− cB( )βBcB − cAcBcCβC
⎡⎣ ⎤⎦∇μB

eff

   (4.11a) 

and 

 

%JB = − 1− cB( )2 βBcB + cB

2βAcA + cB

2βCcC
⎡
⎣

⎤
⎦∇μA

eff

      + cB 1 − cA( )βAcA + cA 1− cB( )βBcB − cAcBcCβC
⎡⎣ ⎤⎦∇μB

eff

   (4.11b) 

Equation 11 can be rewritten as: 

 
%JA = −M AA∇μA

eff − M AB∇μB

eff       (4.12a) 

and 
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%JB = −M BA∇μA

eff − M BB∇μB

eff      (4.12b) 

where Mij are the effective chemical mobilities defined as:  

M AA = 1 − cA( )2 βAcA + cA

2βBcB + cA

2βCcC

M BB = 1 − cB( )2 βBcB + cB

2βAcA + cB

2βCcC

M AB = M BA = −cB 1 − cA( )βAcA − cA 1 − cB( )βBcB + cAcBcCβC

 (4.13) 

For an inhomogeneous system, μi

eff is defined as the variational derivative of F with 

respect to ci.: 

μi

eff =
δF

δci

   (i = A, B)       (4.14) 

Using Equations 4.2 and 4.16, we arrive at the following equations; 

μA

eff =
∂f

∂cA

− 2 κ A +κ C( )∇2cA − 2κ C∇2cB

μB

eff =
∂f

∂cB

− 2 κ B +κ C( )∇2cB − 2κ C∇2cA

   (4.15) 

The governing temporal equations can be expressed using continuity equation by: 

 

∂ci

∂t
= −∇ ⋅ %Ji    (i = A, B)      (4.16) 

From Equations 4.11, 4.13, 4.15 and 4.16, the final governing equations to be solved are 

obtained as:  
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∂cA x,t( )
∂t

= ∇ M AA∇
∂f

∂cA

− 2κ AA∇2cA − 2κ AB∇2cB

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

                 + ∇ M AB∇
∂f

∂cB

− 2κ AB∇2cA − 2κ BB∇2cB

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

  (4.17a) 

and 

∂cB x,t( )
∂t

= ∇ M BA∇
∂f

∂cA

− 2κ AA∇2cA − 2κ AB∇2cB

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

                + ∇ M BB∇
∂f

∂cB

− 2κ AB∇2cA − 2κ BB∇2cB

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

   (4.17b) 

where κ AA = κ A +κ C  ,κ BB = κ B +κ C and κ AB = κ BA = κ C .  

4.2.3 Evolution of Structure Order Parameter 

 The evolution of non-conserved field variable η is described by a relaxation equation 

often called as time dependent Ginzburg-Landau equation or Allen-Cahn equation [34]: 

∂η(x, t)

∂t
= −Mη

δF

δη
      (4.18) 

and  

δF

δη
=

∂f

∂η
− 2κη∇2η       (4.19) 

where Mη is the relaxation constant that characterizes the interface mobility. Combining 

Equations 4.18 and 4.19 yields: 
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∂η(x, t)

∂t
= −Mη

∂f

∂η
− 2κη∇2η

⎡

⎣
⎢

⎤

⎦
⎥     (4.20) 

4.2.4 Initial Interface Perturbation for Multiphase Diffusion Couples 

 A random fluctuation, ξ(x,t) was incorporated to introduce compositional fluctuations at 

the γ/β diffused-interface for multiphase diffusion couple at t = 0 (i.e., not sustained) using 

ξ x, t( )  as given by Cook [35]: 

Ci r, t = 0( ) = Ci nonoise
+ ξ r( )     (4.21) 

where x and t are position and time, respectively. The fluctuation used is a Gaussian random 

noise with mean zero. The range of fluctuation varied from +0.005 to -0.005 of composition 

within the diffuse-interface. 

4.2.5 Numerical Implementation 

 Equations 4.17 and 4.20 were solved by using explicit central finite difference scheme. 

The system was divided into a 256 by 256 mesh, and the mesh size is equal to dimensionless 

number 1.0 on both x and y coordinates. The dimensionless time step used in the simulation is 

10-5. 
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4.3. Results 

4.3.1 Single Phase Ternary Diffusion Couples 

The main objective of this part of the study was to predict concentration profiles, 

diffusion paths and the occurrence of up-hill diffusion and zero-flux planes in single-phase vs. 

single-phase solid-to-solid diffusion couples using the phase-field model. The simulations were 

carried out on a hypothetical (A-B-C) and a real (Cu-Ni-Zn) alloy systems. In terms of the phase-

field description, all the phases considered have same crystal structure, but they differ by their 

compositions. A regular solution approximation was used to describe the thermodynamics of the 

system, where as the kinetic information was either based on assumptions or derived from the 

experimental data, if deemed necessary. For example, in Cu-Ni-Zn system the chemical 

mobilities were assumed constant, and chosen based on average ternary interdiffusion 

coefficients determined from experimental concentration profiles [36]. Figure 4 shows the free 

energy surface with energy contours employed for the regular solution model with ω = 2.0. The 

compositions of some of the single-phase alloys employed in this study are listed in Table I, and 

chemical mobilities assumed constant on either side of the diffusion couples are listed in Table 

II. 

The development of concentration profiles was studied mainly using the Cu-Ni-Zn alloys 

(α5, α7, α12 and α20) and the results were compared to the experimental results. The simulated 

and experimental [37] concentration profiles from the Cu-Ni-Zn diffusion couples α5 vs. α7, α5 

vs. α12 and α5 vs. α20 annealed at 775ºC for 48 hours are presented in Figure 5, 6 and 7, 

respectively. From these figures it can be noticed that all the trends observed in experimental 
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profiles are consistently depicted in the simulated concentration profiles. The model is well 

capable of predicting features like up-hill diffusion in all these diffusion couples. 

The occurrence of zero-flux planes in single-phase diffusion couples was investigated 

using the hypothetical ternary system containing components A, B and C. A detailed analysis 

was carried out by employing various combinations of composition and mobilities in conjunction 

with the isoactivity lines for the components calculated from the regular solution model [29]. 

Terminal alloy compositions and mobility values of two such diffusion couples are provided in 

Table I and Table II. The compositions for these alloys were chosen with respect to the 

isoactivity lines of component B. For the couple θ1 vs. θ2, compositions of both terminal alloys 

lie on one isoactivity line, whereas for θ3 vs. θ4, composition of terminal alloys lie on two 

slightly different isoactivity lines. 

 

Figure 4: Free energy surface with energy contours for a single-phase solution without any 
miscibility gap in A-B-C ternary alloy. 
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Table 1: Compositions of alloys employed in phase-field simulation of solid-to-solid ternary 
diffusion couples. For alloys α5 and α7, components A, B, and C correspond to Cu, Ni, and Zn 
respectively. Alloys θ1, θ2, θ3, and θ4 have been selected based on activity of component B, aB 
= 0.6682, aB = 0.6682, aB = 0.4599, aB = 0.5641, respectively. 

Composition (atom fraction) 
Alloy Designation 

A B C 

α5 0.225 0.325 0.450 

α7 0.010 0.550 0.440 

θ1 0.500 0.313 0.187 

θ2 0.336 0.364 0.300 

θ3 0.300 0.150 0.550 

θ4 0.365 0.235 0.400 

γ1 0.200 0.100 0.700 

γ2 0.300 0.130 0.570 

β1 0.100 0.350 0.550 

β2 0.050 0.450 0.500 

 

Table 2: Chemical mobilities employed on either side of the solid-to-solid ternary diffusion 
couples examined in this study. 

Diffusion Couple Chemical Mobility 
Left-hand-side 

(LHS) 
Right-hand-side 

(RHS) 

MBB 3.44 4.58 

MBC -0.05 0.62 

MCB 26.45 15.25 
α5 (LHS) vs. α7 (RHS) 

MCC 23.9 9.73 

MBB 1.1 2.0 

MBC -0.8 -3.0 

MCB -1.2 -3.0 
θ1 (LHS) vs. θ2 (RHS) 

MCC 1.9 6.0 

MBB 0.2 0.5 

MBC -0.2 -0.8 

MCB -0.8 -0.1 
θ3 (LHS) vs. θ4 (RHS) 

MCC 8.1 6.8 
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(a) 

 

(b) 

Figure 5: (a) Experimental and (b) simulated concentration profile of solid-to-solid diffusion 
couple α5 vs. α7. 
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(a) 

 

(b) 

Figure 6: (a) Experimental and (b) simulated concentration profile of solid-to-solid diffusion 
couple α5 vs. α12. 
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(a) 

 

(b) 

Figure 7: (a) Experimental and (b) simulated concentration profile of solid-to-solid diffusion 
couple α5 vs. α20. 
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 The alloy compositions are identified on the ternary isotherms along with their diffusion 

paths in Figures 8(a) and 9(a), respectively. Composition and activity profiles of these diffusion 

couples are plotted in Figures 8(b) and 9(b). In both the couples an uphill diffusion in the profiles 

of concentration and activity for component B was observed, but from the flux profiles presented 

in Figures 8(c) and 9(c) ZFP was only observed for the couple θ3 vs. θ4. The activity of 

component B at the zero-flux plane composition (0.34A-0.235B-0.425C) corresponds to the 

activity of component B in terminal alloy (aB = 0.5641) on the right-hand-side of Figure 8(b). 

The simulated results for the couple θ3 vs. θ4 agrees with the experimentally observed 

phenomena [14-18] that a ZFP occurs at the composition where the diffusion path intersects the 

isoactivity line extended from a terminal alloy. 

In Figures 10 to 15, some more examples of simulated diffusion paths, composition 

profiles and flux profiles obtained from various diffusion couples are presented. All the diffusion 

couples shown in these figures are hypothetical and their terminal alloy compositions lie either 

on a single or two different isoactivity lines. For the diffusion couple shown in Figure 10 (a), the 

terminal alloy compositions are on a single isoactivity line and the diffusion path crosses it at a 

composition near 0.38A-0.27B-0.35C. From the Matano analysis on the composition profile 

shown in Figure 10(b), the ZFP lies at the Matano interface (x0). The composition at the ZFP is 

observed to be near 0.38A-0.27B-0.35C. 
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Figure 8: (a) Diffusion path, (b) profiles of concentration and activity for component B, and (c) 
interdiffusion flux of component B simulated from diffusion couple θ1 vs. θ2. The activity of B in 
both terminal alloys is the same at 0.6682. No ZFP is observed although an uphill diffusion for 
component B is observed. 
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Figure 9: (a) Diffusion path, (b) profiles of concentration and activity for component B, and (c) 
interdiffusion flux of component B simulated from diffusion couple θ3 vs. θ4. The activities of B 
in θ3 and θ4 alloys are 0.4599 and 0.5641, respectively. A ZFP is observed with an uphill 
diffusion for component B. The activity of B at the ZFP composition is 0.5641. 
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(a) 

 
(b) 

Figure 10: (a) Diffusion path of a hypothetical diffusion couple drawn on the ternary isotherm 
with the terminal alloy compositions laying on one isoactivity line of component C, (b) 
corresponding composition profiles showing up-hill diffusion of component C. The ZFP is 
located at the Matano interface. 
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The diffusion path of the couple shown in Figure 11(a) again have the terminal alloys on 

one isoactivity line, but in this case two ZFPs are observed on either side of the Matano plane, as 

shown in Figure 11(b). This is also proved from the flux profile in Figure 11(c). In certain cases, 

a ZFP may not develop, even though there is up-hill diffusion and an extremum present in the 

composition profile of a component, as shown in Figure 12. Here the terminal alloy compositions 

of the diffusion couple are on one of the isoactivity lines of component A, as shown in Figure 

12(a) and the diffusion path crosses the isoactivity line at one point. But upon analyzing the 

concentration profile presented in Figure 12(b), no ZFP could be determined. The hatched areas 

in the composition profile are used to determine the Matano plane where Area A = Area B. 

When the terminal alloys lie on two different isoactivity lines, two or more ZFPs can occur as the 

diffusion path can cross the isoactivity lines at number of points. The diffusion path and flux 

profile for such a couple are shown in Figure 13(a) and (b). 
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(a) 

 
(c) 

Figure 11: (a) Diffusion path of a hypothetical diffusion couple drawn on the ternary isotherm 
with the terminal alloy compositions laying on one isoactivity line of component B, (b) 
corresponding composition profiles showing up-hill diffusion of component B and two ZFPs 
located on either side of the Matano interface. (c) Flux profile that confirms the presence of two 
ZFPs. 

(b)
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(a) 

 
(b) 

Figure 12: (a) Diffusion path of a hypothetical diffusion couple drawn on the ternary isotherm 
with the terminal alloy compositions laying on one isoactivity line of A, (b) corresponding 
composition profile showing up-hill diffusion of component A and no ZFPs is present. 
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(a) 

 

(b) 

Figure 13: (a) Diffusion path of a hypothetical diffusion couple drawn on the ternary isotherm 
with the terminal alloy compositions laying on one isoactivity line of A, (b) corresponding flux 
profile showing locations of two ZFPs. 
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4.3.2 Effect of Concentration Dependent Chemical Mobility On The Appearance of ZFPs 

The chemical mobilities defined in Equation 4.13 are functions of composition and 

atomic mobilities of each component, but the results described so far were obtained using 

constant chemical mobilities. Therefore, the variation in terminal alloy compositions of all the 

diffusion couples is only manifested through the variation in the chemical free energy, which in 

turn creates differences in respective chemical potentials. In order to study the effect of kinetic 

parameters such as chemical mobilities on ZFPs, various combinations of atomic mobilities were 

used with fixed terminal alloy compositions that kept the thermodynamics of the system 

constant. Results obtained from two series of simulations are presented below in Figure 14 and 

15, where diffusion paths for two diffusion couples are shown along with the variation in their 

flux profiles as a function of atomic mobilities. 

Table 3: Constant atomic mobility values of components A, B, and C used for the study of the 
occurrence of ZFPs. 

Atomic Mobilities 
Case 

βA βB βC 
a 0.005 0.01 0.03 
b 0.001 0.01 0.1 
c 0.001 0.01 0.09 
d 0.001 0.01 0.095 
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Figure 14: Development of diffusion paths and flux profiles for a diffusion couple as a function 
of atomic mobilities of components described by series-1. ZFP occurrence and their location 
changes with change in the mobility values. 
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Figure 15: Development of diffusion paths and flux profiles for a diffusion couple as a function 
of atomic mobilities of components described by series-2. ZFP occurrence and their location 
changes with change in the mobility values. 
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The same set of atomic mobilities was used for the two diffusion couples, and is given in 

Table 3. In series-1, as shown in Figure 14, case-a does not produce any ZFP, whereas in cases 

b, c, and d, ZFP are observed. However, the location of occurrence of ZFPs varied with the 

variation in atomic mobility for the same diffusion couple. In series-2, the ZFP was observed in 

all the cases except case c. The observed differences between series-1 and 2 occur only due to a 

difference in the terminal alloy compositions of the two diffusion couples. 

4.3.3 Two-Phase Diffusion Couples and Interface Morphology 

 To examine the morphological evolution of interface between two-phase ternary 

diffusion couples, say γ vs. β, the free energy formulation given in the Equation 4.4 was used. 

The free energy of γ phase was derived from the thermodynamic database available for the Ni-

Cr-Al system at 1200°C [32]. Also, composition dependent chemical mobilities, Mij based on 

Equation 4.13 were employed in these simulations from constant atomic mobilities (βA = 2.0, βB 

= 1.2, βC = 6.0). Two two-phase diffusion couple simulations were conducted: (1) first 

simulation was carried out without using any compositional fluctuations; and (2) second 

simulation was carried out with a uniform random fluctuation across the interfacial region only 

in the first step of time-iteration to introduce compositional perturbations into the system.  

Since the two phases are in thermodynamic equilibrium, small random fluctuations 

introduced into the system does not result in the nucleation of precipitates or other phases. Each 

simulation is started with an initial homogeneous composition as determined by the 

thermodynamic equilibrium calculations. Terminal alloy compositions used in this study are 

provided in Table 1. The gradient energy terms are of similar values to avoid the formation of 
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any preferential interface layers. Equilibrium values of SO parameters (η = 0 for γ and η = ηeq 

for β) for both the phases are used, and microstructures are presented with time snapshots using a 

gray scale representation of the local values of η. Figure 16 shows the temporal microstructure 

evolution in a γ vs. β diffusion couple where no interfacial perturbation is applied. In Figure 17, 

temporal microstructure evolution in the same γ vs. β diffusion couple is shown, but in this case 

the interface perturbation is applied to the system. The darker region in the microstructure 

corresponds to γ phase (η = 0) and the brighter region corresponds to β phase (0 < η = ηeq < 1.0). 

The results show that, without the introduction of perturbation, the γ/β interface moves 

parabolically and remains planar. With perturbation introduced at the interface at t = 0 only, the 

γ/β interface can become non-planar.  

Figure 18 presents the resulting microstructure from diffusion couples of different 

terminal alloy compositions, subjected to the same fluctuation to study the effect of composition-

dependent chemical mobilities on the morphological evolution of interface. It is observed that the 

initial terminal alloy compositions, and thus the composition-dependent chemical mobility, have 

a pronounced effect on the morphological evolution of the γ/β interface: planar in Figure 18(a) 

vs. non-planar in Figure 18(b). 



 82

 

Figure 16: Morphological evolution of γ/β interface with no initial fluctuation in solid-solid two-
phase diffusion couple γ1 vs. β1 with the same terminal alloy compositions. The interface remains 
planar with time. Non-planar interface is observed to develop with initial fluctuation. 
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Figure 17: Morphological evolution of γ/β interface with initial fluctuation in solid-solid two-
phase diffusion couple γ1 vs. β1 with the same terminal alloy compositions. Non-planar interface 
is observed to develop with initial fluctuation. 
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Figure 18: Morphological evolution of γ/β interface in solid-to-solid diffusion couple: (a) γ1 vs. 
β1 and (b) γ2 vs. β2. Magnitude of the initial fluctuation is same for both couples while the 
terminal alloy compositions and composition-dependent chemical mobility vary. 

4.4. Discussions 

Appropriate use of the kinetic parameters with a simple regular solution model allowed 

prediction of concentration profiles that are commonly observed in ternary diffusion including 

uphill diffusion and zero-flux planes. From the simulation results it is observed that a ZFP 

develops in a ternary system when the diffusion path intersects the isoactivity line passing 

through the terminal alloy compositions. The composition at the point of intersection 

corresponds closely to the activity of one of the terminal alloys. The simulation results also 

confirmed that ZFPs to occur, extrema in concentration profiles caused by the up-hill diffusion is 

necessary, but the presence of an extremum might not always necessarily produce a ZFP.  
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To elucidate the above point, let us consider the diffusion couple described in Figure 

12(a) where the diffusion path is crossing the isoactivity line passing through its terminal alloys. 

But no ZFP is observed in the composition profile of the diffusion couple plotted in Figure 12(b), 

though up-hill diffusion is clearly evident. This can be illustrated on the basis of Figure 2, which 

suggests that a ZFP is located at the point in the composition profile where the Area A = Area B 

and Area C = Area D. This criteria does not hold in Figure 12(b) because of the location of the 

Matano plane, so that at all positions in the reaction zone the area A+B > 0. Hence, there will be 

no ZFP in this composition profile. As it is evident form the simulation results shown in Figures 

14 and 15 that the development of ZFPs can only occur in diffusion couples whose terminal 

alloys lie in a particular composition range, which is determined by the above criteria.  

4.5. Conclusions 

 Phase-field model was developed and employed to simulate development of 

concentration profiles and interface morphology observed in solid-to-solid ternary diffusion 

couples. Using a simple regular solution model, and constant chemical mobilities, development 

of concentration profiles including uphill diffusion and zero-flux plane were simulated. Zero-flux 

plane for a component can be observed to develop at the composition that corresponds to the 

intersection of the diffusion path and the isoactivity line drawn from one of the terminal alloys. 

There could be more than one ZFP developed on either side of the Matano plane. It was also 

demonstrated that the terminal alloy compositions, and thus composition-dependent chemical 

mobility, play an important role in morphological evolution of interphase boundary in solid-to-

solid two-phase diffusion couples.  
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CHAPTER 5 
INTERDIFFUSION MICROSTRUCTURE EVOLUTION IN ISOTHERMAL 

DIFFUSION COUPLES OF Ni-Al SYSTEM 

5.1 Introduction 

Ordered intermetallic compounds such as Ni3Al (i.e. L12 ordered phase) are important 

components in Ni-base superalloys for their higher strength at high temperature. In these alloys 

the ordered γ′ phase is generally dispersed as precipitates in the matrix of a disordered Ni solid 

solution, γ phase. The performance and durability of these alloys depend on the microstructure 

and the stability of γ′ precipitates at high temperature. Interdiffusion plays a significant role in 

determining the phase stability of these alloys, especially when they are in contact with each 

other as substrates and coatings, by changing the composition and the microstructure near their 

joining interfaces. For example, the oxidation resistance and lifetime of γ (Ni) + γ′ (L12) coatings 

depend on the volume fraction and morphology of the γ′ phase. Diffusion of the fast diffusing 

species Al into the substrate reduces the lifetime of these coatings drastically [1,2] as Al is the 

protective oxidation layer-forming element in the coating. Extensive experimental studies have 

been carried out to study the interdiffusion behavior and the lifetime of γ (Ni) + γ′ (Ni3Al) 

coating on γ (Ni) substrate alloys [3-8]. 

Many phase-field simulations have been performed on Ni-Al systems dealing with the 

coarsening kinetics, morphology and distribution of the γ′ phase in γ matrix [9-11]. The present 

work reports the use of a 2D phase-field model to predict the interdiffusion microstructures in γ 

vs. γ′, γ vs. γ+γ′ and γ+γ′ vs. γ+γ′ solid-to-solid diffusion couples in Ni-Al system. Development 

of interdiffusion microstructure was characterized according to types of boundaries, (e.g., type 0, 
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type 1 and type 2) allowed in binary diffusion couples [12]. Movement of such boundaries via 

dissolution or growth of phases across the boundary was analyzed. In agreement with 

experimental observations [4], the results of this study show the dissolution kinetics of the γ′ 

phase in γ vs. γ+γ′ diffusion couples are interdiffusion controlled.  

5.2 Description of Phase-Field Model 

5.2.1 The Phase-field Variables 

 The Ni-Al system considered in this study has a disordered face-centered cubic (fcc) γ 

phase and an ordered Ni3Al-γ′ (L12) intermetallic phase. The structural relationship between the 

two phases can be viewed as four interpenetrating simple cubic sublattices, defined by points 

1,2,3 and 4 shown in Figure 19. The four points are located at 0,0,0( ), 1
2, 1

2,0( ), 0, 1
2, 1

2( ) 

and 1
2,0, 1

2( ), respectively. For the fcc-γ phase, all the four sites are equivalent and occupied 

by Ni and Al atoms randomly. On the other hand, for the L12-γ′ phase, the corner position (site 

1) is occupied by Al atoms and the rest three equivalent face center positions (sites 2, 3, 4) are 

occupied by Ni atoms. The L12 structure can originate from any of the four sublattices of the fcc 

lattice that produces four distinguishable translational domains or antiphase domains [13,14]. A 

site occupation factor si (i = 1,2,3,4) can be defined in order to represent the four ordered states  

(s1, s2, s3, s4) as (1,-1,-1,-1), (-1,1,-1,-1), (-1,-1,1,-1) and (-1,-1,-1,1), where si is the occupation of 

the ith sublattice, and can either be +1 or -1 depending on whether the sublattice is occupied by 

an Al or a Ni atom, respectively. A three component order parameter field (ηi, i=1,2,3) can now 

be introduced to represent the four ordered domains such that [13]: 
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η1 =
η0

2
s1 − s2 − s3 + s4[ ]      (5.1a) 

η2 =
η0

2
s1 − s2 + s3 − s4[ ]      (5.1b) 

η3 =
η0

2
s1 + s2 − s3 − s4[ ]      (5.1c) 

where η0 is the equilibrium value of the long range order (lro) parameter. The four domains in 

terms of order parameters (η1, η2, η3) are correspondingly (1,1,1)η0, (-1,-1,1)η0, (-1,1,-1)η0, and 

(1,-1,-1)η0, as described earlier in Equation 3.3. The sign of the individual order parameters are 

exactly opposite, if the sign of si is switched. This produces four energetically and structurally 

invariant states. 

