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Impact of soil acidity and liming on soybean (Glycine max) nodulation and
nitrogen fixation in Kenyan soils
Rukia Bakaria,b, Nancy Mungaia, Moses Thuitab and Cargele Massoc

aDepartment of Crop, Horticulture and Soils, Egerton University, Nakuru, Kenya; bInternational Institute of Tropical Agriculture, c/o ICIPE,
Nairobi, Kenya; cInternational Institute of Tropical Agriculture, Yaounde, Cameroon

ABSTRACT
There is a wide application of rhizobia inoculants to legume crops in Africa, irrespective of the soil
acidity, though the latter limits the effectiveness of inoculants. Two trials were conducted in a
controlled environment to determine suitable soil pH and impact of liming on soybean
nodulation and nitrogen fixation to inform proper application of the rhizobia-inoculant
technology on acid soils. In the first trial; soil, variety and inoculation had significant influence
(p < 0.05) on weighed nodule effectiveness (WNE) and N fixation. Strongly acidic soils recorded
low WNE and N fixation. In the second trial, WNE and N fixation significantly increased with co-
application of lime and inoculation (p < 0.05). The results showed that soybean inoculation is
effective in increasing nodulation and N fixation in moderate acidic soils, contrarily to strongly
acidic soils. Interestingly, co-application of lime and inoculation has potential of increasing
nodulation and N fixation in strongly acidic soils. The WNE is recommended as a robust formula
to report nodule effectiveness, compared to the current percentage method.
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Introduction

Soybean (Glycine max) is a legume of tropical to subtro-
pical origin and an important source of food and income
(Maingi et al. 2006). Inoculation of soybean throughout
the world is between 12–20 × 108 ha year−1, which
leads to the establishment of rhizobia population in
the rhizosphere and thus an improvement in nodulation
and biological nitrogen fixation (BNF) (Hassen et al.
2014).

Rhizobia are not significantly present in soils and
those present are often not highly effective, thus it is
necessary to inoculate legumes to assure effective nodu-
lation. Rhizobia inoculants are widely applied in fields
where rhizobia populations are low, especially if
legumes have barely been grown in that field. The Rhizo-
bia inoculants are one of the biofertilisers made from
selected strains of beneficial soil microorganisms i.e.
nitrogen-fixing bacteria that take part in BNF. Soil
acidity is one of the limiting factors of nitrogen fixation
by the legume-rhizobia symbiosis (Van Zwieten et al.
2015), though several development projects in Africa
have been promoting legume inoculation whithout
taking into consideration the limitations related to soil
pH.

In Kenya, acidic soils occur in high rainfall areas,
including highlands of Rift Valley, and it occurs in
about 13% of Kenyan land area (Kisinyo et al. 2014).
Acidic soils are deficient in phosphorus (P), magnesium
(Mg), calcium (Ca), molybdenum (Mo), and potassium
(K) with a high concentration of iron (Fe), aluminium
(Al), hydrogen (H), copper (Cu) and manganese (Mn)
ions (Keino et al. 2015). Soybean production in Kenya is
low and this could be due to its sensitivity to low soil
pH. Soil pH below 5.2 and above 6.5 does not favour
soybean growth, hence poor yields are experienced
under such conditions (Peters et al. 2004). High levels
of aluminium and low levels of phosphorus in acidic
soils affect the growth of symbiotic nitrogen-fixing bac-
teria. Soil pH < 5.0 limits soybean nodulation due to
toxicity effects of Al and Fe ions causing poor nodules
formation and functioning (Nisa et al. 2012). Acidic
soils also face reduced organic matter breakdown,
nutrient cycling by microorganisms, reduced uptake
of nutrients by plant roots and inhibition of root
growth (Fageria et al. 2013). Soybean requires high
nutrients, with P and K being most crucial for optimal
production (Sikka et al. 2012). Acidic soils have a high
concentration of Al and Fe ions in solution and these
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cause P sorption making it unavailable for plant use
(Keino et al. 2015). At low soil pH, soybean nodulation
and BNF is limited and this has been attributed to the
low P level at pH < 5.5 due to its sorption by Al and
Fe (Kisinyo et al. 2014). Application of P, K, and inocu-
lation of soybean with Legumefix in Western Kenya
did not produce high yields probably due to soil
acidity (Keino et al. 2015).

