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ABSTRACT 

Metamaterials are engineered periodic composites that have unique refractive-index 

characteristics not available in natural materials.  They have been demonstrated over a large 

portion of the electromagnetic spectrum, from visible to radiofrequency.  For applications in the 

infrared, the structure of metamaterials is generally defined using electron-beam lithography.  At 

these frequencies, the loss and dispersion of any metal included in the composite are of particular 

significance.  In this regard, we investigate deviations from the Drude model due to the 

anomalous skin effect.  For comparison with theoretical predictions, the optical properties of 

several different metals are measured, both at room temperature and at 4 K.  We extend this 

analysis to the coupling between plasmon and phonon modes in a metamaterial, demonstrating 

that very thin oxide layers residing at the metal-substrate interface will significantly affect the 

spectral location of the overall resonance.  Oxide-thickness-dependent trends are then explored 

in some detail.  Potential applications of this general area of study include surface-enhanced 

infrared spectroscopy for chemical sensing, and development of narrowband notch filters in the 

very long wavelength infrared.  We then consider various possibilities for development of 

tunable infrared metamaterials.  These would have wide applicability in dynamically variable 

reflectance surfaces and in beam steering.  We consider several methods that have been 

previously shown to produce tunable metamaterials in the radio frequency band, and explore the 

challenges that occur when such techniques are attempted at infrared frequencies. A significant 

advance in tunable-infrared-metamaterial technology is then demonstrated with the use of 

thermochromic vanadium dioxide thin films. Highlights include the first demonstration of a 

tunable reflectarray in the infrared for active modulation of reflected phase, the first 
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demonstration of a tunable resonance frequency in the thermal infrared band, and the largest 

resonance-frequency shift recorded to date in any part of the infrared. Finally, future work is 

proposed that holds the promise of wideband frequency tuning and electronically-controllable 

metamaterials.  
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CHAPTER 1: INTRODUCTION 

1.1 Metamaterial Definition and Motivation 

Materials Science is the study of how physical structure determines the mechanical, 

electrical, thermal, magnetic, and optical properties of a thin film or bulk material.  This 

dissertation will focus on the optical properties of thin films, and in particular metallic 

films.  Dielectric, or electrically insulating, thin films are well known to have many 

interesting optical properties resulting from their physical structure including 

thermochromism which will be discussed in this dissertation.  The optical properties of 

metallic films, particularly as relates to their physical structure, have historically been 

regarded with less interest.  Metals reflect electromagnetic radiation and can be polished 

to make mirrors.  Within the bounds of traditional metallurgical processing there is 

nothing that can change this basic behavior. 

 

In recent years work in metamaterials and plasmonics has brought considerable interest to 

the optical properties of metallic thin films, and to controlling the optical properties of a 

surface using metallic thin films by artificially engineering nanoscale structures.  The 

capability to artificially structure metal elements at a sub-wavelength scale into a periodic 

array has been enabled by the increased availability of electron-beam (E-beam) 

lithography over the past decade.  Using such elements it is possible to control the way a 

surface transmits, absorbs, reflects, or emits radiation in such a way that would not be 

possible with metallurgical processing or in naturally occurring materials.  These 

composite material thin film systems consisting of sub-wavelength scale metallic element 
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arrays layered with dielectric thin films and a substrate are called metamaterials.   

Metamaterials have extraordinary optical properties that can not be achieved in normal 

materials.   

 

Although the artificial structure primarily determines the optical properties of a 

metamaterial, the physical structure and the properties of the constituent metal films at 

the frequency at which they are used also determine the metamaterial’s behavior.  This 

fact is often overlooked in the literature leading to grandiose claims based upon 

simulations using idealized material properties.  In this dissertation the IR optical 

properties of metal and dielectric films will be carefully considered in each experiment.   

 

Metamaterials were first constructed in the radio frequency (RF) portion of the 

electromagnetic spectrum and have been built for increasingly shorter wavelengths for 

the past decade.  The focus of this dissertation will be metamaterials in the infrared (IR) 

portion of the spectrum.  The IR spectrum is sub-divided into three bands of interest; the 

near-IR from 1.5 to 3 µm in wavelength, the mid-IR from 3-8 µm in wavelength, and the 

thermal-IR from 8-12 µm in wavelength.  The thermal-IR is so named because a 

blackbody at 300 K will emit most strongly in this band.  While a range of metamaterial 

configurations and applications are considered in this dissertation, all of the experiments 

share common design, fabrication, and testing methods.                     
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1.2 Design, Fabrcation, and Testing Methods  

1.2.1 Design with Finite Element Method 

The numerical simulation tool used for the experiments in this dissertation was finite-

element method (FEM) with the Ansoft HFSS commercial software.  The user inputs a 

unit cell design using a CAD interface and then defines electromagnetic constants for 

each component in the unit cell.  The software then uses FEM and the electromagnetic 

boundary conditions to solve Maxwell’s equations to determine how incident radiation is 

scattered or absorbed by the unit cell.   

 

The FEM simulations considered linearly polarized radiation at normal incidence to a 

unit cell constructed using the software’s CAD interface.  In addition to the unit cell, 

periodic boundary conditions are applied so that all calculations are made for the case of 

an infinite array.  This accounts for interelement coupling.  For example Fig. 1.1 shows 

an HFSS model for a split-ring resonator (SRR) metamaterial.   

 
Figure 1: A: HFSS unit cell in standard view, B: HFSS unit cell in solver view to show 

boundary setup. 
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Part A of Fig. 1 shows the standard HFSS view with an air box surrounding the unit cell 

to define boundaries for the solver.  Each side of the air box is given a boundary 

condition as shown in solver view in part B of Fig 1.  The boundary conditions are 

symmetric about the axis such that the boundary conditions of the three sides not shown 

are the same as the opposite side.  The waveports on the top and bottom of the unit cell 

act as both source and receiver of radiation.  The top waveport is designated 1, and the 

bottom waveport is designated 2, so that the radiated power Sij can be defined. In this 

nomenclature i is the radiation source, and j is the receiver, so S11 would be the radiated 

power reflected from the unit cell, and S12 would be radiated power transmitted through 

the unit cell.  Since the sum of radiated power reflected, transmitted, and absorbed must 

be equal to unity, the absorbed power is determined by taking unity minus the sum of S11 

and S12.   

 

With the setup shown in Fig 1 two linear polarization states are possible depending upon 

which axis is chosen to have perfect electric conductor (PEC) boundaries.  In the case of 

SRR elements this choice is important because the resonant mode depends upon whether 

the electric field is parallel or perpendicular to the gap.  The radiation mode that is 

generated by this configuration may only propagate normal to the element in the unit cell.  

Grazing angle incidence will not be considered in this dissertation. 

 

An important consideration in addition to the electromagnetic boundary conditions is the 

material properties used for the different parts of the unit cell.  Depending upon the needs 
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of the experiment, HFSS simulations are done across a region of the IR spectrum.  In 

almost any material, dispersion is significant in any appreciable bandwidth in the IR.  

Thus frequency dependent material constants are used for each layer and element present 

in the unit cell.  There are several equivalent ways to describe the complex optical 

constants such as dynamic conductivity, permittivity, or the index of refraction (real part) 

and extinction coefficient (imaginary part).  It is also possible to use some combination of 

the three, but it is best to pick a convention to use in simulations.  For the simulations in 

this dissertation the real and imaginary parts of permittivity are used for both the 

conductors and dielectrics.  This method produces the best agreement when simulations 

are compared to measurements, and is preferred over using only the real part of dynamic 

conductivity to represent conductors.   

 

Permittivity values over large spectral ranges are available from many sources in the 

literature, but as the optical properties depend upon the physical structure of the thin film 

such sources are not always accurate.  There is also only a limited amount of IR data.  To 

solve these problems IR Ellipsometry was used to measure the frequency dependent 

optical constants for all of the thin films used in this dissertation.  A J.A. Woollam VASE 

system was used with the capability to measure from 2 to 40 µm in wavelength and is 

shown in Fig 2. 
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Figure 2: J.A. Woollam IR VASE Ellipsometer 

 
Ellipsometry measurements were made by sending circularly polarized IR radiation 

incident onto a continuous thin film sample at a grazing angle.  The IR radiation that is 

reflected from the sample is elliptically polarized, and polarization optics are used to 

measure the power ratio of the two orthogonal components of the ellipse, and the relative 

phase difference between these components.  Both of these spectral measurements will 

depend upon the composition, film thickness, and many other details of the sample.  A 

model is then constructed and fit to the polarization data.  Optical constants may be 

extracted from this model.  In some cases when only one interface is present, for example 

an optically thick metal film, optical constants may be calculated directly from the 

polarization data.  In most cases the sample consists of a thin film that is at least partially 

transparent on a substrate, and a model must be used to account for thin film interference 

effects.  While modeling tools such as HFSS are helpful in the initial designing stage, the 

simulations are only a first step and it takes multiple characterization steps for a 

simulation to match fabricated designs.             
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1.2.2 E-beam Lithography and Lift-Off Processing 

Once a design is complete the next step is to fabricate metamaterial elements using 

electron beam (E-beam lithography) and standard semiconductor processing techniques.  

The thin films used in this dissertation’s experiments were deposited using physical-

vapor deposition (PVD) by either sputtering or E-beam evaporation.  These processes are 

described in detail for the individual experiments.  The main topic to be introduced here 

is the lift-process that is used for the elements in all of the experiments.  Figure 3 shows 

the process flow for single and multiple layer metamaterial elements.   

 

Most of the experiments in this dissertation use only single layers of elements.  Specifics 

of E-beam resist type and dose are discussed further in chapter 4.  After spinning resist 

onto a Si wafer a metamaterial pattern is exposed using the Leica direct-write E-beam 

lithography system.  The pattern is defined using CAD software such as L edit, and the 

resulting file is converted for use with the Leica.  During the exposure step the elements 

are written one at a time with a 1 to 25 nA beam on a raster scan stage.  Depending upon 

the size of the elements to be used, a typical write time for a 1 cm by 1 cm element array 

would be several hours.  To fully populate a standard 4 inch diameter wafer with 

metamaterial elements can take several days of write time.  The exposed sections of the 

resist polymer are now cross linked and can be etched away using a developer solvent.  

The next step is to deposit metal onto the resist pattern.  This is done with E-beam 

evaporation rather than sputtering because the deposition needs to be highly directional 

for proper lift-off to occur.  Finally the resist is stripped using a second chemical solvent 

to leave only the metallic elements behind.    
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Figure 3: Device cross section diagrams and process flow for liftoff lithography. 

 

Figure 3 also shows process steps required for a second layer of elements.  Multiple layer 

metamaterials will be considered in further detail in chapter 5, and it is critical to 

understand the planarization issue involved whenever multiple layers are considered.  If  

a PVD deposition is used for the dielectric spacer between element layers then the surface 

contour from the first layer of elements will be projected to the second layer.  There are 

two possible ways to planarize the dielectric spacer before fabricating the second layer of 

elements.  The direct method is to use chemical-mechanical polishing (CMP), but since 

the dielectric spacer may be an unusual material for semiconductor processing it is not 

trivial to find a polishing house to perform the process.  Developing new CMP recipes for 

the variety of dielectric spacer materials available in the IR can be costly and time 
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consuming.  An alternative method is to use self-planarizing materials that may be spun 

onto the wafer, or dip coated.  This limits the available materials for IR dielectrics 

compared to PVD, but several choices are considered in chapter 5 as well as appendix C.     

1.2.3 Metamaterial Testing Techniques 

Once fabrication of a new metamaterial surface is complete it is tested to determine how 

it spectrally reflects, transmits, absorbs, or emits IR radiation.  Additionally the tunable 

metamaterials in chapter 6 are tested to determine their change in reflected phase, but the 

power measurements used in all of the experiments are the focus of this section.  Spectral 

reflection and transmission are measured with a Perkin-Elmer FTIR spectrometer.  This 

is done with a microscope attachment so that metamaterial elements need only populate 

an array that is 1 mm by 1 mm in size.  The FTIR uses a broad band source that covers 

the band from 1.5 to 25 µm and then uses a numerical Fourier transform technique to 

determine the spectrum of the scattered radiation received by the detector.  This gives the 

FTIR the ability to measure the data from a large portion of IR spectrum quickly without 

taking measurements at one frequency at a time using a filter wheel.  A more detailed 

explanation of FTIR spectroscopy may be found in Ref. 1.1. 

 

While the FTIR may be used to collect spectral reflection data from any planar surface, 

transmission data requires a transparent substrate.  In order to be IR transparent, Si wafers 

must be double side polished and high resistivity to avoid free-carrier absorption.  

Absorption may also be measured with an FTIR, but it is not always reliable.  If both the 

spectral transmission and reflection are known, then so is the absorption based on 
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conservation of energy.  However in practice the FTIR is more reliable for determining 

the spectral location and bandwidths of resonant features than in measuring their 

magnitudes. This is particularly important when measuring potential tunable 

metamaterials.  A shift in the amplitude of reflected power with no corresponding 

spectral change in features (resonant minima shifts, bandwidth changes) should not be 

trusted as evidence of tunability.  Several examples of this pitfall will be seen in chapter 

6.  

 

One round through the design, fabrication, and testing process is only the beginning.  

After testing is complete the original simulation is corrected to account for actual versus 

ideal element dimensions, native oxide layers, and other features and phenomena.  A new 

design may then be fabricated and tested and the cycle is repeated.  A good example is 

the experiments presented in chapter 5 which detail the most precise metamaterial 

experiments done to date in the IR resulting in excellent agreement between simulation, 

analytical model, and measured data.    

1.3 Thesis 

It is the intended goal of this dissertation to explain how the properties of the constituent 

thin films and elements comprising an IR metamaterial affect the composite’s behavior.  

This is demonstrated for a variety of element geometries in both static and tunable 

metamaterials.  The anomalous skin effect is shown to affect the properties of metallic 

thin films and can play an unexpected role in the behavior of metamaterials at cryogenic 

temperatures.  In addition to the properties of the metallic elements, the surrounding 
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dielectric layers also play a role.  Even layers as thin as the native oxide on a Si wafer are 

shown to affect the resonant frequency of SRR elements.  It is then shown that incident 

IR radiation excites plasmonic-cavity modes in metamaterials which can couple to 

phonon modes in surrounding dielectric layers.  Finally it is shown how materials with 

electronically, or thermally, controlled optical properties may be used to build tunable 

metamaterials.  
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CHAPTER 2: THEORETICAL BACKGROUND 

2.1 The Drude and Sommerfeld Models 

In the contemporary literature the majority of papers on topics concerning the optical 

properties of metallic thin films begin by stating that permittivity may be calculated 

according to the Drude model.  This is often approximated as Eq. 2.1 which only gives 

the real part of the permittivity and assumes that there is no damping. 

2

2

1
ω
ω

ε p

r −=                                                      (2.1) 

The permittivity is written this way to emphasize that when the frequency of the incident 

radiation, ω, is below the plasma frequency, ωp, the dielectric function has a negative 

value.  This is significant for metamaterials as will be discussed in chapter 2.3.  In the 

Drude model the electro-optical behavior of metals is approximated by the kinetic theory 

of a dilute gas.  Since we are primarily concerned with metals in a condensed state this 

requires some explanation.   

 

The Drude model has been in use since the beginning of the 20th century, and thus 

predates modern descriptions of the atom.  A Drude metal may be considered to consist 

of a collection of positively charged ions that are balanced by an equal number of free 

electrons such that charge neutrality is maintained.  This description may be translated to 

say that the ionic cores are the nucleus and bound electrons and that the free electrons are 

the valence electrons.  The valence electrons are assumed to be free in the sense that they 

do no not interact with the ion cores, but not so free that they can escape from the metal.  

These free electrons move about on straight line paths behaving just like particles in a 
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gas.  If an external electric field is applied the motion of the free electrons may be 

considered to occur according to Newton’s laws.  As in the kinetic theory of gases, the 

velocity of the free electrons depends upon the temperature of the metal and may be 

calculated using the Maxwell-Boltzmann distribution.  In the absence of an external 

electric field the free electrons, like particles in a gas, will move in random directions 

such that their net velocity is equal to zero.  

 

The other key feature of the Drude model is that free electrons can suffer inelastic 

collisions as they move about.  This accounts for electrical resistivity, but is not always 

mentioned when considering the optical properties of a metal film as in Eq. 2.1.  In the 

Drude model electrons are assumed to not interact with each other and since the metal is 

modeled as a dilute gas there is no physical structure to scatter electrons either.  

Therefore the free electrons are assumed to collide exclusively with the ion cores.  We 

may also define an electronic mean free path λmfp between collisions, and then depending 

upon the velocity of the electrons, a scattering time τ.  The motion of the free electrons 

will then have a damping rate equal to 1 / τ that must be accounted for. 

 

Analytical equations for the optical properties of a metal may be determined by 

considering the response of a metal to an electric field according to the Drude model.  A 

DC electric field vector E will move electrons though some area of the metal allowing us 

to define a current density J which will be parallel to E.  The two vectors may be related 

by a DC conductivity σ0 according to Eq. 2.2. 

EJ
vv

0σ=                                                      (2.2)   
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This leads to the derivation of σ0 [2.1] resulting in Eq. 2.3. 

m

Ne τσ
2

0 =                                                         (2.3) 

In Eq. 2.3 N is the concentration of free carriers (valence electrons) per unit volume, e is 

the charge on the electron, and m is the mass of the electron.  When IR radiation is 

incident on a metal film the external electric field is now a function of frequency and has 

the form E0exp(-iωt) of a time-harmonic wave.  Modifying Eq. 2.2 for a time-harmonic 

field and current-density wave necessitates that conductivity as a function of frequency, 

or dynamic conductivity, be considered as well.  To do so we write the equation of 

motion for a free electron as in Eq. 2.4. [2.2] 
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By assuming solutions for the electron’s displacement x are of the form x0exp(-iωt), and 

since velocity is the derivative of displacement, we can obtain a solution for the free 

electron’s velocity under a time-harmonic field in Eq. 2.5. 
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By combining Eq. 2.5 with the expression for the time-harmonic current-density wave we 

arrive at the expression for dynamic conductivity in Eq. 2.6. 
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The physical meaning of dynamic conductivity is not so clear compared to DC 

conductivity.  With a DC external field we understand that the electrons now travel 

parallel to the field with some net velocity, and that for a given free carrier density, the 

lower the conductivity is the more inelastic collisions occur resulting in resistive heating, 
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or ohmic loss, from the current.  In contrast dynamic conductivity is a complex number, 

and when the frequency ω is on the order of the scattering time τ the external electric 

field is now out of phase with the current density wave.  It is tempting to maintain the 

resistive heating picture and say that the real part of the dynamic conductivity is still  

ohmic loss.  However we might then look at Eq. 2.6 and see that if we decrease τ in some 

experiment we can increase the real part of dynamic conductivity if ω is sufficiently 

large.  This is despite the fact that any decrease in τ would decrease the DC conductivity 

by Eq. 2.3.  At the same time the imaginary part of the dynamic conductivity gets larger 

as well, so it becomes an interesting paradox to try to improve dynamic conductivity by 

decreasing the DC conductivity.  However in the current discussion it is still unclear 

whether the real part of dynamic conductivity may be equated with ideal optical response 

from a metal, so we must further describe the optical properties of materials and consider 

what sort of behavior we would like a metal to have.   

 

Although the dynamic conductivity completely describes the optical properties of a 

metallic thin film the presence of a large imaginary component makes its physical 

meaning uncertain.  For this reason permittivity is usually used once the ωτ product is 

greater than unity.  For most metallic thin films used in metamaterials τ is on the order of 

10 fs.  In the IR and at higher frequencies permittivity is the easiest way to describe the 

optical properties of metals.  We can relate permittivity to dynamic conductivity by 

returning to the equation of motion for the free electrons in Eq. 2.4.  The solution for the 

displacement of free electrons is given by Eq. 2.7. 
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The polarization P of the free electron gas is equal to the product of the electron’s 

displacement, its charge, and the concentration of free electrons.  Permittivity can then be 

derived from the electric displacement D in Eq. 2.8. 

nexEPEED r −=+== 000 εεεε                                  (2.8) 

By substituting Eq. 2.7 into Eq. 2.8 we arrive at an expression for the permittivity of a 

metal according to the Drude model in Eq. 2.9. 
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Using Eqs. 2.9 and 2.6 we can write can an expression for the relationship between the 

dynamic conductivity and the permittivity in Eq. 2.10 
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By considering the relationship in Eq. 2.10 we can begin to understand the physical 

meaning of the real and imaginary parts of the dynamic conductivity.  In Eq. 2.11 

permittivity is broken into real, εr’, and imaginary, εr”, parts and written in terms of the 

real and imaginary parts of the dynamic conductivity. 
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In Eq. 2.11 n is the index of refraction and k is the extinction coefficient.  The real part of 

dynamic conductivity is related to the imaginary part of the permittivity.  The imaginary 
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part of permittivity is proportional to a material’s extinction coefficient and so is related 

to photons being absorbed by the material.  The ideal optical response of a metal is 

typically reflection, not absorption, and associating the real part of conductivity with 

photonic absorption rather than ohmic loss may be more meaningful at high frequencies.  

