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ABSTRACT

Numerical methods for solving partial differential equations are commonplace in the engineer-

ing community and their popularity can be attributed to the rapid performance improvement

of modern workstations and desktop computers. The ubiquity of computer technology has

allowed all areas of engineering to have access to detailed thermal, stress, and fluid flow

analysis packages capable of performing complex studies of current and future designs. The

rapid pace of computer development, however, has begun to outstrip efforts to reduce analysis

overhead. As such, most commercially available software packages are now limited by the

human effort required to prepare, develop, and initialize the necessary computational models.

Primarily due to the mesh-based analysis methods utilized in these software packages, the

dependence on model preparation greatly limits the accessibility of these analysis tools. In

response, the so-called meshless or mesh-free methods have seen considerable interest as they

promise to greatly reduce the necessary human interaction during model setup. However,

despite the success of these methods in areas demanding high degrees of model adaptability

(such as crack growth, multi-phase flow, and solid friction), meshless methods have yet to

gain notoriety as a viable alternative to more traditional solution approaches in general

solution domains. Although this may be due (at least in part) to the relative youth of the

techniques, another potential cause is the lack of focus on developing robust methodologies.

The failure to approach development from a practical perspective has prevented researchers
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from obtaining commercially relevant meshless methodologies which reach the full potential

of the approach.

The primary goal of this research is to present a novel meshless approach called MIMS

(Model Integrated Meshless Solver) which establishes the method as a generalized solution

technique capable of competing with more traditional PDE methodologies (such as the finite

element and finite volume methods). This was accomplished by developing a robust meshless

technique as well as a comprehensive model generation procedure. By closely integrating the

model generation process into the overall solution methodology, the presented techniques are

able to fully exploit the strengths of the meshless approach to achieve levels of automation,

stability, and accuracy currently unseen in the area of engineering analysis. Specifically,

MIMS implements a blended meshless solution approach which utilizes a variety of shape

functions to obtain a stable and accurate iteration process. This solution approach is

then integrated with a newly developed, highly adaptive model generation process which

employs a quaternary triangular surface discretization for the boundary, a binary-subdivision

discretization for the interior, and a unique shadow layer discretization for near-boundary re-

gions. Together, these discretization techniques are able to achieve directionally independent,

automatic refinement of the underlying model, allowing the method to generate accurate

solutions without need for intermediate human involvement. In addition, by coupling the

model generation with the solution process, the presented method is able to address the issue

of ill-constructed geometric input (small features, poorly formed faces, etc.) to provide an

intuitive, yet powerful approach to solving modern engineering analysis problems.
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CHAPTER 1

INTRODUCTION

When attempting to solve a set of partial differential equations, as is commonly encountered

in engineering disciplines, an engineer will typically approach the problem from either an

analytical or numerical perspective. Despite analytical techniques being capable of providing

exact solutions to the differential equations, their reliance on coordinate transformations and

variable substitution makes them ill-suited for real world problems with complex geometries.

In addition, many of the more complex differential equations have no known closed form

solution, even for the simplest of geometries. As such, it is common practice in engineering

to solve the underlying equations via numerical techniques whereby the solution domain is

discretized and the governing equations and boundary conditions are satisfied (to some level

of accuracy) over each discrete region of the domain. Although there are many numerical

techniques capable of solving engineering partial differential equations, the most commonly

used rely on a structured connectivity between nodes and are generally classified as mesh-

based techniques (for their use of a structured connectivity mesh). Finite difference, finite

element, and finite volume methods may all be broadly categorized as mesh-based techniques

as they all require some sort of defined connectivity (or arrangement) of the underlying

computational nodes. Although mesh-based methods have proven themselves capable for a

wide range of problem domains, there is still the undesirable responsibility of having to define

a connectivity within the solution interior. Despite efforts to automate the mesh generation
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process, a considerable amount of time and human effort is still spent preparing and meshing

the computational model when presented with a problem consisting of complex geometry.

In an attempt to eliminate the need for the underlying nodal connectivity, some re-

searchers have turned to the area of meshless and mesh-reduction methods. These methods,

which seek to replace the underlying structured connectivity with an unstructured interpo-

lation scheme, have shown considerable promise in many application areas. However, they

have failed, as of yet, to provide competition to more conventional mesh-based approaches

(such as finite element and finite volume methods) when applied to real-world, industrially

relevant applications. This may largely be attributed to the relative youth of the field

(finite element and finite volume methods were both developed in the 1960s, while modern

meshless methods have only been around since the 1980s), however, it may also be caused

by a lack of proper focus. Specifically, many researchers focus on generating new meshless

techniques, while failing to address the underlying cause for concern in model discretization.

This failure to address the underlying issues of mesh generation has resulted in a general lack

of practicality of the field and has largely relegated meshless methods to academic endeavors

and specialized application domains.

Despite the inability of meshless methods to thus far compete against more traditional

mesh-based techniques, there has been considerable advances within the field. Modern

meshless implementations are generally at least as efficient (in terms of memory and com-

putational expense) as unstructured mesh-based techniques and therefore have reached the

solution potential of more traditional approaches. It is for this reason that the focus of

this research effort will be presenting a novel meshless methodology and solution approach

which builds upon current meshless research to obtain an industrially relevant process. At
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the core of this research is a tailored, collocation-based meshless method which has been

developed to be both robust as well as accurate under a variety of nodal configurations.

This is accomplished through the use of a unique blend of meshless shape functions, as well

as a novel generalized finite difference scheme which directly integrates into the meshless

solution process. Another key innovation allowing the method to reach its overall goals is

the development of a point distribution process specifically designed to take advantage of

the liberties granted by the developed meshless method. By tightly integrating the model

generation and solution process, the method is able to specifically address the underlying

issues which make mesh generation such a time consuming and tedious process. In addition,

this integration allows for a highly adaptive and robust system capable of efficiently evolving

both the solution, as well as the underlying discretization with no human interaction.

In order to appreciate the innovation and contributions of this research, Chapter 2 will

begin by presenting a general overview of the history of meshless methods. This historical

presentation will focus on major developments which contributed to the growth and popu-

larity of meshless methods within the engineering community. In addition, it will present

the leading formulation techniques in an attempt to demonstrate the wide variety of solution

methodologies within the field. Following a presentation of the history of meshless methods,

Chapter 3 will describe the specific meshless methodology that will be employed within the

context of this research effort. The purpose of describing the methodology is to present a

rationale for meshless methods (as compared to more traditional mesh-based techniques)

and to address common misconceptions regarding mesh-based versus meshless techniques.

Chapter 3 will also provide a general outline for the specific implementation details of the

developed method and provide justification for each component within the context of the
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general solution technique. Once the meshless methodology has been described, Chapter

4 will present the various techniques for generating the necessary meshless shape functions

for solving engineering problems. As is the case with most solution techniques utilizing

collocation, the process by which the necessary shape function are constructed largely defines

the effectiveness of the approach. In this respect, Chapter 4 will describe the core meshless

method processes utilized within this method. Following presentation of the various shape

construction techniques, Chapter 5 will provide specific meshless implementation details

that are often overlooked in academic research papers. The topics addressed in this chapter

will provide several solutions specifically related to robust meshless implementations, and

as such, represent a key contribution of this effort. The second component of the method

is the model generation procedures, which will be described in Chapter 6. As the model

generation process has been designed to be most appropriate for meshless point distributions,

a thorough presentation of both the rationale as well as implementation details will be

provided. Following this, a brief discussion of the adaptive refinement capabilities of the

method will be discussed in Chapter 7. Once the entire meshless procedure has been

described, Chapter 8 will present additional details pertinent to specific application domains

(governing equations) and provide the remaining components necessary to complete the

current work. Chapter 9 will then follow by providing simple verification tests which

demonstrate the fundamental accuracy of the described techniques. Following the verification

examples, Chapter 10 will present a selection of case studies, representing a wide range of

problem characteristics, in order to demonstrate the capabilities of the meshless method.

Unlike Chapter 9, which focuses primarily on accuracy, Chapter 10 will focus on illustrating

the advantages of the described meshless implementation with respect to currently available

4



engineering analysis software. Finally, Chapter 11 will provide a summary of the research

effort, highlighting the overall contributions to the engineering community and providing

conclusions that can be made through this research.
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CHAPTER 2

HISTORY OF MESHLESS METHODS

In general, the term meshless method may refer to any technique used to solve partial dif-

ferential equations whereby little or no underlying connectivity is required between solution

nodes. Unfortunately, this broad definition encompasses many different solution techniques,

oftentimes with little in common other than the fact that they do not require an underlying

nodal connectivity. In general, however, most meshless methods may be classified into

three board categories: spectral methods, local influence methods, and radial basis function

methods. This chapter will serve as a brief history of meshless method development and will

illustrate the progression from early techniques to the modern methods used as a foundation

for this research. In addition, it will demonstrate the connections between the various

methods and classify their development in an attempt to serve as a categorical review of the

existing body of knowledge.

2.1 Spectral Methods

Spectral methods represent a class of solution techniques by which orthogonal functions

such as Legendre or Chebyshev polynomials are globally interpolated at a set of structured

points in order to solve boundary-value problems for partial differential equations. Primarily

contributed to the work of Orszag [1] and Kreiss and Oliger [2], the use of globally interpo-

lating functions allows for highly accurate results with a minimal number of solution nodes,
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a property often referred to as spectral convergence [3, 4]. In fact, spectral methods have

demonstrated exponential convergence with respect to the nodal spacing [5], a very desirable

trait when attempting to solve large scale problems. Although historically based on Fourier

transform methods, spectral methods can theoretically utilize any set of orthogonal functions

to globally represent the solution over the entire domain. Unfortunately, the technique

that gives the method its spectral convergence (global interpolation) also presents problems

when the solution may not be represented as a globally smooth function (as is the case

when discontinuities are present) or when the problem domain becomes complex (which

oftentimes presents issues with over-fitting due to the required number of nodes) [6]. To

address these issues, most recent efforts in spectral methods have departed from the classical

idea of global interpolation in favor of a more practical multidomain approach whereby

small subdomains are constructed to reduce the number of degrees of freedom for a particular

problem [7, 8]. By breaking the problem into smaller regions, this approach is able to address

the issues of attempting to represent the field globally while at the same time maintaining the

spectral convergence property (albeit over each subregion, as opposed to the entire domain).

Patera’s work on the spectral element method (SEM) [9], a variational formulation similar

to finite elements, led to considerable advancements in the general applicability of spectral

methods to complex geometries [10, 11, 12]. Most recent efforts in the field of “classical”

spectral elements range somewhere between minimal multidomain spectral methods, where

the minimum number of subdomains are utilized to solve the problem, and the more discrete

spectral element methods, where the entire domain is subdivided in much the same way as

finite elements.
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Despite exhibiting very desirable properties, “classical” spectral methods remained de-

pendent on a structured grid, dictated by the underlying orthogonal function approximations.

In an attempt to eliminate this dependency, the so-called pseudo-spectral methods were

developed [4, 13] whereby the same Legendre or Chebyshev polynomials used in “classical”

spectral methods were collocated at data centers, instead of using a more traditional method

of moments, least squares, or Galerkin formulation. The use of collocation produced a

method which eliminated much of the need for underlying connectivity, and allowed for

pseudo-spectral methods to gain recognition as a meshless method. The psuedo-spectral

methods enjoyed success as the technique matured, primarily in the areas of incompressible

fluid flow [14, 15, 16] and wave propagation [17, 18, 19] where the underlying field solutions

are smooth and continuous.

2.2 Local Influence Methods

The second subset of meshless development may be broadly categorized as local influence

methods, or methods which define nodal influence on a local scale, as opposed to the global

scale used in spectral methods; smooth particle hydrodynamics (SPH) [20, 21] is generally

acknowledged as the first of these methods. By representing the underlying fields as a set ofN

small volumes (particles), SPH provides many advantages over alternative techniques when

modeling phenomenon with very large geometric deformations. Though originally applied

to astrophysics [22, 23] (which has historically proven difficult to model due to the diffuse

nature of astrological bodies such as stars and dust clouds), phenomena such as free surface

flow [24, 25] and dynamic response of elasto-plastic materials (including fracture) [26, 27, 28]
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are also ideal candidates for this method. Despite being one of the first techniques to bear

the meshless moniker, SPH has historically had issues demonstrating acceptable accuracy

[29] unless a large number of point masses are utilized [30]. Regardless of accuracy concerns,

SPH has been successfully applied to many solution domains including multi-phase flows

[31, 32], geophysical flows [33, 34], and solid friction [35], though special care must be taken

to ensure accurate results [36, 37, 38].

Inspired in part by the success of SPH, Nayroles et al. developed the diffuse element

method (DEM) [39] as an alternative local influence meshless method. Based on finite

element inspired Galerkin formulations, DEM utilized moving least squares (MLS) [40, 41]

approximations to produce an “element” capable of evaluating field derivatives without any

underlying structure (by utilizing local influence regions). However, despite being a major

stepping stone in meshless methods due to its use of MLS approximations, direct DEM

implementations have been limited primarily to specialized problem domains [42] and coupled

implementations with traditional finite element methods [43]. The lack of continued research

in this area is partially due to the generalization of the method by Belytschko and colleagues

[29, 44] into the element free Galerkin (EFG) method. Despite being more expensive than

SPH, EFG proved to be more adept at solving complex problems such as crack growth [45]

that had historically presented difficulties to finite element methods due to the necessary

problem geometry. In addition, through the work of Duarte and Oden [46, 47] and Melenk

and Babuska [48], the EFG method and its related generalizations (such as Hp-Cloud methods

and Partition of Unity Finite Element methods) were proven to have good convergence

qualities over a wide range of problem domains. The work done within the Partition of Unity

paradigm [49] (which includes extended finite element methods and Partition of Unity Finite
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Element methods), established a solid mathematical foundation for this class of meshless

methods. In addition, by formally including discontinuities into the underlying fields [50],

methods based on the Partition of Unity paradigm have been able to solve many classically

“difficult” problems for traditional finite elements including crack growth [51] and hole and

inclusion formation [49].

The third group of techniques that fall under the classification of local influence methods

are works based on the notion of generalized finite differencing, originally proposed by Liszka

and Orkisz [52, 53]. The basic concept of generalized finite differencing is to approximate

the underlying field at a set of data nodes using a smooth function (in many cases these

are monomial basis functions, resulting in a formulation similar to MLS), and to obtain

derivatives by applying finite differencing equations over this smoothed approximating field

[54, 55, 56]. One of the major benefits of generalized finite differencing is that it can draw

upon the wealth of existing knowledge in the area of traditional finite differencing (such as

boundary condition application, upwinding, stability concerns, etc.) and, as such, are usually

much less complex than alternative meshless methods based on Galerkin formulations [57].

Another major benefit of these methods is that traditional finite differencing formulations

may be directly applied to areas of local structure within the domain, resulting in significantly

reduced computational effort as both preprocessing (constructing the underlying smooth ap-

proximating function) and iteration times are decreased (due to the smaller stencils required

by traditional finite differencing formulations) [58]. Unfortunately, because finite differencing

is such a ubiquitous technique, many works utilizing generalized finite differencing are not

classified as meshless methods making it difficult to correctly identify all derivative works
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within this field. Regardless, there have been several notable applications of this method

within the areas of viscous flow [58, 59], metal-forming [60], and optics [61, 62, 63].

2.3 Radial Basis Function Methods

Radial basis function (RBF) methods are the third branch of meshless techniques and are

largely contributed to the work of Kansa in the early 1990s [64, 65]. At the core of these

methods is a class of interpolating basis functions referred to as radial basis functions which

are radially symmetric about a point of influence and exhibit specific properties with regards

to smoothness and continuity [66]. Perhaps most notable of the RBF interpolators is the

Hardy Multiquadric [67], which was originally developed in the early 1970s as a means

of reproducing irregular topographic surfaces from sparse data sets. Since then, RBF

interpolations have been applied to many different interpolation tasks with considerable

success [68, 69, 70, 71].

Within the area of meshless methods, Kansa utilized RBF interpolations to represent

the underlying solution field such that partial derivatives could be obtained at any arbitrary

point within the domain. By collocating the governing equations at a specified number of

nodes, the RBF interpolators could be directly differentiated and unknown field quantities

could be determined through an explicit or implicit updating scheme. Although early

implementations of the RBF collocation method utilized global interpolations [72, 73], it

was soon clear that the RBF interpolations exhibited troublesome ill-conditioning problems

when applied over large data sets [74]. These issues seemed to stem from the so-called

“uncertainty relation” formally described by Schaback [75]. Stevens et al. [76] summarized
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the uncertainty relation succinctly as suggesting that for RBF interpolations “better [moment

matrix] conditioning is actually associated with worse accuracy, and worse [moment matrix]

conditioning is associated with improved accuracy”. This result is somewhat counter-

intuitive and has resulted in many techniques which attempt to address the uncertainty

relation [77, 78]. Most notably of these techniques is to apply domain decomposition in

order to subdivide the problem into more manageable solution domains [79, 80, 81, 82].

Although these domain decomposition methods are successful at mitigating the problems

identified by the uncertainty relation, they introduce additional concerns such as how to

handle the introduced domain interfaces and how to automate the process of decomposing

the domain. Regardless of this fact, global RBF collocation methods have been successfully

applied to many problem domains including convection-diffusion problems [83], large scale

heat transfer [84], and thermoelasticity [85].

Despite the successes of global RBF collocation methods, there was a growing concern

that the uncertainty relation would prevent the method from achieving widespread use as

problem sizes increased. In response to this, three research groups independently developed

varying implementations of local RBF collocation techniques [86, 87, 88]. These techniques

forgo global interpolation in favor of small, compact, overlapping local influence regions

(commonly referred to as support domains or topologies) which are constructed for each

computational node. By reducing the interpolating space in this manner, the authors

were able to achieve more stable solutions as compared to global techniques, while still

utilizing the accuracy of the underlying RBF interpolations. The local RBF collocation

method quickly gained popularity with applications in all areas of engineering analysis

including general diffusion [89], metal casting with phase changes [90, 91, 92], fluid flow and
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convective heat transfer [93, 94, 95, 96], and computational mechanics [97]. In addition, the

adaptability of collocation techniques have allowed researchers to develop novel extensions

to the standard local RBF collocation techniques. For example, Stevens et al. [76, 98]

developed a method of imposing the governing equations throughout the domain through

use of a local Hermitian interpolation scheme. This scheme allows for a means of directly

satisfying both the governing equation and boundary conditions at each collocation point

through the basis functions themselves and results in increased accuracy of the underlying

partial derivatives (however, there is still the unanswered question as to how to linearize

the differential operators in this technique for general problem domains). Another notable

source of development has been the work performed by Šarler and Vertnik [99] by which

local, direct differentiation of the radial basis functions has yielded impressive results in the

area of incompressible turbulent flows [100]. Most recently, work has been performed to

apply the method to compressible turbulent flows [101] as well as flows in the high-mach

number regime [102] by utilizing the advection upstream splitting method (AUSM) [103].
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CHAPTER 3

MESHLESS METHODOLOGY

When approaching meshless methods from a practical point of view, it should be clear that

there are many different techniques which may be utilized to obtain a capable method.

However, the goal of this research is not simply to develop a capable method, but to develop

a general solution methodology able to compete against more traditional methods such as

finite element and finite volume. To accomplish this, it is important to first identify the

common characteristics of current methods and where they fall short of satisfying the overall

goal of this research. Certainly, as the name implies, the primary goal of all meshless

methods is to remove the need for an underlying connectivity mesh during the solution

process. However, this goal actually seeks to address two distinct problems with mesh-

based techniques: (a) generating the necessary meshes is a time consuming process involving

considerable human interaction, and (b) solution quality can be highly dependent on the

quality of the mesh. Fully investigating both of these issues is critical because it is common

to mistake the implications or misinterpret the underlying causes, leading to misinformation

regarding the benefits of meshless methods. This chapter will begin by exploring these two

issues in detail and illustrate why they are such a concern to the engineering community.

Following this, the capabilities of current meshless methods will be investigated with respect

to the overall goals of the solution technique. Finally, this chapter will present the specific

meshless methodology utilized throughout the remainder of this research, and detail how it

addresses the shortcomings of current methods.
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First, with regards to generating the underlying mesh, there is a common misconception

that this argument refers to the actual mesh generation process, in which case most expe-

rienced FEM or FVM users would respond by indicating that modern unstructured mesh

generation routines can largely automate this process. Although this is true, many people

overlook the fact that most real-world computational models begin as solid models which

may consist of poorly formed faces and edges, small features that may have little effect on

the solution (such as fillets in the case of heat transfer), and other areas which can cause

problems for automatic mesh generation software. Take, for example, the three variations

of a simple cube shown in Figure 3.1; despite all three models representing similar parts,

the one with relatively small fillets (shown in Figure 3.1c) will require a mesh with smaller

elements in order to properly represent the geometry while still maintaining acceptable mesh

quality (in terms of edge and volume aspect ratios). For this simple model the increased

node count may be acceptable, however, for larger parts and assemblies which may have

many of these fine features, it quickly becomes prohibitive (in terms of computational cost

and memory) to simply decrease the mesh size to accommodate these components. As such,

more often than not, a human must first manually clean the original solid model by removing

unnecessary or ill-constructed features to prepare it for the mesh generation process. This

effort is generally the largest contributor to the human involvement during mesh generation,

not the mesh generation itself. This, coupled with the fact that this process must be repeated

whenever there is a change to the underlying solid model, is the primary reason why the

mesh generation process is such a burden on engineering design.
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(a) Large Fillet (b) Medium Fillet (c) Small Fillet

Figure 3.1: Simple Cube with Fillet

The second issue has to do with the fact that the solution quality of methods such as

finite elements and finite volumes can be highly dependent on the quality of the underlying

mesh. As there has been a considerable amount of research done on the effects of mesh

quality on solutions [104, 105], there can be no denying that this fact is true. However, this

does not necessarily imply that this is always a concern; in fact, for most models, current

automated mesh generation algorithms are capable of producing satisfactory meshes (in

terms of numerical error due to skewed elements) without any human interaction. However,

there are two major limitations which still make this issue a concern in real-world problems.

First, as stated previously, in order to produce an acceptable mesh for geometry with

complex features, the mesh generation software may require an unnecessarily small mesh

size, something which may not always be possible within the confines of modern computer

architectures. Second, and arguably more important, is the issue of being able to properly

determine an appropriate mesh size for a given problem. For example, Figure 3.2 illustrates

three potential meshes for a simple flow over a flat plate problem, where, in these figures, the

flow is incoming from the left and the flat plate is located at the bottom of the domain. These
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figures demonstrate three different approaches to meshing this problem: (a) unstructured

mesh (Figure 3.2a), (b) clustered unstructured mesh (Figure 3.2b), and (c) high-aspect ratio

structured mesh (Figure 3.2c), and depending on the characteristics of the flow, these three

meshes may give vastly different results. The primary concern with all three meshes is that

none of them implicitly (i.e. automatically) considers the actual flow characteristics of the

problem. The unstructured mesh shown in Figure 3.2a is arguably the easiest to generate as

it can be done automatically, however, if the mesh size is too large, it may fail to properly

capture the boundary layer that will form over the flat plate. At the same time, if a uniform

mesh is created which is too small, then excess computational effort will be needed to solve

the problem. Only an unstructured mesh which is clustered, such as the one shown in Figure

3.2b, will be able to capture the boundary layer with minimal excess computational effort.