Soil liming increases the availability of basic cations; it
reduces the concentration of toxic levels of Al and
increases P availability, hence increasing soil pH
(Kisinyo et al. 2014). Different lime products are available
in the market and the most common being agricultural
lime. It is effective in improving yield when used alone
as well as in combination with fertilisers (Nekesa et al.
2011). Lime use by farmers in Kenya is limited by the
cost, accessibility, costs of application (i.e. labour), and
low demand by farmers due to lack of awareness
about the benefits of liming. Liming of acidic soils in
Kenyan Rift valley resulted in a reduction of exchange-
able acidity, an increase in available P and increased
yields (Kisinyo et al. 2014). In acid soils, liming generally
improved crop production (Nuwamanya 1984) and
increased microbial activity (Badole et al. 2015).
However, little has been done to assess the optimal
soil pH for effective nodulation and biological N
fixation, and the potential of liming materials to
enhance nodulation in low pH soils. There is an
overdue need to provide local scientific-evidence to
inform the various development projects promoting
the use of rhizobia inoculants, irrespective of the soil
acidity. Thus, this study investigated the optimal pH
range for soybean inoculation and the impact of
liming acidic soils on soybean nodulation and nitrogen
fixation, and developed a powerful approach to deter-
mine the nodule effectiveness.

Materials and methods

Experimental soils, handling and analyses

Two trials were set up at the International Institute of
Tropical Agriculture (IITA) Nairobi, Kenya. The first trial
aimed at assessing optimal soil pH for effective nodula-
tion of soybean under inoculation. The soils used in this
study where from regions with high agricultural poten-
tial, low soil pH conditions and with no history of
soybean growing. Ten soil samples collected from
various locations in Kenya, specifically from Kuresoi
(0.2993°S, 35.5302°E), Mauche (0.3316°S, 35.9449°E),
Murang’a (Kangema) (0.7957°S, 37.1327°E), and Kitui
(Kyangwithya East) (1.3751°S, 37.952°E) were used. Two
samples were collected from each location, except for

Mauche where four samples were taken i.e. two
samples from each side of the road. Soils from these
regions have a pH range of 4.3–6.3, with those from
Kuresoi (Humic Andosol) and Murang’a (Humic Nitosols)
being strongly acidic, while Mauche (Vitric Andosol) and
Kitui soils (humic Cambisols) have moderate acidity
(Table 1).

Experimental soils were collected at a depth of
20 cm and 10 subsamples randomly collected per
location using hoe for digging out soils, to mimic the
surface layer generally representing the soybean rhi-
zosphere. The soil samples from each site were hom-
ogenised and the composite samples obtained, put
in 50 kg capacity sack and transferred to the screen-
house at IITA Nairobi. The samples were then air-
dried for 48 h and sieved through a 2 mm sieve and
a subsample (50 g) used in physical and chemical ana-
lyses of the soils.

Chemical analysis of the soil was determined follow-
ing the procedure described in Okalebo et al. (2002) to
assess nutrient composition including soil pH (soil pH-
water using glass electrode pH meter), total N (Kjeldahl),
C (Walkley-black). Available P, exchangeable bases (Ca,
Mg, and K) and micronutrients (Fe, Cu, Zn) extracted
using Mehlich 3 method. Available P was then deter-
mined using ammonium vanadate method and
amount determined using a spectrophotometer, while
the amounts of extracted exchangeable bases and
micronutrients were determined using atomic
absorption.

From the soil analyses, the study soils differed in fer-
tility level with a wide range of coefficients of variation
13.69 to 269.22% (Table 1). Soils S1, S2, S3 and S4 with
pH 4.3, 4.8, 4.6 and 4.7 respectively were considered as
strongly acidic. Soils S5, S6, S7, and S8 were considered
as moderately acidic (pH: 5.6–5.9) and soils S9 and S10
(pH: 6.2 and 6.3 respectively) were considered as slightly
acidic (Table 1). Available P ranged frommedium to high
in the moderate and slightly acidic soils, while the
strongly acidic had low level of available P based on
the classification by Okalebo et al. (2002). Basic cations
in the very strongly acidic soils were very low, implying
also low cation exchange capacity (CEC).

