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ABSTRACT 
 

 

An axi-symmetric shock-tube model has been developed to simulate the shock-wave 

propagation and reflection in both non-reactive and reactive flows. Simulations were performed 

for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M 

University. Computations were carried out in the CFD solver FLUENT based on the finite 

volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) 

algorithm was applied to the time-dependent flow fields to accurately capture and resolve the 

shock and contact discontinuities as well as the very fine scales associated with the viscous and 

reactive effects. A conjugate heat transfer model has been incorporated which enhanced the 

credibility of the simulations. The multi-dimensional, time-dependent numerical simulations 

resolved all of the relevant scales, ranging from the size of the system to the reaction zone scale. 

The robustness of the numerical model and the accuracy of the simulations were assessed 

through validation with the analytical ideal shock-tube theory and experimental data. The 

numerical method is first applied to the problem of axi-symmetric inviscid flow then viscous 

effects are incorporated through viscous modeling. The non-idealities in the shock tube have 

been investigated and quantified, notably the non-ideal transient behavior in the shock tube 

nozzle section, heat transfer effects from the hot gas to the shock tube side walls, the reflected 

shock/boundary layer interactions or what is known as bifurcation, and the contact 

surface/bifurcation interaction resulting into driver gas contamination. The non-reactive model is 

shown to be capable of accurately simulating the shock and expansion wave propagations and 

reflections as well as the flow non-uniformities behind the reflected shock wave. Both the 

inviscid and the viscous non-reactive models provided a baseline for the combustion model 
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which involves elementary chemical reactions and requires the coupling of the chemistry with 

the flow fields adding to the complexity of the problem and thereby requiring tremendous 

computational resources. Combustion modeling focuses on the ignition process behind the 

reflected shock wave in undiluted and diluted Hydrogen test gas mixtures. Accurate 

representation of the Shock –tube reactive flow fields is more likely to be achieved by the means 

of the LES model in conjunction with the EDC model. The shock-tube CFD model developed 

herein provides valuable information to the interpretation of the shock-tube experimental data 

and to the understanding of the impact the facility-dependent non-idealities can have on the 

ignition delay time measurements.  
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CHAPTER ONE: INTRODUCTION 

 The shock tube has found widespread use as an experimental device in which to 

investigate chemical kinetic behavior in reactive gas mixtures. A shock tube consists of a high-

pressure driver section and low-pressure driven section initially separated by a diaphragm. The 

driver section is pressurized to energy high enough to cause the diaphragm to rupture and as a 

result, a shock wave is generated and travels down the driven tube. Simultaneously, an expansion 

fan propagates through the high-pressure side. Both waves reflect off the shock tube endwalls. 

Of interest herein is the endwall region behind the reflected shock wave where kinetic 

experiments take place. Ideally the flow properties behind the reflected shock are uniform and do 

not vary with time. In real shock tubes however, there is a slight deviation from this assumption 

due to viscous and non-ideal effects. As a result, some non-ideal effects occur that impact the test 

conditions, the magnitude of which depends on the tube diameter, pressure, and shock Mach 

number.  

 

Outline of Study 

 

 As a first step towards modeling the complex mechanisms responsible for the non-

uniform conditions and the reduced test times in the shock tube, the flow is modeled as inviscid 

and the focus is on developing a robust and accurate model capable of reproducing the major 

flow phenomena in the shock tube from the propagation of the shock wave and contact surface to 

the reflection of the expansion fan and incident shock. The inviscid model should serve as a 

baseline for the rather more complex viscous model which necessitates increased computational 
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efforts. However, when shock-tube non-idealities need to be modeled to quantify their impact on 

the flow uniformity in the test region, viscous effects have to be taken into consideration. In this 

respect, a viscous model of the shock tube is introduced which simulates the major non-ideal 

mechanisms in the shock tube, including the reflected shock/boundary layer interaction or 

bifurcation, reflected shock/contact surface interactions, heat transfer from the hot test gas to the 

cold shock-tube walls, and driver gas contamination. Both the inviscid and viscous models 

should serve as a baseline for the reacting fluid model which incorporates detailed chemistry in 

order to model the ignition process behind the reflected shock wave. 

 The results from the axi-symmetric simulations of the shock-tube model are presented in 

this paper. The simulations were carried out with the commercial CFD solver FLUENT using the 

coupled explicit density solver and the finite-volume approaches. The accuracy, efficiency, and 

stability of the numerical model are investigated with 1
st
 order, 2

nd
 order, 1

st
/2

nd
 order blending, 

and 3
rd

 order MUSCL schemes. Adaption was used to assure mesh refinement in high-gradient 

regions to accurately resolve the shock and contact discontinuities. The shock-tube geometry is 

represented by a structured axi-symmetric mesh.  

 First, a description of the shock-tube facility being modeled in this study is provided 

followed by a background on the major mechanisms responsible for shock-tube non-idealities 

notably behind the reflected shock wave. The main motivation behind the shock tube study is 

laid out. Then a general overview of the model computational setup, including grid generation, 

numerical approach adopted, and dynamic grid adaption feature, is presented. Provided next, is 

the simulated inviscid solution of the temporal and spatial variation of the flow properties which 

are validated with the 1-D inviscid theory and with experimental data. Then the viscous solution 

is presented and the different mechanisms responsible for shock-tube non-idealities are identified 
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and modeled. Finally, a reacting flow model is introduced and the ignition delay time behind the 

reflected shock is quantified and validated with experimental shock-tube data. Last, a summary 

is provided and main conclusions from the shock-tube modeling study are drawn.  

 

The Shock tube Facility 

 

A shock tube consists of a rigid cylinder in which a gas at high pressure, called the driver 

gas, is initially separated from a gas at lower pressure, called the test gas or the driven gas, by a 

diaphragm. The high and low pressure regions can also be referred to as compression and 

expansion pressure chambers respectively (1). When the diaphragm is suddenly burst, an 

incident shock wave generates and propagates through the test gas raising its temperature and 

pressure. As the shock wave moves through the test gas, a rarefaction wave moves back into the 

high-pressure gas at the speed of sound and reflects off the driver endwall once it reaches it. The 

test gas and the driver gas make contact at the “contact surface”, which moves along the tube 

behind the shock front. The incident shock wave arrives at the end wall and reflects back raising 

the temperature and pressure of the shocked gas in the test region. As such, the energy release 

and chemical reaction starts resulting into an ignition event.  The end of the experiment is 

dictated by the arrival of the expansion fan to the driven tube endwall or by the interaction of the 

reflected shock with the contact surface. Typical test times in the shock-tube experiments are on 

the order of few milliseconds. Figure 1 shows the ideal movement of the shock front, the contact 

surface, the rarefaction wave and the reflected shock wave in a distance-time diagram. The 

undisturbed low-pressure test gas is given by the subscript 1, and the initial temperature and 

pressure in this region are denoted as P1 and T1, respectively. The region between the shock front 
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and the contact surface is denoted by the subscript 2 and the region between the contact surface 

and the rarefaction wave is indicated by the subscript 3. The initial conditions on the high-

pressure side are given by the subscript 4. When the shock wave undergoes reflection at the end 

of the tube, the conditions in this region are given by the subscript 5.  

                              

Figure 1: Time vs. distance diagram for a shock tube 

 

 The shock-tube facility being modeled herein is located in the combustion research 

laboratory at Texas A&M University. Pressures up to 100 atm and temperatures up to 2500 K 

can be generated in this facility. The shock tube consists of a 2.46-m long driver section with an 

internal diameter of 7.62 cm and a 4.72-m long driven section with an internal diameter of 15.24 

cm. The shock-tube side wall and endwall thicknesses are 1.27 cm and 2.54 cm, respectively.  

The shock-tube facility is described in detail in De Vries et al. (2). A schematic of the 

experimental shock tube is given in Figure 2.  
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Figure 2: Shock Tube Facility at Texas A&M University 

 

 Target reflected-shock temperatures and pressures are achieved through the use of 1-mm 

Lexan diaphragms. Ignition measurements are performed in the reflected-shock region. Incident-

shock velocities are measured at four different axial locations along the driven tube by using four 

PCB 113A pressure transducers in conjunction with four 120-MHz Fluke model PM6666 time-

interval counters. The data acquisition system comprises of two 16-bit 10-MHz computer 

oscilloscope boards with a total of four channels. Temperatures and pressures in the reflected-

shock region are determined from the standard 1-D shock-tube relations and the Sandia 

thermodynamic database. Ignition delay times are measured from the endwall location by 

monitoring the endwall pressure signal through a PCB 113A pressure transducer. The endwall 

emission trace is also used as a guide for ignition delay time determination and is acquired by 

monitoring the CH
* 

chemiluminescence through a 430±5 nm narrow band filter with a 

Hamamatsu 1P21 Photomultiplier tube (PMT) in a custom-built housing. Optical ports located 

on the side of the shock tube allow for additional non-intrusive optical access. Figure 3 and 

Figure 4 shows sample pressure and emission traces recorded from the endwall and the side wall 

ports respectively.  
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Figure 3: Typical endwall pressure and endwall emission traces. 

 

Figure 4: Typical sidewall pressure and sidewall emission traces 
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Background Shock-Tube Non-Idealities 

 

 There have been a number of experimental studies investigating the mechanisms 

responsible for non-ideal behavior in shock-tube facilities. These mechanisms include the non-

ideal rupture of the diaphragm (3) (4) (5) (6) (7) (8), reflected shock/boundary layer interactions 

(9) (10) (11) (12) (13) (14) (15) (16), driver gas contamination  , contact surface instabilities (17) 

(18) (19) (20) (21) (22), and thermal boundary layer effects (23) (24) (25). 

 Also, theoretical and analytical models have been developed that provide a reliable 

understanding of the non-idealities in the shock tube. In particular, Mark was the first to establish 

a theoretical treatment of the reflected shock/boundary layer interaction and the mechanism 

responsible for wall jetting of driver gas through the bifurcated structure (9). Since then, several 

empirical models have been developed in an attempt to quantify the disturbance level of the 

bifurcated zone (26) (12) (14). Davies and Wilson
 
(27) and Stalker and Crane (28) used Mark’s 

theory and developed analytical models for predicting the premature arrival of driver gas to the 

endwall region. Numerical simulations have also provided reliable information about the 

contamination process which is of great concern in high-enthalpy shock tunnels in particular (27) 

(28). 

Ideally, the endwall region behind the reflected shock wave is assumed to be isothermal 

before chemical reaction takes place. However, in real shock-tube experiments and especially 

when the test times are relatively long, the isothermal assumption becomes invalid, and heat 

losses from the hot gas and the cold wall become important and should be accounted for in 

shock-tube modeling studies. Furthermore, the effect of the thermal boundary layer on the 

reflected-shock structure and the flow properties near the endwall region have been analyzed 
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theoretically (29) (30) (31) (32) and numerically based on the gas kinetic models (BGK) (33) and 

the 1-D Navier-Stokes equations (34) (35). 

 Unfortunately, the shock tube is a transient test facility with unsteady and highly 

nonlinear physical processes that cannot be accurately modeled with simple 1-D models, but the 

investigation of complex phenomena associated with the shock tube can be enhanced 

considerably when done in concert with multi-dimensional numerical simulations. Such 

simulations are made possible with Computational fluid Dynamics (CFD) codes and the 

increased computational resources which have become quite powerful tools to highlight the flow 

physics in multi-dimensional complex and transient flow fields.  

 To that end, shock-tube non-idealities have been investigated during the last several 

decades. Multi-dimensional simulations have been performed to model the non-ideal rupture of 

the diaphragm to quantify the shock speeds, the structure of the developing flow downstream the 

diaphragm and the contact surface shape. For example, the opening of the diaphragm has been 

modeled as a slit in two dimensional simulations (8) (36), versus an iris in axi-symmetric 

simulations (37) (38) (39) (40). The reflected-shock bifurcation phenomenon has been simulated 

in a number of numerical studies
 
(16) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) and 

also has served as a test case for numerical method validations (51) (52) (53) (54) (55) (56). 

Multi-dimensional simulations have also aimed at modeling the interaction between the reflected 

shock and the contact surface in an attempt to predict the driver gas contamination in high-

enthalpy shock tunnels in particular(38) (39) (40) (46) (57) (58) (41) (59) (41). 

 

 



9 

 

Motivation 

 

 While the studies mentioned above have given insight into the flow evolution in shock 

tubes and the various non-ideal phenomena that affect the test time and conditions, the inability 

to model the whole test facility geometry due to computational limitations necessitates various 

assumptions and consequently, the majority of the previously reported simulations focused on 

certain parts of the shock-tube facility such as the endwall region with the upstream inflow 

conditions derived from the Rankine–Hugoniot relations and the initial conditions set just before 

shock reflection upstream of the endwall. When viscous effects are taken into consideration, the 

initial flow field behind the incident shock is usually estimated from the boundary layer theory of 

Mirels (60) (61). Therefore the results depend greatly on the assumptions associated with 

modeling only part of the facility. Of particular interest in this study is the development of a fluid 

mechanics model of the reflected-shock process that can be applied to experimental conditions 

routinely seen in high-pressure chemical kinetic and ignition delay time experiments in undiluted 

fuel-air mixtures. With such a model, parametric studies can be performed that couple the shock-

tube fluid mechanics with the chemical kinetics in an attempt to characterize the extent of non-

ideal behavior in such experiments.  

  In this respect, accurate simulations of the complex spatial and temporal inter relations in 

the shock-tube flow are more likely to be achieved through modeling of the complete shock-tube 

geometry rather than just the endwall region of the shock tube. This approach is a challenging 

task because it requires the use of large mesh sizes in addition to time marching the solution over 

a large number of small time steps that allow the resolution of the flow-physics.  Such large-

scale computations can be made possible through the use of parallel processing.  
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CHAPTER TWO: COMPUTATIONAL MODEL 

 The simulations were carried out with the commercial CFD solver FLUENT. The model 

equations are discretized in space and time following the control volume approach and utilizing a 

density-based explicit solver. The flow domain is represented with a structured mesh of 

hexahedral cells. A grid adaption tool is used to resolve regions with the steepest gradients. The 

AUSM+ flux vector splitting scheme is used to compute the flux vectors. The convective terms 

are discretized in space following three schemes, 1/2
nd

 order blending upwind, 2
nd

 order upwind, 

and 3
rd

 order MUSL schemes to investigate the impact of increasing scheme resolution on the 

accuracy and stability of the solution. An explicit time-stepping integration was performed using 

a four-stage Runge-Kutta scheme for unsteady flows. The time step was set by the Courant-

Friedrichs-Lewy stability limit between 0.8 and 1. 

 

Computational Grid 

 

 The computational domain represents the entire geometry of the high-pressure shock tube 

test facility at Texas A&M University described in detail in De Vries et al. (2). The shock tube 

consists of a 2.46-m long driver section with an internal diameter of 7.62 cm and a 4.72-m long 

driven section with an internal diameter of 15.24 cm. The shock-tube side wall and endwall 

thicknesses are 1.27 cm and 2.54 cm, respectively. Due to the axial symmetry of the shock tube, 

the flow domain is modeled with an axi-symmetric structured mesh as shown in Figure 5. The 

axi-symmetric approach is appropriate for the cylindrical geometry of the shock tube and is 
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sufficient to render an accurate description of the real flow configuration. The boundary 

conditions of the shock-tube model when the conjugate heat transfer model is turned on are 

given in Figure 6. 

 

 

 

 

Figure 5: The axi-symmetric structured mesh showing the initial mesh before grid adaption is applied. 

Section shown is at the diaphragm location. Note the diverging section that mates the driver (left side) and 

the driven (right side) sections.  
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Figure 6: Axi-symmetric viscous/Conjugate heat transfer model boundary conditions 

 

Numerical Model 

 

Finite Volume Method  

 The density-based coupled-explicit algorithm is adopted with double precision. This 

algorithm solves the governing equations of continuity, momentum, energy and species transport 

simultaneously as a set of equations. The finite-volume-based discretization approach is used to 

solve numerically the Navier-Stokes equations. This is accomplished by first dividing the 

domain into discrete control volumes, then integrating the governing equations on the individual 

control volumes to construct algebraic equations for the discrete dependent variables and last 

linerazing the governing equation to produce a system of equations for the dependent variable. 

The governing equations can be illustrated by considering the unsteady conservation equation for 
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transport of the scalar quantity߮. This is demonstrated by the following equation written in 

integral form for an arbitrary control volume V as follows, 

 ම ݐ߲߮ߩ߲ ܸ݀ ൅ ර Ԧݒ߮ߩ . Ԧܣ݀ ൌ ර .߮׏ఝ߁ Ԧܣ݀ ൅ ම ܵఝܸ݀ (1) 

Where, ߩ is the density,  ݒԦ is the velocity vector, ܣԦ is the surface area vector, ߁ఝ  is the diffusion 

coefficient for ߮, ׏φ is the gradient of ߮, and ܵఝ is the source of  per unit volume. Discretization 

of Eq. (1) on a given cell yields,  

 
ݐ߲߮ߩ߲ ܸ ൅ ෍ ௙ߩ

ே೑ೌ೎೐ೞ
௙ Ԧ௙߮௙ݒ . Ԧ௙ܣ ൌ ෍ .௙߮׏ఝ߁ Ԧ௙ܣ ൅ே೑ೌ೎೐ೞ

௙ ܵఝܸ (2) 

Where ௙ܰ௔௖௘௦ are the number of faces enclosing the cell, ߮௙  is the value of ߮ convected through 

face f,  ߩ௙ݒԦ௙.  ,φ୤ is the gradient of ߮ at face f, and V is the cell volume. Linearization of equation is performed as such׏ ,Ԧ௙ is the area of face fܣ  ,Ԧ௙ is the mass flux through the face fܣ

 ܽ௣߮ ൌ ෍ ܽ௡௕߮௡௕ ൅ ܾ௡௕  (3) 

Where the subscript nb refers to neighbor cells, and ap and anb are the linearized coefficients for ߮ and ߮௡௕.  

Spatial Discretization 

 

 The AUSM+ flux vector splitting scheme was used to compute the flux vectors. AUSM 

stands for Advection Upstream Splitting Method first introduced by Liou and Steffen (62) 
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accurately captures shock and contact discontinuities by providing an exact resolution, free of 

“Carbuncle” phenomena and oscillations at stationary and moving shocks, and preserves the 

positivity of scalar quantities. The AUSM scheme was substantially improved to yield the 

generalized Mach number-based convection and pressure splitting functions. The new scheme 

termed AUSM+ is more robust and avoids using an explicit artificial dissipation (63) (64). First 

order can yield better convergence than higher order schemes especially in complex flows where 

shocks and discontinuities are present, however, especially when turbulence is dominant, first-

order discretization is not recommended due to the increased numerical discretization error 

introduced by this scheme. First-order accuracy is obtained by simply setting the face value ߮௙ 

equal to the cell-center value of ߮ in the upstream cell as shown in Eq. (4). fou stands for first 

order upwinding. 

 ߮௙,௙ை௎ ൌ ߮ (4) 

In general, when shock discontinuities are present in the flow, it is almost impossible to achieve 

a stable solution, free of unphysical numerical oscillations and nonlinear instabilities without 

introducing some numerical dissipation. However, numerical dissipation can be reduced by 

increasing the mesh resolution at the shock and contact discontinuities by applying the adaptive 

grid refinement approach. 

 High resolution schemes such as 2
nd

 order or higher schemes can yield more accurate 

results than the first order scheme. If second-order accuracy is desired, quantities at cell faces are 

computed using a multidimensional linear reconstruction approach by applying Taylor series 

expansion about the cell centroid.  The face value ߮௙ is computed using the following equation:  

 ߮௙,ௌை௎ ൌ ߮ ൅ .߮׏  Ԧ (5)ݎ
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Where SOU stands for second order upwinding, ߮ is the cell-centered value and ߮׏ is its 

gradient in the upstream cell,  ݎԦ is the displacement vector from the upstream cell centroid to the 

face centroid. For second order schemes, oscillations creep up, notably at the discontinuities. A 

Total Variation Diminishing concept is applied and the gradient ߮׏ is limited so that no new 

maxima or minima are introduced.   

 Another effective method to avoid the oscillations in the solution is by adding some 

diffusion to the 2
nd

 order scheme by blending the second order ߮௙,ௌை௎ and first order ߮௙,௙ை௎ 

approximations as such, 

 ߮௕௟௘௡ௗ௜௡௚ ൌ ߮௙,௙ை௎ ൅ ሺ߮௙,ௌை௎ߚ െ ߮௙,௙ை௎ሻ (6) 

Where ߚ is a blending factor whose values lie between zero and one, 0 = ߚ reduces the scheme 

to 1
st
 order upwind, and 1 = ߚ brings it back to pure 2

nd
 order upwinding providing satisfactory 

results. Usually small amounts of the first order scheme (10-20%) is sufficient to get rid of the 

oscillations, and the accuracy is nearly as good as with 2
nd

 order accurate scheme and the 

stability is nearly as good as the 1
st
 order scheme. 

 Third order MUSCL Scheme (Monotone Upstream-Centered Schemes for Conservation 

Laws) (65) is achieved by blending a central differencing scheme and second order upwind 

scheme as such, 

 ߮௙,ெ௎ௌ஼௅ ൌ ௙,஼஽߮ߠ ൅ ሺ1 െ  ሻ߮௙,ௌை௎ (7)ߠ

Where ߮௙,஼஽ is determined using central differencing and ߮௙,ௌை௎ is computed using the second-

order upwind scheme. Spatial accuracy is improved with the MUSCL scheme by reducing 
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numerical diffusion, however the implemented scheme in the CFD solver FLUENT does not 

contain any flux-limiter and therefore produces undershoot and overshoot in the solution.  

Temporal Discretization 

 

 Time marching is performed by evaluating the scalar ߮ at the current time level as such, 

 
߮௡ାଵ െ ߮௡∆ݐ ൌ  ሺ߮௡ሻ (8)ܨ

And ߮௡ାଵ is given by,       

 ߮௡ାଵ ൌ ߮௡ ൅ ݐ∆  ሺ߮௡ሻ (9)ܨ

Here, the time step ∆ݐ is restricted to the stability limit set by the Courant-Friedrich-Lewy 

condition CFL as shown as such.  

ݐ∆  ൌ 2 .ܮܨܥ ܸ∑ λ௙௠௔௫ܣ௙௙  (10) 

Where V is the cell volume, ܣ௙ is the face cell, and λ௙௠௔௫
 is the maximum of the local 

eigenvalues. To maintain time accuracy of the solution, the explicit time stepping employs the 

same time step in each cell of the domain. Explicit time stepping is primarily used in the cases of 

compressible transient flows in order to capture the shock and contact discontinuities while 

implicit time stepping is known to be more expensive and produces less accurate results. A four-

stage Runge-Kutta scheme for unsteady flows is used by the CFD solver. The stability limit that 

was set between 0.8 and 1.  
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Dynamic Grid Adaption 

 

 Adaptive grid feature was used to cluster the grid around the shock and contact 

discontinuities. As with any numerical approximation of solution discontinuities, shocks will be 

somewhat smeared by grid resolution and numerical diffusion, adaption is an effective tool that 

can be used to resolve the discontinuities and reduce the numerical error in the digital solution 

with minimal numerical cost (66) (67). The adaption feature can also be used to achieve a grid-

independent solution without regenerating the mesh. Adaption parameters can be tuned to 

effectively capture shock and contact discontinuities. Coarsen and refine thresholds are adjusted 

to achieve the desired level of adaption. 

 Adaption is performed by refining the mesh near high gradient regions and coarsening 

the mesh wherever else needed, thus providing better resolution of shock and contact 

discontinuities. The refine and coarsen limits are determined based on the normalized values of 

the density gradients. In this approach, the Euclidean norm of the gradient of the selected 

solution variable is multiplied by a characteristic length scale and the gradient function has the 

following form, 

 |݁௜ଵ| ൌ ሺܣ௖௘௟௟ሻ௥ଶ|(11) |݂׏ 

Where |݁௜ଵ| is the error indicator, ܣ௖௘௟௟ is the cell area, r is the gradient volume weight with r = 1 

corresponding to full volume weighting, and |݂׏| is the Euclidean norm of the gradient of the 

desired field variable f. The normalized values are obtained by scaling the values of |݁௜ଵ| by their 

maximum value in the domain as is shown in Eq. (12) so that the adaption rang, refine and 

coarsen thresholds, is between [0, 1]. The refine and coarsen threshold values depend on the 
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strength of the shock and contact discontinuities. Dynamic grid adaption based on gradients of 

both density and pressure was performed every five iterations.  

 
|݁௜ଵ|݉ܽݔ|݁௜ଵ| (12) 

 Shown in Figure 7 is the computational model mesh with grid adaption based on 

gradients of density and pressure obtained with a) 1
st
 order scheme, b) 2

nd
 order scheme, and c) 

3
rd

 order MUSCL scheme. The mesh was adapted in regions with steep gradients where the 

contact discontinuities were present allowing for the resolution of the shock wave and contact 

surface. The 1
st
 order solution produces a thick contact surface due to the numerical diffusion 

effect which smears the contact surface over a few cells. On the other hand, the high-resolution 

2
nd

 and 3
rd

 order schemes sharply capture the contact surface with the 2
nd

 order scheme yielding 

a better resolution than the 3
rd

 order scheme. This is due to the fact that the implemented 3
rd

 

order MUSCL scheme in the current CFD solver is not TVD.  

 
a)  

 

b)  



19 

 

 

c)  

Figure 7: Grid adaption based on pressure and density gradients show the resolved shock and contact 

discontinuities from three different schemes. a) 1st /2nd order blending, b) 2nd order, c) 3rd order MUSCL 

  

 Provided in Figure 8 are the profiles of a) density, b) temperature, and c) pressure from a 

1
st
 order solution generated with and without grid adaption. The test gas is Air and the driver gas 

is Helium. The initial pressure ratio across the diaphragm is equal to 10. Temperature and 

density profiles generated without grid adaption display a wrong prediction of the maximum 

temperature across the contact surface and a smearing of the solution over few cells. Grid 

adaption reduces this effect and resolves the contact surface, thus providing a more accurate 

solution. 
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c) 

Figure 8: a) Density, b) temperature, and c) pressure distribution along the tube axis before and after grid 

adaption. The simulations were performed with 1st/2nd order scheme. The smearing of the contact surface 

is reduced with grid adaption. The apparent sharp decrease in density, temperature, and pressure 

immediately after the diaphragm is due to the flow expansion through the diverging section at that 

location. 
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CHAPTER THREE: INVISCID SOLUTION 

Introduction 

 

 As a first step towards modeling the complex mechanisms responsible for the non-

uniform conditions and the reduced test times in the shock tube, the flow is assumed to be 

inviscid and this section focuses on developing a robust and accurate model capable of 

reproducing the major flow phenomena in the shock tube from the propagation of the shock 

wave and contact surface to the reflection of the expansion fan and incident shock. The inviscid 

model should serve as a baseline for the rather more complex viscous model which necessitates 

increased computational efforts. The modeling of the complex flow structure in the shock tube 

by solving the unsteady Euler equations under the assumption of inviscid flow have been 

successfully investigated in 1-D (68) (69) (70), 2-D (8) (36) (71) (72) (73), axi-symmetric  (37), 

and 3-D
 
(74) (75) simulations. In addition, the axi-symmetric approach has proven to be an 

appropriate representation of the cylindrical geometry of the shock tube (37) (38) (39) (40) (46) 

(57) (58) (41) (59) (76) (49). 