The microstructure of the substitutional binary alloy Ni-Al containing two 

compositionally and structurally distinct phases (fcc-γ and L12-γ′) can be represented by two 

field variables, i.e. a composition field, c(r), and the structural order parameter field, ηi(r), which 

describe the spatial compositional inhomogeneities and the structural difference between the 

phases, respectively. 
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Figure 19: Schematic representation of the fcc lattice showing four equivalent lattice sites. 

5.2.1 Phase-Field Formulation 

In this phase-field simulation only a single ordered domain is considered, which reduces 

the number of order parameters from three to one by η1=η2=η3=η. The lro parameter assumes a 

value of zero for the disordered phase and a finite value ηe for the ordered phase such that 

η1=η2=η3=ηe [15], where ηe is the equilibrium order parameter that corresponds to the 

minimum of the free energy. In both phases, the composition field corresponds to its equilibrium 

values determined by the thermodynamic description of the system, which is used to construct 

the phase diagram. In this study the effect of coherent elastic strain caused by the crystal lattice 

mismatch on the interdiffusion microstructure is ignored for simplicity. The total free energy of 

the inhomogeneous system is given by extended Cahn-Hilliard free energy functional, F [16,17]: 

F = f c,η( )+κ c ∇c( )2 +κη ∇η( )2⎡⎣ ⎤⎦dV
V

∫      (5.2) 
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where, f (c, η) is the bulk chemical free energy per unit volume of the homogeneous alloy. c is 

the mole fraction of Al, κi and κη are the gradient energy coefficients associated with gradients 

of composition and lro parameter, respectively. The system evolves into its equilibrium condition 

by minimizing the total chemical free energy, F.  

Landau polynomial approximation has been extensively used [9,10,14,15,18] to represent 

the bulk chemical free energy of a two-phase binary alloy of ordered and disordered phases. The 

details of the free energy approximation are described by Wang et al. [15], and have been used 

for the present simulation. For a single ordered domain, the free energy expression in Equation 

3.2 can be rewritten as 

f c,η( )=
1

2
b0 c − c1( )2

+
1

2
b2 c2 − c( )η2 +

1

3
b3η

3 +
1

4
b4η

4   (5.3) 

where f0 c( )=
1

2
b0 c − c1( )2

, B2 c( )=
1

2
b2 c2 − c( ), b0, b02, b3, b4, c1 and c2 are constants. The 

projection of the minimum of the approximated free energy vs. composition diagram is plotted in 

Figure 20, which was calculated for the equilibrium values of lro parameters for γ and γ′ phases. 

Using isotropic interfacial energy terms and neglecting the coherency stain effect, the 

governing field kinetic equations for the composition and lro parameter fields can be written as: 

∂c r,t( )
∂t

= ∇ M c c( )∇
∂f

∂c
− 2κ c∇

2c
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

                 

    (5.4a) 

and 
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∂η(r, t)

∂t
= −Mη

∂f

∂η
− 2κη∇2η

⎡

⎣
⎢

⎤

⎦
⎥      (5.4b) 

where M c = χc(1− c)  is the chemical mobility, and χ = Do kBTMηl2 , where Do  is related to 

diffusivity in dilute solutions. Mη is the kinetic relaxation constant associated with the lro 

parameter and it characterizes the interface mobility. These kinetic equations are made 

dimensionless for numerical convenience and spatial dimensions are scaled by a length unit ‘l’. 

In its dimensionless form, Equation 5.4 can be written as: 

∂c x,τ( )
∂τ

= −∇ M c c( )∇
∂ f

∂c x,τ( )
− φc∇

2c x,τ( )⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   (5.5a) 

and 

∂η x,τ( )
∂τ

= −
∂ f

∂η x,τ( )
− φη∇2η x,τ( )⎡

⎣
⎢

⎤

⎦
⎥     (5.5b) 

In Equation 5.5 c = c x,τ( )− c ′γ⎡⎣ ⎤⎦ cγ − c ′γ⎡⎣ ⎤⎦ , where cγ and cγ′ are the equilibrium composition 

of γ and γ′ phases, respectively, calculated from the minima in f  vs. c diagram shown in Figure 

20. Also in Equation 5.5, τ  is the reduced time defined by τ = Mη Δf t , x  is the reduced length 

scale defined by x = r l , ∇ = ∂ ∂x( ), and f = f Δf . In addition, M c c( ), φc and φη are the 

dimensionless chemical mobility, and gradient energy coefficients for composition, and lro 

parameter, respectively.  
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As shown in Figure 20, Δf  is the driving force for the phase transformation typically 

seen as the local maximum in the free energy diagram between the two equilibrium phases, and 

is located at the composition where the free energies of the two phases have the same values. The 

Ni-Al phase diagram was generated by the Thermo-Calc™ software using the PBIN™ database 

to illustrate the alloy compositions in the γ and γ+γ′ phase region used in this study as shown in 

Figure 21.  

Starting with the flux equations in lattice frame of reference and following a similar 

approach outline in Section 4.2.2, the expression for the chemical mobility M c( ) in the 

laboratory frame of reference can be derived [19] as a function of concentration and atomic 

mobility: 

M c( )= c 1− c( ) cβNi + 1− c( )βAl⎡⎣ ⎤⎦      (5.6) 

where βi is the atomic mobility of species i.  
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Figure 20: Approximated free energy vs. composition curve obtained for the equilibrium lro 
parameters. Δf is the driving force for the phase transformation [15]. 

 

 

Figure 21: Ni-Al phase diagram determined from ThermoCalc™ with PBIN™ database. 



 96

The atomic mobility can be expressed [20] as: 

βi =
1

RT
exp −ΔQi

RT( )      (5.7) 

where R is the gas constant, T is the temperature and ΔQi  is the activation energy of diffusion 

for a component i in the disordered phase. For all practical purposes, in a dilute solution the 

value of βAl determines the value of cβNi + (1 − c)βAl[ ] term in Equation 5.7. So in this study 

cβNi + (1− c)βAl[ ] term is approximated as constant Do kBT( ) in isothermal diffusion couples 

for simplicity [15]. 

5.2.2 Numerical Implementation 

 The semi-implicit Fourier-spectral method [21] as described in Section 3.3.2 is used to 

solve the kinetic Equations 5.5(a) and 5.5(b), which converts the set of partial differential 

equations into ordinary differential equations in Fourier space. The linear terms in the equations 

are solved explicitly whereas the nonlinear terms are solved implicitly. Random γ′ precipitates 

with a Gaussian size distribution were introduced in a γ matrix to develop individual two-phase 

alloys of system size of 512 x 512 grid points. To resemble closely with an experimental 

diffusion couple preparation, these individual alloys of different volume fractions of γ′ phase 

were joined together to make the diffusion couples of size 512 x 1,024 grid points. The 

dimensionless time step used in the simulation is 10-4. With a length unit of l ≈ 167 nm, real 

dimensions of all diffusion couples are 8,550 nm x 17,100 nm. All the simulations were carried 

out with periodic boundary condition applied in both dimensions.  
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5.3 Results 

5.3.1 Growth of A Planar Interface 

Movement of the γ/γ′ interface was initially studied in 1D to assess the growth kinetics. 

Figures 22 and 23 show the composition profile of Al and the rate of movement of the γ/γ′ 

interface. In Figure 22, the phase on the right side is at the equilibrium composition of γ′ phase, 

and the phase on the left has an initial average composition slightly higher than the equilibrium 

composition of γ phase. The γ′ phase grows towards the left, where the left-side composition 

decreases and finally attends the equilibrium composition of γ phase after a very long time. In 

Figure 23 the interface position vs. time curve shows that the interface movement follows a 

parabolic path that is typical of diffusion controlled growth kinetics.  

5.3.2 γ vs. γ′ Diffusion Couples 

The first set of diffusion couples were made of single-phase γ and γ′ alloys. 2D 

micrographs of γ vs. γ′ diffusion couples at 1000˚C for three different times are shown in Figure 

24. The initial composition of γ and γ′ phases are 10 and 25 mole% Al respectively, as shown in 

the phase diagram in Figure 21. The interface is observed to move towards the right-hand-side 

(i.e. γ′ phase), which is a result of growth of γ phase and dissolution of γ′ phase. This type of 

boundary is defined as a type 2 boundary, where one phase is added and the other is subtracted 

across it. The boundary is denoted by γ>γ′ notation. Composition profiles of Al at different times 

in Figure 25 show the movement of the boundary towards the γ′ region and diffusion of Al from 

γ′ to γ phase region. 
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Figure 22: Composition profile of a γ vs. γ′ diffusion couple where the right side of the couple is 
at the equilibrium composition of γ′ phase, whereas the left side has an initial average 
composition slightly higher than the equilibrium composition of γ phase. The interface moves to 
the left and the left-hand-side composition gradually decreases to attend the equilibrium 
composition of γ phase. 

 

Figure 23: Interface position vs. Dt plot demonstrates a diffusion controlled parabolic rate of 
interface movement. 
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Figure 24: Magnified interdiffusion microstructures of a diffusion couple γ vs. γ′ at 1000˚C as a 
function of time. The initial boundary (x = 0) between γ and γ′ phase moves towards the γ′ phase 
defined by a type 2 boundary (γ > γ′). 

 

Figure 25: Composition profile of Al at different times showing the movement of initial 
boundary towards the γ′ phase and diffusion of Al from γ′ to γ phase. 
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5.3.3 γ vs. γ+γ′ Diffusion Couples 

γ vs. γ+γ′ diffusion couples were utilized to study the dissolution of γ′ phase. Diffusion 

couples between single-phase (γ) and two-phase (γ+γ′) alloys were prepared with different 

volume fractions of γ′ phase. Two-phase alloys were generated with approximately 20%, 40% 

and 60% volume fractions of γ′ phase in a γ matrix, and they were joined with a single-phase γ 

alloy to produce the diffusion couples which describes the composition profile in 2D at the initial 

time t = 0. The evolution of interdiffusion microstructures in these couples were studied at 

1000˚C by increasing the time of diffusion anneal during simulation. In Figure 26(a) and 26(b) 

are shown the interdiffusion microstructures of two γ vs. γ+γ′ diffusion couples with 0.4 and 0.6 

volume fractions of γ′ phase, respectively. The initial boundary between γ and γ+γ′ phase-region 

is observed to move towards the two-phase region. Note that the formation of a γ phase layer on 

the right-hand end of the couple is due to the applied periodic boundary conditions. The volume 

fraction profile in Figure 27 shows a decrease in the fraction of γ′ phase near the interface, or in 

other words an increase in volume fraction of γ phase. The γ region grows at the expense of γ+γ′ 

region. This type of boundary is defined as type 1 boundary across which one phase is added or 

subtracted. The boundary is denoted by γ>γ+γ′ notation. A significant coalescence and growth of 

the second phase is observed in the two-phase region of the diffusion couple. 
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Figure 26: Interdiffusion microstructures of γ vs. γ+γ′ diffusion couples at 1000˚C as a function 
of time. The γ+γ′ alloys contain approximately (a) 0.4 and (b) 0.6 volume fraction of γ′ phase. 
The single-phase γ region grows at the expense of the two-phase (γ+γ’) region. The initial 
boundary is at x = 0. 

 

Figure 27: Volume fraction profiles of the diffusion couple shown in Figure 26. (b). The volume 
fraction profile was calculated by utilizing the order parameter of the microstructure. A decrease 
in the volume fraction of γ′ phase is marked by the movement of the initial interface towards the 
two-phase region. The boundary is defined as type 1 boundary (γ > γ+γ′). 
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5.3.4 γ+γ′ vs. γ+γ′ Diffusion Couples 

Two-phase vs. two-phase (γ+γ′/γ+γ′) diffusion couples with different volume fractions of 

γ′ phase are simulated at 1000˚C and the resulting interdiffusion microstructures at different 

times are shown in Figure 28. In all the diffusion couples the initial boundary remains stationary 

with no addition or subtraction of phases across the boundary, although coalescence of γ′ 

particles across the boundary due to coarsening effect are prevalent. The volume fraction profiles 

in Figure 29 confirms the above observation made from the interdiffusion microstructure, as the 

volume fractions of phases remain almost constant throughout the diffusion couple with 

annealing time. This type of boundary is defined as the type 0 boundary and is denoted by 

γ+γ′|γ+γ′ notation, where no addition or subtraction of phases occurs.  

5.3.5 Effect of Diffusivity and Gradient Energy Coefficients 

Magnitudes of diffusivity and gradient energy coefficients were varied to study their 

effects on the interdiffusion microstructures. While the gradient energy coefficients affect the 

morphology of the second phase particles, they have no effect on the overall interdiffusion 

microstructure of the diffusion couples, whereas the diffusivity has an effect on the final 

interdiffusion microstructure. The γ vs. γ+γ′ diffusion couples with two different volume 

fractions of γ′ phase, and with three different values of diffusivity ratio 1:10:50 (i.e. χ = 0.04, 0.4 

and 2.0 respectively) are simulated, while keeping all other parameters the same. Snapshots of 

the simulated interdiffusion microstructure of these couples at a time step t = 100 are shown in 
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Figure 30. The left and right columns of microstructures represent diffusion couples with γ′ 

phase volume of approximately 40% and 60%, respectively. 

Figure 31 shows the variation in the width of the two-phase region with time as a 

function of diffusivity for γ vs. γ+γ′ diffusion couples with initial γ′ phase volume of 

approximately 60%. The difference in the microstructure can be described by the difference in 

the rate of dissolution of the second phase or the rate of movement of the Type 1 boundary 

towards the two-phase region. Two observations can be made: first, the time for the initiation of 

the dissolution of the second phase, i.e. the time for the start of any observable movement of the 

initial boundary between γ and γ+γ′ region depends on the diffusivity values. Second, the rate of 

depletion of the γ′ phase in two-phase region also depends on the diffusivity values. The lower is 

the diffusivity, the longer is the start time and the lower is the rate of depletion. 

Simulated microstructures of γ vs. γ+γ′ diffusion couples with three different gradient 

energy coefficients in the ratio 1:2.5:3.5 are shown in Figure 32, where diffusivity is the same for 

the three couples. These microstructures are obtained at the same time steps of simulation. 

Volume fraction of γ′ phase on the right side remains approximately 40%. They show little 

difference in interdiffusion microstructure, e.g., dissolution or growth of phases. 
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Figure 28: Interdiffusion microstructures of γ+γ′ vs. γ+γ′ diffusion couples at 1000˚C as a 
function of time. The two-phase alloys contain approximately 0.4 and 0.6 volume fractions of γ′ 
phase on the left and right hand side of the couple, respectively. There is no movement of the 
boundary although some microstructural change due to coalescence is observed. 

 

Figure 29: Volume fraction profiles of the diffusion couples shown in the Figure 15. Volume 
fractions of γ′ phase remain constant across the boundary (x = 0) and characterized by a type 0 
boundary (γ+γ′ | γ+γ′). 
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5.4 Discussions 

Three types of boundaries can be formed in a diffusion couples based on the number of 

components and phases present [12]. In the present simulation of binary Ni-Al system, boundary 

of the type 2 is observed in the γ vs. γ′ couples where the boundary moves towards γ′ phase, and 

can be symbolically defined as γ > γ′. This boundary is characterized by the addition of γ phase 

and removal of γ′ phase across the boundary. 

 

Figure 30: Interdiffusion microstructures of γ vs. γ+γ′ diffusion couples with different values of 
diffusivities in the ratio 1:10:50 (i.e. χ = 0.04, 0.4 and 2.0 respectively) at time step = 100. The 
left and right columns of microstructures represent diffusion couples with γ′ phase volume of 
approximately 40% and 60%, respectively. 
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Figure 31: A plot between the width of the two-phase zone vs. time for three γ vs. γ+γ′ diffusion 
couples with the γ′ phase volume of approximately 60% as shown in Figure 26(b). 

 

Figure 32: Interdiffusion microstructures of three γ vs. γ+γ′ diffusion couples with different 
values of gradient energy coefficients (φc) in the ratio 1:2.5:3.5 at time step = 50. The circled 
areas represent some of the observed differences in the microstructures. 

. 
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The experimental observations made by Watanabe et al [7,8] in Ni (γ) vs. Ni3Al (L12-γ′) 

diffusion couples suggest that the initial boundary moves towards the γ′ phase with diffusion of 

Al out of γ′ phase and into the γ phase. Our simulation results agree with these experimental 

observations.  

In the case of γ vs. γ+γ′ diffusion couples, the boundary is type 1 denoted by γ > γ+γ′. 

Here dissolution of γ′ phase occurs at the boundary and the boundary is moving towards the two-

phase region. The simulation results agree with the experimental observation made by Susan et 

al [4] in Ni-Al diffusion couples with γ and γ+γ′ phases. Their results show an increasing 

dissolution of γ′ phase in the two-phase region with time of annealing, forming a single-phase γ 

layer near the boundary. Furthermore, in their study, the width of the γ+γ′ region decreased 

whose rate depended on the temperature of diffusion anneal. In other words this rate of 

dissolution depends on the diffusivity that changes exponentially with temperature according to 

the Arrhenius relationship. Interdiffusion coefficients in γ and γ′(L12) phases show almost an 

order of magnitude change with every 100°C change in temperature at constant values of Al 

compositions [8]. The kinetics of dissolution of the γ′ phase near the boundary depends on 

interdiffusion coefficients that can vary with temperature and composition.  

In the γ+γ′ vs. γ+γ′ diffusion couple, the boundary is stationary which is type 0 in nature. 

In the two-phase region in a binary alloy, there is no chemical potential gradient, and therefore 

no interdiffusion occurs. The only observable feature seen across such a boundary is the 

coalescence of phases that makes an initially discontinuous boundary diffused.  
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5.5 Summary 

Evolution of interdiffusion microstructures in a two-dimension (2D)  was examined for 

binary Ni-Al solid-to-solid diffusion couples using a phase-field approach. Utilizing semi-

implicit Fourier-spectral solutions to Cahn-Hilliard and Allen-Cahn equations, multiphase 

diffusion couples of fcc Ni solid solutions γ vs. L12 Ni3Al solid solutions γ′, γ vs. γ+γ′, γ+γ′ vs. 

γ+γ′ with sufficient thermodynamic and kinetic database, were simulated with alloys of varying 

compositions and volume fractions of second phase (e.g., γ′). Chemical mobility as a function of 

composition was used in the study with constant gradient energy coefficient, and their effect on 

the final interdiffusion microstructure was examined. The microstructures were characterized by 

the type of boundaries formed, i.e. Type 0, Type I, and Type II, following various experimental 

observations in literature and thermodynamic considerations. Type 0, Type I, and Type II 

boundaries were found in γ+γ′ vs. γ+γ′, γ vs. γ+γ′ and γ vs. γ′ diffusion couples, respectively. The 

dissolution kinetics of the γ′ phase in γ vs. γ+γ′ diffusion couples were simulated as a function of 

varying diffusivities. Rate of dissolution of γ′ phase and thus the rate of movement of γ/(γ+γ′) 

boundary was interdiffusion controlled. The gradient energy coefficient that governs the 

interface energy did not affect the type of boundaries although a slight difference in coalesced-

final microstructure was observed. The present study demonstrates the applicability of the phase-

field model to simulate interdiffusion microstructure in solid-to-solid diffusion couples. 
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CHAPTER 6 
INTERDIFFUSION MICROSTRUCTURE EVOLUTION 

IN ISOTHERMAL DIFFUSION COUPLES OF Ni-Cr-Al SYSTEM 

6.1 Introduction 

 Coating-substrate systems are often encountered in many practical and industrial 

applications. High-temperature gas turbine blades coated with oxidation and corrosion resistant 

coatings (e.g. thermal barrier coatings) is one such example. The Ni-based superalloy in turbine 

blades is generally coated with a metallic layer known as bond coat, and is typically made of 

MCrAlY (M=Ni and/or Co) or β-NiAl with additions such as Pt. An understanding of the phase 

stability is necessary in order to produce such a coating-substrate system and sustain it under 

extreme operating conditions. Interdiffusion phenomenon plays a critical role in determining the 

stability of these systems as the diffusion of alloying elements between the substrate and coating 

can cause significant changes in the composition and microstructure near the interface.  

The coating microstructure typically contains a Ni solid solution (fcc-γ) phase dispersed 

with NiAl (B2-β) phase. Degradation of these coatings predominantly occurs due to the 

dissolution of the β phase caused by the depletion of the Al content as a result of the coating-

substrate interdiffusion and oxidation [1,2] to form thermally grown oxide (TGO) layer. The 

complex chemistry of most Ni-based superalloy substrates makes it difficult to understand the 

interdiffusion process. Hence, investigations are generally carried out on a simplified system of 

the ternary Ni-Cr-Al alloys [3]. Many experimental results are available to provide excellent 

qualitative understanding of the degradation phenomena involved in this system [4-8]. Various 

computational models [9-12] have been also developed to simulate and predict the interdiffusion 



 111

behavior in coating-substrate systems. Most of these models are only applicable in one 

dimension and assume an average concentration for the two-phase region to solve the moving 

boundary problem without any consideration for the microstructure. In this regard, the phase-

field model can be used as an efficient tool to predict microstructure evolution in various 

material systems. In previous two chapters it has been established that the phase-field model can 

predict the interdiffusion behavior and microstructure evolution in multiphase diffusion couples 

of binary Ni-Al and ternary Ni-Cr-Al systems.  

 The purpose of the present study is to predict the interdiffusion microstructure in single-

phase (γ) vs. two-phase (γ+β) and two-phase (γ+β) vs. two-phase (γ+β) diffusion couples of Ni-

Cr-Al system by computer simulation using phase-field model, and to examine the dissolution 

kinetics of the Al-rich β phase as a function of the alloy composition and phase volume fraction 

in γ vs. γ+β diffusion couples. A comparison with experimental results [6] reported in the 

literature was carried out to validate the simulation results. 

6.2 Procedure and Details of Simulation 

6.2.1 Formulation of Phase-field Model 

 As described in previous chapters, the Cahn-Hilliard free energy functional [13,14] is 

again used to express the total chemical free energy, Fchem, of the system as the sum of the bulk 

chemical free energy, Fbulk, and total interfacial energy, Fint, expressed by: 

Fchem = Fbulk + Fint = F = NV f ci,η( )
V
∫ +κ i ∇ci( )2

+κη ∇η( )2
 where i = Al,Cr  (6.1) 
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where f (cAl, cCr, η) is the bulk chemical free energy per atom of the homogeneous alloy, cCr(x,t) 

and cAl(x,t) are the mole or atom fraction of Cr and Al, η(x,t) is the non-conserved structure 

order (SO) parameter that describes the symmetry change involved in fcc ↔ B2 phase 

transformation, NV is the number of atoms per unit volume, assumed to be constant, κi and κη are 

the gradient energy coefficients associated with gradients of compositions of individual elements 

and η, respectively. 

 The SO parameter represents the tetragonality of the β phase [15] and is zero for the fcc 

phase and assumes an equilibrium value, η0 in the β phase. This requirement is met by choosing 

η = c
a

− 1 , as illustrated in Figure 33, so that η = 0 for fcc phase and η = √2 – 1 for B2 phase. 

Only single order parameter is used in this formulation as antiphase domains within the B2 phase 

are not considered. 

 

Figure 33: Schematic representation of structural relationship between fcc and bcc structures 
(borrowed from Wu’s Thesis [16]). 

Determination of bulk chemical free energy follows a similar procedure described in 

Section 5.2.1 where a Landau polynomial approximation is used and is given by [12]: 
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f cAl ,cCr ,η( )= f γ cAl ,Cr ,0( )+

A2 cAl ,cCr( )
2

η2 +
A4 cAl ,cCr( )

4
η4 +K   (6.2) 

where f cAl ,cCr ,0( ) is the free energy of the γ phase, calculated from the thermodynamic data 

provided by Huang et. al. [18]. The parameter A2 is a 4th order polynomial of compositions and 

A4 is a constant. The details of free energy approximation is provided elsewhere [12,15] and is 

directly borrowed in this work. For the second phase β, the free energy is obtained from 

Equation 6.2 by substituting the equilibrium SO parameter value, ηo(cAl, cCr) determined by: 

∂ f cAl ,cCr ,η( )
∂η

η=η0

= 0       (6.3) 

 The field kinetic equations for temporal evolution of composition variables and SO 

parameter were derived [18,19] and reduced to their dimensionless form. The final governing 

equations for composition variables are: 

 

∂cAl
%x,τ( )

∂τ
= %∇ ⋅ %M AlAl

%∇
∂ %f

∂cAl

− 2 %κ AlAl
%∇2cAl − 2 %κ AlCr

%∇2cCr

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

+ %∇ ⋅ %M AlCr
%∇

∂ %f

∂cCr

− 2 %κ AlCr
%∇2cAl − 2 %κ CrCr

%∇2cCr

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

  (6.4a) 

and 

 

∂cCr
%x,τ( )

∂τ
= %∇ ⋅ %MCrAl

%∇
∂ %f

∂cAl

− 2 %κ AlAl
%∇2cAl − 2 %κ AlCr

%∇2cCr

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

+ %∇ ⋅ %MCrCr
%∇

∂ %f

∂cCr

− 2 %κ AlCr
%∇2cAl − 2 %κ CrCr

%∇2cCr

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

  (6.4b) 
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The chemical mobility terms, 
 
%M ij  are functions of compositions and atomic mobilities of 

individual components, and has the same form given in Equation 4.13 of Chapter 4. The atomic 

mobilities used in this study were functions of concentration in the γ phase [20] and constants in 

the β phase [12]. 