Evaluation of optimal soil pH range for effective
soybean nodulation and nitrogen fixation

Experimental setup
Two soybean varieties: Nyala and TGx1740-2F (SB19)
were inoculated with Biofix and Legumefix. Soybean
variety SB19 is promiscuous and medium maturing
with high biomass yield, while Nyala is early maturing,
non-promiscuous and does well as an intercrop
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(ICRISAT 2013). The two varieties differ in their N
fixation and pod formation (Thuita et al. 2012). The
commercial inoculants differ in strain content;
Legumefix manufactured from UK (Legume Technology
LTD-UK) contains Bradyrhizobium japonicum strain
532C and Biofix manufactured by MEA LTD Kenya con-
tains Bradyrhizobium diazoefficiens strain USDA110.
Biofix is a widely used inoculant in Kenya due to its
availability (local formulation). Recent studies in
Kenya indicated the effectiveness of the Legumefix
inoculant, which has been imported to Kenya (Thuita
et al. 2018).

Soybean inoculation and planting
The soils were filled in 2 kg capacity containers desig-
nated as S1 to S10 and nutrient solution was applied 2
days before planting, except for control and reference
crop pots. Ten millilitres of the standard nutrients sol-
ution containing (KH2PO4 (P),CuSO4.5H2O (Cu), ZnCl2
(Zn), Na2B4O7.10H2O (B), Na2MoO4.2H2O (Mo)) at a con-
centration of 300 mg P, 0.06 mg Cu, 0.2 mg Zn,
0.04 mg B and 0.008 mg Mo L−1were mixed with soil
before packing in the pots and the soils maintained at
80% field capacity.

Seeds were surface sterilised with sodium hypochlor-
ite for 1 min and rinsed five times with sterilised distilled
water. Planting of the negative control (non-inoculated)
was first to avoid cross-contamination. Soybean seeds
inoculation was at a rate of 1 g of inoculant (100 g)−1

of seeds following instruction on each pack of the inocu-
lants. Three healthy seeds were planted pot−1, and
thinned to one plant pot−1 on the 10th day after plant-
ing. Sorghum was used as a reference crop in the deter-
mination of BNF using the N-difference method (Viera-
Vargas et al. 1995).

Data collection
On the 10th week after planting, shoots from each pot
were cut using a clean knife at 1 cm above the soil
surface, and pots emptied into a 2 mm sieve washing
away the soil and roots collected. Nodules were
removed from the roots, counted, and weighed to
determine their fresh weight, which was used in the
determination of the weighed nodule effectiveness.
From each soybean plant, 10 nodules were randomly
selected, and then cut into two pieces and the colour
observed and recorded for determination of nodule
effectiveness. The weighed nodule effectiveness
(WNE) was determined as shown in Equation (1). The
approach outlines the importance of nodule fresh
weight for the overall effectiveness per plant. It esti-
mates the weighed nodule effectiveness (g plant−1)
taking into consideration the total weight of theTa
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nodules. Equation (1) is a significant innovation, as the
traditional nodule effectiveness is misleading when the
percentage of effective nodules out the sample of 10
nodules is high, while their fresh weight is low.

WNE (g plant−1) = ENOT × TNFW
10

(1)

where ENOT and TNFW stand for effective nodules out
of 10 per plant, and total nodule fresh weight (g
plant−1), respectively.

The shoots were oven-dried at 60°C until constant
weight (approximately 48 h), weighed to determine the
shoot dry weight. Nitrogen fixation was determined
using the N difference method (Unkovich et al. 2008).
The dry shoot of soybean and sorghum shoots were
ground and used to determine tissue N concentration
using Kjeldahl method (Rutherford et al. 2008). The
amount of shoot N and shoot dry weight were used in
the determination of N2 fixation (Viera-Vargas et al. 1995).