However, this type of mesh relies on the user to input an acceptable clustering factor, a

process which not only takes time, but is also error prone if the user is not experienced

in mesh generation and solution characteristics. Arguably the best mesh for this type of

problem would be a structured mesh exhibiting high aspect ratios, as shown in Figure 3.2c,

however, the generation of this type of mesh is done almost completely manually (and thus,

prone to errors), and becomes exceedingly difficult as the underlying geometry becomes

more complex. Together, these two limitations prevent fully-automated mesh generation

from being applied to all but the simplest of geometric configurations due to the importance

of producing an acceptable mesh and the inability of automated mesh generation procedures

to consistently accomplish this task.
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(a) Unstructured Mesh (b) Clustered Mesh

(c) High Aspect Ratio Mesh

Figure 3.2: Example Meshes for Flat Plate

The question that should now be asked is whether or not simply removing the reliance

on an underlying nodal connectivity eliminates both of these issues. Unfortunately, it would

appear at first glance that the answer is no. By examining the supposed disadvantages of

mesh-based techniques, now with focus on meshless methods, it is quite easy to identify

why this is the case. First, with regard to the problem of human interaction during mesh

generation, there is no doubt that the elimination of an underlying connectivity will remove

the need for complex mesh generation procedures. However, it does not directly address the

issue of disparate feature sizes. This is an important distinction to make, as it has already

been demonstrated that the problem with automatic mesh generation procedures is that they

are incapable of dealing with highly disparate features without reducing the mesh size to the

smallest common denominator, thereby adding an excessive number of nodes throughout the

bulk of the domain. Therefore, the elimination of a structured connectivity will eliminate
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the need for automatic mesh generation procedures, however, no meshless method property

gives it an explicit ability to address these types of geometric concerns. Second, with

regards to the solution being dependent on the underlying mesh quality, meshless methods

are still approximating the solution over discretized space, and as such, will still be (at

least somewhat) reliant on the distribution of points utilized to solve the problem. One

could argue that meshless methods are able to obtain better convergence characteristics

than similar mesh-based methods; however, that does not overcome the fact that if enough

nodes are not located in a region of space to capture a highly complex behavior (such as a

boundary layer) there will be an incurred error in that region.

If meshless methods do not explicitly alleviate the issues with mesh-based techniques,

why have they garnered so much attention? Interestingly, it is not simply the elimination of

the underlying mesh that solves the issues with mesh-based methods, but rather the liberties

that are granted during point distribution which facilitates ease of use and solution generality.

Unfortunately, this is a point often missed by researchers, and consequently, so is the fact

that the underlying point distribution techniques are arguably as important as the methods

themselves. As it is these so-called liberties that truly give meshless methods their advantage

over mesh-based techniques, the focus of development shouldn’t simply be on removing the

need for an underlying connectivity mesh, as originally stated, but rather, on removing

the need for an underlying connectivity mesh and facilitating robustness with regards to the

underlying point distribution. This second point is critical because if a meshless method is

overly sensitive to the underlying point distribution (which can be quite common) then it

will be difficult to develop a point distribution method that can be applied to arbitrarily
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complex geometries. Thus, formalizing these goals results in the following requirements of

the meshless method technique:

1. Must require no underlying connectivity between nodes

2. Must be robust in terms of stability and accuracy

3. Must not use excess computational resources (speed or memory)

4. Must be capable of being applied to general solution domains

The first requirement is obvious and is explicitly satisfied by all meshless methods. The

second requirement is what allows the underlying point distribution method to be applied

to arbitrarily complex geometries, and as such, is of critical importance. To satisfy this

requirement a method must not only be stable with regard to the regularity of the point

distribution, but must also be capable of representing solutions with acceptable accuracy.

Although these two requirements generally go without saying, as is the case with many

numerical techniques, they are oftentimes highly competing goals. The third requirement is a

necessity if the method is going to be utilized in real-world problem scenarios, especially large

problems on realistic geometries. Finally, the fourth requirement simply ensures that the

method can handle arbitrary boundary condition types, discontinuities, and other potential

solution features that would otherwise prevent it from being applied to a specific engineering

field.

Together, these requirements dictate the necessary capabilities of a meshless method

to be successful in addressing the primary issues of mesh-based techniques. Once these

requirements have been satisfied by a method, it may be utilized in conjunction with a point

distribution algorithm to develop a complete solution process. In order for the automatic

point distribution method to be successful in its tasks, it requires the following capabilities:

20



1. Must be capable of being generated without any human interaction

2. Must be able to properly handle small geometric features

3. Must allow for adaptive, local refinement

4. Must be capable of producing and maintaining disparate aspect ratios

The first requirement of the point distribution method is obvious given the fact that the

overall goal is to eliminate human input during the preprocessing stages. However, it implies

that the remaining three requirements must be capable of being designed such that they can

operate without any human assistance. The second requirement directly addresses the issues

of mesh-based techniques, in other words, by being able to properly handle small geometric

features the point distribution method will have eliminated the need for model cleanup, and

thus, will have significantly reduced the human expense of running an engineering model. The

third and fourth requirements address the issue presented in the flat plate example illustrated

in Figure 3.2, whereby the necessary grid size is unknown without first examining the

problem characteristics. By implementing a locally adaptive refinement procedure, a point

distribution method will be capable of determining the appropriate spacing automatically,

as the actual solution develops. In addition, by requiring that the point distribution be

capable of producing and maintaining disparate aspect ratios, point distributions exhibiting

similar qualities to the mesh shown in Figure 3.2c will be obtainable, which will significantly

reduce the unnecessary expense of the refinement process as refinement will occur in only

those directions for which it is deemed necessary.

Having formalized the requirements for both the meshless solution and point distribution

technique, a meshless method to specifically satisfy these requirements will now be outlined.

The first major decision was to select a collocation-based meshless approach to serve as
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the foundation of the solution scheme. Collocation was chosen for several reasons, the first

being that it is a point-based approach, and as such, can be applied directly to a solution

domain without special consideration for boundary condition application, as is often the case

when utilizing a non-interpolating approximation such as moving least squares [106]. The

second reason for choosing collocation was due to the fact that collocation techniques can

be formulated such that their computational time and memory requirements are kept at a

minimum (due to the local nature of the formulations). The final reason is that collocation

allows for use of a variety of interpolation schemes in order to develop the underlying shape

functions for field and derivative evaluation. Understanding that the meshless method will

utilize collocation to formulate the updating scheme for the governing equations, the next

step was to decide on appropriate shape functions to represent the underlying solution field

and its derivatives. It is in this respect that the current method departs from current

techniques in that no single interpolating method is used to construct the necessary shape

functions. Instead, a blend of moving least squares, radial basis function interpolation, and

virtual finite differencing is utilized to obtain a method that is both stable and accurate. This

departure allows for a method which is not married to any particular interpolation scheme,

and as such may take advantage of the relative strengths and weaknesses of each technique.

The mathematical details of the various shape function techniques utilized in this procedure

will be detailed in Chapter 4, along with a presentation of specific implementation details in

Chapter 5. The second major development is the description of a point distribution method

which is capable of satisfying the necessary requirements in an efficient manner. This point

distribution method, based upon a quaternary triangular surface discretization, a binary-

subdivision interior discretization, and an adaptive boundary layer representation (termed
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the shadow layer), represents a novel means of generating the computational nodes for any

meshless solution process. Capable of directionally independent adaptive refinement, global

interpolation, and surface influence screening, it represents the most complete, meshless-

specific point distribution method developed to date, and will be presented in full detail

in Chapter 6. The final component of the method is an h-adaptive refinement strategy

allowing for efficient adaptation of the underlying geometry used throughout the solution

process. By coupling the solution and model generation processes into a single adaptive

procedure, the presented method allows for an entirely automated process for solving any

set of partial differential equations over arbitrarily complex domains. The details of the h-

adaptive refinement strategy are presented in Chapter 7. Having fully described the method,

Chapter 8 will then address specific application area details (including upwinding and shape

function selection) that arise when applying the described methodology to practical governing

equations. The specific combination of numerical method and model generation procedure

outlined in the remainder of this paper is collectively referred to as the Model Integrated

Meshless Solution (MIMS) method and represents the first major attempt at producing

an industrially relevant meshless method implementation capable of competing with more

traditional mesh-based techniques such as finite element and finite volume methods.
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CHAPTER 4

SHAPE FUNCTION CONSTRUCTION

The first step in developing a collocation based meshless method is determining the approx-

imation techniques that will be used to represent the necessary derivatives. However, prior

to examining the specific shape function techniques used in the MIMS method, it is worth

presenting a brief description of collocation in order to introduce the specific nomenclature

that will be used throughout the remainder of the chapter.

Regardless of the approximation technique(s) utilized, the necessary component for any

point collocation method is a set of shape functions Φ which, when multiplied by a set

of known field values u, provides an estimate for the field or its derivatives at a specific

point in space. Once the shape functions have been developed for each computational node,

the governing equations may be collocated (explicitly satisfied) at each point, leading to

an update equation capable of advancing an initial solution through either an iteration or

timestep procedure to a final, converged solution. For example, Figure 4.1 illustrates a one-

dimensional domain containing n + 1, equally spaced computational nodes, over which the

solution to the following governing equation is desired

∂2u

∂x2
= u′′′ (4.1)

where u′′′ represents a uniform (constant) generation over the domain.
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Figure 4.1: One Dimensional Topology

To solve Eq. (4.1), a method of approximating ∂2u/∂x2 is required, and on this simple,

structured domain, standard finite difference approximations may be utilized. As the details

of finite differencing will be presented in Section 4.3, for now it will be sufficient to note that at

any given location, the second derivative with respect to any direction may be approximated

as

∂2u

∂x2

∣

∣

∣

∣

x

=
u (x−∆x)− 2u (x) + u (x+∆x)

∆x2
=

ui−1 − 2ui + ui+1

h2
(4.2)

where ui is the field solution at node i and h is the nodal spacing throughout the domain.

Thus, Eq. (4.2) may be represented in terms of a set of shape functions as
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= Φi ui (4.3)

where ui−1 and ui+1 are the values at the previous and next positions to the i-th node, re-

spectively. At this point, the expression for ∂2u/∂x2 at any interior node may be represented

in terms of a set of shape functions Φ and current nodal values u. It is worth noting that

the surrounding nodes which contribute to the value at a particular location (ui−1, ui+1,

and ui for this example) are referred to as the support domain or topology of that location

and are largely the meshless equivalent of the underlying connectivity present in mesh-based

techniques.
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Once the necessary differential operators have been obtained, each instance of the

differential operator in the governing equation may be replaced by its equivalent shape

function representation. For example, substituting Eq. (4.3) into the governing equation

shown in Eq. (4.1) results in the following system of equations

Φi ui = u′′′ i = 1, 2, . . . , n− 1 (4.4)

If it is assumed that appropriate boundary conditions have been applied at nodes 0 and

n, then Eq. (4.4) represents a system of equations for which the unknown nodal values u

can be determined. Assembling and solving the full system of equations for the unknown

values directly is referred to as an implicit technique and is commonly utilized in the case of

linear partial differential equations. Alternatively, each equation provided by Eq. (4.4) may

be utilized as an update rule for the central node. For example, in the case of the current

governing equation, each node may be updated according to

u
(k+1)
i =

u
(k)
i−1 + u

(k)
i+1 − h2u′′′

2
(4.5)

where u
(k)
i represents the value at the i-th node at the k-th iteration. Thus, provided an

initial guess u(0), Eq. (4.5) may be used to explicitly solve Eq. (4.1).

Having demonstrated the process of solving a partial differential equation via collocation,

the challenge for meshless methods is determining appropriate shape functions without a

defined point connectivity. To accomplish this, underlying interpolations are utilized to

represent the field locally to a point of interest, and are then differentiated to obtain the

necessary differential operators. As such, the remainder of this chapter will detail the various

approximation/interpolation techniques utilized in the MIMS method.
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4.1 Moving Least Squares (MLS)

Moving least squares (MLS), or local regression and loss, was originally developed as a curve

fitting technique to be applied to noisy or piecewise data [41, 107]. MLS approximations

utilize basis functions (generally polynomials) to best represent a field by minimizing the

error across a local set of data points. Unlike interpolation techniques, MLS does not exhibit

the Kronecker delta function property, implying that uMLS (xi) 6= ui where uMLS (xi) is the

MLS approximated value and ui is the actual value at point xi. This fact allows the technique

to generate smoother field approximations than similarly formulated interpolation methods,

avoiding the oscillations oftentimes seen between data points due to over-fitting. The ability

of MLS to smooth noisy data is what has garnered it so much attention, having been used in

curve fitting [108, 109], surface reconstruction [41, 110, 111], and other applications where

over-fitting of the underlying data is a concern [112]. Within the context of meshless methods,

MLS was first used by Nayroles et al. [39] in their diffuse element method (DEM). Shortly

after, Belytchko et al. [29, 45] modified DEM by introducing Lagrange multipliers to more

efficiently apply Dirichlet boundary conditions and an underlying cell structure with which

they could generate the necessary quadrature points for the formulation. This new technique,

which was given the name element free Galerkin method (EFG) by its authors, gained

considerable popularity and led to many of the later advancements within the field of meshless

methods.

Fundamental to both DEM and EFG was the use of MLS approximations in constructing

the necessary shape functions for both the field and its derivatives. To accomplish this, MLS
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formulations begin by representing the field as

u (x) =
m
∑

j=1

aj (x) pj (x) = pT (x) a (x) (4.6)

where u (x) is the field value at location x, m is the number of basis functions utilized in the

approximation, pj (x) is the j-th basis function, and aj (x) is the coefficient for the j-th basis

function. The MLS basis functions are generally chosen as the lowest order monomials able to

provide an acceptable representation of the underlying field. Typically, these monomials are

chosen by selecting a given depth (constant, linear, quadratic, etc.) from Pascal’s pyramid

of monomials [106], as shown in Figure 4.2. Once an appropriate depth is chosen, p (x) is

built by utilizing all monomial terms on and below this depth; for example, if a quadratic

depth was chosen, the three-dimensional basis function set would consist of

pT (x) = pT (x, y, z) =

{

1 x y z x2 y2 z2 xy yz zx

}

(4.7)

Understanding that the goal of MLS is to minimize the error at each data point within

some local region, the total error over a set of n data points may be formally written as

J =
n

∑

i=1

W (x− xi)
(

pT (xi) a (x)− ui

)2
(4.8)

where xi is the position of the i-th node, ui is the field value at the i-th node, and W (x− xi)

is a weight function that indicates the relative effect of each node to the point of interest, x.

The weight function is critical because it allows the implementer to provide higher importance

to nodes closer to the point of interest, as well as providing a gradual transition from one

topology to the next. Although there are many common weight functions utilized in MLS
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Figure 4.2: Pascal Pyramid of Monomials (Reproduced from [106])

approximations, the quartic weight function presented by Liu et al. [113] demonstrates

several ideal properties for meshless implementations. First, because it is a single expression

(as opposed to more complex piecewise representations), it is easily differentiable. Second,

both the first and second derivatives are smooth, which aids in satisfying the compatibility

condition throughout the domain. Thus, the quartic weight function W (x− xi) may be

expressed as

W (x− xi) = W
(

d̄
)

=



















2
3
− 9

32
d̄2 + 19

192
d̄3 − 5

512
d̄4 for d̄ ≤ 1

0 for d̄ > 1

(4.9)
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where d̄ is a scaled dimensional parameter used to ensure consistent influence in each topology

and is commonly computed as

d̄ =
|x− xi|

αrs
(4.10)

with rs equal to the radius of the topology (computed as the distance from the center node

to its most extreme neighbor) and α taking on a value greater than 1. In the context of Eq.

(4.9), α dictates the size of the topology for which W 6= 0, and as such, generally takes on

values between 1 and 3.

To produce an MLS approximation at an arbitrary point x, the error representation

shown in Eq. (4.8) must be minimized with respect to the expansion coefficients a (x). This

is accomplished by setting the derivative with respect to the expansion coefficients equal to

zero as

∂J

∂a
= 0 (4.11)

which results in the system of linear equations

A (x) a (x) = B (x) u (4.12)

where u is a vector containing the known field values for each node in the topology

uT =

{

u1 u2 u3 . . . un

}

(4.13)

A is typically referred to as the weighted moment matrix

A (x) =
n

∑

i=1

W (x− xi) p (xi) p
T (xi) (4.14)
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and B is of the form

B (x) =

[

B1 B2 . . . Bn

]

n×m

(4.15)

Bi = W (x− xi) p (xi) (4.16)

Solving Eq. (4.12) for a (x) gives

a (x) = A−1 (x)B (x) u (4.17)

Substituting this result into Eq. (4.8) results in the following expression for u (x)

u (x) =
n

∑

i=1

m
∑

j=1

pj (x)
(

A−1 (x)B (x)
)

ji
ui (4.18)

Realizing that the shape functions can be directly extracted from Eq. (4.18), this expression

may be written as

u (x) = Φ (x) u (4.19)

where

Φ (x) = p (x)A−1 (x)B (x) (4.20)

It should be noted that in order for A to be non-singular, the number of nodes in the local

topology (n) should be much larger than the number of monomial terms utilized in the

approximation (m). Although this does not explicitly guarantee the existence of A−1, for

most practical scenarios enforcing n≫ m is a sufficient condition for this to be true.

To arrive at the derivatives of u (x), which are necessary to formulate the governing

equation into an explicit form, Eq. (4.19) may be differentiated as

∂u (x) = ∂Φ (x) u (4.21)
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where ∂ may represent any derivative operator (such as ∂/∂x, ∂2/∂x2, ∇2, etc.). Note,

however, from Eq. (4.20) that all three components of Φ (p, A−1, and B) are functions

of x, and as such, care must be taken to properly differentiate each term. Complete

formulations have been presented up to third order derivatives [106], however, in practice,

direct differentiation of the MLS shape functions is impractical for anything beyond first

derivatives [114, 115]. Thus, for the case of first derivatives, the shape functions may be

differentiated as

∂Φ (x)

∂xk

= A−1 (x)
∂p (x)

∂xk

B (x) + p (x)A−1

(

∂B (x)

∂xk

−
∂A (x)

∂xk

A−1 (x)B (x)

)

(4.22)

where k may equal 1, 2, or 3, indicating differentiation with respect to x (x1), y (x2), or z

(x3). In addition, evaluation of Eq. (4.22) requires computation of partial derivatives of p,

A, and B. Realizing from Eqs. (4.14) and (4.16) that only the weight function is a function

of x (the polynomial terms are a function of xi, which does not vary over the topology),

differentiation of these terms is fairly straightforward, and may be obtained as

∂A (x)

∂xk

=
n

∑

i=1

∂W (x− xi)

∂xk

p (xi) p
T (xi) (4.23)

and

∂B (x)

∂xk

=

[

∂B1

∂xk

∂B2

∂xk

. . .
∂B

n

∂xk

]

n×m

(4.24)

∂Bi

∂xk

=
∂W (x− xi)

∂xk

p (xi) (4.25)

It is also worth noting that by distributing the p (x)A−1 term into the parenthesis within

Eq. (4.22), one may avoid having to perform any matrix-matrix multiplications throughout

this process.
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It is worth noting at this time that although MLS approximations and their cor-

responding derivative approximations may be used in formulations following a weighted

residuals or Galerkin formulation, they are typically mutually exclusive from collocation

based approaches due the lack of Kronecker delta function property (the negative effects of

this will be demonstrate later in Chapter 5). Despite this, they still serve an important role as

a generalized approximation scheme that can be used where collocation is either satisfied by

other means (i.e. Virtual Finite Differencing) or as a post-processing tool where collocation

is not necessary. In addition, several governing equations (such as incompressible flow via

pressure correction) require approximations of derivatives (oftentimes on boundaries) to

impose as initial, or boundary conditions to subsequent problems. Both of these applications

justify the use of MLS and as such, it is important to consider it an available tool when

developing a robust meshless methodology.

4.2 Radial Basis Function with Polynomial Reproduction (RBFP)

Radial Basis Function (RBF) interpolation, like MLS, was originally developed as a general

curve fitting and surface reconstruction technique [116, 68, 70, 66] and is commonly utilized

within the area of medical imaging [69, 71] to construct patient geometry from sparse imaging

data. Unlike MLS, RBF is an interpolation process (i.e. it satisfies the Kroneker delta

property), and as such, the accuracy of RBF tends to improve as the topology size is

increased. In addition, because non-polynomial basis functions are utilized (unlike other

commonly used unstructured data interpolation schemes), the underlying RBF moment

matrix is guaranteed to be non-singular if care is taken during selection of the so-called

33



shape parameter. Within the context of meshless methods, RBF interpolations have been

separately introduced through two distinct research paths. First, because of the non-

singular nature of RBF moment matrices, point interpolation methods often utilize RBF

basis functions (as an alternative to mononomials) in an attempt to increase the generality of

the technique [117, 118, 119]. Second, RBF interpolations were introduced through spectral

and pseudo-spectral methods [3, 4, 9, 7, 11], which are typically based on global orthogonal

functions such as Legendre or Chebyshev polynomials (and require a regular nodal point

distribution); though later efforts were able to generalize the concepts to be applied to

irregular point distributions, thus gaining the meshless namesake [84, 120]. Regardless of

the means of introduction, RBF interpolation offers advantages over MLS for some situations,

and as such, is worth examining for use within the meshless collocation solution process.

Similar to previous techniques, construction of the RBF shape functions begin by

representing the field as a finite series representation, multiplying a set of basis functions by

a set of expansion coefficients as:

u (x) =
n

∑

i=1

αiRi (x) = RT (x)α (4.26)

where u (x) is the field value at location x, n is the number of nodes in the local topology

at position x, αi is the i-th expansion coefficient, and Ri is a radial basis function based on

the distance between point x and point xi. There have been many suggested radial basis

functions, with some of the most commonly used shown in Table 4.1.
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Table 4.1: Typical Radial Basis Functions

Name Expression Shape Parameters

Multiquadrics Ri (x) = (r2i + c2)
q

c, q

Gaussian Ri (x) = exp (−cr2i ) c

Thin Plate Spline Ri (x) = rηi η

Logarithmic Ri (x) = rηi log (ri) η

Note that for all radial basis functions shown in Table 4.1, ri is defined as the radial

distance between location x and xi, which in three-dimensions is given by:

ri = ri (x) = |x− xi| =

√

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 (4.27)

where x = {x y z}T and xi = {xi yi zi}
T. Although all of the basis functions listed in

Table 4.1 have been used in meshless method implementations to some extent, many agree

that the family of so-called Inverse Hardy Multiquadrics (MQ) [67] (a Multiquadric with

q = −0.5) produce the most stable and accurate results across the largest subset of problem

domains [65, 64, 72, 121]. As such, the specific radial basis function employed will be the

inverse Hardy MQ of the form:

Ri (x) =
1

√

r2i + c2
(4.28)

where c is known as the shape parameter, and will be addressed in detail in Chapter 5.

35



Having described the basis function used in this interpolation technique, the next step is

to enforce Eq. (4.26) at each node in the topology, which results in the following expressions:

u (x1) =
n

∑

i=1

αiRi (x1)

u (x1) =
n

∑

i=1

αiRi (x2)

...

u (xn) =
n

∑

i=1

αiRi (xn)

(4.29)

Each node produces a single equation which, when combined, produces the following system

of equations:
























R1 (x1) R2 (x1) . . . Rn (x1)

R1 (x2) R2 (x2) . . . Rn (x2)

...
...

. . .
...

R1 (xn) R2 (xn) . . . Rn (xn)







































































α1

α2

...

αn















































=















































u1

u2

...

un















































(4.30)

or simply:

Gα = u (4.31)

If the inverse of the moment matrixG exists (which is guaranteed if c is chosen appropriately),

the expansion coefficients may be obtained as:

α = G−1u (4.32)

Rather than solve for the expansion coefficients directly, the expression for α obtained in Eq.

(4.32) may be substituted into Eq. (4.26), leading to the following expression for u (x):

u (x) = G−1uR (x) = RT (x)G−1u = Φ(x) u (4.33)
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where Φ (x) is the shape function vector, expressed as:

Φ (x) = RT (x)G−1 (4.34)

Notice from Eq. (4.34) that the RBF shape function vector at a given position depends

entirely on geometric quantities, and as such, may be precomputed and stored during

preprocessing.