The real part of permittivity is related to the imaginary part of the dynamic conductivity.  

If we want metamaterials to have a sharp, narrowband response and a large oscillator 

strength, then we want the real part of permittivity to be negative sign and large in 

magnitude.  According to Eq. 2.11 this means that we should favor a large imaginary part 

of the dynamic conductivity. 

 

In metamaterial elements when incident radiation interacts with the metal’s free electrons 

we want this interaction to generate surface current modes that are confined to the surface 

of the element as much as possible.  If the surface current diffuses into the elements this 

results in broad band resonance and lower oscillator strengths.  In some cases a broad-

band response is desired, but when broad-band behavior comes at the expense of low 

oscillator strength (low resonant amplitude, small ‘depth of notch’) it is not usually a 

favorable trade off.  Therefore the optical properties of a metal that are ideal in most 

situations for metamaterial elements are low imaginary part of permittivity and large, 

negative sign, real part of permittivity.  It is useful to define a loss tangent as the ratio of 

the imaginary to the real part of permittivity.  The best metallic response will occur when 

the loss tangent is made to be negative sign and small in magnitude.  The relationship 

between the physical structure and the loss tangent of a metal film will be explored 

experimentally in chapter 3.  
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One other feature of the Drude model that was brought up in Eq. 2.1 was the plasma 

frequency.  This is a convention for naming the group of constants appearing in Eq. 2.9 

and the plasma frequency is defined in Eq. 2.12. 
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The plasma frequency marks the frequency limit at which a metal can no longer screen 

electric fields.  For most metals the plasma frequency is in the ultraviolet portion of the 

spectrum.  An incident time-harmonic field having frequency greater than ωp could 

propagate through the metal, while at frequencies below ωp the metal will reflect 

radiation.  Some degree of absorption will occur in either case.  The name plasma 

frequency is used because in the Drude model we approximate a condensed-phase metal 

as a plasma.   

 

The Drude model is still used to describe the optical properties of metal films because it 

works as an adequate first-order approximation in many situations such as in modeling 

metamaterials and plasmonic modes.  However, the treatment of a metal as a dilute gas 

entirely ignores the fact that electron motion is subject to a periodic potential associated 

with the metal’s crystal lattice.  Without the resulting theories on electronic-band 

structure there is no way to explain such basic phenomena as why Au is the color gold in 

the visible.  For the purposes of the optical properties of metals that are most relevant to 

metamaterials and other applications the full details of electronic-band theory are not 

necessary.  However there are also basic assumptions in the Drude model that affect its 

prediction of the permittivity at high frequencies that are not necessarily true, and that 

affect IR metamaterials.  Examples include the assumption that the scattering time is 
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constant with respect to frequency, that the free electron concentration is independent of 

physical structure, the distribution of electron velocities is determined by the Maxwell-

Boltzmann equation.  By expanding our view of electron theory to include the 

Sommerfeld model we can begin to address some of these problems. 

 

The most significant failures of the Drude model are not in its description of the optical 

or electrical properties of metals, but rather in the thermal properties of metals.  To 

correct these problems, Sommerfeld updated the theory of an electron gas to include the 

Fermi-Dirac distribution in place of the Maxwell-Boltzmann distribution.  Qualitatively 

the difference between these two is that electrons are now considered to be Fermions and 

are bound by the Pauli exclusion principle that states only one electron may occupy one 

energy state at a time in an atom.  The thermal properties of metals are outside the scope 

of this dissertation, but the impact of Fermi-Dirac statistics on the optical properties of 

metals is explained.   

 

In the Sommerfeld model a single electron is described by a wave function with a 

specified spin state.  The electron is confined to some arbitrary volume by the attraction 

of the ions, and we can solve the time-independent Schrödinger equation subject to 

periodic-boundary conditions. [2.3-2.4]  This results in the solutions for energy levels 

given by Eq. 2.13 
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where ћ is Planck’s constant, k is the electron’s wave vector, m is still the standard mass 

of the electron, and v is the electron’s velocity.  The periodic-boundary conditions result 
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in a quantization condition such that the arbitrary volume must be filled with an integer 

number of wave vectors.  This may be referred to as a k-space, and it has some volume in 

which a finite number of k-values are allowed.  If we assume that the electrons do not 

interact with each other then we can use the solution in Eq. 2.13 and populate our k-space 

with N electrons according to the rules for Fermions.  Hence for each wave vector there 

are two electrons – one for each spin state.  N is a large number and the occupied region 

of k-space can effectively be considered to be a sphere in the Sommerfeld model.  The 

occupied region of k-space has a radius called the Fermi wave vector kF, and the surface 

of the sphere (or Fermi surface) separates the occupied from the unoccupied states.  The 

Fermi wave vector has units of inverse distance (usually Å-1) and will depend upon the 

radius of a sphere rs whose volume is equal to the volume of a conduction electron.  The 

radius varies depending upon the metallic atom, but is usually between 1 and 3 Å and can 

be found in references such as [2.3-2.4].  The Fermi wave vector can be calculated using 

Eq. 2.14. [2.3] 
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By plugging Eq. 2.14 into 2.13 we can now calculate the Fermi velocity for a metal 

according to the Sommerfeld model in Eq. 15. 
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The Fermi velocity calculated using Eq. 2.15 is on the order of 106 m/s, and vF is an order 

of magnitude larger the electron’s velocity would have been according to the Maxwell-

Boltzmann distribution at room temperature.   

 



 22

The Fermi velocity can be taken to be the average speed of a conduction electron in a 

metal.  Since we can measure τ using Eq. 2.3, we can now determine the electronic mean 

free path of free electrons in a particular model.  This concept is critical to understanding 

the anomalous skin effect in chapter 3, and the Sommerfeld model is essential to 

correctly calculate λmfp according to Eq. 2.16.  

τλ ×= Fmfp v                                                (2.16) 

It is worth noting that the Fermi velocity is a property of the atom, and thus must remain 

constant regardless of how we might process the metal and change the physical structure.  

The scattering time however depends entirely on the physical structure of the metal, and 

although this is not assumed in either the Drude or Sommerfeld models, it will be shown 

in chapter 3.  One limitation of the Sommerfeld model is that we are limited to spherical 

Fermi surfaces.  If we were to develop a more sophisticated approach using something 

like the tight-binding model we would find that the Fermi surface may not be very 

spherical at all as occurs with W [2.5] and Ru [2.6].  In this case we must treat the Fermi 

velocity as a vector, and it can vary greatly depending upon crystallographic direction.  

However this is only relevant for single crystals, or else metal films with grains much 

larger than λmfp. This dissertation will mostly be concerned with polycrystalline metallic 

thin films.      
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2.2 Surface Plasmon Polaritons 

A closely related field to metamaterials that has been simultaneously developed is the 

study and applications of surface plasmon polaritons (SPP).  In the past few years these 

two fields have merged, and metamaterials are now frequently discussed in terms of 

plasmonics.  The goal of this chapter is explain the physics necessary to understand the 

rest of this dissertation, but also for the reader to be able to read the literature on 

metamaterials.  This requires some explanation of the relationship between SPPs and 

metamaterials. 

 

The study of plasmonics does not have much to do with the actual plasma state, but rather 

in the sense that we can treat a metal as a plasma according to the Drude and Sommerfeld 

models.  The word plasmon refers to a quanta of plasma oscillation which is analogous to 

the relationship between photons and radiation or phonons and vibration.  Despite the 

basic principal of quantizing plasma oscillations, the equations describing the wave 

vectors and propagation constants associated with SPPs are derived from Maxwell’s 

equations.  Thus any plasmonic experiment can be designed using standard 

electromagnetic simulation tools such as HFSS.  Plasmons are mathematically treated as 

waves, and the utility of the plasmonic quasi-particle concept is just to create a picture to 

help understand how plasmons interact with other particles such as photons or phonons.  

This picture allows us to imagine the interaction between a plasmon and a phonon as two 
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coupled harmonic oscillators (mass on a spring) driven by an external force.  This will be 

shown to be an accurate picture in chapter 5.†   

 

There are both bulk and surface plasmons (SP).  Bulk plasmons occur at or above the 

plasma frequency when the field can now propagate through the metal.  Below the 

plasma frequency the field can not penetrate beyond a skin depth into the metal, and so 

the only allowed plasmon modes are confined to the surface, or more specifically at the 

interface between a metal and a dielectric.  A plasmon mode on its own is not very 

useful, and it needs to couple to radiation to become useful.  A plasmon coupled to a 

photon is called a plasmon polariton.  In general a polariton is a quasi-particle consisting 

of two coupled particles which could also be a photon coupled to a phonon.  If radiation 

is incident on a continuous metallic thin film SPs are not excited.  Since SPs are confined 

modes there will always be a mismatch between the wave vectors of freely propagating 

radiation and the SP.  This is illustrated by the dispersion relationship for a SP which 

depends upon the SP wave vector (kSP) in Eq. 2.17. [2.7] 
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In Eq. 2.17 εd is the frequency dependent permittivity of the dielectric, εm is complex 

Drude model permittivity from Eqs. 2.10 to 2.11, and k0 is the free space wave vector.  

The real part of kSP is the propagation term and the imaginary term describes the loss of 

the mode.  The SP propagation length LP is given by Eq. 2.18. 

                                                 
† We could make an equivalent picture by discussing metamaterials in terms of surface currents and circuit 
analog models, but this would be less elegant, and would receive less attention in the literature.  By the 
same token we could call a metamaterial a frequency selective surface, but the chances of getting a paper 
on circuit analog models and frequency selective surfaces published in the Physical Review are near zero.  
A paper on plasmon-phonon coupling in metamaterials has more appeal.         
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We can use the real part of Eq. 2.17 along with Eq. 2.11 to generate surface plasmon 

dispersion relationships varying with dielectric permittivity shown in Fig. 4.  To calculate 

εm the DC conductivity and scattering time of bulk Ag is used in Eq. 2.11, and non-Drude 

phenomena are ignored for the time being.  The values used for εd are assumed to be real 

and constant with respect to frequency for the time being as well. 

 
Figure 4:  Surface plasmon dispersion relationship for different dielectric permittivities 

      

Figure 4 shows that kSP always lies beneath the light line – that is the line for which the 

frequency is equal to the free space wave vector.  This indicates that the SPs are confined 

modes, and in order for radiation to couple to SPs the difference in wave vector must be 

made up.  However once radiation has coupled to an SP the large difference in wave 

vector will allow the mode to propagate without leaking or re-radiating – hence confined 

to the surface.  Several methods have been developed over the years to couple radiation 
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into SPs to launch SPP modes including prism coupling [2.8-2.9], near-field scattering 

from a sub-wavelength feature [2.10-2.11], and diffraction grating coupling [2.12]. 

Figure 4 also labels the bands corresponding to visible, near IR, and the mid to thermal 

IR frequency bands.  As the frequency decreases from ωP the confinement of the SP 

decreases as evidenced by the decreasing difference in wave vector between kSP and the 

light line.  Yet as the frequency decreases the dynamic conductivity begins to favor 

longer propagation distances.  This may be shown using Eq. 2.17 and Eq. 2.11.  With 

these two competing factors a sweet spot occurs in the visible to near IR bands where the 

SP modes is still strongly confined and propagation lengths are long enough to match 

component sizes. 

 

Because of this propagation length to confinement tradeoff, the applications for SPP 

technologies have been primarily in the visible band for applications including nano-scale 

waveguiding [2.13], enhanced transmission through lossy media [2.14], biological 

detection using nanoparticles [2.15], and for high resolution lithography [2.16].  At 

sufficiently low frequencies in the IR or THz bands, SPPs lose confinement as the 

penetration length into the metal of the incident field increases relative to the wavelength.  

This can also be seen in Fig. 4 with the small contrast in wave vector between kSP and the 

light line.  During the same period of time that SPP modes were being studied in the 

visible and near IR, metamaterials were being developed first in the radio frequency 

band, and then pushed to increasingly higher frequencies.  Since both metamaterials and 

SPPs involve sub-wavelength metallic elements excited by incident radiation it would 

seem that they have a lot in common.  Once both metamaterials and SPP structured 
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surfaces were being fabricated for use in the near IR it made sense to connect these 

similar fields of study.    

 

The connection between SPPs and metamaterials began by showing that surfaces 

structured with sub-wavelength dimensions could mimic SPP behavior and dispersion 

relationships.  Pendry referred to this as a “spoof” SPP. [2.17] Another novel feature of 

spoof SPP modes is that they do not have the low frequency confinement limitations that 

existed for the continuous metal film.  Spoof SPP modes have been shown to occur in the 

THz band [2.18], so IR metamaterials may be said to support spoof SPP modes. While 

these spoof SPP modes were originally demonstrated with metal structures that were 

thick compared to the wavelength, more recent results showed that spoof SPPs can occur 

in metamaterial elements that are thin compared to the wavelength which includes the 

metamaterials fabricated in this dissertation. [2.19]   

 

Since spoof SPP modes essentially behave like standard SPP modes they still need to be 

launched by prism coupling or some other means to achieve a significant propagation 

distance.  The design goal in this dissertation is fundamentally different in that we are 

interested in constructing resonant elements that we can use to engineer the optical 

properties of a surface.  Radiation that is incident on a metamaterial normal to the 

elements, or incident at some grazing angle, can excite plasmonic-cavity modes. These 

are similar to spoof SPPs except that they have been confined not only to the surface, but 

are further confined to oscillate on a single element without strongly coupling to nearest 

neighbors.  Metamaterials have been shown to support trapped plasmonic-cavity modes 
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confined to a single element. [2.20]  In chapter 5 this dissertation extends the theory to 

show that plasmonic-cavity modes in standard IR metamaterials exist, and that they can 

strongly couple to transverse-optical-phonon modes.    

               

 At this point we have considered how the Drude and Sommerfeld models treat thin 

metallic films as an electron gas or plasma.  It was next shown how the SPP theory was 

developed beginning with the concept of a metal as a plasma, and that plasmonic theory 

may be used to explain the behavior of IR metamaterial elements.  Metamaterials may be 

considered to be a branch on the larger plasmonics tree that contains a diverse group of 

experimental work and many applications. 

2.3 Metamaterials 

Much of the recent interest in metamaterials is due to the possibility of creating a 

negative refractive index metamaterial (NIM).  The justifications for NIMs are presented 

based on the arguments represented in the literature.  It will be discussed how the optical 

properties of metals limit the use of NIM.  More practical applications of IR 

metamaterials will then be discussed. 

 

In any normal dielectric material incident radiation is refracted along the direction given 

by Snell’s law as shown in Fig 5.   
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Figure 5: Refraction in a normal right handed material (RHM).  H is in the direction out 

of the plane of the page. 
 

The index of refraction is determined by the permittivity ε and permeability µ as shown 

in Eq. 2.19 where loss (and hence the imaginary components) is ignored for the moment. 

εμ=n                                                     (2.19) 

The rays in Fig. 5 correspond to the direction of the propagating electromagnetic wave 

corresponding to the wave vector k.  The time average of the Poynting vector S, or the 

direction of energy flux, has direction given by the cross product of the electric E and 

magnetic fields H.  In a normal material the electric field, magnetic field, and the wave 

vector form a right-handed set, and the direction of propagation (wave vector) is parallel 

to the Poynting vector.  We may call this a right-handed material (RHM).  In 1968 

Veselago argued that if both ε and µ were simultaneously changed to negative sign then a 

left handed material (LHM) would result [2.21].  From Eq. 2.19 the sign of n is 

ambiguous since both positive and negative roots exist whenever ε and µ have the same 

sign.  Veselago’s derivation begins with Maxwell’s equations in Eq. 2.20. 
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We assume Cartesian coordinates such that H is in the positive x direction and E is in the 

positive y direction.  If the fields are associated with a monochromatic plane wave then 
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each will equal to a vector coefficient with the term exp(ikz-ωt).  If we substitute fields of 

this form into Eq. 2.20 we come up with Eq. 2.21 which describes the direction of k with 

respect to the sign of ε and µ. 
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If the sign of ε and µ are both positive then Eq. 2.21 describes an RHM and k is in the 

negative z direction.  If the sign of ε and µ are both negative then Eq. 2.21 describes an 

LHM and k is now in the positive z direction.  In either case the direction of the Poynting 

vector is still the cross product of E and H and is thus in the negative z direction.  

Therefore in an LHM, which is also sometimes referred to as a double-negative material, 

the energy flux and propagation of the wave are in opposite directions.  We have a 

backwards propagating wave.  Based on the definition of the wave vector in terms of the 

index of refraction in Eq. 2.22, Veselago concluded that n had the negative root from Eq. 

2.18 based on the direction of k. 
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                                                  (2.22) 

This situation is shown schematically in Fig. 6.    

 
Figure 6: Refraction in a left handed material (LHM).  H is in the direction out of the 

plane of the page. 
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Veselago’s theory of an LHM implies a situation which appears to violate causality, and 

it is as if the backwards propagating wave were originating in the material before even 

reaching the material.  This has been explained by saying that since the LHM is 

electrically thin the interaction is entirely within the near fields where superluminal 

waves may be said to “surf on a back ground of c travelling waves.” [2.22] Superluminal 

propagation is well beyond the scope of this dissertation. 

 

It is one thing to mathematically describe the properties of a material with double-

negative optical constants, but such materials do not exist in nature.  Metals have 

negative ε below the plasma frequency, but negative μ requires a magnetic resonance 

which does not normally occur at high frequencies.  In fact µ for metals in high frequency 

range can universally just be equated to unity and is generally ignored.  Since a real 

material that has a simultaneous permittivity and permeability resonance at high 

frequency would likely have loss we need to re-write the condition for an LHM in terms 

of complex permittivity and permeability in Eq. 2.23 [2.23]. 

0'""' <+ μεμε                                               (2.23) 

The challenge is then to design a material that has a magnetic resonance at high 

frequency.  In 1999 Pendry showed mathematically that two concentric cylinders, split at 

opposite ends, and made of nonmagnetic conducting sheets could support an induction 

current along the surface of the sheets.  Pendry predicted that the gap in the conductor 

would reflect the current due to the resulting electric fields and thus set-up a rotary 

current mode which would could be described as having a restoring force and thus a 

magnetic resonance. [2.24]   
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The effective permeability of a metamaterial is then typically written as Eq. 2.24 [2.25] 
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where f’ is the oscillator strength, ω0 is the resonant frequency associated with the 

magnetic restoring force, and Γ is the damping rate of the current mode.  It is interesting 

to note that the ω0 of the magnetic resonance, defined in Eq. 2.25, is related to the series 

summation of the gap inductance Lg and the inertial inductance Li which is related to 

metallic absorption loss at high frequencies.    
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In chapter 5 we will see how the gap and fringing field capacitance terms affect the 

permittivity resonance.  The permeability resonance is more strongly tied to effects on the 

element’s inductance. 

 

Split-ring resonator (SRR) elements were subsequently fabricated and tested by Smith in 

2001 at 10 GHz demonstrating the existence of NIM metamaterials for the first time. 

[2.26-2.27]  Smith’s experiment Showed that a 3-D array of SRR elements refracted an 

incident beam at a negative angle compared to when the same experiment was done using 

a Teflon block.  The demonstration of a NIM launched the modern field of metamaterial 

research and began a race to build NIM materials at increasing higher frequencies into the 

visible band.  The most obvious way to accomplish this would be to scale Smith’s design 

down to match shorter wavelengths, but this results in SRR elements that are less than 1 

μm across and around 100 nm wide in the thermal IR and another order of magnitude 



 33

smaller in the visible.  This pushes the limits of E-beam lithography for a single planar 

layer, and it is a major challenge to fabricate a truly 3-D bulk metamaterial to replicate 

Smith’s work at 10 GHz.  In the IR and visible, metamaterials generally do not have more 

than a two layer stack of elements and are really more like metafilms.  One recent 

exception that has received a great deal of attention are the so called ‘fish net’ 

metamaterials that consist of a series of thin film layers with a net pattern etched after 

deposition [2.28], but the fish nets are still not a bulk material. Thin optical frequency 

metamaterials present several disadvantages; metafilms have limited performance for off-

normal angles of incidence, and they exhibit thin film interference and cavity modes as 

opposed to obeying Snell’s law.  A thin film can not be tested using Snell’s law to 

determine its index of refraction as Smith did with the 3-D 10 GHz design.  To 

demonstrate negative refractive index in the IR and visible requires a method that can 

determine the optical properties of a thin film rather than a bulk material.     