Evaluation of the effect of liming on soybean
nodulation and nitrogen fixation

The second trial aimed at determining the effect of
liming on soybean performance under inoculation.
Two acidic soils: S2 (pH 4.8) and S4 (pH4.7) from the
first trial, were incubated with agricultural lime for two
weeks before planting of soybean. The lime rates for
the two soils were determined in a laboratory incubation
study. From the incubation study, agricultural lime was
more effective in increasing soil pH than Minjingu phos-
phate rock (data not shown). The lime was added based
on its effective calcium carbonate equivalence (ECCE)
and adjusted based on moisture content following the
Shoemaker, McLean and Pratt (SMP) lime requirement
method (Thomas 1996). Agricultural lime used had an
ECCE of 78.9% with >50% of its particles passing
through a 0.25 mm sieve. Liming rate were 30 t ha−1

and 34 t ha−1 of lime to raise the pH to 6.0 for soil S2
and S4 respectively. All the other treatments and data
collection were done the same way as in the first trial.

Data analysis

For the first trial, all data of the WNE, shoot dry weight, P
and N uptake and nitrogen fixation were subjected to
analysis of variance (ANOVA) at p < 0.05 level of signifi-
cance using the mixed procedure of SAS system (SAS
Institute Inc 2014). The second trial was considered as
a three-way factorial (soybean varieties, lime, and inocu-
lation) with ANOVA performed separately for each soil.
The effects of the different treatments and their inter-
actions were compared using the standard error of the

difference (SED) of the mean. A T-test was done for
soils S2 and S4 on all the measured parameters in the
second trial.

Results

Weighed nodule effectiveness

In the first trial; soils, inoculation and soybean varieties
interaction significantly influenced the WNE p < 0.05
(Table 2). Moderate acidic soils with soybean variety
SB19 inoculated with Legumefix had highest WNE.
Soybean inoculation with Biofix and Legumefix resulted
in high WNE, while control plants had minimal to
insignificant nodulation. Control plants (non-inoculated)
in the slightly acidic soils had nodules; however, the
WNE was low compared to that of inoculated plants
(Table 2; Figure 1).

In the second trial, liming of strongly acidic soils
improved nodulation. There was no significant difference
between soil S2 and S4 for the WNE (Table 2). In both
soils, lime, variety and inoculation interaction significantly
increased the WNE (Table 2; p < 0.05). Soybean variety
SB19 inoculated with Legumefix had the highest WNE
in both soils (Figure 1(b,c)). Inoculation with Legumefix
resulted in much higher WNE compared to Biofix in
both limed and unlimed treatments. The non-inoculated
control plants in both limed and unlimed treatments
did not produce any nodules. On average, soybean
variety SB19 had high WNE compared to Nyala variety.

Shoot biomass

In the first trial, soil and inoculation had a significant
influence on shoot dry weight p< 0.05 (Table 2). Moderate
and slightly acidic soils had high shoot dry weight com-
pared to the strongly acidic soils (Table 2; Figure 2(a)).
Biofix and Legumefix inoculants significantly increased
shoot dry weight, while non-inoculated control plants
had the least shoot dry weight (Table 2; Figure 2(b)).

A t-test indicated no significant difference on the
shoot dry weight between soil S2 and S4 in the second
trial (Table 2). Co-application of lime and inoculation
had a significant influence in increasing shoot dry
weight in soil S2. Inoculated soybean in limed soil pro-
duced high shoot dry weight compared to inoculated
soybean in unlimed soil. Application of lime and
Legumefix inoculant increased shoot dry weight by
7.17 g plant−1 more than in soybean inoculated with
Biofix. The plants that did not receive inoculation for
the limed and unlimed treatments had the lowest
shoot dry weight compared to the inoculated plants
(Figure 2(c)). In soil S4, soil liming increased shoot dry
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weight by 28.27% than in unlimed soil (Table 2; Figure 2
(d)), while inoculation with Legumefix increased shoot
dry weight by 81.09% and inoculation with Biofix
increased shoot dry weight by 17.08% (Figure 2(e)).

Phosphorus uptake

In the first trial, soil and inoculation interaction had sig-
nificant influence on P uptake p < 0.05 (Table 2). Highest
amount of P uptake was in the moderate acidic soil with
soybean inoculated with Legumefix (Figure 3(a)).