 

Background 

 

 Shock capturing methods have been widely used in the computation of inviscid flows 

with shock and contact discontinuities and they can be classified into two main categories, 

modern and classical. The classical methods including the McCormack method (77), the Lax-

Wendrofff method (78),
 
and Beam-Warming method (79) use symmetric or central discretization 
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schemes, while modern methods employ upwind–type differencing schemes. Modern methods 

include higher order schemes such as the Total Variation Diminishing scheme (TVD) first 

introduced by Harten (80), Monotonic Upstream Centered Schemes for Conservation Laws 

(MUSCL) established from the Godunov approach (81) and introduced by Van Leer (65), the 

Flux-Corrected Transport (FTC) scheme introduced by Boris and Book (82), Essentially Non-

Oscillatory schemes (ENO) proposed by Harten et al. (83), Piecewise Parabolic Method (PPM) 

proposed by Woodward and Colella (84), and the approximate Riemann solvers presented by 

Roe and Osher (85) (86). 

 In general, when shock discontinuities are present in the flow, it is almost impossible to 

achieve a stable solution, free of unphysical numerical oscillations and nonlinear instabilities 

without introducing some numerical dissipation. Modern shock capturing methods employ non-

linear numerical dissipation, in a way that the amount of dissipation in any cell is adjusted 

according to gradients in neighboring cells which makes this scheme stable and accurate. 

 To avoid the generation of numerical oscillations associated with high order spatial 

discretization schemes such as 2
nd

 order and higher, flux limiters are used. They operate when 

steep gradients in the form of shock and contact discontinuities are present in the solution and 

they have the effect of limiting the spatial derivatives near shocks and discontinuities to 

physically realistic values which makes the solution free from spurious numerical oscillations. In 

smooth regions of the solution, flux limiters do not operate and spatial derivatives are 

represented by higher order spatial accuracy (80) (87) (88). The numerical method is considered 

TVD when monotonicity is preserved such that the values of the local maximum and minimum 

are non-increasing and non-decreasing respectively. Godunov has shown that first order schemes 

preserve monotonicity and are therefore TVD.  On the other hand, higher order schemes are not 
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TVD and introduce spurious oscillations. These drawbacks are overcome with flux limiters 

which make the numerical scheme TVD (89). TVD limiters have the ability to reduce the order 

of accuracy to 1
st
 order in regions characterized with steep gradients. Away from the shocks and 

contact discontinuities, TVD simply do not operate and higher order discretization schemes are 

used in the majority of the flow while still capturing shock waves and strong gradients without 

obvious wiggles (80). 

 Previous studies which modeled the complex transient flow structures in shock tubes and 

captured the shock and contact discontinuities by solving the Euler equations have used different 

numerical approaches (68) (69) (70) (71) (72) (36) (73) (8) (37) (74) (75).  

 Argow (68) studied the evolution of non-classical flow fields in a conventional shock 

tube by solving the one-dimensional Euler equations. The equations were discredited by using 

the TVD-MacCormack (TVDM) predictor-corrector scheme, a finite volume variant of the 

MacCormack scheme which is second order accurate in space and time. A Minmod limiter was 

used and the courant condition was set to 0.6.  

 Loh and Liou showed that complicated shock and contact discontinuities can be 

accurately resolved when the streamwise marching Langrangian method is adopted (75). The 

steady Euler equations were discretized using the finite difference first order scheme which was 

upgraded to the high resolution TVD scheme by using the Minmod flux limiter. The scheme is a 

variation of Van Leer’s MUSCL scheme
 
(65) followed that given in Liou

 
(63) and Liou and Hsu

 

(90).  

 Cocchi et al. (70) proposed a correction to Godunov Type schemes that yields a perfect 

discontinuity. This method is based on a prediction step which makes use of any Euler scheme 

and a correction step based on a lagrangian approach. Two discretization methods were used; the 
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first order Godunov scheme and the second order VanLeer scheme. The numerical diffusion was 

corrected for by the correction step which consists of interpolating the values at node points on 

both sides of the interface as function of values at neighboring points. Instabilities and 

oscillations were handled with the Total Variation Diminishing concept (TVD) and the Minmod 

limiter.  

 Petrie-Repar and Jacobs (37) employed a cell-centered finite volume code U2DE. The 

generalized MUSCL interpolation scheme was used to construct the left and right flow states and 

the Minmod limiter was applied to limit the oscillations in the flow domain. In addition, the 

Equilibrium flux Method (EFM) was used to calculate the flux array from the left and right edge 

flow states. EFM solves the Euler equations with added pseudo dissipation and in the hypersonic 

limit, becomes an upwind scheme. Grid adaption was implemented with the density and pressure 

gradient adaption performed every five time steps. Advancement in time was achieved by using 

the predictor-corrector explicit time scheme. The CFL condition was set to 0.5.  

 Burtschell and Zeitoun (49) investigated the interaction of two oblique axi-symmetrical 

shock waves in a supersonic flow by solving the Euler equations according to a cell-centered 

finite volume method on a two-dimensional structured grid. A second order accurate algorithm in 

space and time was used. The dissipative fluxes were replaced with central differences and the 

convective fluxes were computed by solving the Riemann problem replaced by the AUSM-M in 

the case of strong shocks. Instabilities were handled with both the Minmod and the Superbee-

type limiters. The unsteady formulation of the discretized equation used a predictor corrector 

explicit time scheme with the CFL condition set to 0.8.  

 Jiang et al. (74) investigated the three-D propagation of the transmitted shock wave in a 

square cross section chamber numerically by solving the Euler equation. Discretization in space 
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was accomplished using the dispersion-controlled scheme and the flux vector was split according 

to the Steger and Warming method with the help of the Minmod limiter. The time marching 

integration was performed using a 2
nd

 order accurate Range-Kutta algorithm with the courant 

number set to 0.5. The dispersion controlled scheme requires that shock capturing schemes must 

have leading or lagging phase errors to avoid non-physical oscillations near the shock and 

contact discontinuities which can be achieved without resorting to additional artificial viscosity. 

 Cocchi et al. (72) proposed a hybrid formulation of conservative and non-conservative 

forms to solve the Euler equations in order to correctly estimate the temperature across shock 

and strong rarefaction waves in two-dimensional flows. A finite volume formulation of a 

MacCormack (77) scheme with second order artificial viscosity was applied. Numerical results 

were compared to results from classical schemes such as the first order Godunov scheme (81) 

and the second order Godunov-MUSCL Hancock scheme
 
(65) with an exact Riemann solver.  

 Takayama and Sun (91) performed numerical studies of shock diffraction phenomena in a 

two dimensional shock tube model by solving the Euler equations following a finite volume 

approach. The equations were discretized by the means of two 2
nd

 order in space and time 

schemes; a centered scheme based on the predictor-corrector Lax- Wendroff scheme with added 

nonlinear artificial viscosity and an upwind MUSL-Hancock scheme (88).
 
A Minmod limiter was 

used to flatten slopes of primitive variables and the fluxes through interfaces were determined by 

solving the HLLC approximate Riemann problem. 

 Chang and Kim (71) investigated the dynamics of inviscid shock waves in an expansion 

tube. The simulation was performed on an axi-symmetric unstructured triangular mesh using the 

Finite volume Galerkin algorithm. The FCT (Flux-Corrected Transport) discretization scheme 

was adopted by blending the low order fluxes with the higher order ones under the monotonicity 
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constraint. Excessive Anti-diffusion from the low order scheme was corrected for by blending 

the artificial dissipation and the area weighted differencing of higher order increment. A limiter 

function that computes the minimum between the density and the energy was chosen to prevent 

overshoots in the solution. Solution was marched in time following the 3-stage Runge-Kutta time 

integration. The H refinement adaptive method was used for grid adaption every 5 or 7 time 

steps. 

 

Governing Equations 

 

 The first part of the study assumes the flow field as inviscid then the governing equations 

are the well known Euler equations for inviscid flows. For an axi-symmetric model, the 

continuity equation is given by,  

 
ݐ߲ߩ߲ ൅ ߲ሺݒߩ௫ሻ߲ݔ ൅ ߲ሺݒߩ௥ሻ߲ݎ ൅ ݎ௥ݒߩ ൌ 0 (12) 

The conservative form of the Euler equations is given by: ߲ܷ߲ݐ ൅ ݔ߲ܧ߲ ൅ ݕ߲ܩ߲ ൅ ܪߙ ൌ 0 
(13) 

Where ߙ ൌ 0 for two-dimensional and ߙ ൌ 1 for axi-symmetric problems. The vectors U, E, G, 

and H are defined as 

 ܷ ൌ ቎ ܧߩ௥ݒߩ௫ݒߩߩ ቏ ܧ  ൌ ൦ ௫ݒ௫ݒߩ௫ݒߩ ൅ ܧߩ௥ሺݒ௫ݒߩܲ ൅ ܲሻݒ௫൪ ܩ ൌ ൦ ௥ݒ௥ݒߩ௥ݒ௫ݒߩ௥ݒߩ ൅ ܲሺܧߩ ൅ ܲሻݒ௥൪ ܪ ൌ ݎ1 ൦ ܧߩ௥ሺݒ௥ݒߩ௥ݒ௫ݒߩ௥ݒߩ ൅ ܲሻݒ௥൪  (14)  
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Where ݒ ,ߩ, P, and E are the density, velocity, pressure, and total energy per unit mass of the 

fluid, respectively.  The total energy E is related to the equation of state for a perfect gas and is 

expressed with the following equation. 

ܧ  ൌ ߛܲ െ 1 ൅ 12 ௫ଶݒሺߩ ൅  ௥ଶሻ (15)ݒ

Where 
ଵଶ ௫ଶݒሺߩ ൅  is the specific heat ratio. The Total energy E is ߛ ௥ଶሻ is the kinetic energy andݒ

related to the total enthalpy H by  

ܧ  ൌ ܪ െ  (16) ߩܲ

Where, 

ܪ  ൌ ݄ ൅ ଶ2|ݒ|  (17) 

 When the mixing and transport of chemical species are considered, the conservation 

equations describing convection, diffusion, with or without reaction sources for each component 

species have to be modeled.  The conservation equation takes the following form, 

 
߲ሺߩ ௜ܻሻ߲ݐ ൅ .׏ ሺݒߩԦ ௜ܻሻ ൌ െ׏. Ԧ௜ܬ ൅ ܴ௜ (18) 

Where ܴ௜ is the net rate of production of species i by chemical reaction when applicable. The 

local mass fraction of each species ௜ܻ is predicted through the solution of a convection-diffusion 

equation for the i
th 

species.  The conservation of energy is described by Eqn. (10) for an inviscid 

model as such, 

 
߲ሺܧߩሻ߲ݐ ൅ .׏ ൫ݒԦሺܧߩ ൅ ܲሻ൯ ൌ െ׏. ቌ෍ ௝݄ܬ௝௝ ቍ (19) 
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Where ׏. ൫∑ ௝݄ܬ௝௝ ൯ is the transport of enthalpy due to species diffusion for multi-component 

mixing flows, ܬ௝ is the diffusion flux of species j, which arises due to concentration gradients, 

and ௝݄ is the enthalphy of species j. The diffusion flux of species j is given by:  

Ԧ௝ܬ  ൌ െܦߩ௝,௠׏ ௝ܻ (20) 

Here ܦ௝,௠ is the diffusion coefficient for species j in the mixture. The transport of enthalpy 

becomes important and should be accounted for in the conservation of energy equation 

especially when the Lewis number is greater than 1. The Lewis number is given by, 

௜݁ܮ  ൌ   ௜,௠ (21)ܦ௣ܿߩ݇

The equation of state for thermally and calorically perfect gas for multi-component mixtures is 

given by:  

 
ρ ൌ ܴܲܶ ∑ ௜ܻܯ௪,௜௜  

(22) 

Where R is the universal gas constant, ௜ܻ is the mass fraction of species i, ܯ௪,௜ is the molecular 

weight of species i, P and T are the local static pressure and temperature, respectively.  The 

mixture's specific heat capacity is calculated as a mass fraction average of the pure species heat 

capacities as such 

 ܿ௣ ൌ ෍ ௜ܻܿ௣,௜௜  (23) 

 ܿ௩ ൌ ෍ ௜ܻܿ௩,௜௜  (24) 

ߛ  ൌ ∑ ௜ܻܿ௣,௜௜∑ ௜ܻܿ௩,௜௜  
(25) 
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 ܿ௣,௜ is the specific heat of species i at constant pressure, and ܿ௩,௜ is the specific heat of species i at 

constant volume. 

 

Numerical Simulations 

 

 Figure 9 shows the simulated flow fields in the shock tube. Initially, the high-pressure 

driver section (state 4) is separated from the low-pressure driven section (state 1) by a diaphragm 

which is modeled as an interface. The finite opening of the diaphragm is not accounted for in the 

present model, and at time 0 the diaphragm is assumed to rupture instantaneously. An illustration 

of the flow field after the rupture of the diaphragm is given Figure 9  (b) showing a left-running 

expansion wave and a right-running shock wave followed by the contact surface. The flow 

behind the incident shock wave is referred to as state 2. After the incident shock hits the endwall, 

as shown in Figure 9 c, it reflects and travels in the opposite direction towards the driver section 

creating high-temperature and -pressure conditions behind it (state 5).   

 

a

 b
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c 

 

Figure 9: Pressure distribution showing the different flow states in the shock tube, a) before diaphragm 

rupture, b) after diaphragm rupture, c) after shock reflection.  

  

 Soon after the diaphragm rupture, the initial shape of the shock wave is spherical and the 

contact surface appears to be planar and stable. As the incident shock wave travels further 

downstream of the diaphragm, it becomes planar. The same observation has been reported in 

other studies (37) (38). The contact surface takes on a convex shape when viewed further along 

the tube. However, the contact surface can experience flow instabilities that could alter its shape 

to one of a complex nature.  The contact surface is strongly influenced by the diaphragm rupture 

model used in the simulations. When an iris-diaphragm rupture is assumed, the driver gas 

appears as an annular tongue of material penetrating the driven gas (40). Petrie-Repar (37) 

observed the transformation of the contact surface from a convex shape to a concave shape when 

a gradually opening diaphragm model is used. The expanding driver gas interacts with the shock 

tube wall causing the development of an oblique shock which redirects the flow along the wall. 

As a result, the pressure and density are higher near the wall than the center causing the contact 

surface to take a concave shape (37). Cambier el al. (38) showed that the contact surface does not 

become planar with time and suggested that its fate could be dominated by the Rayleigh-Taylor 

instability. Taylor (17) showed that an accelerating contact surface when accelerated in a 

direction perpendicular to its plane is stable when the denser fluid is pushing the lighter fluid and 

is unstable when the converse is true. 
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Mesh Refinement study 

 

 Mesh refinement studies were performed at four mesh levels; 100000, 150000, 200000, 

and 250000 nodes. Figure 10 shows the temporal evolution of the endwall pressure obtained with 

four levels of refinement. The test conditions are set to an initial pressure ratio of 50, Helium is 

used as the driver gas, and Ar is used as the driven gas. Pressure profiles were obtained at 

conditions behind the reflected shock of 30 atm and 2500 K. Additional cells are added in the 

flow domain as necessary via grid adaption to maintain finer mesh around the shock and contact 

discontinuities.  As such, the computational efforts are focused around high gradient flow fields 

all by keeping the overall computational time to a minimum.  The total mesh size increased to 

approximately 500000 nodes with grid adaption. The solution is shown to be independent of the 

mesh size for a grid resolution consisting of 150000 nodes and above with grid adaption feature 

turned on.  
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Figure 10: Grid convergence study performed with four mesh resolutions;10 ൈ 10ସ, 15 ൈ 10ସ, 20 ൈ 10ସ, 

and 25 ൈ 10ସ nodes. The pressure profile behind the reflected shock shows the solution is independent of 

the mesh size. 

 

  

  

Accuracy of Numerical Scheme 

 

 The accuracy of the numerical model is investigated by comparing the numerical solution 

from three different schemes to the solution of the 1-D inviscid theory.  Density, pressure, and 

temperature profiles along the shock-tube axis are provided for the 1
st
/2

nd
 order blending scheme, 

2
nd

 order scheme, and 3
rd

 order MUSCL scheme in Figure 11, Figure 12, and Figure 13 

respectively. Figure 11 gives the profiles of  a) pressure, b) density, and c) temperature obtained 

with the 1
st
/2

nd
 order blending scheme along the shock-tube axis. Simulations are compared to 

the solution of the 1-D theory. The 1
st
/2

nd
 order blending scheme yields results in agreement with 

the 1-D theory. The positions of the incident shock wave, the contact discontinuity, and the 

expansion waves agree with the analytical positions. It is also observed that the 1
st
/2

nd
 order 
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blending scheme generates some errors at the interface where the curve is slightly twisted on 

both sides of the interface. Simulation results obtained with the 2
nd

 order accurate scheme are 

given in Figure 12. 
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b) 

 

c) 

Figure 11: a) Pressure, b) density, and c) temperature distribution along the tube axis.  Simulations 

performed with 1st / 2nd order blending scheme. Comparison with 1-D inviscid theory is also shown. 
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c) 

Figure 12: a) Pressure, b) density, and c) temperature distribution along the tube axis.  Simulations 

performed with 2nd order scheme. Comparison with 1-D inviscid theory is also shown. 

 

 The high-resolution schemes correct the smearing effect at the contact surface but 

introduce unphysical behavior in the solution, across the shock and contact discontinuities.  The 
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is propagating downstream. This phenomenon is attributed to the numerical issues associated 

with reconstructing higher-order gradients across the shock waves, contact discontinuities, and 

other varying parts of the solution which lead to overshoots and undershoots in the solution. The 

unphysical behavior is even more pronounced with the higher 3
rd

 order MUSCL scheme as 

shown in Figure 13. 
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c) 

Figure 13: a) Pressure, b) density, and c) temperature distribution along the tube axis.  Simulations 

performed with 3rd order MUSCL scheme. Comparison with 1-D inviscid theory is also shown. 

 The oscillations seen in Figure 12 Figure 13 can be overcome with the use of flux limiters 

which make the numerical scheme TVD (81). TVD limiters are designed to switch the spatial 

discretization scheme down to a first-order accurate method in the vicinity of strong gradients. 

Away from the shocks and contact discontinuities, TVD simply does not operate, and higher-

order discretization schemes are used in the majority of the flow while still capturing shock 

waves and strong gradients without obvious wiggles (80). The oscillations in the solution 

obtained with the 3
rd

 order MUSCL scheme could be justified since the implemented scheme 

does not contain any TVD flux-limiter and therefore undershoot and overshoot in the vicinity of 

the contact discontinuities should be expected. However, when 2
nd

 order accuracy is applied, 
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that these oscillations are not controlled properly with the inviscid model and a viscous model 

should resolve the flow fields better.  

 

Parametric Shock-Tube Studies 

 

 Parametric Shock-Tube modeling studies were carried out in the inviscid baseline model 

for a wide range of test conditions behind the reflected shock wave as shown in Table 1. The 

numerical simulations for the inviscid model were performed with the 1
st
/2

nd
 order blending 

scheme. This scheme was shown to be in good agreement with the 1-D inviscid theory compared 

to the high resolution schemes, in spite of a slight diffusion at the interface. In general, when 

shock discontinuities are present in the flow, it is virtually impossible to achieve a stable 

solution, free of unphysical numerical oscillations and nonlinear instabilities without introducing 

some numerical dissipation. A summary of the numerical simulations performed for the model 

validation study is given in Table 2, Table 3, and Table 4. 

 

Table 1: Test gas mixtures and range of test conditions used in the validation study of the axi-symmetric 

model 

 

Mixture Composition
a

T5 P5 

number 

 

(K) (atm) 

1 100% Ar 683-2528 0.84-14.5 

2 100% N2 681-1980 0.7-1.2 

a 
Driver gas is He     
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Table 2: Summary of numerical simulations performed with the axi-symmetric inviscid model. 

Conditions behind the reflected shock are 698 < T5 (K) < 2528 and P5 is near 1 atm.  The driver gas is He 

and the driven gas is Ar. 

 

 

 

 

 

 

 

T5 (K) P5 (atm) T2 (K) P2 (atm) P1 (atm) P4 (atm) P4/P1 Ms Mr

698 0.99 481 0.416 0.141 1.5 10.64 1.6 1.45

701 1 482 0.417 0.141 1.6 11.35 1.6 1.45

706 1 484 0.42 0.141 1.7 12.06 1.61 1.46

719 1 490 0.43 0.141 1.8 12.77 1.628 1.472

800 1.31 525 0.45 0.141 2 14.18 1.73 1.526

900 0.99 568 0.346 0.086 1.9 22.09 1.85 1.583

918 1.03 577 0.35 0.086 2 23.26 1.87 1.59

980 1.91 600 0.5 0.141 2.5 17.73 1.91 1.62

1180 0.93 686 0.27 0.05 2 40.00 2.15 1.7

1187 1.62 690 0.45 0.086 2.5 29.07 2.16 1.7

1203 0.97 696 0.28 0.05 2.1 42.00 2.18 1.71

1214 0.98 701 0.284 0.05 2.15 43.00 2.19 1.71

1258 2.9 720 0.75 0.141 5 35.46 2.23 1.73

1480 1.35 810 0.35 0.05 2.5 50.00 2.44 1.79

1500 0.99 821 0.26 0.036 2.3 63.89 2.45 1.79

1568 1.06 849 0.28 0.036 2.5 69.44 2.51 1.81

1593 1.09 860 0.34 0.036 3 83.33 2.538 1.81

1596 1.51 860 0.39 0.05 3 60.00 2.54 1.817

1628 0.84 874 0.21 0.027 2 74.07 2.57 1.82

1690 2.84 900 0.6 0.086 6 69.77 2.62 1.83

1755 0.944 927 0.23 0.027 2.3 85.19 2.67 1.84

1783 0.96 939 0.239 0.027 2.4 88.89 2.697 1.854

1803 0.984 948 0.24 0.027 2.45 90.74 2.71 1.857

1953 1.1 1010 0.25 0.027 2.5 92.59 2.83 1.88

2097 1.22 1070 0.26 0.027 3 111.11 2.94 1.9

2528 1.58 1250 0.4 0.027 4 148.15 3.249 1.952
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Table 3: Summary of numerical simulations performed with the axi-symmetric inviscid model. 

Conditions behind the reflected shock are 683 < T5 (K) < 1955 and   9.5 < P5 (atm) < 14.5.  The driver gas 

is He and the driven gas is Ar 

 

 

 

 

 

 

T5 (K) P5 (atm) T2 (K) P2 (atm) P1 (atm) P4 (atm) P4/P1 Ms Mr

683 10.59 474 4.45 1.55 17 10.97 1.58 1.445

699 10.99 481 4.57 1.55 18 11.61 1.6 1.45

707 11.2 484 4.63 1.55 18.5 11.94 1.61 1.46

743 12.4 500 5 1.55 20 12.90 1.659 1.488

899 10.42 567 3.6 0.9 20 22.22 1.848 1.582

900 10.46 568 3.6 0.9 19.9 22.11 1.85 1.58

904 10.53 569 3.64 0.9 20 22.22 1.854 1.585

923 10.93 577 3.7 0.9 21 23.33 1.875 1.594

942 11.35 585 3.8 0.9 22 24.44 1.898 1.604

997 12.58 608 4 0.9 25 27.78 1.959 1.63

1094 14.8 650 4.5 0.9 30 33.33 2.064 1.671

1200 10 694 9.73 0.52 21.5 41.35 2.173 1.71

1206 10.1 697 2.95 0.52 22 42.31 2.179 1.712

1283 11.19 729 3.17 0.52 25 48.08 2.255 1.737

1337 11.95 752 3.32 0.52 27 51.92 2.306 1.752

1500 9.7 820 2.62 0.36 22.5 62.50 2.456 1.795

1510 14.49 825 3.8 0.52 35 67.31 2.465 1.797

1515 10 827 2.65 0.36 23 63.89 2.469 1.798

1550 10.4 841 2.72 0.36 24 66.67 2.5 1.8

1640 11.38 879 2.9 0.36 27 75.00 2.578 1.826

1735 12.39 919 3 0.36 30 83.33 2.658 1.845

1765 9.33 931.7 2.36 0.27 23 85.19 2.682 1.85

1800 9.8 946 2.41 0.27 24 88.89 2.711 1.856

1841 9.89 963 2.47 0.27 25 92.59 2.744 1.864

1889 13.93 980 3.37 0.36 35 97.22 2.775 1.87

1900 10.61 988 2.56 0.27 30 111.11 2.791 1.873

1916 10.44 994 2.58 0.27 27 100.00 2.803 1.876

1955 10.7 1011 2.64 0.27 28 103.70 2.834 1.882
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Table 4: Summary of numerical simulations performed with the axi-symmetric inviscid model. 