 

As discussed in chapter 1, the principal tool for testing thin metamaterials in the IR is 

FTIR spectroscopy.  Similar spectroscopy techniques are available to measure the power 

transmitted and reflected by a metamaterial.  Ellipsometry is not an effective tool for 

metamaterial measurements because the surfaces are non-uniform, and ellipsometry is 

best suited for truly homogeneous thin films without variations in composition or 

thickness.  It is then a matter of determining how measurements of spectral power can be 

used to calculate the effective refractive index of a metamaterial.  Mathematically this 

requires that we have knowledge of the fields associated with reflection and transmission 

rather than just the power, and thus we need to know the complex transmission and 
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reflection coefficients t and r defined by Eq. 2.26 in terms of the transmitted and reflected 

power T and R and phase φT and φR.   
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All of the values in Eq. 2.26 may be taken to be functions of frequency.  Reflected and 

transmitted phase can be determined in several ways.  Relative phase differences can be 

measured directly using an interference experiment as is discussed in chapter 6 using an 

interferometer that functions at a single wavelength, or the transmitted and reflected 

phase may be measured as a function of frequency for a metamaterial using a phase mask 

[2.29].  Another method is to use the Kramers-Kronig relations to extract phase 

information based on the power measurement as is further explained in Ref. 2.30, but 

there are some limitations to this approach.  A third approach, and the one most 

commonly used, is to simply measure the reflected and transmitted power and then rely 

on a simulation tool such as HFSS to calculate the phase.  If the FTIR measurements 

agree with the simulated power spectrums, then it is fair to assume the simulated spectral 

phase is accurate.  Thus the only essential measurement necessary to evaluate a 

metamaterial is the FTIR measurement.  Equation 2.26 may then be used to calculate the 

effective permittivity and permeability of a metamaterial.  

 

Equation 2.19 gave the relationship between the index of refraction and the permittivity 

and permeability.  We need a second equation to determine ε and μ separately.  The 

material impedance z may also be used and is given in terms of ε and µ in Eq. 2.27.  We 

should assume that n, z, ε, and µ are all complex numbers. 
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ε
μ=z                                                    (2.27) 

At this point an assumption must be made that the metamaterial can be mathematically 

treated as a homogeneous slab of material with thickness d given in principle by the sum 

of the element thickness and any other thin film layers that comprise the metamaterial.  

The choice of d in the literature is not always clear and can be a source of ambiguity in 

the analysis.  Since metamaterial elements are small compared to the wavelength there is 

cause to accept the assumption that a metamaterial can be treated as optically 

homogeneous.  Given this assumption, equations for n and z can be written in terms of r 

and t as shown in Eqs. 2.28 and 2.29 [2.31]. 
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In order to avoid ambiguities in the sign of n, reality conditions need to be imposed on 

Eq. 2.28 and 2.29 so that the correct root is taken.  In a passive material the real part of z 

and the imaginary part of n must be greater than zero.  When the roots are taken properly 

it is possible to show that the real part of n is less than zero when r and t are measured for 

a NIM. 

 

Over the past ten years there have been many examples of NIMs in the visible and IR, 

and the possibility of using metamaterials to bend rays around an object to make it 

“invisible” has generated considerable excitement and pubic attention to so-called 

metamaterial-cloaking devices. [2.32] However metamaterial cloaking is limited by the 
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optical properties of metals.  To date metamaterials have required metallic elements in 

order to generate the artificial magnetic response given by Eq. 2.24.  When realistic 

permittivity at optical frequencies is used the imaginary part of n, i.e. the extinction 

coefficient, in Eq. 2.28 becomes large.  The high degree of absorption loss associated 

with metamaterials at optical frequencies means that they do not so much make things 

invisible as make them look like a black hole – which is not particularly useful.  Secondly 

the requirement that μ be less than zero will only occur in Eq. 2.24 for the case of 

anomalous dispersion which requires a resonance that is both strong and narrow 

bandwidth.  Given this limitation it is only possible to cloak an object over a small 

frequency range, and given the loss it would not be possible to stack metamaterials for 

different frequencies together.  NIM and cloaking get much of the attention but have little 

of the utility that is actually possible with metamaterials. 

 

Metamaterials can be used to engineer ε and µ for many purposes besides making both 

quantities simultaneously negative.  The use of tunable metamaterials, as discussed in 

chapter 6 of this dissertation, combined with the artificial magnetic response may be used 

for optical data storage devices [2.33].  As supplies of magnetic elements dwindle and 

their cost increases, artificial magnetism from metamaterials may become a viable 

alternative.  In the IR we are not usually concerned with controlling μ but rather tailoring 

the spectral features of a surface as discussed in chapters 4 and 5.  Essentially this means 

that we are altering the effective permittivity of the surface, but in this dissertation 

measured values will be left in terms of the measured spectral quantities r and t rather 

than converting to n and z.  This also avoids some of the ambiguities that were discussed 
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in the derivation of Eqs. 2.28 and 2.29.  Some good examples of practical metamaterial 

work in the IR include the control of spectral transmission, [2.34] reflection, [2.35] 

absorption, [2.36] emission, [2.37-2.38] reflected phase, [2.39] emitted phase, [2.40] as 

broad-band wave plates, [2.41] and for molecular detection. [2.42]              
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CHAPTER 3: ELECTRONIC TRANSPORT IN METALLIC THIN 

FILMS AT INFRARED FREQUENCIES 

So far it has been shown that the optical properties of metals may be modeled as an 

electron gas, or plasma, according to the Drude and Sommerfeld models.  It is well 

known that deviations from the Drude model occur in the visible band when photons are 

sufficiently energetic to excite interband transitions, but IR photons have too little energy 

for such events to occur.  This raises the question of whether or not the Drude and 

Sommerfeld models are sufficient to fully describe the optical  properties of metals in the 

IR band.  Based on Eq. 2.11 it is clear that anything that affects the DC conductivity will 

also change the optical properties of the metal.  According to a strict interpretation of the 

Drude or Sommerfeld models only scattering from the ion cores occur.  However real 

metals follow Matthiessen’s rule which states that electrical resistivity is the result of 

independent scattering processes which sum together to yield the total resistivity.  Instead 

of simply scattering from ion cores, electrons in real metals scatter from phonons, 

impurities, and defects in the crystal lattice.  Since an impurity essentially creates a type 

of defect depending upon the solid solubility of the two species, we may put 

contributions from defects and impurities together for argument’s sake.  As a metal 

becomes more pure and crystallographically perfect DC resistivity decreases, and as the 

phonon population decreases with temperature the DC resistivity decreases as well.  In 

this chapter we will consider how changes in the DC conductivity based on Matthiessen’s 

rule affect the dynamic conductivity and loss tangent at IR frequencies.  These 

experiments will show that deviations in the Drude and Sommerfeld models occur at IR 

frequencies due to the anomalous skin effect. 
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3.1 Theory of the Anomalous Skin Effect 

Matthiessen’s rule applies to both bulk and thin film metals.  Typically when considering 

the optical properties of thin metallic films to be used in SPP and metamaterial 

applications only the physical structure of the interface is considered.  This assumption is 

made because SP modes are confined at the surface. Previous research has found that 

variation of the surface morphology of metal films has altered the dynamic conductivity 

in the IR for Fe [3.1] as well as Cu films [3.2].  However in the IR, confinement of all SP 

modes decreases with frequency relative to increasing skin depth.  The skin depth δ is the 

distance at which an incident electromagnetic wave’s electric field is able to penetrate 

into the metal.  This is given by Eq. 3.1 in terms of the extinction coefficient k. 

k

c

k ωπ
λδ ==

2
                                                   (3.1) 

We may then consider that within the skin depth phonons and impurities will affect 

plasmon modes in ways not considered by the Drude or Sommerfeld model.  These skin 

effects have largely been ignored in the literature on SPPs and metamaterials.       

 

Instead of limiting the investigation to the surface of the film, the influence of the 

electronic mean free path within the film on dynamic conductivity may also be 

considered.  According to the Sommerfeld model, the dynamic conductivity should 

depend upon the relaxation time. The relaxation time is defined as the ratio of the 

electronic mean free path (λmfp) to the Fermi velocity.  Modifying the electronic mean 

free path by adding impurities, or decreasing the temperature, changes the relaxation time 

of the film and alters the dynamic conductivity within the skin depth while the surface 
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scattering contribution may be unchanged.  For free electrons in noble metals the 

relaxation time may be approximated within the skin depth as being isotropic.  In the IR 

the skin depth encompasses a depth of around 10 nm.  The Sommerfeld model may be 

used to calculate the effect of changing relaxation time on dynamic conductivity in Au 

and Cu films deposited by physical vapor deposition (PVD) tools.   The discussion in this 

chapter has been limited to noble metals so as to avoid effects inconsistent with the 

Drude model that occur in transition metals for which the electronic mean free path is 

less than or equal to the Fermi wavelength.  In this limit transport must be examined 

using quantum mechanical models, and relaxation time effects may no longer be 

dominant. [3.3] 

 

The real part of the dynamic conductivity from Eq. 2.11 may be further rewritten to 

expand the DC conductivity in terms of relaxation time.  This is shown in Eq. 3.2 where 

N is the density of valence electrons, e is the charge on the electron, and m* is the 

effective mass.  Eq. 3.2 assumes that the DC relaxation time is equivalent to the dynamic 

relaxation time.  We will investigate the validity of this assumption. 
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It is evident from Eq. 3.2 that in the case that the ωτ product is much greater than unity 

the dynamic conductivity will be inversely proportional to the relaxation time.  In this 

case dynamic conductivity decreases as the mean free path increases.  Conversely, if the 

mean free path is decreased by impurity scattering, then the dynamic conductivity should 

increase.  The maximum value for dynamic conductivity in Eq. 3.2 occurs when the ωτ 

product is equal to unity.  In the RF band a large τ is required to satisfy this condition, but 
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in the IR band pure metal films have ωτ products that are much greater than unity, so τ 

must be decreased to maximize the real part of dynamic conductivity in the IR band. 

 

Although the real part of dynamic conductivity may describe ohmic, or electrical, loss in 

high-frequency-electron transport, the loss tangent describes the optical absorption loss 

suffered by the component of the incident electromagnetic-wave vector normal to the 

surface as described in chapter 2.1.  We write loss tangent as loss(δ) which emphasizes 

that the loss tangent describes the radiation lost to surface-propagating modes within the 

skin depth δ.  Similarly to Eq. 3.2 we can write Eq. 3.3 for loss(δ) in terms of the 

relaxation time using Eq. 2.11. 
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This demonstrates that as the ωτ product increases loss(δ) linearly decreases.  Anything 

we gain in ohmic loss by decreasing ωτ in Eq. 3.2 is made up for by increases in 

absorption loss.  It would also make sense that an increase in loss(δ) due to decreasing τ 

would result in an increase in the skin depth, and hence an increase in the loss associated 

with the field leaking into the metal and thus losing surface confinement.  If we write δ in 

terms of relaxation time it can be shown that this is the case.  This can be done by 

combining Eq. 2.11 with Eq. 3.1 resulting in Eq. 3.4. 
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The n in Eq. 3.4 is the index of refraction (or real part of complex index).  Since n and σ0 

also depend upon τ we must substitute a longer expression for n in terms of τ into Eq. 3.4.  
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It is easier to just plot δ as a function of frequency for various relaxation times which is 

shown in Fig. 7 based on calculations made using Eq. 2.11 and 3.1. 

 
Figure 7: Skin depth δ(ω) for a range of relaxation times τ. 

 

Figure 7 shows that if τ is decreased from 10 fs to 1 fs, and thus made small compared to 

ω-1, then δ increases significantly resulting in weak surface confinement.  When τ is 

greater than or equal to ω-1 between 10 and 100 fs there is not a strong dependence of δ 

on τ.  We can also see in Eq. 3.4 that δ is inversely proportional to the DC conductivity, 

which is why SPP experiments always use Ag.  High DC conductivity in Ag decreases 

the skin depth and promotes surface confinement.   

 

Eqs. 3.3 and 3.4 point out the fundamental physical difference between so-called surface 

currents on radio frequency antennas and SPs on IR to visible frequency metamaterials 

and related structures.  For an antenna one only needs to be concerned with ohmic loss 

because ωτ << 1 and confinement is very weak, but for SPs in the IR and visible ωτ > 1 

and now current is localized to the surface, but ohmic loss is high.  The high ohmic loss 

means that in the IR and visible we need to work hard to maintain surface confinement.  
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Confinement allows us to take advantage of plasmonic modes as opposed to the normal 

kinds of current modes that would occur in a circuit at low frequencies.  This is not to say 

that plasmonic modes could not be equivalently modeled as circuits, but just that we are 

dealing with two different flavors of electronic transport.  At high frequency both the real 

part of dynamic conductivity and loss(δ) should be considered.   

 

This dissertation focuses on the IR.  In the IR we have both high ohmic loss, and only 

moderate confinement of SPs.  We are still primarily interested in the SP flavor of current 

(plasma oscillations), but we must take into account that these will be leaky SP modes.  

The non-Drude model effect of weak confinement in SP modes is manifest as the 

anomalous skin effect.‡         

 

As plasmonic modes in the IR become leaky electrons within the skin depth of the metal 

are affected by dynamic conductivity.  Within the skin depth electrons are subject to the 

condition that only those electrons which travel a mean free path within the skin layer 

may be considered carriers in dynamic conductivity.  When skin depth is less than or 

nearly equal to the mean-free path electrons with trajectories oriented normal to the 

surface will then no longer participate in dynamic conductivity. [3.4] Possible electron 

trajectories within the skin depth are illustrated in Fig. 8.  When δ > λmfp, as shown on the 

left side of Fig. 8, the short λmfp indicates that τ is also short which would result from the 

electron encountering a high density of scattering events.  The density of scattering 

                                                 
‡ Note to Dr. Boreman:  Dr. Munk always said that FSS like the meanderlines should not work in the IR 
because of ohmic loss, but somehow they did anyway.  I propose that this is because we were not exciting 
the sorts of current modes he was thinking of, but rather plasmonic cavity modes.  These are very similar, 
and if you trick PMM by ignoring dynamic conductivity as Jeff did, then everything just scales with 
frequency.  Anyway the good news is stuff works.  
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events does not depend upon the excited electron’s trajectory, but regardless of the 

direction it scatters in, the electron will not get far because of the short λmfp.  From Fig. 7 

we also know that δ is long in this case.   

 
Figure 8:  Left: a high scattering, low surface confinement situation in which τ < ω-1.  

Right: a low scattering, moderate (in the IR) surface confinement situation in which τ > 
ω-1. t is the thickness of the metallic film. Note an IR photon can only excite an SP 

 

When δ < λmfp, as shown on the right side of Fig. 8, the long λmfp indicates that τ is also 

long which would result from the electron encountering a lower density of scattering 

events.  The density of scattering events now depends upon electron’s trajectory.  If the 

trajectory is normal to the surface the electron will not travel far as it is limited by the 

small skin depth, and the electron will cease to participate in a current mode once it is no 

longer driven by the electric field.  If the excited electron’s trajectory is parallel to the 

surface then the electric field can drive the current mode, and the transport of an 

individual electron in a current mode between is only limited by the length of λmfp.  Only 

a subgroup of the total electrons excited will realize normal transport with scattering 

determined by λmfp.  The lower concentration of carriers will result in a lower dynamic 
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conductivity than the prediction of the Sommerfeld model.  This is called the anomalous 

skin effect.     

 

Excited electrons with trajectories parallel to the surface were termed ‘effective 

electrons’ by Pippard [3.5] and used to explain the anomalous skin effect at radio wave 

frequencies in noble metals at cryogenic temperatures.  The difference between an 

effective and an ineffective electron is illustrated in Fig. 9. 

 
Figure 9: Effective electrons with modes propagating parallel to the surface, ineffective 
electrons travel normal to the surface where outside the skin depth there is no electric 

field to generate a current density wave. 
 

In modern language we can say that effective electrons are those confined to the surface 

and thus a current density wave consisting of effective electrons is an SP mode.  As was 

discussed in chapter 2.2 portions of the electromagnetic wave that excite SPPs normal to 

the surface are lost, and we can now say that this is because current modes normal to the 

surface involve ineffective electrons.  It is important to note that the propagation length 

of the SP mode can be much greater than λmfp, but the individual electrons in the mode 

are scattered at intervals of λmfp.  In the Drude or Sommerfeld models we assume that 

after each scattering event an individual electron starts over and can become either an 

effective or ineffective electron. 
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The SP mode will lose its effective electrons along the way as some change direction to 

become ineffective until reaching the end of its propagation distance.  If instead of 

launching SPP, or spoof SPP, modes through prism coupling or some other means, and 

we instead have plasmonic-cavity modes on metamaterial elements, then we assume that 

the same behavior occurs with respect to the anomalous skin effect.  Only the 

propagation of the SP mode has changed.  We then consider that all SP modes depend 

upon the optical properties of the metallic film, and that these properties are invariant 

regardless of whether the metal is an element supporting some kind of plasmonic-

polariton mode, or whether the metal is just a continuous thin film exposed to an incident 

electromagnetic wave.  In either case only some fraction of the total free electron density 

will consist of effective electrons.  In order to accurately understand the optical properties 

of metallic thin films we must adjust the Sommerfeld model to include the anomalous 

skin effect.            

 

The fraction of effective electrons may then be derived based on the electron distribution 

f  subject to an incident electric field in the Boltzmann transport equation in Eq. 3.5. 
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The unperturbed electron distribution f0 in Eq. 3.5 is given by the Fermi-Dirac 

distribution as stipulated by the Sommerfeld model.  In Eq. 3.5 vF is the Fermi velocity of 

the electron, and c is the speed of light.  The Fermi-Dirac distribution in the second half 
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of Eq. 3.5 depends upon the electron’s energy E, the Fermi energy EF, and the 

temperature T.  Solutions for f can be used to find the current density J and thereby the 

conductivity as shown in Eq. 3.6. 
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Sondheimer solved Eq. 3.5 for the conditions of the anomalous skin effect where the 

electric field penetrating into the metal is unknown and thus a trial solution f1 is used 

according to the conditions in Eq. 3.7. [3.6] 
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Equation 3.7 assumes Cartesian coordinates in which the z direction is normal to the 

surface of the metal and the x direction is parallel to the surface.  Sondheimer’s 

derivation goes beyond the Sommerfeld model to assume that the Fermi surface is not 

necessarily a sphere.  Thus the components of the Fermi velocity along the x and z 

directions are not equal.  The dependence of the anomalous skin effect on the direction of 

the Fermi velocity was used to make the first experimental measurements of the Fermi 

surface of Cu by measuring carrier transport along different orientations of a single 

crystal [3.7]. 

 

Once a solution for the electric field is determined it may be used to solve for f which 

may then be used to find an expression for the conductivity based on the influence of the 

anomalous skin effect which is similar to Eq. 2.6, but modified by an effective carrier 

concentration Neff given by Eq. 3.8.  
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In Eq. 3.8 δ’ is the effective skin depth based on the solution for the electric field in Eq. 

3.7.  The ratio of δ’ to mean free path determines the effective electron concentration and 

is given on the right side of the equation.  The unit-less constant β is related to surface 

scattering and is proportional to the mean free path times the ratio of the width of surface 

features to the depth of surface features [3.8]. 

 

If the mean free path is much larger than the skin depth then changes in skin layer 

scattering will not affect the dynamic conductivity.  In this limit the dynamic conductivity 

is dependent on just the Fermi surface. Thus the surface scattering and current modes will 

be confined to the surface.  However, in the metals used for IR metamaterials the mean 

free path is reduced due to defects and grain boundaries so this condition will not be met.  

Even at cryogenic temperatures the mean free path does not become very large compared 

to skin depth because of the high residual defect scattering present in thin films.  In the 

regime where the mean free path is not much larger than the skin depth, scattering within 

the skin layer should increase the real part of dynamic conductivity by restoring the 

normal skin effect and increasing the effective carrier concentration towards its standard 

value of one free electron per atom.  Similarly to the Drude model, the effective electron 

concentration in Eq. 3.8 is inversely proportional to relaxation time.  However there is 

still the tradeoff between confinement and dynamic conductivity.  Generating more 

effective electrons comes at the expense of lost confinement, and we must then resort to 

standard current modes that suffer from still appreciable ohmic loss.   
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Before completing modifications to the Sommerfeld model we should also consider that 

the relaxation time has been treated to this point as a constant value that may be equated 

with the DC relaxation time.  However, it has been observed experimentally in Ref. [3.9] 

that the relaxation time tends to vary as a function of frequency according to the form 

given in Eq. 3.9. 
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Clearly the constant term a in Eq. 3.9 corresponds to the inverse of the DC relaxation 

time.  Several explanations have been given for the quadratic term.  In Ref. [3.10] 

dynamic conductivity is described by a two-carrier model in which the constant term is 

the DC relaxation time of carriers inside the crystalline grains, and the quadratic term is 

determined by a second distinct carrier type on the grain boundaries.  A second 

explanation in Ref. [3.11] is that the quadratic term results from electron-electron 

scattering events that occur in all metals at high frequency and are independent of 

temperature and crystal defects.  To completely describe the behavior of dynamic 

conductivity in the IR, a frequency-dependent relaxation time should be included in 

addition to the effective carrier concentration from the anomalous skin effect.  Thus the 

ratio between measured dynamic conductivity and the Drude model, γ(ω), in Eq. 3.10 

may be formed by substituting Eq. 3.9 into Eq. 3.8.  The validity of this equation may 

then be proven by comparison to data from dynamic conductivity experiments conducted 

at different temperatures and degrees of impurity scattering. 
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3.2 Experimental Investigation of the Anomalous Skin Effect 

 

Dynamic conductivity and loss(δ) may be determined from the complex refractive index  

measured by ellipsometry as shown in Eq. 2.11.  Ellipsometric measurements are taken 

by reflecting circularly polarized IR radiation at an oblique angle from a thin film sample, 

and then measuring the polarization state of the reflected elliptically polarized radiation. 