 The evolution of non-conserved field variable η is described by the time-dependent 

Ginzburg-Landau equation or Allen-Cahn equation [19]: 

 

∂η %x,τ( )
∂τ

= − %Mη
∂ %f

∂η
− 2 %κη

%∇2η
⎡

⎣
⎢

⎤

⎦
⎥     (6.5) 

where 
 
%Mη  is the relaxation constant that characterizes the interface mobility.  

6.2.2 Numerical Implementation 

The governing equations for composition and SO parameter fields, Equations 6.4 and 6.5, 

were solved numerically using semi-implicit Fourier-spectral [21,22] method to obtain the 

interdiffusion microstructure evolution in diffusion couples. In this method the linear terms in the 

equations are solved explicitly whereas the nonlinear terms are solved implicitly. The evolution 

equations were made dimensionless by multiplying both sides of the equations with l2

B∇f
, 

where l is the length scale of the calculation, Δf is the normalization factor for the free energy, 

and B is a constant in the units of atomic mobility. In their dimensionless reduced form, the 

chemical mobilities are 
 
%M ij = M ijVm B , the gradient energy coefficients are 

 
%κ ij = κ ij Δfl2  and 
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%κη = κη Δfl2 , and the relaxation constant is %Mη = Mηl2 VmB , where Vm = 12x10-6 m3/mol, is 

the molar volume, which was assumed to be constant. In the simulation %κ CrCr = %κ AlAl = %κη = 0.75 , 

 %κ AlCr = %κ CrAl = −0.375  and 
 
%Mη = 1.0  [12]. The dimensionless mesh size is Δx = 1.0, along both x 

and y coordinates and the dimensionless time step is 10-5, which corresponds to a length scale of 

5μm and time scale of 10-5 hour respectively. All the simulations were carried out with periodic 

boundary condition applied in two dimensions.  

6.2.3 Initial Microstructure for Simulation 

 Generally, an initial composition distribution is introduced as the initial microstructure to 

start the diffusion couples simulations. One way to do this for a diffusion couple containing at 

least one two-phase region is to introduce random spherical particles of the second phase with 

Gaussian size distribution on a desired matrix phase. In this work a different approach was 

employed to generate the initial microstructure for the diffusion couples which resembles closely 

with an experimental diffusion couple preparation. In this approach random β precipitates with a 

Gaussian size distribution were introduced in a γ matrix, and were annealed to develop individual 

two-phase alloys of system size of 256 x 256 grid points. These individual alloys of different 

average compositions or volume fractions of β phase were then joined with single-phase γ alloys 

generated with a size of 256 x 256 grid points to make the diffusion couples of size 256 x 512 

grid points. Another reason to follow this procedure instead of introducing β particles in the 

diffusion couple itself at the beginning of the simulation is to avoid the effect of initially-rapid 

coarsening on the recession distance of the γ+β side of the diffusion couple. The influence of this 

procedure on the final interdiffusion microstructure is presented and discussed in subsequent 
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sections of this chapter. With a length unit of l ≈ 5μm, real dimensions of all diffusion couples 

are 1,280 μm x 2,560 μm. 

6.2.4 Alloy Compositions 

The alloy compositions used in this study and their volume fractions of β phase are given 

in Table I. The locations of these compositions on the Ni-Cr-Al phase diagram are also shown in 

Figure 33. The alloy compositions are similar to the alloys used in the experimental work by 

Nesbitt and Heckel [6], but it should be noted here that Huang’s thermodynamic data [17] used 

in this study for the phase diagram calculation predicts higher Al content for the γ+β/γ 

equilibrium boundary than the experimental phase diagram determined by Nesbitt. Hence, the 

volume fraction of β phase in the simulation is slightly and always lower than the experimental 

volume fraction for the same average composition of the alloy. Comparison with other 

thermodynamic database available in the literature [23,24] suggests that the location of γ+β/γ 

phase boundary is at close proximity to the one used in this work. 
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Table 4: Composition and volume phase fraction of Ni-Cr-Al alloys employed in phase-field 
simulation. 

Composition (mole frac.) Alloy 
Designation Al Cr 

Phases Present Volume Fraction 
β 

W 0.005 0.125 γ 0 
X 0.005 0.25 γ 0 
Y 0.005 0.35 γ 0 
Z 0.005 0.45 γ 0 

Al1 0.005 0.2 γ 0 
Al2 0.1 0.2 γ 0 
Al3 0.14 0.2 γ 0 
1A 0.192 0.162 γ+β 0.20 
2A 0.272 0.115 γ+β 0.70 
1C 0.135 0.242 γ+β 0.35 
2C 0.12 0.22 γ+β 0.55 
4 0.242 0.127 γ+β 0.55 
T 0.235 0.215 γ+β 0.55 

 

 

Figure 34: Alloy designations and compositions shown on the Ni-rich part of the Ni-Cr-Al phase 
diagram. 
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6.3 Results 

6.3.1 Influence of Initial Microstructure With and Without Annealing 

Figure 35 and Figure 36 show the evolution of interdiffusion microstructures as a 

function of time for the couple 4 vs. X, with two types of initial conditions. The microstructures 

in Figure 35 were simulated with the initial microstructure of pre-annealed two-phase alloy 4, 

while those in Figure 36 were simulated with β nuclei without pre-annealing.  In both the cases 

the two-phase γ+β region receded with time by dissolution of the β phase, but the recession 

distance was found to be larger for the couple with initial microstructure containing β nuclei 

without pre-annealing. The volume fraction of the β phase within the two-phase alloy away from 

the diffusional interaction zone remains constant 
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Figure 35: Simulated interdiffusion microstructure evolution in γ+β vs. γ diffusion couple (4 vs. 
X) showing the dissolution of β phase with time. The simulation was started with pre-annealed 
initial microstructure. The dark region is γ phase and the bright region is β phase. The dotted line 
is the location of the initial γ+β and γ interface. This convention is followed in all figures in this 
manuscript. 

 

Figure 36: Simulated interdiffusion microstructure evolution in γ+β vs. γ diffusion couple (4 vs. 
X) showing the dissolution of β phase with time. The simulation was started with β nuclei in the 
initial microstructure. 
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6.3.2 Effects of Composition and Volume Fraction 

 To study the effect of alloy composition on the dissolution rate of β phase, diffusion 

couples of increasing Cr and Al content in the single-phase γ alloys were simulated. In all the 

couples, the same two-phase alloy was used. In the diffusion couples shown in Figure 37, Cr 

content of the γ phase was increased keeping the Al content fixed. Similarly, in Figure 38, Al 

content of the γ phase was increased keeping the Cr content fixed. The resulting microstructures 

show that an increase in the Cr or Al content of the γ phase decreased the rate of β dissolution 

and the recession of the two-phase region. A plot of the recession distance vs. concentration of 

Cr and Al in the γ phase alloy, presented in Figure 39, illustrates that the effect of variation of Al 

concentration on the recession distance is more significant than Cr concentration.  

Effect of volume fraction of the β phase in the two-phase alloy on the dissolution kinetics 

was investigated using diffusion couples containing different volume fractions of the β phase. 

Simulated microstructures of two sets of diffusion couples are presented in Figure 40. The 

dissolution or recession rate is higher in the couple 1A vs. Z compared to 2A vs. Z and in 1C vs. 

W compared to 2C vs. W, as shown in Figure 40(a) and (b), respectively. This suggests that the 

rate of β dissolution is also influenced by the amount of β present in the γ+β alloy. The lower the 

volume fraction of β, the higher is the dissolution rate.  
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Figure 37: Expanded view of simulated interdiffusion microstructures for diffusion couples with 
same γ+β alloy but different γ alloys at t = 1.5 hour. The initial Al concentration of the γ alloy is 
fixed at 0.005 and Cr concentration varies as 0.25 (4 vs. X), 0.35 (4 vs. Y) and 0.45 (4 vs. Z). 

 

Figure 38: Expanded view of simulated interdiffusion microstructures for diffusion couples with 
same γ+β alloy but different γ alloys at t = 1.5 hour. The initial Cr concentration of the γ alloy is 
fixed at 0.005 and Al concentration varies as 0.005 (4 vs. Al1), 0.1 (4 vs. Al2) and 0.14 (4 vs. 
Al3). 
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Figure 39: Recession distance of γ+β region at 1.5 hour vs. concentration of Al and Cr in the 
single-phase γ alloy as predicted by phase filed simulation. 

 

   (a)            (b) 

Figure 40: Expanded view of simulated interdiffusion microstructures for diffusion couples with 
same γ alloys and γ+β alloys of different volume fractions of β phase at t = 1.5 hour. The initial 
concentration of the γ alloy for all the couples is 0.005 Al and 0.45 Cr. Volume fraction of β is 
0.20 (A1 vs. Z), 0.70 (A2 vs. Z), 0.35 (2C vs. W) and 0.55 (1C vs. W). 
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6.3.3 Concentration Profiles and Diffusion Paths 

Concentration profiles for diffusion couples 4 vs. X and 4 vs. Y are shown in Figure 41 

and 42, respectively. In these figure the compositions of γ and β phases are presented separately 

in the γ+β region, and compositions were found in close proximity to the γ+β/γ phase boundary 

in the phase diagram. For both Cr and Al, concentration gradients are observed in both phases, 

which implies that diffusion occurred in the γ phase as well as between γ and β phases within the 

γ+β region. 

 Diffusion paths for the diffusion couples 4 vs. X, Y, Z and 4 vs. A1, A2, A3 are plotted 

on the phase diagram in Figure 43 and 44, respectively. All the diffusion paths in the single-

phase γ region were continuous and extended till the γ+β/γ phase boundary. Due to large 

scattering in composition, the paths in the two-phase region were calculated as the average 

concentrations over cells of dimensions 256 x 16 in the vertical and horizontal directions of 

diffusion couples, respectively. For the single-phase region, the average was calculated on a cell 

size of 256 x 1.  

6.3.4 Comparison to Experimental Results 

 Calculated recession distance of γ+β region obtained from two types of simulations, i.e. 

simulation started with pre-annealed γ+β alloy and that with β nuclei without pre-annealing, are 

plotted with the experimental recession distance for couples 4 vs. X, 4 vs. Y and 4 vs. Z in 

Figure 45. For the purpose of comparison with the experimental recession distance at 100 hours, 

the simulated recession distance was extrapolated to 100 hours by the parabolic law (x ∝ √t). The 
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validity of the parabolic approximation was established by the observations made from 1D 

simulations that the γ-β interface movement follows the parabolic law, as shown in Figure 46. 

The comparison shows that a very good agreement between the simulated and experimental [6] 

recession distance was obtained for the pre-annealed case, whereas the recession distance was 

overestimated when β phases were introduced as nuclei. 



 125

 

Figure 41: Simulated composition profile for the γ+β vs. γ couple (4 vs. X). The dashed and solid 
vertical lines are the location of the interface at t = 0 and t = 2.5 hour, respectively. 
Concentrations of γ and β phases in the γ+β region are shown separately. 

 

Figure 42: Simulated composition profile for the γ+β vs. γ couple (4 vs. Y). The dashed and solid 
vertical lines are the location of the interface at t = 0 and t = 2.5 hour, respectively. 
Concentrations of γ and β phases in the γ+β region are shown separately. 
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Figure 43: Simulated diffusion paths for the γ+β vs. γ couples (4 vs. X, 4 vs. Y and 4 vs. Z) 
shown in Figures. 2. Each data point for the path inside the two-phase region was determined by 
calculating the average composition over a cell of dimensions 16x256 grid points, whereas in the 
single-phase region, it was calculated as the average over a cell of dimensions 1x256. 

 

Figure 44: Simulated diffusion paths for the γ+β vs. γ couples (4 vs. Al1, 4 vs. Al2 and 4 vs. Al3) 
shown in Figures. 2. Each data point for the path inside the two-phase region was determined by 
calculating the average composition over a cell of dimensions 16x256 grid points, whereas in the 
single-phase region, it was calculated as the average over a cell of dimensions 1x256. 
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Figure 45: Comparison between predicted recession distance obtained from simulation with two 
types of initial conditions (i.e., β phase pre-annealed vs. nuclei), and experimental recession 
distance [4]. The predicted recession distance was extrapolated to 100 hours for the comparison. 

 

Figure 46: Plot between the interface position or distance vs. square root of time. The straight 
line relationship suggests a parabolic behavior (x ∝ √t). 
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6.3.5 γ+β  vs. γ+β Diffusion Couples 

Two-phase vs. two-phase (γ+β vs. γ+β) diffusion couples containing different volume 

fractions of the β phase was simulated. The microstructures of one such diffusion couples are 

presented in Figure 47. The microstructures in all the diffusion couples show no movement of 

the γ+β/γ+β interface, characterized by type 0 boundary. The volume fractions remain constant 

on either side of the diffusion couples. 

 

Figure 47: Interdiffusion microstructure evolution in the couple 4 vs. 1C shows stationary 
γ+β|γ+β boundary with no dissolution of phases. 
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6.4 Discussions 

For an accurate prediction of the recession distance of γ+β region, it is important to 

minimize the effect of initial particle coarsening. This was achieved by pre-annealing the two-

phase alloys with the artificially introduced circular particles as the second phase before joining 

them to form the actual diffusion couples.  

In the simulated microstructures, the γ+β region receded by maintaining a planar 

interface, as was observed in the experiment by Nesbitt et al. The simulations also clearly 

demonstrated that the rate of dissolution of the β phase decreases with increasing concentrations 

of Al and Cr in the single-phase γ alloy. This can be attributed to the cross-effects of Al and Cr 

on each other. According to experimental observations, the cross-term Cr on Al flux and that of 

Al on Cr flux can drive the respective components to diffuse up their own concentration gradient. 

This cross-term effect depends on the concentration dependent diffusivity and the sign and 

magnitude of concentration gradients present in the diffusion couple. This effect can actually 

increase or decrease the activity of Al and Cr in a system and even cause their fluxes to move in 

the opposite directions.  

A rough estimate on the relative effects of the concentration variation of Al and Cr can be 

obtained from the slope of the lines in Figure 39. The Al line has a much higher slope than that 

of the Cr, which suggests that the variation of Al concentration in the single-phase γ has more 

pronounced effect on the rate of β dissolution than that of the Cr concentration. At the same time 

the slopes for the two lines for Cr variations with fixed Al contents (i.e. 0.005 and 0.1) are 

approximately same in magnitude, though the recession is higher for lower Al content couple. 
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This can be attributed to the higher diffusivity of Al, as from the mobility database used in this 

work for the Ni solid solution γ phase [20]. The atomic mobilities are in the order of βAl > βCr > 

βNi, where βi is the atomic mobility of element ‘i’. This ordering is supported by the fact that 

intrinsic diffusivities are in the order of DAl > DCr > DNi [7, 25-27]. 

The simulated concentration profiles in Figure 42 and 43 confirmed the experimental 

observation [6] that diffusion of all elements occurred between the γ phases on both sides of the 

couple as well as within the γ+β region, while local equilibrium was maintained between γ and β 

phases with the composition lying close to the γ+β/γ phase boundary on the phase diagram. The 

simulated Cr concentration profile does not exhibit a maximum as observed by Nesbitt and 

Heckel, and warrants further assessment of thermodynamic and mobility data. 

The relative importance of concentrations of single-phase γ and volume fraction of β 

phase on the dissolution kinetics can be analyzed by the three series of diffusion couple 

simulations mentioned earlier in the results. Series-1 contained couples 1A vs. Z and 2A vs. Z, 

with the volume fractions of β as 0.20 and 0.70, respectively. Alloys 1A and 2A are on the same 

tie-line and hence there is effectively no composition difference within the γ phases on each side 

of the couple. In series-2, couples 1C vs. W and 2C vs. W had 0.35 and 0.55 volume fraction of 

β, respectively, where the average compositions of 1C and 2C lay on different tie-lines. Series-3 

contained diffusion couples 4 vs. W and T vs. W, where the β phase volume fraction is the same 

in both the couples (~ 55%), but the composition gradients are different (0.127 Al and 0.2 Cr in 

the couple T vs. W compared to 0.162 Al and 0.063 Cr in the couple 4 vs. W). As described 

earlier, the simulation results showed that in series-1 and 2, the recession distance was found to 
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be less for the couples with the higher volume fraction of β as presented in Fig. 4, whereas for 

series-3, although the volume fraction was same, recession distance in the two couples was 

different (~136 μm for T vs. W and ~180 μm for 4 vs. W after 1 hour). The above comparison 

qualitatively suggests that concentration of the terminal alloy has more influence on the 

dissolution kinetics of β phase than that of the volume fraction of the β phase. 

 In experimental diffusion couples [4], Kirkendall pores can form due to supersaturation 

of vacancy concentration caused by the unequal vacancy flux across the diffusion couples, as a 

result of unequal intrinsic diffusivities. The phase-field model presented does not account for the 

Kirkendall porosity as such, since the model was derived in the laboratory frame of reference, 

where the net fluxes of three components sum to zero.  

6.5 Conclusions 

A two-dimensional phase-field model was employed to examine the evolution of 

interdiffusion microstructures in ternary Ni-Cr-Al solid-to-solid diffusion couples containing γ+β  

(fcc+B2) vs. fcc-γ and γ+β  vs. γ+β  diffusion couples. Alloys of varying compositions and 

volume fractions of the second phase (β) were examined to simulate the dissolution kinetics of 

the β phase (i.e., recession of γ+ β two-phase region) observed in γ vs. γ+β diffusion couples. 

Simulation results showed that the rate of recession of γ+β two-phase region was dependent on 

the composition of the single-phase γ alloy and the volume fraction of the β phase in the two-

phase alloy of the couple. Specifically, higher Cr and Al content in the γ alloy and higher volume 

fraction of β in the γ+β alloy lower the rate of dissolution. Although the volume fraction played a 



 132

role, the concentration gradients of Al and Cr in the γ phase (e.g., between the matrix of γ+β 

alloy and single-phase γ alloy) also influenced the recession of the β phase. Simulated results 

were found to be in good agreement with the experimental observations in ternary Ni-Cr-Al 

solid-to-solid diffusion couples containing fcc-γ and γ+β  alloys. In case of γ+β  vs. γ+β diffusion 

couples no interface movement was observed and the volume fractions of the second phase on 

either side of the couples remained constant.  
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CHAPTER 7 
EXPERIMENTAL INVESTIGATION OF  

TERNARY SINGLE-PHASE VS. TWO-PHASE DIFFUSION COUPLES 

7.1 Introduction 

The interdiffusion microstructures in ternary diffusion couples were investigated by 

experimental methods using single-phase and two-phase alloys in Ni-Cr-Al and Fe-Ni-Al 

systems. The single-phase vs. two-phase diffusion couples containing γ(fcc) and γ+γ′(L12) phases 

were prepared from Ni-Cr-Al alloys and two-phase vs. two-phase diffusion couples containing 

γ+β(B2) phases from Fe-Ni-Al alloys. The diffusion couples were subjected to isothermal 

diffusion annealing at 1000˚C for different time spans. Then the composition and microstructures 

were analyzed using standard metallographic and characterization techniques. The detail 

procedure and the results are described in subsequent sections. 

7.1 Experimental Procedure 

7.1.1 Alloy Preparation 

The alloys were prepared at Oak Ridge National Laboratory (ORNL), USA. The four 

single-phase (γ) and one two-phase (γ+γ′) Ni-Cr-Al alloys and four two-phase (γ+β) Fe-Ni-Al 

alloys were cast. These alloys were prepared with 99.9% pure Ni, Cr, Fe and Al by induction 

melting in alumina crucibles under an argon atmosphere. The alloys were chill-cast in the form 

of rods of 10 mm diameter (approximately) by drawing the melt into quartz tubes under vacuum. 

The alloy rods were placed in quartz capsules, flushed several times with argon and hydrogen, 
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evacuated to a pressure less than 10-5 torr and finally sealed with argon. The alloys were then 

placed in a horizontal LindbergTM 3-zone tube furnace at 1000˚C for 7 days for homogenization 

heat treatment. After the heat treatment the alloys were water-quenched in order to preserve the 

high temperature microstructure and the composition distribution. Samples were cut from the 

alloy rods and prepared metallographically by polishing through 0.25 μm diamond paste for 

composition and microstructure analysis by optical microscopy (OM), scanning electron 

microscopy (SEM) and electron probe micro analysis (EMPA).  

 Pure standards of the four elements Fe, Ni, Cr and Al were used with a JEOLTM 733 

Super Probe (EPMA) to measure the compositions of the alloys. An accelerating voltage of 20 

KeV and a sample current of 20 nanoamperes (nA) were applied with appropriate ZAF 

corrections and composition data collected from 10 random points on the sample were averaged 

to determine the composition of the alloys. The standard deviations in the compositions due to 

alloy inhomogeneity were estimated to be approximately ± 0.3 at%. The measured alloy 

compositions and the phases present are listed in Tables 4 and 5 along with the designations used 

in this study for their identification. The alloys are identified on Ni-Cr-Al and Fe-Ni-Al 

isotherms as shown in Figure 42 and 43, respectively. A representative set of microstructures 

after homogenization heat treatment is shown in Figure 44 and 45. 

7.1.2 Diffusion Couple Experiments 

As mentioned earlier, two types of diffusion couple experiments were performed in this 

study; one with single-phase (γ) vs. two-phase (γ+γ′) couples using Ni-Cr-Al alloys, and the 

other with two-phase (γ+β) vs. two-phase (γ+β) couples using Fe-Ni-Al alloys. These diffusion 



 136

couples and their isothermal annealing conditions are listed in Table 6. The series of diffusion 

couples containing γ vs. γ+γ′ were designed to study the dissolution of γ′ phase, and the effect of 

composition of single-phase γ on the dissolution rate. The other series containing γ+β vs. γ+β 

were designed to examine interdiffusion between the two two-phase (γ+β) terminal alloys and 

possible demixing [1] of phases at the interface. 
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Table 5: Nominal compositions of Ni-Cr-Al alloys. 

Atom Percent Weight Percent 
Phase Alloy 

Ni Cr Al Ni Cr Al 

Ni 100 - - 100 - - 

γ1 76.9 23.1 - 79.0 21.0 - 

γ2 77.8 16.0 6.2 82.1 14.9 3.0 
γ 

γ3 72.3 21.4 6.3 76.8 20.1 3.1 

γ+γ′ G 79.1 5.1 15.8 87.0 5.0 8.0 

 

Figure 48: compositions marked on the Ni-Cr-Al isotherm at 1000˚C obtained from TCNI1 [2] 
database in ThermoCalc. The isotherm has been expanded to show the relevant phase-fields. 
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Table 6: Nominal compositions of Fe-Ni-Al alloys. 

Atom Percent Weight Percent 
Phase Alloy 

Fe Ni Al Fe Ni Al 

B1 35.2 44.7 20.1 38.1 51.4 10.5 

B2 49.8 30.2 20.0 54.8 34.6 10.6 

B3 50.0 31.8 18.2 54.1 34.4 9.5 
γ+β 

B4 50.1 34.0 15.9 53.5 38.2 8.3 

 

 

Figure 49: compositions marked on the Fe-Ni rich section of the Fe-Ni-Al isotherm at 1000˚C 
(borrowed from Chumak et al [3]). 
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Figure 50: Representative optical micrographs of (a) single-phase (γ ) and (b) two-phase (γ+γ′) 
Ni-Cr-Al alloy after homogenization treatment at 1000˚C for 7 days. The bright and dark areas 
are γ and γ′ phases, respectively. 