Conditions behind the reflected shock are 681 < T5 (K) < 1978 and P5 near 1 atm. The driver gas is He 

and the driven gas is N2 

 

 

 

 

 

T5 (K) P5 (atm) T2 (K) P2 (atm) P1 (atm) P4 (atm) P4/P1 Ms Mr

681 0.82 475 0.273 0.07 1.8 25.71 1.87 1.661

691 0.84 480 0.28 0.07 1.9 27.14 1.89 1.673

699 0.9 483 0.283 0.07 2.06 29.43 1.905 1.681

702 0.89 485 0.286 0.07 2.08 29.71 1.91 1.684

704 0.9 487 0.29 0.07 2.1 30.00 1.914 1.686

746 1 500 0.306 0.07 2.4 34.29 1.974 1.718

848 0.7 550 0.21 0.04 1.925 48.13 2.171 1.814

897 0.87 570 0.23 0.04 2.15 53.75 2.249 1.848

900 0.99 572 0.26 0.045 2.43 54.00 2.257 1.852

902 0.87 573 0.23 0.04 2.17 54.25 2.26 1.853

905 0.89 574 0.23 0.04 2.2 55.00 2.264 1.855

905 0.77 574 0.2 0.035 1.925 55.00 2.264 1.855

946 0.97 593 0.246 0.04 2.45 61.25 2.33 1.883

957 1 597 0.25 0.04 2.5 62.50 2.347 1.889

958 0.88 598 0.22 0.035 2.2 62.86 2.349 1.89

1077 0.94 650 0.218 0.03 2.4 80.00 2.529 1.959

1132 1.03 674 0.23 0.03 2.8 93.33 2.608 1.986

1136 1.04 676 0.234 0.03 3 100.00 2.614 1.988

1199 1.14 703 0.25 0.03 3.2 106.67 2.7 2.016

1214 1.17 710 0.254 0.03 3.3 110.00 2.722 2.023

1229 1.19 717 0.258 0.03 3.4 113.33 2.742 2.029

1433 0.98 807 0.2 0.02 3.2 160.00 3.006 2.105

1493 1.11 833 0.21 0.02 3.4 170.00 3.08 2.123

1500 1.11 837 0.219 0.02 3.42 171.00 3.088 2.125

1509 1.13 840 0.22 0.02 3.45 172.50 3.1 2.128

1525 1.14 847 0.223 0.02 3.5 175.00 3.118 2.133

1769 0.72 954 0.132 0.01 2.8 280.00 3.397 2.195

1800 0.74 967 0.135 0.01 2.92 292.00 3.43 2.2

1800 1.11 967 0.203 0.015 4.38 292.00 3.43 2.2

1809 0.75 971 0.136 0.01 2.95 295.00 3.44 2.2

1922 0.82 1021 0.146 0.01 3.4 340.00 3.56 2.226

1958 0.84 1036 0.149 0.01 3.55 355.00 3.598 2.233

1978 0.85 1045 0.15 0.01 3.65 365.00 3.619 2.237
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Inviscid Model Validation 

 

 The numerical model is validated by comparing the flow properties predicted by the axi-

symmetric model to the 1-D analytical solution of the ideal theory relations and the Sandia 

thermodynamic database. The ideal theory solution is based on the solution of multiple gas 

dynamics relations called the Rankine-Hugoniot relations. An example on how the flow 

properties in the shock tube can be calculated from the ideal theory is provided in the Appendix.  

Of most interest to the current study are the flow properties in the test region behind the reflected 

shock wave. Numerical simulations were performed for different initial conditions by varying 

the pressure ratio across the diaphragm to yield the incident-shock Mach number of interest. The 

flow properties behind the incident shock wave and subsequently in the test region behind the 

reflected shock are set by the strength of the incident-shock Mach number. The pressure ratio 

across the diaphragm, P4/P1, versus Ms plots help guide future solutions and reduce the number 

of iterations needed to generate the test conditions of interest.  

 The incident-shock Mach number is determined from the shock velocity by recording the 

position of the shock front at two time steps. Figure 14 shows the pressure profiles behind the 

moving incident shock along the shock-tube axis at two time instances, t1 and t2. This method 

assumes no attenuation of the shock wave as is traverses the driven tube, which is valid for the 

inviscid solution herein. 
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Figure 14: The incident-shock velocity is determined from the axial pressure profiles at two 

time instances t1 and t2. ( IS : Incident Shock) 

 

The shock velocity WIS   is calculated as such, 

 
t

x
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Δ
=  (26)  

The incident-shock Mach number is determined from, 
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The reflected-shock Mach number in the shock-fixed coordinate frame is given by, 
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Where U2 is the gas velocity at state 2, and a1 and a2 are the gas sound of speed at states 1 and 2, 

respectively. Figure 15 reports the calculated incident-shock Mach numbers for different 

pressure ratios across the diaphragm in both a) Ar and b) N2 test gases. In both cases, the driver 

gas is He. The axi-symmetric inviscid model predictions are compared to the solution of the 1-D 
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ideal theory. Also shown in Figure 15 are the results of experiments from the shock tube of 

interest in the present study. The data points correspond to a range of diaphragms (aluminum and 

polycarbonate) and test pressures. The general trend between the data and inviscid model is quite 

good. As expected, the experimental data require more P4/P1 for a given Ms or T5 due to viscous 

losses and real diaphragm opening times. 
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b) 

Figure 15: Diaphragm pressure ratios P4/P1 required to generate incident-shock Mach numbers 

(Ms) between 1.6 – 3.5 in a) Ar and b) N2 test gases. Data are from actual shock-tube experiments 

 

 The shock Mach numbers predicted by the axi-symmetric model are lower than the ideal 

theory by approximately 25% for a given pressure ratio across the diaphragm. As a result, the 

flow properties are also under-predicted. This is illustrated in Figure 16 which gives the P4/P1 

ratio as a function of T5, the temperature behind the reflected shock, in both a) Ar and b) N2 test 

gases. As expected, the model under-predicts T5 by 25%.   
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                   a) 

 

b) 

Figure 16.  Diaphragm pressure ratios P4/P1 required to generate temperature conditions of 650 K – 

2800 K in a) Ar and b) N2 test gases; driver gas is He. Data are from actual shock-tube experiments  
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 In studies reported elsewhere
 
(4) (5) (6) (7) (92), it was found that the modeled and 

experimentally measured shock velocities are in close agreement with the ideal theory for 

pressure ratios across the diaphragm below 10
3
 while the ideal theory under-predicts the 

experimental velocities for pressure ratios above 10
3
 by 20%. The high experimental velocities 

were associated with the wave processes which occur during the gradual opening of the 

diaphragm. White (4) and Ikui et al. (93) developed 1-D theory models for the constant-area 

shock tube which predict higher maximum shock speeds than the ideal shock tube model for 

pressure ratios above 10
3
 and velocities in agreement with the ideal theory for pressure ratios 

below 10
3
. The models were developed under the assumption that unsteady isentropic waves are 

formed in the driven section during the gradual opening of the diaphragm. The compression 

waves coalesce into a shock wave at some distance downstream of the diaphragm and the shock 

wave is successively accelerated by other compression waves. 

 The under-prediction of shock velocities by the ideal models was also reported in 1-D 

(94) and multi-dimensional
 
(8) (36) (37) (38) (73) numerical studies which incorporated a finite 

time model for the opening of the diaphragm. The higher-than-ideal shock velocities were 

explained by a combination of mechanisms including heating of driver gas during pressurization, 

finite opening time of the diaphragm, multi-dimensional effects (5), and an entropy rise through 

the oblique shock structure which exists temporarily downstream of the diaphragm while it is 

opening (37). 

 In this study, the shock velocities predicted by the axi-symmetric model are below the 

ideal theory by up to 25% for pressure ratios raging from 5 to 100 for Ar test gas and from 25 to 

300 for N2 test gas. According to the one-D theories of White (4) and Ikui et al. (93), the shock 

velocities should be in close agreement with the ideal theory for pressure ratios below 10
3
. The 
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disagreement of the current model with the ideal theory and modeling results of other studies can 

be explained by the following. First, the current model does not take into account the gradual 

opening of the diaphragm which causes an acceleration of the shock wave downstream the 

diaphragm. Second, the ideal theories of White  and Ikui et al. (93) and the experimental and 

simulation studies reported elsewhere
 
(4) (5) (7)

 
(8) (36) (38) (73) (92) (93) (94) were based on 

constant-area tubes, while the current shock-tube model is comprised of a diverging/conical 

section downstream of the diaphragm. Alpher and White
 
(95)developed a modified ideal theory 

to account for unequal area changes in the diaphragm, however it was based on shock tubes with 

a converging section at the diaphragm and this model produces even stronger shocks and higher 

velocities than the constant area tubes. Therefore, to produce the same shock speed as the ideal 

theory, higher pressure ratios across the diaphragm have to be applied because of the area 

increase at the diaphragm section.  

  It is important to note when validating the model with the analytical solution or 

experimental data that the shock Mach number and flow properties predicted from the axi-

symmetric model have to match the analytical solution and experimental measurements 

regardless of the pressure ratio across the diaphragm. It is not expected that the same pressure 

ratio between the model and the analytical solution or experiment will yield the same incident 

shock Mach number and therefore the same flow conditions. That is, regardless of the driver 

pressure required to produce a given shock Mach number, once the shock is formed, the 

properties behind it must match ideal theory. 

 Provided in Figure 17 are the predicted temperatures behind the reflected shock for a 

range of calculated incident-shock Mach numbers from the axi-symmetric model in a) Ar and b) 

N2 test gases. The 1-D theory results are also given. The results show that there is a good 
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agreement between the axi-symmetric inviscid model and the 1-D ideal theory as expected, so 

the curves are coincident. 
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b) 

Figure 17: Temperature behind reflected shock (T5 ) versus incident shock Mach number (Ms). 

Numerical results are for a) Ar and b) N2 test gases. The T5 and Ms predicted by the model  are in good 

agreement with the 1-D theory solution 
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CHAPTER FOUR: VISCOUS SOLUTION 

Introduction 

 

 In the previous chapter, the flow was assumed to be inviscid, neglecting the effects of the 

viscous boundary layer. Overall, the inviscid model has proven to be capable of resolving the 

shock and contact discontinuities and accurately simulating the flow evolution from the rupture 

of the diaphragm all the way to the end of the shock-tube experiment. However, when shock-

tube non-idealities need to be modeled to quantify their impact on the flow uniformity in the test 

region, viscous effects have to be taken into consideration. In this respect, this chapter introduces 

a viscous model of the shock tube which simulates the non-ideal behaviors in the shock-tube 

flow fields, the flow non-idealities in the shock-Tube nozzle, heat transfer effects from the hot 

gas to the shock-tube side wall, contact surface/reflected shock interactions, reflected 

shock/boundary layer interaction or what is known as bifurcation, and finally driver gas 

contamination.  

 As a first step towards modeling the non-idealities in the shock tube, the boundary layer 

is assumed as laminar, and a conjugate heat transfer model is incorporated to account for the heat 

losses from the test region hot gas to the cold shock-tube walls. The accuracy of the simulations 

is enhanced by modeling the boundary layer in the shock tube as turbulent and the k-ε realizable 

turbulence model was used in some cases. For the turbulent cases, the turbulent boundary layer 

mesh was carefully treated, and the enhanced wall treatments were utilized to ensure a y+ value 

close to 1 in order to guarantee the flow structure is resolved all the way to the viscous sub-layer. 
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Governing Equations 

 

Navier-Stokes Equations 

 

The conservation of momentum is described by: 

 
߲ሺݒߩԦሻ߲ݐ ൅ .׏ ሺݒߩԦݒԦሻ ൌ െܲ׏ ൅ .׏ ሺ߬Ӗሻ ൅ ߩ Ԧ݃ ൅ Ԧܨ  (29) 

Where P is the static pressure, ߩ Ԧ݃ is the gravitational body force, ܨԦ is the external body forces, 

and ߬Ӗ is the stress tensor which is given by: 

 ߬Ӗ ൌ ߤ  ൤ሺݒ׏Ԧ ൅ Ԧ்ሻݒ׏ െ 23 .׏ Ԧݒ  ൨ (30)ܫ

Where ߤ is the molecular viscosity,  ܫ is the unit tensor, and 
ଶଷ .׏  is the effect of volume ܫ Ԧݒ

dilation. For axi-symmetric models, the conservation of momentum in the axial and radial 

directions is described by Eqns. (31) and (32), respectively, 

 

ݔ െ ݐ߲߲  :݉݋݉ ሺݒߩ௫ሻ ൅ ݎ1 ݔ߲߲ ሺݒߩݎ௫ݒ௫ሻ ൅ ݎ1 ݎ߲߲ ሺݒߩݎ௥ݒ௫ሻ
ൌ െ ݔ߲߲ܲ ൅ ݎ1 ݔ߲߲ ൤ߤݎ ൬2 ݔ௫߲ݒ߲ ൰ െ 23 ሺ׏. Ԧሻݒ ൨ ൅ ݎ1 ݎ߲߲ ൤ߤݎ ൬߲ݒ௫߲ݎ ൅ ݔ௥߲ݒ߲ ൰ ൨ ൅  ௫ܨ

(31) 

 

 

ݎ െ ݐ߲߲  :݉݋݉ ሺݒߩ௥ሻ ൅ ݎ1 ݔ߲߲ ሺݒߩݎ௫ݒ௥ሻ ൅ ݎ1 ݎ߲߲ ሺݒߩݎ௥ݒ௥ሻ
ൌ െ ݎ߲߲ܲ ൅ ݎ1 ݎ߲߲ ൤ߤݎ ൬2 ݎ௥߲ݒ߲ ൰ െ 23 ሺ׏. Ԧሻ ൨ݒ ൅ ݎ1 ݔ߲߲ ൤ߤݎ ൬߲ݒ௥߲ݔ ൅ ݎ௫߲ݒ߲ ൰ ൨ െ ߤ2 ଶݎ௥ݒ
൅ 23 ݎߤ ሺ׏. Ԧሻݒ ൅ ߩ ݎ௥ଶݒ ൅  ௥ܨ

(32) 

Where x is the axial coordinate, r is the radial coordinate, ߴ௫ is the axial velocity, and ߴ௥is the 

radial velocity.  



55 

 

 When the flow is turbulent, the solution variables in the Navier-Stokes equations are 

decomposed into the mean and fluctuating components where the mean components are 

ensemble-averaged or time-averaged. The velocity component is then given by: 

௜ݑ  ൌ ത௜ݑ ൅  ᇱ௜ (33)ݑ

Where ݑത௜ and  ݑᇱ௜ are the mean and fluctuating velocity components. Similarly, other scalar 

properties are expressed as such, 

׎  ൌ ഥ׎ ൅  ᇱ (34)׎

And  ׎ represents any scalar quantity. The velocity component ݑ௜ is then substituted into the 

continuity and momentum equations to yield the ensemble-averaged momentum equations which 

can be written in Cartesian tensor form as follow, 

 
ݐ߲ߩ߲ ൅ ௜ݔ߲߲ ሺݑߩ௜ሻ ൌ 0 (35) 

 

 
߲ሺݑߩ௜ሻ߲ݐ ൅ ௝ݔ߲߲ ൌ ௝ݔ߲߲  ቈߤ ቆ߲ݑ௜߲ݔ௝ ൅ ௜ቇݔ௝߲ݑ߲ െ 23 ௜௝ߜ ௟ݔ௟߲ݑ߲ ቉ ൅ ௝ݔ߲߲ ൫െݑߩపᇱݑఫᇱതതതതതത൯ െ ௜ݔ߲߲ܲ  (36) 

 

Eqs. (35) and (36) are called Reynolds-Averaged Navier-Stokes (RANS) equations. A new term 

appears on the right hand side of Eq. (36) given by െݑߩపᇱݑఫᇱതതതതതത and represents the Reynolds stresses. 

The Reynolds-averaged approach requires the modeling of the Reynolds stresses in order to 

close the momentum equation.  This is achieved with the Boussineq hypothesis, proposed by 

boussinesq in 1877, which relates the Reynolds stresses to the mean velocity gradients: 

 െݑߩపᇱݑఫᇱതതതതതത ൌ ௧ߤ ቆ߲ݑ௜߲ݔ௝ ൅ ௜ቇݔ௝߲ݑ߲ െ 23 ൬݇ߩ ൅ ௧ߤ ௞൰ݔ௜߲ݑ߲ ௜௝ߜ  (37) 
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Where ߤ௧ is the turbulent viscosity or the eddy viscosity. A similar assumption can be used for 

the turbulent fluctuation terms that appear in the scalar transport equations. Consider a scalar 

property ׎ ൌ ഥ׎ ൅   ,ᇱ׎
 െݑߩపᇱ׎ᇱതതതതതത ൌ ௧߁  ௜ (38)ݔ߲׎߲

Where Γt is the turbulent diffusivity. The turbulent diffusivity is calculated from the turbulent 

viscosity ߤ௧, using a model constant called the turbulent Schmidt number σt, 

 
t

t
t Γ

=
μσ  (39) 

Experiments have shown that the turbulent Schmidt number is nearly constant with typical 

values between 0.7 and 1. 

 

Energy Equation  

 

The energy transport equation for viscous flows is given by: 

 
߲ሺܧߩሻ߲ݐ ൅ .׏ ሾ ሬܸԦሺܧߩ ൅ ሻሿ݌ ൌ .׏ ሾ݇௘௙௙ܶ׏ െ ෍ ௝݄ܬ௝ ൅ ሺ߬Ӗ௘௙௙ . ሬܸԦሻሿ ൅ ܵ௛௝  (40) 

Where,  ܧ ൌ ݄ െ ௉ఘ ൅ ௏మଶ   is defined per unit mass in terms of pressure work and kinetic energy. 

The first three terms on the right hand side of equation represent energy transfer due to 

conduction, species diffusion, and viscous dissipation, respectively. The heat flux due to 

conduction is given by: 

.׏  ሺ݇௘௙௙ܶ׏ሻ (41) 

Where ݇௘௙௙ is the effective thermal conductivity and is equal to the local thermal conductivity 

plus the turbulent thermal conductivity, 
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 ݇௘௙௙ ൌ ݇ ൅ ݇௧ (42) 

For the standard and realizable κ−ε models, the effective thermal conductivity is given by, 

 ݇௘௙௙ ൌ ݇ ൅ ܿ௣ߤ௧ܲݎ௧  (43) 

The default value of the turbulent Prandtl number is 0.85 and ߤ௧ is the turbulent viscosity. The 

viscous dissipation term is given by, 

.׏  ሺ߬Ӗ௘௙௙ . ሬܸԦሻ (44) 

Also called the viscous heating, describes the thermal energy created by viscous shear in the 

flow. The species diffusion term is given by, 

.׏  ෍ ௝݄ܬ௝௝  (45) 

And includes the effect of enthalpy transport due to species diffusion. ܬ௝ is the diffusion flux of 

species j is given by Eq. (46) for laminar flows and by Eq. (47) for turbulent flows, 

Ԧ௝ܬ  ൌ െ൫ܦߩ௝,௠൯׏ ௝ܻ (46) 

Ԧ௝ܬ  ൌ െ ൬ܦߩ௝,௠ ൅ ௧ܵܿ௧൰ߤ ׏ ௝ܻ  
(47) 

Where ܦ௝,௠  is the mass diffusion coefficient for species j and  ܵܿ௧ is the turbulent Schmidt 

number and is given by, 

 ܵܿ௧ ൌ  ௧ (48)ܦߩ௧ߤ
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 ௧ is the turbulent diffusivity. The default ܵܿ௧ is 0.7. The energyܦ ௧ is the turbulent viscosity, andߤ

source ܵ௛ is only included when reactive flow is modeled. In the solid region, the conduction of 

heat is modeled by the following energy equation, 

 
߲ሺ݄ߩሻ߲ݐ ൅ .׏ ሾ ሬܸԦሺ݄ሻሿ ൌ .׏ ሺܶ׏ܭሻ ൅ ܵ௛ (49) 

Where Sh is the volumetric heat source and h is the sensible enthalpy given by,  

 ݄ ൌ න ܿ௣்݀ܶ
்ೝ೐೑  (50) 

With a Tref of 300 K. The second term on the left hand side of equation 2 represents convective 

energy transfer due to the motion in the solid. In the model considered herein, the convective 

term in the solid does not apply.  

 

Turbulence Modeling 

 

 The turbulence models which use the Boussineq hypothesis include the one equation 

Spalart-Allmaras model (96), the two-equation k-ε models including the standard k-ε model (97), 

the RNG k-ε model (98), and the Realizable k-ε model (99). Other improved two-equation 

models include the standard k-ω model (100) and the SST k-ω model (101). This approach is 

widely used due to the low computational cost associated with modeling the turbulent viscosity, 

however the Boussineq hypothesis assumes ߤ௧ to be isotropic. This assumption is not necessarily 

true especially when strong separation and swirl are present in the flow. The alternative approach 

is to solve transport equations for each of the terms in the Reynolds stress tensor ending up with 
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more transport equations to solve and thereby increasing the computational cost. The turbulent 

Reynolds-Stress model (102) adopts such approach and is often called a second order closure. 

Although it can model anisotropy turbulence, the increased computational efforts are not 

justified when simpler models which use the Boussineq Hypothesis yield accurate results except 

in the cases of highly swirling flows and stress driven secondary flows. Table 5 lists the different 

RANS turbulence models available in FLUENT and the characteristics of each model (103). It is 

important to note that all of the turbulence models displayed in Table 5 were adopted to 

investigate the impact of the different turbulence models on the shock tube flow field properties. 

Although the computational efforts increased with the SST and RSM models, the solution 

behaved independently of the turbulence models. It was then decided that the κ−ε realizable 

model would be most appropriate for modeling the turbulence in the shock tube flow fields 

within an acceptable time frame. 

Table 5: RANS turbulence models available in FLUENT (103) 

RANS Model Characteristics 

Spalart-Allmaras  One Equation Model 

Standard k-ε  Two Equation Model 

RNG k-ε  Variant of standard k-ε 

 Additional term in ε equation for interaction between 

turbulence dissipation and mean shear 

 Analytical formula for turbulent Prandtl number 

 Differential formula for effective viscosity 

Realizable k-ε  Variant of standard k-ε 

 New formulation for turbulent viscosity 

 New transport equation for ε 

 Variable Cμ instead of constant 

Standard k-ω  Two equation model 

 Solves for k and ω, the specific dissipation rate 

SST k-ω  Variant of Standard k-ω model 

 Acts as the  k-ω in near wall region 

 Acts as standard k-ε in the free stream 
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Reynolds Stress Model 

(RSM) 

 Five equation model 

 Accounts for history, transport, and anisotropy of turbulent 

stresses 

 Accounts for streamline curvature, swirl, rotation and high 

strain rates 

  

 In addition to the Reynolds Stress Model (RSM) which models anisotropic turbulence, 

Large Eddy Simulation (LES) model is based on space filtered equations and directly resolves 

the large eddies. It requires extensive computational efforts in addition to a very fine mesh. Time 

dependent calculations are performed and the effect of the small eddies on the flow pattern is 

taken into account with a “subgrid model” of which many styles are available. Figure 18 shows 

the difference between RANS, LES and DNS approaches in resolving the eddies, the flux of 

energy, and the dissipation of energy. On the other hand, in Direct Numerical Simulation (DNS), 

the Navier Stokes equations are solved numerically and the range of  the turbulent spatial and 

temporal scales are resolved from the large scale eddies all the way to the smallest dissipative 

scales. DNS requires the most computational efforts which makes it not practical in the 

computational fluid dynamics world, while RANS requires the least computational effort. RANS 

methods, although computationally affordable, provide averaged results which are inferior to 

LES results, for this reason, zonal approaches are often adopted with LES modeling where LES 

is adopted in the core region and RANS or other empirically-based models replacing LES in the 

wall region. 

 



61 

 

 

Figure 18:  The difference between RANS, LES and DNS approaches in resolving the eddies, the flux of 

energy, and the dissipation of energy (104) 

  

 

Wall treatment in turbulent modeling 

 

 The k-ε , RSM, and LES models are valid for turbulent flows far from the wall. Very 

close to the wall, near wall modeling procedures are required based on the region that needs to be 

resolved. The near-wall region in turbulent flows can be subdivided into three layers; The 

viscous sublayer which is the innermost layer where the flow properties are characterized by 

being quasi-laminar; the fully turbulent region or log layer characterized by equally important 

effects of molecular viscosity and turbulence; and finally the outer layer where turbulence plays 

a major role. Figure 19 illustrates these subdivisions of the near-wall region, plotted in semi-log 

coordinates. 