In these experiments IR ellipsometry was used as described in chapter 1.2. In addition, 

the low temperature measurements were taken using a UHV cryostat attachment.  

Ellipsometry has been found to be a reliable method for measuring the optical properties 

of metal films in Ref. [3.12-3.13].  When used in FEM simulations, optical constants and 

corresponding dynamic conductivities from Eq. 2.11 which were obtained via 

ellipsometry have been found to improve agreement between simulated and measured 

results for IR frequency selective surfaces [3.14].    Therefore dynamic conductivity and 

loss(δ) measured by ellipsometry can be assumed to predict the performance of IR 

metamaterials.  When multiple transparent layers are present in the sample a model is 

developed to fit the optical properties and thickness of the layers.  For metallic films 

several skin depths thick, only the metal and any surface oxides are measured, so the 

model is straightforward.  The films discussed in this paper, Au and Cu, did not have any 

appreciable surface oxide layers.  Noise caused by depolarized reflected radiation was 

low at only 1-5% across the spectrum.  Measurements were taken from 2 to 20 µm and at 
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angles of incidence ranging from 65 to 75 degrees.  There were no significant changes in 

dynamic conductivity with angle of incidence in the Au and Cu films.  

 

The DC electronic transport in the films was characterized using four-point probe 

measurements.  Using the known relationship between DC conductivity and relaxation 

time as in Eq. 2.3, the DC relaxation time was measured using standard values for the 

constants N, and m.  The effective mass was used for m.  A valence of one free electron 

per atom was assumed to determine carrier concentration, and the effective mass was 

taken to be 0.99 and 1.49 times the standard electron mass for Cu and Au respectively. 

[3.15] Measured relaxation times were then used in the Drude model for comparison with 

ellipsometer measurements.   Experiments described in the following section were 

conducted to alter the relaxation time and measure the resulting change in the dynamic 

conductivity.  For each experiment both ellipsometric and DC electronic transport 

measurements were made. 

3.2.1  Anomalous skin effect measurements 

The first experiment was to decrease the relaxation time by increasing the impurity 

scattering density in a Au-Cu alloy.  Compositions of Au75Cu25, Au50Cu50, and Au25Cu75 

in atomic percent were used to test a range of relaxation times.  Boron was added to an 

additional alloy at a composition of Au50Cu40B10 to further increase scattering.  The films 

were deposited by co-sputtering Au and Cu with deposition rates set relative to the 

desired composition in a UHV PVD tool.  The thicknesses of the films were 

approximately 100 nm.  No thermal processing was performed on the films and the 
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crystal structure was measured by XRD to be the disordered fcc phase in each case.  The 

films may then be considered to be a random mixture of Au, Cu, or B atoms with no 

intermetallic phase present.  XRD data demonstrating the fcc phase for the Au50Cu50 

alloy are shown in Fig. 10 and the DC electronic transport measurements for the range of 

Au-Cu films are in table 1.  The increase in DC resistivity in the alloy corresponded to 

the relaxation time falling to just 14% of the pure Au relaxation time for the Au50Cu50 

film, and further decreases to 5.7 % for the Au50Cu40B10 film.  The (111) peak in the 

XRD data shifted to an intermediate value between that of the pure components, and the 

broad Lorentzian character of the peak indicated a high defect density consistent with the 

decreased relaxation time.      

 
Figure 10:  XRD for 100 nm thick, Au50Cu50 alloy. 

 

The second experiment aimed to increase relaxation time by measuring dynamic 

conductivity at cryogenic temperature.  The cryogenic DC electronic transport 
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measurements were carried out by immersing the samples in liquid helium and then 

measuring with an in-situ four point probe.  Both a Au and Cu sample were measured and 

the results are given in table 1 where relaxation time has been calculated based on the DC 

resistivity.   

Table 1:  DC electronic transport measurements including maximum and minimum ωτ 
products for IR band. 

 
 

The increase in relaxation time is a factor of 6 larger for the Cu film compared to the Au 

film because the Cu film was annealed at 400 C for 30 minutes.  The heat treatment 

decreased the defect density in the Cu film thereby reducing the residual resistivity when 

the phonon contribution to resistivity was removed at low temperature.  The resistivity 

decrease is comparable to those previously observed in similar films. [3.16]   

 

Contrary to DC conductivity results, the increase in impurity scattering in the Au50Cu50 

film was found to result in larger dynamic conductivity compared to the pure components 



 54

as shown in Fig. 11.  When the product of the frequency and relaxation time, ωτ, for 

Au50Cu50 was equal to unity at a wavelength of 4 µm, the Au50Cu50 alloy’s dynamic 

conductivity was greater that of Cu by 195% and of Au by 260%.  At shorter 

wavelengths the dynamic conductivity of the alloy continued to increase relative to the 

pure components.  At sufficiently long wavelengths, the pure components had a higher 

conductivity than Au50Cu50 once the ωτ product was far enough below unity.  This occurs 

when the product is equal to 0.33.  This counterintuitive result of increased conductivity 

with decreased electronic mean free path is in qualitative agreement with the Drude 

model. 

 
Figure 11:  Ellipsometric dynamic conductivity data for Au50Cu50 alloy compared to 
pure components shown as solid lines and the ωτ products for each shown as broken 

lines. 
 

The loss(δ) for the data in Fig. 11 is shown in Fig. 12.  As ωτ decreases loss(δ) increases 

in magnitude in agreement with Eq. 3.3. 
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Figure 12:  Ellipsometric loss tangent data for Au50Cu50 alloy compared to pure 

components shown as solid lines and the ωτ products for each shown as broken lines. 
  

 

The measured dynamic conductivities of the full range of alloys are shown in Fig. 13.  

Figure 14 shows the corresponding loss tangents.  There existed a range of wavelengths 

for which each type of alloy had the highest dynamic conductivity relative to the other 

alloys.  At wavelengths longer than 7 µm the Au75Cu25 or Au25Cu75 alloys had the largest 

dynamic conductivity corresponding to their smaller DC resistivities.  At wavelengths 

ranging from 3 to 7 µm, the Au50Cu50 alloy was found to have the largest dynamic 

conductivity.  The Au50Cu40B10 alloy was found to have the greatest dynamic 

conductivity at wavelengths shorter than 3 µm.  In each case the ωτ product ranges from 

about 0.4 to 1.4 in the range of greatest dynamic conductivity.  This suggests that a 

particular relaxation time, τ°, exists for any given wavelength to maximize the dynamic 

conductivity.  This τ° is a convenient reference point for describing the optical properties 

in terms of DC transport measurements.  An expression for τ° is derived in section 3.2.2 

and tested against the alloy dynamic conductivity data.        
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Figure 13:  Ellipsometric dynamic conductivity data for range of alloy films including 
Au75Cu25, Au50Cu50, Au25Cu75, and Au50Cu40B10 as solid lines with ωτ products 

for each as broken lines. 
 

 
Figure 14:  Ellipsometric loss tangent data for range of alloy films including Au75Cu25, 
Au50Cu50, Au25Cu75, and Au50Cu40B10 as solid lines with ωτ products for each as 

broken lines. 
    

 

The absence of phonon scattering at cryogenic temperature decreased the dynamic 

conductivity in the Au and Cu films as shown in Fig. 15.  Due to the lack of thermal 

processing in the Au film the increase in ωτ is smaller than that of the Cu film; however, 

the decrease in dynamic conductivity is greater for the Au than for the Cu film.  Over the 
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2 to 20 µm band the ωτ product decreased monotonically from 13.5 to 1.35 at 395 K and 

from 47.1 to 4.71 at 4 K as shown in table 1.  Similarly the ωτ product decreased 

monotonically in the Cu film from 28.8 to 2.88 at 295 K and from 287 to 28.7 at 4 K.  At 

approximately 4 K the dynamic conductivity of Au decreased to 22, 31, and 47 % of its 

value at 295 K at wavelengths of 4, 10, and 20 µm respectively.  The dynamic 

conductivity of Cu decreased to 51, 48, and 56 % of its 295 K value at wavelengths of 4, 

10, and 20 µm respectively.  The cryogenic data showed that the IR dynamic 

conductivity had the opposite response of the DC conductivity to increases in electronic 

mean free path.  The experiments with impurity scattering also showed the same 

opposing response. 

 
Figure 15:  Ellipsometric dynamic conductivity data under cryogenic temperatures.  Solid 

lines refer to data at 295 K, broken lines refer to data at approximately 4 K. 
 

As in the Au-Cu alloy experiments the measured loss(δ) follows the increase in ωτ by 

decreasing at low temperature as shown in Fig. 16. 
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Figure 16: Ellipsometric loss tangent data under cryogenic temperatures 

 

3.2.2 Deviation from the Sommerfeld model caused by the anomalous skin effect 

The measured increases in dynamic conductivity were observed when the ωτ product was 

increased to a value of around 0.4 or higher.  Although these results are in qualitative 

agreement with the Sommerfeld model, there are quantitative differences between the 

measurements and the classical theory.  This is represented in Fig. 17 with the 

Sommerfeld deviation function γ(ω) defined as the ratio between the measured dynamic 

conductivity data and the Sommerfeld modeled conductivity defined in Eq. 2.6.  The 

relaxation times measured using the four-point probe and the constants discussed in the 

experiment section were used when calculating the real part of Eq. 2.6.   
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Figure 17:  Sommerfeld deviation ratios for selected metals; solid lines refer to measured 

data, broken lines refer to fitted data.  Insert; solid lines refer to  , broken lines refer to 
relaxation time. 

 

The results may be interpreted using the anomalous skin effect and dynamic relaxation 

time theories as defined in Eq. 3.11.  This resulted in a fitting function with two 

independent constants shown in Eq. 3.11.  Expressions for α1 and α2 are given in Eq. 

3.12.   
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The fitted functions are compared to the measured data in Fig. 17 for selected data, and 

results from the full range of experiments are shown in table 2.  The discrepancy between 
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the fitted and measured functions was computed as a function of frequency and this was 

taken to be the error in the fitting process. The mean and standard deviation of the error 

data set was calculated and is shown in table 2.   

Table 2:  Fitted values and associated error; relative to wavelength where indicated. 

 
 

Using known values for the constants in Eqs. 3.10 and 3.12, the dynamic relaxation time 

and effective carrier concentrations were determined as shown in table 2 and plotted for 

selected data in Fig. 17.  The unknown values in Eq. 3.10 include the quadratic term from 

the dynamic relaxation time theory and the constant β from the theory of the anomalous 

skin effect.  The fitted values for both constants are shown in table 2.  The constant β was 

directly proportional to the electronic mean free path as expected from its definition in 

Ref. [3.12].  The quadratic term b was small compared to the DC relaxation time as 

expected, and it was also inversely proportional to the electronic mean free path.  The 

frequency dependent behavior of all the experiments were consistent with that shown in 
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Fig. 17, so no further information is required to describe the behavior of the films beyond 

that shown in table 2.  Instances where the effective carrier concentration increased above 

unity were considered to be a result of the model becoming invalid when the anomalous 

skin effect did not occur.  This behavior is seen in the long-wavelength spectra of the size 

effect and AuCu films which had little anomalous skin effect to begin with due to their 

small electronic mean free paths.     

 

The mean error and standard deviations were consistently low across the experiments 

with the exception of the room temperature Au films which tended to be somewhat 

higher.  The values in table 2 show that adding scattering via impurities in Au-Cu alloys 

increased the effective carrier concentration, and that removing phonon scattering via 

testing at cryogenic temperatures significantly decreased the effective carrier 

concentration.  The effective carrier concentration is lower for the ~4K Cu film compared 

to the ~4K Au film due to the larger grain size of the Cu film.  At 295 K data for both 

annealed and unprocessed Cu are shown in table 2.  As expected the annealed Cu film 

has a longer electronic mean free path which results in a larger value for β compared to 

the unprocessed Cu film. 

 

The changes in the quadratic term b in table 2 suggest a connection between electronic 

mean free path and dynamic relaxation time.  In general as impurities in the metal film 

increase, electrons scatter more as a function of frequency.  This implies that the 

mechanism behind the dynamic relaxation time is neither electron-electron scattering nor 

a two-carrier mechanism, but that electrons scatter off of the same obstacles at high 
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frequency as they do in DC transport.  However, at high frequencies, scattering events are 

more frequent when the impurity or defect density increases.  The electron-electron 

scattering mechanism should be independent of crystal structure or impurities, but this 

was clearly not the case from the data in table 2.  Although the annealed Cu film may be 

assumed to have larger grains than the unprocessed films, the unannealed films should 

have similar grain sizes near that of their common thicknesses.  Thus a two-carrier model 

involving grain boundaries can not explain the dynamic relaxation time data in table 2.  

We conclude that electronic scattering in the IR is analogous to scattering in DC 

transport, but in the IR scattering occurs over a shorter time scale. 

 

The results for impurity scattering in alloy films showed that there was a range of 

frequencies over which each film had a DC relaxation time that produced the greatest 

dynamic conductivity.  These results suggest that there exists a particular DC relaxation 

time, τ°, that yields the largest possible real part of dynamic conductivity and loss(δ) at a 

particular frequency for a given metal.  This value of τ° is a convenient reference point 

for describing IR frequency dynamic conductivity in terms of known constants and DC 

transport measurements.  By using the Sommerfeld model in Eq. 3.2 it can be shown that 

the greatest dynamic conductivity occurs when the DC relaxation time is equal to the 

inverse of the frequency.  This would imply that in the Sommerfeld model τ° is 

independent of the relationship between the electronic mean free path and skin depth of 

the metal.  A correction factor from the theory of the anomalous skin effect should then 

be added to the Sommerfeld model prediction of τ°.  This yields the expression in Eq. 
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3.13 where the ratio of effective to DC carrier concentration is used as the anomalous 

skin effect correction factor.       

( ) 2

0
2

3
3 *21 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ω

μ
β

ω
τ

Ne

m

VN

N

F

effo
                                 (3.13) 

In Eq. 3.13 Neff has been substituted from Eq. 3.8.  In order to compare DC to IR 

frequency carrier transport, Eq. 3.13 may be re-written to give the reference DC 

resistivity ρ° that results in the largest IR dynamic conductivity and loss(δ) as a function 

of frequency in Eq. 3.14. 
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Although β is not a function of frequency, β varies as the electronic mean free path is 

adjusted by the addition of impurities.  In order to quantitatively determine τ° the value of 

β that corresponds to the alloy with the greatest dynamic conductivity for a particular 

frequency must be used.  This reference β will be called β°(ω) for clarity.  Thus an 

empirical β°(ω) plot may be constructed from the measured data by taking the β values 

that corresponded to the alloy with greatest dynamic conductivity for a given wavelength 

range.  Using the available data points for the Au-Cu system a step function is generated 

for β°(ω) as shown in Fig. 18.  To aid calculation, the experimental data can be fitted by 

considering that β is proportional to the relaxation time, which tends to go towards ω-1 at 

the ideal relaxation time.  Following this reasoning the data was fit to a Taylor series in 

Eq. 3.15 with constant terms xi, and this is shown in Fig. 18.  
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Figure 18:  The reference β°(ω) which is taken to be the measured β constant 

corresponding to the alloy with the highest dynamic conductivity over a given frequency 
range and fitted to a Taylor series in Eq. 3.15. 

 

In Eq. 3.16 a simplified expression for the reference DC resistivity, ρ°, as a function of 

wavelength in µm is obtained in units of µΩ-cm using the fitted β°.         
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The alloy film experiment may then be used to verify the prediction of Eq. 3.14.  Figure 

19 shows the percent increase in dynamic conductivity as a function of wavelength for 

Au with different concentrations of Cu or B impurities.  The bolded black line in Fig. 19 

highlights the dynamic conductivity increase in the film that was predicted by Eq. 3.14 to 

have the greatest dynamic conductivity over the wavelength band.  The alloy composition 

and resulting DC resistivity are displayed for each band at the top of Fig. 19.  The 

reference DC resistivity based on Eq. 3.16 is plotted in the insert to Fig. 19.   
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Figure 19: Dynamic conductivity increase is plotted for each alloy (in at. %) compared to 
pure Au. The bold line highlights the alloy with the greatest conductivity increase based 

on ideal resistivity in Eq. 3.16 compared to measured values shown 
 

There is good agreement between the ideal relaxation time predicted at a given frequency 

by Eq. 3.16 and the measured relaxation time for the alloy with the greatest conductivity 

at the corresponding frequency.  This may be seen by comparing the ideal relaxation time 

in the insert to Fig. 19 to the measured values shown at the top of Fig. 19 for a given 

wavelength range.   Because of the dependence in Eq. 3.14 on the surface scattering term 

β, the ideal resistivity is self correcting of changes in temperature and impurity or defect 

densities.  Thus Eq. 3.14 will have useful applications in determining the optical 

properties of metal films at any wavelength or operating temperature.   

 

Decreasing the relaxation time was proven to be an effective method for increasing the 

dynamic conductivity of noble metals in the IR band.  These effects resulted from an 

increase in the effective carrier concentration.  At the same time the loss(δ) increases in 
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magnitude indicating that more of the incident electromagnetic wave is ‘lost’ to modes 

normal to the surface of the metal and thus no longer confined to the surface.  The 

increase in dynamic conductivity was strongest at shorter wavelengths below 8 µm where 

the anomalous skin effect was more pronounced.  The dynamic conductivity in the 3-5 

µm wavelength band was shown to increase by more than 300%, and below 3 µm the 

dynamic conductivity increased by more than 500%.  There was also shown to be a 

corresponding decrease in dynamic conductivity at cryogenic temperatures to only 20 % 

of its room temperature value in the 3-5 µm wavelength band.  A relationship was 

established for the reference DC relaxation time or resistivity to produce the greatest 

possible dynamic conductivity and loss(δ) as a function of both frequency and the 

fraction of effective electrons from the anomalous skin effect.  By adjusting for the 

anomalous skin effect the reference DC resistivity is able to take the effects of both 

temperature and impurity scattering into account.  These theories have been verified by 

experiment and may be used to determine the optical properties of metallic thin films 

based solely on DC transport measurements and known physical constants.   
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CHAPTER 4: STATIC IR METAMATERIALS 

This chapter addresses practical applications and fabrication details of metamaterials.  

Chapter 4.1 discusses the details associated with fabricating metamaterials on a polymer 

substrate for flexible tags and decals.  Metamaterials are generally fabricated on silicon 

wafers.  One purpose of metamaterials is to modify the optical properties of surfaces, so 

flexible substrate fabrication is an important technique because most real surfaces are not 

perfectly flat wafers.  Another purpose of metamaterials is to act as an optical element.  

In the IR the cost associated with optical systems is dominated by the cost of the optical 

elements.  Since metamaterials may be fabricated using entirely earth-abundant materials 

such as Si and Al, metamaterial filters and focusing elements compete well against 

traditional IR optics.  In addition static metamaterials may be tailored to operate at any 

frequency yielding a flexibility that can not be achieved with traditional optics.  A good 

example of metamaterial optics is in chapter 4.2 which shows that metamaterials may be 

used to create the most narrow-band THz filters demonstrated to date.   

4.1 Element Fabrication on Flexible Substrates 

Microlithography techniques used in the fabrication of photonic devices traditionally use 

rigid substrates such as Si wafers.  However, metamaterials often require flexible 

substrates, so that the final structure is able to be conformally contacted to a nonplanar 

surface.  The conformal substrate considered in this study was HD Microsystems liquid 

polyimide.  Metamaterial elements appropriate for the IR [4.1] typically have critical 

dimensions between 0.2 µm and 2 µm, with excellent spatial uniformity of the final 
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periodic structure required.  The metamaterial shown in Fig. 20 consists of three layers on 

top of the underlying structural substrate, a continuous metallic groundplane, a 

continuous dielectric standoff layer, and the periodic microstructural elements.  

 
 

(a) (b) 
Figure 20: Metamaterial structural schematic with cross section (a) and top view (b). 

 

The thickness of the standoff layer is typically λ/4n, where λ is the center of the design 

wavelength band of operation and n is the refractive index of the standoff layer, which 

yields thicknesses in the range of a few μm.  The groundplane and elements are 

fabricated from metallic films of typical thickness of 0.1 to 0.2 μm.  The Jerusalem cross 

designs were used in this study as the unit cell geometry for the metamaterial (compared 

to the square loop designs of Ref. 4.1) because of the presence of a second harmonic 

resonance that was useful in applications such as frequency selective filters. 