Prior to discussing RBF derivatives, it is important to note that as formulated, the RBF

interpolations will not pass standard patch tests due to their inability to reproduce constant

and linear fields. Although slightly paradoxical, pure radial basis functions are better suited

to more complex field solutions and as such, exhibit some stability issues when presented with

constant and linear solutions. To remedy this situation, RBF interpolations are commonly

augmented with polynomial terms. As several researches have demonstrated [122, 106, 123],

adding polynomial terms to the RBF formulation almost universally improves the resulting

interpolations with minimal added computational effort. Thus, to add polynomial terms,

Eq. (4.26) is rewritten to include a set of additional polynomial basis functions as:

u (x) =
n

∑

i=1

αiRi (x) +
m
∑

j=1

βjpj (x) = RT (x)α + pT (x) β (4.35)

where m is the number of polynomial terms added to the approximation, βj is the j-th

polynomial expansion coefficient, and pj (x) is the j-th polynomial basis function. In a

similar manner to Eq. (4.29), Eq. (4.35) may be applied to all of the nodes in the topology,

37



resulting in the following set of expressions:

u (xk) =
n

∑

i=1

αiRi (xk) +
m
∑

j=1

βjpj (xk) k = 1, 2, . . . , n (4.36)

or in matrix form:

u = Gα + F β (4.37)

where G is the same matrix as in Eq. (4.31). Notice that Eq. (4.36) only provides n

equations, however, the introduction of polynomial basis terms has increased the number

of unknowns to n + m. The remaining equations are provided by requiring the polynomi-

als to satisfy an extra requirement which guarantees a unique approximation [122]. This

requirement is usually imposed as the following constraint equations:

n
∑

i=1

pj (xi)αi = 0 j = 1, 2, . . . , m (4.38)

or in matrix form:

FTα = 0 (4.39)

Combining Eqs. (4.37) and (4.39) gives:









G F

F 0























α

β















=















u

0















(4.40)
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where G is the pure RBF moment matrix and F is the polynomial augmentation matrix

given by:

F =

























p1 (x1) p2 (x1) . . . pm (x1)

p1 (x2) p2 (x2) . . . pm (x2)

...
...

. . .
...

p1 (xn) p2 (xn) . . . pm (xn)

























(4.41)

Thus Eq. (4.40) may be more succinctly represented as:

H















α

β















=















u

0















(4.42)

with H representing the fully augmented moment matrix.

At this point, Eq. (4.42) may be used to generate the shape functions in a similar

manner to that used in Eqs. (4.32)-(4.34). Alternatively, a more efficient procedure was

presented by Liu [106] in which overall matrix multiplications are reduced and the pure

RBF moment matrix may be decoupled from the polynomial components. Thus, starting

from Eq. (4.37), the RBF expansion coefficients may be solved as:

α = G−1u−G−1F β (4.43)

Substituting Eq. (4.43) into Eq. (4.39) gives:

β = Sβ u (4.44)

Sβ =
(

FTG−1F
)−1

FTG−1 (4.45)
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where FTG−1F is commonly referred to as a transformed moment matrix. Also notice that

FTG−1 needs to be computed only once throughout this entire procedure. Substituting

Eq. (4.44) back into Eq. (4.39) results in the following expression for the RBF expansion

coefficients:

α = Sα u (4.46)

where, after simplification:

Sα = G−1 −
(

FTG−1
)T

Sβ (4.47)

Finally, Eq. (4.35) may be written as

u (x) =
(

RTSα + pTSβ

)

u = Φ(x) u (4.48)

where the shape functions for a particular node are given by

Φ (x) = RTSα + pTSβ (4.49)

Once again, it is important to note that the shape functions provided by Eq. (4.49) are

strictly geometrically dependent, and as such, may be precomputed during preprocessing

stages of the algorithm.

A major benefit of the formulation shown in Eq. (4.49) is that the direct derivatives of

the underlying RBF interpolators may be easily obtained as

∂Φ = ∂RTSα + ∂pTSβ (4.50)

where ∂ may represent any derivative operator (such as ∂/∂x, ∂2/∂x2, ∇2, etc.) for which

analytical derivatives exist for both Ri (x) and pj (x).
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4.3 Virtual Finite Differencing (VML)

Virtual finite differencing (VML), unlike MLS and RBF, is not an approximation or interpo-

lation method but rather a formulation technique which utilizes interpolating shape functions

to form a generalized finite difference approach. Although generalized finite difference

methods have been around since the early 1980s [52, 53], their applicability has been limited

due to a lack of unifying methodology. It is interesting to note that the similarities to

conventional finite differencing often cause these techniques to be misclassified as a mesh-

based methods, a problem compounded by the fact that many generalized finite differencing

formulations are developed for partially structured regions. VML, on the other hand,

utilizes the approximation/interpolation qualities of MLS and RBFP to augment traditional

finite differencing without introducing any additional overhead once initial preprocessing

has been performed. In this respect, VML is a useful tool for developing a robust meshless

methodology, representing a truly meshless generalized finite difference approach.

As VML depends largely on traditional finite differencing formulations, it is important

to first provide a brief overview of the underlying methodology employed in finite differencing

methods. Finite difference approximations start from the Taylor series representation of the

derivatives at a given location and truncate the series to produce approximate values that can

be evaluated with acceptable error. For example, to arrive at a second order approximation

of the first derivative at point xi, as illustrated in Figure 4.3, two Taylor series may be

utilized, one centered at x+ h and one centered at x− h. Thus, expanding the Taylor series
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Figure 4.3: One-Dimensional Discretization

about these points results in

f (x+ h) = f (x) + hf ′ (x) +
1

2!
h2f ′′ (x) +

1

3!
h3f ′′′ (x) +

1

4!
h4f (4) (x) + · · · (4.51)

f (x− h) = f (x)− hf ′ (x) +
1

2!
h2f ′′ (x)−

1

3!
h3f ′′′ (x) +

1

4!
h4f (4) (x)− · · · (4.52)

Subtracting Eq. (4.51) from Eq. (4.52):

f (x+ h)− f (x− h) = 2hf ′ (x) +
2

3!
h3f ′′′ (x) +

2

5!
h5f (5) (x) + · · · (4.53)

which may be solved for f ′ (x) as

f ′ (x) =
f (x+ h)− f (x− h)

2h
−

2

3!
h2f ′′′ (x)−

2

5!
h4f (5) (x)− · · · (4.54)

The result shown in Eq. (4.54) represents the Taylor series representation of the

derivative at a particular location x. To arrive at the finite difference representation, the

higher order derivative terms may be truncated, resulting in the following expression

f ′ (x) ≈
f (x+ h)− f (x− h)

2h
+O

(

h2
)

(4.55)

where O (h2) indicates that the error is on the order of h2, as indicated by the first leading

term truncated from the series. Placing this equation into a more common form for discrete
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data sets (keeping with the convention shown in Figure 4.3), results in

∂u

∂x

∣

∣

∣

∣

xi

≈
u (xi +∆x)− u (xi −∆x)

2∆x
=

u (xi+1)− u (xi−1)

2∆x
(4.56)

where ∆x has replaced h in the formulation, and u is the value of a particular field function.

The process of truncating the Taylor series representations of the derivatives may

be performed for nearly any desired derivative, and in all cases, the process is roughly

the same. As such, there are many texts which fully detail the derivation process for

most derivative operators [124], and, for completeness, several of the most common three-

dimensional operators are provided in Eqs. (4.57)-(4.65).

∂u

∂x

∣

∣

∣

∣

x,y,z

=
u (x+∆x, y, z)− u (x−∆x, y, z)

2∆x
(4.57)

∂2u

∂x2

∣

∣

∣

∣

x,y,z

=
u (x+∆x, y, z)− 2u (x, y, z) + u (x−∆x, y, z)

∆x2
(4.58)

∂u

∂y

∣

∣

∣

∣

x,y,z

=
u (x, y +∆y, z)− u (x, y −∆y, z)

2∆y
(4.59)

∂2u

∂y2

∣

∣

∣

∣

x,y,z

=
u (x, y +∆y, z)− 2u (x, y, z) + u (x, y −∆y, z)

∆y2
(4.60)

∂u

∂z

∣

∣

∣

∣

x,y,z

=
u (x, y, z +∆z)− u (x, y, z −∆z)

2∆z
(4.61)

∂2u

∂z2

∣

∣

∣

∣

x,y,z

=
u (x, y, z +∆z)− 2u (x, y, z) + u (x, y, z −∆z)

∆z2
(4.62)

∂2u

∂x∂y

∣

∣

∣

∣

x,y,z

=
u (x+∆x, y +∆y, z)

4∆x∆y
−

u (x+∆x, y −∆y, z)

4∆x∆y
+ · · ·

u (x−∆x, y +∆y, z)

4∆x∆y
−

u (x−∆x, y −∆y, z)

4∆x∆y

(4.63)

∂2u

∂x∂z

∣

∣

∣

∣

x,y,z

=
u (x+∆x, y, z +∆z)

4∆x∆z
−

u (x+∆x, y, z −∆z)

4∆x∆z
+ · · ·

u (x−∆x, y, z +∆z)

4∆x∆z
−

u (x−∆x, y, z −∆z)

4∆x∆z

(4.64)
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∂2u

∂y∂z

∣

∣

∣

∣

x,y,z

=
u (x, y +∆y, z +∆z)

4∆y∆z
−

u (x, y +∆y, z −∆z)

4∆y∆z
+ · · ·

u (x, y −∆y, z +∆z)

4∆y∆z
−

u (x, y −∆y, z −∆z)

4∆y∆z

(4.65)

Note that all of the above listed approximations are second order accurate with respect

to the spacing in the direction of the derivative. In addition, it is easily shown that Eqs.

(4.57)-(4.65) may all be placed into the standard form of

∂u (x) = ∂Φ (x) u (4.66)

where the derivative shape function vector ∂Φ consists of the leading coefficients multiplying

each respective nodal value.

There are several benefits of formulating the problem using Eqs. (4.57)-(4.65) in a

traditional finite difference fashion. First, the finite difference method is one of the oldest

PDE solution techniques and, as such, it has a large knowledge base pertaining to optimiza-

tions in terms of solution accuracy and speed. Second, because the formulations are derived

from the Taylor series representation, they have predictable error, and many techniques

have been developed to utilize this error within the solution process. Third, because of the

prevalence of finite differencing methods, there have been many proposed approaches for

handling convective derivatives where upwinding is necessary, a common source of concern

for more traditional meshless techniques (such as diffuse MLS or pure RBFP).

Despite these benefits, there is one obvious limitation of pure finite differencing. If

the underlying point distribution is regular, such as the one shown in Figure 4.4a, then

finite differencing may be applied without any concerns. However, as soon as the point

distribution is irregular, such as in Figure 4.4b where there is a necessary node missing at

44



(a) Structured (b) Unstructured

Figure 4.4: Sample Point Distributions

the red x for the orange topology, then the derivative operators of Eqs. (4.57)-(4.65), which

rely on a structured set of data, can no longer be applied. This limitation prevents pure finite

differencing from being applied to arbitrary geometries since almost any real-world model will

have boundary faces that are not grid aligned (and therefore, will introduce irregularities into

the point distribution). However, most point distribution methods are based on Cartesian

alignment and even in highly irregular geometry there are bound to be regions exhibiting

local structure (such as the right side of the point distribution in Figure 4.4b). For this

reason, it is beneficial to take advantage of those areas with local structure and directly

apply finite differencing using Eqs. (4.57)-(4.65). Further justifying the use of pure finite

differencing in areas of local structure is the fact that RBFP, when applied to a structured

topology with the proper configuration, will generate the same shape functions that are

obtained via Eqs. (4.57)-(4.65), though at a much higher computational expense (due to the

additional operations necessary to build and invert the respective moment matrices).
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Figure 4.5: Virtual Topology

To apply the finite differencing equations shown in Eqs. (4.57)-(4.65) to an unstructured

region such as the one shown in Figure 4.4b, some means of approximating the missing node

values must be developed. Fortunately, such methods have already been described in the

previous sections; MLS and RBFP approximations may be applied to determine the missing

nodal values. Once these have been obtained, it becomes trivial to directly apply the finite

difference equations to represent the underlying derivatives. Thus, the process of obtaining

the shape functions via VML begins by constructing a virtual node at the required locations

of missing structure and building a local topology about that position (as shown in Figure

4.5 as the yellow node and the purple dotted region, respectively). Once the virtual topology

has been determined, any of the available interpolation schemes (MLS or RBFP) may be

utilized to determine the value at the desired location. This interpolation will be of the form:

u (x) = Φ (x) u (4.67)

where u (x) represents the unknown value at the virtual node.
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Once the value of the virtual node has been determined, Eqs. (4.57)-(4.65) may be

directly applied over the given domain. However, rather than simply use the interpolators

to determine the value at each virtual node, they may be integrated into the shape functions

provided by finite differencing to produce a compact form which adds no additional overhead

to the solution process. For example, to develop the second order, second derivative operator

given in Eq. (4.58) for the red node (located at coordinates x, y, z) shown in Figure 4.5,

the unknown quantity at the virtual node located at (x−∆x, y, z) is required. Thus, an

interpolation is used to obtain the value as:

u (x−∆x, y, z) = Φ (x−∆x, y, z) u (4.68)

which may be substituted into Eq. (4.58) which results in:

∂2u

∂x2

∣

∣

∣

∣

x,y,z

=
u (x+∆x, y, z)− 2u (x, y, z) + Φ (x−∆x, y, z) u

∆x2
(4.69)

By realizing that the existing weights can be combined with the finite difference weights,

and that the virtual topology nodal vectors can be appended to one another (making sure

to combine duplicate nodes and their associated weights), Eq. (4.69) may be rewritten in

terms of shape functions as:

∂2u (x)

∂x2
=

{

1
∆x2Φ (x−∆x, y, z) − 2

∆x2

1
∆x2

}
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u (x, y, z)

u (x+∆x, y, z)































= Φu (4.70)

thus resulting in a similar form which may be integrated with the direct differentiation

schemes shown in the previous sections.
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In summary, VML is more than a simple generalized finite difference technique, encap-

sulating two principles regarding the use of finite difference within the context of meshless

solvers. The first principle states that, where possible, pure finite differencing should be

utilized to obtain the necessary derivative operators. The second principle states that in

areas with some local structure, it is beneficial to use the existing information that is present

(such as the value at u (x+∆x, y, z) in Figure 4.5) to provide greater accuracy than would be

possible through direct differentiation of an approximation or interpolation based approach

(such as MLS or RBFP). Another unique property of VML operators is that they may utilize

any field approximation technique to obtain the value at the virtual nodes. In this regards,

MLS may be chosen to produce a stable solution (due to its ability to smooth the underlying

fields), or RBFP may be chosen to provide higher accuracy. It should be noted that in

practice, MLS oftentimes proves to be the best approximation for use with VML principles.

This has to do with the fact that RBFP has a tendency to oscillate between nodes, and while

the value and its derivatives at the data center may be accurate, a numerical derivative based

on intermediate values tends to contain considerable error in complex field situations. That

being said, MLS, because of its capability of smoothing field oscillations, provides an ideal

balance of accuracy (since the accuracy can be made to match that of the underlying finite

difference approximation) and stability for this approach. Although either technique will

result in a valid solution process, MLS will be chosen as the interpolation method of choice

on the grounds of stability and robustness.
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4.4 Chapter Summary

To summarize, the MIMS method will utilize a combination of moving least squares, radial

basis function interpolation, and virtual finite differencing to produce the field and derivative

operators needed throughout the solution process. It is important to acknowledge that

this is a major departure from traditional thinking whereby each researcher has his or her

interpolation scheme of choice (as evidenced by the various meshless histories presented

in Chapter 2) and very little blending of techniques occurred. This represents a major

shortcoming in the current state-of-the-art as each shape function technique has their own

relative strengths and weaknesses. It makes sense, therefore, to not restrict oneself to a

single shape function generation scheme and to instead selectively choose the best technique

on a local, node-by-node basis. Furthermore, although moving least squares and radial basis

function interpolation have both been extensively studied by existing meshless research,

virtual finite differencing has been developed specifically for this method to supplement

existing techniques where they lack robustness (e.g. upwinding, one sided derivatives,

boundary layer tangential derivatives, etc.). Despite being a relatively new development

by the author, results utilizing this technique have been published at several international

conferences [101, 102, 125], with additional illustrative examples shown in Chapter 9.
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CHAPTER 5

MESHLESS IMPLEMENTATION DETAILS

The previous chapter described the meshless discretization process utilizing various shape

function generation techniques, however, little was said regarding practical implementation

details. Issues such as stability, optimal support domain construction, and shape parameter

optimization were omitted for the sake of generality. Unfortunately, these implementation

details can dramatically affect the stability and robustness of a particular meshless method

implementation. Despite the importance of these issues, discussions in current literature

are mostly limited to small scale problems and are generally addressed in two-dimensions

only. This represents a major deficiency in the current study of practical meshless methods,

and as such, the following chapter will be devoted to addressing some of the more practical

concerns with implementing a robust meshless method.

5.1 Numerical Stability Analysis

Performing an analysis of stability is a critical step in developing a robust PDE solution

technique as it gives justification and guidance for selecting important quantities such as

the minimum time step and maximum discretization size. Historically, stability analysis

has been performed using one of three techniques, the discrete perturbation method, the

von Neumann method, or the matrix method. The overall goal of these techniques is to

determine the response of the discretized PDE to errors introduced during the solution
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process. If the errors are damped over the domain, then the process is generally considered

stable. On the other hand, if the errors are amplified, then the process will have a tendency

to fail to converge and may be classified as unstable. In general, the stability limit (the

point at which the discretized PDE begins to amplify errors) is dependent on the underlying

discretization, time step, and most importantly, the process by which the continuous PDE

representing the governing equations are formulated into an algebraic system. For processes

such as structured finite differencing, it is possible to analytically determine the stability

limit by using one of the three stability analysis techniques previously mentioned. However,

within the context of meshless methods, the situation becomes much more complex as the

characteristics of the support domain become a potential source of variation in the stability

limit. Furthermore, even the most simplistic meshless formulation process will result in a

set of PDE update equations relying on an inverted matrix, and, as such, it becomes nearly

impossible to develop analytical representations for the stability limit without imposing

arbitrary bounds on the algebraic models. Even if one is able to overcome these obstacles, it

is difficult to arrive at general stability statements which are applicable across all topological

configurations [126, 127], and more importantly applicable to practical numerical algorithms.

In spite of this, the concept of analyzing the stability of meshless methods would benefit our

understanding of these techniques, and as such, it is worth exploring alternative methods of

determining stability behavior.

One alternative technique is to experimentally establish stability behavior by numeri-

cally simulating the discrete perturbation method. When experimentally examining stability

of a method, it is important to eliminate as many variables as possible since the goal is to

determine the behavior of the underlying discretized PDE system (which should, in theory,
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Figure 5.1: Stability Analysis

be independent of the problem domain). However, in meshless methods the problem domain

is part of the discretization process (via the unstructured topologies), and as such, some finite

simulated space must be defined. The space chosen for this study is the point distribution

shown in Figure 5.1a, where 121 nodes have been evenly distributed over a square, two-

dimensional domain of size 1× 1, resulting in an average node spacing of s = 0.1.

The process of testing the stability limit via an experimental discrete perturbation

method involves initializing the entire field to a uniform solution of zero, and then perturbing

the central node by some error ǫ. The solution is then allowed to progress from this point

while attempting to solve a particular governing equation. If, after some number of iterations

the initial perturbation has dissipated, then the update process has controlled the error. On

the other hand, if the initial perturbation has not dissipated after a specified number of

iterations, then the update process has potentially amplified the error and could indicate

instability. To simulate this process using meshless methods, the governing equation applied
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to the domain is the two-dimensional Laplace equation of the form

∇2f = 0 (5.1)

with uniform, constant boundary conditions of

f = 0 for all Γ (5.2)

By imposing Dirichlet conditions on the boundary, the exterior nodes are able to reflect waves

back into the interior of the domain, thus requiring that the update equations damp the

initial perturbation, not the boundary conditions. Having defined the governing equations

and boundary conditions, the shape function construction techniques of the previous chapter

are used to discretize Eq. (5.1) into a system of equations of the form

Ax = b (5.3)

where A consists of the shape function weights provided by the particular meshless method

chosen, and b consists of all zeros (due to the boundary conditions and Laplace equation).

To determine stability at this point, the system of equations is solved using a relaxed Jacobi

iteration scheme, such that

x(k+1) = (1− ω) x(k) + ωD−1
(

b−Rx(k)
)

(5.4)

where ω is the relaxation parameter and D and R are the diagonal and remainder component

of A when decomposed as

A = D +R (5.5)
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Note that when ω < 1, the resulting update equation is under-relaxed, while when ω > 1,

the resulting update equation is over-relaxed. As originally stated, the goal of performing a

stability analysis is to determine the range of values which produce a stable system. Applying

this to the described numerical testing process, this amounts to determining the value of ω

which causes a particular PDE discretization technique to damp the solution. If the solution

converges regardless of the value of ω (up to a maximum value of 2) than the solution

process is unconditionally stable. If the solution diverges regardless of the value of ω, then

the solution process is unconditionally unstable. Most likely, however, the solution will only

converge for values of ω less than some critical threshold ωs, which defines the stability limit

for that particular configuration (a configuration indicating a particular time step and local

discretization). The difficulty in determining ωs is that for the case of both RBFP direct

differentiation and Virtual Finite Differencing, there are additional parameters that must be

determined a priori (the shape parameter c, and the virtual node spacing ∆s, respectively)

for each configuration. To account for these, and to determine their effects on the stability

of the system, we wish to find the relationship between ωs and the respective parameter for

each meshless technique. This amounts to finding the roots of the following equation

χ (λ, ω) = max
[

lim
k→∞

(

(1− ω) x(k) + ωD−1 (λ)
(

b−R (λ) x(k)
))

]

− ǫ (5.6)

where λ is a specified set of geometric constants for the particular shape function technique,

and max (v) returns the maximum value within the v vector. Equation (5.6) is essentially

fixing a set of input parameters λ, iterating the perturbed initial field until steady state is

reached (k → ∞), and comparing the maximum value in the solution field to the initial

perturbation value ǫ. In this manner, the value of ω which makes χ = 0, can be thought
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of as the stability limit ωs for a particular input parameter set λ. Therefore, the process of

determining the relationship between λ and ωs can be summarized in the following steps:

1. Choose a set of input parameters λi (contains c for RBFP and ∆s for VML)

2. Initialize the domain and build D−1 (λi) and R (λi) matrices of Eq. (5.6)

3. Solve χ (λi, ωi) = 0 for ωi

In practice the limit in Eq. (5.6) can not be evaluated analytically, and thus, a set number

of iterations must be performed during evaluation (for these results, kmax = 1000).

As described in the previous chapter, the three meshless shape functions that are of inter-

est are Moving Least Squares (MLS), Radial Basis Function with Polynomial Reproduction

(RBFP), and Virtual Finite Differencing with MLS approximation (VML). In the case of

MLS direct differentiation, the only input parameter is the size of the support domain, and,

as this is not a continuous variable, it will not be included in the input parameter vector

λMLS. For RBFP direct differentiation, the input parameters are the size of the support

domain, and value of the so-called shape parameter c; once again, the size of the support

domain will be handled via different test cases, and thus, λRBFP = {c}. Finally, for VML

with MLS approximation, the input parameters may include the size of the support domain

(once again omitted) and the spacing of the virtual nodes used in the finite difference stencil

∆s , thus λVML = {∆s}. To build appropriate support domains for this simple region, a

routine was developed to select the closest n nodes to the point of interest, with any equally

spaced clusters being adding in unison (i.e. if n = 5 but the 5th and 6th nodes are equally

spaced from the support center, then both nodes will be included in the topology). For

a structured point distribution, there are three values of n that provide varying internal
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spacings (5, 9, and 13) and as such these will be the primary topology sizes that will be

examined.

The first analysis was performed on MLS direct differentiation, and, as the input

parameter space is null, there is no relationship to be made between ωs and λ. Therefore,

the single result will indicate whether or not MLS was able to successfully damp the initial

perturbation on a specified support domain size. After running the experiment on all

three topology sizes, none of the resulting MLS systems were able to successfully damp

the initial perturbation (all systems reported ω = 0 as the only solution). Although this

result is important, it is not altogether surprising since it has already been stated how it is

a well known issue of MLS. Because MLS approximations are not interpolations (i.e. the

Kronecker delta is not satisfied, uMLS (xi) 6= ui) they are unable to properly impose Dirichlet

boundary conditions on the boundary and, as such, boundary conditions of this type are most

commonly imposed via penalty functions [29, 106]. In fact, generalizing this statement, MLS

approximations are mutually exclusive from collocation techniques since they are unable to

explicitly satisfy nodal values at the collocation locations. Understanding this fact, it is

clear that MLS direct differentiation is ill-suited to a collocation based meshless approach.

Nonetheless, as has already been stated, it is still a useful tool for post-processing, as well as

for obtaining quantities that are imposed as boundary conditions to other problems (such as

in incompressible flow pressure-correction schemes). For this reason direct differentiation of

the MLS should only be used when computing quantities that do not require the Kronecker

delta property for stability.