 There exist two different ways to model the near wall region. When the viscous sub-layer 

cannot be resolved, empirical formulas called wall functions are used to bridge the viscous 
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region near the wall with the fully turbulent region away from the wall.  The grid requirement for 

the near wall approach is such that the wall unit y+ falls between a value of 30 and 300. The first 

grid point should be placed in the log layer with at least ten points in the boundary layer. The y+ 

is given by, 

ାݕ  ൌ ߤݕఛߤߩ  (51) 

Where ߤఛ is the friction velocity and it is defined by: 

ఛߤ  ൌ ඥሺ߬௪/(52) ߤ 

On the other hand, when the viscous sub-layer needs to be resolved, the enhanced or near-wall 

modeling approach is used such that the mesh is finer near the wall. In this case the y+ value 

needs to be close to 1 with an acceptable value of less than 5. The first grid point should be 

placed at y+ = 1 with at least ten grid points placed in the buffer and sub-layer. Figure 19 

illustrates the different regions near the wall and their corresponding y+ values. 

 

Figure 19: The different near wall regions and corresponding y+ values (104) 
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Simulations of Shock-Tube Non-Idealities 

 

Shock-Tube Nozzle Section 

 

 There exist very few numerical studies which modeled the propagation of the shock wave 

in an area-changing shock tube (71) (105) (106) (107). In particular, Chang and Kim (55) 

performed numerical simulations in a circular shock tube suddenly expanded three times the 

original diameter. Upon the passage of the wave from the small diameter tube to the expanded 

tube, the flow structure became much more complicated due to the nonlinear interaction of the 

many flow elements confined in a limited flow passage, and a blast jet structure was produced. 

The complicated dynamics were associated with blast waves which then transformed into a 

planar shock wave further downstream. The pressure drop in the shock-tube nozzle illustrated in 

Figure 20 is attributed to the nonlinear transient interactions in the nozzle section of the shock 

tube, which are physical and not an artifact of the numerical scheme utilized herein.   
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Figure 20:  Sequence of pressure contours (atm) showing the propagation of the incident shock wave in 

the shock-tube nozzle. First, pressure in the nozzle increases due to passage of the incident shock wave 

and induced flow then pressure drops due to flow over-expansion in the nozzle. Time instances are given 

in the upper right corner of each frame. IS = Incident shock Wave, EF = Expansion Fan  

 

 The shock formation and transmission occur at a much faster rate than the pressure wave 

propagation leading to an over-expanded flow region lagging behind the incident shock wave. 

This causes a pressure drop in the nozzle section of the shock tube. The time-accurate solutions 

are able to reproduce this transient phenomenon and model the pressure drop accordingly. Figure 

21 and Figure 22 illustrate this process and show the averaged static pressure and Mach number 

profiles, respectively, monitored versus time at a location 10 cm downstream of the diaphragm. 

The total length of the diverging nozzle is about 17 cm long. Immediately following the 

diaphragm rupture, the pressure rises to 0.48 atm due to the passage of the incident shock wave 

followed by a quasi-sharp drop to 0.07 atm due to the sudden over-expansion of the entrained 

flow behind the incident shock. This is equivalent to a pressure drop of 82%. The pressure in the 

conical nozzle remains constant until the expansion fan arrives at the diaphragm location at a 

487 μs 

650 μs 

17cm 0 cm 
44 cm43 cm 
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time of 7 ms with an under-expanded flow relative to the existing flow in the conical nozzle. 

This causes the pressure to increase and the velocity to decrease and thus reducing the overall 

pressure drop in the conical nozzle section from 82% to 52%.  

 

 

Figure 21: Monitored averaged static pressure at a location 10 cm downstream of the diaphragm. There is 

a  pressure increase at Time = 0+ due to incident shock wave formation followed by a  pressure drop due 

to flow undergoing expansion in the nozzle section. The bottom figure is a close-up of the top figure  
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Figure 22:  Monitored averaged Mach Number at a location 10 cm downstream of the diaphragm.  

Initially, the Mach number increases due to incident shock wave passage then the flow is further 

accelerated due to over-expansion in the nozzle downstream the diaphragm. The bottom figure is a close-

up of the top figure 
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 To further confirm that these flow instabilities in the nozzle section are related to the 

transient nonlinear flow physics in the nozzle section, numerical results were obtained for a 

constant-area tube with the 2
nd

 order scheme. Figure 23 shows the density (a) and pressure (b) 

profiles along the shock-tube axis. Note that the solution is completely free of the transient 

nonlinear effects in the nozzle section, and the pressure drop previously noticed with the 

diverging-area shock tube is totally suppressed. This confirms that the pressure drop in the 

nozzle section is a physical behavior which should not be misinterpreted for the nonphysical 

spurious oscillations attributed to the accuracy of the numerical scheme employed.   
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b)  

Figure 23:  a) Density and b) pressure distribution along the axis of a constant area shock tube.  

 

 

Heat Transfer Effects 

 

 Ideally, the endwall region behind the reflected shock wave is assumed to be isothermal 

before chemical reaction takes place. However in real shock tube experiments and especially 

when the test times are relatively long, the isothermal assumption becomes invalid, and heat 

losses from the hot gas and the cold wall become important and should be accounted for in shock 

tube modeling studies.  
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Background 

 Heat transfer in shock tubes has been investigated experimentally (23) (24) (25) (108) 

(109) (110) and the effect of the thermal boundary layer on the reflected shock structure and the 

flow properties near the endwall region have been analyzed theoretically  (29) (30) (31) (32) and 

numerically based on the gas kinetic models (BGK) (33)  and the 1-D Navier Stokes equations 

(34) (35). 

 Corey Frazier studied heat loss from the hot gas to the cold shock-tube wall behind the 

reflected shock wave following a pure conduction solution. The flow behind the reflected shock 

was assumed to be stationary and effects of boundary layer reflected shock interactions were 

ignored. A two-dimensional model was used to analyze the heat transfer over the entire endwall 

region under long test times and high pressure conditions. Results showed that even at the worst 

test conditions of higher temperatures and low pressures where the boundary layer is the thickest 

and at test times as long as 20 ms, the boundary layer is well outside the hot gas endwall region 

(32). 

 The Modeling of the interaction of the incident shock with the endwall at varying 

temperatures has been investigated in a number of studies. All are based on the Navier-Stokes 

equations. Goldsworthy (29) made an analysis for the flow region behind the reflected shock 

waves using boundary layer theory. Clarke (30) modeled the interaction of the incident shock 

with the endwall and analyzed the thermal boundary problem by applying the method of matched 

asymptotic expansions. The temperature jump conditions with accommodation effects were 

included. In particular the Thermal Raleigh Problem (TRP) was investigated.  It refers to the 

reaction of a compressible semi-infinite fluid adjacent to a solid impermeable wall. Equivalently, 
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it is the reaction of the fluid to a step wise uniform isentropic expansion compression while 

keeping its temperature at x=0 fixed. The fluid will react by the formation of a compressible 

boundary layer, thereby inducing expansion waves and compression waves in the fluid, even 

formation of shock waves may occur. The thermal boundary layer problem has been analyzed in 

detail by Clarke (30) by applying the method of matched asymptotic expansions. Keck then 

came up with s simplified version of Clarke’s theory (31). Mirels (60) (61) studied heat loss to 

the shock tube walls by convection from the moving gas behind the incident shock to the moving 

gas in the growing boundary layer with focus on boundary layer profile temperature rather than 

core flow temperature. Hanel and Gronig (34) modeled heat transfer effects behind the reflected 

shock using a finite difference scheme for strong shocks and matched asymptotic expansions for 

weak shocks. The temperature jump condition with accommodation effects was accounted for in 

addition to adsorption effects on the wall. Onishi (33) studied the interaction of the reflected 

shock with the endwall in order to quantify the velocity behind the reflected shock towards the 

wall. Ideally, the Euler equations predict zero and uniform velocity behind the wall. However, 

the thermal and viscous boundary layers resulting from the interaction process cause the shock to 

lose its energy.  The weakened shock is not strong enough to cancel out the velocity induced by 

the incident shock wave and the magnitude of the velocity is several percent of velocity behind 

incident shock. The BGK model of the Boltzmann equation subject to the condition of diffuse-

reflection at the wall was used for the study.  The BGK model produces the same equations as 

the Navier-Stokes with the viscosity and thermal conductivity proportional to the local 

temperature of the continuum limit and the Prandtl number is assumed to be unity. Onishi stated 

that the interaction process should be modeled based on the kinetic theory because time and 

length scales under study are of the order of the collision time between the molecules and the 



71 

 

mean free path. Luo et al. (35) studied the development of the thermal boundary layer as a result 

of interaction between the reflected shock  and the endwall by solving the 1-D full Navier-Stokes 

equations based on CESE space time conservation element and solution element method. Results 

showed that shock-induced entropy disturbances can be neglected for disturbances more than 

1mm from wall and also showed that shock trajectory is slightly affected by boundary layer 

development. For strong shocks, the accelerating reflected shock causes layer of varying entropy 

such that temperature and density are not uniform in the entropy layer. They also showed that 

thermal boundary layer at the driver endwall won’t affect nucleation but may have some 

influence on droplet growth for low pressure conditions and He driver gas. The thermal 

boundary layer induced by shock reflection has also been extensively studied by Luo et al. (35) 

to obtain experimental information on the thermo-physical properties of gases such as thermal 

conductivities. 

 

Conjugate Heat Transfer Model 

 To correctly predict the thermal field in the test region of the shock tube, the Conjugate 

Heat Transfer (CHT) approach is adopted. The heat transfer is computed by coupling the 

conduction of heat through the shock tube solid wall thickness with convective heat transfer in 

the fluid. Therefore two zones are specified in the grid generation, the solid and the fluid zones. 

Here the wall thickness must be meshed and the coupled thermal boundary condition is available 

on the wall zone which separates two cell zones. As such, the wall thermal resistance is directly 

accounted for in the energy equation. The boundary between the two zones is always a wall and 

a shadow zone is created automatically by FLUENT. Figure 24 illustrates the setup of the 
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conjugate heat transfer model. The shock tube walls material is stainless steel with a density of 

8030 kg/m
3
, constant specific heat of 502.48 j/kg-K, and thermal conductivity of 16.27 W/m-K. 

The shock tube wall temperature is initially set to 300 K. Thermo-physical setup of the 

compressible flow assumes ideal gas density and uses the mixing law for constant specific heat. 

The thermal conductivity is set to 0.0454 W/m-K, the viscosity to 1.72 ൈ 10
-5 

kg/m-s, and the 

mass diffusivity to 2.88 ൈ  10
-5

 m
2
/s.  

 The numerical simulations of the fluid flow and heat transfer in the shock tube were 

accomplished by solving the conservation equations of mass, momentum, energy and species. Of 

interest to the current study, is the energy transport equation for non-reacting flow given by the 

following, 

 
߲ሺܧߩሻ߲ݐ ൅ .׏ ሾ ሬܸԦሺܧߩ ൅ ሻሿ݌ ൌ .׏ ሾ݇௘௙௙ܶ׏ െ ෍ ௝݄ܬ௝ ൅ ሺ߬Ӗ௘௙௙ . ሬܸԦሻሿ௝  (53) 

 

 

 

Figure 24: Conjugate Heat Transfer model setup. The thermal boundary conditions are supplied on the 

inner surfaces of uncoupled wall/shadow pairs    
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Shock Tube Simulations 

 For the CHT simulation, the primary goal was to set the shock-tube driver and driven 

initial conditions such that they would produce a long test time behind the reflected shock wave 

at the conditions that produced the most extreme change in average test temperature at long 

times for an 800-K test, which occurs at a 1-atm pressure condition in Argon. Viscous 

simulations were carried out in the entire shock tube geometry for multiple test conditions and 

driver gas compositions.  Figure 25 shows the shock-tube flow field solution obtained with the 

conjugate heat transfer model.  
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c) Mach numbers 

 

Figure 25: Conjugate heat transfer solution of a) temperature, b) pressure, and c) Mach number flow 

fields at 2.5 ms of elapsed time from diaphragm rupture.  Initial condition were carefully chosen to 

produce temperature and pressure behind the reflected shock of 800K and 1 atm respectively and in Ar 

test gas. Driver mixture comprised of Propane and He to tailor to longer test times up to 15 ms after the 

incident shock reflection.  IS = Incident Shock, CS = Contact Surface, EF = Expansion Fan. 

 

Driver Gas Tailoring 

 In conventional shock tubes, Helium is usually the driver gas of choice for it is known to 

produce strong shocks due to its high speed of sound and its low molecular weight. However, 

this results in fast-propagating expansion waves which reach the contact surface before the 

reflected shock does and then arrive at the endwall, thereby ending the test time. Helium 

produces test times on the order of 1-3 ms which are not sufficient for experimental 

measurements at lower temperatures. Figure 26 shows the endwall pressure trace obtained with a 

driver composition of 100% He and a test gas of 100% Ar. Note that the test time achieved 

behind the reflected shock tube and under which the conditions remain uniform is only about 1.6 

ms which is not sufficient for autoignition studies at lower temperatures which require much 

longer test times. One way to avoid the early ending of the test time is to retard the arrival of the 

expansion wave at the endwall by extending the driver section length. Another way is to shorten 

ISCS 

Driver Section Driven Section 4.72 m 0 m -2.5 m 
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the driven length to ensure the reflected shock reaches the contact surface before the expansion 

fan does. If it is not possible to modify the facility, tailoring with heavier driver gas mixtures 

such as Propane and Carbon Dioxide result in extended test times.  

 For example, Amadio et al. (111) performed non-reactive and reactive shock tube 

experiments performed using He/CO2 and He/C3H8 driver mixtures in order to tailor the contact 

surface between the driver and driven gases to produce longer test times.  Test times of the order 

of 15 ms were achieved for nonreactive cases, while ignition times over 5 ms were possible for 

shock reflected temperatures below 1000 K versus only 1 ms test times with 100% He driver-

gases only. The last two approaches usually yield test times on the order of 10 ms for the facility 

dimensions utilized herein. When even longer test times are desirable, a combination of both 

shock-tube modifications and contact surface tailoring can produce test times as long as 20 ms.  

 
 

Figure 26: Typical endwall pressure trace at 800 K and 0.95 atm using a driver gas composition of 100% 

He and Ar as the test gas.  He produced fast propagating expansion waves that reached the endwall sooner 

resulting in a test time of only 1.6 ms  
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 A tailored condition is when there exists no pressure discontinuity at the point of 

interaction between the reflected shock and the contact surface. For that matter, the driver gas 

composition has to be adjusted until the same pressure is achieved on both sides of the 

discontinuity. Figure 27 shows the endwall pressure simulated with the laminar model at a quasi-

tailored condition where the pressure non-discontinuity condition was enforced to be as close as 

possible to 1. As a result, the test time under which the flow properties in the test region are 

uniform was extended from 5.64 to 9.5 ms. Since it is difficult to judge the correct driver 

composition to yield a perfectly tailored condition, several viscous laminar simulations were 

performed with different driver gas mixtures. The majority of the simulations resulted in a 

pressure discontinuity upon the encounter of the reflected shock and the contact surface. When 

the pressure discontinuity is a sudden decrease, a shock wave forms and travels towards the 

endwall, increasing the test region pressure even further as shown in Figure 28. In case the 

pressure discontinuity is a sudden increase, an expansion wave forms and travel towards the 

endwall decreasing the test region pressure as displayed in Figure 29. Both the over-tailored and 

under-tailored conditions produce test times on the order of 5 ms. 

 There were also few cases in which  the tailored driver composition resulted in expansion 

waves that reached the contact surface before the reflected shock did at a slower rate than using 

pure helium driver mixture resulting in test times on the order of 2.5-4 ms. This is illustrated in 

Figure 30 and  Figure 31. 
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Figure 27: Quasi-tailored endwall pressure trace at 800 K and 1 atm using a driver gas composition of 

40% propane + 60% helium and Ar as the test gas.  The discontinuity in pressure from the compression 

wave is weak relative to the pressure behind the reflected shock allowing for test time extension up to 9.5 

ms.   

 
 

Figure 28: Over-tailored endwall pressure trace at 800 K and 0.95 atm using a driver gas composition of 

100% propane and Ar as the test gas. The test time of 4.98 ms is ended by the pressure increase from the 

compression wave formed as a result of interaction between the contact surface and the reflected shock.  

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

5.64 ms

Contact Surface Disturbance

weak Compression Wave

Test Time = 9.5 ms

Head Expansion 

    Wave

T = 800 K

P = 1 atm

Driver Gas: 40% C
3
H

8
 + 60 % He

Driven Gas: 100% Ar

 

 

P
re

s
s
u

re
, 

a
tm

Time, ms

Quasi-Tailored Condition

Viscous Laminar Model

0 5 10 15 20 25 30
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Head Expansion 

    Wave

Contact Surface Disturbances

Compression Waves

Test Time = 4.98 ms

 

Over-Tailored Condition

Viscous Laminar Model

T = 800 K

P = 0.95 atm

Driver Gas: 100% C
3
H

8

Driven Gas: 100% Ar

P
re

s
s
u

re
, 

a
tm

Time, ms



78 

 

 

 
 

Figure 29: Under-tailored endwall pressure trace at 800 K and 1.1 atm using a driver gas composition of 

26.6% propane + 73.3% helium and Ar as the test gas.  The expansion wave from the contact surface 

arrives at the endwall after 5.23 ms of test time.  

 
 

Figure 30:  Non-tailored endwall pressure trace at 800 K and 0.94 atm using a driver gas composition of 

3.75% CO2 + 96.25% He and Ar as the test gas.  The expansion wave reached the contact surface before 

the reflected resulting in a reduced test time of 2.5 ms.  
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Figure 31:  Non-tailored endwall pressure trace at 720 K and 0.92 atm using a driver gas composition of 

8.31% C3H8 + 91.6% He and Ar as the test gas.  The expansion wave reached the contact surface before 

the reflected resulting in a reduced test time of 3.7 ms.  

  

 Several runs were performed with different driver-gas mixture compositions to achieve 

the longest test time possible at the conditions of 800 K and 1 atm. Test times can be extended up 

to 20 ms by the use of unconventional driver gases such as C3H8/He, CO2/ He, or a combination 

of C3H8/CO2/He mixtures as have been shown by Amadio et al.(111). Table 6 and Table 7 give 

the simulation results for different test conditions ran with driver gas tailoring in the regular 

shock-tube geometry and in the modified driver length geometry respectively. The driver length 

in the shock-tube model was modified from 2.5 m to 4 m in order to delay the arrival of the 

expansion fan to the endwall thereby extending the test time further. The corresponding endwall 

pressure profiles for the longer driver tube are provided for the non-tailored (Figure 32), under-
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tailored (Figure 33, Figure 34, and Figure 35), over-tailored (Figure 36 and Figure 37), and 

quasi-tailored (Figure 38) conditions.  

 

Table 6: The laminar/CHT simulations showing the test conditions used in driver gas tailoring. Driven 

gas is Ar  

Driver Mixture*  T5 (K)  P5 (atm) P1 (atm) P4 (atm) P4/P1 Test Time 
(ms) 

100% He  850  1.07 0.1 2 20 1.6 
   830  1.025 0.1 1.9 19 1.8 
   800  0.94 0.1 1.7 17 2 
   824  0.975 0.1 1.8 18 1.8 
   780  0.9 0.1 1.6 16 2 

3.75% C3H8 + 96.25% He 790  0.9 0.1 1.85 18.5 2.5 
   800  0.93 0.1 1.9 19 2.5 

3.75% CO2 + 96.25% He  775  0.87 0.1 1.8 18 2.5 
   785  0.9 0.1 1.9 19 2.5 
   800  0.94 0.1 2 20 2.5 

8.3% C3H8 + 91.6% He  760  0.85 0.1 2 20 3.5 
   790  0.925 0.1 2.2 22 4 
   825  1 0.1 2.5 25 4 
   900  1.19 0.1 3 30 4 

8.3% CO2 + 91.6% He  730  0.8 0.1 2 20 3.5 
   860  1.1 0.1 3 30 3.6 

26.6% C3H8 + 73.3% He  800  1.11 0.11 3.19 29 5.2 

40% C3H8 + 60% He  800  1.01 0.11 3.19 29 9.5 

100% C3H8   605  0.52 0.1 1.85 18.5 8 
   620  0.56 0.1 2 20 8 
   800  0.95 0.1 4 40 5 

100% CO2  570  0.45 0.1 1.85 18.5 8 
   578  0.475 0.1 2 20 8 
   725  0.78 0.1 4 40 5 

*Driver gas compositions are given in volumetric percentages 
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Table 7: The laminar/CHT model simulations showing the test conditions used in driver gas tailoring 

studies for the longer driver shock-tube model. Driven gas is Ar 

Driver Mixture*  T5 (K) P5 (atm) P1 (atm) P4 (atm) P4/P1  Test Time 
(ms)

100% He  824 0.98 0.1 1.8 18.00  3.8

   800 0.94 0.1 1.7 17.00  4

1.41% C3H8 + 1.53% CO2 + 97.05% He   925 1.22 0.1 3 30  4.8

   860 1.15 0.1 2.6 26  5

   807 0.96 0.1 2.2 22  5.1

8.3% C3H8 + 91.6% He  795 0.93 0.1 2.2 22.00  5

26.6% C3H8 + 73.3% He  925 1.21 0.1 3.7 37  5

   895 1.13 0.1 3.4 34  5

   850 1.05 0.1 3.1 31  5

   800 0.93 0.1 2.7 27  5.2

40% C3H8 + 60% He  800 0.95 0.1 2.9 29  15

   800 1.01 0.11 3.19 29  15

45% C3H8 + 50% He  800 0.94 0.1 3 30  5

100% C3H8   800 0.95 0.1 4 40  5

*Driver gas compositions are given in volumetric percentages 

 
Figure 32: Endwall pressure trace in the longer driver shock tube at 800 K and 0.95 atm using a driver gas 

composition of 100% He and Ar as the test gas.  The driver length extension from 2.5 to 4 m resulted in 

test time extension from 1.6 to 4 ms 
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Figure 33: Under-tailored endwall pressure in the longer driver shock-tube trace at 805 K and 0.96 atm 

using a driver gas composition of  1.41% C3H8 + 1.53% CO2 + 97.05% He and Ar as the test gas.  The 

contact surface expansion wave arrives at the endwall after 5.1 ms of test time. The Head Expansion fan 

reaches the endwall after 5.3 ms 

 
Figure 34: Under-tailored endwall pressure in the longer driver shock-tube trace at 795 K and 0.93 atm 

using a driver gas composition of 8.31% C3H8 + 91.6% He and Ar as the test gas.  The contact surface 

expansion wave arrives at the endwall after 5 ms of test time. The Head Expansion fan reaches the 

endwall after 7 ms 
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Figure 35: Under-tailored endwall pressure in the longer driver shock-tube trace at 795 K and 0.93 atm 

using a driver gas composition of 26.6% C3H8 + 73.3% He and Ar as the test gas.  The contact surface 

expansion wave arrives at the endwall after 5 ms of test time. The Head Expansion fan reaches the 

endwall after 15 ms 

 
Figure 36: Over-tailored endwall pressure in the longer driver shock-tube trace at 800 K and 0.9 atm 

using a driver gas composition of 100% C3H8 and Ar as the test gas.  A series of contact surface 

compression waves arrive at the endwall after 5 ms of test time 
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Figure 37: Slightly Over-tailored endwall pressure in the longer driver shock-tube trace at 800 K and 1 

atm using a driver gas composition of 45% C3H8 + 55% He and Ar as the test gas.  A weak compression 

wave resulted from the contact surface-reflected shock interaction allowing for only 5 ms of test time.  

 

 
Figure 38: Laminar simulation of a quasi-tailored endwall pressure in the longer driver shock-tube trace at 

800 K and 1 atm using a driver gas composition of  40% C3H8 + 60% He and Ar as the test gas.  The 

discontinuity in pressure from the compression wave is weak relative to the pressure behind the reflected 

shock allowing for test time extension up to 15 ms   
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 The number of test runs produced for the tailoring study allowed for the generation of 

pressure ratio across the diaphragm, P4/P1, versus T5 plots which help guide future solutions and 

reduce the number of iterations needed to generate the test conditions of interest. Figure 39 and 

Figure 40 give the P4/P1 versus T5 plots for the regular and modified driver geometry shock tube 

respectively. 

 

 
 

Figure 39: Diaphragm pressure ratios P4/P1 required to generate incident temperature behind the reflected 

shock T5 between 550 and 950 K for different driver gas mixture compositions in the regular shock tube 

geometry with a driver length of 2.5 m 
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Figure 40: Diaphragm pressure ratios P4/P1 required to generate incident temperature behind the reflected 

shock T5 between 550 and 950 K for different driver gas mixture compositions in the modified driver 

shock tube geometry with the longer driver tube of 4 m 
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treatments to allow for the resolution of the turbulent boundary layer all the way to the viscous 

sub-layer. Shown in Figure 41 are the temperature flow fields from the turbulent solution for an 

over-tailored condition achieved with a driver gas composition of 100% C3H8 at the conditions 

behind the reflected shock wave of 800 K and 1 atm. The turbulent temperature flow fields 

depict the incident-shock and contact surface propagation, the turbulent thermal boundary layer 

due to heat transfer to the shock tube side walls, the vortices shed from the contact surface due to 

the Ritch-Myer instability, the shock reflection from the endwall, and the interaction of the 

reflected shock with the contact surface. The time instances corresponding to each frame are 

given on the right. The interaction of the contact surface with the reflected shock results in a 

compression wave due to the sudden decrease in pressure. The pressure increase from the contact 
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surface compression wave is evident at time = 10 ms where the compression wave coming from 

the contact surface compresses the gas behind the reflected shock and increasing its pressure. At 

time 13 ms, the compression wave which reflects off the endwall,  interacts with the contact 

surface one more time to yield a second compression wave stronger than the first, increasing the 

endwall pressure even further. This process continues until the interaction between the contact 

surface and the reflected shock results in an expansion wave which brings the pressure and 

temperature at the endwall down. Finally the head expansion fan arriving from the shock-tube 

driver section cools down the endwall region and results in a further decrease of the properties 

behind the reflected shock.  