There was no significant difference in P uptake
between soils S2 and S4 at p < 0.05 in the second trial
(Table 2). Lime and inoculation significantly influenced
P uptake (p < 0.05). On average, soil liming increased P
uptake by 8.06 and 6.51 mg P kg−1 in soils S2 and S4
respectively (Table 2; Figure 3(b,d)). Soybean Inoculation
with Legumefix increased P uptake by 15.74 and
9.33 mg P kg−1, while inoculation with Biofix increased
P uptake by 10.24 and 9.01 mg P kg−1 above control in
soils S2 and S4 respectively (Figure 3(c,e)).

Nitrogen uptake

Nitrogen uptake was significantly influenced by the
interaction of soil, variety and inoculation in the first
trial (Table 2; p < 0.05). Highest levels of N uptake were
in the moderate and slightly acidic soils, while the
strongly acidic soils had low levels of N uptake.

Inoculated plants had high level of N uptake compared
to the non-inoculated control plants (Figure 4(a)).

A t-test between S2 and S4 indicated no significant
difference in N uptake (Table 2). The interaction of inocu-
lation and soybean variety was significant for N uptake
in soil S2 (Table 2; p < 0.05). Inoculation of Nyala and
SB19 with Legumefix resulted in high N uptake com-
pared to inoculation with Biofix (Figure 4(b)). Co-appli-
cation of inoculation and lime significantly increased N
uptake in soil S4 (Figure 4(c)). Legumefix + lime resulted
in high N uptake compared to Biofix + lime. Control
plants in both lime and without-lime treatments had
the least N uptake levels.

Biological nitrogen fixation

Nitrogen fixation was significantly influenced by the
interaction of soil, variety and inoculation p < 0.05
(Table 2). Moderate and slightly acidic soils had
highest level of N fixation compared to the strongly
acidic soils. Inoculation also improved nitrogen
fixation; soybean inoculated with Legumefix had a
high level of nitrogen fixation compared to inoculation
with Biofix. The strongly acidic soils had the low level
of N fixation for both varieties under inoculation, while
the moderate and slightly acidic soils had the highest
levels of N fixation for both Nyala and SB19 under inocu-
lation (Figure 5(a)). Nitrogen fixation in non-inoculated
control plants was low for both Nyala and SB19 varieties.

Table 2. Summary of Analysis of variance (ANOVA) for soybean nodulation, shoot dry weight, nitrogen uptake and fixation and
phosphorus uptake.

DF
Weighed nodule effectiveness

(g plant−1)
Shoot dry weight

(g plant−1)
N uptake
(g plant−1)

Ndfa
%

P uptake
(mg plant−1)

Greenhouse experiment 1
Soil (S) 9 *** *** *** *** ***
Varieties (V) 1 * ns ns ns ns
Inoculation (I) 2 *** *** *** *** ***
S×V 9 ns ns ns ns ns
S×I 18 *** ns *** *** *
V×I 2 ns ns ns ns ns
S×V×I 18 *** ns * ** ns
Greenhouse experiment 2 (Soil S2)
Lime (L) 1 * * * * *
Varieties (V) 1 ns ns ns ns ns
Inoculation (I) 2 *** *** *** *** ***
L×V 1 ns ns ns ns ns
L×I 2 *** * ns * ns
V×I 2 ns ns * ns ns
L×V×I 2 * ns ns ns ns
Greenhouse experiment 2 (Soil S4)
Lime (L) 1 * * *** * *
Varieties (V) 1 ** ns ns ** ns
Inoculation (I) 2 *** *** *** *** **
L×V 1 * ns ns * ns
L×I 2 * ns * * ns
V×I 2 ns ns ns * ns
L×V×I 2 * ns ns * ns
T-test (S2–S4)
(p Value) 70 ns ns ns ns ns

Note: ANOVA is Analysis of variance; ns: not significant at p < 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Co-application of lime and inoculants had a signifi-
cant influence on Ndfa (Table 2; p < 0.05). Soybean
inoculation in limed soil had high levels of N fixation
compared to without-lime (Figure 5(b)). Soybean inocu-
lated with Legumefix in limed soil resulted in high N
fixation levels compared to inoculation with Biofix.
Lime, variety and inoculation, as well as their interaction
significantly influenced Ndfa in soil S4 (p < 0.05). Co-
application of Legumefix and lime for SB19 variety
increased N fixation compared to inoculation with
Biofix in limed soils (Figure 5(c)). There was no significant
difference in N fixation between the two soils (i.e. S2 and
S4) at p < 0.05.