The second analysis was performed on RBF direct differentiation, and, like MLS, the

results were obtained for the three topology sizes indicated previously. However, unlike
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MLS, the RBF collocation matrix requires a shape parameter c to be defined for each node

(for evaluation of Eq. (4.28)). Traditionally this c value has been based on the local mesh

size [106] or optimized to obtain a specified condition number for the moment matrix [96],

however, to the best of my knowledge, these values have been based primarily on previous

experience and rule of thumb heuristics. Therefore, one of the primary goals of this analysis is

to provide numerical justification for the selection of c in a practical setting. After performing

the analysis, the results for the three topology sizes may be seen in Figures 5.2a, 5.2b, and

5.2c. Note that in each of these figures the dependent axis has been normalized with respect

to the domain node spacing s.

Examining these results, the first thing to note is that with a structured support domain

of size 5, the RBF is unconditionally stable (up to ω ≈ 1.11) within the range of c values

tested. Though notable, this is not unexpected as it can be shown that given 5 nodes in a

structured, two-dimensional domain, the Laplace derivative of the RBF shape functions will

provide the same weights (though they may be scaled, depending on c) as finite differencing

over the same set of nodes. More useful are the results shown in Figures 5.2b and 5.2c,

which illustrate the results for the support domains with n = 9 and n = 13, respectively.

First, it is important to note that for the majority of typical c values (in the range of

2s-10s), the RBF iteration process requires under-relaxation in order to damp the initial

perturbation. Compare that with finite differencing which is unconditionally stable (for all

ω ≤ 1) when applied to this governing equation, and this result becomes significant (as a

personal note, this issue has been encountered several times by myself and fellow colleagues

when direct RBF fails to converge under some topological configurations without appropriate
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Figure 5.2: RBF Normalized Shape Parameter vs ωs
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under-relaxation). Given this knowledge, it would be ideal if it were possible to infer the best

range of c values to allow for maximum stability from these results. Unfortunately, even over

this small variation in problem setup, there is a significant difference in the optimal c value

with respect to grid spacing. However, by plotting the condition number with respect to the

stability limit (as shown in Figure 5.3), we can see that there is a clear relationship between

the stability limit and the condition number of the RBF moment matrix. In fact, these

results give clear justification for the use of an optimization strategy targeting a specified

condition number. These results suggest an optimal range between 1 × 1011 and 1 × 1013

as ideal for stability, which is slightly higher than the typically quoted range of 1 × 1010

to 1 × 1012. The results shown in Figure 5.3 imply that, in terms of stability, it is more

appropriate to base the value of c on the condition number of the RBF moment matrix, as

opposed to any locally defined average nodal spacing. This, coupled with the uncertainty

relation formally described by Schaback [75], provides justification for optimizing c on a

node-by-node basis in an attempt to achieve a specified range of condition numbers.

The final meshless shape function utilized in the MIMS method is the Virtual Finite

Differencing scheme with an underlying MLS approximation. MLS approximations are

optimal for VML because of their ability to smooth oscillations present in the field. When

performing VML, the input properties include the virtual node spacing ∆s, and as such, this

study seeks to determine the stability limit as a function of this value. Performing the same

study using VML shape functions, it can be seen from the results shown in Figure 5.4 that

there is a range of optimal values (roughly between 0.8 ≤ ∆s/s ≤ 1.6) over which the system

is able to damp the initial perturbation with no under-relaxation (in fact, over-relaxation
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values as high as ω = 1.5 are possible in some cases). Fortunately, this optimal range for

virtual spacing is quite easy to implement as it involves placing the virtual node between

1 and 1.2 times the average nodal spacing within the node’s support domain. It should be

noted that, as opposed to the preprocessing required to optimize c for RBFP, this optimal

value requires little extra computational effort to obtain.

As a final study, the nodes of the structured region were moved by a random offset of

±10% of the nodal spacing, thus producing the point distribution shown in Figure 5.5. This

was done to verify that these results extend to the case of an unstructured region, as well

as to ensure that the RBFP results were not caused by the interpolation taking advantage

of the structured nature of the nodes. The original experiments were reproduced for both

RBFP and VML and are shown in Figures 5.6 and 5.7, respectively (along side the original
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data). In both cases, the unstructured results follow the same general trends of the previous

results, validating that the process is (at least somewhat) independent of the local node

distribution.
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Figure 5.5: Randomized Point Distribution
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On a final note, the above listed experiments were all repeated over several different

node counts (to vary s) and no significant difference was found between the presented data.

This suggests that, like finite difference, the stability behavior of RBFP and VML shape

functions are independent of grid spacing when solving the steady-state Laplace equation.

In summary, these results indicate that in order to develop stable shape functions using

RBFP direct differentiation, one should optimize the value of c to obtain a local condition

number between 1 × 1011 and 1 × 1013. In addition, under-relaxation should be employed

when solving the resulting system of equations in order to ensure convergence. As for VML,

the virtual node spacing should be placed between 1 and 1.2 times the average nodal spacing

of the local support domain in order to maximize stability. From these results it appears as

though VML produces a more stable system than RBFP, and as such, under-relaxation will

generally not be required for convergence.

5.2 Support Domain Construction

No topic in Meshless methods is as widely overlooked as the process of generating the

necessary support domains for a given geometry and interpolation technique. While there is

plenty of research describing why one interpolation technique is more accurate than another,

few papers acknowledge the importance of developing proper support domains; and fewer

still describe processes that can consistently determine appropriate influence regions for a

distribution of unstructured nodes. Rather than describe the problem in words, it seems

most appropriate to illustrate the importance of proper support domain selection through a

simple, yet practical, example.
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Figure 5.8: Two-Dimensional Influence Domains

Figure 5.8 presents two similar local node distributions, where the highlighted node

at position (0, 0) is the point at which a support domain is desired. For the sake of

this example, the Virtual Finite Difference shape function technique will be utilized, with
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Figure 5.9: Linear Field over Two-Dimensional Influence Domains
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the underlying field approximation done via Moving Least Squares with quadratic basis

functions (i.e. p includes 1, x, y, xy, x2, and y2). It is worth mentioning that both of

these MLS support domains violate the condition that n≫ m, however, for the sake of this

example we will overlook this detail. Thus, both support domains contain 6 nodes, with

the position of only one node varying from Influence Domain 1 (Figure 5.8a) to Influence

Domain 2 (Figure 5.8b). Despite this minor change in topology layout, if a linear field

is applied over these two topologies, and the underlying MLS approximation is sampled

across the local domain, the two resulting fields are dramatically different. Figure 5.9a

illustrates that Influence Domain 1 is able to exactly capture the solution regardless of the

sampled location (which is as expected from a quadratic MLS), while Influence Domain 2

(shown in Figure 5.9b) results in an unacceptably poor approximation of the underlying

field. When translated to the VML stencil, the field shown in Figure 5.9a will produce

accurate estimations of the derivative, while the field shown in Figure 5.9b will not. The

purpose of this simple example is to demonstrate that it is not simply the size or shape of the

underlying topology that determines whether or not it will produce good approximations. In

order for an unstructured approximation method to produce accurate results, it must have

a sufficient sampling of directional information, which will result in a better conditioned

moment matrix, and a smoother approximation. This, therefore, justifies the statement

that (for MLS approximations) an acceptable topology should satisfy the criteria n ≫ m.

However, this raises another issue; if one were to simply choose a very large support domain

for each node (thereby guaranteeing enough directional information), the solution would

tend to be either overly dissipative (in the case of MLS) or overly oscillatory (in the case of
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Figure 5.10: Clustered Node Distribution in 2D

RBFP). Therefore, the ideal support domain is the smallest collection of nodes containing

enough directional information to produce an accurate approximation.

Despite the obvious importance of solution quality on obtaining an appropriate support

domain for each node, most meshless implementations simply determine a node’s topology

based on a local radius defined by the neighboring nodes to the point of interest. Although

this may be acceptable for a uniformly random point distribution, as soon as a topological

structure is introduced, such as node clustering, simply selecting a support region based

on a local radius metric is no longer sufficient. Take, for example, the node distribution

shown in Figure 5.10; both the large and small radius influence circles (shown in green) have

issues that would deter their use. The small topology will most certainly produce a singular

moment matrix due to the lack of information in the y-direction, while the larger topology

has the potential of causing over-smoothing (MLS) or over-fitting (RBFP) in the x-direction.

Further compounding the issue is the fact that in real-world problem geometries, it is easy

to encounter node distributions that are prone to one-sided or ill-posed support domain
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construction when complex boundaries are involved. The primary issue with a radius based

approach is that it is not based on any quantifiable metric that can be definitively shown to

represent the quality of the underlying support domain. Although these types of procedures

may be acceptable for simple geometries, they will quickly break down when applied to

real-world, adaptive point distributions, especially in three-dimensional geometries.

To address this deficiency in current meshless research, a straightforward procedure

of systematically selecting the most appropriate, minimal support domain for a particular

node has been developed. The process begins by acknowledging that any robust routine

must attempt to satisfy the two primary characteristics of an ideal support domain. The

first characteristic is that a given set of nodes must include enough directional information to

generate an appropriate approximation of the underlying field. This characteristic directly

relates to the accuracy of the proposed approach and will be the primary metric used when

attempting to determine if a support domain is acceptable. The second characteristic is that

given two equally sufficient sets of nodes, the one that minimizes the number of nodes is

preferred both on the grounds of efficiency, as well as reducing over-smoothing (in the case

of MLS) or over-fitting (in the case of RBFP) resulting from excess overlap in the resulting

topological map. The difficulty in developing a systematic approach is in quantifying the

two characteristics in a manner that can be used to identify how well a particular support

domain will behave, or at the very least, when a particular support domain will produce an

acceptable result and when it will not. The innovation comes from a behavioral analysis of

the MLS moment matrix under various topological configurations. Take, for example, the

moment matrices for the configurations shown in Figures 5.8a and 5.8b (generated using Eq.
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(4.14) with quadratic basis functions) given by A1 and A2, respectively

A1 =









































6.000 −0.050 0.350 −0.093 0.652 0.822

−0.050 0.652 −0.093 0.243 −0.011 0.013

0.350 −0.093 0.822 0.013 0.243 0.110

−0.093 0.243 0.013 0.130 −6.606× 10−3 −4.206× 10−3

0.652 −0.011 0.243 −6.606× 10−3 0.137 0.130

0.822 0.013 0.110 −4.206× 10−3 0.130 0.192









































A2 =









































6.000 −0.050 0.850 0.033 0.652 0.822

−0.050 0.652 0.033 0.275 −0.011 0.013

0.850 0.033 0.822 0.013 0.275 0.142

0.033 0.275 0.013 0.130 1.206× 10−3 3.606× 10−3

0.652 −0.011 0.275 1.206× 10−3 0.137 0.130

0.822 0.013 0.142 3.606× 10−3 0.130 0.192









































Although is has already been shown that the first configuration (A1) represents a more

accurate distribution than the second (A2), it may not be immediately obvious from the

geometric configuration alone. To analyze why this might be the case, both moment matrices

were decomposed into their singular values, and the condition numbers were determined

to be A1 = 1.865 × 103 and A2 = 1.967 × 1017. Clearly this demonstrates that the

MLS moment matrix for the second nodal distribution is nearly singular, resulting in the

poor approximations shown in Figure 5.9b. One might be inclined to define a quality

metric based on the singularity of the underlying moment matrix by analyzing the condition
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number, however, there are two concerns with a method of this approach. First, computing

the condition number is an expensive calculation, most commonly performed through an

implementation of Singular Value Decomposition. Second, although the condition number

of the matrix may indicate that there will be inaccuracies of the approximation, it doesn’t

provide an indication as to how to rectify the issue. Therefore, instead of examining the

condition number of the matrix, we may analyze the rank of the moment matrix, and its

corresponding reduced-row echelon form (computed via matrix triangulation) in order to

determine which of the monomial basis functions (i.e. directions) are lacking information.

Computing these values for the current example, it can be found that the rank of A1 is 6,

while the rank of A2 is 5, indicating that it is rank deficient, and therefore highly singular.

Furthermore, the reduced-row echelon form of A2 is:

rref (A2) =









































1.000 0 0 0 0 0

0 1.000 0 0 0 0.500

0 0 1.000 0 0 −0.500

0 0 0 1.000 0 −1.000

0 0 0 0 1.000 2.000

0 0 0 0 0 0









































which, as it turns out, can give a rough indication as to the particular basis functions in the

underlying MLS moment matrix which are missing directional information. Recall from Eq.

(4.14) that the MLS moment matrix is defined as

A (x) =
n

∑

i=1

W (x− xi) p (xi) p
T (xi)
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indicating that a particular element of the moment matrix is a summation of the contribu-

tions from each node with respect to two basis functions

Aj,k =
n

∑

i=1

W (x− xi) pj (xi) pk (xi) (5.7)

where pi and pj are the ith and jth basis functions of the basis function set derived from

Pascal’s Pyramid. Now recall that the reduced-row echelon form of the matrix provides the

linear dependence of one row with another, and as such, if a row consists of all zeros, it

can be thought of as singular (it has no unique relationship with any other row, including

itself). Similarly, if a column contains a non-zero term, then that particular matrix term is

not linearly independent from the corresponding row, and therefore, could also be a source of

singularity. Following this logic, we make the following suppositions regarding the reduced-

row echelon form of the MLS moment matrix:

Supposition If a diagonal term Aii of a MLS moment matrix in reduced-row echelon form

is zero, then the corresponding monomial basis term pi has singular tendencies.

Justification The justification for this statement comes from the fact that the diagonal

terms of the moment matrix are, by definition, the scalar product of the ith monomial

term (i.e. x · x or x2 · x2), and as such, in order to be zero, must be not be linearly

independent. This implies that there does not exist a unique solution for this particular

row, and, since each other element of the row multiplies the ith monomial term, it

follows that the most likely monomial missing sufficient information (and thus, having

singular tendencies) is the ith term of the basis set.
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Supposition If an off-diagonal term Aij of a MLS moment matrix in reduced-row echelon

form is non-zero, then the corresponding monomial basis term pj has singular tenden-

cies.

Justification The second supposition employs similar logic to the first; by realizing that

each element within the jth column of the moment matrix multiplies a similar term

(pj), in order for term Aij to be non-zero, this monomial must be contributing (in some

manner) to the overall non-uniqueness of the row. Therefore, it follows that the most

likely candidate missing sufficient information is the jth term of the basis set.

Although based on general inferences, from basic experimental analysis of simple nodal

configurations it can be shown that, for most cases, these two suppositions prove accurate.

That being said, in order to successfully utilize this information a procedure capable of

generating appropriate local support domains must be developed. The solution is to utilize

support domains that are ellipsoidal, instead of spherical. In this manner the elliptic domains

can grow directionally, according to the information provided by the MLS moment matrix in

reduced-row echelon form, to produce appropriate support domains regardless of local node

distribution characteristics. Applying this logic to Figure 5.10, might result in a support

domain as shown in Figure 5.11, a dramatic improvement on both of the previously offered

solutions. Algorithm 5.1 provides a formalization of the support domain generation process

where σ is a user-supplied growth factor, which is generally specified to be 10% of the current

support domain size (in a particular direction).

At this point it is worth noting that although the listed algorithm is guaranteed to

produce a support domain that produces a non-rank deficient MLS moment matrix (if one

exists), it may find surprisingly small topologies if the basis order used during the optimiza-
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Figure 5.11: Improved Topology in Clustered Node Distribution

Algorithm 5.1 Support Domain Generation Process

Input: A desired support center node nℓ located at (xℓ, yℓ).
Let Ωℓ be an initial support domain for nℓ.
rℓ ← rank of MLS moment matrix A for support domain Ωℓ

while rℓ 6= size of Ωℓ do
Mark diagonals i that have singular tendencies.
Mark columns j that have singular tendencies.
for each i and j with singular tendencies do
Grow Ωℓ in the appropriate monomial direction(s) by σ.

end for
rℓ ← rank of MLS moment matrix A for support domain Ωℓ

end while
Output: A size optimal support domain for nℓ.

tion process is the same as that of the underlying approximation used during the solution

process. Although these pathologically small topologies may not be completely rank deficient

(as reported by a numerical algorithm), they oftentimes produce poor approximations due to

the high condition number of the associated moment matrix. As a consequence, the general

statement that n≫ m can easily be violated via this optimization process. Therefore, there

are two additional criteria that are implemented to insure that acceptable topologies will

always be produced. First, rather than optimize with respect to the order basis function
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used during the solution process, it is more appropriate to optimize to one higher order to

guarantee acceptable solutions in the lower order space. For example, if one wishes to utilize

a complete second order basis function set during the solution process, then the moment

matrix used in Algorithm 5.1 should contain the complete third order basis function set.

The second criteria imposes a minimum size on the resulting topology such that the number

of nodes must be at least double that of the number of basis functions. In practice, this value

applies a sufficient criterion on n to guarantee that a support domain which is returned from

the optimization process is acceptable not only in terms of the fundamental approximation,

but also in terms of the resulting system of equations representing the iteration process.

Although the second criteria is rarely encountered in practice (due to the increased order of

the optimized moment matrix), it is important to include when developing a robust meshless

implementation. When handling this case, the easiest solution is to grow the current ellipse

uniformly until enough nodes have been found.

The final consideration is in regards to the applicability of this technique when construct-

ing influence topologies which will be utilized by RBFP shape functions. As it turns out,

the same topologies generated using a quadratic MLS support also produce well structured

topologies for RBFP interpolations. As such, the same process may be used with confi-

dence to generate optimal support domains for both RBPF and MLS field approximations,

regardless of local point distribution characteristics.
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5.3 RBF Shape Parameter Optimization

As demonstrated in Section 5.1, the value chosen for the RBF shape parameter c can have

a dramatic effect on the overall stability of the discretized system. In addition, it has been

repeatedly shown [75, 116, 120, 128] that as the condition number of the RBF moment

matrix is increased, the smoothness and accuracy of the interpolated field is improved (a

result commonly referred to as the uncertainty or trade-off principle). Given the importance

of choosing an appropriate value for c, it is critical to not overlook the task of specifically

optimizing its value on a node-by-node basis. Although there has been considerable research

in this area as applied to general RBF interpolations [129, 130, 131] it is difficult to put

many of these theoretically bounded techniques into practice (such as the Contour-Padé

algorithm [132]) due to the large computational cost required for the general topological

situations that arise in three-dimensional space. However, the practical numerical stability

results demonstrated in Section 5.1 suggest that optimizing c to target specific a matrix

condition number range will satisfy both the uncertainty principle, as well as the stability

criteria previously demonstrated. To accomplish this, one must determine the value of c

which solves the fitness function

f (c) = κ
(

A (c)
)

− τ (5.8)

where κ represents the condition number of a matrix, and τ is a target value for the condition

number. It was shown through the numerical stability analysis that, at least for the particular

test case shown, an optimal value for τ (in terms of stability) is between 1 × 1011 and

1× 1013, and indeed, this is the ideal way to impose this condition. This is due to the fact
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Figure 5.12: Logarithmic Curve Fit

that evaluating f (c) carries a high computational cost due to the calculation of κ (usually

computed via singular value decomposition). Although any numerical root finding scheme

will solve Eq. (5.8), because of the specific behavior of the condition number with respect

to c, it is far more efficient in practice to use a tailored optimization process.

The optimization process employed within the context of this work is a logarithmic

approximation routine that takes advantage of the relationship between the condition number

and c. Thus, the process starts by defining two points c0 and c1 which are known to bracket

the root. Then, by fitting a logarithmic approximation of the form A log (c)+B through the

data points (as shown in Figure 5.12) the value for the approximated root may be analytically

determined. Once the approximated root is found, the actual fitness function is evaluated

and the new point is set as either c0 or c1, such that the range [c0, c1] brackets the root. In

this respect, the process is very similar to the Bisection method, with the exception being

that a logarithmic curve fit is utilized instead of linear.

In practice, this procedure converges within an acceptable range of κ in far fewer

iterations than a generalized root finding process. As such, it results in considerable savings
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during preprocessing due to the dramatically reduced number of condition number calcu-

lations that need to be performed. Psuedocode for the proposed technique is provided in

Algorithm 5.2.

Algorithm 5.2 RBF Shape Parameter Optimization Routine

Input: An initial guess bracket [c0, c1] and a target range [τmin, τmax]
τ ← τmin+τmax

2

Q← f(c0)−f(c1)
log(c0)−log(c1)

R← f (c1)−Q log (c1)

c2 ← exp
(

−R
Q

)

while κ
(

A (c2)
)

≤ τmin or τmax ≤ κ
(

A (c2)
)

do
if f (c0) · f (c2) > 0 then
c0 ← c2

else
c1 ← c2

end if
Q← f(c0)−f(c1)

log(c0)−log(c1)

R← f (c1)−Q log (c1)

c2 ← exp
(

−R
Q

)

end while
Output: c2

At this time, it is worth mentioning an interesting phenomenon that occurs with RBF in-

terpolation which is oftentimes overlooked when attempting to optimize the shape parameter.

It is well established that for smooth fields, the uncertainty principle holds in that a higher

value for the RBF moment matrix condition number will generally produce a more accurate

interpolation. However, when the field is not smooth (as oftentimes occurs in compressible

fluid flow due to shocks and expansion waves that represent physical discontinuities in the

domain) this statement is no longer appropriate. Take, for example, the one-dimensional

discontinuity shown in Figure 5.13 and the various RBF interpolations used to represent the

field with increasing condition numbers. Notice that contrary to the commonly accepted
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Figure 5.13: RBF Interpolation of Step Function

behavior, when representing this discontinuity the interpolation quality is significantly re-

duced as the condition number increases. This is easily explained by realizing that the RBF is

essentially over-fitting the discontinuity, however, it is an important result as it demonstrates

that care must be taken when utilizing RBF interpolations where discontinuities are present.

Although not specifically examined within this work (because of the use of VML with MLS in

upwinded derivatives), it may be worth exploring procedures that could optimize the shape

parameter not only on topological configuration, but also on the local field characteristics.

Perhaps, in this manner, a process of determining appropriate c values could be determined

that could simultaneously optimize on the basis of both stability and accuracy that could

effectively account for discontinuities in the field.
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5.4 Chapter Summary

The purpose of this chapter has been to address common meshless implementation details

that are oftentimes overlooked by researchers due to the practical nature of the concerns.

That being said, the fact that these issues are rarely discussed does not diminish their

importance; on the contrary, it emphasizes the current research gap which prevents the

application of meshless methods to industrially relevant problems. The particular solutions

presented in this chapter have attempted to address the most common concerns when

developing an industrially relevant meshless implementation, and, as will be evidenced by

the results shown in Chapter 10, they appear to succeed for a large set of problems. It is

important to realize that even though meshless methods may succeed in eliminating the need

for an underlying mesh, this does not imply that the solutions they generate are independent

of the underlying point distribution. The stability and accuracy of any numerical technique

will always be dependent on the discretization employed, since, at a fundamental level, one

is representing a continuous system over discrete points (or volumes) in space. The goal is

to reduce this dependency, and in the case of meshless methods, to facilitate procedures that

allow for more intelligent (and automated) discretizations than previously possible.

78



CHAPTER 6

MESHLESS MODEL GENERATION

The previous two chapters have demonstrated that even in unstructured domains it is

possible to obtain field and differential operators at desired locations. However, nodal

placement is still of profound importance to the practicality of the interpolation techniques

and despite the considerable liberties that the various meshless shape functions allow, there

is clearly still some degree of requirement for properly constructed topologies in order to

obtain accurate solutions. In addition, there is also the concern of solution time with respect

to meshless methods, as the local support domains required by MLS and RBFP can cause

the iteration procedure to slow down considerably. Finally, the major reason for developing

a specific model generation procedure is to utilize the flexibility of the methods to develop

a procedure of automatically discretizing any arbitrarily complex geometry, regardless of

relative feature size or aspect ratios. However, it is important to never lose focus of the fact

that, at least fundamentally, the meshless collocation method requires no defined structural

connectivity. As such, any model generation techniques are free to take liberties in the way

point distributions are generated to ensure the most accurate solutions while simultaneously

reducing the computational expense wherever possible.