   

 

t = 1.5 ms 

 

t = 4 ms 

 

t = 6.3 ms 

 

t = 10 ms 

 

t = 13 ms 

Figure 41:  Turbulent solution for an over-tailored condition showing the temperature flow fields in the 

shock tube. The driver gas composition is 100% C3H8 and the driven test gas is Ar. Approximate times 

are shown on the right. CS: contact surface, IS: Incident Shock, RS: Reflected Shock, CW: Compression 

Wave, RCW: Reflected Compression Wave 
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 The interaction of the reflected shock with the contact surface in the over-tailored case 

with 100% C3H8 driver gas is closely investigated. Figure 42 shows the axial distribution of 

temperature before, during, and after the contact surface-reflected shock interactions. The results 

show an increase in temperature at the contact surface location which can be quantified by 

approximately 50 deg K. This rise in temperature results from the pressure rise due to the 

compression wave passage from the overdriven condition and can be predicted from the 

isentropic temperature-pressure relation. As a result, the conditions behind the reflected shock 

wave become non-uniform. When driver gas tailoring is considered, it is recommended to avoid 

conditions that produce strong interaction between the contact surface and the reflected shock 

resulting in a temperature increase in the endwall region. It is speculated that the condition of 

100% C3H8 driver gas composition produced the strongest interaction possible between the 

contact surface and the reflected shock and therefore the most increase in temperature. It is not 

expected to see a further temperature increase than 50 deg K when performing driver gas 

tailoring experiments with mixtures composed of combinations of C3H8 or CO2 and Helium. 
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Figure 42: Turbulent solution of the axial distribution of temperature before, during, and after the interaction 

of the reflected shock with the contact surface for the over-tailored condition. The driver gas composition is 

100% C3H8 and the test gas is Ar. The interaction results in about 50 deg K rise in temperature at the contact 

surface location first and propagates to the endwall region 

 

 Viscous simulations with the κ−ε turbulence model were generated at the driver gas 

composition which produced the longest test time of 15 ms for the laminar case. Figure 43 shows 

the endwall pressure profile obtained with a driver mixture of 40% C3H8 + 60 % He with the 

viscous laminar and turbulent Κ−ε models. The pressure ratio of 29 across the diaphragm was 

kept the same between both models. It is shown that the simulated endwall static pressure for the 

turbulent case has more discrete oscillations and is lower than the laminar case static endwall 

pressure. The resulting axial distribution of the density, pressure and temperature profiles along 

the entire shock-tube geometry is shown in Figure 44 a, Figure 44 b, and Figure 44 c 

respectively. The increased losses in the turbulent boundary layer result in reduced shock 

strength and therefore lower conditions behind the reflected shock wave than in the laminar case. 
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stronger shock. The pressure ratio was slightly increased in the turbulent model which also 

required a slight adjustment of the driver gas mixture to 45 % C3H8 + 55% He. This condition 

provided a more uniform pressure profile with a test time of 17 ms as shown in Figure 46. 

 

Figure 43: Endwall pressure history predicted by the laminar and turbulent viscous models at the quasi-

tailored condition. At the same pressure ratio across the diaphragm, the turbulent solution yields a lower 

pressure behind the reflected shock due to the more pronounced losses in the turbulent boundary layer 

than in the laminar case 
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c) 

Figure 44: Viscous laminar and turbulent solution along the axial distance of the shock tube 

showing a) density, b) pressure, and c) temperature profiles. The turbulent solution results in lower 

conditions than the laminar model due to increased losses in the turbulent boundary layer 

 

 
 

Figure 45: Turbulent  simulation of a quasi-tailored endwall pressure in the longer driver shock-tube trace 

at 800 K and 0.95 atm using a driver gas composition of  45% C3H8 + 55% He and Ar as the test gas.  The 

discontinuity in pressure from the compression wave is weak relative to the pressure behind the reflected 

shock allowing for test time extension up to 17 ms   
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Heat Transfer Modeling 

 The driver gas tailoring study resulted in  test time extension up to 15 ms with a driver 

mixture composition of  40% C3H8 + 60 % He for the laminar solution and 17 ms with a driver 

gas composition of 45% C3H8 + 55 % He for the turbulent solution in the longer driver shock-

tube. The modelled conditions behind the reflected shock are 800 K and 1 atm. Figure 46 

displays the full turbulent conjugate solution of the shock-tube flow fields at four time instances 

of -3, 3, 6, and 15 ms after shock-reflection for the temperature, pressure, and Mach number 

solutions. By modeling the entire shock tube, the flow details such as the interaction of the 

reflected shock wave with the contact surface are fully resolved. Of most importance for the 

problem at hand are the test gas conditions near the endwall region. 
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b) Pressure flow fields, atm 

 

 

  

  

c) Mach number flow fields 

 

Figure 46: Turbulent conjugate heat transfer solution showing a) temperature, b) pressure, and c) Mach 

number flow fields during shock propagation, reflection, interaction with the contact surface, and arrival 

of the expansion fan. Conditions behind the reflected shock are 800 K, 1 atm in Ar test gas. 

Corresponding times are given in the upper Left corner of each frame. Time zero is the moment the 

incident shock reflects off the endwall. IS = Incident Shock, CS = Contact Surface, RS  = Reflected 

Shock, CW  = Compression Wave, RCW = Reflected Compression Wave, EF = Expansion Fan 

 

 A close-up on the turbulent solution flow fields in the end wall region is shown in Figure 

47 corresponding to the 15-ms solutions for temperature, pressure, and Mach number presented 
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in Figure 46. The heat transfer from the hot gas to the walls is depicted by the thermal boundary 

layer present along the test region shock-tube walls (Figure 47 a) and appears similar to the 

predictions of the analytical heat conduction T (x, r, t) model. The temperature distribution 

shows that the thermal boundary layer is well outside of the test region indicating that heat 

transfer is not a concern for chemical kinetics measurements. This general result of the full CFD 

simulation confirms the results inferred from the conduction analysis presented above for the 

baseline shock-tube geometry with a 16.2-cm driven tube diameter. The endwall-region contours 

of pressure and Mach number in Figure 47 b and Figure 47 c show that the test gas has a nearly 

uniform pressure with essentially no bulk movement, even at the extreme test time of 15 ms. 

 

 

a) Temperature Flow fields, K 
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b) Pressure flow fields, Pa 

 

 

c) Mach number flow fields 

 

Figure 47: A close-up on the turbulent conjugate heat transfer solution of a) temperature, b) pressure, and 

c) Mach number flow fields in the Ar hot gas test region at the conditions of 800 K, 1 atm, and 15 ms of 

test time 
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 The test time is ended by the arrival of the contact surface expansion wave to the endwall 

followed by the head expansion wave denoted by the discontinuity in the slope of the pressure 

trace.  The small compression bump near a test time of 5.2 ms in the laminar solution and 5.44 

ms in the turbulent solution is from the interaction of the reflected shock wave with the contact 

surface, which emits a weak compression wave that travels back toward the endwall as shown in 

more details in Figure 38 and Figure 45. Heat transfer results are post-processed behind the 

reflected shock wave over the entire endwall test region. Figure 48 provides the average gas 

temperature solution for both the laminar and turbulent conjugate CFD models compared to the 

1-D analytical conduction solution  (32). The jump in the average gas temperature immediately 

after the shock tube walls come into contact with the hot gas is captured by both models, with the 

jump being more pronounced in the turbulent CFD solution.  The conduction solution reports a 

higher decrease in the average gas temperature than the CFD conjugate solution.  

 The higher initial temperature jump at t = 0+ is due to the additional heat transfer 

between the hot gas and cold wall via the moving boundary layer that was formed initially 

behind the incident shock wave and which the conduction only solution does not model. Note 

also that the turbulent solution predicts a higher initial jump in temperature (by about 3 K) due to 

the stronger convective forces in the turbulent boundary layer when compared to the laminar 

one. The conduction model on the other hand exhibits more decrease in the average gas 

temperature and therefore more heat loss to the shock tube walls. Both models predict an average 

loss in temperature within a few K of each other, with the conduction solution being on the 

conservative side of over-estimating the heat loss. At 15 ms, the average gas temperature 

decreases by 19 K for the 1-D conduction solution versus only 13 K for the CFD conjugate 

solution. The difference in the average gas temperature between the two solutions is due to the 
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presence of the viscous dissipation term in the energy equation which reduces the overall effect 

of heat transfer, notably after the passage of the reflected shock wave, resulting in a lower heat 

loss by the conjugate CFD models when compared to the conduction-only model.  

 
 

Figure 48: The difference between the maximum and the average bulk gas temperatures predicted by the 

viscous models. Results are compared to the 1-D analytical conduction model (32)  
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temperature predicted by the viscous CFD model is in reasonable agreement with the analytical 

conduction model. Both models exhibit the jump in temperature loss immediately after the hot 

gas comes into contact with the cold wall with the jump being more pronounced in the viscous 

model. However, the conduction model predicts slightly higher decrease in the average 

temperature than the viscous model indicating more heat loss to the shock tube wall. Both the 

laminar and turbulent CFD solutions produced average temperature losses that were about 5 K 
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less than that predicted by the conduction model, implying that the simpler conduction model 

provides a somewhat conservative estimate of the heat loss. The energy equation solved in the 

CFD model accounts for the viscous dissipation term which reduces the rate of heat transfer 

resulting in less heat loss than the more conservative conduction model. Temperature contours 

showed that for the worst test condition of 800 K, 1 atm, and 15 ms of test time, the thermal 

boundary layer is well outside the endwall test region assuming that ignition initiation occurs far 

away from the shock-tube walls. In the case where ignition occurs near the corners of the 

endwall, the temperature gradient depicted by the thermal boundary layer can change the 

mechanism by which ignition is initiated.  Overall, the conjugate CFD model accurately resolved 

the convective forces in the boundary layer and predicted an average gas temperature in the 

endwall region of 5 K less than the 1-D conduction solution, indicating that the latter solution is 

more conservative than the conjugate CFD solution. 

 

Bifurcation 

 

 Shock bifurcation is suspected to be one of the major mechanisms responsible for non-

ideal behavior in shock tubes for chemical kinetic studies. As the incident shock propagates 

down the shock tube, it leaves behind a boundary layer that grows in time, and when the shock 

reflects from the endwall, it interacts with the boundary layer it created and forms a bifurcated 

shock structure.  
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Background 

 There have been a number of numerical studies investigating Bifurcation in the shock 

tube (16) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) and which also has served as a test 

case for numerical method validations (51) (52) (53) (54) (55) (56).  

 In particular, Sjogreen and Yee (54) studied grid convergence of several high order 

methods for the computation of bifurcation phenomenon in the shock tube. They developed 

adaptive numerical dissipation control high order methods referred to as the ACM and compared 

wavelet filter schemes with a fifth-order weighted ENO (WENO) scheme. Simulations with a 

standard second-order TVD scheme and a MUSCL scheme with limiters were used as reference 

solutions. The 2-D viscous laminar shock tube problem with complex shock/shear/boundary 

layer interactions was used for the validation of the higher order schemes. The computations 

were conducted on a uniform grid. It was found that the shock tube problem contains fine scale 

structures that are stiff and require extreme grid refinement and time step restrictions in order to 

resolve all the flow scales.  

 Satofuka (73) performed 2-D simulations of bifurcation and the reflected shock/contact 

surface interaction in the shock tube by adopting the ICE method proposed by Harlow and 

Amsden back in 1971 for solving time-dependent problems in multidimensional fluid dynamics. 

The simulation were performed for low Re numbers.  

 Daru (51) (52) simulated the Bifurcation phenomenon which served as a benchmark case 

for the evaluation of the accuracy of numerical schemes for unsteady viscous flow computations. 

The sensitivity of the results to different numerical schemes (a predictor corrector MacCormack 

scheme, a Harten-Yee second-order finite difference upwind scheme, and a MUSCL scheme), 
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limiters (O3 and O3Sup limiters, Van Leer limiter, Minmod b4 limiter) the Reynolds number (Re 

= 200, 1000), and the grid refinement was reviewed. The Reynolds number was limited to 1000 

in order to limit the grid size requirements. Convergence problems were encountered when 

classical shock capturing TVD schemes were used. The difficulty to obtain a converged solution 

for Reynolds number greater than few hundred was highlighted.  It was demonstrated that the 

MacCormack-type scheme is more accurate for solving this kind of problem.  

 Daru and Tenaud in a more recent study (51) (53) used a high order coupled time-space 

scheme named OSMP7 (112) (113) to model the BL/ reflected shock interaction. The scheme 

was developed based on a coupled time and space approach and is seventh order accurate. The 

scheme guaranties monotonicity preserving properties as in TVD schemes but retains the original 

high order scheme in the vicinity of extrema at the difference of classical TVD schemes. As 

such, the OSMP7 scheme allows capturing sharp discontinuities without producing spurious 

oscillations and preserves high order accuracy in the smooth regions. The viscous fluxes were 

discretized by using a classical second-order centered scheme. Several Reynolds numbers were 

investigated (200, 500, 750, and 1000) in a square shock tube with dimensionless unit length 

0<x, y<1, incident Mach number of 2.37,  Pr number of 0.73, and dimensionless dynamic 

viscosity of 1. Compared to classical WENO schemes, the OSMP7 exhibited a faster grid 

convergence, a sixth fold lower CPU cost than the WENO schemes. 

 Takano (45) conducted Finite-difference calculations using the flux-corrected-transport 

scheme, the diagonalized Beam-Warming scheme, and the Crank-Nicolson scheme to simulate 

the behavior of reflected-shock waves interacting with the shock-tube boundary-layers in 

Nitrogen and Argon gases. Computations were carried out in the end wall section of the shock 

tube for an indent shock Mach number of 4 and test gas conditions of 120 Pa and 298 K. It was 
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observed that a bifurcation of the reflected-shock wave occurs and develops in Nitrogen gas but 

few interactions appeared for Argon gas. Takano (114) in a later study developed a finite-

difference procedure which numerically solves the thin-layer Navier-Stokes equations with 

ionization reactions to predict ionizing non-equilibrium flows generated by strong shock waves. 

Simulations were carried out for bifurcated reflected-shock waves in ionizing argon in a shock 

tube with an incident shock Mach number of 14 in Argon at 400 Pa and 298 K. the computed 

flow fields agreed very well with experimental shadowgraphs for reflected-shock waves in 

ionizing Argon.  

 Kleine et al. (16) investigated the reflected shock/boundary layer interaction both 

experimentally and numerically using a numerical scheme based on the Euler equations. Color 

schlieren photographs were used to visualize the characteristic wave pattern. Good agreement 

was found between the simulated and the observed wave configuration.  

 Wilson et al. (43) investigated the reflected shock/BL interaction process both 

numerically and experimentally using quasi-one-dimensional and axi-symmetric numerical 

simulations of the complete shock tube flow. The numerical model incorporated a finite rate 

chemistry model, a laminar viscosity, and a moving mesh. Time-dependent simulations were 

compared with experimental pressure traces recorded at the NASA Ames electric-arc driven 

shock tube facility. The axi-symmetric simulations reproduced the bifurcation process which was 

found to also provide a mechanism for driver gas contamination in the stagnation region. 

 Burtschell and Zeitoun (49) investigated the interaction of two oblique axi-symmetrical 

shock waves in a uniform supersonic flow with a diverging shock both experimentally and 

numerically. Numerical simulations were performed by solving the Euler and Navier-Stokes 

equations using a second order accurate space and time scheme and AUSM+ for the viscous 
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fluxes. It was found that the interaction between the boundary layer and the shock wave is highly 

affected by viscous effects and accurate modeling of the phenomenon was made possible by 

solving the Navier Stokes equations. The Euler approach was unsuccessful in reproducing the 

complicated flow structure even when the Re is very high.  

 Kim and Kim (55) developed a newly formulated AUSM type method named M-

AUSMPW+ was developed for multi-dimensional flows. It is supposed to reduce the excessive 

numerical dissipation as well as preserves the monotonicity of the scheme. Kim and Kim (56) in 

the second part of the study developed 3
rd

 and 5
th

 order multi-dimensional limiting process 

(MLP) schemes developed in order to prevent oscillations across a multi-dimensional 

discontinuity. The schemes proved to be compatible with higher order interpolation schemes 

such as ENO type schemes. The shock boundary layer interaction phenomenon was chosen as a 

test case for the MLP schemes combined with the M-AUSMPW+ numerical flux. In addition, 

combinations of several limiters including the Super-bee, the minmod, and the van leer, MLP 

Super-bee, MLP3, and MLP5 limiters with M_AUSMPW+ and 2nd order TVD schemes such as 

ROE FDS were investigated.  

 This test problem was also studied by Daru and Tenaud (53) (52) (51) (41) and Sjogreen 

and Yee (54). The simulations were carried out in a 2-D square shock tube with a Reynolds 

number of 200 and a constant viscosity. It was shown that TVD with van Leer limiter scheme is 

very diffusive while MLP3 and MLP5 yielded almost the same results as MLP-Super-bee 

limiter. The results obtained with MLP5 with M-AUSMPW+ were more accurate than the results 

acquired with van Leer limiter with AUSMPW+. The height and angle of the primary vortex 

which is sensitive to numerical dissipation were accurately modeled, while the van Leer limiter 

with AUSMPW+ yielded a smaller vortex.  
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 Bulovich et al. (50) simulated the interaction of the reflected shock wave from the flat 

end of a cylindrical shock tube with the boundary layer formed at the side wall. The entire shock 

tube geometry was represented as an axi-symmetric model and the Navier–Stokes equations 

were integrated in the thin layer approximation using a predictor–corrector scheme which is 

second order accurate in space and time.  

 Graur et al. (48) investigated the efficiency of three numerical approaches to describe the 

complex phenomenon of shock wave boundary layer interaction. Computations were carried out 

based on a kinetic approach (Direct Simulation Monte Carlo method) and on two continuum 

approaches (Navier-Stokes equations and quasi gas dynamic equations). The flow was assumed 

axi-symmetric, and the boundary layer was modeled as laminar. The Navier-Stokes approach 

was based on an exact Riemann solver coupled with the AUSMDV solver with second-order 

MUSCL extrapolation. It was found that among all three approaches, the slip condition improves 

the agreement with the experimental data for the continuum approach.  

 Narayanswami et al. (115) simulated the interaction between crossing shock waves and a 

flat plate turbulent boundary layer at Mach 8.3 by solving the full 3-D mean compressible 

Reynolds-averaged Navier-Stokes (RANS) equations incorporating the algebraic turbulent eddy 

viscosity model of Baldwin and Lomax.  Pressure profile results agreed well with experimental 

data however surface heat transfer was significantly over-predicted due to limitations of the 

Baldwin Lomax turbulence model.  
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Bifurcation Modeling 

 Figure 49 shows a schematic of the bifurcated structure and the corresponding ideal side 

wall static pressure variation model reproduced from Petersen and Hanson (26) and originally 

developed by Mark (9). The terminology adopted by Petersen and Hanson
 
(26) is employed 

herein to refer to the different instances of the bifurcated structure passage. As outlined by the 

ideal pressure model, the bifurcation structure is characterized by three main features. First, the 

static pressure rises at to as a result of the passage of the front foot or oblique shock wave (OA) 

followed by the second oblique shock (AC) whose main function is to render the flow parallel to 

the shock-tube side walls. The pressure remains constant until the passage of the separated 

bubble (CD) at time tD. Then pressure rises again and reaches an overshoot at time tp due to the 

arrival of the stagnation streamline. Lastly, after time te , the static pressure relaxes to the ideal 

pressure P5 when the bifurcation structure has completely passed over the pressure port location.  

 

Figure 49: Schematic of the bifurcation structure and corresponding ideal side wall static pressure trace 

versus time (26)  

te
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 In reality, between the first rise in pressure through the oblique shock and the passage of 

the separated bubble (CD), the pressure is not constant, and it is characterized by strong pressure 

gradients due to the embedded vortices and unstable shear layer in the separation zone adjacent 

to the side wall (44). This effect is evident in Figure 49 (a) where the side wall static pressure 

trace is shown for a non-ideal numerical simulation of bifurcation in an axi-symmetric, 15.2-cm 

diameter Helium-driven shock tube. The side wall pressure trace was monitored at a location 16 

mm from the endwall. The conditions behind the reflected shock wave are a temperature of 950 

K, pressure near 1 atm, and the test gas being Air. The deviation from the ideal theory is evident, 

and the pressure between instances to and tD is no longer constant. Because the passage of the 

normal reflected shock cannot be detected from the side wall pressure trace alone, the endwall 

center port pressure was monitored and the time of passage of the normal reflected shock agrees 

with time tA as shown in Figure 49 (b). We denote time zero, the time corresponding to the 

passage of the normal portion of the reflected shock. Other studies investigating bifurcation in 

shock tubes as in Petersen and Hanson (26) resorted to laser diagnostics to quantify the time of 

the main reflected-shock passage which was detected by a schlieren spike in the transmitted laser 

intensity. In their study, empirical correlations were also developed for the different time 

passages; ΔtAO   the time of normal shock passage, ΔtDO the time of separation zone passage, 

ΔtPO the time of end of the stagnation streamline passage, and ΔtEO the time of the entire 

interaction zone passage, in addition to a correlation describing the height of the bifurcated foot 

as a function of the incident shock mach number, specific heat ratio, and the mixture molecular 

weight. The height of the bifurcated foot does not consider the thickness of the boundary layer 

which can be determined from experimental and numerical measurements. The correlations 

provided in Table 8 were developed for gas mixtures with molecular weights and specific heat 
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ratios ranging between 14.7 and 44 and between 1.29 and 1.51 respectively and for pressures and 

temperatures behind the reflected shock covering a range of values between 11 to 265 atm and 

780 to 1740 K, respectively. However, the bifurcation structure did not show any dependence on 

pressure, and extrapolation to lower values other than the range specified should not affect the 

validity of the correlation. Another important factor is the location at which the measurement 

was taken. Petersen and Hanson’s study (26) used a location of 20 mm from the endwall. For 

locations relatively close to the endwall, the size of the bifurcated foot varies linearly with 

distance from the endwall and for locations relatively far from the endwall, the height of the 

bifurcated foot varies at a lower rate (26). The results indicate the bifurcation structure height is 

strongly dependent on the specific heat ratio γ2 such that the bifurcated foot height increases with 

decreasing γ2. Therefore it is expected to see a more defined bifurcation structure when diatomic 

and polyatomic are used in the test gas mixture as opposed to monatomic gases. The shock 

strength and mixture molecular weight have an influence on the bifurcation zone height as well, 

such that the bifurcated foot height increases with increasing shock strength and decreasing 

mixture molecular weight, however with a lesser intensity than specific heat ratio effect 

Table 8: Empirical correlations describing the bifurcation structure main time and length characteristics 

(26) 

Parameter  Description  Correlation r
2  Uncertainty

ΔtOA (μs)  Time to normal shock passage 4.6Ms
0.66 γ2

−7.12 M 0.57 0.985  ± 1 μs

ΔtDO (μs)  Time to separation zone passage 190 − 140γ2 + 0.66M ≥ 0.960  ± 3 μs

ΔtPO (μs) 
Time  to  end  of  stagnation  streamline 
passage  425 − 322γ2 + 1.53M ≥ 0.960  ± 3 μs

ΔtEO (μs)  Time to entire interaction zone passage 508 − 390γ2 + 2.45M ≥ 0.960  ± 5 μs

l (mm)  Bifurcated foot height  7.5Ms
1.07γ2

−2.662 M−0.37
0.980  ± 0.2 mm

γ2  is  the specific heat  ratio  for conditions behind  the  incident shock wave Ms. M  is  the  test gas mixture 
molecular weight. 
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a) Side wall static pressure 

 

b) Axial static pressure 

Figure 50: Viscous axi-symmetric simulation of a) the side wall and b) the center static pressure at a 

location of 16 mm from the endwall. Time = 0 corresponds to passage of the normal portion of the 

reflected shock wave. 
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Bifurcation Flow Fields 

 

 Provided in Figure 51 are the pressure contours in the shock tube endwall section 

describing the development of the bifurcation structure up to a distance of 22.5 cm from the 

endwall. The interaction is taking place in an air mixture with an average temperature and 

pressure behind the reflected shock of 950 K and 1 atm, respectively. The frames given in Figure 

51 show the development of the bifurcation structure at different time instances. The time frame 

contours are given at intervals of approximately 50 μs. The corresponding time instances which 

are given on the right of each frame represent the elapsed time from the shock reflection. 
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a)  
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b)  

Figure 51:  The filled (a) and non-filled (b) static pressure contours showing the time evolution of the 

bifurcation structure in the endwall region of the shock tube at the conditions behind the reflected shock 

wave of T5= 950 K and P5 = 1 atm in Air Test Gas 
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 Time 0 is denoted as the moment the incident shock wave hits the endwall. Initially, upon 

the first interaction of the reflected shock with the boundary layer, a very weak bifurcated 

structure forms such that the lambda-like shape is not well defined. This is true for a distance 

from the endwall up to 2.5 cm, then the bifurcation structure becomes more defined, and the 

triple-shock system can be clearly depicted.  Also, important to note from the initial interaction, 

are the hot jets which form close to the endwall in the corners. These jest come from the sudden 

movement of the hot endwall fluid which gets displaced in a counterclockwise direction. This 

can be detected from the temperature contours given in Figure 52. The hot jets which look like 

hot pockets reach a temperature of 1050 K, about 100 degrees higher than the average flow 

temperature. This can potentially trigger local autoignition when the right thermodynamic 

conditions are available. Although this is not a concern when nonreactive flow is modeled, the 

flow fields in the endwall region need to be closely monitored and correctly represented. Any 

sign of non-ideal behavior in the endwall region is an indication that the kinetic behavior in a 

reactive shock-tube mixture may no longer be occurring ideally. 
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a)  
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b)  

Figure 52: The filled (a) and non-filled (b) temperature contours showing the time evolution of the 

bifurcation structure in the endwall region of the shock tube at the conditions behind the reflected shock 

wave of T5= 950 K and P5 = 1 atm in Air Test Gas 

 

 The interaction of the boundary layer with the reflected shock wave is due to the 

boundary layer flow induced by the incident shock which has a lower stagnation pressure than 

the flow behind the normal reflected shock wave and which is accompanied by compression 

waves.  These compression waves can be seen in Figure 51 (b) from the pressure contours at 

time 0 μs which corresponds to the arrival of the incident shock to the shock-tube end wall. The 

interaction of the reflected shock with these compression waves result in the formation of the 

lambda-like shock structure which is made up of  the bifurcation foot, the tail shock, and the 

triple point at which the slip line originates. The slip line is the separation point between the flow 

behind the normal reflected shock and the flow accumulated in the bifurcation zone due to their 
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different residual velocities (44). As the reflected shock wave is advancing forward, the 

boundary layer fluid accumulates under the bifurcated foot and, according to Weber et al. (44) 

can travel up to 8 cm in the viscous region due to a favorable pressure gradient caused by the 

expansion of the flow following the area change under the bifurcated foot and the flow 

displacement in the viscous region. When the boundary layer fluid arrives at the reattachment 

shock, the rear of the interaction zone, it encounters an adverse pressure gradient causing the 

boundary layer flow to stagnate and to reverse direction. The motion of the boundary layer fluid 

in the forward and reversed direction results in the development of a viscous vortical region near 

the shock-tube side wall. Eventually, more fluid from the boundary layer is being entrained in 

the viscous region as the reflected shock is moving downstream. As a result, the bifurcation foot 

height increases linearly with distance from the endwall until it interacts with the contact surface, 

where the bifurcation structure loses its strength and the bifurcated foot height is greatly reduced. 