 

 

Figure 51: Representative optical micrographs of Fe-Ni-Al two-phase (γ+β) alloys (a) B1 (b) B2 
(c) B3 and (d) B4 after homogenization treatment at 1000˚C for 7 days. The bright and dark areas 
are γ and β phases, respectively. 
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Disks of thickness approximately 4 mm were sectioned from the alloy rods, and 

subsequently ground and polished through 0.25 μm diamond paste. Diffusion couples were 

assembled by joining the alloy disks together in steel jigs consisting of two end plates and three 

threaded screws. Each assembled couple was placed in a quartz capsule, which was sealed at one 

end while the other end was connected to a vacuum system. The capsules were evacuated to a 

pressure less than 10-5 torr and flushed with argon and hydrogen several times before sealing 

them with argon at a desired pressure. The diffusion couples were annealed isothermally in a 

horizontal LindbergTM 3-zone tube furnace at a temperature of 1000˚C for 48 or 96 hours. After 

the diffusion annealing, the couples were quenched in water to preserve the high-temperature 

microstructure. 

The diffusion couples were mounted, sectioned, polished, and etched with a solution of 

glycerin (30 vol%)-HCl (20 vol%)-HF, for the microstructure analysis by optical and scanning 

electron microscopy. The etched surface was polished with 1 μm diamond paste for electron 

probe micro analysis by the JEOLTM 733 Super Probe Analyzer to determine the composition 

profiles. Average concentrations were measured in the two-phase regions with a larger probe 

diameter ranging between 5 and 10 μm. 

7.3. Results 

7.3.1 γ vs. γ+γ′ Diffusion Couples in Ni-Cr-Al System 

Four diffusion couples were studied in Series-I as listed in Table 6. These diffusion 

couples are characterized by a common two-phase alloy (G) joined with γ alloys of varying 

compositions. The couples were annealed for 96 hours at 1000˚C. The resulting microstructures 

and the concentration profiles are presented in Figures 46 through 49.  
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Figure 52: (a) Optical micrograph of diffusion couple G vs. Ni (γ) in Series-I obtained after 
diffusion anneal at 1000˚C for 96 hours. The bright and dark areas are γ and γ′ phases, 
respectively. The two-phase region has moved away from the initial phase boundary. (b) 
Composition profiles showing the newly formed γ region due to dissolution of γ′. 

 

Figure 53: (a) Optical micrograph of diffusion couple G vs. γ1 (γ) in Series-I obtained after 
diffusion anneal at 1000˚C for 96 hours. The bright and dark areas are γ and γ′ phases, 
respectively. The two-phase region has moved away from the initial phase boundary. (b) 
Composition profiles showing the newly formed γ region due to dissolution of γ′. 

(a) (b)

(a) (b)
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Figure 54: (a) Optical micrograph of diffusion couple G vs. γ2 (γ) in Series-I obtained after 
diffusion anneal at 1000˚C for 96 hours. The bright and dark areas are γ and γ′ phases, 
respectively. The two-phase region has moved away from the initial phase boundary. (b) 
Composition profiles showing the newly formed γ region due to dissolution of γ′. 

 

Figure 55: (a) Optical micrograph of diffusion couple G vs. γ3 (γ) in Series-I obtained after 
diffusion anneal at 1000˚C for 96 hours. The bright and dark areas are γ and γ′ phases, 
respectively. The two-phase region has moved away from the initial phase boundary. (b) 
Composition profiles showing the newly formed γ region due to dissolution of γ′. 

(a) (b)
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The original location of the boundary between γ and γ+γ′ region is marked by the position 

x0. After annealing the boundary moved towards the two-phase region in all the four couples and 

its final location is marked by the plane xf. This is also confirmed by the change in compositions 

across the interface in the composition profiles. The boundary movement occurs by the recession 

of the γ+γ′ region with a planar surface. It can be noticed from the microstructures and 

composition profiles that the recession distance greatly depends on the composition of the single-

phase γ alloy. The trend obtained from the plot of relative concentrations of single-phase γ alloys 

vs. recession distance in Figure 50 shows that an increase in the content of Cr and/or Al in γ 

decreases the recession distance. 

 

Figure 56: A plot between the relative concentrations of single-phase (γ) alloys and the recession 
distance of the two-phase (γ+γ′) region after diffusion anneal at 1000˚C for 96 hours. The trend 
shows with an increasing Cr and Al content, the recession distance decreases. 
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7.3.2 γ+β vs. γ+β Diffusion Couples in Fe-Ni-Al System 

The four two-phase (γ+β) Fe-Ni-Al alloys were joined with each other into six diffusion 

couples, B1 vs. B2, B1 vs. B3, B1 vs. B4, B2 vs. B3, B2 vs. B4, and B3 vs. B4. Two series of such 

couples were diffusion annealed at 1000˚C for 48 and 96 hours. The microstructures were 

analyzed using optical and scanning electron microscopy. Optical micrographs and backscatter 

SEM micrographs for Series-II and Series-III diffusion couples are presented in Figures 51 and 

52, respectively. In all the diffusion couples, apart from the joining of second phase particles 

across the boundary, no other noticeable change in the microstructure was observed.  The 

boundary remained stationary without any formation or dissolution of phases at its vicinity.  

7.4 Discussions 

Dissolution of γ′ phase along with the movement of the boundary towards the two-phase 

region was observed in the microstructures of the Series-I diffusion couples G vs. Ni, γ1, γ2, γ3. 

Many investigators have previously reported this type of observations [4,5]. The dissolution 

process is of critical concern in thermal barrier coatings (TBCs) for gas turbine applications, 

where the γ′ phase dispersed in a γ matrix is typically used as the bond coat material on the 

superalloy substrate for high-temperature resistance and protection. Dissolution of γ′ phase 

detoriates the high-temperature performance of the bond coat. Al diffusion from the bond coat 

into the superalloy substrate is usually held accountable for the dissolution of γ′ phase. Results of 

the present study show that there is a strong dependence of the recession distance on the single-

phase γ alloy composition. Figure 50 provides a qualitative understanding of this dependence. It 

is clear that increase in alloying additions, i.e. Cr and Al to Ni-γ reduces the recession distance.  
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Figure 57: Optical micrographs of diffusion couples (a) B1 vs. B2, (b) B1 vs. B3, (c) B1 vs. B4, (d) 
B2 vs. B3, (e) B2 vs. B4, and (f) B3 vs. B4 in Series-II obtained after diffusion anneal at 1000˚C for 
48 hours. The bright and dark areas are γ and β phases, respectively. No boundary movement is 
observed. 
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Figure 58: SEM micrographs of diffusion couples (a) B1 vs. B2, (b) B1 vs. B3, (c) B1 vs. B4, (d) 
B2 vs. B3, (e) B2 vs. B4, and (f) B3 vs. B4 in Series-III obtained after diffusion anneal at 1000˚C 
for 96 hours. The bright and dark areas are γ and β phases, respectively. No boundary movement 
is observed. 
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Sohn et al [1,6,7] first reported the formation of single-phase γ and β layers at the boundary 

in two-phase vs. two-phase (γ+β vs. γ+β) diffusion couples of Fe-Ni-Al system and named the 

phenomenon as “demixing”. Similar microstructures were observed for Cu-Ni-Zn multiphase 

diffusion couples during isothermal diffusion [8]. During demixing each phase dissolves in the 

matrix of the other and gives rise to adjacent single-phase layer in the diffusion zone with 

appreciable reduction in interfacial area. However, demixing was not observed in this study for 

γ+β vs. γ+β diffusion couples of Fe-Ni-Al alloys. This discrepancy in results suggests that 

demixing is not a general phenomenon common to all two-phase vs. two-phase diffusion couples 

of any alloy, rather demixing can be considered as a special case where reduction in interfacial 

area cannot be the only criteria for its occurrence. 

 Morral et al [5,9] have classified planar boundaries in multicomponent diffusion couples 

as type 0, type 1 and type 2 boundaries. According to their definition, across a type 0 boundary 

no phases are added or subtracted, across a type 1 boundary one phase is added or subtracted and 

across a type 2 boundary one phase is added and another is subtracted. In this study two types of 

boundaries were observed: type 1 boundary in γ vs. γ+γ′ diffusion couples where γ phase was 

added to the boundary denoted by γ > γ+γ′, and type 0 boundary in γ+β vs. γ+β diffusion couples 

where no phases were added or subtracted to the boundary denoted by γ+β|γ+β.  

7.5 Conclusions 

The isothermal diffusion analysis of the three aforementioned series of couples in Ni-Cr-

Al and Fe-Ni-Al alloys did not produce any new results, but they supplemented the findings 

made by many earlier experimental investigations on ternary single-phase vs. two-phase and 
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two-phase vs. two-phase diffusion couples. The results also qualitatively confirmed the 

simulation results obtained from the phase-field model studies on Ni-Cr-Al diffusion couples. To 

summarize, dissolution of second phase (γ′) occurs in single-phase vs. two-phase diffusion 

couples when subjected to isothermal annealing. The dissolution causes recession of the two-

phase region forming single-phase γ at the interface. The rate of recession or dissolution depends 

on the composition of the single-phase (γ) alloy. As the Cr and/or Al content of the γ alloy 

increases the recession rate decreases. In case of two-phase vs. two-phase diffusion couples only 

stationary boundary between the two-phase regions were observed without the occurrence of any 

demixing phenomena at the boundary. This warrants a more systematic study to properly 

understand the demixing phenomenon. 
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CHAPTER 8 
PHASE-FIELD SIMULATION OF THERMOTRANSPORT 

 PHENOMENON IN BINARY ALLOYS 

8.1 Introduction 

It is well known that when a temperature gradient is applied to a homogeneous alloy of 

more than one component, a concentration gradient can develop and eventually reach a steady 

state, with the concentration gradient being a characteristic of the system [1]. This phenomenon 

is known as the thermomgration or thermotransport effect, or the Soret or Ludwig-Soret effect. 

The thermomigration effect is gaining importance in many applications, such as, in interconnects 

of electronic circuits, metallic nuclear fuel alloys, superalloy coatings used in gas turbine 

engines, etc., where the temperature gradient can be significant, owing to increasing operating 

temperatures and/or reducing length scales of these systems. For example, in modern aero gas 

turbine engines, the width of the material between the hot end and the cooling channels is 

typically 2 to 5 mm where a temperature gradient of ≈ 40˚C/mm can be present. Similarly, in 

nuclear reactors, the metallic alloy fuels e.g., U-Pu-Zr alloys could experience a temperature 

gradient of ≈ 22˚C/mm. 

Thermomigration can produce significant redistribution of elements and constituent 

phases in single- and multi-phase alloys.  This redistribution can induce many unwanted changes 

such as melting by varying the solidus temperature, causing phase transformations and altering 

physical and mechanical properties, which can affect the stability and performance of alloys 

during operation. Examples of the thermomigration effect can be found in literature published 

over the last five decades [2-14]. 
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There are two important parameters in the thermomigration study: the mobility of atoms 

of the components present, which are related to the isothermal diffusivity, and the heat of 

transport (Qi*), which is related to the amount of heat carried per atom of species i [3]. In 

general, the value of Qi* is the contribution of the flux of species i to the flux of heat and 

determines the affinity of a species towards the cold or hot end. When the solute diffusivity is 

much higher than the solvent, e.g. interstitial solute, only one heat of transport term is sufficient 

to describe the flux under a temperature gradient. But as explained by Shewmon [5], both 

mobility and heat of transport terms of each component are required to accurately describe the 

atom flux in a binary substitutional alloy subjected to a temperature gradient. In such cases, the 

complexity of the problem often necessitates the use of computational modeling to understand 

and predict the thermomigration behavior in alloys. 

Tikare et al. [15] used a Potts Monte Carlo technique to simulate grain growth and pore 

migration in a thermal gradient, where they utilized the atomic interaction energy in the model. 

In another study, Snyder et al. [16] simulated the Ostwald ripening under the influence of 

temperature gradient, where they neglected the Soret effect and considered only the mass flow 

due to the temperature dependence of the local equilibrium interfacial compositions. There are 

other computational models [17-21] used to investigate the thermomigration problem, but these 

models are valid for one-dimension only and operate under the assumptions that (i) the transport 

of the solute takes place only in the matrix phase, (ii) the second phase particles act as sources or 

sinks for the solute atoms in solid solution, (iii) that the solute diffusivity is much faster than the 

solvent, and (iv) local thermodynamic equilibrium exists at the boundary between the two 

phases. Such a priori assumptions require that the positions of the boundary between the phases 

be known, which makes the numerical solution difficult to achieve. Unlike these models, a 
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diffuse interface (Cahn-Hilliard) model [22] does not require the above assumptions to be made 

beforehand and eliminates the requirement of tracking the boundary by treating the interface as 

diffused over a certain width [23]. Another advantage of such a model is that it can be derived 

phenomenologically and material specific thermodynamic and kinetic data can be used as input 

parameters. 

This chapter documents the development of a diffuse interface model for computer 

simulation to study the time evolution of composition profiles and microstructures in single and 

multi-phase alloys of a binary system, subjected to a temperature gradient.  A simple regular 

solution model with various combinations of atomic mobility and heat of transport terms were 

used for the above purpose.  

8.2 The Model 

8.2.1 Mathematical Formulation: 

Consider a binary substitutional alloy of elements A and B, whose molar volume (Vm) 

and density (ρ) are assumed to be constant. Let ni and ci represent the concentration and mole 

fraction of an element i, so that:  

ni

i

∑ = ρ =
1

Vm

 and ci

i

∑ = 1.0      (8.1) 

Flux of an element under the gradients of concentration and temperature can be defined by the 

following equation given by de Groot [24]:  
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Jk = Lki

i=1

n−1

∑ Xi − Xn + Qi

*Xq( )      (8.2) 

where n is the total number of elements, Qi
* is the heat of transport term, X stands for the driving 

forces. In the absence of external forces, 

Xi = − ∇μi( )
T

, Xq = −
∇T

T
      (8.3) 

Note that Equation 8.2 is obtained by the linear transformation and the gradient in chemical 

potential, i.e. ∇μi( )
T

 is due to gradients in concentration, but not temperature [24-26].  

Howard and Lidiard [25] applied the above equation to describe thermotransport on the 

basis of a vacancy mechanism in a binary substitutional alloy. So the general flux equations for 

an alloy of elements A and B are 

JA = LAA XA − Xv + QA

* Xq( )+ LAB XB − Xv + QB

* Xq( )    (8.4a) 

and 

JB = LBA XA − Xv + QA

* Xq( )+ LBB XB − Xv + QB

* Xq( ) ,  (8.4b) 

where v corresponds to vacancies. Again following Howard and Lidiard [25], assuming that 

vacancies exist everywhere in their equilibrium concentration,∇μv = 0 , but in a temperature 

gradient ∇μv( )
T

≠ 0 . Hence, 
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Xv = − ∇μv( )
T

= −kT
∇cv

cv

= −h fv

∇T

T
= h fv Xq ,   (8.5) 

where hfv is the enthalpy of vacancy formation. Substituting Equation 8.5 in Equation 8.4 yields:  

JA = LAA XA + QA

* − h fv( )Xq
⎡⎣ ⎤⎦ + LAB XB + QB

* − h fv( )Xq
⎡⎣ ⎤⎦   (8.6a) 

and  

JB = LBA XA + QA

* − h fv( )Xq
⎡⎣ ⎤⎦ + LBB XB + QB

* − h fv( )Xq
⎡⎣ ⎤⎦ .  (8.6b) 

From Prigogine’s theorem [26-27], which is a re-expression of the Gibbs-Duhem equation, 

cA XA + cB XB + cv Xv = 0 ,      (8.7a) 

but cv << cA ,cB , so 

cA XA + cB XB ≈ 0  .      (8.7b) 

Applying Equation 8.7b and the condition for conservation of mass given in Equation 8.1, 

LAA XA + LAB XB =
cLAA − 1 − c( )LAB

c
XA = ρ 1 − c( )βA XA   (8.8a) 

and 

LBB XB + LBA XA =
1 − c( )LBB − cLBA

1 − c
XB = ρcβB XB ,   (8.8b) 
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where c is the composition of B and βi is the atomic mobility of element i. The general flux 

equation under isothermal conditions, i.e. Ji = −niβi Xi  has been used to derive Equation 8.8. 

Now substituting Equation 8.8 into flux equations Equation 8.6 yields: 

JA = −ρ 1− c( )βA∇μA + LAA QA

* − h fv( )+ LAB QB

* − h fv( )⎡⎣ ⎤⎦ Xq , (8.9a) 

JB = −ρcβB∇μB + LBA QA

* − h fv( )+ LBB QB

* − h fv( )⎡⎣ ⎤⎦ Xq .  (8.9b) 

For a vacancy mechanism being operative, it is convenient to choose a laboratory frame 

of reference where the sum of the fluxes for two elements vanishes [28], such that 

 
%JA + %JB = 0         (8.10) 

and 

 
%JA = − %JB = JA − 1− c( ) JA + JB( )= cJA − 1− c( )JB .   (8.11) 

Substituting respective intrinsic fluxes from Equation 8.9 in Equation 8.11 yields: 

˜ J A = −ρc 1− c( )βA∇μA + ρc 1− c( )βB∇μB +

c LAA QA

* − h fv( )+ LAB QB

* − h fv( )[ ]Xq

− 1− c( ) LBA QA

* − h fv( )+ LBB QB

* − h fv( )[ ]Xq

.   (8.12) 

Using Equation 8.8 along with the Onsager’s reciprocal relationship Lij = L ji , 
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˜ J A = −ρc 1− c( )βA∇μA + ρc 1− c( )βB∇μB +

  cLAA − 1− c( )LBA[ ]˜ Q A
* Xq + cLAB − 1− c( )LBB[ ]˜ Q B

* Xq

= −ρc 1− c( )βA∇μA + ρc 1− c( )βB∇μB

 + ρc 1− c( )βA
˜ Q A

* − ρc 1− c( )βB
˜ Q B

*[ ]Xq

,  (8.13) 

where  

 
%Qi

* = Qi

* − h fv .       (8.14) 

Again using the Gibbs-Duhem equation 1− c( )∇μA + c∇μB = 0 , 

∇μA = c∇μA

eff ,∇μB = − 1 − c( )∇μA

eff ,    (8.15) 

where 

∇μA

eff = −∇μB

eff = ∇ μA − μB( ) .    (8.16) 

Now substituting Equation 8.15 into Equation 8.12 yields: 

˜ J A = −ρc 1− c( ) cβA + 1− c( )βB[ ]∇μA

eff

 + ρc 1− c( ) βA
˜ Q A

* − βB
˜ Q B

*[ ]Xq

= −Mc∇μA

eff + MQXq

= Mc∇μB

eff − MQ

∇T

T

    (8.17) 

and 
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%JB = − %JA = −M c∇μB

eff + MQ

∇T

T
,    (8.18) 

where the chemical mobility is defined as: 

M c = ρc 1− c( ) cβA + 1 − c( )βB⎡⎣ ⎤⎦     (8.19) 

and the heat of transport term is expressed by: 

 
MQ = ρc 1 − c( ) βA

%QA

* − βB
%QB

*⎡⎣ ⎤⎦  .   (8.20) 

In Equation 8.17, the effective chemical potential for a heterogeneous system is defined as: 

μB

eff =
δF

δnB

= Vm

δF

δc
      (8.21) 

where δ stands for the variational derivative and F is the Cahn-Hilliard free energy functional 

consisting of the bulk free energy and interfacial energy contributions, expressed by: 

F = Fbulk + Fint = NV f c,T( )+κ ∇c( )2⎡⎣ ⎤⎦  
V
∫ dV.   (8.22) 

Here, again following the convention of the previous chapters, f(c,T) is the Helmholtz free 

energy density, approximated by the regular solution model in the present study, and κ is the 

gradient energy coefficient associated with the gradient of composition. Note that f(c,T) can be 

directly adopted from the thermodynamic databases if available for a particular alloy system.  
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Using Equation 8.21 and 8.22 in Equation 8.18, the flux equation becomes 

 

%JB = −VmM c∇
∂f

∂c
− 2κ c∇

2c
⎛
⎝⎜

⎞
⎠⎟

+ MQ

∇T

T
   (8.23) 

The spatio-temporal evolution of the composition can now be described by the continuity 

equation: 

 

∂nB

∂t
=

1

Vm

∂c x, t( )
∂t

= −∇ ⋅ %JB = ∇ ⋅ VmM c∇
∂f

∂c
− 2κ c∇

2c
⎛
⎝⎜

⎞
⎠⎟

− MQ

∇T

T

⎡

⎣
⎢

⎤

⎦
⎥ . (8.24) 

Both constant as well as temperature dependent atomic mobility and heat of transport values can 

be used in the above equation. For the simulation of single-phase alloys constant atomic mobility 

and heat of transport terms are employed. For the two-phase alloys the following Arrhenius and 

linear relations are used to express the temperature dependency of atomic mobility and heat of 

transport terms, respectively [9,29-30]: 

βi = β0 exp −Qi

RT( )      (8.25) 

and 

 
%Qi

* = Ci + DiT ,   i = A, B      (8.26) 



 158

8.2.2 Numerical Procedure: 

For numerical convenience, the governing Equation 8.24 was rewritten in the following 

dimensionless form: 

∂c x,τ( )
∂τ

= ∇ M c c( )∇
∂ f

∂c x,τ( )
−κ∇2c x,τ( )⎛

⎝⎜
⎞

⎠⎟
− MQ

∇T

T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (8.27) 

by introducing the following reduced quantities:  

 ∇ =
∂

∂ x / l( )
,

∂
∂ y / l( )

⎛

⎝⎜
⎞

⎠⎟
, M c =

Vm M c

β
, f =

Vm f

Δf
,κ =

κVm

Δfl2
, MQ =

MQVm

Δf β
, and τ =

βΔf

l2
t where x and τ 

are the reduced length and time, l is the length scale of the system, Δf  = RTc is the normalization 

factor for the free energy with Tc = 900 K, R is the universal gas constant, Vm is the constant 

molar volume, and β is a constant in the unit of atomic mobility. The above equation was solved 

numerically using a control volume method implemented by the FiPy partial differential equation 

(PDE) solver [31].  

The applied temperature field obeys Laplace’s equation 

∇2T = 0        (8.28) 

with boundary conditions 

Jq ⋅ n̂ = 0,T
x=0

= Tmin ,T
x= L

= Tmax .    (8.29) 

The above conditions produce a linear distribution of temperature across the system. Note that 

the equation for heat flux is not considered here as the heat flux due to mass flux i.e. the Dufour 

effect is ignored in this study. 
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8.3 Results 

8.3.1 Single Phase Alloy: 

A single-phase alloy with initial homogeneous composition of c0 = 0.1 was subjected to a 

temperature gradient, where Tmin = 773 K and Tmax = 1273 K. The left end (L = 0) of the system 

is the hotter end for this part of the simulation. Different combinations of atomic mobility and 

heat of transport terms, which are not functions of temperature, were employed in the study and 

the resulting composition profiles are shown in Figure 59. The grid resolution was chosen to be 

Δx = 1 μm for 1D calculations and value of the gradient energy coefficient was set to zero. The 

results show that upon the application of the temperature gradient, a composition gradient 

develops in the alloy, where the elements move towards the hot or cold end depending on the 

magnitude and sign of the mobility and heat of transport terms. The magnitude of the 

concentration gradient developed in the alloy is also determined by the above two factors. As is 

observed from the composition profiles, it can be said without any generalization that the 

element with a negative heat of transport moves towards the hot end of the system. 

A steady state can be achieved with prolonged annealing under thermal gradient when the 

contribution to the flux due to temperature gradient becomes equal to the contribution due to 

concentration gradient. In Figure 60, a representative composition profile is shown along with 

the flux profiles as the system is approaching steady state. It can be noticed that the contributions 

to the total flux due to the chemical potential gradient and the temperature gradient are almost 

equal in magnitude and opposite in direction. 
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Figure 59: Composition profiles developed in an initially homogeneous single phase alloy after 
being subjected to annealing in a temperature gradient for 6 hours. The initial composition c0 = 
0.1, temperature range: Tmax = 1273 K on the left end and Tmin = 773 K at the right end of the 
system. 