To accomplish these goals, an automated model generation technique has been developed

which utilizes three fundamental techniques: quaternary triangular surface discretization,

binary-subdivision interior discretization, and an adaptive boundary layer representation

referred to as the shadow layer. Together, these three components make up the adaptive
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model generation procedure of the MIMS process. The following sections will describe

each technique in detail and illustrate how their development and integration are critical

to implementing an industrially relevant meshless method technique.

6.1 Quaternary Triangular Surface Discretization

The first stage of meshless discretization involves distributing boundary nodes on the surface

of the respective solution regions. It is important to begin the discretization process on the

boundary (as opposed to the interior), since, at the time of initialization, it is the only section

of the domain where solution characteristics can be inferred. For instance, if a surface is

designated as a no-slip wall in a fluid flow problem, it can be inferred that there will most

likely be high gradients normal to the boundary and relatively low gradients tangential to

the boundary. On the other hand, if a surface has a prescribed shear force in an elasticity

problem, it will most likely have high gradients in the tangential direction instead. The

fact that the applied boundary condition type provides some indication as to the local field

characteristics is an important consideration that must be taken into account by a fully

automated point distribution method. Understanding the motivation for developing the

initial discretization on the boundary, the distribution process is tasked with producing

boundary nodes that are (1) evenly distributed on the surface, (2) able to be selectively

refined, and (3) have an underlying structure in order to facilitate computation of area-

based boundary quantities (such as heat or mass flux). It is important to note that unlike

mesh based solution techniques, meshless methods do not require boundary cells to have

optimal area properties (such as minimal skew). In fact, the only reason to have any type
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of boundary connectivity is to facilitate calculation of area-based boundary quantities, and

as these are generally post-processed values, the overall solution quality does not depend

on cell characteristics. However, if an optimal triangular surface mesh (in terms of the

triangulation quality) is provided for a given region, it would certainly be appropriate for

meshless methods as a baseline discretization. Understanding this fact, and acknowledging

the incredible amount of research that has been performed in the area of optimal surface

meshes [133, 134, 135], the underlying data structure of the meshless surface discretization

will be triangular in nature.

Having satisfied two of the three requirements of the meshless boundary nodes by using

a structure based on triangular elements (evenly distributed on the surface and having an

underlying structure), the final requirement (being able to selectively refine) will be satisfied

by representing the base triangulation as a recursive quaternary triangulation structure.

Quaternary triangulation is a recursive triangulation consisting of geometrically fixed split-

ting rules [136] and although they have been used to generate level-of-detail models for

graphical applications [136, 137] as well as geophysical models for cartographic applications

[138, 139] they have rarely been utilized to generate computational meshes. This is primarily

due to the fact that when dealing with three-dimensional models, mesh-based techniques

require a three-dimensional volumetric mesh (tetrahedrals). Therefore, a recursive surface

mesh (based on triangles) provides little added benefit as it would necessarily need to be

related to a volumetric mesh in order to serve as a base structure for refinement. However,

with meshless methods, only a simple point distribution is needed on the boundary, and as

such, the quaternary triangulation structure is perfectly suited to the task.
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(a) Geometric Model (b) Initial Triangulation (c) Refined Triangulation

Figure 6.1: U-Block Surface Discretization

The quaternary triangular surface discretization process begins by performing a stan-

dard triangulation of the underlying surface geometry, such as the one shown in Figure 6.1b.

In this figure, the geometric model of the simple U-Block shown in Figure 6.1a has been

discretized using a basic surface triangulation and refinement procedure. It is important to

reiterate that although high quality surface meshes (as measured using traditional metrics

such as skewness, area ratios, etc.) are ideal, they are not completely necessary for the case

of meshless methods. However, they will certainly distribute nodes more evenly across the

boundary surfaces, and as such, the current implementation applies several two-, and three-

dimensional mesh refinement strategies [140, 141, 142] when discretizing complex geometry

to help ensure that the initial triangulation is of acceptable quality.

Once an initial surface triangulation has been created, the quaternary triangular struc-

ture is initialized from the existing discretization. A quaternary triangular mesh (QTM) is

a surface meshing technique utilizing a recursive storage structure whereby each triangular

element can store four child elements. Each child element is constructed by splitting each

edge of the element at their respective midpoints and connecting the newly created vertices
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(a) Original Element (b) Level 1 Recursion (c) Level 2 Recursion

Figure 6.2: Quaternary Triangular Element

in a pairwise fashion. For example, Figure 6.2a illustrates a leaf QTM element which was

created from the initial surface triangulation (it is referred to as a leaf since it has no

branching children). To refine this element, the edges are split and connected to form four

child elements, as seen in Figure 6.2b. It is important to note that the actual data structure

is stored in a recursive manner, which allows for fast indexing as well as efficient geometric

operations through the implicit level-of-detail representation. Further refinement of the

original element’s four children subsequently produces the discretization shown in Figure

6.2c.

To efficiently represent this structure, MIMS implements each element by storing point-

ers to its three vertices (Vertex A, Vertex B, and Vertex C), its three seams (Seam A, Seam

B, and Seam C), and its four potential children (Child A, Child B, Child C, and Child

M), as seen in Figure 6.3a. The edges of each element are referred to as seams in order

to differentiate them from the physical edges of the geometric model (at which two faces

intersect, causing a discontinuity in surface normals). The seam structure is also recursive,

storing pointers to its two endpoints (Vertex 1 and Vertex 2), and, if it has been split, its

midpoint (Vertex M) and two children (Child 1 and Child 2), as seen in Figure 6.3b. By
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Figure 6.3: Quaternary Triangular Constructs

utilizing this structure, it becomes trivial to refine an existing model by simply determining

which leaf elements should be refined and then forcing a split on each seam and creating the

necessary children, as seen in Figure 6.1c.

There are several important characteristics of the QTM refinement process which make

it ideal for meshless method surface distributions. First, due to the fixed nature of the

edge splitting rule, each child of a particular element will be a similar triangle to its parent

(scaled by 1
2
). This is very useful as it implies that every child will have the same geometric

properties (skewness, edge-to-area ratio, etc.) as its corresponding root element. Thus, if the

initial distribution consists of triangles of acceptable quality, then any refined derivative (at

any arbitrary level) is guaranteed to consist of triangles of no-worse quality. This allows the

point distribution method to perform a single optimization on the initial triangulation and

not worry about further optimizations once refinement has occurred. Another important

characteristic is that if computational nodes are placed exclusively at the vertices and/or

centroids of the leaf elements, they can only be added to the distribution through refinement,

never removed. This is due to the fact that the vertices are shared between the parent
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Figure 6.4: Geometric Edge

element and its children, as is the centroid, which is shared between the parent and its middle

child (Child M). Thus, there is no need to keep track of complicated nodal histories when

transitioning from one refinement level to the next. Lastly, because the elements produce

a structured surface mesh over the domain, the underlying meshless method can utilize the

direct surface values to calculate tangential derivatives on the boundary. Oftentimes this is

difficult to obtain using direct differentiation of the underlying shape functions because the

topologies tend to be highly one-sided, leading to excessive error due to the extrapolation

that must occur. However, even on highly convex boundaries, the tangential derivatives

are easily obtained from the surface elements directly, leading to more robust and accurate

solution reporting.

The final component of the surface discretization process is determining how to place

the computational nodes on the boundary of the domain. Given that the QTM has been

constructed, the most logical location to place computational nodes is either at the vertices or

centroids of the leaf elements. It has already been mentioned that either of these placement

locations result in no nodes being removed during refinement, however, both locations have

special considerations that should be discussed. Using the element vertices seems like the

most logical choice for nodal placement, however, there is the issue of how to handle those

85



(a) Model (b) QTM (c) QTM Closeup

Figure 6.5: Narrow Geometric Face

vertices that lie on geometric edges where the normal vector is not easily defined, such as

the indicated edge in Figure 6.4. Although, in this case, averaging n̂1 and n̂2 may seem

appropriate, for the case of general face intersections, this is not always true. Therefore,

to place nodes at element vertices, one solution is to utilize only vertices that lie on the

interior of geometric faces. If this technique is utilized, however, there may be situations

where no nodes are placed on the entire face, such as the highlighted face in the QTM

discretization shown in Figure 6.5. In this situation, because the geometric face is very

narrow, no vertices lie on the interior of the region, and thus, no nodes will be placed on

this face. It is therefore advantageous to not only place nodes at the vertices, but also at

the centroids of the elements. By doing so, not only is the issue of narrow faces addressed,

but it also allows boundary nodes to further approach the edges of the geometry due to the

configuration of the elements. Therefore, once the QTM is constructed and refined to an

appropriate initial level, computational nodes are then distributed at all non-edge vertices

as well as at each leaf element’s centroid.

86



At this point a complete procedure for discretizing the boundary has been described,

however, there is one final consideration that needs to be made in order to fully satisfy the

requirements for the meshless point distribution method. Recall that one of the primary

concerns with mesh-based techniques is their inability to automatically handle small geo-

metric features. It would appear that this may be a concern for the quaternary triangular

surface discretization as well, since it is based on a surface triangulation process. However,

most surface triangulation routines are fully capable of automatically meshing a boundary

with very small features; it just requires an excessive number of elements (due to the small

element size). In mesh-based techniques, this directly relates to the computational nodes

as these methods require a closed representation of the domain with no missing elements.

However, in meshless methods there is no such requirement, and as such, there is no reason

why nodes which are deemed too locally refined (too close to their neighbors) can’t simply

be omitted from the computational domain. Then, if at a later time the local boundary has

reached a level of discretization that is consistent with the small feature’s size, the omitted

nodes may be simply reinstated. The ability to simply omit a problematic node is a prime

example of a computational liberty that is afforded by utilizing a meshless method over more

conventional mesh-based techniques.

6.2 Binary-Subdivision Interior Discretization

Octree and quadtree based structures have been commonplace in the field of mesh generation,

not only for meshless techniques, but also for finite element and finite volume simulations as

well. Their implicit connectivity and recursive structure not only allow for easy construction,
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(a) Level 1 (b) Level 2 (c) Level 3

Figure 6.6: Octree Refinement

but also fast querying, a fact which makes them well suited to use in binary space partitioning

trees [143]. In the purest sense, an octree (and its two-dimensional counterpart, the quadtree)

is a structure based upon even subdivisions of a particular Cartesian space. In three-

dimensions the Cartesian space represents a bounded volume in xyz space, while in two-

dimensions the Cartesian space represents a bounded surface on some planar geometry.

To illustrate this concept, Figure 6.6 shows three levels of refinement on a simple three-

dimensional cube using octree splitting rules.

Notice how at each level of refinement only specific octree cells need to be refined (as

can be seen going from Level 2 to 3 in Figures 6.6b and 6.6c). This property of octrees and

quadtrees is commonly utilized to recursively approximate a boundary which is not properly

aligned to the underlying grid. For example, Figure 6.7 shows the ability of these Cartesian

subdivision techniques to capture non-aligned boundary geometry.

Collectively, Cartesian subdivision techniques offer several advantageous qualities that

can be utilized in mesh generation:

1. They allow for fast traversal due to their recursive nature,
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Figure 6.7: Quadtree Boundary Capturing

2. They minimize the number of geometric containment checks required as entire cells

can be flagged as inside the domain (and thus, all children must be inside the domain

as well), and

3. They provide a constant refinement factor (always dividing the space by two).

Indeed, Cartesian subdivision techniques are so popular that an entire solution methodology

(Cartesian grid methods) has been developed around their construction [144, 145, 146, 147].

However, the very qualities that make these techniques so promising also present issues

when utilized in the solution of complex flows. First, attempting to utilize a mesh based

solely on Cartesian subdivision (as is the case with pure Cartesian grid method) exhibits

the so-called stair-casing issue where irregular boundaries are present [148]. Although this is

generally a major concern for pure Cartesian grid methods, this is not a concern for the MIMS

method as an independent surface discretization will be used to provide accurate boundary

representations. The second, and more important issue is the inability of pure octree

and quadtree discretizations to produce point distributions with non-uniform aspect ratios

(aspect ratios that can vary with respect to direction and location). For example, Figure

6.8a illustrates a simple horizontal boundary (bottom of figure) and the resulting quadtree

grid when attempting to refine in the y direction to capture a high vertical gradient. It is

clear that although the refinement certainly increased the resolution in the desired direction,
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Figure 6.8: Subdivision of Boundary Layer

it also inadvertently refined in the x direction as well (a more appropriate refinement for this

case would be the one shown in Figure 6.8b, which has only refined in the y direction). This

occurs because of the requirement of pure Cartesian subdivision techniques to always split

cells in all directions simultaneously. Thus, in order to obtain an aspect ratio in a particular

region of space, the original Cartesian cell must be created with the desired final aspect ratio

(as it cannot change its aspect ratio through refinement). Obviously this is a major issue as

boundaries are not always oriented with respect to a single orthogonal direction (and thus,

the aspect ratio would not be maintained properly throughout the recursive children), only

portions of the domain may be able to support high aspect ratios, and most importantly, the

user may have no idea where high aspect ratio cells are appropriate. Although there have

been attempts at modifying the octree cell structure to allow for directionally independent

refinement [149], most have been focused on generating meshes for finite volume methods,

where a complete cell structure is required. Fortunately, since meshless methods require no

such cell structure, and as such all that is required is a distribution of points, there is no

need to stick to a pure octree distribution technique.

To address the issues with pure Cartesian based discretization techniques, a novel point

generation strategy based on binary tree subdivisions has been developed. The primary
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difference between the meshless binary tree discretization technique and previous attempts to

extend the octree-based methods to non-isotropic refinement is the underlying data structure.

Within all octree (and quadtree) mesh generation techniques, the underlying data structure

is the cell (which makes sense, as most of these techniques are coupled with finite volume

solvers). However, the underlying data structure of the meshless binary tree discretization is

the vertex. Moving the point of view from the cell to the vertex allows for a more dynamic and

local data structure capable of non-isotropic refinement as well as highly efficient topology

construction. To accomplish this, the Cartesian grid concept may be abstracted into a binary

addressing system whereby each direction in the domain is divided into 2m sections where

m is usually set according to the maximum allowable value of the underlying data type (e.g.

in most modern architectures the unsigned int data type is stored in 32 bits, and thus m is

typically set to 30 in order to allow sufficient room for computations without overflow). This

concept is illustrated for a two-dimensional domain in Figure 6.9 which has been discretized

using m = 5. Thus, this discretization essentially provides an integer based mapping system

from floating-point x, y, z coordinates to integer-based i, j, k coordinates. The coordinate

transformations are given by

x (i) =
xmax − xmin

2m
× i+ xmin (6.1)

y (j) =
ymax − ymin

2m
× j + ymin (6.2)

z (k) =
zmax − zmin

2m
× k + zmin (6.3)

where xmax, xmin, ymax, ymin, zmax, and zmin are the maximum and minimum x, y, z

coordinates of the domain, respectively (generally this is set slightly larger than the boundary
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Figure 6.9: Binary Addressing

extents). The primary benefit of using an integer based system is that there is no risk of

incurring any round-off error during calculations, a fact which greatly simplifies the procedure

(as there is no need to account for error in floating point comparisons). In addition, because

of the binary nature of the mapping, all divisions and multiplications may be performed

using efficient bit shifts:

n

2
= n≫ 1 (6.4)

n× 2 = n≪ 1 (6.5)

where ≫ and ≪ represent the right and left bit shift operators, respectively.

Another important characteristic of the binary addressing system is that, through use

of the i, j, k coordinates alone, the discretization level at which a node resides can be

determined. The discretization level represents the number of binary subdivisions required

to reach the root level (corresponding to a spacing of 1) from a given address and is useful

during refinement operations, as will be later demonstrated. This value can be computed by

simply continuously dividing each coordinate by 2 until it is not evenly divisible, at which
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point the number of divisions that has been performed is referred to as the discretization

level of that node. Expressed mathematically, the process of determining the discretization

level for an integer coordinate w may be represented by the following recursive function

L (w, d) =



















d if w mod 2 6= 0

L
(

w
2
, d+ 1

)

otherwise

(6.6)

where x mod y is the modulo operator which returns the remainder of x divided by y. Thus,

the function provided in Eq. (6.6) may be initially seeded with d = 0 and the return value

will indicate the binary gridline on which w resides. The only exception is the case where

w = 0, for which the return value should always be m. To illustrate the various discretization

levels, Figure 6.9 provides the values for each coordinate in the form 2d.

Having detailed the addressing system, the domain can therefore be constructed from a

collection of vertices, with each vertex storing its i, j, k position in space, references to its six

neighbors (negative/positive i, j, and k), and a bit flag to indicate the state of each direction

(as shown in Figure 6.10). In this manner, storage is kept at a minimum (approximately

40 bytes per node on most 32-bit systems), while at the same time encapsulating the most

efficient (and necessary) aspects of the octree cell distribution. In particular, storing direct

references to the Cartesian neighbors allows any node, in O (1) time, to identify its neighbors

(if they exist), a process which is necessary for determining whether or not a node may utilize

structured optimizations (i.e. finite differencing).

The process of building the initial binary-subdivision interior discretization (BSID)

begins by collecting statistical data from the boundary discretization in order to reference
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Figure 6.10: Cartesian Vertex

an appropriate initial nodal spacing. First, the average (save), standard deviation (sσ), and

maximum (smax) element seam lengths are computed globally for the boundary discretiza-

tion. The minimum value is then selected from the maximum seam length (smax) and average

seam length plus standard deviation (save+ sσ), which will serve as the initial starting delta.

Finally, the extents of the domain are computed in xyz space, which allows for transformation

between the integer addressing system and original model. Once the necessary quantities

have been obtained from the boundary discretization, the next step is to seed the interior

with a single node. The key to the binary-subdivision discretization is the fact that once

proper connectivity has been established to any collection of nodes, the remaining geometry

can be constructed using refinement, as opposed to specialized construction routines. Thus,

the minimal number of nodes required to seed the interior is one (a single node in the

center), plus the corresponding extent nodes which will serve as the extents of the domain.

The concept of an extent node is simply a vertex which lies at the extents of ijk space,

which, by definition will have one or more null neighbors. Figure 6.11 shows the initial seed
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and the associated connectivity for a simple two dimensional domain (examples are shown in

two-dimensions for illustrative purposes, however, the process is dimensionally independent).

There are several important features to note in Figure 6.10, prior to describing the refinement

process. First, extent nodes are produced at all extents of the domain, including at the origin

(0, 0) and at the maximum coordinates (2m, 2m). This is done to allow for traversal along

the boundary through each node without having to facilitate complicated referencing (e.g.

referencing nodes 3 and 1 if node 6 was not present). Second, the node located at the origin

(marked in green) has been stored separately and will serve as a starting point for several

sweeping operations that are performed during refinement (as will be later described). Third,

the color of the nodes indicate whether or not the node is inside (blue) or outside (gray) the

domain. Lastly, the color of each neighbor reference (shown as arrows) indicates whether

or not a ray drawn between two nodes intersects the boundary. In Figure 6.11, a red line

indicates that the line intersects the boundary and a black line indicates that it does not.

Thus, not only must the boundary representation be capable of determining if a point lies

inside its bounds, but it also must be capable of determining if a line segment pierces any

of its elements.
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Once the initial seed has been produced for a domain, refinement can be used to generate

the remaining initial discretization, and in this manner, serves as a general process which

accepts any criteria as the basis of distribution. The general refinement process may be

summarized as follows:

Algorithm 6.1 BSID Refinement Process

Input: A fully connected BSID of Ω.
Let Q be a queue containing the non-extent nodes of input BSID.
while Q is not empty do
Let v be current node in Q
for each neighbor n of v do
if n to v requires refinement then
Add node p between n and v.
Add node p to queue Q.

end if
end for
Remove v from Q.

end while
Output: A refined BSID of Ω.

Obviously, there are several important elements from Algorithm 6.1 that need to be

described in further detail. First, when determining whether two nodes require refinement

(such as in the case between n and v), there are several different criteria that may be

used including distance between nodes, field gradients, or various conservation quantities.

However, it is important to note that all these criteria take the form of an integer or floating

point field on which some refinement threshold may be placed. In the case of the initial

discretization, the criteria is the distance between nodes and the threshold is the initial

delta as computed during the data collection phase. Second, a process must be developed to

properly add a node p between two existing nodes n and v. This process is critical because

it must not only produce a new node at the proper location but it is also responsible for
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Figure 6.12: BSID Refinement Process Example

ensuring proper connectivity of the BSID once p has been inserted. The node insertion

process may be summarized as follows:

Algorithm 6.2 BSID Node Insertion Process

Input: Two nodes, v and n, and a direction i indicating how v and n are related.
Let δ ← L (vi, 0).
Let s← |vi − ni|.
while s ≤ δ do
δ ← δ

2

end while
Let p reside at distance δ from v in i direction.
Connect p to v and n.
Determine interior state of p.
Determine bounding state of p in i direction.
Establish connectivity for p (Algorithm 6.3).
if p is missing neighbors then
Establish missing extents for p (Algorithm 6.4).

end if

Algorithm 6.2 illustrates the use of the discretization level to compute the proper

location of the newly inserted node p. Using this value is critical to a proper discretization

(as opposed to simply placing p at the midpoint between v and n) as it ensures that p

always subdivides the space between v and n in a binary appropriate manner. Figure 6.12a
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demonstrates the insertion process between nodes n〈0〉 and n〈2〉 up to the point where full

connectivity is established. Notice that at the time that node p (n〈9〉) has been connected

to its creating neighbors, and it has also been properly identified as inside the domain

and intersecting the boundary in the negative i direction. Note that because of the single

directional nature, many optimizations may be made during containment and intersection

checks. For example, in the case of n〈9〉, because n〈0〉 and n〈2〉 are known to intersect the

boundary, if a single intersection check is performed between n〈0〉 and n〈9〉, it can immediately

be determined that there must be an intersection between n〈9〉 and n〈2〉. This is due to the

fact that there must be at least one intersection somewhere between n〈0〉 and n〈2〉, and if

there is no intersection between n〈0〉 and n〈9〉, then there must be an intersection between n〈9〉

and n〈2〉. Similar optimizations can be performed in cases where no intersections are present

(in these cases, no containment or intersection checks need to be performed). Although

these optimizations do not directly affect the outcome of the point distribution process, they

can considerably improve the computational performance of the algorithms and assist in

achieving quadtree/octree-like performance. In addition, it should be noted that direction

i in Algorithms 6.2, 6.3, and 6.4 refer to any coordinate direction of the ijk system. In

this regards, j or k could be passed into these routines and the coordinate system would be

referenced by the indicated direction.

Once the node has been inserted, connectivity must be established for the remaining

directions. This is done by utilizing the origin of the discretization and utilizing a sweeping

process to determine whether or not nodes exist in the expected directions. This process

may be represented as:
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Algorithm 6.3 BSID Establish Connectivity

Input: Unconnected node p and insertion direction i.
Let t← origin.
repeat
t← neighbor of t in k direction.

until tk = pk
while ti < pi do
t← neighbor of t in i direction.

end while
if ti = pi then
while tj ≤ pj do
t← neighbor of t in j direction.

end while
Let r ← neighbor of t in negative j direction.

end if
Connect p to t and r.
Determine bounding state of p in j direction.

Applying Algorithm 6.3 to the configuration shown in Figure 6.12a produces Figure

6.12b. Notice that no connectivity has been established since there are no nodes present in

the positive and negative j directions. The remaining component is to establish the missing

extents for this node, which may be done according to Algorithm 6.4.

Algorithm 6.4 BSID Establish Missing Extents

Input: Incomplete node p and insertion direction i.
for each missing neighbor of p in direction h do
Create extent node e in h direction.
Connect p to e.
Fully connect e to neighboring extent nodes.
Determine bounding state of p in h direction.

end for

The only remaining component is fully connecting the newly inserted boundary nodes,

for which a process very similar to Algorithm 6.3 may be developed. Applying this routine

to the configuration shown in Figure 6.12b results in the valid configuration shown in 6.12c.

It should become clear the importance of adding and fully connecting the necessary extent
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nodes as it provides a search path to connect newly inserted nodes to the off-direction

neighbors. To demonstrate this process for full distance refinement of the domain shown

in Figure 6.11, Figure 6.13 illustrates the resulting discretization after each stage of node

insertion for a particular queue ordering.