 

When fabricating on a flexible substrate, it is desirable that the Young’s moduli of the 

substrate and standoff layer be similar, which indicates that polymers be considered as 

candidate materials for the standoff layers.  For example HD Microsystems liquid 

polyimide, and Benzocyclobutene (a candidate polymer standoff layer) have Young’s 

moduli of 2.7, and 2.9 GPa respectively.  Standoff materials used previously [4.2] had 
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Young’s moduli ranging from 80 GPa for a-Si to 223 GPa for Zirconia.  However, choice 

of the standoff layer material is constrained by two considerations that tend to exclude 

most polymers.  To maintain proper functionality of the metamaterial, it is desirable to 

minimize absorption losses in the standoff layer.  It is also difficult to fabricate many 

common polymers with the quarter-wave optical thickness required.  Thus, the polymer 

chosen for the standoff layer must have high IR transparency and be capable of being 

spun or rolled out to the desired thickness with good uniformity. 

  

The high resolution required in the fabrication of the FSS elements places constraints on 

the flatness and surface roughness of the combined underlying structure of the substrate, 

groundplane, and standoff layer.  Typical flexible substrates such as polyimide sheets are 

both locally rough and difficult to secure in a sufficiently flat configuration.  Previous 

research [4.3-4.4] has addressed this issue by using liquid polyimide, which gives the 

user control over both the surface roughness and flatness of the polyimide substrate. 

However, the lithographic-resolution limit seen in these references was on the order of 

tens of µm, and relatively small areas of the substrate were used for fabrication.  In this 

study, a full 10 (4 inch) diameter substrate was populated with metamaterial elements.  

The combination of large write area and small element size required that the substrate had 

less than 10 nm rms surface roughness, with a high degree of planarization.      

 

To investigate the optical properties of the candidate polymers, a J.A. Woollam IR 

ellipsometer was used.  The ellipsometer uses polarization data such as the amplitudes of 

the electrical field components and their relative phase shifts to determine the complex 
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index of refraction by fitting to an appropriate model.  To facilitate fabrication, three 

resists and spin on dielectrics (ZEP, PMGI, and BCB) were investigated to find standoff-

layer materials that met the optical and mechanical requirements.  Zeon Chemicals ZEP 

520A7 is a positive tone electron-beam resist that has favorable optical properties in the 

mid IR as shown in Fig. 21.  ZEP can be difficult to fabricate on because of its poor 

adhesion to most metals.  An adhesion promoter such as hexamethyldisilazane (HMDS) 

can improve adhesion to some oxides, but fabricating small metallic elements onto ZEP 

remains a challenge. 

 

 
Figure 21:  Mid IR Optical Properties of Polymers 

 

A complete fabrication process was attempted with polydimethlglutarmide (PMGI).  

MicroChem PMGI SF7 was used.  PMGI is from the same family of polymers as 

polymethylmethacrylate (PMMA) and shares many of the same optical and chemical 

properties.  As seen in Fig. 21, the loss associated with PMGI in the IR is significant.  In 

two passes of 10.6 µm radiation through a quarter-wave standoff layer (1.75-µm 
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thickness), 44% of the radiation is absorbed.  This leads to undesirable increases in 

emissivity beyond 10 µm in PMGI. 

PMGI and PMMA are both cured at 180 C which is a lower cure temperature than the 

spin-on dielectrics require.  PMGI is preferable over PMMA because it is not removed by 

solvents commonly used in post-exposure lithographic processing such as Acetone or 

Xylene.  PMGI also has this advantage over ZEP which is attacked by Methelyne 

Chloride and Acetone over time.   

 

Using the PMGI standoff layer, problems were encountered in the liftoff of the excess 

metal between structures, after the FSS pattern had been exposed in photoresist and 

metalized with Ti.  Fig. 22 shows the boundary between successfully lifted off structures, 

non-lifted off structures, and the region where the metal elements lost adhesion to the 

PMGI.  The entire wafer was exposed, developed, and metalized.  The liftoff was stopped 

before completion because the individual FSS elements were disassociating from the 

wafer in the solvent.  The elements did not appear to liftoff immediately.  Indeed, the 

small region of normally lifted off elements shows that there was some time between 

proper liftoff and disassociation of the elements, which unfortunately was not spatially 

uniform.  The disassociated elements left behind ghost images that were measured via 

profilometery to be 20 nm deep. 
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Figure 22: PMGI liftoff results; bottom, ghost images left behind after disassociation of 

elements; middle, properly lifted off elements; top middle, elements before liftoff. 
 

The disassociation of the antenna elements and the appearance of ghost images appeared 

consistently over six separate trials without significant deviation.  We suspect that this 

phenomenon was caused by the oxidation reaction between the polymer and the Ti 

elements.  Normally an oxidation reaction between a metal and a polymer is favorable 

and provides an adhesion mechanism.  For polymers from the PMMA family the new 

oxide species that forms after the reaction is not chemically bonded to the remainder of 

the polymer.  During the reaction thermal energy is transferred from the metal elements 

to the PMGI beneath causing an amorphization of the polymer carbon structure [4.6].  

This resulted in the metal elements floating off of the substrate along with the reacted 

portion of the PMGI leaving behind the ghost images seen in Fig. 22.  Noble metals 

without an oxidation state at room temperature and standard pressure such as Au or Ag 

were considered to replace Ti, but these non-reactive metals have no mechanism for 

adhesion.   



 73

 

Following the initial experiments with PMGI, we attempted to use a layer of silicon 

nitride or a layer of silica to insulate the Ti elements from the polymer layer.  However a 

mismatch in the thermal coefficients of the dielectrics compared to the polymer resulted 

in a cracking of the dielectric layer.  This initially occurred when the substrate was 

cooling down after deposition of the dielectric, but the cracking became more 

pronounced following further thermal processing steps. 

 

Of the three polymer standoff layer choices investigated in this study,  Benzocyclobutene 

(BCB), gave the most satisfactory results overall.  Referring again to Fig. 21, we see that 

compared to the other polymers, BCB has the highest IR absorption.  Although this is 

undesirable, the absorption is still low enough that it may be compensated for in the FSS 

design.  BCB has an advantage over the other candidates because it has the ability, unlike 

ZEP, to form strong bonds with transition metals such as Ti.  Unlike PMGI, the oxidation 

reaction between BCB and Ti does not result in the disassociation of the reacted product.  

Another advantage of BCB is that as a spin-on dielectric material, it can be thinned to 

achieve a layer of any thickness from 300 nm to 2 µm.  It must however be cured at 250 

C in an inert environment.  The cure temperature was not an issue for liquid polyimide 

films which were not observed to deplanarize under these conditions. 

 

In initial IR metamaterial fabrications, an optically thick (150 nm) Au film was used as 

the ground plane, which created a problem with the use of a polymer standoff layer 

because of the lack of adhesion between Au and BCB.   During fabrication trials it 
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appeared that the metal elements were disassociating from the BCB, but ellipsometric 

measurements proved that the BCB layer beneath the elements was no longer present 

following the liftoff procedure.  It was concluded that the BCB had insufficient adhesion 

with the Au ground plane.  A solution was attempted by evaporating a Ti seed layer 

between the Au and the BCB, but this was unsuccessful because the Ti did not adhere 

well to the Au.   

 

Au adheres well to Ti because the surface of the Ti film is rough and provides a means 

for the polycrystalline Au to form a diffusive bond with the Ti.  The Au film is smooth 

and does not provide an opportunity the Ti film to form a strong bond.  BCB forms a 

strong bond with Ti via oxidation.  For this reason subsequent FSS designs used an all-Ti 

ground plane.  Fig. 23 shows the spectral conductivity for Au and Ti as well as the 

spectral skin depth for both metals.  At a wavelength of 10 μm the skin depth of Ti is 

about 50 nm, and the skin depth of Au is about 12 nm.  Either 150 nm thick metal film is 

sufficient to prevent transmission, but it is also desirable in the FSS design to have the 

highest possible spectral conductivity in the mid-IR range.  Although Au is preferred for 

this reason, Ti may be used with appropriate design compensation.  Modeling software 

such as Ansoft HFSS has been successfully modified to account for this spectral 

dependence [4.7]. 
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Figure 23:  Spectral conductivity and skin depth derived from optical constants measured 

with IR-VASE Elipsometer. 
 

 

Three separate masks were designed consisting of a 10 cm (4 inch) square fully populated 

with elements.  Two different types of elements were used depending upon the design.  

Two designs used Jerusalem cross elements as shown in Fig. 20, one with a 12.7-µm 

periodicity and a 1.7-µm critical dimension, and the other with a 7-µm periodicity and a 

1.3-µm critical dimension.  The third type of element fabricated was a square-loop design 

(Ref. 4.1) with a 10-µm periodicity and a 1.2-µm critical dimension.   

 

Fabrication of the FSS periodic structures used HD Microsystems liquid polyimide, 

which served as a structural substrate beneath the ground plane shown in Fig. 20.  Liquid 

polyimide could be spun on and cured by the user.  This allowed for control over surface 

roughness.  HD Microsystems liquid polyimide was spun onto a prime-grade Si wafer at 

2000 rpm.  Each layer was 13-µm thick and three layers were spun for a total substrate 

thickness of about 40 µm.  The polyimide film was soft cured at 150 C between each 
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layer, and the final three-layer film was hard cured at 300 C in an inert environment.  The 

surface roughness was measured to be 4 nm rms with Dektak profilometery.   

 

The remaining process steps were carried out as they would have been if the substrate 

was simply a Si wafer. The 150-nm thick Ti ground plane was deposited onto the liquid 

polyimide surface using an electron beam evaporation system.  Next, BCB was spun onto 

the Ti at a speed and viscosity combination appropriate to the desired thickness.  

Undiluted BCB was spun at 1500 rpm to achieve a thickness of 1.8 µm.  Charts for BCB 

showing the film thickness as a function of spin speed for given viscosities may be 

obtained from the Dow Corporation.  BCB also uses an adhesion promoter (Dow 

AP3000) that goes on before the polymer film.  The BCB film was soft baked at 120 C 

and hard cured in an inert environment at 250 C.   

 

Electron-beam lithography was used to write the elements.  This was done to ease 

fabrication issues associated with the resolution of the available photolithography 

systems.  ZEP 520A7 was used as the electron-beam resist, and cured for 3 minutes at 

180 C.  The liquid polyimide substrate led to nearly complete uniformity and well 

resolved elements across the populated region.   

   

The final fabrication steps were to deposit a metal film onto the pattered resist.  

Depending upon the metamaterial design, 100 nm of either Ti or Au was used for the 

antenna elements.  A 10 nm thick Ti adhesion layer was used beneath the Au film.  Both 

metals were deposited via electron-beam evaporation at 5.0×10-6 Torr and 50° C.  ZEP 
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was removed by Methylene Chloride.  Although liftoff was much faster with ZEP 

compared to standard photoresists, the wafer had to be quickly rinsed and re-immersed in 

solvent to prevent metal contaminants from settling on the surface.   

 

Once the lithography processing was completed the liquid polyimide could be peeled off 

of the Si wafer.  One way to peel the liquid polyimide off of the substrate was to place a 

piece of weak adhesive tape across the surface and then pull the tape off.  This did not 

remove the FSS structures and several repetitions would cause the polyimide to begin to 

separate from the substrate.  Another method to remove the liquid polyimide from the Si 

wafer is to break the wafer and carefully peel the polyimide off as the two halves of the 

wafer are pulled apart.  Figure 24 shows the FSS after removal from the Si wafer.  The 

metalized FSS elements are shown to be intact after removal in part b of figure 24.   

  
(a) (b) 

Figure 24: Completed polyimide FSS:  (a) Flexible 10 cm (4 inch) wafer fully populated, 
(b) Elements intact on flexible substrate after polyimide backing removal. 

 

The substrate flatness of the sample was measured using a Newton interferometer while 

the samples were still fixed to Si wafers.  A transparent optical flat was placed in contact 

with the sample and a fringe pattern was observed using a mercury lamp.  The lamp was 

filtered so that only the green line with λ = 546 nm was transmitted.  Flatness was 
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measured by counting the number of circular fringes per unit length.  The liquid 

polyimide film on Si showed 0.06λ/mm in the center of the wafer and 0.08λ/mm toward 

the edges of the wafer.  Deviations from flatness in the polyimide film were radially 

symmetric.  This was likely a result of the spin-on application of the film.  For 

comparison a polyimide sheet was glued to a substrate and measured in the same manner.  

The polyimide sheet showed deviations in flatness ranging from 1.25 λ/mm to 3.75λ/mm.   

The liquid polyimide substrates were easily able to conform around a cylindrical axis, 

and there did not appear to be any damage to the elements as the substrate was elastically 

deformed [4.7].  The substrates are reasonably easy to handle, but can be torn by a 

shearing force.  They can handle a moderate degree of stretching along the plane of the 

structures.  The liquid polyimide membranes may be used at temperatures up to 300 C.  

The fabrication techniques demonstrated in this section open the door for the fabrication 

of other structures such as IR detectors that may need to employ lithography on a similar 

element size on flexible substrates.   

 

Three different metamaterial structures were fabricated on liquid polyimide membranes.  

The periodic structures had periodicities from 1.2 to 1.7 μm and fully populated a 10 cm 

(4 inch) diameter wafer.  The metamaterials showed excellent uniformity across the 

wafer.  The success of the fabrication suggests that the degree of non-flatness and surface 

roughness in these films was acceptable for 1-2 µm critical dimension lithography 

processes.  The liquid polyimide structures had deviations in flatness from 0.06 λ/mm to 

0.08 λ/mm and 4 nm rms surface roughness.  Benzocyclobutene (BCB) was used as an 

intermediate layer beneath the periodic structures.  It was found to have sufficiently low 
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absorption in the mid-IR as well as favorable adhesion properties for metamaterial 

fabrication.  Two other polymers were found to have unfavorable adhesion properties.  

Au and Ti were used for the periodic structures as well as for the ground plane beneath 

the intermediate layer.  The conductivities of Au and Ti at IR frequencies were measured, 

and Ti was found to be less conductive (by nearly an order of magnitude) than Au.  The 

fabrication techniques described here would be suitable for the fabrication of many 

different types of periodic microstructures on flexible substrates.       
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4.2 Narrowband Metamaterial Filters 

Metamaterials using Ag dipole elements were simulated, fabricated, and tested to 

demonstrate improved narrow band transmission compared to the current state of the art 

filters in the 1-2 THz band.  Several designs are presented including variations in dipole 

packing density, and sensitivity to a cladding layer.  The sharpest resonant response was 

measured to have a bandwidth of 90 GHz at a center frequency of 1.3 THz, for a Q of 

14.5, which is the highest thus far reported for a THz narrow band filter.  In addition, the 

sensitivity of the resonance of the structures to material properties may be exploited as a 

way to measure the permittivity and loss tangent of thin films in the THz band. 

 

Metamaterials may be used for narrow band transmission filters and other photonic 

applications [4.8].  The sub-wavelength sized metamaterial elements were incased in a 

mechanically flexible cladding.  Narrow band transmission filters are characterized by a 

Q factor defined as the ratio of the center frequency to the full width at half maximum 

(FWHM) of the filter.  The current state of the art for metamaterial narrow band filters in 

the 1-2 THz band has been achieved using a periodic array of Cu cross slot elements on a 

glass substrate, and a Q factor of 6.1 at a center frequency of 1.54 THz [4.8].  Recent 

work has demonstrated the use of split-ring resonator metamaterials in the THz which 

have a Q factor of 4.2 at a center frequency of 1.05 THz [4.9].  In this section a new class 

of THz metamaterials are explored based on an adaptation of gangbuster elements [4.10] 

which consist of dipole antennas having lengths approximately equal to half of the 

wavelength at peak transmission.  The dipoles are staggered as shown in Fig. 25 so that 
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the periodicity is small on both the x and y axis to prevent diffraction effects.  Following 

the nomenclature of RF gangbuster surfaces, the THz gangbuster designs are classified 

by a packing ‘type’ defined by the ratio of the major to minor axis as shown in figure 20.  

In this paper type 2, 3, and 4 gangbuster surfaces are evaluated in the 1-2 THz band.  In 

addition, the sensitivity of the filter’s resonance location and width to the permittivity and 

loss tangent of the cladding layer was also investigated and shown to have applications in 

the determination of unknown permittivities for materials of potential utility in the THz 

band. 

 
Figure 25:  Dipole metamaterial array configuration indicating gangbuster type with cross 

section shown on right where thicknesses of the top and bottom cladding layers 
 

The response of the THz gangbuster metamaterials was simulated using Ohio State 

Periodic Method of Moments (PMM) code.  A sheet resistance based on four-point probe 

measurements and the Drude model was used in the PMM simulations.    The metallic 
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elements were immersed in the center of an 18-µm-thick cladding layer.  The permittivity 

of the cladding layer at 1.5 THz was initially unknown.  

   

Identifying suitable metamaterial substrates in the THz band is challenging compared to 

the RF or IR bands.  In the RF substrates that are very thin compared to the wavelength 

are of convenient mechanical thickness, while substrates in the IR band are typically 

many wavelengths thick resulting in Faby-Perot resonances that are very closely spaced.   

To avoid substrate loss and minimize the impact of unwanted substrate modes , we used a 

membrane substrate consisting of an 18-µm layer of the flexible polymer HD 

Microsystems liquid polyimide.  The IR properties of liquid polyimide have been 

previously measured and the material was found to have low absorption at long 

wavelengths [5].  Detailed device fabrication and processing using liquid polyimide has 

been described in a previous article [6].   

 

The spectral transmission of the metamaterials was measured using a Bomem Fourier 

transform THz spectrometer with a Hg arc lamp source and a He-cooled Si bolometer.  

The beam diameter of the measurement region was 10 mm.  In order for the gangbuster 

to function properly, the incident radiation must be linearly polarized and oriented 

parallel to the dipoles.  Thus a wire grid polarizer was placed between the source and the 

elements.  The required orientation of the polarizer may be determined by taking the arc 

tangent of the number corresponding to the gangbuster type. 
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Measured and simulated results for linearly polarized input are shown in Fig. 26 for three 

different element packing types.  Although the most densely packed surface, type 4, 

would be expected to result in the highest Q factor, measurements show that the effect of 

finite conductivity was to reduce the Q factor and hence widen the spectral response.  As 

the packing density increased, so did metallic loss, and the type 4 surface had smaller 

throughput and a lower Q factor than the type 2 metamaterials.  The type 2 surface was 

measured to have the highest Q factor (14.5) reported to date in the THz band.  Table 3 

lists the dimensions and Q factors for the metamaterials.   

Table 3:  Gangbuster dimensions and measured results. 

 
 

The agreement between simulation and measurement was excellent for the type 2 and 3 

packing densities, but the simulation predicted a larger Q factor for the type 4 packing 

density than was measured.  The PMM software uses a sheet resistance approximation to 

represent a metal surface, which limited the simulation’s accuracy when a finite 

conductivities was used.   
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Figure 26:  Transmission for gangbuster type 2, 3, and 4 with linearly polarized input.  

Measured data in solid lines, model predictions in broken lines. 
 

Thus, the simulation predicted a narrower bandwidth than what was measured, which was 

most noticeable for the type 4 surface. Measured transmission was below 25% for all of 

the devices due to substrate reflection loss and 50% of the incident radiation being 

blocked by the linear polarizer.   

 

Comparing the modeled and measured filter resonance in terms of center frequency, peak 

transmission strength, and width, we were able to obtain a fit for the permittivity and loss 

tangent of the cladding layer, which are presented in Table 4.   

Table 4:  Material properties.  Sheet resistance measured, permittivities are fitted. 
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The center frequency had the strongest dependence on the permittivity, while the peak 

transmission depended most strongly on the loss tangent.  If a set of gangbuster surfaces 

of various types or element lengths (with a resulting range of resonant frequencies) were 

fabricated on a given thin film substrate, this dependence could used to determining the 

THz optical properties of the film material. We used the sensitivity of the metamaterial 

resonance to the properties of the metallic elements and the surrounding dielectric to 

measure the THz permittivity and loss tangent of the popular spin-on dielectric BCB 

(Benzocyclobutene, or Dow Cyclotene) which can be used in the construction of THz 

metamaterials.  In this portion of the study, BCB was spun on top of the type 2 elements 

in place of top cladding layer of liquid polyimide.  The permittivity and loss tangent of 

BCB at 1.41 THz were thus fitted, with results shown in Fig. 27 and Table 4. 

  
Figure 27:  Top cladding for type 2 gangbuster replaced with BCB and compared to all 

polyimide cladding.  Measured data in solid lines, model predictions in broken lines 
 

Metamaterials consisting of gangbuster elements immersed in a flexible cladding layer 

were demonstrated to have the highest resonant Q factor yet observed (14.5) for a filter in 

the 1-2 THz band.  In addition, the metamaterial resonance was shown to be sensitive to 
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material properties of the metals and dielectrics; and this property was used to measure 

the unknown properties of useful materials at THz frequencies. 
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CHAPTER 5: METAMATERIALS FOR SURFACE-ENHANCED IR 

SPECTROSCOPY  

Resonant metamaterial elements are characterized by their extinction spectrum measured 

with FTIR spectroscopy.  They have a resonance frequency which corresponds to the 

minima in the transmission spectrum.  Since the principal task of a tunable metamaterial 

is to dynamically tune the resonance frequency, it is important to understand the factors 

that affect the resonance frequency in a static metamaterial.  The experiments in this 

chapter began with the persistent problem of measured resonance frequencies that blue 

shift compared to simulations.  This problem was solved by showing that dielectric 

components of the seed layer and the native oxide on Si wafers reduced the fringing field 

capacitance of the elements and thus blue shift the resonant frequency.  Accurately 

accounting for these dielectric layers in FEM has resulted in the best agreement between 

measurements and simulations observed to date in IR metamaterials.   