As a result of continuous displacement of the viscous region and the inviscid flow adjacent to the 

boundary layer, shock and expansion waves form; this is particularly evident in the reattachment 

shock, which is responsible for the pressure overshoot at time tp as shown from the static side 

wall and center pressure traces in Figure 51 a and Figure 51 b .The reattachment shock whose 

main function, just like the second oblique shock wave (AC), is to turn the flow parallel to the 

wall resulted in a slight compression of the flow denoted by the pressure overshoot at time tp 

followed by the reattachment of the flow to the side wall after the interaction zone has 

completely passed at time te . The relatively inviscid flow adjacent to the boundary layer that also 

has to flow through the bifurcation structure experiences a double compression effect, first by the 

first oblique shock (or the bifurcated foot) then by the second oblique shock or tail shock. 

Consequently, at the end of the interaction zone denoted by the pressure overshoot and shock 
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reattachment, the flow is turned parallel to the shock-tube side wall and is of the same conditions 

as the flow compressed by the normal portion of the reflected shock.  

 As the bifurcation structure progresses forward, the boundary layer flow induced by the 

incident shock has a lower stagnation pressure than the flow behind the normal reflected shock 

wave and accumulates behind the bifurcated foot front, forming a recirculation zone which 

separates and forms a separation bubble. While the main flow adjacent to the boundary layer 

enters the region between the lambda shock and the separation bubble, flows past the bubble and 

rolls inwards towards the endwall corner.  The energetic wall jet
 
(112) bounded by the highly 

supersonic shear layer is carrying the cold flow from the boundary layer flow and impinges on 

the slip line and side and end walls in an oscillatory motion impacting the local properties of the 

flow. As a result, the flow temperature in the interaction zone drops significantly. The average, 

center and side wall temperature and pressure properties were monitored at a location 16 mm 

from the endwall, which is the location of interest for chemical kinetics experiment 

measurements herein, and are given in Figure 54 (a) and Figure 54 (b) respectively. The side 

wall temperature has significantly dropped as a result of both heat transfer effects and the cold 

boundary layer fluid accumulating under the bifurcation structure. The side wall pressure profile 

shows a very oscillatory behavior which is attributed to the continuous impingement of the 

energetic wall jet on the side wall even after the interaction zone has completely passed the 

endwall region, thereby impacting the local flow properties.  
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a) Temperature Profiles 

 

b) Pressure Profiles 

Figure 53: Time evolution of the average, center, and side wall a) temperature and b) pressure profiles at 

the average conditions of 950 K and 0.97 atm. The test gas is air and the driver gas is Helium. The effect 

of the reflected shock/boundary layer interaction on the local and average flow properties is well 

represented 
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 The supersonic shear layer as the name indicates reaches a Mach number of 3. This is 

illustrated in the Mach number contours provided in Figure 54. The reduced area of the viscous 

region causes the flow to expand and to accelerate. As a result, the shear layer Mach number 

increases to 3 and then decreases near the reattachment region where the flow is compressed 

again at the end of the interaction zone. The unstable supersonic shear layer has been reported in 

the studies of Weber et al. (44), Glowacki et al. (116), Havener et al. (117), and and Daru and 

Tenaud (52) (53) (51). Also important to note is the supersonic region right before the interaction 

of the boundary layer with the reflected shock wave. We previously mentioned that the boundary 

layer flow induced by the incident shock is accompanied by compression waves. This 

phenomenon is highlighted in the pressure contours in the early stages of the interaction which is 

also consistent with the high Mach number region. 
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a)  
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b)  

Figure 54: The filled (a) and non-filled (b) Mach number contours showing the time evolution of the 

bifurcation structure in the endwall region of the shock tube at the conditions behind the reflected shock 

wave of T5= 950 K and P5 = 1 atm in Air Test Gas 
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 The oscillatory motion of the jet between the side wall and the slip line due to the viscous 

stresses results in the formation of the counter-rotating vortices of positive and negative vorticity 

as has been reported by Daru and Tenaud (51).  Figure 55 shows the vorticity contours and the 

embedded vortices between the side wall and the shear layer which grow in size and in number 

as the reflected shock moves away from the end wall. According to Daru and Tenaud the number 

of counter-rotating vortices is proportional to the velocity of the jet and becomes more 

pronounced at the lower Re numbers (53).  

 These vortices of both small and large scales appear to be made up of three layers of fluid 

with different temperatures, as Daru and Tenaud pointed out in their simulation results (51). The 

first layer is in the center and is comprised of the hot, shocked fluid; the next layer of fluid is 

colder and comes from the boundary layer and the third layer is the coldest due to the cold flow 

around it in the recirculation zone. The vorticity flow fields are similar to the results obtained by 

the numerical studies of Daru and Tenaud (52) (53) (51). 
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b)  

Figure 55: The filled (a) and non-filled (b) vorticity contours showing the time evolution of the 

bifurcation structure in the endwall region of the shock tube at the conditions behind the reflected shock 

wave of T5= 950 K and P5 = 1 atm in Air Test Gas 

 

 As the vortices continue to interact with the boundary layer, they get repulsed out of the 

boundary layer due to their high entropy. Consequently, the vortices are deformed giving birth to 

a vortex filament which elongates in the direction of the slip line due to the shear stresses 

between the boundary layer fluid and the core flow. This result is illustrated in the vorticity 

contours in Figure 55 where the vortex filament becomes evident at 400 μs.  Eventually, the 

vortex filament breaks, and the co-rotating vortical structures with the same vorticity-sign merge 

together. The vortical structures look more elongated than discrete, organized structures. Similar 

flow structures and observations have been reported in the studies of Daru and Tenaud (51) 

(112). At 450 μs, the biggest vortical structure on the far right of the interaction zone is 

completely expelled out of the boundary layer due to the increased entropy of the eddy structure 

and the decreased entropy at the wall. This process is repeated, and the next vortical structure on 

the far right of the interaction zone looses entropy and bursts out. Eventually there are no more 

vortices remaining in the boundary layer, which loses its structure and the flow finally reattaches 
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at the wall. Also illustrated in the vorticity contours is the slip line breakup due to entropy 

changes as the reflected shock is traveling downstream. Smaller-structure vortices are also 

present in the corners of the endwall. This effect is due to the countercurrent jets which formed at 

the early stages of the bifurcation structure development and upon the sudden interaction of the 

boundary layer with the endwall which resulted in the flow displacement in a rolled up fashion.  

 The supersonic shear layer and embedded vortices impact the slip line which gets 

deformed, and small oblique shocks called shocklets
 
are formed on its surface and on the tail 

shock causing the deformation of the tail shock (52). Consequently, the main portion of the 

reflected shock is also curved at the triple point. This result is evident from the iso-contour lines 

at the later stages of the interaction in Figure 51, Figure 52, and Figure 54. In addition, the outer 

edge of the slip line is deflected, and as a result mixing is promoted between the flow in the 

separation region and the unaffected region thus potentially causing more vortices to form (52).  

 

 Pseudo Shock Train 

 

 The time evolution of the bifurcation structure in the shock tube beyond a distance of 

22.5 cm and up to 65 cm from the endwall is illustrated by the means of the temperature flow 

fields as shown in Figure 56. The temperature profiles are shown from a time frame of 700 μs to 

1.26 ms. The entrainment of the bifurcation structure downstream the shock tube is accompanied 

by the continuous displacement of the inviscid fluid behind the normal reflected shock and the 

growth of the bifurcation structure. This eventually induces pseudo shock trains. The shock train 

although more obvious from the pressure flow fields, can also be depicted by the temperature 

flow fields given in Figure 56. This behavior has also been reported in the numerical studies of 



127 

 

Weber et al. (44), Wilson et al. (43), and in the experiments of Strehlow and Cohen (118) when 

the displacement becomes too large as is the cases of 900 μs through 1.26 ms right before the 

reflected shock-contact surface interaction. The pseudo shock train structure acts as a 

compression mechanism and turns the unaffected portion of the flow behind the normal reflected 

shock parallel to the shock tube side walls. These flow structures are a strong function of the 

flow area and become more pronounced in the case of large flow displacements in conjunction 

with reduced flow area and are typical of narrow channels (44) as mentioned by Fokeev and 

Gvozdeva (15) and Brossard and Charpentier (119). 
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780 μs 

 

900 μs 

 

1.07 ms 

Pseudo Shock Train 

 

 



128 

 

1.12 ms 

1.18 ms 

1.26 ms 

 

Contours of Temperature (K) 
 

 

Figure 56: Temperature contours showing the time evolution of the bifurcation structure and the 

formation of the pseudo shock train behind the moving reflected shock up to 65 cm from the endwall. 

The time frames are given on the right side of the contours 

 

Bifurcation Foot Height and Angle 

 

 The angle of the bifurcated foot on the other hand remains constant and it is measured to 

be around 55 degrees from the simulation results. Other studies which measured the angle of the 

bifurcated foot at similar conditions to this study, with air being the test gas and the incident-

shock Mach number equal to 2.6, reported values of 45 deg (44). Experimental measurements 

yielded slightly higher results of at least 50 degrees, as in the study of Matsuo et al. (13) for the 

same test conditions. Theoretical models which are developed based on isothermal wall 
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conditions as in the studies of Mark
 
(9) and Davies and Wilson

 
(27) predicted results slightly less 

than the experiments, between 46 and 48 deg. The measured bifurcated foot angle from the 

simulation results herein of about 55 degrees is in close agreement with the experimental 

measured values
 
(13) rather than the theoretical and numerical predictions of previous studies 

(44) (9). 

 The simulation results demonstrate that the height of the bifurcated foot increases with 

increasing distance from the endwall. In Petersen and Hanson experimental investigations of the 

bifurcation phenomenon, it was noted that for locations relatively close to the endwall, the size 

of the bifurcated foot varies linearly with distance from the endwall and for locations relatively 

far from the endwall, the height of the bifurcated foot varies at a lower rate (26). This is in 

agreement with this study’s simulation results. Other studies investigated the influence of 

different parameters on the bifurcated foot height. In particular, the effect of the Reynolds 

number on the size of the interaction zone delimited by the foot height was studied. Daru and 

Tenaud observed that the triple point or bifurcation height is strongly dependent on Re such that 

the height of the bifurcated foot increases with increasing Re, while the bifurcated foot angle is 

independent of the Re number (52) (51). This is consistent with Marks’ (9) predictions based on 

a inviscid flow assumption, however Weber et al. concluded that the bifurcated foot height 

increases and the bifurcation angle decreases with decreasing Re due to the thicker boundary 

layer at lower Re numbers (44). In other studies, it was shown that the bifurcation structure does 

not depend on the pressure (26) (51) while the dependency on the specific heat ratio is significant 

with the bifurcated foot height increasing with decreasing specific heat ratio (26). Therefore, it is 

expected to see stronger interactions and larger-sized bifurcation zones in diatomic and 

polyatomic gas mixtures than in monatomic mixtures.  
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 Weber et al. explained that the discrepancy between experimental and numerical results 

is mainly due to the adiabatic wall assumption adopted by the majority of the numerical 

simulation studies which yield higher boundary layer temperatures and therefore under predict 

the bifurcation foot angle (44). Weber et al. simulated the bifurcation structure with both the 

isothermal and adiabatic conditions and concluded that with the isothermal condition, the size of 

the bifurcation zone and the viscous region is smaller, and the temperature under the bifurcated 

foot is lower than the adiabatic case (44).   

 In this study, the numerical simulation uses a conjugate heat transfer model which is 

expected to yield more accurate results than the adiabatic and isothermal wall assumptions since 

it is the closest representation of the experimental conditions. The result of a 55-degree 

bifurcated foot angle determined herein is in agreement with the Weber et al. (44) observations. 

The conjugate heat transfer model results in a weaker reflected shock wave due to the energy 

loss to the side and end walls. Consequently, the side wall temperature drops and the boundary 

layer is thinner. This yields a weaker interaction of the reflected shock with the boundary layer 

and the viscous region delimited by the slip line and side wall is much smaller. Specifically, the 

interaction of the incident shock with the endwall does not produce an instantaneously well 

defined lambda-shock structure due to the more pronounced heat losses in the endwall region as 

can be seen from the early interaction stages of the reflected shock with the boundary layer near 

the endwall. In fact, the lambda-like structure is well developed only after 100 μs of elapsed time 

from the shock reflection. In addition, the conjugate solution leads to smaller and fewer vortices 

than the results in the studies of Weber et al. (44) and Daru and Tenaud (51) (53) (52). 

Moreover, the reattachment shock, responsible for the pressure overshoot at the end of the 
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interaction zone, is not as strong as in the adiabatic simulations of other studies (44) (51) (53) 

(52). 

 

Laminar Vs Turbulent Modeling of Bifurcation 

  

 The boundary layer in the current simulations was assumed to be laminar, and no 

turbulence model was adopted to consider the turbulent nature of the flow field in the shock tube. 

Time averaged Navier-Stokes equations in combination with a second-order-accurate scheme 

tend to produce a damping effect which masks the bifurcation structure completely. That is why 

the majority of studies investigating the bifurcation phenomenon have assumed a laminar 

boundary layer. The only studies which employed  an explicit RANS turbulent model and which 

the authors are aware of either focused on the interaction of the reflected shock with the contact 

surface and the resulting driver gas contamination mechanism (40) or the resulting bifurcation 

structure was not well resolved as is observed herein (59) (120) (121).  

 Figure 57 and Figure 58 give the temperature, pressure, and vorticity contours from both 

the laminar and turbulent solutions in Nitrogen test gas at the conditions of 1700K, 17 atm, and 

900K, 2.5 atm respectively. The laminar solution is given on the left while the turbulent solution 

is given on the right. The Bifurcation is well resolved in the laminar flow fields which appear to 

be highly non-uniform while the converse is true in the turbulent flow fields which display 

somewhat more uniform profiles and a less resolved bifurcation structure. 
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Figure 57: Viscous Laminar (left) and Turbulent (right) simulations in Nitrogen test gas at the conditions 

of 1700 K, 17 atm  showing the flow fields of a) pressure (atm), b) temperature (K), and c) vorticity (1/s)  

behind the reflected shock wave 
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Figure 58: Viscous Laminar (left) and Turbulent (right) simulations in Nitrogen test gas at the conditions 

of 950 K, 2.5 atm  showing the flow fields of a) pressure (atm), b) temperature (K), and c) vorticity (1/s)  

behind the reflected shock wave 

 

 The lack of resolution of the bifurcation structure when turbulence URANS model is 

employed is linked to the weaker interactions when a turbulent boundary layer is assumed, as 

noted by Mark
 
(9) and Strehlow and Cohen (10). The flow in the turbulent boundary layer is 

much more energetic than in the laminar boundary layer, which enhances the mixing process at 



137 

 

the shear layer level between the viscous region and the flow behind the main reflected shock 

rendering the flow more uniform and causing the viscous structures to damp out. Consequently, 

the details of the bifurcation structure can no longer be resolved appropriately, leading to a 

wrong representation of the results. A laminar model has been shown to be more appropriate for 

the modeling of the bifurcation phenomenon, especially if resolving the details of the interaction 

process are of interest.  

 It is important to note that the bifurcation simulations obtained herein were acquired by 

the means of a 2
nd

 order accurate space and time scheme in conjunction with the AUSM+ flux 

discretization scheme. The interaction zone was well resolved, and the details of the bifurcation 

structure were well captured; while in nature, achieving such high-resolution results can only be 

made possible with the means of high-resolution schemes of at least fourth-order accurate and 

higher (44) (52) (112) (51) (54) (55) (56). This behavior confirms the robustness of this study’s 

numerical model in combination with the correct boundary conditions and mesh resolution. The 

boundary conditions were well represented throughout the entire simulation of the shock tube, 

while in the majority of previous shock-tube numerical studies only the endwall region was 

modeled due to the expensive numerical resources associated with modeling the complete shock-

tube geometry. All these factors contributed to accurate results which can serve as valuable 

information for the validation of experimental and numerical shock tube studies.    
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Driver Gas Contamination 

 

Background 

 Among the mechanisms responsible for the non-ideal behaviors in the shock tube is 

driver gas contamination phenomenon which has been investigated experimentally (122) (123), 

theoretically (27) (28), and numerically (40) (57) (58) (121) (59) (46) (76) (38) (39). Davies and 

Wilson (27) and Stalker and Crane (28) used Mark’s theory and showed that the bifurcated 

structure provides a mechanism for driver gas contamination and developed analytical models 

for predicting the premature arrival of driver gas to the endwall region.  

 Davis and Wilson (27) developed analytical expressions to calculate arrival times of 

driver gas to endwall. Numerical simulations have also provided reliable information about the 

contamination process which is of great concern in high enthalpy shock tunnels in particular (40)  

(57) (58) (121) (59) (46) (76) (38) (39). 

 In particular, Gooze et al. (40) performed axi-symmetric simulations model driver gas 

contamination. The boundary layer was modeled as turbulent using the Baldwin-Lomax eddy 

viscosity model in addition the diaphragm opening was simulated with an iris model. Two 

operating conditions were examined; an over-tailored and an approximately tailored operation. It 

was found that bifurcation provides a mechanism for driver gas contamination along the shock 

tube walls. Interestingly enough, it was also found that bifurcation can prevent driver gas 

contamination through the vortices shed by the bifurcation structure which inhibit the driver gas 

from traveling to the endwall section. Chue et al. (121) performed numerical computations to 

examine the effects of driver gas contamination in the NASA-HYPULSE shock tube facility 

with a detonation driver shock tunnel. The complete shock facility was modeled using a 3-D 
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mesh with a shock tube diameter of 15.24 cm.  Two conditions were analyzed in air test gas. The 

driver gas is a mixture consisted of stoichiometric hydrogen-oxygen and Argon mixture. The 

wall boundary layer was assumed to be turbulent and the Baldwin–Lomax algebraic model was 

applied. 

 

Contact Surface/Reflected Shock/Bifurcation Interactions 

 Figure 59 shows the numerical solution simulating the contact surface- reflected shock 

interactions. Pressure (a), temperature (b), and He mole fraction (c) flow fields are presented at 

different time instances, notably from a time of 460 ms to about 2.1ms since shock reflection off 

the endwall. The times are given in the upper right corner of the pressure flow fields. The 

presented pressure and temperature contours aid in tracking the evolution of the bifurcated 

structure and its role in initiating the driver gas contamination process. He mole fraction flow 

fields describe the amount of the driver gas in the vicinity of the interaction before and after the 

encounter of the contact surface with the reflected shock.  Ideally the contact surface, which 

appears to take on a convex form when viewed from downstream the shock tube endwall, is 

expected to maintain its shape even upon its interaction with the reflected shock. However, when 

the non-ideal effects are accounted for in the shock tube simulations and notably the bifurcation 

phenomenon which occurs in diatomic and polyatomic driven gas mixtures, the contact surface 

shape is greatly distorted which can promote mixing and leakage of the driver gas to the driven 

mixture, hereby changing the properties of the test gas and its kinetics behavior. 
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Figure 59: Viscous simulations of driver gas contamination showing a) temperature (K), b) 

pressure (atm), and c) He mole fraction flow fields before and after reflected shock –

contact surface interaction. Conditions behind the reflected shock are 950K, 1 atm in Air 

test gas. Corresponding times since shock reflection are given in the upper Left corner of 

the pressure flow fields. 
 

 

 

 At 460 μs, way before the contact surface interacts with the reflected shock; the contact 

surface appears as an elongated tongue propagating into the driven gas. The same observation 

has been reported by Gooze et al. (40) who  attributed this to the assumption of an iris diaphragm 

rupture. The contact surface continues to propagate in the driven gas towards the shock tube 

endwall, and the reflected shock advances in the opposite direction. The interaction starts around 

1.24 ms as illustrated by the pressure and temperature flow fields which show the alignment of 

the reflected shock with the contact surface. The first encounter does not result in a significant 

distortion of the contact surface shape mainly because the interaction occurs with the normal 

portion of the reflected shock. As the reflected shock advances forward, the contact surface starts 

to interact with the bifurcated foot, and the driver gas is displaced towards the center of the shock 

tube to allow for the driven gas underneath the bifurcated foot to pass along the shock tube side 

walls. This fluid displacement is captured between 1.34 and 1.42 ms. The bifurcated shock 

structure loses its strength and coherence and the cold fluid jetting along the side walls becomes 
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less pronounced.  The interaction continues and becomes more pronounced as the vortices shed 

by the bifurcated foot encounter the driver gas. The interaction with the first vortical structure 

lagging behind the bifurcated foot takes place at 1.52 ms and results in a swirling motion of the 

driver gas on the outside edges of the contact surface. More vortices approach the driver gas as 

the reflected shock advances forward resulting in intensified swirling motions of the driver gas 

and mixing with the driven gas along the peripheries. By 2.1 ms, the contact surface shape is 

greatly distorted and the driver gas contaminates the driven gas which is no longer a mixture of 

100% air.  Figure 60 shows a close up of the He mole fractions in the shock tube before and after 

the interaction of the contact surface with the reflected shock. The vortices shed by the bifurcated 

foot provide a mechanism for driver gas contamination along the shock tube side walls and 

center with more driver gas convecting towards the center than the side walls. Simulations 

reported by Gooze et al have shown that vortices generated by the bifurcated reflected shock 

prevent the jetting of the driver gas along the wall and convect driver gas away from the shock 

tube wall (40), while Cambier et al. observed that jetting of the contact surface occurs near the 

wall (38). In this study, it is observed that driver gas contamination occurs along the shock-tube 

side walls and the center with more driver gas convecting to the center. 
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Figure 60: A Close-up on the   Contact surface - reflected shock interaction between 1.4 and 

2.1 ms since shock reflection showing the He mole fractions. Conditions of the driven gas are 

950 K, 1 atm and Air test gas. Conditions of the driven gas are 300 K, 0.4 atm, and He gas. 

Corresponding times since shock reflection are given in the upper Left corner of each frame. 

 

 After the reflected shock and the bifurcation structure and vortices have completely 

passed through the contact surface which at this point in time has stopped moving forward 

towards the endwall, the driver gas has no other means of reaching the endwall region and 

therefore driver gas contamination cannot be sustained. The vortices shed by the bifurcated foot 

which first acted as a mechanism of driver gas jetting, have also helped in convecting the driver 

gas away from the side walls towards the center in a clockwise direction, although there exist 

minor traces of the driver gas along the side walls at the later stages of the interaction but nothing 

major to constitute a potential of endwall contamination. As a measure of preventing driver gas 
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contamination, addition of annular gas-bleed arrangements in the shock tube (124) and particle 

trap arrangement on the shock tube centerline (59) have been investigated. 

 The driver gas contamination not only affects the mixture composition of the driven gas 

but also the temperature flow fields of the driven gas which experience a further decrease in 

temperature due to mixing with  the colder fluid of the driver gas and the side wall boundary 

layer. Figure 61 depicts the temperature flow fields in the vicinity of the interaction and the 

resulting decrease in temperature due to mixing of the driven gas with the colder driver gas.  

Results are shown for times between 1.56 and 1.75 ms. 
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1.7 ms 
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Figure 61:  A Close-up on the   Contact surface - reflected shock interaction between 1.56 and 

1.75 ms since shock reflection showing the temperature flow fields. Temperature has 

significantly dropped from 950 K to an average of 890 K due to mixing of colder driver gas 

with the hot driven gas. Corresponding times since shock reflection are given in the upper Left 

corner of each frame. 

 

 In addition to the bifurcated structure being the major mechanism responsible for driver 

gas contamination, local instabilities on the contact surface level known as the Richtmeyer-

Meshkov instability (RMI) can enhance this process. The Richtmeyer-Meshkov instability 

develops when an interface between two fluids of different densities known here as the contact 

surface is subjected to shock waves (125) (126).  