The discretization process illustrated in Figure 6.13 highlights some of the more impor-

tant aspects of the binary-subdivision interior distribution process. First, a principal concern

of adding each node is to ensure that once insertion is complete, the point distribution is

once again in a completely valid connectivity state. This is critical to the proper operation

of the refinement strategy as it relies on the internal connectivity to determine where to

place new nodes. Second, the connections which intersect the boundary (highlighted in

red) can be shown to represent the boundary shape in much the same way as quadtrees

and octrees (such as in Figure 6.7). This is important as it allows the point distribution

to optimize unnecessary operations by implicitly knowing what is and is not inside the

domain. As the number of points is increased, this implicit boundary representation will

become more detailed, and as such, the optimizations that the interior point distribution

can apply will have a larger effect. Lastly, as the point distribution process is inserting nodes

in a directionally independent manner (as opposed to isotropically splitting cells), it is easy

to see how it is able to dynamically adjust aspect ratios by simply refining only in select

directions.

The final element of the interior discretization technique is addressing the bound-

ary/interior interface. This process is of critical importance to the stability of the method as

even though a node may be inside the domain, it may be too close to the boundary relative
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Figure 6.13: BSID Refinement Steps
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to the local element size. If this were to occur, the topology for the interior node would be

very poor due to the highly one-sided nature of the local distribution. However, avoiding

this issue may be accomplished by implementing a local distance threshold (based on the

nearest boundary size) below which all interior nodes are simply omitted from the domain.

Thus, in much the same manner as overly refined boundary nodes were removed, there is

no need for special cases during point distribution; instead, an appropriate filter is simply

applied to remove ill-behaved nodes prior to the solution process.

6.3 Shadow Layer Discretization

The final component of the meshless model generation process is construction of the so-called

shadow layer distribution which serves as an adaptive boundary layer for problems exhibiting

high gradients normal to the boundary. The shadow layer serves as an interface between

the boundary and interior regions whereby boundary quantities may be accurately obtained

(by normal-aligning the distribution to the boundary) and sufficiently isolated boundary

information may be propagated back into the interior. Although handled slightly differently

during model generation, it is important to note that nodes that reside in the shadow layer

are, for all intents and purposes, interior nodes. No special boundary layer equations are

solved, and the governing equations are collocated normally throughout this region of the

domain. The only thing that distinguishes them from the interior (besides their orientation)

is the fact that the differential operators are formulated in a rotated coordinate space to

ensure alignment to the local boundary (discussed in detail in Section 8.2).
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The process of generating the shadow layer begins by analyzing the boundary conditions

applied to each surface of the model. This is done such that only surfaces with high normal-

gradient conditions will generate a shadow layer. In particular, this technique is of primary

interest where no-slip wall conditions are applied in fluid flow which are capable of producing

extremely high normal gradients (boundary layers). The process of actually generating

the shadow nodes is fairly straightforward and is illustrated on a simple two dimensional

boundary in Figure 6.14. Notice that in this figure, the shadow layer has a depth of 3

(the depth is generally initialized at 2 and allowed to refine as the solution progresses),

and each boundary node (shown in green) has a single associated column of shadow nodes.

In this manner, normal derivatives may be obtained directly (both on the boundary and

in the shadow layer) through finite differencing and tangential derivatives are generated in

the usual meshless manner. The placement of the outer shadow layer (one farthest from

boundary) is based on the distance to the nearest interior node (generally half of this value)

and subsequent layers are distributed using an appropriate scaling method. By adjusting

the scaling method, one can obtain faster (or slower) growth in the shadow layer, similar

to how structured boundary layer meshes have an associated growth factor set by the user.

However, in the case of meshless method, this scaling factor may be automatically controlled

103



n

Region of overlapping
shadow nodes

Figure 6.15: Concave Shadow Layer Region

by the field behavior (through examination of the normal to tangential gradient ratio) and

updated accordingly during refinement phases.

It is important to realize that the process of adding shadow nodes can potentially

introduce problems in highly concave boundary situations, as illustrated in Figure 6.15. To

address this issue, a technique of collapsing shadow nodes which are very close to one another

is necessary in order to eliminate instability in the underlying meshless interpolations. This

process begins by creating a collapsed node at the center of mass for the offending set of

shadow nodes. This collapsed node utilizes an interpolation operator which simply averages

the values from the nearby lumped nodes. In this manner, any node which is not part of

the collapsed set simply utilizes the collapsed node instead of the set of overlapping shadow

nodes which could cause numerical instability (as in the case of RBFP interpolation). Since

the overlapping nodes are, by definition, very close to one another, a simple average value

provides sufficient accuracy to represent the nodes as a single point of influence. Similarly,

when solving the governing equation at the offending nodes, all overlapping nodes are

invisible to each other and they each individually satisfy the governing equation at their

respective location in space. By lumping their effect for external influences and eliminating
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their effect on one another, the nodes do not need to be directly removed and the respective

boundary nodes do not need to apply special finite difference equations.

By utilizing a discretization that can provide an independent boundary layer represen-

tation, the model generation procedure can develop point distributions capable of capturing

high boundary gradients without having to resort to extreme interior refinement in order

to correspond with non-aligned boundaries. In addition, since the shadow layer is directly

aligned with the normal and tangential directions on the boundary, it becomes trivial to

produce high-aspect ratio point distributions with respect to the boundary orientation.

6.4 Chapter Summary and Examples

One of the major innovations of this research is the integration of the solution process

with the model generation procedure. In this regards, the liberties offered by the meshless

technique are able to be fully utilized to produce a robust solution process. However,

it is important to understand that each respective component of the model generation

process represents a significant advancement of the state-of-the-art in model generation.

The quaternary triangular surface discretization represents a new use for a data structure

that, up to this point, has been utilized primarily in rendering applications. By tailoring

this structure to the generation of meshless point distributions, it is able to serve as a

comprehensive boundary discretization procedure able to provide a more complete descrip-

tion than previously possible. The binary-subdivision interior discretization technique is a

unique and novel method of distributing points within a domain. Although very difficult

to adapt to mesh-based techniques, the requirements of the meshless methods provide the
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Figure 6.16: U-Block Point Distribution

foundations for its development and will hopefully serve as a new class of discretization

schemes. Lastly, the shadow layer discretization illustrates a major advancement of this

method with respect to current meshless techniques as it allows for direct capturing of the

high gradients typically seen in boundary layer regions. This area has historically been

a serious concern for all numerical physics simulators (not just meshless methods) as the

discrepancy between boundary and interior node distributions occur in the regions which

have the highest gradients, and are, therefore, most prone to error. By directly addressing

this through the use of the shadow layer, the proposed method is able to move the distribution

discrepancy away from the boundary, and thus, out of the high gradient boundary layer

regions. In this respect, it is able to provide more accurate boundary layer solutions while

simultaneously increasing the stability of the technique.

To demonstrate the types of point distributions obtainable using the presented model

generation procedure, several initial discretizations were generated and are presented in

Figures 6.16 and 6.17. In each of these examples, three figures are shown. The first

set of figures (Figures 6.16a and 6.17a) present the initial quaternary triangular surface
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Figure 6.17: Axisymmetric Nozzle Point Distribution

discretization which serve to illustrate the underlying boundary distribution. The second

set of figures (Figures 6.16b and 6.17b) have had the boundary sliced in order to expose the

interior distributions present. In addition, a particular plane of interior (and boundary) nodes

have been highlighted in order to bring attention to the local structure present throughout

much of the domain. Finally, the last set of figures (Figures 6.16c and 6.17c) have had

all nodes removed except for the highlighted plane, to aid in visualization. In both of

these examples, it becomes clear that by utilizing a Cartesian based approach to generate

interior nodes, a vast majority of the interior domain has local structure. This represents

a tremendous advantage of this point distribution process as the solution methodology can

leverage the local structure to reduce overall preprocessing and computational time. In

addition, these examples illustrate the ability to produce interior discretizations that conform

to the initial boundary discretization. This is important as it will allow for consistent

refinement when the solution dictates that both the interior and boundary point distributions

need to be improved.
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CHAPTER 7

ADAPTIVE REFINEMENT

Adaptive solution refinement represents one of the major cornerstones of the MIMS method

as it allows solutions to develop without prior knowledge of the underlying characteristics.

Without adaptive refinement, it would be very difficult (if not impossible) to obtain a solution

methodology capable of automatically solving arbitrarily complex problems without human

interaction. Fortunately, the use of the shape functions outlined in Chapter 4 and the

model generation techniques outlined in Chapter 6 allow the MIMS method to achieve a

robust h-refinement strategy, as well as an opportunity to provide adaptive refinement on

the underlying geometric model, a feature unique to this process.

7.1 Point Distribution (h) Refinement

The most common adaptive refinement strategy, point distribution refinement (often referred

to as h-refinement) is performed by reducing the average nodal spacing in areas of high

gradient, thereby increasing the accuracy of the underlying interpolation (or approximation)

techniques. Refinement of the underlying node distribution (through adding new points,

generating finer meshes, etc.) is a critical component of automated solution techniques as

it allows for capturing of field characteristics which occur at length scales smaller than

the original distribution. In addition, it provides a means of selectively increasing the

computational expense of a solution, committing more resources to the areas which require
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(a) Initial Element (b) Refinement 1 (c) Refinement 2 (d) Refinement 3

Figure 7.1: Boundary Element Refinement

it most (as opposed to simply naively refining the entire discretization). The MIMS method

employs point distribution refinement via the three model generation processes presented

in Chapter 6. It has already been demonstrated how the boundary, interior, and shadow

layers implement adaptive refinement, however, it is important to examine how each of these

mechanisms may be driven by the underlying field solution.

As previously described, the MIMS method utilizes a quaternary triangular surface

discretization as its boundary representation and through a recursive subdivision process, is

able to selectively refine the point distribution. The selective refinement process is illustrated

in Figure 7.1 where an initial element (Figure 7.1a) is refined based on an underlying gradient

field. Here, the red regions of the field have higher gradients, and are therefore subject

to higher levels of refinement, as seen in Figure 7.1d. Understanding that the boundary

discretization can perform local refinement, it is now important to identify the types of field

gradients that may be identified and refined using this technique. Recall that any refinement

that occurs in this manner will be adding solution nodes on the boundary, therefore, only

the nodal spacing in the tangential direction will be reduced. Thus, this mode of refinement

is appropriate for capturing high gradients that act tangential to the boundary.
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To represent the interior, the MIMS method utilizes a binary-subdivision interior dis-

cretization capable of anisotropic refinement on both large and small scales. The utilization

of a vertex-based structure allows for evaluation of refinement criteria between nodes, al-

lowing for an implicit gradient based approach. Undeniably, this discretization technique

allows for directionally independent refinement anywhere within the interior of the domain,

allowing the technique to capture flow phenomenon such as wakes and bulk flow turbulence

without needing to identify these locations prior to solving the problem. However, in the

boundary/interior interface regions, unless the boundary is aligned with the coordinate axes,

the interior discretization will be unable to perform direct refinement in the boundary normal

direction. Although it certainly will be able to perform some sort of refinement in this area,

because it will not be aligned with the boundary, it will be impossible to achieve high aspect

ratios (since refinement will need to occur in multiple directions to account for the curvature

of the boundary). Therefore, this type of refinement, although appropriate everywhere in the

interior, is not well suited to refining in areas with large gradients normal to the boundary.

The final component of the model generation procedure is the shadow layer, which

specifically addresses the inability of the interior distribution to refine normal to the bound-

ary. Because the shadow layer is a direct normal projection of each boundary node, it

is trivial to add additional fidelity in the normal direction. Furthermore, by isolating the

normal direction, the shadow layer is able to refine without affecting the resolution in any

other coordinate frames. An important characteristic of shadow nodes is that although their

initial placement is based on the boundary condition type, if it is later found that another

boundary has high normal gradients, they may be added in that region to increase the fidelity

of the solution and facilitate refinement in the normal direction.
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(a) Initial Distribution (b) Tangential Gradient (c) Normal Gradient

Figure 7.2: Refinement Examples

To summarize, refinement of the point distribution is achieved through the three sub-

systems of the model generation process, with each subsystem addressing different types of

solution gradients. As a final illustration, Figure 7.2 demonstrates the results of refining an

initial distribution on two different fields. Figure 7.2b presents a tangential gradient, and

in this situation it is clear that the boundary is refined in the tangential direction and the

interior refines to match. Figure 7.2c, on the other hand, presents a field containing gradients

in the normal direction, and in this case the shadow layer has refined, along with the interior

directions exhibiting the gradient. In this regards, it should be clear how the various model

generation components are able to work together to selectively refine in those areas which

are most affected by the underlying solution characteristics.

7.2 Geometric Model Refinement

The second type of refinement present in the MIMS method is refinement of the computa-

tional representation of the underlying geometric model. This type of refinement is oftentimes

overlooked (either because it is too complex or deemed unnecessary) in traditional solution
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techniques despite representing a major component of the automatic refinement process.

The basic concept is that as the computational discretization (whether it be mesh or point

based) is refined, it should better represent the underlying geometric model. This is possible

because most computational models are generated from analytical surface representations

(such as IGES or STEP) and therefore have access to an underlying CAD model capable

of representing the geometry at arbitrary resolutions. Unfortunately, most mesh generation

software simply constructs an initial mesh on the surface of the part and never re-consults

the underlying analytical model to provide a more accurate representation. This behavior is

partially due to the limitations of automatic re-meshing and refinement, and partially due

to the fact that most solution techniques are not directly coupled to the underlying mesh

generation process (and therefore do not have access to the original geometric model). The

proposed meshless method point distribution techniques, on the other hand, can be fully

coupled with the analytical surface representations with minimal effort and therefore can

achieve complete correlation between the computational and geometric models throughout

the entire solution process.

To illustrate the importance of geometric model refinement, Figure 7.3 presents the

commonly encountered problem of discretizing an airfoil. Figure 7.3a shows the original,

analytical model provided to the discretization software while Figure 7.3b represents the

initial discretization created. Assuming that this computational model is accurate enough

to generate a basic solution, the solver now decides to refine the model. If, however, it is

not capable of consulting the geometric model, the best representation that it can generate

is the one shown in Figure 7.3c, which is generated by direct interpolation of the original

discretization. However, if the refinement process is able to conform to the original geometry,
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(a) Geometric Model (b) Initial Discretization

(c) Refinement based on Discretization (d) Refinement based on Model

Figure 7.3: Geometric Refinement Example

then a much more accurate representation is possible, as shown in Figure 7.3d. For many

problems this is a minor concern, however, for problems with highly curved geometry (such

as in the case with the airfoil) then the differences between Figures 7.3c and 7.3d can have

a significant effect on the overall solution accuracy.

By implementing a geometric model refinement process, the presented method is able

to distribute its initial point distribution without concern of limiting the solution accuracy

through misrepresentation of the underlying geometry. As the solution refines, so too will the

geometric representation, leading to more accurate solution behavior. The only requirement

of the initial point distribution is that it be refined to a degree sufficient enough to represent

the basic behavior of the underlying fields. Once this is achieved, automatic refinement can

use the underlying field data to determine which areas require additional refinement, and

further improvement of the geometric representation will occur when appropriate.
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7.3 Refinement and Convergence Criteria

The goal of any numerical method is to obtain accurate solutions, however, due to the

dependence on the underlying problem discretization it is difficult to guarantee this fact

without demonstrating what is often referred to as grid convergence. Essentially, the concept

of grid convergence is that if the grid spacing is further reduced from a given solution, the

solution will not appreciably change; thus, the current result has become independent of

the discretization. This is an important quality to demonstrate prior to reporting a result

as final since the solution behavior can change substantially with respect to discretization

before this is obtained (it is common to see results change 50% or more as the discretization

is improved). Typically, when solving problems using mesh-based approaches, an engineer

must solve the problem on several discretization levels in order to demonstrate that the

solution is no longer varying with respect to the underlying mesh. As one can imagine, this

adds considerable overhead and computation time to the solution process. Furthermore, it is

difficult (and extremely time consuming) to analyze the intermediate solutions for local grid

convergence (grid convergence on a node-by-node basis) since it is unlikely that nodes will

directly align from one independent mesh to the next. Fortunately, because of the adaptive

refinement processes and the coupled nature of the underlying CAD model and meshless

solver, MIMS is able to integrate the grid convergence idea directly into the solution process

(note that grid, in the case of MIMS, refers to the underlying point distribution). That

being said, it is important to understand the refinement and convergence criteria used to

determine the refinement sites during the refinement process, and how MIMS utilizes the

previous solution levels to determine when to report a solution as final (i.e. grid converged).
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Having defined the way in which MIMS utilizes the three geometric representations to

produce a comprehensive refinement strategy, the actual refinement process involves a three-

stage approach. First, refinement sites are selected based on their current field (gradient)

value and past solution history. Next, distance-scaled gradients are calculated across the

potential refinement sites (for the indicated refinement field). Finally, the sites containing

the highest gradients are isolated and refined. The first stage, selecting valid refinement

sites, is arguably the most important as it provides a means of automatically obtaining grid

convergence. However, if gradient values alone were the criteria on which refinement was

based, the same percentage of nodes would continue to be selected for refinement since they

will always have the highest gradient values. As the goal of grid convergence is to have no

change in solution from one discretization level to the next, the field values immediately

following the previous refinement level are maintained and compared to the converged

solution at the current level. If a node’s value did not change by a certain percentage

relative to the total field span, then it cannot cause a refinement site to be created (though

it may still be part of a refinement site if a nearby node passes this threshold). Therefore,

by controlling this refinement threshold, one can essentially enforce local grid convergence

across the solution domain. In practice, grid convergence percentages of 1-2% with respect to

the field span produce appropriately grid converged solutions within an acceptable number of

refinement levels (and iterations). Once the candidate refinement sites have been determined,

the distance-scaled gradients are computed for each location. To accomplish this task, one

can utilize the fact that each refinement site represents a structured region within the

model; interior refinement sites represent two neighboring nodes (thus, gradients may be

calculated via finite differencing), shadow refinement sites represent a shadow node and its
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boundary/shadow column neighbor, and boundary refinement sites represent a particular

QTM surface element. In this respect, no additional meshless operators are required during

the gradient calculation step (a necessity if acceptable speed is going to be maintained).

Once the distance-scaled gradient values have been computed for each candidate site, the

values are sorted by magnitude and the top percentage threshold is chosen for refinement (in

practice, a threshold which includes all sites with a gradient value in the top 20th percentile

obtains a good balance of iteration and refinement speed). Once refinement has occurred,

the solution is allowed to iterate until an acceptable convergence criteria has been met, at

which point the refinement process is employed again. The benefit of this procedure is that

the task of identifying when the solution has reached grid convergence is removed from the

user; instead, the process continues indefinitely until there are no more remaining candidate

refinement sites, indicating that no change has occurred from the previous refinement level,

and that the solution has been successfully grid converged.

7.4 Chapter Summary

It has been shown that utilization of automatic adaptive refinement relaxes the quality

requirements of the initial point distribution since any initial errors due to discretization

may be later alleviated through improvements made to the local point structure. This

ability, therefore, is critical to the realization of an industrially relevant solution methodology

which significantly reduces human involvement. The research innovations which make this

possible are the development of adaptive-friendly model generation processes, as well as the

incorporation of analytical surface constrains into the boundary representation. Together,
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these techniques demonstrate a significant advancement to the current meshless state-of-the-

art as they elevate the importance of adaptive refinement from a useful afterthought to a

critical component of the method. In addition, by integrating local grid convergence criteria

into the solution process the MIMS method is able to report grid converged results requiring

no additional knowledge or input from the user. This represents a major advancement over

current solution processes as the importance of demonstrating grid convergence is oftentimes

overlooked by inexperienced users, resulting in poor solutions being inappropriately reported

as final.
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CHAPTER 8

SOLUTION IMPLEMENTATION DETAILS

Having fully described the components of the proposed meshless implementation in the

previous four chapters, the final topics that need to be addressed are implementation details

specific to the partial differential equations being solved. In particular, upwinding, selection

of shape function (for particular node and derivative types), and the handling of shadow

nodes in generalized coordinates, as applied to specific governing equation forms, will be

discussed. Although not directly applicable to all application domains, discussing these

topics is important in order to present a complete meshless solution process.

8.1 Upwinding

One area that meshless methods excels with respect to mesh-based methods is in development

and implementation of appropriate upwinding procedures for convective derivatives. In

conventional mesh-based methods, the existing connectivity explicitly defines the direction

of information propagation throughout the domain, and as such, care must be taken to

appropriately upwind convective terms in order to maintain a stable and accurate solution

process. However, in meshless techniques, the freedom afforded by the underlying field

approximations allows for evaluation along arbitrary directions, as well as at arbitrary

distances. For example, if an upwinded first derivative in the x-direction is required at the

highlighted node in Figure 8.1, one must consider both the case that the upwind direction
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Figure 8.1: Sample Upwinding Point Distribution

is in the positive x-direction, and also the case when the upwind direction is in the negative

x-direction.

Fortunately, by employing meshless VML techniques, this is a fairly trivial process.

First, because a real node exists in the positive x-direction, an appropriate upwinded operator

is constructed via the topology shown in Figure 8.2a with the finite difference operator

consisting of

∂u

∂x

∣

∣

∣

∣

x+

=
u2 − u0

∆x
(8.1)

where u0 and u2 are the values at the nodes indicated by corresponding indices in Figure 8.2a.

Second, because there exists no node at the required location for the backward difference

operator, an appropriate meshless technique must be utilized. Employing the Virtual Finite

Differencing concept, the negative x-direction upwind operator can be constructed by simply
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Figure 8.2: Upwind Topologies

using MLS (or RBFP) to interpolate to the required location, and then finite differencing as

∂u

∂x

∣

∣

∣

∣

x−

=
u0 − u1

∆x
=

u0 − Φ (x−∆x, y, z) u

∆x
(8.2)

where Φ is the corresponding field interpolation basis functions. In this manner, any number

of arbitrarily aligned upwind operators may be constructed, without requiring additional

complexity in the underlying solution routines.

It should be noted that an alternate approach of generating upwinded operators using

RBFP interpolation has been developed by Šarler et. al. [91, 99, 100], which involves

projecting the central value into the upwind direction and evaluating at its new position,

instead of the actual node location. Although this technique has demonstrated itself capable

for a wide range of application domains, the projection process requires a rebuilding of

the corresponding support domain whenever there is a change in the “upwind” coordinate

direction (i.e. changing from negative x to positive x). In addition, because the projection
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is done during the solution process, the basis functions are no longer able to be combined

into a single vector-vector multiplication, thereby increasing the computational expense of

the routines. It is for these reasons that the VML technique will be adopted as the upwind

process of choice for the current meshless implementation.

In addition to facilitating geometric upwinding, meshless methods also allow for natural

implementations of more sophisticated upwinding schemes such as the Advection Upstream

Splitting Method (AUSM) proposed by Liou and Steffen [103]. This method, which seeks to

combine the accuracy of the Roe splitting method with the speed and simplicity of Van Leer

Splitting schemes, provides a means of decomposing the convective flux vectors, Ec, Fc, and

Gc, from the Navier-Stokes equations given as

∂Q

∂t
+

∂Ec

∂x
+

∂Fc

∂y
+

∂Gc

∂z
=

∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z
(8.3)
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and E
′

v = uτxx+vτxy+wτxz−qx, F
′

v = uτyx+vτyy+wτyz−qy, and G
′

v = uτzx+vτzy+wτzz−qz.