Discussion

This study has developed a robust formula (i.e. WNE)
that takes into consideration the fresh weight of all the
nodules per plant (Equation (1)) to estimate nodule
effectiveness. Originally, nodule effectiveness was

based on the percentage of pink nodules out of 10 ran-
domly sampled nodules (FAO 1993). The approach rep-
resents a bias when variable number of nodules are
found per plant (i.e. plants with several nodules versus
plants with a few nodules). The method underestimates
the nodule effectiveness when there are a high number
of nodules per plant, when very few out of the sampled
nodules show the pink colour. Conversely, it overesti-
mates the nodule effectiveness when there are a low
number of nodules per plant, while most of the
sampled nodules show the pick colour. The WNE
improves the estimation of the nodule effectiveness,
building on the FAO’s (1993) method, but taking into
consideration the total nodule fresh weight per plant,
and indirectly the total nodule number per plant.

The soils, inoculation, soybean varieties, as well as
their interactions, significantly increased the WNE, N
uptake, and nitrogen fixation, as shown in the ANOVA
summary in Table 2. Moderate and slightly acidic soils
had high rates of the measured parameters compared

Figure 1.Weighed nodule effectiveness in soybean as influenced by (a) soil, variety and inoculation interaction, in the first trial; and (b
and c) the interaction of lime, inoculation and variety in the second trial, for soil S2 and S4 respectively (as indicated in Table 2). The
error bars represent standard error of the difference of the means (SED).
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to the strongly acidic soils (Figure 1). The strongly acidic
soils had low levels of P, Mg, Ca, and K (Table 1); contri-
buting to low WNE, shoot dry weight, P and N uptake,
and nitrogen fixation. Inoculation of soybean in the
moderate and slightly acidic soils also increased WNE,
shoot dry weight, P and N uptake, and nitrogen
fixation (Figures 1–5). It was concluded that inoculation
ineffectiveness was mainly due to rhizobia sensitivity to
low soil pH, which is generally associated with Al and Fe
toxicity as previously reported by Fageria et al. (2013)
and low nutrients availability.

There was also a significant difference among the two
inoculants used (Table 2). Legumefix was more effective
in increasing the measured parameters like shoot dry
weight (Figure 2(b,e)) compared to Biofix and non-inocu-
lated plants. This could be attributed to the strain in the
Legumefix inoculant being more tolerant to acidic soils
compared to the strain in the Biofix inoculant. Inoculation
of soybean variety SB19 with Legumefix in the moder-
ately and slightly acidic soils resulted in the high levels

of WNE, N uptake, and nitrogen fixation (Figures 1(a), 4
(a) and 5(a)). This was related to the fact the promiscuous
soybean variety SB19 has a high N fixing ability compared
to Nyala, as previously reported by Thuita et al. (2012).
High level of N uptake and fixation in the moderate and
slightly acidic soils can be attributed to nutrients avail-
ability like cations (Table 1), which are crucial in N
fixation. Nitrogenase activity increases with increasing K
in the soil (Keino et al. 2015). Calcium plays a major role
in the rhizobia-legume symbioses, it is used for adhesion
by rhizobia; hence, its deficiency in acidic soils affects rhi-
zobia attachment, and infection thread formation, thus
nitrogen fixation is negatively affected (Meng-Han et al.
2012).

In this study, moderate and slightly acidic soils had
high shoot dry weight compared to the strongly
acidic soils (Figure 2(a)). This is attributed to low
levels of essential nutrients at pH < 5.5 resulting in
stunted growth. Low levels of Mg in the strongly
acidic soils compared to the moderate and slightly