 

In addition to understanding the contributions to the metamaterial’s resonance frequency 

from surrounding dielectric layers, the sensitivity the elements exhibit has interesting 

applications to IR spectroscopy. FTIR extinction spectra are shown to be enhanced by the 

presence of resonating elements such that vanishingly thin films as small as 2 nm may 

easily be detected in the extinction spectrum. Thus metamaterials enable FTIR 

measurements over nanoscale optical-path lengths. Normally in FTIR measurements a 

microscale optical-path length is required in order to produce a sufficient extinction 

signal. In order to make use of surface-enhancement phenomena, analytical models are 

formulated in this chapter to explain the physics behind the resonance shifts and coupling 
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events. Combined with other plasmonic techniques, surface-enhancement and its ability 

to obtain signals from nanoscale path lengths may be used to realize new FTIR-on-a-chip 

technologies.   

5.1 Fringing Field Effects of thin oxide layers 

The impact of the native oxide layer on metamaterial device performance has not been 

studied to date.  It is reasonable to expect that such layers will have an effect, since the 

resonance of metallic IR metamaterial elements will be impacted by their fringing-field 

capacitance which results from intra-element fields between opposite sides of the 

element.  These fields pass through the interface between the metal elements and the Si 

wafer; when a native oxide or other thin insulating layer is present this capacitance may 

change considerably.   

This section demonstrates the sensitivity of IR metamaterials fabricated on 

semiconductor substrates with thin silicon dioxide (SiO2) layers.  This sensitivity is 

manifest as an SiO2-thickness-dependent shift in the spectral location of both resonances 

as well as coupling between the SRR resonance and the Si-O absorption resonance.  The 

native oxide effect explains blue shifting in the resonance spectral location in 

measurements compared to numerical simulations that is commonly seen in the literature 

such as Ref. 5.1.       

 

Split-ring resonator (SRR) type metamaterials operating near 1 THz exhibit dual 

resonances when incident radiation is linearly polarized parallel to the gap in the 

elements [5.2].  By scaling down the size of the SRR elements dual resonances in the IR 
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at wavelengths of 4 and 10 µm (75 and 30 THz) may be achieved.  A schematic of an 

SRR element with labeled dimensions is given in Fig. 28.   

 
Figure 28: Schematic of SRR element. 

 

The high frequency resonance at 4 µm is due to coupling between elements in the array 

and is described in Ref. 5.3.  The fundamental resonance at 10 µm is due to the electronic 

resonance of the unit cell and may be described as an LC circuit with resonance 

frequency, ω0, as defined by Eq. 5.1. 
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The TiO2 layers that occur as part of the adhesion layer and the SiO2 layer beneath the 

elements form a series capacitance to the fringing field across the diameter of the SRR.  

This fringing-field capacitance, Cf, depends upon the permittivity and thickness of the 

thin film stack of lower index oxide layers that exist between the SRR elements and the 

Si substrate as shown schematically in Fig. 29.   
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Figure 29: Schematic of fringing-field capacitance where electric field lines are shown 

across the diameter of the SRR penetrating the oxide layers beneath the elements. 
 

As the thickness of the SiO2 layer, tSiO2, increases relative to the penetration depth of the 

resonant electric field mode, tn, Cf decreases according to Eq. 5.3 

ηεεε ×⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

n

TiO
TiO

n

SiO
SiOf

t

t

t

t
C 2

2
2

20 11                           (5.3) 

where εSiO2 and εTiO2 are permittivities of SiO2 and TiO2 respectively.  The term η is a 

geometrical factor given by Eq. 5.4. 
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In Eq. 5.4 a is the rectangular equivalent radius to a circular loop and γ is Euler’s 

constant.  The inductance may be computed based on the geometry using Eq. 5.5. 
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By combining Eqs. 5.1 and 5.3 it is clear that as the thickness of the SiO2 layer increases 

the reduction in the fringing-field capacitance will decrease resulting in a blue-shifting 

effect on the resonant frequency of the metamaterial.  Since a similar fringing-field effect 

may be expected to occur between elements, it should also be the case that a blue shift 

should be observed in the high frequency resonance as the SiO2 thickness increases.  
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Changes to the fringing field capacitance may be used as a surface-enhancement 

technique for the detection of low-loss materials within the near-fields of the elements. If 

either the thickness or permittivity of the unknown dielectric were known then the 

corresponding unknown property could be fit using Eqs. 5.1 and 5.3. If a resonance shift 

did occur one would also know that it was due to a dielectric layer within tn of the 

elements. Such spatial resolution capabilities do not exist in current IR spectrometry 

techniques.    

 
 

An experiment was designed to test the effect of thin SiO2 layers from 0 to 10 nm thick at 

the interface between the elements and the Si substrate.  For 0 nm SiO2 thickness a 

hydrogen terminated Si surface was used.  A 2 nm SiO2 thickness was achieved using the 

native oxide on the Si wafer.  Further 2 nm increments in SiO2 thickness up to 10 nm 

were produced by depositing SiO2 onto Si wafers, taking into account the native oxide 

layer.  This was done by electron-beam evaporation using in-situ ellipsometry to monitor 

the SiO2 thickness.  A J.A. Woollam M-2000 ellipsometer was used for both the native 

oxide and in-situ thickness measurements.  Evaporated SiO2 films have been found to 

have the correct stoichiometry [5.4], but a density that is reduced relative to thermally 

grown films.  A single layer of SRR and square-loop elements was fabricated on these 

wafers using electron-beam lithography.  The SRR elements (see the inset of Figure 31) 

had a 1 µm periodicity, 750 nm lengths, 150 nm arm widths, and a 120 nm gaps.  The 

square-loop (see the inset of Figure 32) had a 2.23 µm periodicity, 1650 nm length, and a 

300 nm arm width.  For the 0 nm SiO2 sample the resist pattern was exposed to dilute HF 

for 30 s to produce a hydrogen terminated surface before metallization.  Then, a 5 nm 

adhesion layer of Ti was deposited onto the resist patterned wafer, followed by 75 nm of 
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Au.   The metals were deposited by electron-beam evaporation at a base pressure of 

5×106 Torr, and a lift-off process was used to produce the elements.  About 5 minutes 

elapsed between the Ti and Au depositions as the source was changed.  During that time 

some of the Ti seed layer was converted to TiO2 by the absorption of residual oxygen in 

the chamber [5.5].  The Ti seed layer appears at the location of highly localized surface 

plasmon oscillations between the Au elements and the Si substrate, and thus the inclusion 

of accurate spectral permittivity values in simulations for both TiO2 and evaporated SiO2 

layers is critical to produce good agreement between simulation and measurement.  The 

IR optical constants for Ti, TiO2, and SiO2 were measured on 100 nm thick evaporated 

films using ellipsometry as described in chapter 1.2.  Figure 30 shows the results of these 

measurements.  The IR optical constants for Au films have been discussed in Ref. 5.6.  

 
Figure 30:  IR optical constants for evaporated SiO2, TiO2, and Ti measured using IR 

VASE system. 
 

Simulations of the spectral transmission of the SRR structures with thin SiO2 layers were 

performed using rigorous coupled wave analysis (RCWA) [5.7] incorporating the 

measured optical constants shown in Fig. 30.  The spectral transmission was measured 
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using FTIR with the incident radiation linearly polarized parallel to the gap in the 

elements.  Figures 31-32 show the measured and simulated results for an incremental 

increase in the SiO2 thickness from 0 to 10 nm.  The FTIR measurements with SiO2 

layers 4 nm and thicker are noiser than the 0 and 2 nm thick measurements due to the 

likely presence of voids in the thin evaporated SiO2 layers.  However the noise does not 

obscure the blue shift in the resonant frequency.   

 
Figure 31: FTIR measurements of SRR metamaterials with SiO2 layer thickness 

indicated and SEM insert of fabricated elements in (a), RCWA simulations of same 
structures shown in (b). 

 
Figure 32: FTIR measurements of square-loop metamaterials with SiO2 layer thickness 

indicated and SEM insert of fabricated elements in (a), RCWA simulations of same 
structures shown in (b). 
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The RCWA simulation accurately reproduces the FTIR measurements when the Ti seed 

layer is treated as a three-layer stack consisting of 1.25 nm of TiO2, 2.5 nm of Ti, and 

1.25 nm of TiO2 to account for the oxidation in the vacuum chamber.  Some discrepancy 

between the magnitude in the FTIR measurements and the RCWA simulations occurred 

because back-side wafer reflections were not included in the RCWA modeling.  The 

measured long wavelength resonance at 10 µm shifts to shorter wavelengths as the SiO2 

thickness increases, with the shift slowing for incremental additions over 4 nm.  The SRR 

short wavelength resonance displayed similar behavior as the long wavelength resonance, 

except the resonance continues to shift for thicker SiO2 layers.  Furthermore, a 

transmission minimum is observed near 8 µm that is related to absorption due to coupling 

between the SRR or square-loop resonance and the Si-O vibrational band in the SiO2 

layer.  At zero-SiO2-thickness this minimum is not observed in either element type.   

 
 

Using Eqs. 5.1-5.4 the fringing-field capacitance model may be compared to the FTIR 

and RCWA results for the SRRs.  Based on the dimensions of the SRRs the impedance, 

L, was calculated to be 0.74 pH, the gap capacitance, Cg, was 0.83 aF, and the fringing-

field capacitance, Cf, was 40.1 aF for zero SiO2 thickness.  To calculate the expected 

change in the resonant frequency based upon Cf as the SiO2 thickness increased we 

considered that tn was approximately equal to 60 nm.  The analytical results are compared 

to the FTIR measurements and RCWA simulations in Table 5. 

 

The most significant discrepancy between the measured and analytical results occurs as 

the SiO2 thickness increases from 4 to 10 nm.  This is due to strong coupling between the 

SRR resonance and the Si-O vibrational absorption.  When the two resonances are 
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coupled their resonant frequencies repel each other resulting in a red shift to the measured 

resonance that is not accounted for in the current analytical model.  

 

 

Table 5: Comparison of fundamental resonant frequency measured by FTIR to simulation 
and analytical calculations. 

 
 

 

As seen in Figs. 31-32, the SRR seems to show a stronger coupling to the Si-O absorption 

than the square loop.  The Si-O absorption near 8 µm is not visible in FTIR scans of 

unpatterned SiO2 films with thicknesses ranging between 0 and 10 nm, indicating that the 

appearance of this feature in the metamaterial films arises due to resonant enhancement.  

Additionally in the zero SiO2 thickness measurement in Figs. 31-32 only the area beneath 

the elements was hydrogen terminated, and thus a native oxide layer surrounded the 

elements.  The absence of an effect for this sample indicates that only the element to 

substrate interface is responsible for the sensitivity to thin SiO2 layers.   

 

Figure 33 compares the on-resonance electric field intensity, obtained using finite-

element method Ansoft HFSS software, at the interface between the metallic elements 
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and the SiO2 layer of a square-loop element to a split-ring element.  Both element types 

are scaled to resonate at 30 THz with similar bandwidths when arrayed with a unit-cell 

spacing which is 1.4 times the length of the element.  In both simulations the electric field 

was a TM mode polarized in the direction perpendicular to the gap of the SRR in Fig. 33.  

The smaller dimensions and narrow gap of the split ring results in a maximum electric 

field magnitude of 1.5×109 V/m compared to 1×108 V/m in the square ring.  As seen by 

comparing the absorption dip at 8 µm in Figures 31 and 32, the SRR showed more 

sensitivity to coupling to the Si-O absorption band than the square-loop, and thus we 

conclude that the stronger electric field at the surface of the SRR element leads to more 

resonantly enhanced absorption in the adjacent SiO2 layer.   

 

 
Figure 33:  Electric field intensity calculated by finite-element method HFSS simulation 

at element to substrate interface for square ring compared to SRR element. 
 
 

In conclusion, SRR resonances exhibit sensitivity to a very thin (as small as 2 nm) layer 

of native oxide present on a Si wafer due to adding a series capacitance to the fringing-

field capacitance.  The spectral locations of resonance features shift to shorter wavelength 

as the SiO2 layer located between the Si substrate and the metallic elements increases in 
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thickness from 0 to 10 nm.  The spectral shifting is similar for both square-loop and SRR 

elements, and thus it does not depend greatly on the fringing-field strength or on the 

presence of a gap.  Coupling between the SRR resonance and SiO2 absorption band was 

also observed to result in an additional resonance feature, whose strength is dependent on 

the electric field strength immediately below the metallic element, and may be useful in a 

sensor application to enhance detection.  The thin-SiO2 resonance shift is an important 

design consideration for all metamaterial structures on high-index substrates with native 

oxide layers present.   

 

Equations 5.1 through 5.5 were able to analytically predict the blue shift of the resonance 

frequency up to a point, but this ability was limited by the appearance of a new mode 

resulting from a plasmon-phonon coupling event. When the plasmon and phonon mode 

couple normal-mode splitting occurs, and the two modes spectrally repel each other. 

Normal-mode splitting red shifts the metamaterial resonance resulting in divergence from 

the prediction of Eqs. 5.1 through 5.5. The theory must be expanded to include plasmon-

phonon coupling so that a complete analytical model may be used to identify molecules 

within the near-fields of the elements. 

5.2 Plasmon-phonon coupling in IR metamaterials 

The goal of the work done in section 5.1 was to show the impact of the fringing field on 

the resonant frequency by changing the thickness of the SiO2 layer in Fig. 29, and thus 

the fringing-field capacitance.  In the course of the experiments a more interesting 

phenomena was observed in the form of coupling between the metamaterial resonant 
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mode and some sort of phonon mode.  The ability of metamaterials to sense vanishingly 

thin dielectric layers that are not otherwise detected by spectroscopic techniques such as 

FTIR, ellipsometry, or Raman is of great interest.  Such coupling events can further be 

analytically described so that the transverse optical phonon modes of the thin dielectric 

layer can be identified. Now IR metamaterials find a new role in surface-enhanced IR 

spectroscopy (SEIS).  The experiments described in this section only begin to explore the 

possibilities of SEIS, but it lays the foundation for future work by explaining the physics 

of plasmon-phonon coupling in metamaterials.        

 

It has been shown that surfaces structured with sub-wavelength dimensions can mimic 

surface plasmon polariton (SPP) behavior and dispersion relationships.[5.8-5.9]  While 

these “spoof” SPP modes were originally demonstrated with metal structures that were 

thick compared to the wavelength, recent results have shown that spoof SPPs can occur 

in metamaterial elements that are thin compared to the wavelength.[5.10]  In addition to 

propagating spoof SPP modes, metamaterials have also been shown to support trapped 

plasmonic-cavity modes [5.11] which are confined to the surface of a single element.   

 

The plasmonic-cavity modes excited by IR radiation on metamaterial elements can 

couple to phonon modes on dielectric films within the near fields of the elements.  Such 

plasmon-phonon coupling phenomena have been observed in piezoelectric 3-D 

metamaterials in the THz band, [5.12] in metal nanoparticles, [5.13] and in photonic 

crystals. [5.14]  Plasmon-phonon coupling is a fundamental phenomenon in 

metamaterials which results in normal mode splitting.  The eigenfrequencies that evolve 
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from the interaction between metamaterials and phonon modes will be shown to obey 

similar quantum-optical behavior as vacuum-Rabi splittings [5.15] that occur in quantum 

confined semiconductor structures coupled to microcavities. [5.16]  Such plasmon-

phonon coupling is of interest for sensing applications.  Previous work has shown that 

metallic nanostructures may be used for near-field enhanced detection of surface phonon 

polaritons. [5.17-5.18]  In this section an analytical model is presented to describe the 

eigenfrequencies and extinction line shapes resulting from the normal mode splitting.  

This demonstrates how plasmon-phonon coupling in metamaterials can be used for a 

novel SEIS technique.       

     

The spectral response of the plasmonic-cavity modes on IR metamaterial elements may 

be described by a resonant frequency, ωmm, and a damping rate, γmm, that is defined as the 

full-width half-max of the spectral transmission minimum centered at ωmm.  

Metamaterials may be described by an LC circuit-equivalent resonance such that ωmm is 

defined by Eq. 5.1 in the previous section.  For the case of SRR elements L and C may be 

computed based upon the dimensions of the elements resulting in an accurate prediction 

of ωmm as described in section 5.1.  The damping rate γmm will depend upon the ohmic 

loss and the geometry of the elements. It may be determined from finite element method 

(FEM) simulations using measured optical constants as is done in this article, or it may be 

determined analytically using a circuit-equivalent model. [5.19]   Using ωmm and γmm the 

extinction spectrum α(ω) of the uncoupled plasmonic-cavity mode may be analytically 

described by a Lorentzian line shape as in Eq. 5.6 

 ( )
( ) 22 γωω

γωα
+−

=
mm

mm
mm

A
                                            (5.6) 



 100

where A is the amplitude corresponding to the depth of the transmission minima.  We 

may write a similar expression for the uncoupled phonon mode given its resonant 

frequency and damping rate.  When plasmon-phonon coupling occurs normal mode 

splitting will result in two new resonances with distinct eigenfrequencies and damping 

rates which may also have Lorentzian line shapes.        

    

Figure 29 shows one possible cross section configuration in which a dielectric film is in 

contact with metamaterial elements.  If the thin film has a single phonon mode within the 

band of the metamaterial’s operation then the resulting absorption bands can be described 

by resonant frequencies ω0n and damping frequencies γn.  A system of two coupled 

damped harmonic oscillators driven by a time-harmonic field E(t) is described by Eq. 5.7 
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where V is the coupling strength between the plasmon and the phonon mode, m is the 

mass of the particle, and xmm and xn describe the displacement of a plasmon and phonon 

respectively.  The terms qmm and qn are the oscillator strengths for the time-harmonic field 

driving the plasmon and the phonon resonance respectively.  Equation 5.7 may then be 

solved [5.20] to obtain Eq. 5.8. 

( )( )ωγωωωγωω nnmmmm iiV −−−−= 0
2                             (5.8) 

The real parts of the two solutions for ω are the eigenfrequencies of the plasmon-phonon 

coupled system.  The imaginary portion of the solution to Eq. 5.8 is the damping rate of 

the normal modes.  When multiple phonon modes are present near ωmm, then a series of 
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second order linear differential equations may be formed by using n as an integer index 

for each phonon mode and summing over all the modes present.  This may be written as 

an n +1 by n +1 square matrix from which the eigenfrequencies and damping rates of the 

coupled oscillator system may be obtained.  For example, in the case of three phonon 

modes within the band of interest the resulting matrix is given in Eq. 5.9.  
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The terms of type Vn-mm are coupling constants between the metamaterial plasmonic-

cavity modes and the phonon modes.  A unique constant is required for coupling with 

each phonon mode since the coupling strength of the phonon modes may vary.  The 

phonon modes do not need to be indexed in any particular order.  It is assumed that 

phonon modes do not couple to each other, so all Vn-n spots in the matrix equal zero.  It is 

further assumed that by symmetry Vi-mm is equal to Vmm-i.   

 

When a thin-film layer couples to the plasmonic-cavity modes on the elements the 

coupling stength determines how spectrally close ωmm and ω0n need to be for normal mode 

splitting to occur.  Strong coupling results in ωmm and ωn repelling each other spectrally 

forming a forbidden energy gap, Ω, that may be measured experimentally. This behavior 

is analogous to quantum level repulsion or anti-crossing. The energy gap Ω may be 

related to the coupling constant V by Eq. 5.10. [5.21] 

( )224 nmmV γγ −−=Ω                                          (5.10) 
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When ωmm and ω0n are spectrally spaced by energy greater than Ω, strong coupling will 

not occur.  Thus, the matrix formulation for multiple phonon modes should only be 

needed in cases where modes lie within Ω of each other.  Otherwise the problem reduces 

to the case of two uncoupled damped-harmonic oscillators.   

 

As Ref. 5.18 points out, the plasmonic-cavity modes on the elements will couple to 

surface-phonon modes rather than the transverse-optical (TO) phonon mode.  Surface-

phonon modes can occur in dielectric thin films with sufficiently strong absorption peaks 

to produce negative permittivity.  Since the TO phonon mode may be used to identify a 

material or feature in a SEIS experiment it is important to relate the characteristic 

frequency of the surface-phonon to the dielectric permittivity, ε(ω), determined by the 

TO mode.  This may be done by considering the dispersion of the surface-phonon mode 

following the analysis of Fuchs and Kliewer.  The surface-phonon will fall within a range 

defined by the maxima of Im[-1/ε(ω)] and Im[-1/(ε(ω)+1)]. [5.22-5.23] For thin films, the 

high frequency limit defined by Im[-1/ε(ω)] corresponds to the phonon mode on the top 

(element side) interface.  The low frequency limit defined by Im[-1/( ε(ω)+1)] 

corresponds to the phonon mode on the bottom (substrate side) interface.  Depending 

upon the thickness of the dielectric layer it is possible for the surface phonon mode 

frequency to fall somewhere within this range and blue shifts as the thickness increases as 

observed in section 5.1.         