The reader is referred to the original paper by Liou and Steffen for full details, however, it

is worth presenting a brief overview of the method in order to illustrate the implementation

within the context of this work. The technique begins by recognizing that each of the

convective flux vectors, Ec, Fc, and Gc are comprised of both convective and pressure terms

such that any of these vectors may be decomposed as (using Ec for example):

Ec = u
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(8.4)

From this point, Liou and Steffen postulate that the true convective terms, Ψ
(c)
i , are convected

by some “suitably defined velocity”, while the pressure terms are “governed by the acoustic

wave speeds” (where Ψ
(c)
i can refer to any of the three convective flux vectors). Thus, AUSM

provides a means to properly separate the components and determine the correct direction

of information propagation. The “true” convective terms are manipulated by factoring u,

then multiplying and dividing by the local sound speed, a, which produces:
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(8.5)
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where M is the signed directional mach number, computed as M = u/a. It is at this point

that Liou and Steffen separate the convective terms into ±1/2 components, corresponding to

the interfaces between neighboring nodes:

E
(c)
1/2 = M1/2
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ρaw

a (ρet + p)
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(8.6)

where M1/2 is computed according to the following:

M1/2 = M−
L +M+

R (8.7)

and

M± =



















±1
4
(M ± 1)2 if |M | ≤ 1

±1
2
(M ± |M |) otherwise

(8.8)

Having defined the convective terms properly, the pressure terms may be split in a similar

manner:

p1/2 = p+L + p−R (8.9)

where

p± =



















p
2
(1±M) if |M | ≤ 1

p
2
(M ± |M |) /M otherwise

(8.10)
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Finally, the convective derivative at node i is found by central differencing the half node

values:

∂Ec

∂x

∣

∣

∣

∣

i

=
Ei+1/2 − Ei−1/2

∆x
(8.11)

Separated in this manner, each component is functionally upwinded using a “Mach-number-

weighted average”, as well as an appropriate pressure splitting weighting technique. Because

this formulation technique employs its own blended finite difference operators, the Virtual

Finite Differencing procedure is utilized to obtain necessary quantities for Eqs. (8.7)-(8.11) at

the left and right neighbors of the half nodes. In this respect, the meshless field interpolations

can be used to generate localized interpolators at the necessary locations, and, rather than

precompute upwind operators directly for each direction, Eq. (8.11) is applied to each

convective term (with Ei+1/2 and Ei−1/2 utilizing the prebuilt localized interpolators) to

determine the appropriate values for the convective derivatives.

The ability to generate accurate approximations for the underlying solution field allows

collocation-based meshless methods to define arbitrary directional derivatives which can

be easily adapted to handle any form of point-based upwinding scheme. In this respect,

it provides a natural implementation path for any solution technique designed for finite

difference applications, allowing it to draw upon a wealth of previous research within this

field.
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8.2 Shape Function Selection

The selection of appropriate shape functions is a critical component of a well tuned meshless

implementation. Although any of the generation techniques described in Chapter 4 may

be used without special consideration (with the exception of direct MLS differentiation),

deciding the most appropriate situations for each requires some discussion. Before presenting

the specific guidelines used in this work, the advantages and disadvantages of each technique

have been summarized in Table 8.1.

As the goal of this work is to produce a robust meshless implementation, focus is placed

on stability, as opposed to accuracy, when selecting shape functions for each particular

node. In particular, a technique should be chosen because it is both numerically stable and

capable of increasing its accuracy through local refinement of the node distribution, since

the adaptive procedures described in Chapter 7 will be utilized to improve the geometric

discretization. Understanding this fact, it becomes clear that the most general purpose

shape function technique is VML utilizing an MLS approximation. Not only does this

technique allow for straightforward upwinding, but it also provides excellent stability due to

the MLS smoothing properties. That being said, the ability of direct RBFP differentiation

to produce accurate solutions with minimal support domains, makes them an ideal candidate

for use in areas lacking sufficient information to form an appropriate MLS topology (without

introducing unwanted geometric diffusion). This situation most commonly arises when

computing tangent operators for boundary nodes and for normal derivative computation for

both boundary nodes (when shadow nodes are not present) and of the last layer of shadow

nodes (where structured information is not present). As such, the process of selecting the
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Table 8.1: Comparison of Meshless Shape Functions

Shape Function Advantages Disadvantages

MLS Approximation - Capable of smoothing
oscillations in field

- Does not satisfy Kroneker
delta

- Exact for represented
monomial basis functions

- Requires larger topologies
than RBFP

- Insensitive to evaluation
location

MLS Differentiation - Smooths oscillations in
gradients

- Unstable without penalty
function for boundary
- Low order representation
restricts derivative order

RBFP Interpolation - Requires smaller topologies
than MLS

- Requires expensive shape
parameter optimization
- Prone to oscillations
between nodes

RBFP Differentiation - Compact support domain
(minimal smearing)

- Accuracy suffers for
non-symmetric derivatives

- High accuracy at node
locations if tuned
appropriately

- Oftentimes requires
under-relaxation to converge

VML utilizing MLS - Highly stable due to MLS
smoothing

- Requires large support
domains

- Capable of isoparametric
differentiation (no wasted
effort)

- Prone to geometric diffusion

VML utilizing RBF - Iteration speed is improved
due to smaller topologies

- Prone to oscillation and
error amplification due to
oscillations between nodes in
RBFP
- Reduced order from
underlying RBFP
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Figure 8.3: Shape Function Selection Process

most appropriate shape function construction technique may be summarized by the flowchart

shown in Figure 8.3.

8.3 Generalized Coordinate Systems

The final application specific consideration that needs to be made is selecting the most

appropriate coordinate frame to solve the governing equations. For interior nodes generated
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via the Binary-Subdivision Interior Discretization described in Section 6.2, the choice is

obvious: use a native Cartesian coordinate frame and utilize a meshless shape function when

structured information is not present. However, for interior nodes generated in the shadow

layer (shadow nodes), a decision must be made as to whether the problem should be solved

in Cartesian space, or in a local, rotated space aligned with the associated boundary normal

direction. Figure 8.4 demonstrates a simplified local, rotated space, for a representative

boundary and associated shadow nodes. Obviously, any high normal gradients present in a

boundary layer will be better captured if the differential operators are constructed such that

they are normal aligned (since there is a considerable amount of structured information

in that direction). Since we wish to take advantage of as much structure as possible,

there are two ways to approach this problem; the first is to apply a standard coordinate

transformation process whereby the Jacobian and other necessary transformation metrics

are precomputed for each node and combined with the shape functions to obtain a compact

form of the resulting Cartesian differential operators. The second technique is to directly

work in generalized coordinate space, and thus, all operators are left in the local coordinate

system of the shadow nodes and the associated metrics are handled directly in the governing

equation formulation. Although either technique is acceptable, through experience it has

been found that working with the governing equations in generalized form is oftentimes the

most straightforward technique, since many simplifications can be made due to the fact that

the local coordinate space is only a rotation of the Cartesian directions, and contains no

stretching. However, the choice to rotate the operators or work in generalized coordinate

space is not as important as acknowledging the structure that is present in the domain and

ensuring that the developed routines are able to utilize it to its advantage.
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It is also important to note that in order to provide proper minimal support domains,

the process described in Section 5.2 should construct ellipsoidal topologies that are aligned

with the rotated coordinate frame of each shadow node. By aligning the topologies with the

local coordinate system, more appropriately shaped influence regions can be constructed,

resulting in less numerical dissipation and more accurate solutions.
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CHAPTER 9

VERIFICATION RESULTS

The presented meshless methodology is unique in that is represents a departure from previous

focus, which primarily concerned itself with shape function development, and instead focuses

on model generation and robustness issues specifically pertaining to meshless techniques. It

is important to understand that although several critical advancements have been developed

(such as the automated support domain construction and shape function selection process)

and important results presented (such as the numerical stability analysis), the foundation

of the methodology is built upon proven shape function generation techniques (such as

RBFP and MLS). The true advancing research is the development of model generation

and adaptive refinement algorithms tailored to the meshless procedures, and a realization

that in order to be competitive with existing techniques, meshless methods must take

advantage of the liberties afforded to them by the elimination of the structured connectivity

throughout the domain. As such, it makes sense that to demonstrate the capabilities of the

proposed technique, realistic problems must be completed, and compared against existing

commercially available engineering analysis packages. Before presenting several challenging

real-world problems, which demonstrate the full capabilities of the method, a few classical

benchmark problem will be provided to verify the accuracy of the underlying solution

techniques. Note that some of these results have been presented at several international

conferences [101, 102] as part of this research.

130



9.1 Supersonic Flat Plate

The first demonstrating test case is the classic problem of flow over a flat plate. In this

example, a flat plate of unit length was modeled, with the inlet at a distance of 0.2 units

from the front of the leading edge and the vertical boundary at a distance of 0.8 units from

the flat plate. The plate was assumed to be infinite in length, as the outlet immediately

followed the unit length plate. The inlet conditions imposed include a Reynolds number

of Re∞ = 1000, and a Mach number of M∞ = 3.0. For this particular problem, an initial

distribution was created and the solution was allowed to refine three levels, resulting in a

final point distribution consisting of approximately 200,000 nodes. Marshall [150] presented

results to a similar problem which were verified against data obtained by Satya Sai et al.,

which will serve as a comparison for the results generated by the MIMS method.

Figure 9.1a illustrates the normalized pressure distribution along the length of the flat

plate, as directly compared to the Satya Sai et al. results quoted by Marshall. These results

demonstrate a very good correlation between the data obtained by Satya Sai et al. and

the MIMS method, even in the high pressure region at the onset of the flat plate. It is

important to note that the data points shown for MIMS have been interpolated, and do not

represent actual node locations. To further illustrate the obtained solution, Figure 9.1b plots

the obtained Mach contours near the onset of the flat plate. This figure illustrates that the

shock is being accurately captured, as well as the resulting boundary layer downstream from

the beginning of the flat plate. Note that although the results generated by Satya Sai et al.
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Figure 9.1: Supersonic Flat Plate Results

were developed in two-dimensions, the meshless implementation is fully three-dimensional

(Figure 9.1b is an illustrative two-dimensional slice of the domain).

9.2 Subsonic Smooth Expanding Nozzle

The second test case deals with modeling viscous flow through a simple smooth expanding

nozzle. A two-dimensional depiction of the problem geometry is given in Figure 9.2, with an

understanding that this problem was constant in the z direction, having a domain thickness
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Figure 9.2: Smooth Expanding Nozzle Geometry

of 0.05m. The geometry of this problem is given in Figure 9.2 and will be used for both the

case of subsonic and supersonic flow.

To impose subsonic flow conditions throughout the nozzle, an inlet Mach value of

M = 0.4 was prescribed with a corresponding stagnation pressure and temperature of P0 =

100000Pa and T0 = 300K, respectively. Additionally, all walls (other than inlet and outlet)

were assumed to have no friction (slip walls). No refinement was performed on this model, in

an attempt to isolate the solution process with respect to grid spacing. An initial meshless

point distribution consisting of approximately 45,000 nodes was automatically generated

for this geometry, and the results were compared to two-dimensional results generated by

FLUENT (structured grid, approximately 70,000 two-dimensional cells). Shown in Figures

9.3a and 9.3b, are the Mach contours for the MIMS and FLUENT results, respectively, both

plotted on a scale of ∆M = {0.27, 0.4}.

Beyond the simple qualitative comparison, several pertinent quantities were also plotted

along the mid line (y = 0, z = 0.025) and compared between the two techniques in order

illustrate the solution quality. As evidenced by the comparison shown in Figures 9.4 and 9.5,

there exists good correlation on both pressure and Mach number between the two solution
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(a) MIMS Mach Contours

(b) FLUENT Mach Contours

Figure 9.3: Mach Contour Plots for Subsonic Smooth Expanding Nozzle

 89000

 90000

 91000

 92000

 93000

 94000

 95000

 96000

 0  0.1  0.2  0.3  0.4  0.5

P
re

ss
ur

e 
(P

a)

x

  FLUENT
MIMS

Figure 9.4: Midline Pressure Comparison for Subsonic Smooth Expanding Nozzle

techniques, with an maximum percent deviation between the two results of approximately

3% (relative to FLUENT results).
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Figure 9.5: Midline Mach Comparison for Subsonic Smooth Expanding Nozzle

9.3 Supersonic Smooth Nozzle

The third test case deals once again with the smooth nozzle geometry presented in the

previous section, except for this case supersonic flow was imposed, rather than subsonic. To

generate a supersonic flow field, an inlet Mach number of M = 2 and a stagnation pressure

and temperature of P0 = 100000Pa and T0 = 300K, respectively, were imposed. Additionally,

all non-inlet and outlet walls were assumed to be friction free (slip walls).

Due to the steepness of the nozzle walls, the flow field exhibits a series of interacting

compression and expansion waves within the nozzle. Although this indicates a poor nozzle

design, it serves as an interesting test problem due to the multiple wave interactions which

take place within the computational domain. For this particular problem, the meshless

solution began with the same initial discretization of approximately 45,000 nodes and re-

quired three levels of refinement for grid convergence, resulting in a final grid consisting

of approximately 160,000 nodes. Additionally, the results from this case were compared

135



 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 0  0.1  0.2  0.3  0.4  0.5

P
re

ss
ur

e 
(P

a)

x

FLUENT
MIMS (Initial)

MIMS (Intermediate)
MIMS (Final)

Figure 9.6: Midline Pressure Comparison

against a two dimensional solution generated by the commercial CFD package FLUENT,

whose computational grid consisted of approximately 70,000 cells (which, in equivalent 3D,

would correspond to more than 500,000 cells). Note that these point distributions were the

result of 3 levels of refinement on both Mach and pressure gradients on the boundary and

interior. To serve as a quantitative comparison, the pressure levels along a mid line (y = 0,

z = 0.025) were compared to those obtained via FLUENT and are shown in Figure 9.6.

There is excellent agreement between the solutions obtained using FLUENT and the

final refined point distribution solved using the meshless method techniques described herein.

Additionally, this problem illustrates a major advantage of the proposed technique over other

methods in that an initially poor discretization does not prevent the user from obtaining a

good final solution.
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9.4 Subsonic NACA-0012 Airfoil

The next case that was performed was that of a NACA-0012 airfoil at an angle of attack

of α = 10 deg, placed in a subsonic flow with freestream conditions of M∞ = 0.8 and

Reynolds number of Re∞ = 500. Although this particular case is highly unphysical due to

the extremely low Reynolds number with corresponding Mach number, it does provide a non-

turbulent flow field and is a common test case used to demonstrate proper flow characteristics.

The results obtained are compared to data presented by Marshall and Ruffin [151], who in

turn compares their data to Casalini and Dadone [152] with good correlation. Note that

the computational geometry extends 2 chord lengths in front of the airfoil, 8 chord lengths

behind the airfoil, and 6 chord lengths on the top and bottom of the airfoil. The initial

MIMS point distribution consisted of approximately 160,000 nodes, and after three levels of

refinement, the final point distribution consisted of just over 525,000 nodes.

Figure 9.7 begins by comparing the pressure coefficient, Cp, over the top and bottom

surfaces of the airfoil with those obtained by both Casalini and Dadone, as well as Marshall

and Ruffin. There exists a very good correlation between the obtained Meshless results

and those presented by Marshall and Ruffin, which is understandable considering that they

utilized a Cartesian based solver (NASCART-GT).

Another useful comparison is that of airfoil skin friction, Cf , obtained over both the

top and bottom surfaces of the airfoil. Figure 9.8 presents the comparison of the results

obtained using the new meshless method with the benchmark results previously mentioned.
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Figure 9.7: Subsonic Viscous NACA-0012 Pressure Coefficient
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Figure 9.8: Subsonic Viscous NACA-0012 Skin Friction Coefficient

Once again, there exists very good agreement between data sets, with deviations mainly

occurring in the high gradient stagnation region near the nose of the airfoil.

Finally, a contour plot illustrating the local airfoil region was generated, and is presented

in Figure 9.9, which highlights the capturing of the trailing wake region, as well as the

stagnation point at the nose of the airfoil.
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Figure 9.9: Mach Contours for Subsonic Viscous NACA-0012

9.5 Supersonic NACA-0012 Airfoil

The final test case performed, involved the same NACA-0012 geometry from the previous

example, re-run under supersonic free-stream conditions of M∞ = 2.0, and a Reynolds

number of Re∞ = 1000. As with the previous case, an initial distribution of approximately

160,000 nodes was used and allowed to refine three levels, and all geometric conditions

remained the same.

Results presented by Marshall and Ruffin [151] were once again used as comparison, and

Figure 9.10 shows the comparison of pressure coefficient along the upper and lower surfaces

of the airfoil. There is again reasonable correlation between the two data sets, although

there are some minor discrepancies throughout the chord length.

Figure 9.11 illustrates the comparison of skin friction along the top and bottom airfoil

surfaces, and it is noted that there exists fairly substantial differences in values near the nose
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of the geometry. Finally, a plot illustrating the Mach contours is presented in Figure 9.12,

illustrating the bow shock characteristics, as well as the flow behavior in the region close to

the airfoil surface.
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Figure 9.12: Mach Contours for Supersonic Viscous NACA-0012
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CHAPTER 10

CASE STUDIES

The previous chapter has provided several verification results that demonstrate the solution

accuracy of the underlying meshless techniques with respect to several established benchmark

and experimental results. However, the previous chapter did not sufficiently demonstrate the

proposed advancements which make the MIMS methodology competitive on an industrial

level. The primary focus of this research has been the development of the additional meshless

point distribution and adaptive refinement procedures that can utilize the liberties of the

solution process to obtain a robust, accurate, and easy to use engineering analysis tool.

Ultimately, in order to be considered a competitor to more traditional solution techniques

(such as finite element and finite volume methods), the developed methodology must not only

demonstrate sufficient accuracy, but also a reduction in overall solution time (or, at least,

a reduction in human solution time). Unfortunately, it is oftentimes difficult to quantify

this value, since differently skilled users of commercially available codes will require vastly

different times to complete a solution. In addition, each solution brings unique challenges

to the user, and thus, is it difficult to make broad statements from a few representative

problems. Nonetheless, in an attempt to demonstrate significant improvement over existing

technologies, three sample problems have been developed which present common challenges

encountered by engineers in real-world settings. To serve as a comparison, each problem has

been solved with at least one commercially available software package by an experienced user.

Rather than simply examine the final results, times and pertinent data (such as overall node
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counts) were recorded at all stages of the solution process (including mesh generation) in an

attempt to quantify the overall benefits of the new meshless method. In this respect, these

case studies present the complete solution process, from start to finish, that a well-trained

engineer would undergo to arrive at an appropriate solution.

It is worth noting at this time that two commercially available analysis packages were

utilized throughout these case studies, denoted COMMERCIAL 1 and COMMERCIAL 2. In

addition, all meshing operations were performed via a commercially available grid generation

software denoted GRID GENERATOR 1. All Microsoft Windows based solutions (MIMS

and COMMERCIAL 1) were performed on a system consisting of a AMD Phenom X4

3.00GHz processor with 8GB of RAM, while all UNIX based solutions (COMMERCIAL

2 and GRID GENERATOR 1) were performed on a Xeon 3.06GHz processor with 4GB

of RAM. Also note that although both systems offer multi-core/processor functionality, all

timed operations were performed in single threaded mode to ensure an accurate comparison.

Finally, it is worth mentioning that the author performed all necessary mesh generation and

solution setup tasks for all three analysis packages (COMMERCIAL 1 & 2 as well as MIMS)

in order to provide a fair comparison in skill level between each system. The author has been

using GRID GENERATOR 1 to construct analysis meshes for approximately 5 years, and

as such, can be considered quite knowledgeable in the area of mesh generation, representing

an appropriately well-trained engineer.
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10.1 Cylinder Head Heat Transfer

The goal of the first case study is to illustrate the advantages of the proposed meshless

methodology over mesh-based techniques for a geometry that requires care during the mesh

generation process. Although far from being considered complex, the simple two cylinder

head shown in Figure 10.1 does represent a non-trivial geometry that could potentially be

encountered in an industrial setting (for example, this could be a simplified representation

of the head of a small piston compressor). Most notably, the geometry contains many small

features in the form of heat sinks located on the top of the model which complicates the mesh-

ing process. Due to the complexity of the model, full dimensions would require considerable

explanation (appropriate models may be obtained from the author upon request), though it

is worth noting some important characteristics of the design. The total surface area of the

model is 1217.17cm2, the total surface area exposed to the internal cylinders is 78.54cm2,

the combined surface area of the six mounting holes is 56.55cm2, and the surface area of the

base is 186.69cm2. In addition, the total volume is 650cm3 and the overall dimensions are

20cm× 12cm× 6cm.

(a) Top Isometric (b) Bottom Isometric

Figure 10.1: Cylinder Head
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(a) Top Isometric (b) Bottom Isometric

Figure 10.2: Cylinder Head Measurement Points

To simulate the heat transfer occurring due to engine operation, the surface area exposed

to the internal combustion chambers (two large cylindrical cutouts shown in Figure 10.1b)

were provided a constant 100000W/m2 of input heat flux, the base of the model and the six

mounting holes were insulated (simulating a thick, insulating cylinder head gasket), and the

remaining surfaces were given convection conditions of h = 20W/m2 − K and T∞ = 100K.

The material selected for this model was high carbon AISI 1040 steel with material properties

ρ = 7840.0kg/m3, Cp = 490.0J/kg − K, and k = 48.0W/m − K. Given the geometry of

the problem, several probe location were placed on the exterior of the model (to simulate

accessible thermocouple measurement points). The measurement points were located on one

of the exterior fins, the center of the base, the center of the combustion chamber cylinder,

and the side of one of the support brackets, as denoted in Figure 10.2 as red points. These

measurement points will serve as the quantitative comparison between the results generated

via the MIMS method and COMMERCIAL 1 software package.

Beginning with COMMERCIAL 1, given the complexity of the geometry, it was decided

by the operating engineer that an initial, uniformly distributed, unstructured tetrahedral

mesh would be created to serve as a benchmark for analysis. As such, the initial mesh was
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(a) Top Isometric (b) Bottom Isometric

Figure 10.3: Cylinder Head Initial Mesh and Temperature Result

created in GRID GENERATOR 1 with a discretization size of 0.65cm; a number determined

through trial and error (during meshing) to produce an acceptable mesh with a minimum

number of cells. The resulting mesh, which consisted of 16,108 cells (4,612 nodes) can be

seen in Figure 10.3, along with a contour plot of the converged temperature field for this

discretization.

Having established the initial solution, the engineer decided that due to the complexities

in the geometry, it would be overly time consuming to produce a clustered mesh according

to this temperature field. This was partially due to the complexity in the geometry, and

partially due to the complexity of the field (in so much that it would be difficult to translate

high field gradient locations to geometric edges and faces as the basis for mesh clustering).

As such, a secondary mesh was produced with half the initial distribution with an average

edge length of 0.325cm, resulting in a mesh with 106,548 cells (24,839 nodes). At this point

the solution was once again solved to convergence. After analyzing the resulting field, it was

found that the overall temperature span of the field changed from (688.4K− 780.1K) with

the initial mesh to (698.1K− 789.6K) with the new, finer discretization. Understanding that
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(a) Top Isometric (b) Bottom Isometric

Figure 10.4: Cylinder Head Final Temperature Result

this could be a by-product of the coarse initial mesh, the engineer once again refined the

distribution with a uniform average edge length of 0.20cm, resulting in a mesh consisting

of 422,225 cells (88,301 nodes). This final mesh was once again run to convergence, and

the resulting temperature range was found to be (699.0K− 789.8K); determining this to be

an acceptable grid converged solution, the engineer reported his results as final. The final

temperature field is illustrated in Figure 10.4.

It is important to note that because the commercial analysis package did not have

remeshing capabilities, each time the engineer was required to construct a more refined

mesh, he had to go back to the mesh generation package and remesh the existing geometry.

This added additional human interaction time, and thus, increased the overall turnaround

time on the analysis. In addition, because COMMERCIAL 1 was reloading the solution after

each remesh, it was essentially having to start from scratch each time, which considerably

increased the computation time for the final distribution.

The second approach used to solve this problem was to utilize the developed MIMS

process and let the algorithms decide when and where to refine the point distribution. As
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with the mesh-based approach, the initial solution distribution consisted of an average surface

edge length of approximately 0.65cm, however, unlike the mesh-based approach, this value

was determined by the QTM model interpreter based on minimizing deviation from the

underlying geometry. Once the initial solution had been found, the MIMS method continued

to refine and solve the solution over three refinement levels until a local grid convergence

value of 1% deviation with respect to the temperature span had been achieved. Visual

representations of the boundary point distribution at each level of refinement are shown in

Figure 10.5. The first thing to notice from these figures is that unlike the mesh-based process,

the meshless method is able to locally refine in the areas of highest gradient (as opposed

to global uniform reduction in mesh size). Thus, despite having performed three refinement

levels, the final meshless node count was only 156,507 nodes, while the meshless node count

at the previous refinement level was 88,082 nodes (which compares very closely with the

node count in the final COMMERCIAL 1 mesh). In this respect, the final refinement level

added a relative small percentage of nodes with respect to the overall volume (indicating the

importance of local refinement at this level). The second important thing to note is that the

geometric representation is improving as the solution is refined (notice the curvature of the

mounting holes as the solution progresses). This is an important component that allows the

solution process to perform initial discretizations with little regard to full approximation of

the underlying geometry (it only needs to be good enough to obtain an accurate snapshot

of the solution behavior).