Figure 2. Shoot dry weight as influenced by (a) soils and (b) inoculation effects in the first trial; (c) interaction of lime and inoculation
in soil S2 and (d and e) lime and inoculation effects in soil S4 in the second trial (as indicated in Table 2). The error bars represent
standard error of the difference of the means (SED).
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acidic soils contributed to the low shoot weight. Mag-
nesium plays a vital role in plant growth; when it is
deficient like in acidic soils, it interferes with photosyn-
thesis and P reactions (Keino et al. 2015). Inoculated
plants also had high shoot dry weight compared to
non-inoculated plants (Figure 2(b,e)). Low shoot
biomass in non-inoculated control plants had been
reported in other studies, while the inoculated plants
response to the inoculants can be attributed to low
soil pH conditions, as previously reported by Goncalves
et al. (2000). Nutrient deficiencies in the strongly acidic

soils (Table 1) could explain the low nutrients uptake
and consequently the stunt growth. This was
confirmed with the low N and P uptake in the strongly
acidic soils compared to the moderately and slightly
acidic soils (Figures 3(a) and 4(a)), as previous reported
by Fageria et al. (2013). Inoculation improved both N
and P uptake in the moderately and slightly acidic
soils (Figures 3(a) and 4(a)), which could be related to
N fixation for N uptake, and the ability of Rhizobium
to solubilise the precipitated P and make it available
for uptake, as reported by Fatima et al. (2006).

Figure 3. Phosphorus uptake as influenced by (a) soil and inoculation interaction in the first trial; and (b and c) lime and inoculation
single effects respectively, in soil S2 and (d and e) lime and inoculation effects in soil S4 respectively for the second trial (as indicated in
Table 2). The error bars represent standard error of the differences of the means (SED).
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Liming of the strongly acidic soils significantly
increased the WNE, shoot dry weight, P and N uptake
and N fixation (Table 2; Figures 1(b,c), 2(c,d), 3(b,d), 4
(c) and 5(b,c)). In addition, there was no significant differ-
ence between the two-limed soils in increasing the
measured parameters (Table 2). This indicates that
strongly acidic soils require liming to improve the poten-
tial of biological nitrogen fixation. Most development
initiatives in sub-Saharan Africa commonly promote rhi-
zobia inoculants for legume crops like soybean, without
provisions for correcting soil acidity, regardless of the pH
levels. These findings would be useful for revisiting the
recommendation for application of rhizobia inoculants
in the region, particularly for strongly acidic soils. The
improvement of nodule effectiveness, soybean growth,
nutrients uptake, and biological nitrogen fixation,
could be related to the improvement of nutrients’ avail-
ability following application of lime, as previously
reported by Meng-Han et al. (2012), Mullen et al.
(2006), and Keino et al. (2015) and reduction of Al and
Fe toxicity, as reported by Kisinyo et al. (2014).

Co-application of lime and inoculation improved the
levels of the WNE, shoot dry weight, N uptake and nitro-
gen fixation (Table 2; Figures 1(b,c), 2(c), 4(c) and 5(b,c)).
This shows that liming acidic soils improves the nodule
effectiveness, and as results nitrogen fixation, soybean
growth and nutrient uptake are enhanced, as previously
reported by Appunu et al. (2014) and Bekere (2013). In
addition to improved nutrient availability, this significant
interaction between liming and inoculation could be
related to creating a suitable environment for increased
microbial activities in the rhizosphere, as reported by
Nduwumuremyi (2013).

This study was conducted in controlled environment
and showed promising results; therefore, there is a need
to conduct similar studies in field conditions to cross-
validate the findings. In the meantime, there is an
overdue need to consider lime application to strongly
acidic soils before application of rhizobia inoculants to
legume crops like soybean to improve plant growth,
and consequently yields when no other limiting factors
are expected. Currently, there is a strong promotion of

Figure 4. Nitrogen uptake as influenced by (a) soil, variety and inoculation interaction in the first trial, (b) variety and inoculation
interaction in soil S2 in the second trial and (c) lime and inoculation interaction in soil S4 (as indicated in Table 2) . The error bars
represent standard error of the differences of the means (SED).
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rhizobia inoculants as in integral part of integrated soil
fertility management in legume systems in sub-
Saharan Africa, irrespective of the soil acidity; a practice
that requires adjustment based on the findings of this
study. When assessing the response of legume crops
to rhizobia inoculation, it is recommended to use the
weighed nodule effectiveness, as it corrects not only
for the total number of nodules per par plant, but also
the weight; compared to the current nodule effective-
ness that uses the percentage of pink nodules out of a
sample of 10 nodules per plant.
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