 

Figure 60: Representative composition profile and flux profiles in an initially homogeneous 
single-phase alloy approaching steady state after being subjected to annealing in a temperature 
gradient. The initial composition c0 = 0.5, temperature range: Tmax = 1273 K on the left end and 
Tmin  = 773 K at the right end of the system. “Mass flux” and “thermal flux” are the 
contributions of chemical potential gradient and temperature gradient respectively, to the total 
flux and the “flux difference” is the difference between these two contributions. 
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8.3.2 Two-Phase Alloy: 

Simulations of thermotransport effect in two-phase alloys were performed by applying a 

temperature gradient to pre-generated two-phase microstructures. A representative 

microstructure of such a two-phase alloy is shown in Figure 61, which was generated by 

introducing β nuclei (second phase) randomly into a α matrix at a temperature of 900 K and 

annealing them isothermally until the phases attend their equilibrium composition at the said 

temperature. This two-phase microstructure served as the initial microstructure or composition 

distribution and was then subjected to a constant temperature gradient of 250˚C/mm. The 

following parameters were chosen: Δx = 5 μm, and κ  = 1.0. 

Before starting the simulation for thermomigration, it is interesting to see the 

microstructural changes that could happen under a temperature gradient without the 

thermomigration term being considered in the flux equations. For this purpose, a simulation was 

performed by applying the aforementioned temperature gradient to a two-phase alloy, while 

turning the thermomigration term off, i.e. QA
*
 = QB

* = 0. The resulting microstructure is shown 

in Figure 62, which shows no redistribution of phases across the system while there is a 

noticeable difference in the compositions of phases at the hot and cold sides, as is evident from 

the sharp contrast between phases. This difference in composition is due to the variation in 

equilibrium composition dictated by the thermodynamic description of the system as a function 

of temperature. 
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Figure 61: A representative microstructure of the initial microstructure used for thermomigration 
studies. The bright and dark phases are the B rich and A rich phases respectively. The gray scale 
bar on the right of the micrograph represents mole fraction of B. 

 

Figure 62: Microstructure of a two phase alloy annealed for 370 hours in a temperature gradient, 
while the thermotransport effect was switched off in the simulation. The bright and dark phases 
are the B rich and A rich phases respectively. The gray scale bar on the right of the micrograph 
represents mole fraction of B. Temperature range: Tmax = 1000 K on the right end and Tmin  = 
800 K at the left end of the system. 
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Finally, the thermomigration term was turned on, and four different combinations of heat 

of transport values were used to study their effect on the final microstructure. In all the four cases 

studied, the same atomic mobilities were used, wherein βB > βA and QA
*
, QB

*
 > 0. In case - I: QA

*
 

= QB
* and MQ < 0, in case - II: QB

*
 >> QA

* and MQ < 0, in case - III: QB
*
 << QA

* and MQ > 0, 

and in case - IV: QB
*
 < QA

* and MQ > 0. The chemical mobility Mc > 0 for all the above cases. 

Microstructures obtained for these four different conditions are presented in Figure 63, 64, 65 

and 66, respectively. It can be seen that considerable redistribution of the second phase occurs 

along with the formation of A and B rich single-phase layers at the hot and cold ends in case - I , 

II and case - III, while in case - IV no such effect is evident. It is also noteworthy that the 

movement of elements is in opposite direction to each other in case - I and case - III. As it will be 

discussed later, the above results suggest that even though the sign of the heat of transport term is 

positive in all the cases the direction of motion of elements and the final distribution of phases 

are dependent on the sign and magnitude of MQ. 
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Figure 63: Microstructure of the two-phase alloy obtained after being subjected to annealing for 
370 hours in a temperature gradient in Case -I: QA

* =  QB
* and MQ < 0. Temperature range: Tmax 

= 1000 K on the right end and Tmin  = 800 K at the left end of the system. B atoms move towards 
the hot end forming a B rich single-phase at the hot end, while an A rich phase forms at the cold 
end. 

 

Figure 64: Microstructure of the two-phase alloy obtained after being subjected to annealing for 
370 hours in a temperature gradient in Case -II: QB

* >>  QA
* and MQ < 0. Temperature range: 

Tmax = 1000 K on the right end and Tmin  = 800 K at the left end of the system. B atoms move 
towards the hot end forming a B rich single-phase at the hot end, while an A rich phase forms at 
the cold end. 
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Figure 65: Microstructure of the two-phase alloy obtained after being subjected to annealing for 
370 hours in a temperature gradient in Case -II: QB

* >>  QA
* and MQ < 0. Temperature range: 

Tmax = 1000 K on the right end and Tmin  = 800 K at the left end of the system. B atoms move 
towards the cold end forming a B rich single-phase at the hot end, while an A rich phase forms at 
the cold end. 

 

Figure 66: Microstructure of the two-phase alloy obtained after being subjected to annealing for 
370 hours in a temperature gradient in Case -IV: QB

* <  QA
*, MQ > 0 and |MQ| is small. 

Temperature range: Tmax = 1000 K on the right end and Tmin  = 800 K at the left end of the 
system. The effect of thermomigration is less evident. 
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8.4 Discussions 

In the previous section it was demonstrated that redistribution of composition and the 

second phase can be simulated by a phase-field model when the alloy is subjected to a thermal 

gradient. The magnitude and direction of this redistribution, i.e. whether towards the hot end or 

the cold end of the specimen, is dependent on various factors and cannot be predicted simply by 

the phase diagram and Fickian diffusion. As a result, the flux equation has been modified to 

include the thermomigration effect. As described earlier, the case of a substitutional alloy where 

both the elements have comparable mobilities requires that the heat of transport as well as 

mobilities of both the elements be considered in describing the flux of an element. The 

combination of these mobilities and heat of transport values determine the magnitude and sign of 

MQ, which decides the direction of flow of an element. 

In case - I, for two-phase alloys, QA
*
 = QB

* and MQ < 0. Since Mc > 0, the contribution of 

the temperature gradient driven term to the flux of B in Equation 8.18 is in the same direction as 

the term involving the concentration gradient. This causes the B atoms to flow towards the hot 

end. In case - II, QB
*
 >> QA

* and MQ < 0, where ⎪MQ⎪ is very large. This produces a similar 

redistribution of the second phase, as that of case - I, but the effect is much stronger. This is 

evident from the distinct flow pattern of B atoms towards the hot end throughout the system in 

Figure 63.  

Unlike in case - I and II, MQ > 0 in case – III and IV. The positive sign of MQ suggests 

that the contribution of thermotransport term to the flux of B atoms is opposite to the term 

involving concentration gradient. This means that B atoms will flow towards the cold end, 
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opposite to the direction predicted by the phase diagram of the alloy system. This is evident from 

the B rich single-phase formed at the cold end of the specimen in Figure 65 in case – III, where 

⎪MQ⎪ is large. But this redistribution is not appreciable in case – IV as ⎪MQ⎪ is very small, thus 

making the contribution of thermotransport to the total flux negligible.  

 From Equation 8.20 it can be deduced that for a binary solution with an immobile 

solvent, MQ is roughly equal to the product of atomic mobility and heat of transport of the solute, 

i.e. βBQB
*. In this case the flow direction of the solute can be predicted with a considerable 

degree of certainty from the knowledge of QB
* only. The situation becomes more complex with 

the presence of a mobile solvent, when heat of transport of solvent and solute both contribute to 

the value of MQ. An important consequence of the aforementioned, which is also exemplified by 

our results is that for a particular solvent, while different solutes can have heat of transport terms 

(QB
*) of same sign, MQ may or may not have the same sign as that of QB

* for all the solutes. 

Under such circumstances the prediction of the flow direction of solute atoms could be 

anomalous and has been so experienced in many systems, e.g. Co, Au, Ge and Ag as solutes in 

Cu [5]. This work demonstrates that the results of the present model can explain the experimental 

discrepancies on thermotransport in substitutional alloys. Being capable of taking into account 

the individual mobility and heat of transport terms of elements, this model can be of great help in 

predicting the flow behavior of solutes in a solvent under applied thermal gradient. 

Previous analytical and numerical models [17-21] used to predict the thermotransport 

behavior in single- and two-phase alloys were derive heavily from the model first proposed by 

Shewmon [2] for binary alloys. Jaffe and Shewmon [5] represented the drift velocity of solute 

and solvent in a binary substitutional alloy as: 
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Vi = −
Di

RT
RT

∂ lnci

∂x
+

Qi

* − ΔH vi

T

dT

dx

⎡

⎣
⎢

⎤

⎦
⎥      (8.28) 

where ΔHvi is the molar enthalpy change in the lattice for forming a vacancy surrounded by the 

solute or solvent atoms. At steady state V1 and V2 may not be equal to zero, but V1 is equal to 

V2. However, apart from the assumption that local equilibrium concentration of vacancies is 

maintained at each point, these models were based on two other important assumptions, i.e. only 

the solute migrates in the alloy and local thermodynamic equilibrium between the solute in 

solution and the second-phase particles is obtained in those regions where the solubility limit is 

exceeded. The present phase-field model based on a continuum approach requires only the 

assumption of equilibrium vacancy concentration to be maintained locally and does not demand 

the other two aforementioned assumptions to be made beforehand. This is due to the fact that the 

present model is derived using the actual thermodynamic description of the system. It is also 

worthwhile to mention that all the previous models are based on a one-dimensional approach to 

solve the steady state problem, whereas the phase-field model can describe the thermotransport 

behavior in any number of dimensions, even for non-steady states. 

Using this model, the effect of temperature gradient on the composition and 

microstructure of any alloy can be predicted, provided the knowledge of thermodynamic and 

mobility data as well as the heat of transport terms are available. Data for some alloy systems 

where thermotransport is important, such as U-Zr (nuclear fuel), Ni-Al (turbine blade) and Pb-Sn 

(interconnects) are available in literature. The thermodynamic description for these systems can 

be obtained from a Calphad database [32-35], whereas the mobility data for Ni-Al and Pb-Sn can 

be obtained from [29,36]. Experimental data for heat of transport terms in Pb-Sn and U-Zr 
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systems are published in [14,37-38].  The authors could not find any data on mobility for the U-

Zr system and heat of transport terms for the Ni-Al system. Simulations using various 

combinations of these unknown parameters in U-Zr and Ni-Al system can be performed in future 

work. 

8.5 Conclusions 

It is well known that a temperature gradient can cause appreciable redistribution of 

elements and phases present in an alloy. A diffuse interface model was devised to simulate and 

predict this redistribution phenomenon under applied temperature gradient. The results show that 

both atomic mobilities and heat of transport values of individual elements play a role in 

determining the magnitude of the concentration gradient and the flow direction of elements. In 

certain cases the combination of these parameters can cause an element to flow opposite to the 

direction as determined by the phase diagram and Fick’s first law. This model can be used to 

simulate real alloy systems by incorporating actual thermodynamic data and materials 

parameters for the system. 
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CHAPTER 9 
CONCLUDING REMARKS AND FUTURE DIRECTIONS 

The primary goal of this research is to understand and predict the interdiffusion behavior 

and microstructure evolution in binary and ternary alloys using the continuum mesoscale diffuse 

interface phase-field model. The study focuses on interdiffusion process under two types of 

driving forces, namely, composition gradient and temperature gradient. Several examples were 

used including hypothetical binary and ternary systems, Ni-Al and Ni-Cr-Al systems. The 

conclusions of this study are summarized as follows. 

9.1 Isothermal Interdiffusion Under Composition Gradient 

This investigation has two main objectives, first, to predict concentration profiles, 

diffusion paths and the occurrence of up-hill diffusion and zero-flux planes in single-phase vs. 

single-phase solid-to-solid diffusion couples, and second, to predict the interdiffusion 

microstructure evolution in multi-phase diffusion couples of Ni-Al and Ni-Cr-Al alloys, utilizing 

the phase-field model. It was demonstrated that using a simple regular solution model, and 

constant chemical mobilities, development of concentration profiles including uphill diffusion 

and zero-flux planes can be simulated by a phase-field model. The results showed that a zero-

flux plane for a component could develop at the composition that corresponds to the intersection 

of the diffusion path and the isoactivity line drawn from one of the terminal alloys. The 

composition at the point of intersection corresponds closely to the activity of one of the terminal 

alloys. There could be more than one ZFP developed on either side of the Matano plane. The 

study also showed that the development of ZFPs depends on the terminal alloy compositions and 

the presence of extremum or up-hill diffusion does not necessarily produce a ZFP. This is the 
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first phase-field simulation result to support the experimental observations first made by 

Dayananda et al.  

In the multi-phase diffusion couples of Ni-Al and Ni-Cr-Al alloys, three different types of 

boundaries, namely, type 0, type 1 and type 2 were observed. Dissolution of the second phase, 

i.e. γ′ and β, was observed in all the single-phase vs. two-phase (γ vs. γ+γ′ and γ vs. γ+β) 

diffusion couples in the binary and ternary alloys. The dissolution rate depends on the 

composition of the single-phase terminal alloy and the volume fraction of the second-phase in 

the two-phase alloy; the higher the composition and volume fraction, the lower the dissolution. 

In two-phase vs. two-phase (γ+γ′ vs. γ+γ′ and γ+β vs. γ+β) diffusion couples, no phase 

dissolution was observed and the initial boundary remained stationary. The simulation results 

agree with both the experimental and theoretical results reported in literature. It is concluded that 

using thermodynamic and kinetic data with a phase-field model can predict the interdiffusion 

behavior and microstructure evolution in isothermal multicomponent and multiphase diffusion 

couples. 

9.2 Interdiffusion Under Temperature Gradient 

The objective of this portion of the work is to develop a phase-field model to understand 

and predict the diffusional microstructure evolution under a temperature gradient or 

thermotransport. The model was applied to single phase and two-phase alloys of a hypothetical 

binary system A-B. Simulation results showed that an applied temperature gradient could cause 

significant redistribution of constituents and phases in the alloy. The magnitude and the direction 

of the redistribution depend on the initial composition, the atomic mobility and the heat of 

transport of the respective elements. In multi-phase alloys, the thermomigration effect can cause 
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the formation of single-element rich phases at the cold and hot ends of the alloy. Because of its 

phenomenological basis, this phase-field model can easily be extended and applied to a ternary 

system.   

9.3 Future Work 

1. One of the subjects of focus in this work was the occurrence of zero-flux planes during 

multicomponent interdiffusion. Though the simulation results confirmed many 

experimentally observed features associated with ZFPs, and revealed some important 

information such as the effect of terminal alloy compositions and mobilities on the 

occurrence of ZFPs, there are issues that need further examination. For example, in order 

to establish the exact criteria for the occurrence of ZFPs, it is necessary to understand the 

relative importance of thermodynamic and kinetic factors such as the activities and 

atomic mobilities of the components. Therefore, utilizing the phase-field model, a detail 

analysis should be performed on real alloy systems with sufficient thermodynamic and 

kinetic data. 

2. In this study, elastic strain energy effect due to lattice misfit between the phases was 

neglected during the multiphase diffusion couple simulations. It would be interesting to 

study the effect of elastic inhomogeneity on the interdiffusion process.  

3. Taking the motivation from the results of Ni-Al or Ni-Cr-Al alloys in this study, and its 

interpretation in terms of diffusional interaction between the bond coat and superalloy 

substrate in thermal barrier coatings (TBCs), the present phase-field model should be 

extended to incorporate other critical phenomena associated with TBC failure. With 

appropriate formulation, the phase-field approach can be used to model sintering of YSZ 
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topcoat, (t’→f+m) phase transformations in YSZ topcoat, high temperature oxidation of 

bond coat and growth of TGO, microstructural evolution in multicomponent-multiphase 

interdiffusion, and fracture at the YSZ/TGO and TGO/bond coat interfaces. This would 

serve as a mechanism-based model for the life cycle prediction of TBCs. 

4. The phase-field model for the thermotransport effect needs to be further developed in 

order to be applied to important real alloy systems where thermotransport is critical such 

as Pb-Sn, U-Zr, and Ni-Al.  
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APPENDIX B 
SAMPLE C PROGRAM FOR  

ISOTHERMAL DIFFUSION COUPLE SIMULATIONS 
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The code for the simulation of isothermal diffusion couples was written in the 

programming language C. For convenience, different parts of the code and the general procedure 

to run these codes are described in the following.  

There are two basic parts: the first part generates the microstructures for alloys of 

different compositions, and the second part runs the simulation for diffusion couples, which 

utilizes the microstructures generated in first part to obtain initial microstructure for diffusion 

couples. So, if a microstructure generated in the first part has m x n grid points, then the initial 

microstructure of the diffusion couple after joining two such pre-generated microstructures 

would be of m x 2n grid points. The data conversion and joining is done by two separate codes, 

namely, convert.c and couple.c, respectively. Please note that all the programs use Fast Fourier 

Transforms in the West (fftw), a free collection of fast C routines for computing Discrete Fourier 

Transform in one or more dimensions. For further information please visit www.fftw.org. 

Both part-1 and part-2 contain four directories and a Makefile each. The directories are 

named as ‘input/’, ‘headers/’, ‘src/’ and ‘output/’.  The source codes are present in ‘src/’, which 

read the input data from ‘input/’ and the output is written to the directory ‘output/’. Following is 

a list of all the contents of above directories. 

Contents of input/ directory: constants (for values of constants), syssize (for system size 

information) and timeinf (for timestep information).  

Contents of headers/ directory: functions.h 

Contents of src/ directory: frmnucli.c and evolute.c (part-1) and diffcoup.c and evolute.c (part-2). 

frmnucli.c and diffcoup.c are the main codes, which read the inputs and calculate the 

evolution of field variables  by calling evolute.c and write data files in the output/ directory. Note 

that the program evolute.c is same for part-1 and part-2.  

http://www.fftw.org
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frmnucli.c  
/* 
 This program is used as the main program for part-1. This generates the initial 
microstructure for alloys of different compositions and volume fractions of phases. 
It reads the input files in input/ directory. Generates the nuclei randomly and calls 
the evolute.c program for microstructure evolution. 
*/ 
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
#include <gsl/gsl_rng.h> 
#include <gsl/gsl_randist.h> 
#include</sw/include/fftw3.h> 
#include"../headers/functions.h" 
 
int main(void){ 
 
FILE *fpr, *fpw; 
int i,j,q,m=15700,p; 
int n_x,n_y,time_steps,halfny; 
int cenx[m], ceny[m]; 
double del_x,del_y,del_t; 
double rad,dis[m],radsq[m]; 
double kapa_a,kapa_b,kapa_c,kapa_e,M_aa,M_ab,M_ba,M_bb; 
double z00,z01,z02,z03,z04,z10,z11,z12,z13,z20,z21,z22,z30,z31,z40,A2,A4; 
double sigma = 1.0,area,v_ord,v_ordc,rat,root; 
double avgAl, avgCr, gamaAl, gamaCr, betaAl, betaCr; 
const gsl_rng_type * Taus; 
gsl_rng * ran_num; 
 
fftw_complex *compa; 
fftw_complex *compb; 
fftw_complex *compc; 
fftw_complex *eta; 
 
/* Get rid of old files in output directory */ 
 (void) system("rm -rf output/*"); 
/* 
Write input values to README file 
*/ 
if((fpw=fopen("output/README","w"))==NULL){ 
printf("Unable to open output/README. Exiting"); 
exit(0); 
} 
 
else{ 
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fpw = fopen("output/README","w"); 
} 
 
/* read input values from read_input_values file */ 
if( (fpr = fopen("input/syssize","r")) == NULL){ 
printf("Unable to open input/syssize. Exiting"); 
exit(0); 
} 
else{ 
fpr = fopen("input/syssize","r"); 
} 
(void) fscanf(fpr,"%d%d%le%le", &n_x, &n_y, &del_x, &del_y); 
(void) fclose(fpr); 
fprintf(fpw,"n_x = %d\nn_y = %d\n", n_x, n_y); 
fprintf(fpw,"del_x = %le\ndel_y = %le\n", del_x, del_y); 
 
/* Read the PFM constants */ 
 
if( (fpr = fopen("input/constants","r")) == NULL){ 
printf("Unable to oepn input/constants. Exiting"); 
exit(0); 
} 
else{ 
fpr = fopen("input/constants","r"); 
} 
(void) fscanf(fpr,"%le%le%le%le", &kapa_a, &kapa_b, &kapa_c, &kapa_e); 
(void) fclose(fpr); 
fprintf(fpw,"kapa_a = %le\nkapa_b = %le\nkapa_c = %le\nkapa_e = %le\n", kapa_a, kapa_b, 
kapa_c, kapa_e); 
 
/* 
Let us read the time step and number of time steps 
*/ 
 
if( (fpr = fopen("input/timeinf","r")) == NULL){ 
printf("Unable to open input/timeinf. Exiting"); 
exit(0); 
} 
else{ 
fpr = fopen("input/timeinf","r"); 
} 
(void) fscanf(fpr,"%le%d",&del_t,&time_steps); 
(void) fclose(fpr); 
fprintf(fpw,"del_t = %le\n",del_t); 
fprintf(fpw,"time_steps = %d\n",time_steps); 
fclose(fpw); 
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/*********** Memory allocation for variable comp ****************************/ 
 
compa = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
compb = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
compc = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
eta = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
/************* Setting up the GSL random number generator ******************/ 
 
(void) gsl_rng_env_setup(); 
Taus = gsl_rng_taus; 
ran_num = gsl_rng_alloc (Taus); 
 
halfny = (int) n_y/2; 
 
/* Generate and Store random centers */ 
for(q=0; q<m; ++q){ 
cenx[q] = (gsl_rng_uniform_int(ran_num,n_x)); 
} 
for(q=0; q<m; ++q){ 
ceny[q] = (gsl_rng_uniform_int(ran_num,n_y)); 
} 
 
/* Generate and Store random radius and distance */ 
area = 0.0; 
for(q=0; q<m; ++q){ 
rad = gsl_ran_gaussian(ran_num,sigma); 
radsq[q] = del_x*del_y*rad*rad; 
area = area+M_PI*radsq[q]; 
printf("%le\n",rad); 
} 
v_ordc = area/(n_x*n_y*del_x*del_y); 
 
/* Generating the initial composition profile and eta values */ 
 
A4 = 4.0; 
z00 = -102.12685; 
z01 = 1155.43;  /* Fit thermo data values from literature */  
z02 = -4897.04; 
z03 = 9332.91;  
z04 = -6647.69; 
z10 = 10.92678; 
z11 = -296.89049; 
z12 = 1489.57; 
z13 = -1937.45; 
z20 = 253.57483; 
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z21 = -1032.66; 
z22 = 808.6688; 
z30 = -259.04708; 
z31 = 564.16582; 
z40 = 45.79865; 
 
for(i=0; i<n_x; ++i){ 
for(j=0; j<n_y; ++j){ 
p = j+n_y*i; 
compa[j+n_y*i][0] = 0.161; 
compa[j+n_y*i][1] = 0.0; /**** For gamma (matrix) *****/ 
compb[j+n_y*i][0] = 0.185; 
compb[j+n_y*i][1] = 0.0; 
compc[j+n_y*i][0] = 1.0-compa[j+n_y*i][0]-compb[j+n_y*i][0]; 
compc[j+n_y*i][1] = -compa[j+n_y*i][1]-compb[j+n_y*i][1]; 
eta[j+n_y*i][0] = 0.0; 
eta[j+n_y*i][1] = 0.0; 
gamaAl = compa[j+n_y*i][0]; 
gamaCr = compb[j+n_y*i][0]; 
} 
} 
 
for(q=0; q<m; ++q){ 
for(i=0; i<n_x; ++i){ 
for(j=0; j<n_y; ++j){ 
p = j+n_y*i; 
 
dis[q] = (del_x*del_y)*((i-cenx[q])*(i-cenx[q])+(j-ceny[q])*(j-ceny[q])); 
 
if(dis[q]<=radsq[q]){ 
compa[j+n_y*i][0] = 0.314; 
compa[j+n_y*i][1] = 0.0; 
compb[j+n_y*i][0] = 0.077;       /**** For beta phase ********/ 
compb[j+n_y*i][1] = 0.0; 
compc[j+n_y*i][0] = 1.0-compa[j+n_y*i][0]-compb[j+n_y*i][0]; 
compc[j+n_y*i][1] = -compa[j+n_y*i][1]-compb[j+n_y*i][1]; 
betaAl = compa[j+n_y*i][0]; 
betaCr = compb[j+n_y*i][0]; 
 