 

In order to experimentally verify strong coupling between metamaterial plasmonic-cavity 

modes and thin-film phonon modes, an experiment was designed where two different 
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types of metamaterial elements were built on a 10 nm thick SiO2 film.  A 10 nm film 

thickness was chosen so that a sufficient percentage of the near fields of the elements 

would be confined in the thin-film and strong coupling would occur.  Furthermore, 

keeping the oxide film thickness small relative to the phonon-resonance wavelength 

prevents the appearance of an absorption peak related to the TO phonon mode that would 

then be detected regardless of surface-enhanced effects. The absence of the TO mode is 

necessary to confirm the validity of Eq. 5.8 and was checked by Fourier transform 

infrared spectrometer (FTIR) measurements. SiO2 was selected for the thin film because 

it is easy to deposit at an accurate thickness, and the Si-O phonon absorption band is near 

9 µm which makes it ideal for coupling experiments in the thermal IR.  The SiO2 was 

deposited onto a Si wafer using electron-beam evaporation monitored by in-situ 

ellipsometry using a J.A. Woollam M-2000 system.  The total SiO2 thickness of 10 nm 

included the native oxide layer.   

 

In order to show the expected anti-crossing behavior split-ring resonator (SRR) 

metamaterial elements were built on the SiO2 film with different element dimensions.  

The SRR elements were fabricated using electron-beam lithography and a lift-off process.  

The elements were metalized with 75 nm of Au with a 5 nm Ti adhesion layer by 

electron-beam evaporation.  An SEM image of the fabricated SRR elements is shown in 

Fig. 31 along with a schematic showing labeled dimensions in Fig. 28.  Changing the 

dimensions of the element allowed the plasmonic-cavity resonance frequency ωmm to be 

effectively scanned across the surface-phonon mode in separate metamaterial arrays.  

Table 6 shows the calculated values for the resonant frequency and the uncoupled 
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damping frequency of the SRR’s in the absence of the oxide’s phonon mode.  These 

calculations were done using finite-element method (FEM) simulation (Ansoft HFSS) 

and by assuming in the model a dispersionless SiO2 film with refractive index equal to 

1.45.  The dispersionless SiO2 was included in order to account for the fringing-field 

capacitance contribution to the resonant frequency as described by Eq. 5.1.  The FEM 

simulation also included the effects of the seed layer and finite element conductivity 

using measured optical constants.   

 

An additional experiment was conducted using a shorted SRR or square-loop element to 

investigate the role of element type and oscillator bandwidth on anti-crossing.  A single 

design was used for the square-loop experiment with element width w of 200 nm, length 

L of 1400 nm, and periodicity of 1750 nm.  These dimensions were chosen such that ωmm 

was nearly equal to the surface-phonon mode based on FEM simulations on a 

dispersionless SiO2 film.  This allowed the coupling constant V to be measured for the 

case of square-loop elements and compared to the SRR elements.   

Table 6:  Unit cell dimensions for SRR elements with array periodicity and FEM 
simulated ωmm and γmm. 

 

 

The measured dielectric function ε(ω) of evaporated SiO2 are shown in Fig. 34(a).  For 

the thin layer of evaporated SiO2 used in the experiments the TO mode was measured to 
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be at 130 meV and the surface phonon mode was measured to be at ω0n = 146 meV based 

on fitting to Eq. 5.8.  This value falls within the range of the Fuchs-Kliewer surface-

phonon mode and lies between the peaks in the energy loss functions plotted in Fig. 

34(b).  The damping frequency of the surface-phonon mode was measured to be γn = 11.3 

meV.  Figure 34(c) shows the lorentzian line shapes for the plasmon and phonon modes 

using Eq. 5.6 for the case where ωmm is nearly equal to ω0n at 141 meV.  The broken line 

in Fig. 34(c) shows the convolution of the two lines that would correspond to the 

extinction spectrum if coupling did not occur.   
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Figure 34: (a) Dielectric function for evaporated SiO2 measured by IR ellipsometry. (b) 
Calculated energy loss function for ellipsometry data showing the allowed range of the 
surface phonon mode between the peaks of Im(1/ε) and Im(1/(ε+1)). (c) Lorentzian line 

shapes for metamaterial resonance, the surface phonon mode, and the resulting analytical 
extinction peak if the two modes were uncoupled. (d) FTIR measurement for the same 
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Figure 34(d) shows the FTIR measured extinction spectrum and the analytical line shape 

based on the solutions Eq. 5.8 substituted into Eq. 5.6.  It is apparent from the 

comparison of Fig. 34(c) to 34(d) that coupling occurs, and the surface-phonon mode is 

found to lie outside the Fuchs-Kliewer allowed region due to normal mode splitting.    

 

Figure 35 shows the agreement between FTIR measurement and FEM simulation for the 

case in which ωmm is nearly equal to ω0n using SRR elements.  The spectrum shown in 

Fig. 35 is in wavelength units, but values are converted to energy units when comparing 

to the analytical model.  The two resonant modes repel each other resulting in new 

coupled modes that produce a unique dual resonance in the transmission spectrum. 

 
Figure 35: Data for experiment with ωmm = ω0n; FTIR measurement (solid line) FEM 

simulation with measured optical constant (broken line), inset shows FEM for 
dispersionless SiO2 used to determine ωmm and γmm. 

 

By considering the spectral location of the two resonant minima in Fig. 35 to be the 

measured eigenfrequencies of the coupled system, Ω for this system is equal to 39.5 

meV.  The insert to Fig. 38 shows a separate FEM simulation of the same SRR on a 

dispersionless SiO2 layer in order to determine ωmm and γmm.  The uncoupled SRR 
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damping frequency γmm was found to be equal to 69.7 meV.  According to Eq. 5.10 this 

results in a coupling constant V equal to 27.4 meV.       

 

Figure 36 shows the collection of FTIR data that was accumulated in the seven separate 

experiments with the SRR element arrays with dimensions shown in Table 6.  Although 

the data shown in Fig. 36 are for coupled modes, the plasmonic-cavity portion of the 

hybrid mode is distinguished in blue while the Si-O surface-phonon mode portion is 

shown in red.  As the blue plasmonic-cavity mode is scanned across the IR band from 5 

to 15 µm, anti-crossing behavior is observed in the red Si-O phonon mode.  An energy 

gap where neither the plasmon nor the phonon mode have a resonance minima forms 

around ω0n. 
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Figure 36: FTIR measurements for different SRR unit cells with dimensions in Table 5.  

The normal mode extinction lines are drawn in red or blue for correspondence to the 
phonon or plasmon mode respectively. 

 

Based on the measured results of Fig. 36, Fig. 37 shows the dispersion curves where the 

eigenfrequencies of the plasmon-phonon coupled system are plotted versus the collection 

of ωmm values found in Table 6.  The FTIR data points in Fig. 37 were determined from 

the spectral location of the resonance minima in Fig. 36.  The FEM data points were 

determined from the spectral location of the resonance minima from simulations using 

measured optical properties.  The analytical model is shown as the solid curve which was 

calculated from the measured value for V, ω0n, γ0n and the values for ωmm and γmm from 
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Table 5.  The broken lines in Fig. 37 show the light line (eigenfrequency equals 

uncoupled SRR mode energy) and the resonant energy of the phonon mode.  Away from 

the energy gap where ωmm is equal to ω0n, the data should converge to these values.  The 

dispersion curves in Fig. 37 demonstrate agreement between the measurements, 

simulations, and analytical model. 

 
Figure 37: Dispersion relationship for SRR plasmonic-cavity modes coupled to Si-O 

phonon modes.  FTIR data in blue data points represent resonant minima of peaks from 
Fig. 36.  FEM simulations using measured optical properties are shown in red data points, 
and dispersion curve for coupled oscillators calculated from Eq. 5.6-5.10 is shown as the 

solid lines. 
 

Figure 38 shows results from FTIR measurement and FEM simulation for the square-loop 

element with ωmm equal to ω0n.  Compared to the SRR element the energy gap between 

the two resonant minima is 17 % smaller at 32.7 meV and the coupling constant is 81% 

larger. This discrepancy arises from the increased strength of the square-loop resonant 

mode relative to the SRR, as indicated by the square-loop’s deeper band-gap. The insert 

to Fig. 38 shows the simulated results for the uncoupled square-loop element on 

dispersionless SiO2, and from the FEM data γmm is determined to be 116 meV.  Based on 
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the measured value for Ω and Eq. 5.10 the coupling strength V for the square-loop 

elements is 49.6 meV.   

 
Figure 38: Data for experiment with ωmm = ω0n for square-loop elements; FTIR 

measurement (solid line) FEM simulation with measured optical constant (broken line), 
inset shows FEM for dispersionless SiO2 used to determine ωmm and γmm. 

 

In Ref. 5.18 one of the normal modes was always found to be in the allowed region of the 

Fuchs-Kliewer surface phonon.  In that case it was concluded that the mechanism behind 

the surface-enhanced detection was related to a polariton mode rather than plasmon-

phonon coupling.  Although the experiments in this article and Ref. 5.18 are similar, the 

SRR elements used here have a stronger resonance than the widely spaced dipoles of Ref. 

5.18.  In the case of strong coupling it is possible to push the normal mode out of the 

range of the Fuchs-Kliewer surface phonon as shown in Fig. 34.  The affects of resonator 

strength and near-field enhancement on normal mode splitting are an important area of 

future work.   

 

Although the stronger resonant mode of the square-loop results in a smaller Ω between 

eigenfrequencies, the coupling strength between the SRR and Si-O phonon mode is 
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weaker than the coupling to the square-loop elements.  This is consistent with Eq. 5.10 

which says that for a given Ω the coupling strength V increases with the mismatch 

between the damping frequencies of the plasmon and phonon mode.  However, the use of 

Eq. 5.6-5.10 to predict eigenfrequencies for any given set of oscillators depends upon a 

priori knowledge of either the coupling strength or the energy gap.  This is because the 

current model has no means of accounting for the relative amplitudes of the respective 

plasmon or phonon resonances.  Thus, the damped-harmonic-oscillator model is useful as 

a tool to understand the plasmon-phonon coupling behavior, but has limited utility as a 

predictive tool.         

 

Using a tunable metamaterial, such as has been shown in recent experiments, [5.24-5.26] 

the metamaterial resonance may be scanned to within Ω of multiple phonon modes for a 

given material. Many materials such as ceramics and organics may be identified by their 

unique collection of TO phonon modes which are related to surface-phonon modes of 

resonant frequency ω0n and damping rate γn.  By examining an FTIR spectrum for a set 

metamaterial resonance states, with known ωmm and γmm, the resulting energy gaps could 

be measured and Eq. 5.6-5.10 could be used to fit ω0n and γ0n.  This approach may be 

used to fingerprint materials with IR-active phonon modes placed in close proximity with 

the metamaterial elements.  The technique is particularly suited for highly localized 

detection of nanoscale cells or particles since strong coupling only occurs within the near 

fields of the metamaterial elements.  Plasmon-phonon coupling also significantly 

enhances the ability to sense very thin dielectric layers as layers as small as 2 nm were 
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able to be detected in Ref. 5.18 and in section 5.1.  Thus, metamaterials may be used as 

nanoscale probes for SEIS.    

 

Strong coupling between plasmonic-cavity modes and phonon modes can occur with all 

planar metamaterial elements.  This was demonstrated by showing that the characteristic 

anti-crossing dispersion relationship of coupled plasmon-phonon modes occurs in a 

single layer of SRR elements in contact with a 10 nm thick SiO2 thin film.  Similar mode 

splitting behavior was observed for square loop elements.  These experimental results 

were shown to be in agreement with numerically simulated results using measured 

material parameters and an analytical damped harmonic oscillator model.  Plasmon-

phonon coupling in planar metamaterials may be used to facilitate SEIS based probes.       
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CHAPTER 6: TUNABLE IR METAMATERIALS 

As discussed in chapter 2, the purpose of a metamaterial is to enable absolute local 

control of the electromagnetic properties ε and µ of a composite material through 

lithographically defined elements.  Tunable metamaterials are interesting because we can 

extend the absolute control of ε and µ beyond the design stage to enable surfaces with 

electronically controlled optical properties.  There are many potential applications 

including: filters and waveplates that can change their band of performance on command, 

optical memory for robust data storage, SEIS sensors and probes (chapter 5), no-moving-

parts beam steering for laser communications, solar power concentration, infrared energy 

harvesting, and many more.  Such potential-future inventions begin with the ability to 

dynamically tune the resonant frequency of a metamaterial on command. 

 

To significantly change the resonant frequency requires elements or surrounding 

dielectric layers which may have a large change in optical properties that may be 

electronically controlled in some way.  It must be emphasized here that metamaterials are 

about near-field control, so what influences the resonant frequency is that which falls 

within the near fields of the elements – as was demonstrated by the SEIS experiments in 

chapter 5.  Therefore the techniques used in traditional optoelectronic modulators are 

insufficient because they depend upon a small change in refractive index with radiation 

propagating though crystals that are many wavelengths thick.  Applying a bias across a 

piezoelectric material such as BaTiO3 to achieve Δn = 0.01 will not make a tunable 
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metamaterial.  Liquid crystals are another possibility, but there are problems with this 

method which will be considered in this chapter.  A tunable metamaterial requires 

something more like Δn = 1 to 10 to produce a significant optical change that is local 

(within the near fields) to the elements.  This transition must be both repeatable and 

reversible.  If we consider Eq. 2.1 it is clear that there is really only one way to achieve 

such a transition; the plasma frequency must be changed relative to the operation 

frequency by inducing an insulator to metal transition.   

 

Insulator-to-metal transitions can occur in semiconductors and satisfy the local large 

index change and reversibility requirements for tunable metamaterials.  In general an 

insulator-to-metal transition occurs when free carriers are injected or generated in the 

semiconductor.  This may be done by charge depletion in a Schottky diode, photo 

generated electron-hole pairs, ion injection by intercalation, or by a symmetry-raising 

phase transformation. Schottky diodes, photo generated electrons, and phase 

transformations will be considered in this chapter.  Ion intercalation is the basis of 

electrochromic materials and will be considered as a topic for future work.  In all cases a 

sufficient concentration of free carriers must be generated such that the plasma frequency 

becomes large relative to the frequency.  At infrared frequencies this can be a challenging 

task because the carrier concentration must be in excess of 1019 cm-3 for any significant 

change in permittivity to occur.  It is far easier to produce tunable metamaterials at THz 

or lower frequencies due to lower plasma frequency requirements.  Alternative methods 

such as liquid crystals and photochromics work well in the visible band, but fail in the IR 

due to a lack of transparent conductors and photon energy much smaller than the 
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bandgap.  These factors make the infrared the most challenging portion of the 

electromagnetic spectrum to achieve tunable metamaterials.             

6.1 Free carrier depletion in Schottky diodes for tunable metamaterials 

Metamaterial filters are described by a Q factor which is defined as the ratio of the center 

frequency to the full width half max of the resonance.  Compared to radio frequency (RF) 

filters which may have Q on the order of 1000, it is difficult to build a metamaterial filter 

with a Q higher than 10 because of limited conductivity in all metals in the mid-IR.  

Although static metamaterials have been demonstrated, thus far there has been limited 

progress in creating a tunable surface in the IR.  In the RF, tunable metamaterials have 

been realized by integrating varactor diodes [6.1] or PIN diodes [6.2] between individual 

elements.  This presents a challenge in the IR as diodes of the proper IR frequency 

response are not common and it is difficult to integrate them between sub-wavelength 

sized antenna elements. 

   

Alternative RF tuning approaches have made use of substrates with electrical properties 

that change with an applied bias potential [6.3] such as the piezoelectric effect.  One such 

solution in the IR is to form a DC Schottky diode between a metallic aperture FSS and 

high-donor-impurity silicon (Si).  This results in a permittivity contrast between the n+ Si 

and the electrically neutral depletion layer.  By changing the width of the depletion layer 

with an applied bias potential, the resonance frequency may be modulated.  Such a 

technique as been demonstrated as an effective method at frequencies around 1 THz 

[6.4]. This is because at 1 THz a smaller plasma frequency, and thus lower donor 
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impurity, is required to achieve a permittivity contrast as seen in Eq. 2.1. This section 

presents measured results for a single layer DC Schottky diode metamaterial device, as 

well as simulated data for a two layer device to illustrate the limitation of the technique in 

the IR.  These results serve to illustrate the limitations of the DC Schottky diode approach 

inherent at frequencies in excess of 30 THz due to the high donor-impurities required for 

a permittivity contrast to be observed.  

 

The tunable device consists of an arbitrarily thick n+ Si layer with a depletion layer of 

finite width beneath a metal sheet patterned with aperture-type elements.  Simulations of 

the tunable metamaterial device were conducted using Ansoft’s finite element method 

based HFSS software.  In order to correctly model the response of the device, variable-

angle spectroscopic ellipsometry was used to measure the permittivity and loss tangent of 

the n+ Si and low impurity n Si.  This data is shown in Fig. 39 for both materials.  The 

low-impurity n Si is taken to represent the permittivity of the depletion layer.  The n+ Si 

was doped with Sb to a concentration of 4×1018 cm-3 and has both a lower permittivity 

and a higher loss tangent than the low-impurity Si.   The measured dispersion in both 

materials is included in the HFSS simulation [6.5].  The depletion layer width W was 

calculated using the equation: 

.  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

q

kT
VV

qN
W bi

D

sε2
                                           (6.1) 

where εs is the DC permittivity of Si, ND is the donor impurity, Vbi is the Schottky barrier 

height, and V is the applied bias potential [6.6].  The device was biased from +2 to -4 V 

during operation.  Based on calculation, the width of the depletion region changed from 5 

nm to 37 nm under this bias.  When the width of the depletion layer was changed, the 
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local permittivity underneath of the aperture elements changed.  This caused a change in 

the magnitude of reflectivity that was observed in the simulation. 

 
Figure 39  Ellipsometry measurement of high donor impurity n+ Si, and low donor 

impurity n Si. 
 
 
 A film of Al was electron-beam evaporated onto the backside of a high-impurity Si 

wafer.  The sample was then annealed at 450 ºC in an Ar ambient for 30 minutes to create 

a eutectic reaction and form an ohmic contact.  The front side of the silicon surface was 

hydrogen terminated by an HF dip, just prior to introducing it in a vacuum chamber for a 

Pt deposition. Next, 60 nm of Pt was deposited on this hydrogen terminated surface by 

DC magnetron sputtering to form the rectifying contact.  Pt is well known to have a large 

barrier height (0.9 V at 300 K [6.6]) on n type Si.  Electron-beam lithography was used to 

pattern periodic cross elements on the surface of the Pt film.  The cross pattern had an 

arm length of 1.8 µm, a periodicity of 2.0 µm, and an element width of 300 nm.  A 

physical sputter etch was then used to etch the cross aperture pattern into the film.  Figure 

40 shows an SEM image of the cross aperture FSS.  To complete the test device electric 
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leads were attached to the ohmic and rectifying contacts using conductive epoxy.   The 

breakdown voltage of the Schottky diode was measured to be -5 V, the turn on potential 

was 0.2 V, and the saturation current was 0.3 mA.    

 
Figure 40  SEM image of measured FSS structure – cross aperture elements. 

 

Measurements of the spectral reflectivity were made using a Fourier transform infrared 

spectrometer (Perkin Elmer Spectrum One) using unpolarized light with wavelength 

ranging from 3 µm to 14 µm.  A DC bias was applied to the sample, and reflectivity 

measurements were made at 0 V, +2 V, and -4 V.  Forward bias had the effect of 

increasing the reflectivity while reverse bias decreased the reflectivity across the 

spectrum.  There was little spectral shifting of the features during the measurement. 

However, the change in the magnitude of reflectivity was repeatable over several trials 

and five different devices.  As shown in Fig. 41, the change in the magnitude of 

reflectivity ranges from 2 to 5% across the 3 to 14 µm band.  To check the validity of the 

results one of the tunable IR-FSS was burned out by biasing beyond the breakdown 

voltage and the measurement was repeated.  The change in the magnitude of reflectivity 

in this measurement was less than 0.2 % -- falling in the noise of the instrument. 
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Figure 41 Measured spectral reflectivity under applied bias potential (solid lines).  HFSS 

results for calculated depletion region thickness under same bias (dotted lines). 
 