 From the bifurcation results presented herein, it has been shown how the continuous 

displacement of the viscous region and inviscid flow adjacent to the boundary layer from the 

bifurcated structure can lead to the formation of small shock waves notably along the slip line 

and the bifurcated foot and as a result mixing is promoted between the flow in the separation 

region and the unaffected region. These shock waves can in turn interact with the contact surface 

along the reflected shock wave and as a result vorticity is produced. These vortices can then 

enhance the mixing process on the contact surface level and therefore enhance driver gas 

contamination. The mixing process caused by the vortices generated on the contact surface has 
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been defined as turbulent mixing phenomenon (TM), which has been investigated by numerous 

studies (22) (18) (20) (19). 
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CHAPTER FIVE: NON-REACTIVE MODEL VALIDATION 

 The CFD shock tube model has been validated with experimental measurements. CFD 

simulations were obtained for both the inviscid and viscous solutions at the conditions provided 

in Table 9. The experimental pressure profiles were obtained at a location 1.6 cm from the 

endwall using the equipment detailed by de Vries et al. (2). 

 

Table 9: Test conditions used for the numerical model validation with experimental results 

        

Mixture Composition
a

T5 P5 

number 

 

(K) (atm) 

1 100% Ar 800 1 

    1500 20 

2  100% N2 950 2.5 

1600 17 

a 
Driver gas is He       

  

Inviscid Model Validation 

 

 Side wall pressure profiles were monitored for both the CFD model and experimental 

shock-tube runs. The side wall pressure trace from the inviscid model solution and the 

experimental results for the two Argon cases in Table 9 are provided in Figure 62. The pressure 

is normalized relative to P1 to allow for a direct comparison with the experimental results and to 
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correct for the small pressure offset between the model and the experiment due to the slightly 

different target conditions. For the comparison of the wave timing, the incident-shock Mach 

number and test temperature are of primary important, with the pressure having a secondary 

effect (on the viscous solution), so matching the exact pressures between experiment and model 

is not necessary. 
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b) 

Figure 62: Inviscid numerical model validation with experimental data in Ar test gas at a) T = 800 K, P = 1 

atm and b) T = 1500 K, P = 20 atm. The inviscid model has shown to be in very good agreement with the 

experimental results with the experiment producing slightly higher pressure due to the viscous boundary 

layer effects which are not accounted for in the inviscid solution. 

 

 Overall, the agreement between the CFD model and the experimental measurements for 

the inviscid argon cases in Figure 62 is very good. The CFD model is able to reproduce the 

timing of the incident and reflected shock wave passages in perfect agreement with the 

experimental measurements.  The timing of the expansion fan arrival to the endwall which brings 

the test time to an end is accurately predicted by the CFD model. The inviscid solution however 

does not capture the experimental pressure oscillations due to the non inclusion of the viscous 

boundary layer effects. 

 

 

5 6 7 8 9 10 11 12 13

0.0

0.5

1.0

1.5

 model (1500 K, 19 atm)

 data (1525 K, 22.3 atm)

Driver: 100% He

Driven: 100% Ar  

N
o

rm
a

liz
e

d
 P

 R
e

la
ti
v
e
 t

o
 P

1

time, ms



159 

 

Viscous Model Validation 

 

 Figure 63 compares the measured pressure profiles from the sidewall location for the two 

Nitrogen test gas runs (Table 9) with the results from the viscous laminar and turbulent solutions 

respectively. The overall timing of the waves is captured; with the laminar solution displaying 

slightly more oscillations than the turbulent solution. For the lower-pressure case (Figure 63 a), 

the viscous model seems to be in a good agreement with the experiment and the timing of the 

waves is properly captured by both the laminar and turbulent solutions.  For the higher-pressure 

case (Figure 63b), both solutions pick up  the compression hump from the interaction of the 

reflected shock wave with the contact surface at a time of about 1 ms after the passage of the 

reflected shock; although the timing is a little later than in the experiment as predicted by the 

turbulent solution. The expansion wave timing is well captured by the laminar solution, however 

it is under-predicted by the turbulent solution by about 0.5 ms and the strength of the expansion 

process is over-predicted slightly.  
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b)                                                                                       

Figure 63: Viscous Laminar numerical model comparison with shock-tube experimental data in N2 test 

gas at a) T = 950 K, P = 2.4 atm and b) T = 1600 K, P = 17 atm 

  

 Overall, the non-reactive viscous numerical model has shown to be capable of 

reproducing the major flow phenomena associated with unsteady flow behavior in shock tubes 

including the incident-shock propagation and reflection as well as the arrival of the expansion 

fan at the endwall. The test time which is defined as the period over which the flow properties 

behind the reflected shock wave are steady, has been accurately simulated and validated with 

experimental shock-tube data. The laminar solution is showing a better agreement with the 

experimental results than the turbulent solution.  This is mainly due to the misrepresentation of 

the shock-tube flow fields when a RANS turbulence model is adopted. Consequently, the non-

idealities which impact the flow properties behind the reflected shock wave are not accounted for 

properly in the turbulent solution.  
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CHAPTER SIX: COMBUSTION MODELING 

Introduction 

 

So far, the flow was assumed as non-reactive and emphasis was placed on developing a 

robust multi-dimensional, time-dependent numerical model of the shock tube capable of 

simulating the major flow non-idealities. The combustion model which is developed from the 

non-reactive baseline solution aims at coupling the shock-tube fluid mechanics with the chemical 

kinetics in an attempt to model the ignition process behind the reflected shock wave and to gain 

insight on the extent of non-ideal behavior in diluted and undiluted fuel-air mixtures. As such, 

the ignition process will be simulated in the vicinity of a highly disturbed flow characterized by 

bifurcation, vortical structures, and heat transfer effects.  In this study, attention is given to the 

modeling of the combustion process of a Hydrogen-air and Hydrogen-Oxygen-Argon mixtures at 

conditions representative of the power generation gas turbine industry; notably high pressure and 

intermediate temperatures. The section which follows provides some background on reactive 

flow modeling in shock tubes.  

Background 

 

 Reactive flow simulations in the shock tube have been investigated in two-dimensional, 

three-dimensional, and axi-symmetric models. Combustion modeling focused on the ignition 

behind the reflected shock and its role in initiating the deflagration to detonation transition 

phenomena. Takano (127) performed simulations for detonation initiation behind a reflected 

shock wave in a Hydrogen-Oxygen-Argon mixture by solving the 2D thin-layer Navier-Stokes 
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equations through a method which combines the FCT scheme, the Crank-Nicolson scheme, and a 

chemical calculation step. The chemical model consisted of two progress parameters to take into 

account the induction reactions as well as the exothermic reactions. Loth et al. (128) performed 

2D numerical simulations of gas detonation using a flux Corrected Transport scheme (FCT) and 

a two step induction model coupled with an energy release equation which was simulated with a 

point implicit finite element scheme. The end wall section of 40 cm was considered.  Brown and 

Thomas (129) performed 2D simulations of shock reflection with the presence of an obstacle in 

Argon, air, Propane-air, Propane-Oxygen-Argon, and Ethylene-Oxygen-Argon mixtures. 

Through their simulation results, it was shown that ignition can be induced by the interaction of 

the reflected shock with an obstacle which can then promote detonation. Chang and Kailasanath 

(130) numerically studied the shock wave traveling through a multiphase media in a 6 m inviscid 

axi-symmetric model and used an energy release model and captured behavior similar to 

detonation. Gui et al. (131) performed axi-symmetric simulation by solving the Navier–Stokes 

equations with detailed chemistry to simulate laminar spherical CH4/air flame perturbation by 

incident and reflected shock waves reflected from a planar or concave wall. Chue et al. (121) 

performed three-dimensional numerical computations to examine the effects of driver gas 

contamination in the NASA HYPULSE facility with a detonation driver shock tunnel in 

hydrogen-oxygen- argon mixture. The Kang–Dunn finite rate chemical kinetics model was used 

to describe the reacting flow.  

 Perhaps the most comprehensive research of reactive flow modeling of the shock tube is 

that of Oran and Gamezo (132) which focused on the deflagration to detonation (DDT) 

phenomenon. Reactive flow modeling was made possible by solving the time dependent Navier-

Stokes equations in an Ethylene-air mixture.  It was found that shock flame interactions and the 
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resulting turbulent flame brush, hot spots, boundary layer effects, and mach stems provide a 

mechanism for DDT through the Zeldovich gradient mechanism. Also, the turbulent flame brush 

affects the nonreactive nearby material and may trigger hot spots and ignition which in turn can 

lead to DDT. In addition to flame shock interaction as a mechanism for DDT, flame-flame 

interaction, turbulent mixing of hot products with the reactant mixture, and direct shock ignition 

can generate reactivity gradients thus triggering DDT.  

 Moreover, Shock-Flame interactions and DDT phenomena have been the interest of 

Khokhlov and Oran (133) (134) (135) (136) (137) and Kholkhov et al. (138). Khokhlov and 

Oran (133) (134) adopted the 2D reactive Navier-Stokes equations and simulated the interaction 

of a shock wave and expanding flame front through the Richtmeyer-Meshkov instability, the 

formation of a flame brush, and the deflagration to detonation transition in an Acetylene–air 

mixture. It was found that the turbulence generated by pressure fluctuations from continuous 

flame front and shock interactions may induce hot spot formations which can transition to 

detonation by the means of the gradient mechanism. Kholkhov et al. (138) simulated the 

interaction of a shock wave and a sinusoidally perturbed premixed flame by solving the reactive 

Navier-Stokes equations for a stoichiometric Acetylene-air mixture. It was discovered that the 

interaction results in enough vorticity to increase the flame surface area and heat release without 

over-stretching and extinguishing the flame and that the heat release rate increase by a factor of 

two from 2D to 3D simulations. Oran and Kholkhov (137) performed multidimensional 

numerical simulations to simulate the deflagration to detonation transition resulting from 

incident shock waves interactions with laminar flame. Reactive Navier-Stokes equations were 

solved for an Acetylene air mixture over a wide range of test conditions. The interaction of the 

shock wave with the laminar flame result into the formation of rarefactions, secondary shocks, 
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and contact surfaces further distorting the flame surface, which leads to the development of  the 

turbulent flame brush and pressure fluctuations. Consequently, hot spots and spontaneous waves 

through the gradients in the induction times form, inducing the deflagration to detonation 

transition.  

 Also, boundary layer effects on the formation of induction time gradients in the shock 

tube were studied by Gamezo et al. (139) (140)  (141) (142) (139) (143) and Oran et al. (144). 

Gamezo et al. (140) (139) investigated the initiation of detonation in confined and unconfined 

premixed gaseous systems by solving the  two-dimensional Reactive Navier-Stokes equations 

and using an explicit second order Eulerian Godunov-type method. The combustion process was 

assumed to occur in a one-step Arrhenius expression. Gamezo et al. (141) simulated the 

interactions of a premixed flame with incident and reflected shocks in a rectangular shock tube 

by solving the three-dimensional reactive Navier–Stokes equations. The turbulent features were 

well captured by the model on different scales.  No sub-grid model was adopted and the 

modeling of the turbulent energy dissipation relied on numerical viscosity. It was learned that the 

flame which is close to the bifurcated foot as a result of reflected shock/boundary layer 

interaction gets entrained in the recirculation zone which acts as a flame holder thus attaching it 

to the shock  tube side wall. This in turn provides a mechanism for detonation. In addition and as 

a result of boundary layer/reflected shock interaction, the accelerated burning and mach stems 

promote hot-spot formation and eventually accelerate the deflagration-to-detonation transition. 

Gamezo et al. (142) performed two-dimensional reactive Navier-Stokes numerical simulations in 

Ethylene-air mixture to study the effects of wakes behind obstacles on shock-flame interactions 

and deflagration-to-detonation transition in shock-tube experiments. It was found that a 

bifurcation structure forms due to the velocity gradient in the wake. In the case the wake is large 
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enough, the flame is entrained under the bifurcated foot and is accelerated in the recirculation 

zone. As the bifurcation structure grows in size, the oblique shocks reflect off the side walls of 

the shock tube forming mach stems which can induce hot spots, more flames, and trigger 

detonation.  

 In other studies, the flame effects on the deflagration to detonation in the shock tube 

containing an obstacle has been investigated by Gamezo et al. (145) and Vaagsaether et al. (146). 

Gamezo et al. (145) studied the phenomena of flame acceleration and deflagration-to-detonation 

transition in channels with obstacles placed along the length of the computational channel by 

solving the 2D and 3D reactive Navier–Stokes equations. The reaction of a stoichiometric 

Hydrogen/air mixture was modeled by a one-step Arrhenius rate expression. The obstacles 

reproduced the major mechanism in reactive mixtures such as choking flames, and detonations. 

The simulations results showed that the expansion of the hot combustion gases result in flow 

acceleration while flame propagation depicted by an increase in the heat release rate is caused by  

shock–flame interactions, Richtmeyer–Meshkov instability, Rayleigh–Taylor instability, Kelvin–

Helmholtz instability, and flame–vortex interactions. Vaagsaether et al. (146) simulated Flame 

acceleration and deflagration to detonation transition (DDT) in a circular 4 m long tube with a 

diameter of 10.7 cm using a numerical code based on a flux limiter centered method for 

hyperbolic differential equations. The energy source term was calculated by a Riemann solver 

for the inhomogeneous Euler equations for the turbulent combustion and a two-step reaction 

model for hydrogen–air at 1 atm. The transport equations were filtered for large eddy simulation 

(LES) and the sub-filter turbulence was modeled by a transport equation for the turbulent kinetic 

energy. The flame tracking was handled by the G-equation for turbulent flames. The modeled 

shock tube was fitted with an obstruction with circular opening 1m down the tube from the 
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ignition point. It was learned that the obstruction creates high pressures in the ignition end of the 

tube and very high gas velocities behind the obstruction opening. Therefore, the flame 

experiences a detonation to deflagration transition DDT in the supersonic jet created by the 

obstruction. 

 The studies described above have provided significant understanding of reactive flow 

modeling in the shock tube. However, more emphasis has been given to the deflagration to 

detonation transition phenomena and the preceding mechanisms that lead to it. In addition, all 

these studies employed simplified kinetics models describing the combustion process with two 

reactions at the most due to the increased computational resources associated with the adoption 

of a detailed kinetics mechanism. Consequently, the combustion process depends greatly on the 

assumptions associated with fast chemistry. This study however focuses on the ignition initiation 

after shock-reflection and the effect of the non-idealities on premature auto-ignition. In order to 

accurately model the reactive flow fields in the shock tube, the chemistry needs to be described 

by the means of a detailed kinetics mechanism. As such, this study employs a chemical kinetics 

mechanism comprising of 19 reactions and 11 species for Hydrogen oxidation.  The increased 

computational time was overcome with the use of parallel computing.   

 As a first part towards extending the shock tube fluid mechanics model to account for 

reactive modeling of Hydrogen combustion, an overview on the combustion model governing 

equations and chemistry models is presented and the Hydrogen chemical kinetics mechanism 

comprising of 19 elementary reactions and 10 species is incorporated into the CFD solver 

FLUENT. Next, the combustion simulation results are provided. The modeled conditions behind 

the reflected shock wave consist of diluted Hydrogen/Oxygen/Ar mixture at the conditions of 
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1600 K and 1.2 atm and an undiluted Hydrogen/Air mixture at the conditions of 800 K and 35 

atm.  

 

Combustion Model 

 

H2 Chemical Kinetics Mechanism 

 

 Combustion modeling requires the coupling of the Navier Stokes equations and the 

chemistry which necessitates increased computational resources in order to resolve all the 

relevant scales. In shock tube devices, the flow is characterized to be turbulent indicating that the 

interaction between the chemical kinetics and turbulence can be significant. The modeling of 

such complex flow fields requires extensive computational resources, whose cost increases with 

the number of species in the chemical kinetics mechanism. As such, reduced mechanisms are 

often used in order to alleviate the problem associated with increased computational cost. In this 

respect, a reduced H2/O2 chemical kinetics mechanism (147) is incorporated into the CFD solver 

FLUENT. The mechanism is valid for a wide range of conditions, temperatures between 298 and 

2700 K, pressures between 0.05 and 87 atm, and equivalence ratios between 0.2 and 6. The 

kinetics model has been validated against ignition delay times, flame speeds, and species 

compositions experimental data. Table 10 provides the H2/O2 reaction mechanism which consists 

of 10 species and 19 reversible elementary reactions.  
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Table 10: Reduced kinetics mechanism for Hydrogen oxidation (147) 

 

 

      K(T) = A Tn 
exp(‐E/RT)  

Number  Reactions  A (cm, mol, s) n 
Ea 

(cal/mol)

1  H+O2 = O+OH  1.92E+14 0  1.64E+04

   REV  5.48E+11 0.39  ‐2.93E+02
2  O+H2 = H+OH  5.08E+04 2.67  6.29E+03

   REV  2.67E+04 2.65  4.88E+03

3  OH+H2 = H+H2O  2.16E+08 1.51  3.43E+03

   REV  2.30E+09 1.4  1.83E+04

4  O+H2O = OH+OH  2.97E+06 2.02  1.34E+04

   REV  1.47E+05 2.11  ‐2.90E+03
5  H2+M = H+H+M  4.58E+19 ‐1.4  1.04E+05

   REV  1.15E+20 ‐1.68  8.20E+02

   Efficiency Factors: H2=2.5, H2O=12.0       
6  O2+M = O+O+M  4.52E+17 ‐0.64  1.19E+05

   REV  6.17E+15 ‐0.5  0.00E+00

   Efficiency Factors: H2=2.5, H2O=12.0,AR=0.83       
7  OH+M = O+H+M  9.88E+17 ‐0.74  1.02E+05

   REV  4.71E+18 ‐1  0.00E+00

   Efficiency Factors: H2=2.5, H2O=12.0, AR=0.75       
8  H2O+M = H+OH+M  1.91E+23 ‐1.83  1.19E+05

   REV  4.50E+22 ‐2  0.00E+00

   Efficiency Factors: H2=0.73, H2O=12.0, AR=0.38       
9  H+O2(+M) = HO2(+M)  1.48E+12 0.6  0.00E+00

   LOW  3.48E+16 ‐4.11E‐01  ‐1.12E+03

  
TROE/  a=  0.5,  T***  =  1E‐30,  T*  =  1E+30,  T**  = 
1.0E+100        

   Efficiency Factors: H2=1.3, H2O=14.0, AR=0.67       
10  HO2+H = H2+O2  1.66E+13 0  8.23E+02

   REV  3.16E+12 0.35  5.55E+04

11  HO2+H = OH+OH  7.08E+13 0  2.95E+02

   REV  2.03E+10 0.72  3.68E+04

12  HO2+O = OH+O2  3.25E+13 0  0.00E+00

   REV  3.25E+12 0.33  5.33E+04

13  HO2+OH = H2O+O2  2.89E+13 0  ‐4.97E+02
   REV  5.86E+13 0.24  6.91E+04

14  H2O2+O2 = HO2+HO2  4.63E+16 ‐0.35  5.07E+04

   REV  4.20E+14 0  1.20E+04

Duplicate: H2O2+O2 = HO2+HO2 1.43E+13 ‐0.35  3.71E+04



169 

 

   REV  1.30E+11 0  ‐1.63E+03
15  H2O2(+M) = OH+OH(+M)  2.95E+14 0  4.84E+04

   REV  3.66E+08 1.14  ‐2.58E+03
   LOW  1.20E+17 0  45500

  
TROE/  a=  0.5,  T***  =  1E‐30,  T*  =  1E+30,  T**  = 
1.0E+100        

Efficiency Factors: H2=2.5, H2O=12.0, AR=0.64       
 16  H2O2+H = H2O+OH  2.41E+13 0  3.97E+03

   REV  1.27E+08 1.31  7.14E+04

17  H2O2+H = H2+HO2  6.03E+13 0  7.95E+03

   REV  1.04E+11 0.7  2.40E+04

18  H2O2+O = OH+HO2  9.55E+06 2  3.97E+03

   REV  8.66E+03 2.68  1.86E+04

H2O2+OH = H2O+HO2  1.00E+12 0  0.00E+00

   REV  1.84E+10 0.59  3.09E+04

19  Duplicate: H2O2+OH = H2O+HO2 5.80E+14 0  9.56E+03

   REV  1.07E+13 0.59  4.05E+04

Species :  H, H2, O, O2, OH, H2O, N2, HO2, H2O2 , and AR  
              
 

Chemistry Model 

 

 In this study, the combustion process is assumed as premixed, and the species mass 

fractions are obtained from the species transport equation given by: 

 
߲ሺߩ ௜ܻሻ߲ݐ ൅ .׏ ሺݒߩԦ ௜ܻሻ ൌ െ׏. Ԧ௜ܬ ൅ ܴ௜ (54) 

Where ܴ௜ is the net rate of species production by chemical reaction. ܬԦ௜ is the diffusion flux of 

species i and is given by the equation below following Fick’s Law: 

Ԧ௜ܬ  ൌ െ൫ܦߩ௜,௠൯׏ ௜ܻ െ ௜,்ܦ ܶܶ׏
 (55) 

Where ܦ௜,௠ is the mass diffusion coefficient for species j and ்ܦ,௜ is the thermal diffusion 

coefficient. For turbulent flows, the diffusion flux of species i is given by: 

Ԧ௜ܬ  ൌ െ ൬ܦߩ௜,௠ ൅ ௧ܵܿ௧൰ߤ ׏ ௜ܻ െ ௜,்ܦ ܶܶ׏
 (56) 
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Where ܵܿ௧ is the turbulent Schmidt number and has a value of 0.7 and ߤ௧ is the turbulent 

viscosity. Then the energy transport equation for viscous flows previously defined herein is 

given by: 

 
߲ሺܧߩሻ߲ݐ ൅ .׏ ሾ ሬܸԦሺܧߩ ൅ ሻሿ݌ ൌ .׏ ሾ݇௘௙௙ܶ׏ െ ෍ ௝݄ܬ௝ ൅ ሺ߬Ӗ௘௙௙ . ሬܸԦሻሿ ൅ ܴ௜௝  (57) 

The chemical source term ܴ௜ can be obtained by any of the four chemistry models available in 

FLUENT. These models include the laminar finite rate model, the Eddy Dissipation model, the 

Eddy-Break-up model, and the Eddy Dissipation Concept model. 

 

Finite Rate Model 

 In the Laminar finite rate model, the chemical source term ܴ௜ is computed from the 

Arrhenius rate expressions defined in the chemical kinetics mechanism. And the chemical source 

term is given by: 

 ܴ௜ ൌ ௪,௜ܯ ෍ ෠ܴ௜,௥ேೃ
௥ୀଵ  (58) 

Where  ܯ௪,௜ is the molecular weight of species i, ෠ܴ௜,௥ is the Arrhenius molar rate of creation and 

destruction of species i. For a reversible reaction,  ෠ܴ௜,௥ is given by: 

 ෠ܴ௜,௥,௞௜௡௘௧௜௖ ൌ ௜,௥ᇱᇱߥ൫߁ െ ௜,௥ᇱߥ ൯ ቌܭ௙,௥ ෑ ௝,௥ቀఎೕ,ೝᇲܥ ቁே
௝ୀଵ െ ௕,௥ܭ ෑ ௝,௥൫ఔ೔,ೝᇲᇲܥ ൯ே

௝ୀଵ ቍ (59) 

Where ߁ is the third body net effect on the reaction rate. ߥ௜,௥ᇱᇱ  and ߥ௜,௥ᇱ  are  the product and 

reactant stoichiometric coefficients, respectively. ܭ௙,௥ and ܭ௕,௥ are the forward and backward rate 
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constants, respectively, ܥ௝,௥ is the molar concentration of species I, and ߟ௝,௥ᇱ  is the product rate 

exponent. The forward rate constant  ܭ௙,௥ is given by: 

௙,௥ܭ  ൌ ܣ ܶ௡ exp ൬െ ܧܴܶ ൰ (60) 

Where A is the pre-exponential factor, ݊ is the temperature exponent, E is the activation Energy 

in (J/kgmol), and R is the universal gas constant in (J/Kmol-K). Note that the units for energy 

given in Table 10 are in cal/mol, however the units are converted properly once the mechanism 

is read into FLUENT. The backward rate constant  ܭ௕,௥  is given by:  

௕,௥ܭ  ൌ ௥ܭ௙,௥ܭ  (61) 

And ܭ௥ the equilibrium constant given by: 

௥ܭ  ൌ exp ቆ∆ܵ௥଴ܴ െ ௥଴ܴܶܪ∆ ቇ ൬ ௔ܲ௧௠ܴܶ ൰∑ ൫ఔ೔,ೝᇲᇲ ିఔ೔,ೝᇲ ൯೔ಿసభ
 (62) 

Where the term 
∆ௌೝబோ െ ∆ுೝబோ்  denotes the change in Gibbs free energy with ܵ௥଴ and ܪ௥଴ being the 

entropy and enthalpy at the standard state, respectively. 

 

Eddy-Dissipation Model 

 The Eddy Dissipation model is the typical example of a “mixed is burnt” combustion 

model and is popular for its simplicity, steady convergence, and implementation. The first 

attempt to develop the model is due to Spalding, (148)
 
whose idea was to replace the chemical 

time scale of a one-step reaction by the turbulent time scale, eliminating the influence of 

chemical kinetics. The model was then improved by Magnussen and Hjertager, (149) who called 

it the eddy-dissipation model.  
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 The Eddy Dissipation model (EDM) assumes that the reaction is limited by micro-

mixing, meaning that the chemical kinetic times are fast compared to the mixing times. The 

Eddy Dissipation Model relates the rate of combustion to the rate of dissipation of eddies and 

expresses the rate of reaction by the mean concentration of a reacting species, the turbulent 

kinetic energy, and the rate of dissipation of this energy. The Eddy dissipation model reaction 

rate is given by: 

 ܴ௜,௠௜௫௜௡௚ ൌ ௜,௥ᇱߥ4 ߩ௪,௜ܯ ߝ݇ ݉݅݊ ቆ ோܻߥோ,௥ᇱ  ௪,ோቇ (63)ܯ

In this model, an ignition source is not necessary to start combustion, which makes this model 

not acceptable for the modeling of premixed combustion.  