A2 = 
z00+z01*compa[p][0]+z02*compa[p][0]*compa[p][0]+z03*compa[p][0]*compa[p][0]*compa[p
][0]+z04*compa[p][0]*compa[p][0]*compa[p][0]*compa[p][0]+compb[p][0]*(z10+z11*compa[
p][0]+z12*compa[p][0]*compa[p][0]+z13*compa[p][0]*compa[p][0]*compa[p][0])+(compb[p][
0]*compb[p][0])*(z20+z21*compa[p][0]+z22*compa[p][0]*compa[p][0])+(compb[p][0]*comp
b[p][0]*compb[p][0])*(z30+z31*compa[p][0]+z40*compb[p][0]); 
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 rat = A2/A4;  
 if(rat>=0.0){ 
 
      root = sqrt(rat); 
 
 eta[j+n_y*i][0] =  root; 
 
 eta[j+n_y*i][1] = 0.0; 
 } 
else{ 
 
 eta[j+n_y*i][0] = 0.0; 
 
 eta[j+n_y*i][1] = 0.0; 
 
 } 
} 
} 
} 
} 
 
avgAl = 0.0; 
avgCr = 0.0; 
for(i=0; i<n_x; ++i){ 
for(j=0; j<n_y; ++j){ 
 
avgAl = avgAl+compa[j+n_y*i][0]; 
avgCr = avgCr+compb[j+n_y*i][0]; 
} 
} 
avgAl = avgAl/(n_x*n_y); 
avgCr = avgCr/(n_x*n_y); 
 
v_ord = ((gamaAl-avgAl)*(gamaAl-avgAl)+(gamaCr-avgCr)*(gamaCr-avgCr))/((gamaCr-
betaCr)*(gamaCr-betaCr)+(gamaAl-betaAl)*(gamaAl-betaAl)); 
v_ord = sqrt(v_ord); 
 
 
 
/* 
 Write ave_comp  values to readme file  
*/ 
 
if((fpw=fopen("output/README","a"))==NULL){ 
printf("Unable to open output/README. Exiting"); 
exit(0); 
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} 
 
else{ 
fpw = fopen("output/README","a"); 
} 
 
fprintf(fpw,"v_ord = %lf\nv_ordc= %lf\navgAl = %lf\navgCr = %lf\n", v_ord, v_ordc, avgAl, 
avgCr); 
fprintf(fpw,"gamaAl = %lf\nbetaAl = %lf\ngamaCr = %lf\nbetaCr = %lf\n", gamaAl, betaAl, 
gamaCr, betaCr); 
fprintf(fpw,"v_ordc is calculated from the area of random cicles\n"); 
fprintf(fpw,"v_ord is calculated from the Lever rule using average (calculated) and equilibrium 
compositions (input)\n"); 
(void) fclose(fpw); 
 
/* 
 Evolution of Microstructure – call evolute.c  
*/ 
 
evolute(n_x,n_y,del_x,del_y,del_t,time_steps,kapa_a,kapa_b,kapa_c,kapa_e,M_aa,M_ab,M_ba,
M_bb,compa,compb,compc,eta); 
 
/* release the allocated memory */ 
 
fftw_free(compa); 
fftw_free(compb); 
fftw_free(compc); 
fftw_free(eta); 
 
return 0; 
} 
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convert.c 
/*  
This programs converts data obtained from single alloy simulations from 0-n_y to n_y-n_x. 
Used for joining two sides of the diffusion couple by couple.c 
*/ 
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
#include</sw/include/fftw3.h> 
int main(void)  
{ 
 FILE *fpt,  *fpw; 
 int i, j,temp,t1,t2,p,q; 
 int n_x = 256, n_y = 256; 
 fftw_complex *ca; 
 fftw_complex *cb; 
 fftw_complex *cc; 
 fftw_complex *e; 
 
 ca = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
 cb = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
 cc = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
 e = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
 fpt = fopen("composition file","r"); /* For right hand side */ 
for(i=0;i<n_x;i++){ 
 for(j=0;j<n_y;j++){ 
 fscanf(fpt,"%d%d%lf%lf%lf%lf",&t1,&t2,&(ca[j+n_y*i][0]),&(cb[j+n_y*i][0]),&(cc[j+n
_y*i][0]),&(e[j+n_y*i][0])); 
    } 
} 
fclose(fpt); 
fpw = fopen("readf","w"); 
for(i=0;i<n_x;i++){ 
 for(j=0;j<n_y;j++){ 
  p = i+n_x; 
 fprintf(fpw,"%d\t%d\t%lf\t%lf\t%lf\t%lf\n",p,j,ca[j+n_y*i][0],cb[j+n_y*i][0],cc[j+n_y*i][
0],e[j+n_y*i][0]); 
  } 
} 
fclose(fpw); 
return 0; 
fftw_free(ca); 
fftw_free(cb); 
fftw_free(cc); 
fftw_free(e); 
} 
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couple.c 
/* 
This program generates the initial composition for the couple by interchanging the co-ordinates. 
It takes the two data files and joins them together. It writes the data in the new co-ordinates into 
the file "readcomp". It utilizes the data from one "composition file" and "readf" generated from 
convert.c for 2-phase alloys. 
*/ 
  
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
 
#include</sw/include/fftw3.h> 
 
int main(void){ 
 
FILE *fpw, *fir, *fin; 
int i, j, t1, t2; 
int n_x=512,n_y=256; 
fftw_complex *compa; 
fftw_complex *compb; 
fftw_complex *compc; 
fftw_complex *eta; 
 
/*********** Memory allocation for variable comp ****************************/ 
compa = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
compb = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
compc = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
eta = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
 
/* Generating initial composition profile */ 
/*opening the two files that contains the composition information from previous runs*/  
 
fir = fopen("composition file","r"); /* Left Hand side */  
fin = fopen("readf","r"); /* Right Hand side */  
for(i=0;i<n_x;i++){ 
for(j=0;j<n_y;j++){ 
 
/* For the left hand side of the couple */ 
 
if(i%2==0){ 
fscanf(fir,"%d%d%lf%lf%lf%lf",&t1,&t2,&(compa[j+n_y*i][0]),&(compb[j+n_y*i][0]),&(com
pc[j+n_y*i][0]),&(eta[j+n_y*i][0])); 
 
compa[j+n_y*i][1] = 0.0; 
compb[j+n_y*i][1] = 0.0; 
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compc[j+n_y*i][1] = 0.0; 
eta[j+n_y*i][1] = 0.0; 
} 
else 
{ 
fscanf(fin,"%d%d%lf%lf%lf%lf",&t1,&t2,&(compa[j+n_y*i][0]),&(compb[j+n_y*i][0]),&(com
pc[j+n_y*i][0]),&(eta[j+n_y*i][0])); 
 
compa[j+n_y*i][1] = 0.0; 
compb[j+n_y*i][1] = 0.0; 
compc[j+n_y*i][1] = 0.0; 
eta[j+n_y*i][1] = 0.0; 
} 
} 
} 
fclose(fir); 
fclose(fin); 
 
/* 
 Write comp  values to file  
*/ 
if((fpw=fopen("readcomp","w"))==NULL){ 
printf("Unable to open output/README. Exiting"); 
exit(0); 
} 
else{ 
fpw = fopen("readcomp","w"); 
} 
 
for(i=0; i<n_y; ++i){ 
for(j=0; j<n_x; ++j){ 
fprintf(fpw,"%d\t%d\t%lf\t%lf\t%lf\t%lf\n",i,j,compa[j+512*i][0],compb[j+512*i][0],compc[j+5
12*i][0],eta[j+512*i][0]); 
} 
} 
(void) fclose(fpw); 
 
/* release the allocated memory */ 
fftw_free(compa); 
fftw_free(compb); 
fftw_free(compc); 
fftw_free(eta); 
return 0; 
} 
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diffcoup.c 
/* 
This program is used as the main program for part-2. This generates the initial 
microstructure for alloys of different compositions and volume fractions of phases 
by reading data file “readcomp” generated by couple.c. It reads the input files in 
input/ directory. Generates the nuclei randomly and calls evolute.c program for 
microstructure evolution. 
*/ 
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
#include</sw/include/fftw3.h> 
#include"../headers/functions.h" 
 
int main(void){ 
 
FILE *fpr, *fpw, *fir; 
int i,j,t1,t2; 
int n_x,n_y,time_steps; 
double del_x,del_y,del_t; 
double kapa_a,kapa_b,kapa_c,kapa_e,M_aa,M_ab,M_ba,M_bb; 
 
fftw_complex *compa; 
fftw_complex *compb; 
fftw_complex *compc; 
fftw_complex *eta; 
 
/* Get rid of old files in output directory */ 
 (void) system("rm -rf output/*"); 
 
/*Write input values to README file*/ 
if((fpw=fopen("output/README","w"))==NULL){ 
printf("Unable to open output/README. Exiting"); 
exit(0); 
} 
else{ 
fpw = fopen("output/README","w"); 
} 
 
/* read input values from read_input_values file */ 
if( (fpr = fopen("input/syssize","r")) == NULL){ 
printf("Unable to open input/syssize. Exiting"); 
exit(0); 
} 
else{ 
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fpr = fopen("input/syssize","r"); 
} 
(void) fscanf(fpr,"%d%d%le%le",&n_x,&n_y,&del_x,&del_y); 
(void) fclose(fpr); 
fprintf(fpw,"n_x = %d\nn_y = %d\n",n_x,n_y); 
fprintf(fpw,"del_x = %le\ndel_y = %le\n",del_x,del_y); 
 
/* Read the PFM constants */ 
if( (fpr = fopen("input/constants","r")) == NULL){ 
printf("Unable to oepn input/constants. Exiting"); 
exit(0); 
} 
else{ 
fpr = fopen("input/constants","r"); 
} 
(void) fscanf(fpr,"%le%le%le%le",&kapa_a,&kapa_b,&kapa_c,&kapa_e); 
(void) fclose(fpr); 
fprintf(fpw,"kapa_a = %le\nkapa_b = %le\nkapa_c = %le\nkapa_e = 
%le\n",kapa_a,kapa_b,kapa_c,kapa_e); 
 
/*Read the time step and number of time steps*/ 
if( (fpr = fopen("input/timeinf","r")) == NULL){ 
printf("Unable to open input/timeinf. Exiting"); 
exit(0); 
} 
else{ 
fpr = fopen("input/timeinf","r"); 
} 
(void) fscanf(fpr,"%le%d",&del_t,&time_steps); 
(void) fclose(fpr); 
fprintf(fpw,"del_t = %le\n",del_t); 
fprintf(fpw,"time_steps = %d\n",time_steps); 
fclose(fpw); 
 
/*Memory allocation for variable comp */ 
compa = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
compb = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
compc = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
eta = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
 
/* Generating the initial composition profile and eta values */ 
fir = fopen("readcomp","r");  
for(i=0;i<n_x;i++){ 
for(j=0;j<n_y;j++){ 
 
fscanf(fir,"%d%d%lf%lf%lf%lf",&t1,&t2,&(compa[j+n_y*i][0]),&(compb[j+n_y*i][0]),&(com
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pc[j+n_y*i][0]),&(eta[j+n_y*i][0])); 
compa[j+n_y*i][1] = 0.0; 
compb[j+n_y*i][1] = 0.0; 
compc[j+n_y*i][1] = 0.0; 
eta[j+n_y*i][1] = 0.0; 
} 
} 
fclose(fir); 
 
/* Evolution of Microstructure */ 
evolute(n_x,n_y,del_x,del_y,del_t,time_steps,kapa_a,kapa_b,kapa_c,kapa_e,M_aa,M_ab,M_ba,
M_bb,compa,compb,compc,eta); 
 
/* release the allocated memory */ 
fftw_free(compa); 
fftw_free(compb); 
fftw_free(compc); 
fftw_free(eta); 
return 0; 
} 
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evolute.c 

/* 
This program evolves the microstructure by solving the Cahn-Hilliard and Allen-Cahn equations.  
It uses fftw and invovles numerous manipulations to represent the variables in proper form, 
which is compatible for fftw. 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#define R 8.314 
#define T 1473.0 
 
#include <gsl/gsl_math.h> 
#include</sw/include/fftw3.h> 
 
#include "../headers/functions.h" 
 
void evolute(int n_x,int n_y,double del_x,double del_y,double del_t,int time_steps,double 
kapa_a, double kapa_b,double kapa_c,double kapa_e,double M_aa,double M_ab,double 
M_ba,double M_bb,fftw_complex *compa,fftw_complex *compb,fftw_complex *compc, 
fftw_complex *eta){ 
FILE *fp,*fpw; 
char fn[200];  
char NAME[1000]; 
char name[1000]; 
int INDEX=0; 
int i,j,p; 
int half_nx, half_ny; 
double kx,ky,kx2,ky2,del_kx,del_ky,k2,k4; 
double G0a,G0b,G0c,fccL0_ab,fccL0_ac;  
double fccL1_ac,fccL2_ac,fccL0_bc,fccL1_bc,fccL0_abc; 
double logariR1,logariR2,logariC1,logariC2,amincLacR,amincLacC;     /* Self defined functions 
for ga and gb */ 
double acR,acC,acamincR,acamincC,bbmincR,bbmincC,bcR,bcC,bamincR;   /* Self defined 
functions for ga and gb */ 
double bamincC,aLacR,aLacC,bmincLR,bmincLC,abmincR,abmincC;     /* Self defined 
functions for ga and gb */ 
double z00,z01,z02,z03,z04,z10,z11,z12,z13,z20,z21,z22,z30,z31,z40,A4; 
double casqR,caqR,ca4R,ca_cbR,cbcasqR,cbcaqR,cbsqR,cacbsqR,casq_cbsqR,cbqR,cacbqR, 
cb4R; 
double casqC,caqC,ca4C,ca_cbC,cbcasqC,cbcaqC,cbsqC,cacbsqC,casq_cbsqC,cbqC,cacbqC, 
cb4C; 
double etasqR,etasqC,etaqR,etaqC,determin,denome; 
double delf,A2R,A2C,dA2_dcaR,dA2_dcaC,dA2_dcbR,dA2_dcbC; 
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double *ca, *cb, *cc, *e; 
double term_aR,term_aC,term_bR,term_bC,phi_aa,phi_ab,phi_ba,phi_bb,phie,L; 
double A,B,C,D,termgaR,termgaC,termgbR,termgbC; 
double Vm,beta_a, beta_b, beta_c, beta, beta_ag, beta_bg, beta_cg; 
double Al0, Al1, Al2, Cr0, Cr1, Cr2, Ni0, Ni1, Ni2, QAl, QCr, QNi; 
double oAl0, oAl1, oAl2, oCr0, oCr1, oCr2, oNi0, oNi1, oNi2; 
double mfunc, betaA, betaB, betaC; 
double gamaAl = 0.152, gamaCr = 0.219, betaAl = 0.316, betaCr = 0.092;  
size_t otpter; 
 
fftw_complex *ga; 
fftw_complex *gb; 
fftw_complex *ge; 
 
fftw_plan planaf, planbf, planef, planga, plangb, plange, planab, planbb, planeb; 
 
/* Memory Allocation */ 
 
ga = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
gb = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
ge = (fftw_complex*) fftw_malloc(n_x*n_y*sizeof(fftw_complex)); 
 
/* Define the Plans for FFTW */ 
 
planaf = fftw_plan_dft_2d(n_x,n_y,compa,compa,FFTW_FORWARD,FFTW_ESTIMATE); 
planbf = fftw_plan_dft_2d(n_x,n_y,compb,compb,FFTW_FORWARD,FFTW_ESTIMATE); 
planef = fftw_plan_dft_2d(n_x,n_y,eta,eta,FFTW_FORWARD,FFTW_ESTIMATE); 
planga = fftw_plan_dft_2d(n_x,n_y,ga,ga,FFTW_FORWARD,FFTW_ESTIMATE); 
plangb = fftw_plan_dft_2d(n_x,n_y,gb,gb,FFTW_FORWARD,FFTW_ESTIMATE); 
plange = fftw_plan_dft_2d(n_x,n_y,ge,ge,FFTW_FORWARD,FFTW_ESTIMATE); 
planab = fftw_plan_dft_2d(n_x,n_y,compa,compa,FFTW_BACKWARD,FFTW_ESTIMATE); 
planbb = fftw_plan_dft_2d(n_x,n_y,compb,compb,FFTW_BACKWARD,FFTW_ESTIMATE); 
planeb = fftw_plan_dft_2d(n_x,n_y,eta,eta,FFTW_BACKWARD,FFTW_ESTIMATE); 
 
 
/* Memory allocation for composition and eta variables */ 
 
ca = (double *) malloc((size_t) n_x*n_y* sizeof(double)); 
cb = (double *) malloc((size_t) n_x*n_y* sizeof(double)); 
cc = (double *) malloc((size_t) n_x*n_y* sizeof(double)); 
e = (double *) malloc((size_t) n_x*n_y* sizeof(double)); 
 
/* print the initial composition */ 
 
INDEX = 0; 
for(i=0; i<n_x; ++i){ 
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for(j=0; j<n_y; ++j){ 
 p = j + n_y*i; 
 ca[p] = (compa[p][0]-gamaAl)/(betaAl-gamaAl); 
 cb[p] = (compb[p][0]-gamaCr)/(betaCr-gamaCr); 
 cc[p] = 1.0-compa[p][0]-compb[p][0]; 
 e[p] = eta[p][0]; 
} 
} 
sprintf(NAME,"output/time%d.dat",INDEX); 
fpw = fopen(NAME,"w"); 
otpter = fwrite(&e[0],sizeof(double),(size_t) n_x*n_y,fpw); 
(void) fclose(fpw); 
sprintf(name,"time0%d.ps",INDEX); 
generate_psfile(NAME,name,n_x,n_y,n_y); 
 
/* Data for fcc-disordered (gama phase)*/ 
 
fccL0_ab = -45000+6.0*T; 
fccL0_ac = -168343 + 16.0*T; 
fccL1_ac = 34311.0; 
fccL2_ac = 4162.0 + 27.29*T; 
fccL0_bc = 8030.0 - 12.8801*T; 
fccL1_bc = 33080.0 - 16.0362*T; 
fccL0_abc = -853.0 + 16.245*T; 
 
G0a = -11278.378+188.684153*T-31.748192*T*log(T)-1.231e28*pow(T,-9); 
G0b = -1572.94+157.643*T-26.908*T*log(T)+0.00189435*T*T-1.47721e-
6*pow(T,3)+139250/T; 
G0c = -5179.159+117.854*T-22.096*T*log(T)-4.8407e-6*pow(T,2); 
 
/**********Coefficients for A2 calculation******************/ 
delf = 6949.46; 
A4 = 4.0; 
z00 = -102.12685; 
z01 = 1155.43; 
z02 = -4897.04; 
z03 = 9332.91;  
z04 = -6647.69; 
z10 = 10.92678; 
z11 = -296.89049; 
z12 = 1489.57; 
z13 = -1937.45; 
z20 = 253.57483; 
z21 = -1032.66; 
z22 = 808.6688; 
z30 = -259.04708; 
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z31 = 564.16582; 
z40 = 45.79865; 
/* 
 Data for Atomic Mobility of gamma phase  
 Fixed Parameter from literature 
*/ 
Al0 = -142000.0 + R * T * log(0.000171); 
Al1 = -235000.0 - 82.0 * T; 
Al2 = -284000.0 + R * T * log(0.00075); 
Cr0 = -261700.0 + R * T * log(0.64); 
Cr1 = -235000.0 - 82.0 * T; 
Cr2 = -287000.0 - 64.4 * T; 
Ni0 = -145900.0 + R * T * log(0.00044); 
Ni1 = -235000.0 - 82.0 * T; 
Ni2 = -287000.0 - 69.8 * T; 
/* Optimized Parameters from literature */ 
oAl0 = -41300.0 - 91.2 * T; 
oAl1 = 335000.0; 
oAl2 = -53200.0; 
oCr0 = -118000.0; 
oCr1 = -487000.0; 
oCr2 = -68000.0; 
oNi0 = -113000.0 + 65.5 * T; 
oNi1 = -211000.0; 
oNi2 = -81000.0; 
for(INDEX=1; INDEX < time_steps+1; ++INDEX){ 
 
printf("Steps = %d\n", INDEX); 
for(i=0; i<n_x; ++i){ 
for(j=0; j<n_y; ++j){ 
 p = j + n_y*i; 
 ca[p] = compa[p][0]; 
 cb[p] = compb[p][0]; 
 cc[p] = 1.0-compa[p][0]-compb[p][0]; 
 e[p] = eta[p][0]; 
} 
} 
 
/** To calculate ga, gb and ge in Real Space. They are all nondimensionalized by dividing with 
R*T**/ 
 
for(i=0; i<n_x; ++i){ 
for(j=0; j<n_y; ++j){ 
 
p = j + n_y*i; 
casqR = (compa[p][0]*compa[p][0])-(compa[p][1]*compa[p][1]); 
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casqC = 2.0*compa[p][0]*compa[p][1]; 
cbsqR = (compb[p][0]*compb[p][0])-(compb[p][1]*compb[p][1]); 
cbsqC = 2.0*compb[p][0]*compb[p][1]; 
caqR = (compa[p][0]*compa[p][0]*compa[p][0])-3.0*(compa[p][0]*compa[p][1]*compa[p][1]); 
caqC = -   
(compa[p][1]*compa[p][1]*compa[p][1])+3.0*(compa[p][0]*compa[p][0]*compa[p][1]); 
cbqR = (compb[p][0]*compb[p][0]*compb[p][0])-
3.0*(compb[p][0]*compb[p][1]*compb[p][1]); 
cbqC = -
(compb[p][1]*compb[p][1]*compb[p][1])+3.0*(compb[p][0]*compb[p][0]*compb[p][1]); 
ca4R = casqR*casqR - casqC*casqC; 
ca4C = 2.0*casqC*casqR; 
cb4R = cbsqR*cbsqR - cbsqC*cbsqC; 
cb4C = 2.0*cbsqC*cbsqR; 
ca_cbR = compa[p][0]*compb[p][0]-compa[p][1]*compb[p][1]; 
ca_cbC = compa[p][0]*compb[p][1]+compa[p][1]*compb[p][0]; 
casq_cbsqR = casqR*cbsqR-casqC*cbsqC; 
casq_cbsqC = cbsqC*casqR+casqC*cbsqR; 
cacbsqR = compa[p][0]*cbsqR-cbsqC*compa[p][1]; 
cacbsqC = compa[p][0]*cbsqC+cbsqR*compa[p][1]; 
cbcasqR = compb[p][0]*casqR-casqC*compb[p][1]; 
cbcasqC = compb[p][0]*casqC+casqR*compb[p][1]; 
cacbqR = compa[p][0]*cbqR-compa[p][1]*cbqC; 
cacbqC = compa[p][0]*cbqC+compa[p][1]*cbqR; 
cbcaqR = compb[p][0]*caqR-compb[p][1]*caqC; 
cbcaqC = compb[p][0]*caqC+compb[p][1]*caqR; 
 
etasqR = (eta[p][0]*eta[p][0])-(eta[p][1]*eta[p][1]); 
etasqC = 2.0*eta[p][0]*eta[p][1]; 
etaqR = (eta[p][0]*eta[p][0]*eta[p][0])-3.0*(eta[p][0]*eta[p][1]*eta[p][1]); 
etaqC = -(eta[p][1]*eta[p][1]*eta[p][1])+3.0*(eta[p][0]*eta[p][0]*eta[p][1]); 
 
A2R = 
z00+z01*compa[p][0]+z02*casqR+z03*caqR+z04*ca4R+z10*compb[p][0]+z11*ca_cbR+z12*
cbcasqR+z13*cbcaqR+z20*cbsqR+z21*cacbsqR+z22*casq_cbsqR+z30*cbqR+z31*cacbqR+z4
0*cb4R; 
 