By exposing the interior of the domain at the initial and final refinement levels, it can

be seen in Figure 10.6 that the MIMS method was able to refine in small, local regions of the
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(a) Initial Distribution (b) Refinement 1

(c) Refinement 2 (d) Refinement 3

Figure 10.5: Meshless Cylinder Head Refinement Levels

domain without introducing instability (this figure illustrates boundary nodes as red spheres,

shadow nodes as green spheres, and interior nodes as blue spheres). This is important as it

demonstrates the robustness of the underlying shape functions as well as the support domain

optimization process described in Section 5.2.

To serve as a quantitative comparison of the results generated using the MIMS method

and COMMERCIAL 1, the values at the four probe locations were determined at each

refinement level, and are listed in Table 10.1. As expected, both solution techniques provide

roughly equivalent (less than 1% deviation) results at the final discretization levels.

Having demonstrated that the two solution processes are arriving at equivalent solutions,

the major comparison remaining is solution time. Recall that one of the major arguments
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(a) Initial Distribution (b) Final Distribution

Figure 10.6: Meshless Cylinder Head Point Distribution

Table 10.1: Cylinder Head Probe Values

(a) MIMS

Discretization Fin Base Chamber Support

Initial Solution 720.23 758.32 714.16 714.16
Refinement 1 728.93 763.39 789.86 752.60
Refinement 2 728.85 763.39 789.86 752.62
Refinement 3 728.85 763.39 789.86 752.60

(b) COMMERCIAL 1

Discretization Fin Base Chamber Support

0.65cm 714.16 752.01 779.54 742.77
0.325cm 723.68 762.29 789.34 751.59
0.20cm 724.77 762.85 789.72 752.14

for using a meshless method is a reduction in analysis time. Thus, Table 10.2 lists a

breakdown of the solution process times for both the MIMS method and the manually

meshed process. Examining these times, it becomes clear that the meshless solution process

requires considerably less time to complete. In fact, not only does it require only 5% of the

total engineering time (which, after all, is the most expensive), it is also able to reduce the

total solution time by nearly three hours. The dramatic difference in solution times may

be explained by a combination of the MIMS method being able to start from a previously
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Table 10.2: Cylinder Head Calculation Time Comparison

(a) MIMS

Task Time

Problem Setup* 00:02:00
Initial Preprocessing 00:00:12
Total Solve Time 00:12:29
Total Refine Time 00:11:13

Total 00:25:54
*Total Engineer Time 00:02:00

(b) COMMERCIAL 1

Task Time

Mesh Setup (0.65cm)* 00:06:00
Problem Setup (0.65cm)* 00:05:00

Solve Time (0.65cm) 00:01:16
Mesh Setup (0.325cm)* 00:06:00

Problem Setup (0.325cm)* 00:05:00
Solve Time (0.325cm) 00:22:31
Mesh Setup (0.20cm)* 00:09:00

Problem Setup (0.20cm)* 00:05:00
Solve Time (0.20cm) 02:16:16

Total 03:16:06
*Total Engineer Time 00:36:00

converged solution after each refinement, and by differences in the way the two algorithms

reach a converged steady state solution.

Concluding this case study, it should be clear that both the total required time, and

more importantly, the total engineering time spent solving this problem was significantly

reduced when using the adaptive meshless method over the commercially available mesh-

based approach. Although the final solution required more nodes for the MIMS approach,

the automatic refinement procedure allows the solution to be explicitly reported as locally

grid-converged; a statement that cannot be made about the alternative approach (since no

formal grid convergence study was performed, which is a time consuming process and difficult

to ensure in a local sense). This case study has also demonstrated the ability of the MIMS

approach to handle quite complex geometry, an important consideration if it is to compete

with more traditional techniques as a general solution process.
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10.2 Cooling Jet Flow

The second case study represents the most complex field solution of the test cases performed,

and also seeks to demonstrate the advantages of the MIMS method when problem accuracy

is highly dependent on the underlying mesh quality. The problem geometry consists of

a rectangular channel with three cooling jets angled to provide film cooling flow over the

bottom, no-slip surface. A visual representation of the domain can be seen in Figure 10.7,

with pertinent dimensions shown in Figure 10.8.

Figure 10.7: Cooling Jet Geometry

Figure 10.8: Cooling Jet Dimensions (m)
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To simulate film cooling, the bulk flow inlet (located at the short end of the rectangular

channel) was given conditions of P0 = 100, 000Pa and T0 = 800K, corresponding to an inlet

Mach number of approximately M = 0.4. The outlet (located at the opposite end of the

channel) was given an outlet pressure of Pout = 70000Pa, and the bottom surface of the

channel was set as no-slip (to produce an appropriate boundary layer). The three inlet jets

were given conditions of P0 = 150, 000Pa and T0 = 500K, resulting in a slightly increased

injection speed of approximately M = 0.68. All other walls (including the cylindrical sides of

the jet injections) were given full-slip (zero shear) boundary conditions. It is worth pointing

out that the jets were angled 45 deg into the flow, to allow for a more natural transition for

the incoming, cooled fluid into the boundary layer.

As this problem contains considerable complexity due to the injected flow and geometry,

it is an ideal test case to demonstrate the advantages of the proposed meshless method over

existing technologies. To serve as a proper illustration, two approaches were taken to solve

this problem with existing software; first, a structured, highly formed mesh was generated

using GRID GENERATOR 1 and solved via COMMERCIAL 2, and second, a clustered,

unstructured mesh was generated (once again in GRID GENERATOR 1) and solved via

COMMERCIAL 1. In this respect, both approaches to solving this problem (spend more

time meshing and less time solving, or spend less time meshing and more time solving) can

be examined, and the corresponding results will provide insight into the relative strengths

and weaknesses of each approach when compared to the results generated via the MIMS

method.

The first approach to solving this problem was to generate a structured mesh for

the domain and solve using COMMERCIAL 2. Structured meshes have the advantage
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(a) Structured Mesh (COMMERCIAL 2) (b) Unstructured Mesh (COMMERCIAL 1)

Figure 10.9: Cooling Jet Meshes

of being able to maintain high aspect ratios, and thus, obtain high levels of accuracy

with minimal computational effort (as illustrated in Figure 3.2c). However, they come

at the cost of engineering time as they typically require a considerable effort on the part

of a skilled engineer to generate an appropriate discretization for each problem. As is

typical, the final mesh for this problem required roughly 2 hours and 15 minutes to produce,

and resulted in 476,889 cells (499,350 nodes). It is also worth mentioning that this mesh

required considerable expertise to generate (detailed knowledge of mapped-mesh generation

techniques and geometric manipulation), and thus, would most likely not be obtainable by

a user that was not proficient in using mesh generation software. A view of the final mesh

that was supplied to COMMERCIAL 2 is shown in Figure 10.9a.

The second approach to solve this problem utilizes an unstructured mesh that is clus-

tered near the regions where the highest gradients are expected. Unfortunately, unstructured

meshes are unable to produce high aspect ratio cells without considerably sacrificing accu-

racy. For this reason, unstructured meshes usually require more cells to accurately solve
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a problem than their structured counterparts. This can be seen from Figure 10.9b, which

shows the mesh generated for the cooling jet problem. While the structured mesh is able to

generate a highly clustered boundary layer, the unstructured mesh is able to produce minimal

clustering in this region; despite the lack of boundary layer refinement, the unstructured

mesh still consists of 594,804 cells (113,593 nodes). Although the fidelity is not as good,

the unstructured mesh only took 27 minutes to generate, a reduction of 80% from the time

required to generate the structured mesh.

The final approach is to use the MIMS method to solve the problem and automatically

refine the geometry in the most appropriate locations. In this respect, the meshless approach

involves no initial mesh generation, while at the same time is able to appropriately cluster the

discretization to capture the pertinent phenomenon. Because the initial distribution involves

only 34,414 nodes, the solution is quickly able to reach an acceptable result which can be used

as a guideline for refinement. In addition, because the process only refines where necessary,

the technique is able to arrive at a comparable solution (after four refinement stages) with

only 98,903 nodes, less than that of the unstructured mesh supplied to COMMERCIAL 1,

and slightly less than one-fifth of the number of nodes used in the structured domain. As

a comparison, the initial QTM discretization generated by the MIMS process is shown in

Figure 10.10a and the final point distribution after four levels of refinement is shown in

Figure 10.10b. Useful to notice is the high level of refinement that occurred at the jet entry

point where the two flow streams begin to interact.

To visualize the results, all three models were plotted on the same temperature scale

(360K to 780K with 22 levels) and an isosurface was generated at the T = 600K value. The
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(a) Initial QTM Discretization (b) Final Point Distribution

Figure 10.10: Cooling Jet Meshless Point Distributions

respective visualization results may be seen in Figure 10.11. Examining these figures, it

becomes clear that the COMMERCIAL 1 results are considerably less smooth than either of

the other two results. In fact, the results generated via MIMS appears to be in quite good

agreement with the results obtained with COMMERCIAL 2 despite the considerably coarser

resulting discretization. In order to provide a quantitative measurement of agreement,

the values of temperature were extracted from the midline of the geometry (along the

no-slip base), and are plotted in Figure 10.12. From this figure it appears that all three

methods produce somewhat differing results in details, though the overall trends are in good

agreement. In addition, from the onset of the cooling flow to the tail end of the domain, the

MIMS results are between the COMMERCIAL 2 and COMMERCIAL 1 results, indicating

that it is able to obtain accurate results despite the lack of underlying mesh.
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(a) COMMERCIAL 2

(b) COMMERCIAL 1 (c) MIMS

Figure 10.11: Cooling Jet Temperature Contours (T = 600K Isosurface)
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Table 10.3: Cooling Jet Calculation Time Comparison

(a) COMMERCIAL 2

Task Time

Mesh Setup* 02:15:00
Problem Setup* 00:05:00

Solve Time 02:16:35
Total 04:36:35

*Total Engineer Time 02:20:00

(b) COMMERCIAL 1

Task Time

Mesh Setup* 00:27:00
Problem Setup* 00:05:00

Solve Time 03:32:02
Total 04:04:02

*Total Engineer Time 00:32:00

(c) MIMS

Task Time

Problem Setup* 00:05:00
Initial Preprocessing 00:02:18
Total Solve Time 00:27:31
Total Refine Time 00:29:26

Total 01:13:15
*Total Engineer Time 00:05:00

As a final comparison for this problem, the respective solution times were recorded and

are shown in Tables 10.3a-10.3c. Similar to the first case study, the MIMS process with its

automatic refinement is able to complete the solution in considerably less time than either

of the other two solution techniques. In addition, although the structured and unstructured

mesh solutions were only 30 minutes apart, the structured mesh required almost two hours

more engineering time than the unstructured. This, coupled with the fact that all three

results generate comparable solutions, provides justification for the use of a MIMS approach

when requiring quick analysis of components or flow fields.

Summarizing the findings of the second case study, we continue to see the MIMS method

completing analysis in significantly less time without appreciably sacrificing accuracy. In

addition, the fact that the meshless approach is locally grid converging the solution during

refinement, gives confidence towards the results. Although one may argue that the increased

fidelity afforded by the structured grid is necessary, it is difficult to justify the costs when
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considering that the entire MIMS process can be completed in half the time that it takes

to generate the structured mesh. This makes the area of parametric design and analysis an

ideal application for the MIMS method as frequent changes in model geometry can result

in overwhelming engineering costs when attempting to solve each problem via a mesh-based

approach.

10.3 Normal Shock Nozzle

The final test case seeks to demonstrate the accuracy and adaptability of the proposed

technique when presented with sharp discontinuities in an underlying flow pressure field. To

accomplish this, a nozzle presented by Hoffman [153] is solved where the cross sectional area

is given as

S(x) = 1.398 + 0.347 tanh (0.8x− 4) (10.1)

and the nozzle inlet and outlet are located at x = 0m and x = 7m, respectively. The problem

geometry can be seen in Figure 10.13, with the small end of the nozzle (inlet) located at

x = 0m and the larger end (outlet) located at x = 7m. Assuming inlet conditions ofM = 1.5,

P0 = 100, 000Pa, T0 = 300K, and P = 27240.3Pa, and an outlet pressure Pout = 66809.6Pa,

there is a normal shock within the nozzle located at x = 5m.

Figure 10.13: Normal Shock Nozzle Geometry
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Although analytical solutions to this problem are provided by Hoffman, to provide

a benchmark for arriving at the solution numerically, it was assumed that the problem

geometry (in the form of an IGES file) and the appropriate boundary conditions were given

to an engineer to solve using the COMMERCIAL 2 package. To simulate a real-world

scenario, the operating engineer assumed no previous knowledge about the flow behavior

prior to setting up the initial mesh. Therefore, to get an idea about the behavior of the

solution, the engineer began by generating an initial, structured mesh consisting of 132,650

cells (141,680 nodes), at a uniform spacing of 0.02m. This mesh, and the corresponding

solution can be seen in Figure 10.14. Having identified that a shock was present in the

domain, the engineer then generated an appropriately clustered, structured mesh in order

to capture the discontinuity as best as possible. This clustered mesh, which consisted of

415,450 cells (437,346 nodes), and the associated pressure distribution, can be seen in Figure

10.15.

To solve the problem using a MIMS approach, the domain is usually initialized from the

IGES file and allowed to progress through alternating solution and refinement stages until

grid convergence is achieved. However, this problem demonstrates an interesting pathological

exception to the normal refinement strategy. Since the discontinuity in the field is an actual,

physical compression shock (as opposed to an expansion or compression wave which has a

finite width), it exists over a theoretically infinitesimal area. Therefore, when the meshless

refinement strategies are utilized as previously described, the solution should be constantly

improving, and as such, grid convergence should be theoretically impossible to achieve.

However, despite this expectation, the solution process was reported as grid converged after
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(a) Mesh

(b) Pressure Distribution

Figure 10.14: Initial Solution for Normal Shock Nozzle (COMMERCIAL 2)

(a) Mesh

(b) Pressure Distribution

Figure 10.15: Final Solution for Normal Shock Nozzle (COMMERCIAL 2)
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4 levels of refinement, with a final point distribution consisting of 88,429 nodes. After

examining the pressure distribution results shown in Figure 10.16, and plotting the pressure

down the nozzle midline (as shown in Figure 10.18), it becomes clear that the meshless

results had indeed become grid converged, at least from the perspective that the solution

did not change from one refinement level to the next; this is an undesirable result as it

indicates that the grid accuracy is fixed by some upper bounds and further refinement will

not improve the solution. However, what is actually occurring is that there is a discrepancy

between the definition (and application) of grid convergence, since grid convergence and the

associated refinement gradients are only measured between locally structured points; the size

of the support domains are not considered. The support domains, do, however, define the

local influence region, and as such, dictate the minimum distance over which a discontinuity

can be captured. Therefore, although the meshless operators are causing the results to be

smeared (much like finite difference operators smear over one grid point), they take longer

for the solution to improve as the local domain is refined, and are causing the structured

regions to appear as though they are grid converged.

Understanding that the lack of shock width fidelity is due to the underlying interpolation

support domain size, the shock location is still captured very well, as shown in Figure

10.18. It is important to mention that Figure 10.18 was generated via a post-processed line

interpolation, and as such, the point markers are shown for visualization purposes and do

not indicate the locations of computational nodes.

162



(a) Surface Point Distribution

(b) Pressure Distribution

Figure 10.16: Final Solution for Normal Shock Nozzle (MIMS)

Figure 10.17: Normal Shock Nozzle Interior Point Distribution (MIMS)
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Table 10.4: Normal Shock Nozzle Calculation Time Comparison

(a) Meshless

Task Time

Problem Setup* 00:02:00
Initial Preprocessing 00:01:12
Total Solve Time 00:10:24
Total Refine Time 00:07:41

Total 00:22:17
*Total Engineer Time 00:02:00

(b) COMMERCIAL 2

Task Time

Mesh Setup (0.02m)* 00:05:00
Problem Setup (0.02cm)* 00:02:00

Solve Time (0.02cm) 00:24:36
Mesh Setup (Clustered)* 00:12:00

Problem Setup (Clustered)* 00:02:00
Solve Time (Clustered) 02:12:27

Total 02:58:03
*Total Engineer Time 00:21:00

Even though the meshless solutions failed to achieve the same levels of accuracy as the

structured mesh, it is still important to compare final computation times between the two

solution processes. Thus, Table 10.4 lists the total solution times for both the meshless

solution and the solution generated using COMMERCIAL 2. As has been typical amongst

the previous two case studies, the meshless process takes considerably less time to arrive at

its converged result.

10.4 Remarks

Having demonstrated the accuracy of the MIMS methodology, this chapter sought to demon-

strate the advantages over more traditional mesh-based techniques in the areas of initial

model generation time and overall solution time. Although these metrics are oftentimes dif-

ficult to objectively quantify, by solving three representative case studies from start to finish

with various techniques it should become clear that a robust meshless method employing

adaptive refinement is able to compete with commercially available mesh-based engineering

analysis software on the basis of solution time. The elimination of mesh generation time is
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the most notable improvement over existing techniques as this is time spent by the engineer,

whose time is considerably more expensive than computer time. Although this may be

appealing on its own, what is more interesting is that despite the additional preprocessing

and overhead computations required for the meshless process, the MIMS method is able

to advance the solution to steady state in less time than the mesh-based techniques. This

can be attributed to the fact that an adaptive refinement process can most appropriately

refine the model, resulting in discretizations requiring fewer computational nodes, and a

more efficient coarse to fine solution transition. It is for this reason that it is important

to consider solution times against real-world problem geometries and field configurations.

In simple verification test settings, it is unreasonable to expect any meshless technique to

compete with a solution generated on a structured mesh since the geometry and problem do

not require insight on behalf of the engineer. On the contrary, when field characteristics are

unknown a priori, the engineer must make assumptions about the flow field, and as such,

is prone to either produce a mesh with too little (resulting in loss of accuracy) or too much

(resulting in increased computation time) initial detail.

Another conclusion that can be drawn from these case studies is that it will be diffi-

cult for meshless methods, in general, to compete in terms of accuracy, against solutions

generated over structured meshes (especially when sharp field discontinuities are present).

This statement is justified by realizing that the unstructured meshless operators, in order

to obtain solution robustness, will generally require a larger support domain than the

equivalently formed structured mesh. As evidenced by the results for the normal shock

nozzle, despite every consideration that was made during support domain construction and

directional refinement, the normal shock is still smeared over the largest topology that spans
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the discontinuity; whereas the structured domain is able to smear the solution, at least,

over one cell width. That being said, this case does not represent a failure on behalf of

meshless methods, instead, it illustrates their practical utility and serves to demonstrate

where analysts should defer to alternative solution techniques. For example, if a MIMS solver

was utilized to generate the initial solution shown in Figure 10.14 instead of COMMERCIAL

2, 10 minutes would have been saved, resulting in 30% less time spent during the initial

solution process. At that point the engineer could determine if a more detailed study should

be performed, and whether the necessary time should be invested to generate a structured

mesh better able to resolve the flow phenomenon. In many scenarios, exactly capturing

discontinuity width will not be a primary concern; indeed, for the normal shock nozzle,

simply knowing that there is a shock present and accurately determining its location will

usually provide sufficient information to drive further design improvements. In this manner,

MIMS-based meshless methods present themselves as an ideal general solver; they are capable

of automatically resolving continuous flow fields to a grid-converged state in minimal time,

while at the same time providing the user the necessary information needed to assess whether

or not further detailed studies are warranted.
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CHAPTER 11

CONCLUSIONS

In summary, the primary focus of this research has been on developing an industrially rele-

vant, numerical physics solution process implementing a novel meshless method. Collectively

referred to as the Model Integrated Meshless Solution method, or MIMS, this methodology

incorporates both a unique meshless implementation utilizing a variety of interpolation

techniques as well as a novel model generation process capable of automatically generating

point distributions for arbitrarily complex geometries. It is the development and fusion of

these techniques which represent the primary contribution of this research to the scientific

community. To provide a graphical representation of the complete research efforts, Figure

11.1 illustrates each component of the MIMS process in flowchart form, with each component

linked to the associated modules. Figure 11.1 should serve as justification for the overarching

theme of this research: that to be competitive on an industrially relevant level, meshless

methods must be tightly integrated with the model generation process. This is evidenced

by the multitude of interconnects between the model generation modules and the solution

routines, each of which represent a major advantage of the proposed method over traditional

mesh-based techniques. Without these close connections between the solution and model

generation processes, meshless methods become just another PDE solution technique and

will have a difficult time competing with more established methodologies. However, when

integrated with the model generation process, meshless methods can reach their full potential
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Figure 11.1: MIMS Process Flowchart

and obtain levels of automation and speed unparalleled by current engineering analysis

packages.

The primary contribution of this research to the meshless community has been the

development of model generation structures and the associated algorithmic developments

that allow for a compact point distribution that can take advantage of the liberties granted
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by meshless methods. In this respect the MIMS method is able to obtain accurate solutions

for arbitrarily complex geometries. In addition to this, there have been several incremental

advancements that have facilitated a more complete method; these include:

• Acknowledgment and development of complete near-boundary region representation

(shadow layer)

• Formulation and analysis of Virtual Finite Differencing shape function generation

technique

• Development of a support domain optimization procedure capable of handling clustered

point distributions with high aspect ratios

• Examination and validation of heuristic RBF shape parameter optimization routine

These advancements, coupled with the model integration and adaptive refinement procedures

have facilitated development of the MIMS method. Through a set of validation problems

and three thorough case studies (whereby the entire solution process was compared to

currently available engineering analysis packages), this research effort has demonstrated

both the validity and applicability of the MIMS methodology. These example problem

have demonstrated that a properly integrated meshless approach can significantly reduce

both engineering and computational times while at the same time providing a high degree

of accuracy for most engineering problems. In addition, it has emphasized the ideal use of

meshless techniques; for parametric and early study designs where many different geometric

configurations will be analyzed and overall trends compared. In this manner, and based on

the comparative times demonstrated throughout Chapter 10, the MIMS method represents

an enormous potential time savings and will result in a more streamlined and thorough

design process.

169



Although substantial improvements over existing technologies have been demonstrated,

there are several areas that were beyond the scope of this work and could benefit from further

research. Specifically, these include:

• Further exploration of practical numerical stability behavior and understanding the

implications of elliptical support domains on interpolation behavior

• Investigate the possibility of optimizing RBF shape parameter value on local field

characteristics to provide better capturing of high gradient regions

• Examination of using weight functions to control numerical smearing of the solution

across high-aspect ratio regions (via directionally independent weight control)

• Further improvements to support domain construction in terms of optimizing perfor-

mance and reducing excess nodal influence

• Addressing refinement as applied to unsteady solutions; currently the meshless tech-

niques employed in the MIMS method may be generally applied to unsteady problems,

however, the adaptive refinement and model generation routines would need to be

modified to facilitate efficient removal of nodes during the solution process

Each of these areas of research could provide additional benefits to the MIMS method,

further expanding its capabilities in the areas of heat transfer and compressible fluid flow. In

addition, future efforts may be desired to apply these techniques to other areas of engineering

analysis including incompressible fluid flow, elasticity, and electromagnetism.

This research has introduced a new technique for the solution of heat transfer and com-

pressible fluid flow problems called the Model Integrated Meshless Solution (MIMS) method,

providing a fundamental start into development of integrated model generation techniques

tailored for meshless methods. This research has illustrated that meshless methods must be

170



tightly integrated with the model generation process to be competitive, and only through

this integration will they be capable of fully realizing their potential and be considered a

competitive technique with more established solution methodologies. The results shown have

demonstrated that once sufficient levels of integration have been achieved, meshless methods

can significantly reduce both engineering and overall computational expense while at the

same time providing a high degree of accuracy for real-world engineering problems. These

qualities make the MIMS method an ideal platform to provide an intuitive, yet powerful

approach to solving modern engineering analysis problems.
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