 

Eddy Break-up Model 

 Several attempts have been made for finite-rate chemistry correction of the Eddy 

Dissipation (ED) combustion model, (150) (151) and now, the eddy dissipation model is used in 

a form that allows for finite-rate chemistry. This new form of the ED model has been used in 

combustion simulations with encouraging results (152) (151) (153) (154).
 
The chemical source 

term is computed from the minimum of the mixing rate and the Arrhenius rate as such: 

 ( )
kineticmixingi RRR ,min=  (64) 

At equilibrium conditions, the model automatically reduces to the Magnussen –Hjertager (149) 
 

model.  
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Eddy Dissipation Concept (EDC) 

The description of the turbulence-chemistry interactions represents one of the most 

difficult tasks in turbulent combustion and it becomes necessary to adopt a robust model that 

accounts for both the chemistry and the turbulence such as the Eddy Dissipation Concept (EDC) 

model.  Not to be mistaken for the Eddy Dissipation model (EDM), the Eddy-Dissipation-

Concept (EDC) model accounts for detailed chemistry in turbulent flows (155) (156). Reaction is 

then assumed to take place in fine turbulent scales over the time scale τ which is proportional to 

the kolmogorov time scale,  

 ߬ ൌ 0.4082 ටߝߥ ؠ  ௞௢௟௠௢௚௢௥௢௩ (65)ݐ

The time scale constant is equal to 0.4082. This constant can be adjusted in FLUENT 

either to accelerate or slow down the reaction. Decreasing the time scale constant will result in 

an acceleration of the reaction while increasing it slows down the reaction process. The fine scale 

length fraction γ given by: 

ߛ  ൌ 2.1377 ቀ݇ߥߝଶቁଵ/ସ ؠ ܴ݁௧ି ଵ/ସ
 (66) 

Where, 2.1377 is the volume fraction constant, and ν is the kinematic viscosity. The chemical 

source term ܴ௜ is then given by: 

 ܴ௜ ൌ ଶ߬ߛ ሺ ௜ܻכ െ ௜ܻሻ (67) 

Where ௜ܻכ is the fine scale species mass fraction reacting over the time ߬. 

 The EDC model can become computationally demanding when the chemical mechanism 

used contains multiple reactions and species mainly due to the nonlinearity of the chemical 
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kinetics mechanism which renders the direct integration method cumbersome. FLUENT 

overcomes this problem and uses ISAT (In-Situ Adaptive Tabulation) to integrate the reactions 

(157) Reducing the computational time as opposed to direct integration.   

 The chemistry models which are used to model ignition behind the reflected shock wave 

in this study are the laminar finite rate model in the case of laminar flow fields and the Eddy-

Dissipation Concept (EDC) Model in the case of turbulent flow fields. Although the Eddy 

Dissipation Concept model in conjunction with a RANS turbulence model is more likely to 

provide a realistic representation of the turbulence-chemistry interactions in the shock tube flow 

fields, the failure of the RANS turbulence models to resolve the non-idealities and notably the 

bifurcation phenomenon in the non-reactive model suggested that the laminar finite rate model 

would be more suitable for the reactive shock tube flow field simulations. Nonetheless, 

combustion results from both the laminar finite rate and EDC chemistry models are obtained and 

analyzed. 

 

Reactive Model Test Conditions  

   

 Numerical simulations were performed for multiple initial conditions across the 

diaphragm by varying the driver-to-driven pressure ratios to achieve the conditions of interest 

behind the reflected shock wave. Due to the increased computational time associated with 

modeling the shock wave propagation all the way to the endwall with the full reactive model 

setup activated, at first only the flow properties behind the incident shock wave were used as an 

estimate for the conditions behind the reflected shock wave, and once the results converged to 

the conditions of interest, full simulations were obtained. Table 11 and Table 12 provide a 
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summary of the numerical simulations performed in the reactive flow model for a diluted 

Hydrogen mixture in Argon (mixture 3) and an undiluted Hydrogen/Air mixture (mixture 4). 

Plots of the pressure ratio across the diaphragm versus the temperature behind the incident shock 

wave are also provided in Figure 64 and Figure 65 for mixtures 3 and 4, respectively. Table 13 

provides the conditions for which the entire shock tube model was simulated.  These conditions 

were used to investigate ignition behind the reflected shock wave as seen in the shock-tube 

experiments. 

 

Table 11: Summary of the numerical simulations performed in the reactive flow model for a diluted 

Hydrogen mixture in Argon (Mixture 3) 

T2 (K)  P2 (atm) P1 (atm) P4 (atm) P4/P1

600  0.5 0.11 3 27.27

700  0.6 0.11 4 36.36

730  0.15 0.03 1.2 40.00

775  0.4 0.06 2.7 45.00

950  0.3 0.04 3.2 80.00

 

 

Table 12: Summary of the numerical simulations performed in the reactive flow model for an undiluted 

Hydrogen/Air mixture (Mixture 4) 

T2 (K)  P2 (atm) P1 (atm) P4 (atm) P4/P1

400  0.25 0.11 1 9.09

450  3.5 1 15 15.00

475  6.2 1.7 34 20.00

500  7.5 1.8 45 25.00

540  9 1.8 64 35.56

580  10 1.8 90 50.00

600  11 1.7 120 70.59

600  8 1.3 91 70.00
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Figure 64:  Diaphragm pressure ratios P4/P1 required to generate temperatures behind the incident 

shock wave in the range of  600-950 K for a diluted Hydrogen/O2 mixture in Ar 

 

Figure 65:  Diaphragm pressure ratios P4/P1 required to generate temperatures behind the incident 

shock wave in the range of  400-600 K for an undiluted Hydrogen/Air mixture 
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Table 13: Test gas mixtures and range of test conditions used in the validation study of the axi-symmetric 

model 

Mixture  

number 

Composition
a
 T5 (K) P5 (atm) 

3 1% H2 + 0.5% O2 + 98.5% Ar 1600 1 

4 11.23% H2 + 18.64% O2 + 70.11% N2  850-1000 35-45 

a 
Driver gas is He     

 

Ignition Delay Time Simulations 

 

 Reactive Simulations are to be performed for the mixtures given in Table 13. In order to 

detect ignition, the flow properties including pressure, temperature, and species mole fractions 

need to be monitored at various locations in the shock-tube test region. Figure 66 shows a 

schematic of the shock tube test region with the different monitor points at which the flow field 

profiles were obtained.   
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Figure 66: Schematic of the shock-tube endwall section showing the various locations at which the flow 

properties are monitored for the purpose of ignition detection. 

 

   

 At first, both the laminar finite rate and Eddy Dissipation Concept turbulent models are 

used in the simulations in order to investigate the influence of the two models on the initiation of 

the combustion process and also to allow for a direct comparison between the results achieved by 

the laminar and turbulent reactive models. Figure 67 gives the temperature (a) and pressure (b) 

flow fields obtained with the laminar finite rate (left) and the turbulent Eddy Dissipation Concept 

models at the conditions of 1000 K and 45 atm for the undiluted Hydrogen mixture #4. Both 

models depict ignition initiation and the resulting pressure wave from the exothermic reaction, 

however the turbulent model seems to be under-predicting the intensity of the ignition process 

compared to the laminar model. This result is consistent with the laminar versus turbulent 

solution previously obtained with the non-reactive viscous model where it has been shown that 



179 

 

the RANS turbulence models fail to accurately represent the shock-tube non-idealities and their 

impact on the ignition mechanism. Chemical reaction in experimental shock tubes occurs under 

turbulent conditions. Perhaps a sub-grid model such as LES would be more appropriate to 

represent the turbulent nature of the shock-tube flow fields without suppressing the flow non-

uniformities associated with viscous effects as the RANS model do.   
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Figure 67:  Reactive Laminar (left) and Turbulent (right) simulations in undiluted Hydrogen/Air mixture 

showing the flow fields of a) temperature (K) and b) pressure (atm) behind the reflected shock wave at 

conditions near 1000 K and 45 atm . White areas depict flames with temperatures of 2000 K and 3500 K 

for the turbulent and laminar solutions, respectively.   
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Detonation Modeling 

 

 Detonation phenomenon occurs as a result of the Zeldovich gradient mechanism (158). 

Another process by which detonation occurs is when the reaction wave emerging from two 

merging flames develops into a detonation wave. This has been observed by Gamezo et al. (140) 

in numerical simulations involving very high thermo-conductivity such that the detonation wave 

thickness is less than the flame thickness and the thickness of the non-reacted material between 

the two merging flames. 

 In case detonation takes place, the reactive pressure fields should be able to detect the 

reaction front resulting from the hot spot explosion and the resulting shock wave (134). There are 

two conditions which need to exist for the initiation of detonation through the Zeldovich gradient 

mechanism (158). First, the appropriate induction time gradient represented by the localized non 

uniform hot spots needs to exist and second, the emerging reaction wave from the reaction zone 

has to have the same velocity as the shock wave originating from the reaction zone (132). The 

first condition ensures that a reaction wave will develop and propagate, and the second condition 

is necessary for the reaction wave to transition to a detonation wave. The second condition to 

satisfy the transition to detonation is that the reaction wave and the shock wave velocities 

emerging from the hot spot have to match. In the case where the shock wave originating from the 

reaction zone is traveling faster than the reaction wave itself, the two waves are not coupled and 

a transition to detonation does not occur (132).  In the case that detonation does not take place, 

the reaction zone develops into a flame (132) which grows in surface and generates more 

pressure waves that cause more non-uniformities in the flow fields. As a result, new hot spots 

appear which in turn can develop into flames if they survive long enough. Also transition to 
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detonation does not occur if the reaction wave speed is less than the speed of sound (137). 

 Detonation is more likely to be captured under increased grid resolution. Studies which 

simulated the transition to detonation phenomenon successively employed grid sizes as small as 

0.02 mm while in this study; the minimum grid size was limited to 0.1 mm due to increased 

computational resources associated with increased grid resolution. On the other hand, the 

temporal variations were fully resolved with time scale as low as 0.01 μs  

 It is important to note that the studies which captured the transition to detonation 

phenomenon  did not account for the heat losses to the shock-tube walls  and often assumed 

adiabatic walls (139) (145) (140) (142) (133) (138) (135) (134) (132) (137) (159) (136). 

Consequently, the temperature in the test region can be over-predicted and the transition to 

detonation event can be exaggerated. While in this study, the heat transfer effects were accounted 

for by the means of a conjugate heat transfer model and the temperatures in the test region were 

accurately modeled.  

  Another factor which can affect the detection of a detonation event is the 

chemistry model used to model the combustion process. Due to the increased computational cost 

associated with detailed chemistry modeling, chemistry is often represented with a one- or two-

step reaction model (139) (145) (140) (142) (133) (138) (135) (134) (132) (137) (159) (136). 

This simplification could result into the under-prediction of the gradient induction time in the hot 

spots and therefore the misrepresentation of the gradient mechanism responsible for detonation 

initiation. While in this study, a more detailed mechanism comprising of 19 reactions was 

employed. As such, the chemical times are ensured to be better represented. All of the factors 

mentioned herein need to be considered when modeling detonation in the reactive flow fields. 
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Recommendations 

 

 The chemistry-turbulence interactions play an important role in the initiation of the 

combustion process behind the reflected shock wave. Accurate representation of the shock-tube 

turbulent reactive flow fields can be obtained by the means of a sub-grid model such as LES in 

combination with a robust chemistry model such as the EDC model. On the other hand, the 

detailed modeling of detonation requires the simulation of the complex flame-shock-vortical 

interactions and the understating of the role the gradient mechanism plays in initiating 

detonation. The detailed modeling of the reactive shock-tube flow fields should be performed 

with the full consideration of the following factors. 

a) Full resolution of the temporal and spatial scales which should be on the order of 0.01 μs 

and 0.01 mm respectively for typical shock-tube problems.   

b) Accounting for the turbulence-chemistry interactions by the means of the EDC chemistry 

model and a sub-grid model such as LES.  

c) Adoption of a more detailed reaction mechanism rather than a one or two-step reaction 

model to describe the chemistry 

d) Accounting for the heat losses from the shock-tube hot gas to the shock-tube walls by the 

means of conduction, convection, and radiation. Note that radiation was not accounted 

for in the current study. 

e) Optimization of the computational resources through the options of parallelization and 

ISAT (in Situ Adaptive Tabulation). ISAT is available with the EDC chemistry model 

that comes with the CFD solver FLUENT. 
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Such an effort would require few months of analysis and computational efforts. Perhaps this can 

be pursued in a future study.  
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CONCLUSIONS  

 Axi-symmetric inviscid, viscous, and reactive models have been developed to simulate 

the complete geometry of the high-pressure shock-tube facility at Texas A&M University. The 

simulations were carried out with the commercial CFD solver FLUENT. The model equations 

were discretized in space and time following the control volume approach and utilizing a 

density-based explicit solver. The flow domain was represented with a structured mesh. The 

AUSM+ flux vector splitting scheme was used to compute the flux vectors. Grid adaption was 

used to resolve regions with the steepest gradients, notably shock and contact discontinuities. 

This approach improved the accuracy of the solution and reduced the smearing effect associated 

with the numerical dissipation. Also, a grid-refinement study showed that an adequate resolution 

of the flow field has been achieved.   

 The first part of the shock-tube modeling study assumed the flow is inviscid and 

concentrated on developing a robust numerical model to be used as a baseline for the more-

complex viscous solution. The convective terms were discretized in space following three 

schemes: 1/2
nd

 order blending upwind, 2
nd

 order upwind, and third-order MUSCL schemes to 

investigate the impact of increasing the scheme resolution on the accuracy and stability of the 

inviscid solution. It was not possible to achieve a solution free of unphysical numerical 

oscillations with the high-resolution schemes, while the 1
st
/2

nd
 order blending and second-order 

schemes provided a more stable solution that is in very good agreement with the 1-D theory.  

 The incident shock wave Mach numbers were determined from the velocities and flow 

properties of the traveling shock wave and compared with the 1-D ideal theory. It was found that 

the model under-predicts the incident-shock velocities when the same initial pressure ratio 
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between the model and the ideal theory is applied. Whereas velocity simulations reported in 

other numerical studies, in which the gradual opening of the diaphragm was modeled, were 

highly over-predicted. The reason for the discrepancy was attributed partly to the fact that the 

current model does not take into account the gradual opening of the diaphragm which has been 

shown to cause an acceleration of the incident shock wave, and partly to the fact that the ideal 

theory assume equal diameters between the driver and driven tubes. The discrepancy was 

overcome by matching the incident-shock velocity between the model and the 1-D theory or the 

experiment regardless of the initial pressure ratio across the diaphragm.  

 The inviscid flow fields behind the reflected shock wave were simulated for a wide range 

of test conditions; 700 K < T5 < 2528 K and 0.9 atm < P5 < 15 atm in both Ar and N2 test gases 

which were then validated with the 1-D ideal theory. The inviscid numerical model reproduced 

the major processes occurring in the shock tube. The arrival of the expansion fan to the endwall 

depicted by the decrease in the test pressure was also well captured.   

 In the second part of the shock tube study, the effects of the viscous boundary layer were 

taken into account. This addition allowed for the modeling of the non-ideal behaviors in the 

shock tube represented mainly by the low-pressure high-velocity phenomenon in the shock tube 

nozzle downstream the diaphragm, heat transfer effects from the shock-tube hot gas to the shock-

tube walls, the interaction of the reflected shock wave with the boundary layer induced by the 

incident shock, and the interaction of the bifurcated shock structure with the contact surface.   

 The strange behavior observed in the shock-tube nozzle downstream the diaphragm 

characterized by a steep pressure drop following the pressure rise from the incident shock wave  

is attributed to the shock formation and transmission which occurs at a much faster rate than the 

pressure wave propagation in the nozzle, resulting in an over-expanded flow region lagging 
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behind the incident shock wave. The time-accurate solutions were able to reproduce this transient 

phenomenon and model the pressure drop accordingly. The low-pressure high-velocity 

phenomenon in the nozzle section is a physical behavior which should not be misinterpreted for 

the nonphysical spurious oscillations attributed to the accuracy of the numerical scheme 

employed. Future experimental shock-tube studies are underway to investigate the presence of 

the low-pressure high-velocity region in the shock-tube nozzle section.  

 The heat transfer effects from the shock-tube hot gas to the shock-tube cold walls were 

modeled by the means of a conjugate heat transfer model. The conditions of 800 K and 1 atm in 

Ar test gas behind the reflected shock-wave and under the extended test times of 15 ms and 17 

ms obtained by the laminar and turbulent models respectively provided the extreme conditions 

yielding the maximum heat transfer from the shocked hot gas to the cold shock-tube walls. The 

extension of the test times beyond few milliseconds was achieved through the tailoring of the 

driver gas with a mixture composition of  40% C3H8 + 60 % He such that the interaction of the 

reflected shock wave with the incoming contact surface would result into a compression wave 

whose magnitude matches the magnitude of the reflected shock. As a result, uniform pressure 

condition are achieved behind the reflected shock wave for an extended time of 15 ms. The test 

time is ended by the arrival of  expansion fan or the contact surface expansion wave to the 

endwall followed by the head expansion wave. The average gas temperature solution achieved 

with the conjugate heat transfer CFD model was compared to the 1-D analytical conduction 

solution T(r , t) (32). The jump in the average gas temperature immediately after the shock tube 

walls come into contact with the hot gas was well captured by the CFD model with the jump 

being more pronounced in the CFD model due to the stronger convective forces which are not 

modeled by the conduction solution. Also the CFD model was found to exhibit a lesser decrease 
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in the average gas temperature compared to the conduction analytical due to the presence of the 

viscous dissipation term in the energy equation represented in the CFD model which reduces the 

overall effect of heat transfer, notably after the passage of the reflected shock wave, resulting in a 

lower heat loss by the conjugate CFD models when compared to the conduction-only model. 

Although the pressure and Mach number flow fields at the worst test condition of 800 K, 1 atm, 

and 15 ms of test time remained uniform behind the reflected shock wave, the thermal boundary 

layer along the shock-tube walls depicted a strong temperature gradient from the thermal 

boundary layer notably in the shock-tube endwall corners which could have an effect on the 

mechanism by which ignition is initiated.   

 Shock bifurcation is considered to be one of the major mechanisms responsible for non-

ideal behavior in shock tubes for chemical kinetic studies. Bifurcation causes a major flow 

disturbance in the endwall region which affects the flow uniformity in therein. Bifurcation 

simulations were performed for a test gas mixture of Air at the average test conditions behind the 

reflected shock of 950 K and 1 atm. The interaction zone was well resolved, and the details of 

the bifurcation structure were well captured, while in nature, achieving such high resolution 

results can only be made possible with the means of high resolution schemes of at least fourth 

order accurate and higher.  

 The effects of bifurcation on the endwall flow properties were well characterized. In 

particular, it was noted that upon the passage of the bifurcation structure over the port of 

measurement, placed 16 mm from the endwall, the side wall pressure profiles displayed strong 

pressure oscillations due to the embedded vortices and unstable shear layer in the separation zone 

adjacent to the side wall. Twenty microseconds after the shock reflection, the flow is turned 

parallel to the shock-tube side wall, and the pressure is of the same condition as the flow 
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compressed by the normal portion of the reflected shock. By this time, the bifurcation structure 

has completely passed, and the pressure profile over the port of measurement has become 

completely uniform. 

 However, the temperature profiles reported a different behavior. The axi-symmetric flow 

fields have shown the development of hot jets and small-structure vortices near the endwall 

corners due to the sudden movement of the hot endwall fluid in a rolled up direction. This result 

is due to the countercurrent jets which formed at the early stages of the bifurcation structure 

development and upon the sudden interaction of the boundary layer with the endwall, resulting in 

flow displacement in a counterclockwise direction. The hot jets are about 100 K higher than the 

average flow temperature. This could present a concern for chemical kinetics measurements 

because even after the complete passage of the interaction zone over the port of measurement, 

these hot jets remain in the corners of the endwall and present a potential for local autoignition at 

conditions which are different from the assumed values. In addition to the hot jets at the shock-

tube endwall corners, cold jets carrying the colder fluid from the boundary layer fluid impinge on 

the slip line and the side and end walls in an oscillatory motion impacting the local flow 

properties in the entire endwall region. The monitored average and local temperature and 

pressure profiles have shown strong gradients in the endwall region due the oscillatory motion of 

the supersonic wall jet and the side wall temperature has significantly dropped. This decrease in 

temperature is further enhanced by the heat transfer effects captured by the conjugate heat 

transfer model.  

 The conjugate heat transfer model is expected to yield more-accurate results than the 

adiabatic and isothermal wall assumptions since it is the closest representation of the 

experimental conditions. The weaker interaction at the early stages of the bifurcation structure 
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formation is due to the more-pronounced energy loss to the side and endwalls and therefore the 

thinner boundary layer captured by the conjugate heat transfer model.  

 The bifurcation phenomenon should not present a concern for chemical kinetics 

measurements when the kinetic measurements are taken after the complete passage of the 

bifurcation structure over the port of measurement and when the flow properties have become 

uniform again. However, this statement does not hold valid when local disturbances remain in 

the endwall region even after the complete passage of the bifurcation structure and over a time of 

interest to kinetics measurements. Care should be taken when quantifying the endwall local flow 

field properties which appear to deviate significantly from the overall endwall average properties 

and notably the temperature profiles. Assuming the flow properties are uniform when a 

bifurcation phenomenon is likely to occur in diatomic and polyatomic test gas mixtures can 

impact the interpretation of chemical kinetics measurements.  

 The interaction of the bifurcated shock structure with the contact surface was also 

investigated.  The simulated flow fields revealed that the first encounter between the bifurcated 

shock and the contact surface does not result in a significant distortion of the contact surface 

shape mainly because the interaction occurs with the normal portion of the reflected shock. As 

the reflected shock advances forward, the contact surface starts to interact with the bifurcated 

foot and the driver gas is displaced towards the center of the shock tube to allow for the driven 

gas underneath the bifurcated foot to pass along the shock tube side walls. This causes the 

bifurcated shock structure to lose its strength and coherence and the cold fluid jetting along the 

side walls becomes less pronounced.  The interaction becomes more pronounced as the vortices 

shed by the bifurcated foot encounter the driver gas which gets locally swirled and mixes with 

the nearby driven gas therefore contaminating the driven gas. As such, the vortices shed by the 
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bifurcated foot provide a mechanism for driver gas contamination along the shock tube side 

walls and center. At the same time the clockwise motion of the vortical structures help convect 

the driver gas away from the side walls towards the center of the shock tube. It was concluded 

that the interaction of the contact surface with the bifurcated shock does result into the 

contamination of the driven gas by the driver gas; however the contamination does not progress 

towards the test region which remains unaffected for the entire time of simulation.   

 The robustness and accuracy of the non-reactive axi-symmetric shock-tube model was 

confirmed through validation with shock-tube experimental data although with slight room for 

improvement. The boundary conditions were well represented by the entire simulation of the 

shock-tube facility instead of modeling only the shock-tube endwall region, and the adoption of a 

conjugate heat transfer model further enhanced the credibility of the results. The non-ideal 

effects were well quantified and accurately modeled. The results obtained herein should serve as 

valuable information for the validation of experimental and numerical shock tube data.   

  The study was then extended to account for chemical reaction behind the reflected shock 

wave in order to quantify the shock-tube test time reduction as a result of the non-uniformities in 

the reactive flow fields. As such, the robust non-reactive model served as a baseline for the rather 

more complex reactive shock-tube model. Chemistry was described by the means of a 10 species 

19 elementary reaction chemical kinetics mechanism for Hydrogen oxidation.  The reaction rates 

and combustion source term were obtained with the laminar finite rate and Eddy Dissipation 

Concept (EDC) models assuming the combustion process is perfectly premixed. Spatial and 

temporal resolution was achieved with time steps as low as 1e-8 sec. It was found that the RANS 

models under-predict the reaction process while the laminar model exaggerates it.  Perhaps a 

subgrid model such as LES would be more appropriate for the shock-tube reactive flow field 
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simulations. Robust reactive simulations are to be obtained in a future study by the means of the 

turbulent-Eddy Dissipation Concept (EDC) model in conjunction with the LES subgrid model. 

As such, the turbulence-chemistry interactions would be resolved and the reactive shock-tube 

flow fields would be accurately represented. 
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APPENDIX: SHOCK RELATIONS EXAMPLE 
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Driven Gas Driver gas  

 

  Not Constant 

  

  

 

  

 

 

  

  

Ru 8314
J

K mol⋅
⋅:= atm 1.013 10

5
× Pa=

1 Ar 4 He

ρ1 1.72
kg

m
3

⋅:= ρ4 0.1625
kg

m
3

⋅

M1 39
kg

mol
⋅:= M4 4

kg
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T1
P1

ρ1 R1⋅
T4

P4

ρ4 R1⋅

γ4 1.66:=γ1 1.67:=

R1
Ru

M1
:= R4

Ru

M4
:=

P4a 100 atm⋅:=
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T4 300K:=
T1 300K:=

a1 γ1 R1⋅ T1⋅:= a4 γ4 R4⋅ T4⋅:=

a1 326.807
m

s
= a4 1.017 10

3
×

m

s
=

For any given initial conditions in the shock tube 
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Starting from a given pressure ratio across the diaphragm 
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Velocity of the induced mass motion behind shock, relative to lab 

    

  

 

Velocity of Gas behind the shock, relative to the shock 

  

 

  

Reflected Shock Properties  

Reflected Mach Mr 
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Velocity of the induced mass motion behind shock, relative to lab 
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