A2C = 
z01*compa[p][1]+z02*casqC+z03*caqC+z04*ca4C+z10*compb[p][1]+z11*ca_cbC+z12*cbcas
qC+z13*cbcaqC+z20*cbsqC+z21*cacbsqC+z22*casq_cbsqC+z30*cbqC+z31*cacbqC+z40*cb4
C; 
 
dA2_dcaR = 
z01+2.0*z02*compa[p][0]+3.0*z03*casqR+4.0*z04*caqR+z11*compb[p][0]+2.0*z12*ca_cbR
+3.0*z13*cbcasqR+z21*cbsqR+2.0*z22*cacbsqR+z31*cbqR; 
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dA2_dcaC = 
2.0*z02*compa[p][1]+3.0*z03*casqC+4.0*z04*caqC+z11*compb[p][1]+2.0*z12*ca_cbC+3.0*
z13*cbcasqC+z21*cbsqC+2.0*z22*cacbsqC+z31*cbqC; 
 
dA2_dcbR = 
z10+z11*compa[p][0]+z12*casqR+z13*caqR+2.0*z20*compb[p][0]+2.0*z21*ca_cbR+2.0*z22
*cbcasqR+3.0*z30*cbsqR+3.0*z31*cacbsqR+4.0*z40*cbqR; 
 
dA2_dcbC = 
z11*compa[p][1]+z12*casqC+z13*caqC+2.0*z20*compb[p][1]+2.0*z21*ca_cbC+2.0*z22*cbc
asqC+3.0*z30*cbsqC+3.0*z31*cacbsqC+4.0*z40*cbqC; 
 
logariR1 = 0.5*(log((compa[p][0]*compa[p][0])+(compa[p][1]*compa[p][1]))-log((1.0-
compa[p][0]-compb[p][0])*(1.0-compa[p][0]-
compb[p][0])+(compa[p][1]+compb[p][1])*(compa[p][1]+compb[p][1])));/* logari are the real 
and complex parts of log terms */ 
 
logariC1 = atan(compa[p][1]/compa[p][0])-
atan((compa[p][1]+compb[p][1])/(compa[p][0]+compb[p][0]-1.0)); 
 
logariR2 = 0.5*(log((compb[p][0]*compb[p][0])+(compb[p][1]*compb[p][1]))-log((1.0-
compa[p][0]-compb[p][0])*(1.0-compa[p][0]-
compb[p][0])+(compa[p][1]+compb[p][1])*(compa[p][1]+compb[p][1]))); 
 
logariC2 = atan(compb[p][1]/compb[p][0])-
atan((compa[p][1]+compb[p][1])/(compa[p][0]+compb[p][0]-1.0)); 
 
amincLacR = -fccL0_ac*(2.0*compa[p][0]+compb[p][0]-1.0) - 
fccL1_ac*((2.0*compa[p][0]+compb[p][0]-1.0)*(2.0*compa[p][0]+compb[p][0]-1.0)-
(2.0*compa[p][1]+compb[p][1])*(2.0*compa[p][1]+compb[p][1]))-
fccL2_ac*(2.0*compa[p][0]+compb[p][0]-1.0)*((2.0*compa[p][0]+compb[p][0]-
1.0)*(2.0*compa[p][0]+compb[p][0]-1.0)-3.0*(2.0*compa[p][1]+compb[p][1])); /* This part is 
= real((cc - ca)Lac) */ 
 
amincLacC = -
(2.0*compa[p][1]+compb[p][1])*(fccL0_ac+2.0*fccL1_ac*(2.0*compa[p][0]+compb[p][0]-
1.0)+fccL2_ac*(3.0*(2.0*compa[p][0]+compb[p][0]-1.0)*(2.0*compa[p][0]+compb[p][0]-1.0)-
(2.0*compa[p][1]+compb[p][1])*(2.0*compa[p][1]+compb[p][1])));/* = complex((cc - ca)Lac) 
*/ 
 
acR = compa[p][0]*(1.0-compa[p][0]-compb[p][0]) + compa[p][1]*(compa[p][1]+compb[p][1]); 
/* = real(ca*cc) */ 
 
acC = compa[p][1]*(1.0-compa[p][0]-compb[p][0]) - compa[p][0]*(compa[p][1]+compb[p][1]); 
/* = complex(ca*cc) */ 
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acamincR = (compa[p][0]*(1.0-compa[p][0]-compb[p][0]) + 
compa[p][1]*(compa[p][1]+compb[p][1]))*(2.0*compa[p][0]+compb[p][0]-1.0)-
(compa[p][1]*(1.0-compa[p][0]-compb[p][0]) - 
compa[p][0]*(compa[p][1]+compb[p][1]))*(2.0*compa[p][1]+compb[p][1]); /* =real(ac(a-c)) */ 
 
acamincC = (compa[p][1]*(1.0-compa[p][0]-compb[p][0]) - 
compa[p][0]*(compa[p][1]+compb[p][1]))*(2.0*compa[p][0]+compb[p][0]-
1.0)+(compa[p][0]*(1.0-compa[p][0]-compb[p][0]) +  
compa[p][1]*(compa[p][1]+compb[p][1]))*(2.0*compa[p][1]+compb[p][1]);  
/* =complex(ac(a-c)) */ 
 
bbmincR = compb[p][0]*(2.0*compb[p][0]+compa[p][0]-1.0)-
compb[p][1]*(2.0*compb[p][1]+compa[p][1]); /* = real(cb(cb-cc)) */ 
 
bbmincC = (4.0*compb[p][0]+compa[p][0]-1.0)*compb[p][1] + compa[p][1]*compb[p][0];   
/* = complex(cb(cb-cc)) */ 
 
bcR = compb[p][0]*(1.0-compa[p][0]-compb[p][0]) + 
compb[p][1]*(compa[p][1]+compb[p][1]);  /* = real(cb*cc) */ 
 
bcC = compb[p][1]*(1.0-compa[p][0]-compb[p][0]) - compb[p][0]*(compa[p][1]+compb[p][1]); 
/* = complex(cb*cc) */ 
 
bamincR = compb[p][0]*(2.0*compa[p][0]+compb[p][0]-1.0)-
compb[p][1]*(2.0*compa[p][1]+compb[p][1]); /* = real(cb(ca-cc)) */ 
 
bamincC = compb[p][1]*(2.0*compa[p][0]+compb[p][0]-1.0)-
compb[p][0]*(2.0*compa[p][1]+compb[p][1]); /* = complex(cb(ca-cc)) */ 
 
aLacR =  fccL0_ac*compa[p][0]+fccL1_ac*(compa[p][0]*(2.0*compa[p][0]+compb[p][0]-1.0)-
compa[p][1]*(2.0*compa[p][1]+compb[p][1]))+fccL2_ac*(compa[p][0]*((2.0*compa[p][0]+co
mpb[p][0]-1.0)*(2.0*compa[p][0]+compb[p][0]-1.0)-
(2.0*compa[p][1]+compb[p][1])*(2.0*compa[p][1]+compb[p][1]))-
2.0*compa[p][1]*(2.0*compa[p][0]+compb[p][0]-1.0)*(2.0*compa[p][1]+compb[p][1]));  
/* = real(ca)Lac) */ 
 
aLacC =  fccL0_ac*compa[p][1]+fccL1_ac*(compa[p][1]*(2.0*compa[p][0]+compb[p][0]-
1.0)+compa[p][0]*(2.0*compa[p][1]+compb[p][1]))+fccL2_ac*(compa[p][1]*((2.0*compa[p][0
]+compb[p][0]-1.0)*(2.0*compa[p][0]+compb[p][0]-1.0)-
(2.0*compa[p][1]+compb[p][1])*(2.0*compa[p][1]+compb[p][1]))+2.0*compa[p][0]*(2.0*com
pa[p][0]+compb[p][0]-1.0)*(2.0*compa[p][1]+compb[p][1]));  /* = complex(ca)Lac) */ 
 
bmincLR = -fccL0_bc*(2.0*compb[p][0]+compa[p][0]-1.0)-
fccL1_bc*((2.0*compb[p][0]+compa[p][0]-1.0)*(2.0*compb[p][0]+compa[p][0]-1.0)-
(2.0*compb[p][1]+compa[p][1])*(2.0*compb[p][1]+compa[p][1])); /* =real(-(cb-cc))*/ 
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bmincLC = -fccL0_ac*(2.0*compb[p][1]+compa[p][1]) - 
2.0*fccL1_bc*(2.0*compb[p][0]+compa[p][0]-1.0)*(2.0*compb[p][1]+compa[p][1]);  
/* =complex(-(cb-cc))*/ 
 
abmincR = compa[p][0]*(2.0*compb[p][0]+compa[p][0]-1.0)-
compa[p][1]*(2.0*compb[p][1]+compa[p][1]); /* =real(ca(cb-cc))*/ 
 
abmincC = compa[p][1]*(2.0*compb[p][0]+compa[p][0]-
1.0)+compa[p][0]*(2.0*compb[p][1]+compa[p][1]); /* =complex(ca(cb-cc))*/ 
 
ga[p][0] = G0a-G0c+R*T*logariR1 + (fccL0_ab - fccL0_bc)*compb[p][0] + amincLacR + 
2.0*fccL1_ac*acR + 4.0*fccL2_ac*acamincR - fccL1_bc*bbmincR + fccL1_bc*bcR - 
bamincR*fccL0_abc - 0.5*(dA2_dcaR*etasqR-dA2_dcaC*etasqC)*delf; 
 
ga[p][0] = ga[p][0]/delf; 
 
ga[p][1] = R*T*logariC1 + (fccL0_ab - fccL0_bc)*compb[p][1] + amincLacC + 
2.0*fccL1_ac*acC + 4.0*fccL2_ac*acamincC - fccL1_bc*bbmincC + fccL1_bc*bcC - 
bamincC*fccL0_abc - 0.5*(dA2_dcaC*etasqR+dA2_dcaR*etasqC)*delf;  
 
ga[p][1] = ga[p][1]/delf; 
 
gb[p][0] = G0b-G0c+R*T*logariR2+fccL0_ab*compa[p][0]-
aLacR+fccL1_ac*acR+2.0*fccL2_ac*acamincR+bmincLR+2.0*fccL1_bc*bcR+abmincR*fccL
0_abc - 0.5*(dA2_dcbR*etasqR-dA2_dcbC*etasqC)*delf; 
 
gb[p][0] = gb[p][0]/delf; 
 
gb[p][1] = R*T*logariC2+fccL0_ab*compa[p][1]-
aLacC+fccL1_ac*acC+2.0*fccL2_ac*acamincC+bmincLC+2.0*fccL1_bc*bcC+abmincC*fccL
0_abc - 0.5*(dA2_dcbC*etasqR+dA2_dcbR*etasqC)*delf; 
 
gb[p][1] = gb[p][1]/delf; 
 
ge[p][0] = (-(A2R*eta[p][0]-A2C*eta[p][1]) + A4*etaqR); 
 
ge[p][1] = (-(A2R*eta[p][1]+A2C*eta[p][0]) + A4*etaqC); 
} 
} 
/* calculation of atomic mobility and chemical mobility */ 
Vm = 12.0e-6; 
beta_a = 1.2e-17; 
beta_b = 2.0e-17; 
beta_c = 6.0e-17; 
beta = 1.0e-18; 
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/* Evolve the microstructure with time */ 
half_nx = (int) n_x/2; 
half_ny = (int) n_y/2; 
del_kx = (2.0*M_PI)/(n_x*del_x); 
del_ky = (2.0*M_PI)/(n_y*del_y); 
 
/* Take composition,eta, ga,gb and ge to the Fourier Space */ 
 
fftw_execute(planaf);  
fftw_execute(planbf);  
fftw_execute(planef);  
fftw_execute(planga);  
fftw_execute(plangb); 
fftw_execute(plange); 
 
phi_aa = 2.0*(kapa_a+kapa_c); 
phi_ab = 2.0*(kapa_c+kapa_c); 
phi_ba = 2.0*(kapa_c+kapa_c); 
phi_bb = 2.0*(kapa_b+kapa_c); 
phie = 2.0*kapa_e; 
 
for(i=0; i < n_x; ++i){ 
 if(i < half_nx) kx = i*del_kx; 
 else kx = (i-n_x)*del_kx; 
 kx2 = kx*kx; 
for(j=0; j<n_y; ++j){ 
 if(j < half_ny) ky = j*del_ky; 
 else ky = (j-n_y)*del_ky; 
 ky2 = ky*ky; 
 k2 = kx2 + ky2; 
 k4 = k2*k2; 
 L = 1.0; 
 p = j + n_y*i; 
 
/* Chemical mobility calculation. Here I did not use Ma =  beta_a*ca. Instead Ma=beta_a. Each 
Mij values are nondmensionalized */ 
 
 QAl = ca[p] * Al0 + cb[p] * Al1 + (1.0 - ca[p] - cb[p]) * Al2 + ca[p] * (1.0 - ca[p] - cb[p]) 
* oAl0 + ca[p] * cb[p] * oAl1 + cb[p] * (1.0 - ca[p] - cb[p]) * oAl2; 
 
 QCr = ca[p] * Cr0 + cb[p] * Cr1 + (1.0 - ca[p] - cb[p]) * Cr2 + ca[p] * (1.0 - ca[p] - cb[p]) 
* oCr0 + ca[p] * cb[p] * oCr1 + cb[p] * (1.0 - ca[p] - cb[p]) * oCr2; 
 
 QNi = ca[p] * Ni0 + cb[p] * Ni1 + (1.0 - ca[p] - cb[p]) * Ni2 + ca[p] * (1.0 - ca[p] - cb[p]) 
* oNi0 + ca[p] * cb[p] * oNi1 + cb[p] * (1.0 - ca[p] - cb[p]) * oNi2; 
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/* Atomic mobilities calculation from Activation Energies*/  
 beta_ag = (1.0/(R * T)) * exp(QAl/(R * T)); 
 beta_bg = (1.0/(R * T)) * exp(QCr/(R * T)); 
 beta_cg = (1.0/(R * T)) * exp(QNi/(R * T)); 
 
 mfunc = exp(10.0*(e[p]*e[p]-0.3))/(exp(10.0*(e[p]*e[p]-0.3))+exp(-10.0*(e[p]*e[p]-
0.3))); 
 
 betaA = beta_ag + mfunc * (beta_a - beta_ag); 
 betaB = beta_bg + mfunc * (beta_b - beta_bg); 
 betaC = beta_cg + mfunc * (beta_c - beta_cg); 
 
 M_aa = (betaA*(1.0-ca[p])*(1.0-ca[p])+betaB*ca[p]*ca[p]+betaC*ca[p]*ca[p])/beta; 
 M_ab = (-betaA*(1.0-ca[p])*cb[p]-betaB*(1.0-cb[p])*ca[p]+betaC*ca[p]*cb[p])/beta; 
 M_ba = (-betaA*(1.0-ca[p])*cb[p]-betaB*(1.0-cb[p])*ca[p]+betaC*ca[p]*cb[p])/beta; 
 M_bb = (betaB*(1.0-cb[p])*(1.0-cb[p])+betaA*cb[p]*cb[p]+betaC*cb[p]*cb[p])/beta; 
 
 A = M_aa*phi_aa+M_ab*phi_ba; 
 B = M_aa*phi_ab+M_ab*phi_bb; 
 C = M_ba*phi_aa+M_bb*phi_ba; 
 D = M_ba*phi_ab+M_bb*phi_bb; 
 
 determin = 1.0+k4*del_t*(A+D)+k4*k4*del_t*del_t*(A*D-B*C); 
 denome = 1.0 + phie*k2*L*del_t; 
 
 termgaR = compa[p][0]-k2*del_t*(M_aa*ga[p][0]+M_ab*gb[p][0]); 
 termgaC = compa[p][1]-k2*del_t*(M_aa*ga[p][1]+M_ab*gb[p][1]); 
 termgbR = compb[p][0]-k2*del_t*(M_ba*ga[p][0]+M_bb*gb[p][0]); 
 termgbC = compb[p][1]-k2*del_t*(M_ba*ga[p][1]+M_bb*gb[p][1]); 
 
 term_aR = (1.0+k4*del_t*D)*termgaR-k4*del_t*B*termgbR;  
 term_aC = (1.0+k4*del_t*D)*termgaC-k4*del_t*B*termgbC;  
 term_bR = (1.0+k4*del_t*A)*termgbR-k4*del_t*C*termgaR;  
 term_bC = (1.0+k4*del_t*A)*termgbC-k4*del_t*C*termgaC;  
 
 compa[p][0] = term_aR/determin; 
 compa[p][1] = term_aC/determin; 
 compb[p][0] = term_bR/determin; 
 compb[p][1] = term_bC/determin; 
 eta[p][0] = (eta[p][0]-del_t*L*ge[p][0])/denome; 
 eta[p][1] = (eta[p][1]-del_t*L*ge[p][1])/denome; 
} 
} 
 
/* Now get the composition and eta back to real space */ 
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fftw_execute(planab); 
fftw_execute(planbb); 
fftw_execute(planeb); 
 
for(i=0; i< n_x; ++i){ 
for(j=0; j< n_y; ++j){ 
p = j + n_y*i; 
compa[p][0] = compa[p][0]/(n_x*n_y); 
compa[p][1] = compa[p][1]/(n_x*n_y); 
compb[p][0] = compb[p][0]/(n_x*n_y); 
compb[p][1] = compb[p][1]/(n_x*n_y); 
eta[p][0] = eta[p][0]/(n_x*n_y); 
eta[p][1] = eta[p][1]/(n_x*n_y); 
compc[p][0] = 1.0-compa[p][0]-compb[p][0]; 
} 
} 
/******** Write the composition data to files ****************/ 
if((INDEX==1)||(INDEX%1000==0)) 
{ 
sprintf(fn,"output/composition%d",INDEX); 
fp = fopen(fn,"w"); 
                   
for(i=0; i< n_x; ++i){ 
for(j=0; j< n_y; ++j){ 
p = j + n_y*i; 
fprintf(fp,"%d\t%d\t%lf\t%lf\t%lf\t%lf\n",i,j,compa[p][0],compb[p][0],compc[p][0],eta[p][0]); 
} 
} 
fclose(fp); 
} 
(void)system("rm -rf output/*.dat"); 
} 
/* Release the memory */ 
fftw_free(ga); 
fftw_free(gb); 
fftw_free(ge); 
fftw_destroy_plan(planaf); 
fftw_destroy_plan(planbf); 
fftw_destroy_plan(planef); 
fftw_destroy_plan(planga); 
fftw_destroy_plan(plangb); 
fftw_destroy_plan(plange); 
fftw_destroy_plan(planab); 
fftw_destroy_plan(planbb); 
fftw_destroy_plan(planeb); 
} 



 204

Makefile 

# Compilation and linking 
 
COMPOPS = -g -Wall 
LINKOPS = -L/sw/lib -lgsl -lgslcblas -lfftw3 -lm 
 
# Object files 
 
objects = diffcoup.o evolute.o 
 
# Header files 
 
headers = stdio.h stdlib.h math.h gsl_rng.h fftw3.h functions.h  
 
# Source files (Replace diffcoup.c by frmnucli.c for part-1) 
 
sources = diffcoup.c evolute.c 
 
# Paths for the source and header files 
 
vpath %.c src 
vpath %.h ./headers 
vpath %.h /sw/lib/gcc-lib/i386-apple-darwin8/4.0.3/lib/gcc/i386-apple-darwin8.9.2/4.0.3/include 
vpath %.h /usr/include/ 
vpath %.h /sw/include/ 
vpath %.h /usr/local/include/gsl 
 
# Dependencies and the actions on the source files 
diffcoup.c: $(objects) $(headers) 
 gcc $(objects) $(LINKOPS) 
 rm -rf nohup.out 
 
diffcoup.o: $(sources) $(headers) 
 gcc -o $@ -c ./src/diffcoup.c $(COMPOPS) 
 
evolute.o: evolute.c stdio.h stdlib.h math.h gsl_math.h fftw3.h functions.h 
 gcc -c $(COMPOPS) $< 
 
generate_psfile.o: generate_psfile.c stdio.h stdlib.h 
 gcc -c $(COMPOPS) $< 
 
clean: 
 rm -rf *.o 
# End of Makefile 
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APPENDIX C 
SAMPLE PYTHON PROGRAM FOR  

THERMOTRANSPORT SIMULATIONS IN FIPY 
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A sample program for thermotransport simulation in a two-phase alloy is provided below. 

The program is written in the Python programming language and uses the finite volume based 

Fipy partial differential equation solver to solve the Cahn-Hilliard equation. The initial 

microstructure for the two-phase alloy is first generated isothermally and then the temperature 

gradient is applied to it. 

#!/usr/bin/env python 
## For copyright and other info, go to the end of the file. 
## This program is for thermotransport in two-phase alloy with Regular solution model. 
## The temperature gradient is applied after the phase transformation. 
# 
import sys 
import random 
import fipy.tools.numerix as numerix 
import math 
import gc 
# 
#### Here I call All Other Imports that Fipy needs ############################ 
# 
## Numerix 
from fipy.tools.numerix import * 
from fipy.tools.numerix import log 
from fipy.tools.numerix import sqrt 
from fipy.tools.numerix import exp 
 
## Mesh 
#from fipy.meshes.numMesh.periodicGrid2D import PeriodicGrid2D 
from fipy.meshes.grid2D import Grid2D 
 
## Variables 
from fipy.variables.cellVariable import CellVariable 
from fipy.variables.histogramVariable import HistogramVariable 
 
## Random numbers 
#from fipy.variables.gaussianNoiseVariable import GaussianNoiseVariable 
from fipy.tools.numerix import random 
 
## Boundary Conditions 
from fipy.boundaryConditions.fixedValue import FixedValue 
from fipy.boundaryConditions.fixedFlux import FixedFlux 
from fipy.boundaryConditions.nthOrderBoundaryCondition import NthOrderBoundaryCondition 
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## Solvers 
from fipy.solvers.linearPCGSolver import LinearPCGSolver 
from fipy.solvers.linearLUSolver import LinearLUSolver 
 
## Terms 
from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm 
from fipy.terms.transientTerm import TransientTerm 
from fipy.terms.implicitSourceTerm import ImplicitSourceTerm 
from fipy.terms.powerLawConvectionTerm import PowerLawConvectionTerm 
 
## Viewers 
from fipy.viewers.tsvViewer import TSVViewer 
# 
############ Define the Mesh ############################################# 
# 
L = 80. 
nx = 160 
ny = 160 
dx = L/nx 
dy = L/ny 
Lx = nx * dx 
Ly = nx * dy 
frac = 100 
points = int((nx * ny * frac)/100) 
mesh = Grid2D(dx=dx, dy=dy, nx=nx, ny=ny) 
# 
############# Define the variables ######################################## 
# 
comp = CellVariable(name="comp", mesh=mesh, hasOld=1) 
temp = CellVariable(name="Temp", mesh=mesh, hasOld=1) 
# 
c = comp.getArithmeticFaceValue() 
T = temp.getArithmeticFaceValue() 
# 
############# Data for phase-field ####################################### 
#  
R = 8.314 # J / (mol K) 
Tc = 900. 
kB = 1.38e-23 
W = 20000.0 
k = 1.0          # Dimensionized = phi_aa in evolve.c 
alpha = 1.0   # Conductivity normalized by its own actual value 
 
### Following constants are for temperature dependent mobility and heat of transport 
Da = 0.4e-4   #6.4 (m^2/s) 
Db = 6.56e-4  # 0.56(m^2/s) 
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Qa = 250000.0 # (J/mol) 
Qb = 229000.0 # (J/mol) 
# 
x = mesh.getCellCenters()[...,0] 
y = mesh.getCellCenters()[...,1] 
# 
comp = CellVariable(name = "phase-field",mesh = mesh,value = 0.2) 
# 
######## Introduce Random Particles #################################### 
# 
from fipy.tools.numerix import random 
cenx = zeros(points,int) 
ceny = zeros(points,int) 
rad = zeros(points,float) 
radsq = zeros(points, float) 
for i in range(0,points): 
 cenx[i] = (random.uniform(0.0,Lx)) 
 ceny[i] = (random.uniform(0.0,Ly)) 
 rad = random.normal(0.0,0.2) 
 radsq[i] = rad * rad 
for q in range(0,points): 
 cx = cenx[q] 
 cy = ceny[q] 
 #print cx 
 rsq = radsq[q] 
 d = (x - cx) * (x - cx) + (y - cy) * (y - cy) 
 comp.setValue(.89, where=(d < rsq)) 
 c = comp.getArithmeticFaceValue() 
if __name__ == '__main__': 
  import fipy.viewers 
  viewer = fipy.viewers.make(vars = comp, limits = {'datamin': 0., 'datamax': 1.0}) 
  viewer.plot() 
 
# 
############ Double derivative of Free Energy Function #################### 
# 
d2f_dca2 = (R * Tc / (c * (1. - c)) - 2.0 * W)/(R*Tc)  # Non-dimensionalized by R * T 
# 
########## Define Mobility and Heat of Transport Terms ##################  
# 
betaa = (Da / (R * Tc)) * exp(-Qa / (R * Tc)) 
betab = (Db / (R * Tc)) * exp(-Qb / (R * Tc)) 
print betaa, betab 
Mc = (1.0 - c) * (c * betaa + (1.0 - c) * betab)/betab  # Non-dimensionalized by beta_b 
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# 
#### Boundary Conditions for Composition Equations ######################## 
# 
BCsC = (FixedFlux(mesh.getFacesRight(), 0), 
  FixedFlux(mesh.getFacesLeft(), 0), 
  FixedFlux(mesh.getFacesTop(), 0), 
  FixedFlux(mesh.getFacesBottom(), 0), 
  NthOrderBoundaryCondition(mesh.getFacesLeft(), 0, 3), 
  NthOrderBoundaryCondition(mesh.getFacesRight(), 0, 3), 
  NthOrderBoundaryCondition(mesh.getFacesTop(), 0, 3), 
  NthOrderBoundaryCondition(mesh.getFacesBottom(), 0, 3), 
  ) 
# 
#### Final Equations for Phase Transformation ########################### 
# 
solver = LinearLUSolver(tolerance = 1e-10, iterations = 1000) 
#solver = LinearPCGSolver(tolerance = 1e-15,iterations = 1000) 
 
diffTerm = ImplicitDiffusionTerm(coeff = (c * Mc * d2f_dca2)) 
chTerm = ImplicitDiffusionTerm(coeff = (c * Mc, -k)) 
compEq = TransientTerm() - diffTerm - chTerm 
# 
############### Print and Display Composition Distribution ############# 
#  
dt = 1. 
for step in range(200): 
 comp.updateOld() 
 compEq.solve(var=comp, boundaryConditions = BCsC, solver = solver, dt = dt) 
 if __name__ == '__main__': 
  viewer.plot() 
 print 'step',step,'dt',dt 
 gc.collect() 
# 
### Phase Transformation is over. Now apply Thermal Gradient ############# 
######## Solve Laplace's Eq. for Temperature ########################### 
# 
BCsT = (FixedValue(mesh.getFacesRight(), 1000), 
  FixedValue(mesh.getFacesLeft(), 800), 
  FixedFlux(mesh.getFacesTop(), 0), 
  FixedFlux(mesh.getFacesBottom(), 0), 
  ) 
solver = LinearLUSolver(tolerance = 1e-10, iterations = 1000) 
#solver = LinearPCGSolver(tolerance = 1e-15,iterations = 1000) 
tempEq = ImplicitDiffusionTerm(coeff=alpha) 
tempEq.solve(var=temp,boundaryConditions=BCsT) 
# 
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######Print and Display Initial Composition and Temperature Distribution ############# 
# 
TSVViewer(vars=comp).plot(filename="initdA.tsv") 
 
if __name__ == '__main__': 
 viewerT = fipy.viewers.make(vars = temp) 
 viewer.plot() 
 #viewerT.plot() 
# 
################# Double derivative of Free Energy Function #################### 
# 
def d2f_dca2(c,T): 
 #return (0.2 / (c * (1. - c)) - 1.)/delf 
 return (R * T / (c * (1. - c)) - 2.0 * W)/(R*T)  # Non-dimensionalized by R * T 
# 
################# Define Mobility and Heat of Transport Terms ##################  
##### They are functions of Temperature. So defined here after solving  tempEq ######## 
# 
beta_a = 10.*(Da / (R * T)) * exp(-Qa / (R * T)) 
beta_b = (Db / (R * T)) * exp(-Qb / (R * T)) 
 
Q_BT = (574.0 + 1.0 * T) * 1.e3  # (J/mol) Heat of trans. linear funct of temp 
Q_AT = (4.0 - 0.001 * T) * 1.e3  # (J/mol) Heat of trans. linear funct of temp 
Mc = (1.0 - c) * (c * beta_a + (1.0 - c) * beta_b)/beta_b # dimensionalized by beta_b 
MQ = (beta_a * Q_AT - beta_b * Q_BT) / (R * Tc * beta_b) # dimensionalized by (R*T*beta_b) 
# 
################### Final Equations ####################################### 
# 
solver = LinearLUSolver(tolerance = 1e-10, iterations = 1000) 
#solver = LinearPCGSolver(tolerance = 1e-15,iterations = 1000) 
 
diffTerm = ImplicitDiffusionTerm(coeff = (c * Mc * d2f_dca2(c,T))) 
chTerm = ImplicitDiffusionTerm(coeff = (c * Mc, -k)) 
velocity = (1. - comp).getHarmonicFaceValue() * MQ * (1./temp).getHarmonicFaceValue() * 
temp.getFaceGrad() 
convectionTerm = PowerLawConvectionTerm(coeff=velocity,diffusionTerm=diffTerm) 
compEq = TransientTerm() - diffTerm - chTerm - convectionTerm 
 
dt = 1.e-1 
for step in range(3000): 
 comp.updateOld() 
 temp.updateOld() 
 compEq.solve(var=comp, boundaryConditions = BCsC, solver = solver, dt = dt) 
 #compEq.solve(comp, solver = solver, dt = dt) 
 tempEq.solve(var=temp,boundaryConditions=BCsT) 
 avg = comp.getCellVolumeAverage() 
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 print 'step',step,'dt',dt 
 if __name__ == '__main__': 
  viewer.plot() 
  gc.collect() 
# 
#################Print the final compositions ############################ 
# 
TSVViewer(vars=(comp, temp)).plot(filename="finaldA.tsv") 
if __name__ == '__main__': 
 viewer.plot(filename="micro_caseA.ps") 
 viewerT.plot(filename="temp.ps") 
def _run(): 
 pass 
 
##  
 # ################################################################### 
 #  FiPy - Python-based finite volume PDE solver                               
 # Stolen from: (The original code was not for thermotransport. The basic frame work for a Fipy 
code was borrowed) 
 #  Author: Jonathan Guyer, Daniel Wheeler 
 #  E-mail: guyer@nist.gov 
 #         daniel.wheeler@nist.gov 
 #    mail: NIST 
 #    www: http://ctcms.nist.gov 
 # ============================================================= 
 # This software was developed at the National Institute of Standards 
 # and Technology by employees of the Federal Government in the course 
 # of their official duties.  Pursuant to title 17 Section 105 of the 
 # United States Code this software is not subject to copyright 
 # protection and is in the public domain.  FiPy is an experimental 
 # system.  NIST assumes no responsibility whatsoever for its use by 
 # other parties, and makes no guarantees, expressed or implied, about 
 # its quality, reliability, or any other characteristic.  We would 
 # appreciate acknowledgement if the software is used. 
 #  
 # This software can be redistributed and/or modified freely 
 # provided that any derivative works bear some notice that they are 
 # derived from it, and any modified versions bear some notice that 
 # they have been modified. 
 # ============================================================= 
 #  modified   by  R R Mohanty 01/15/08 (4:27:47 PM) 
 #  ---------- --- --- ----------- 
 #  2007-07-07 JEG 1.0 original 
 # ################################################################## 

mailto:guyer@nist.gov
mailto:daniel.wheeler@nist.gov
http://ctcms.nist.gov
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APPENDIX D 
APPLICATION OF THERMODYNAMIC AND KINETIC DATABASE FOR 

REAL ALLOYS INCLUDING Pb-Sn, Ni-Al and U-Zr FOR 
THERMOTRANSPORT 
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A general procedure for the phase-field model of thermotransport in real alloy systems 

such as Pb-Sn, U-Zr and Ni-Al systems is presented below. A description of the Fipy 

implementation is also provided. The description is currently based on the Pb-Sn system, but it 

can be easily used for other systems. 

Model Description for Pb-Sn System 

1 Introduction 

This model is to simulate thermotransport effect in two-phase (α + β) alloys of Pb-Sn 

system. The simulation involves two steps: first, generate a two-phase microstructure at a 

constant temperature and then apply a temperature gradient across the system. In this document I 

am describing the first step, where I am trying to produce a solid state phase transformation to 

form a two-phase alloy microstructure.  

The thermodynamic data for the two phases has been obtained from the literature 

(CALPHAD approach). The kinetic data (mobility/diffusivity) for the system is not complete in 

the literature and so some approximations has been made. The materials parameters involve 

some approximation too. 

 

2 Thermodynamic Description 

The following approach was taken to describe the total Gibbs free energy. 

f = p φ( ) f α c,T( )+ 1− p φ( )[ ]f β c,T( )+ 1− c( )WA

2
+ c

WB

2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ g φ( )   (1) 

where, c is the composition of Sn (B) in mole or atom fraction, Wi are the barrier heights, p φ( ) 

and g φ( ) are the interpolation and double-well functions respectively. This approach has been 

described in the Fipy examples (Chapter-9), and is followed here. 

The free energies of the α and β phases have the following form: 
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f α c,T( )= cfA

α T( )+ 1− c( ) fB

α T( )+ RT c ln c( )+ 1− c( )ln 1− c( )[ ]+ c 1− c( )lA ,B
α T( ) (2) 

f β c,T( )= cfA

β T( )+ 1− c( ) fB

β T( )+ RT c ln c( )+ 1− c( )ln 1− c( )[ ]+ c 1− c( )lA ,B
β T( ) (3) 

The free energies are in J/mole, which need to be converted to J/m3. This was achieved by 

dividing with a molar volume Vm c( )( ) the relevant terms of the free energy that appear in 

subsequent equations. The molar volume was calculated by using average density ρavg( ) and 

average atomic weight Mavg( ) for Pb-Sn system. Hence, the molar volume is expressed as; 

Vm c( )=
ρavg

Mavg

103      (4) 

ρavg =
ρPb ∗ ρSn

ρSn − c ∗ ρSn − ρPb( )
      (5) 

Mavg =
MPb ∗ MSn

MSn − c ∗ MSn − MPb( )
     (6) 

 

3 Phase-field Formulation 

The general phase-field governing equations for composition and the phase-field variable are 

written as; 

∂c

∂t
= Vm

2 c( )∇ ⋅ M c( )∇ ∂f

∂c
−κ∇2c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥      (7) 

∂φ
∂t

= Mφ κφ∇2φ −
∂f

∂φ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥       (8) 

M c( ) is the chemical mobility as a function of composition and atomic mobility, 

M c( )=
1

Vm c( )
c 1− c( ) cβPb + 1− c( )βSn[ ]    (9) 
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Mφ  is the phase-field mobility, κ  and κφ  are the gradient energy coefficients for c and φ 

variables. 

 

4 Formulation for Fipy 

The above governing equations were expanded and rewritten to fit in to the fipy description. This 

description utilizes the procedure described in the Fipy examples 9.1, 9.2, and 9.3. I write the 

partial derivatives of free energy terms w.r.t. c below. 

′ f =
∂f

∂c
= p φ( ) f

′ α c,T( )− f
′ β c,T( )[ ]+ f

′ β c,T( )+
WB −WA

2
g φ( )  (10) 

f
′ α = fA

α T( )− fB

α T( )+ RT ln
c

1− c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + 1− 2c( )lA ,B

α T( )    (11) 

f
′ β = fA

β T( )− fB

β T( )+ RT ln
c

1− c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + 1− 2c( )lA ,B

β T( )    (12) 

So, Eq 10 can be rewritten in J/m3 as; 

′ f =
∂f

∂c
=

1

Vm c( )
p φ( )G T( )+ RT ln

c

1− c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + 1− 2c( )Δl T( )p φ( )

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

+
1

Vm c( )
fA

β T( )− fB

β T( )+ 1− 2c( )lA ,B
β T( )[ ]+

WB −WA

2
g φ( )

  (13) 

where, 

G T( )= fA

α T( )− fB

α T( )− fA

β T( )+ fB

β T( )     (14) 

Δl T( )= lA ,B
α T( )− lA ,B

β T( )       (15) 

Now, 
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Vm

2 c( )∇ ⋅ M c( )∇ ∂f

∂c
= ∇ ⋅ M c( )Vm c( ) G T( )+ 1− 2c( )Δl T( )[ ]∇p φ( )

−2∇ ⋅ M c( )Vm c( ) Δl T( )p φ( )+ lA ,B
β T( )[ ]∇c

+
∇ ⋅ M c( )RTVm c( )

c 1− c( )
∇c + ∇ ⋅ M c( )Vm

2 c( ) WA −WB

2
∇g φ( )

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 (16) 

Here I write the governing equation for composition (Eq. 7) in Fipy compatible terms. 

Introducing a parameter M c( )= Dc 1− c( ) Vm c( )RT  or M c( )Vm c( )= Dc 1− c( ) RT , 

  

∂c

∂t
= ∇ ⋅ D∇c( )

diffusionTerm6 7 4 8 4 

+∇ ⋅ c
D 1− c( )

RT
G T( )+ 1− 2c( )Δl T( )[ ]p φ( )+

Vm c( ) WA −WB( )
2

∇g φ( )
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  (17) 

For the phase-field variable (Eq. 8), the same approach was followed as described in Fipy 

examples, where an implicit source term was used. 

S = −
∂f

∂φ
= − ′ p φ( ) f α c,T( )− f β c,T( )[ ]+ W ′ g φ( )[ ]    (18) 

mφ = − W 1− 2φ( )+ 30φ 1− φ( )E[ ]      (19) 

where, W = 1− c( )WA

2 + c
WB

2  and E = 1
Vm c( ) ∗ f α c,T( )− f β c,T( )[ ] 
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APPENDIX E 
METHODOLOGY FOR MECHANISM BASED LIFE PREDICTION MODEL 

FOR THERMAL BARRIER COATINGS 
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1 Introduction 

Thermal barrier coatings (TBCs) are widely used in gas turbine applications for thermal 

insulation as well as external protection against hot corrosion and oxidation to the load bearing 

superalloys. Due to their ability to sustain a high thermal gradient, TBCs are crucial in extending 

the life of alloy components in the hottest sections of the turbine engine. Over the past thirty 

years the turbine industry has experienced a substantial increase in the maximum gas 

temperature at a turbine airfoil, and much of it can be accredited to the development of materials 

for TBCs. As envisaged from the current trend, further increase in gas temperature would require 

new generation “prime reliant” TBCs for enhanced protective performance and durability. 

There are four primary constituents of a TBC system: the superalloy substrate, the oxidation 

resistant bond coat containing aluminum, a thermally grown oxide (TGO) layer predominantly 

made of alumina, and the ceramic top-coat. The substrate is generally a nickel- or cobalt- based 

superalloy, which contains many other alloying elements for properties such as high-temperature 

strength, ductility, oxidation resistance, hot corrosion resistance, etc. The bond coat is an 

oxidation resistant metallic layer that is typically made of MCrAlY (M=Ni and/or Co) or β-NiAl 

additions such as Pt. The primary role of the bond coat is to act as a reservoir of aluminum in 

order to form and maintain the TGO between the top-coat and itself. Oxidation of aluminum 

occurs by the ingress of highly mobile oxygen ions from the engine environment to the bond coat 

through the ceramic top-coat. Typically, yttria-stabilized zirconia (YSZ) is used as the top-coat 

material and provides thermal insulation. Lowest thermal conductivity at elevated temperature, 

high thermal expansion coefficient, good hardness and high melting point are some of the 

properties, which make YSZ the most suitable material for the top-coat. 
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Failure of TBCs affects the lifetime of hot-section components and has been the focus of 

research for last few decades. Though there are numerous factors responsible for the failures and 

their mechanisms are varied, the most important among them are the interdiffusion of alloying 

elements that causes continuous change in compositions, microstructures and interfacial 

morphology, oxidation, thermal expansion mismatch stresses, etc. For example, bond coats 

typically contain aluminum rich high-temperature phases, e.g. B2-β (NiAl) or L12-γ′ (Ni3Al) 

dispersed in a fcc-γ matrix. Dissolution of β or γ′ phase occurs due to the depletion of Al content 

of the coatings by selective oxidation and/or coating-substrate interdiffusion, which ultimately 

causes the failure of the coating. Interdiffusion can also cause Kirkendal porosity at the interface 

leading to the failure of the coating. Diffusion of elements added to the superalloy substrate for 

high temperature strengthening also can adversely affect the mechanical properties at the 

interface and deteriorate the formation and adherence qualities of the oxide layer. Other critical 

phenomena that are associated with TBC failures include sintering of ytrria-stabilized zirconia 

(YSZ) topcoat, (t’→f+m) phase transformations in the YSZ topcoat and fracture at the 

YSZ/TGO and TGO/bond coat interfaces. 

Because of the highly cost intensive nature of gas turbine manufacturing processes, various 

life-prediction models have been increasingly preferred over usual testing methods to predict the 

TBC life. There are semiempirical models also developed for life prediction, which are mostly 

used in industries, but they lack a mechanism-based approach. The complexities associated with 

different failure mechanisms, presence of a large number of operating variables as well as 

interactions and behavior of various constituents in a truly multicomponent environment, make it 

extremely challenging for these models to be fundamentally successful. In this regard, finite 
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element based continuum models show some promise as far as the understanding of the failure 

mechanisms is concerned. 

This Appendix presents a methodology for using the phase-field approach to model critical 

phenomena associated with TBC failure, namely sintering of YSZ topcoat, (t’→f+m) phase 

transformations in YSZ topcoat, high temperature oxidation (i.e., growth of thermally grown 

oxide, TGO) of bond coats, multicomponent-multiphase interdiffusion between bond coats and 

superalloy substrate, and fracture at the YSZ/TGO and TGO/bond coat interfaces. Conceptual 

and mathematical descriptions of phase-field model are presented with specific formulation for 

these critical degradation phenomena. Results from modeling of microstructure evolution due to 

multiphase-multicomponent interdiffusion between bond coat and superalloy substrates are 

highlighted with an emphasis on composition-dependent interdiffusion. Typically, in practice, 

interdiffusion behavior between materials is investigated by means of diffusion couple 

experiments. Therefore, the simulation of interdiffusion behavior and evolution of microstructure 

has been performed by utilizing the phase-field model in diffusion couples of binary and ternary 

systems, e.g. Ni-Al and Ni-Cr-Al. Simulations were carried out on single-phase vs. single-phase, 

single-phase vs. two-phase and two-phase vs. two-phase diffusion couples using the available 

thermodynamic and kinetic data. Microstructure was characterized based on the movement of 

boundaries in the diffusion couples and dissolution or formation of phases across the boundary. 

Simulated composition profiles and diffusion paths were obtained and analyzed to study the 

interdiffusion behavior. The dissolution kinetics of the second phase in single-phase vs. two-

phase diffusion couples were investigated and compared with the experimental results reported 

in the literature. 
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2.1 Phase-field Model For Interdiffusion and Microstructure Evolution Between The Bond 

Coat and Super Alloy 

Application of phase-field model to simulate interdiffusion and microstructure evolution 

in Ni-Al and Ni-Cr-Al diffusion couples was described in Chapter 5 and 6, respectively. These 

diffusion couples simulations can correlate to the interaction between the bond coat and super 

alloy substrate. Hence, the phase-field model will not be described further here.  

2.2 Phase-field Model For Sintering 

The high compliance and strain tolerance properties of YSZ topcoat are due to the 

deliberately engineered porosity and micro-cracks. Prolonged exposure to high temperature can 

induce sintering, thereby closing the pores and cracks. Sintering also increases the thermal 

conductivity and deteriorates the insulating ability of the YSZ. There are many efforts to model 

general sintering phenomena by phase-field model, which can be employed to model and predict 

sintering in TBCs. 

In simulating solid-state sintering, a phase-field model must be able to integrate two 

important features. First, it should be able to account for different diffusion mechanisms such as 

grain boundary, surface and bulk diffusion. Secondly, it should incorporate the forces due to 

rigid-body motion. The driving force for rigid body motion arises due to the movement of atoms 

away from and vacancies towards the grain boundaries. The system can be represented by means 

of a density (ρ) field and an order parameter field (η). The kinetic evolution equations follow 

from the aforementioned Cahn-Hilliard and Allen-Cahn equations and can be written as 

∂ρ
∂t

= ∇ ⋅ D∇
δF

δρ
− ρvadv

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +ξ p r, t( ),     (1) 
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and 

∂η α( )
∂t

= −L
δF

δη
− ∇ ⋅ η α( )vadv α( )[ ]+ξη r, t;α( )    (2) 

where α stands for the number of particles, vadv is the advection velocity field defined as 

vadv = vadv
α
∑ α( )= vt α( )+ vr α( )[ ]

α
∑ .     (3) 

vt(r,t; α) and vr(r,t; α) are the velocity fields for translation and rotation of α particle. ξ p r, t( ), and 

ξη r, t;α( ) are the thermal fluctuations. The diffusivity D is a combination of bulk (Dvol), vapor 

(Dvap), surface (Dsurf) and grain boundary (Dgb) diffusivities and is a function of phase-field 

variables: 

D = Dvolφ ρ( )+ Dvap 1−φ ρ( )[ ]+ Dsurf ρ 1− ρ( )
+Dgb η α( )

′ α ≠α
∑

α
∑ η ′ α ( )     (4) 

where φ = ρ3 10 −15ρ + 6ρ2( ). 

2.3 Phase-field Model For Phase Transformation In YSZ 

One of the factors critical for the durability of the YSZ topcoat is the presence of the 

metastable tetragonal prime phase (ť-ZrO2), which is formed by a rapid quenching during the 

manufacturing process and greatly delays phase transformation to equilibrium room temperature 

phases. But after an extended period of exposure to high temperature, this metastable phase 

transforms into a mixture of tetragonal (t) and fluorite-cubic (f) phases. The high temperature 
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equilibrium tetragonal phase then transforms into monoclinic phase upon cooling with a molar 

volume expansion of 3-5%, and leads to delamination and spallation of the topcoat. 

For the phase transformation from t’ t+f m+f phases, the chemical free energy in the phase-

field model should be a function of the density and a structure order parameter which 

corresponds to the orientation variants of the transformations. These kinds of models have been 

used for cubic to tetragonal and hexagonal to orthorhombic phase transformations. For example, 

during a cubic tetragonal transformation, there are three independent orientation variants 

represented by the order parameters η1, η2 and η3. The Landau polynomial expansion of the free 

energy for a binary system can be represented by 

f c,η1,η2 ,η3( )=
1

2
A1 c − c1( )2 +

1

2
A2 c − c2( )2 η1

2 + η2
2 + η3

2( )−

1

4
A3 η1

4 + η2
4 + η3

4( )+
1

6
A4 η1

2 + η2
2 + η3

2( )3
    (5) 

where c is the average composition, c1 and c2 are the compositions of phases present. The strain 

energy associated with the transformation is then included in the model following the approach 

described in section 3.2.3. 

2.4 Phase-field Model For Spallation Fracture 

Fracture or spallation at the YSZ/TGO and TGO/bond coat interfaces cause final failure of 

TBCs. Phase-field model has been previously applied successfully to model dynamics of fracture 

in materials. This is done by coupling the displacement field to a scalar field, which distinguishes 

between “broken” and “unbroken” states of the system and includes macroscopic elasticity in its 

description.  
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Considering the displacement field u as a scalar (in one direction), the elastic energy is 

expressed by: 

E =
1

2
με 2∫ dx        (6) 

where μ is the elastic constant, ε = ∇ u  is the strain and εc is the critical strain at which the elastic 

energy becomes strain independent. Assigning a phase-field variable φ that defines the broken or 

unbroken state of the system, the total free energy is then defined by: 

F = w φ( )+
1

2
κ ∇φ( )2 +

μ
2

g φ( ) ε 2 −εc
2( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ ∫ dx ,    (7) 

where w =
1

4
φ 2 1−φ( )2 is a double well potential function and g φ( )= φ 3 4 − 3φ( ) is a weight function. 

The evolution equations for the phase-field and the displacement field are expressed by 

τ ∂φ
∂t

= κ∇2φ − ′ w φ( )−
μ
2

′ g φ( ) ε 2 −εc
2( )     (8) 

and 

ρ ∂ 2u

∂t 2
+ b

∂u

∂t
= μ∇ ⋅ g φ( ) 1+ η ∂

∂t

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ u

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,     (9) 

where b is a coefficient for the Stokes drag term and η is the viscosity. 



 225

2.5 Phase-field Model For Oxidation and TGO Growth 

Again a phase-field model can be used to model oxidation process to form TGO. The model 

approach is similar to that is described earlier in this section. The requirements of the model 

dictate that along with the composition field variable, we need to have a phase-field variable that 

distinguishes between the vapor phase and the solid phases present in the system, including the 

oxide. Such a model also needs to account for the mechanical balance of stresses generated 

during the oxidation. When the free energy and the stress state are represented by the functions 

of field variables, the evolution equation follows generalized diffusion and TDGL equations. 

Using this kind of model, oxidation of zirconium has been modeled by Ammar et. al.. They 

derived the evolution equations in the form 

Ý c = −∇⋅ −L φ( )∇μ( )= −∇ ⋅ −L φ( )∇ ∂f

∂c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟     (10) 

∇ ⋅ξ + π = −β Ý φ +αΔΦ −
∂f

∂φ
= 0       (11) 

where L φ( ) is related to diffusivity, β is the phase-field mobility, π  is an internal microstress and 

ξ  is a vector microstress.  
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