Simulations (figure 41) predicted a 2-5% change in reflectivity with a Q of 2.7 compared 

to 2.0 in the measured data.  The simulations also predicted a 200 nm change in the 

resonance frequency moving from 9.4 to 9.6 µm.  Although a change in magnitude was 

observed, there was no significant change in the resonance frequency.  The lack of clear 

resonant frequency movement is due to the weak resonance that occurs when the 

elements are on a low resistivity substrate.  Such a broad-low-Q resonance loses 

sensitivity to surrounding layers.  The change in reflected power was likely due to the 

change in conductivity at the interface between depletion states.     

 

Although a permittivity difference between the depletion region and the n+ Si was 

desired, increasing the donor impurity concentration had the effect of limiting the change 

in thickness of the depletion region. The depletion region under bias should be greater 

than the near-field penetration depth which is estimated to be around 60 nm in chapter 
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5.1.  High donor impurity also limits Q because the low resistivity substrate can allow 

charge density waves to propagate out of resonating modes.  The concentration used in 

this experiment was chosen to be at the optimum point based on calculation and 

ellipsometry measurements.  Given these limitations, this can be taken to be the best 

possible result for a single surface tunable IR-FSS using the DC Schottky diode method.   

 

One possible way to further increase tunability is to cascade several surfaces of this type 

together with high donor impurity polycrystalline Si to fabricate a more useful device.  

One possible layout, as shown in Figure 42, for a multilayer device consists of a wire grid 

FSS separated from the previous cross slot FSS by a λ / 4 thick layer of n+ Si.  The wire 

elements were spaced by half the periodicity of the cross slots and shared the same width.  

The simulation is taken to be biased such that a rectifying contact exists at each metal / Si 

interface.  The simulated results for a multilayer device are shown in Figure 43.  Near 

resonance the change in reflectivity increases to greater than 10% compared to 4 or 5% in 

the single layer device.  The change in resonance frequency is still small at 300 nm as the 

resonance frequency changes from 7.3 to 7.6 µm.   
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Figure 42 HFSS model for multilayer design: left, bottom layer cross aperture surface, 

right, top layer wire grid FSS. 
 

Based on agreement between simulated and measured results it can be inferred that the 

DC Schottky contact method can yield a 5% change in reflectivity per each layer in the 

IR.  However change in reflected power is not nearly as important as change in resonance 

wavelength, and a 200 to 300 nm shift is limited.     

 
Figure 43  Change in reflectivity under bias from +2 V to -4 V for a simulated multilayer 

design. 
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A single-surface tunable metamaterial device was designed, fabricated, and tested.  

Compared to competing technologies, the DC Schottky diode approach is much cheaper 

and easier to fabricate, but is limited to around a 5 % change in reflectivity per layer with 

10% possible using a two-layer design. The DC Schottky diode had the potential to 

achieve the desired goal of an inexpensive electronically controllable surface.  However, 

due to the high donor impurity required to produce a permittivity contrast in the IR, the 

barrier height between the metal and semiconductor decreases as the Fermi energies 

converge with increased donor concentration.  This results in a diode with a low 

breakdown voltage, and limited change in the size of the depletion region. Metamaterials 

also become weak resonators as the conductivity of the depletion region increases and 

shorts the currents on the elements.  This problem may be addressed by selectively 

doping the semiconductor such that only portions were n+.  For example only the region 

underneath the gap in a split ring resonator might be doped instead of the entire substrate.  

Regardless of such possible improvements the permittivity contrast in the IR will always 

be small in a depletion region.  We therefore conclude that depletion region tuning is 

unfeasible for metamaterials at frequencies greater than 1 THz.    
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6.2 Liquid Crystal Tunable Metamaterials 

It has been suggested that liquid crystal (LC) cells may be used as a superstrate layer for 

tunable metamaterials [6.7].  By applying an electric field across the LC a change in 

effective index of ∆n = 0.8 is claimed in the IR by Ref. 6.7 based on Ref. 6.8.  Although 

it is possible to obtain such a ∆n in the visible using high birefringence LCs, in the IR a 

∆n = 0.4 is more realistic [6.9].  This is still a sufficient change in refractive index to 

predict some resonance frequency tuning using the approximations in Ref. 6.7.   

 

The results of an HFSS simulation for a cross FSS element using ideal conditions are 

shown in Fig. 39.  A waveport matches impedance at the bottom of the unit cell, so 

reflections from the bottom of the polyimide layer are neglected in the simulated 

transmission.  The metal elements were assumed to be PEC, the LC is lossless, and the 

polyimide layer underneath the elements had a constant permittivity (εr = 2.89) and no 

loss.  The IR permittivity of the LC changed from 2.4 (ordinary axis) to 3.8 

(extraordinary axis) based on Ref. 6.9.  Any thickness may be used for the LC in an ideal 

simulation, so a thickness of 2.38 µm was chosen such that the LC was λeff/2 thick at a 

wavelength of 8 µm.  Under these conditions a relatively sharp resonance behavior is 

predicted with some degree of tuning as shown in Fig. 44. 
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Figure 44:  LC FSS simulations in the IR using ideal conditions.  The unit cell used in 

HFSS is shown on the right where the green layer is the LC, the orange layer is the 
polyimide, and the blue layer is the air box.  The cross FSS element sits on the polyimide 

layer submerged in the LC as in Ref. 6.7.  
 

Next we consider an intermediate step where loss is added to the elements, polyimide, 

and LC, but the full LC cell and polyimide dispersion are not yet considered.  The 

permittivity of the polyimide is 2.89 as before, but now the loss tangent is 0.023 instead 

of 0.  The LC has the same change in permittivity as before, but the loss tangent is now 

0.026.  This is based on IR ellipsometry measurements of similar LC materials taken in 

the IR Systems Lab at UCF.  The metal elements are now aluminum, and measured 

dynamic conductivity values from the ellipsometer are used.  In addition to adding loss a 

realistic LC thickness is considered.  Due to uniformity concerns LCs are typically no 

thinner than 10 µm, so a thickness of 10 µm is used in the simulations.  An LC thickness 

of 1 µm was used in Ref. 6.7, but this is not realistic.  The results of this intermediate 

simulation are shown in Fig 45. 
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Figure 45:  LC FSS simulations including constant permittivity, loss, and a realistic LC 
thickness.  The unit cell used in HFSS is shown on the right where the green layer is the 
LC, the orange layer is the polyimide, and the blue layer is the air box.  The cross FSS 

element sits on the polyimide layer submerged in the LC as in Ref. 6.7. 
 

 

In order for molecular alignment to occur in the LC cell it is required that the LC be 

bound by polyimide layers.  With metal elements sitting on the bottom layer of polyimide 

it is important to include a polyimide “rubbing layer” on top of the LC.  This “rubbing 

layer” is mentioned in Ref. 6.7, but not included in their simulations (in Ref. 6.7 compare 

Fig. 40 to Fig. 45).   The thickness of this layer is taken to be 1 µm to reduce the loss that 

would result from a thicker layer.  In addition the permittivity and loss of polyimide is 

not constant in the IR.  The IR properties of polyimide have been measured by the IR 

Systems Lab at UCF using ellipsometry.  The IR properties of polyimide are shown in 

Fig. 46.  When polyimide dispersion is added to the simulations a thick layer of 

polyimide produces significant absorptions that compete with metamaterial behavior.  To 
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minimize this effect the bottom polyimide layer was reduced to 1 µm, which is a realistic 

minimum thickness for a polyimide layer.   

Measured material parameters for polyimide
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Figure 46:  Measured Permittivity and loss tangent for polyimide. 

 

In addition to the polyimide layers a liquid crystal requires electrical connections.  

Because of the need for optical transparency in standard applications, materials such as 

indium tin oxide (ITO) are typically used.  ITO has an electronic mean free path 

comparable to a metal, but it has a much smaller carrier density.  The result is that ITO 

acts like an insulator at wavelengths shorter than about 1 µm, but will look like a metal in 

the IR.  Even a thin ITO layer significantly impedes the performance of an IR 

metamaterial because of the large reflection losses.  An IR transparent conductor would 

require a very low carrier concentration and this would result in high ohmic loss that 

would likely impact the performance of the LC.  The ITO layer in the simulation was 

treated as a 200 nm thick conducting layer with dynamic conductivity equal to 17.5 kS/m 

at the center wavelength of the FSS.  The ITO dynamic conductivity value was derived 
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from the Drude model using standard sheet resistance (10 Ω/Sq) and plasma wavelength 

(1 µm) values [6.10].       

     

Figure 47 shows the simulated performance of an FSS in a full LC cell.  An FSS 

resonance may still be distinguished, but the transmission is now only changing from 

10% to 30%  from on resonance to off.  There was also an increase in bandwidth from 2 

µm to 3.7 µm from the lossless model to the full LC model in Fig. 47.  This demonstrates 

that standard LC materials such as polyimide and ITO that are intended for performance 

in the visible are not well suited for IR applications.      

 

Cross dipole FSS in LC cell
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Figure 47:  LC FSS simulations including polyimide rubbing layers with measured 

permittivity, loss, a realistic LC thickness, and ITO contact layers.  The unit cell used in 
HFSS is shown on the right where the green layer is the LC, the orange layers are 
polyimide, the red layers are ITO, and the blue layer is the air box.  The cross FSS 

element sits on the polyimide layer submerged in the LC as in Ref. 6.7. 
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Liquid crystal methods are not only better suited for the visible than the IR, but they are 

also more closely related to a traditional electro-optical device.  That is, they employ a 

moderate change in refractive index over a distance that is comparable to the wavelength.  

Liquid crystals change the optical-path length of a superstrate or standoff layer.  A 

tunable metamaterials needs a large and more local change in refractive index.  It would 

not be effective for example to build liquid crystal metamaterial elements or hybrid unit 

cells – even if such a thing were possible.   Thus we conclude that liquid crystals are not a 

feasible method for creating tunable IR metamaterials. 
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6.3 Photoconductive a-Si:H-N for Tunable Metamaterials 

Thin film systems with IR conductivity or permittivity that may be actively tuned with 

the application of a DC electric field, have been of interest for some time to IR designers.  

Since the DC Schottky diode method was determined to be unfeasible alternative 

methods for producing an insulator to metal transition were investigated. One such 

alternative are photoconductive devices for active IR systems.  The carrier concentration 

can be actively changed by illuminating a-Si:H with source energy above the band gap 

and thus out of the IR band.  This illumination results in the generation of electron-hole 

pairs, and a sufficient density of these carriers will result in a change in the material’s 

permittivity in the IR frequency range.  Thus, by varying out-of-band pump power, an 

active IR system may be achieved.   

 

Photoconductive elements have been used for optically generated grid arrays and as 

switches for reconfigurable antennas at 40 GHz [6.11].  In these low frequency designs 

high resistivity Si wafers have been used as the photoconducting elements.  Due to the 

nanoscale size of IR systems patterned a-Si:H thin films must be used for 

photoconducting elements, and a higher carrier concentration is required for a contrast in 

permittivity.  The generated electron-hole pairs form a pseudo-metallic plasma with 

behavior described by the Drude model.  Eq. 6.2 gives the permittivity of the 

photoconductive semiconductor as the difference between the dark permittivity εL(ω) and 

a photo-plasma term 
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where ωp is the plasma frequency, ω is the IR radiation frequency, and τ is the electronic 

relaxation time [6.12].  The plasma frequency depends upon the photo-carrier density in 

equation 6.3 
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where q is the charge on the electron, ε0 is the permittivity of free space, and m* is the 

effective mass of the photo-carrier, and nilum is the photo-carrier density as a function of 

power from the thermal pump source.  nilum should be greater than 1020 cm-3 for 

significant IR photoconductivity to occur.  Although Eqs. 6.2 and 6.3 describe a pseudo-

metallic plasma in a semiconductor, they are essentially the same principal as Eq. 2.1.  

Once again in order to force an insulator to metal transition in the IR we require a plasma 

frequency that is much greater than ω, and thus we require plasma frequency much 

greater than what has been used in photoconductive devices at lower frequencies such as 

Ref. 6.11.   

 

The photo-carrier density, nilum, depends on the photon density, G(P), and the 

recombination time, t, for electron hole hairs as shown in equation 6.4. 

 
( ) tPGnilum ×=                                                      (6.4) 

 
The recombination time t is the average time required for electron-hole pairs to 

recombine thus eliminating the photo-carrier.  For intrinsic a-Si:H t is on the order of a 
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microsecond which means that for significant IR photoconductivity to occur G(P) needs 

to be on the order of 1026 s-1cm-3.   By comparison a focused spot from a 100 W thermal 

source generates a G(P) on the order of 1023 s-1cm-3.  Larger G(P) values may be obtained 

using a pulsed source such as a strobe light, but this would result in non-steady-state 

photoconductivity.  In order to make IR photoconductivity accessible with a simple 

thermal source, a slow t is required on the order of a millisecond or longer.   

 

Figure 48 shows density of state functions versus energy for intrinsic and n type a-Si:H.   

 
Figure 48:  Density of states (N(E)) for a-Si:H. 

 

In both cases EC and EV  represent the energy of the mobility edge of the conduction and 

valence bands respectively while EF is the Fermi energy.  Near EF in the forbidden gap of 

intrinsic a-Si:H are neutral dangling-bond states that may combine with electrons and 

holes to produce the charged dangling-bond defect reactions shown in the left half of Fig. 

48.  The production of charged dangling-bonds results in microsecond recombination 

times for intrinsic a-Si:H [6.13].   With the addition of n type donors in the right half of 
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Fig. 48 the Fermi energy increases, and this results in charged dangling bonds which 

quickly recombine with hole states.  This results in a defect reaction that creates a 

neutralized dangling bond.   An excess concentration of electrons is now present at the 

conduction level, and thus the photo-electrons may be said to be ‘pinned’ and left without 

hole states to recombine with.  Doping with phosphorus has been observed to retard the 

recombination process in a-Si:H resulting in a high steady-state concentration of photo-

carriers [6.14-6.15].  In order to pin electron-hole pairs the added impurity needs to be 

chosen such that the Fermi level of a-Si:H is increased.  Nitrogen impurities can be 

expected to have a similar effect on the electronic structure as other group V elements, 

and longer recombination times have been observed than in the case of phosphorus 

doping.  For nitrogen concentrations in the range of 1020 to 1021 cm-3 the recombination 

time was measured to slow to between 10 and 100 ms [6.16] – enough to produce steady-

state IR photoconductivity from a thermal source.  This a-Si:H alloy is referred to as a-

Si:H-N. 

 

Although the concentration of ‘free’ electrons in the conduction band may be large the 

electron mobility is very low in a-Si alloys.  In states above the mobility edge, EC, the 

electron mobility is on the order of 1 cm2/Vs, but can drop several orders of magnitude in 

states that fall below the mobility edge as measured in Ref. 6.14 and 6.15.  States lying 

below EC are localized, and the electrons occupying such states are trapped by low 

mobility. Electrons that are initially excited into portions of the band above EC are in non-

equilibrium states. Thus it is likely that many of the photo-generated carriers will 

thermalize into equilibrium states below EC via phonon interactions.  There will be some 
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thermalization time associated with this event.  Thus carrier generation, thermalization, 

and recombination are all competing processes that determine the steady-state optical 

properties of an a-Si alloy under illumination.  This is investigated experimentally for a-

Si:H-N.          

 

Ion-assisted electron-beam evaporation was selected as the method for depositing a-Si:H-

N thin films.  Although evaporation is a less common method for a-Si:H deposition, it 

has been shown to successfully yield dense a-Si:H films suitable for photovoltaic devices 

[6.17].  Nitrogen is also added to the a-Si:H films via the evaporator’s ion source.  Partial 

pressures of H2 at a 25 sccm flow rate and a 99 % Ar balanced N2 at 1 sccm were pumped 

into the chamber and ionized by a tungsten filament.  The resulting plasma was 

maintained at a steady discharge current of 0.5 A.  Simultaneously to the plasma 

formation Si was evaporated onto the sample at a rate of 0.5 nm/s.  The evaporator setup 

and processing conditions are shown schematically in Fig. 49.   

 

The primary figure of merit for the a-Si:H-N films is the change in permittivity at IR 

wavelengths as measured by ellipsometry.  In these experiments a J.A. Woollam Co. IR-

VASE (variable angle spectroscopic ellipsometer) was used under standard ex-situ 

conditions.  A test fixture shown in Fig. 50 was constructed to take ellipsometry data 

under illumination from a 12 V, 100 W quartz-halogen incandescent source.  A high-pass 

filter is placed in front of the thermal source in the test fixture to block IR radiation so 

that the pump illumination is entirely out of band.  The sample was constantly 

illuminated for 20 minutes during data collection.   
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Figure 49: UHV evaporator schematic for a-Si:H-N deposition. 
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Figure 50: Ellipsometer setup for steady-state photoconductivity measurements. 

 

The hydrogen concentration and Si-H bonding related microstructure may be evaluated 

using FTIR (fourier transform IR) spectroscopy.  Nitrogen concentrations were measured 

directly using SIMS.  The band gap energy, Eg, was measured using visible ellipsometry 

(J.A. Woollam Co. V-VASE), and Eg was found by fitting to a Tauc-Lorentz oscillator.     
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Measured results are shown in Table 7 for three films selected because of their large 

photoconductive response.  For the deposition parameters used the hydrogen 

concentration was in the desired range at around 10 at. %, and the nitrogen concentration 

was sufficient to slow the recombination time to around 100 ms based on comparison to 

reference 6.16.  The dark (ndark) and illuminated carrier concentrations (nilum) were based 

on comparing the generation rate and recombination time following Eq. 6.4, and then to 

DC secondary photoconductivity measurements.  Due to the presence of localized states 

as shown in figure 48, the mobility is not constant for all states since carriers may exist 

on either side of the mobility edge.  Equations 6.2-6.3 were used to determine an 

effective steady-state mobility for IR frequency transport by comparing the change in 

permittivity under illumination from the IR ellipsometry measurement to nilum.  It should 

not be assumed that the effective mobility for IR frequency transport is the same as the 

DC transport mobility.  Even for metal films it has been shown that there is an effective 

mobility change at IR frequencies [6.18].  The effective IR mobility is about an order of 

magnitude smaller than the typical mobility for pure a-Si:H.  Measurements of the DC 

carrier transport in references 6.19 and 6.16 were used to find ndark and nilum.  DC carrier 

transport properties of a-Si:H-N were found to be similar to reference 6.16, and from 

comparison to reference 6.19, it can be seen that the carrier concentration is much higher 

than in pure a-Si:H.  

 



 138

Table 7: Measured properties of a-Si:H-N with literature values for comparison.  NH and 
NN are hydrogen and nitrogen concentrations, Eg is the band-gap energy, ndark and 

nilum are carrier concentrations under illumination, and µ* is the effective IR mobility. 

 
 
 

Based on the high carrier concentrations and small effective mobility, Eq. 6.2 results in a 

nearly constant shift in permittivity. Due to the small mobility, the 1/τ2 term is large 

compared to the frequency, so the change in permittivity is approximately equal to the 

squared product of the plasma frequency and relaxation time τ.  Some spectral shifting of 

absorption features is also present as shown in Figs. 51-53.  In figure 51 ellipsometry data 

of sample hn03 shows a change in permittivity of Δεr = 1.3 to 2 across much of the 

measured spectrum.  This is due to increased loss from the photo-carriers which can be 

seen by comparing the imaginary permittivity functions.  Sensitivity to some loss features 

such as the Si-H stretching mode at 630 cm-1 begin to be screened by photo-carriers and 

no longer appear in the spectrum.  This screening effect also occurs in sample hn02 

which has a similar change in permittivity as shown in figure 52. 
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Figure 51: Real and imaginary portions of permittivity from ellipsometry measurements 

of sample hn03 in dark and illuminated state. 
 

 

 
Figure 52: Real and imaginary portions of permittivity from ellipsometry measurements 

of sample hn02 in dark and illuminated state. 
 

Sample hn02 has both higher nitrogen and hydrogen concentrations than hn03, and as a 

result it also has stronger absorption features.  This leads to a more pronounced photo-

carrier screening effect.  The change in permittivity under illumination was similar away 
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from resonant features, and at frequencies greater than 1700 cm-1, the Δεr = 1.5.  The 

change in permittivity achieved in samples hn02 and hn03 are the highest achieved in 

these experiments.  Figure 53 shows results from sample hn12 which are typical of most 

the films produced.  

 

 
Figure 53: Real and imaginary portions of permittivity from ellipsometry measurements 

of sample hn12 in dark and illuminated state. 
 

The IR effective mobility of sample hn12 is smaller than hn02 and hn03 which results in 

a smaller change in permittivity where Δεr = 0.9 away from resonance.  IR frequency 

electron mobility is consistently the limiting factor in the permittivity change under 

illumination.  Some photo-carrier screening is still present in sample hn12 as can be seen 

by the shifting of features in the imaginary part of permittivity, but the effect is smaller 

due to the limited mobility in hn12 compared to hn02. 

 
 
Slowing the rate of electron-hole recombination in a-Si:H-N leads to high carrier 

concentrations suitable to create a change in permittivity under illumination at IR 

frequencies.  This permittivity change is limited by the effective electron mobility at IR 



 141

frequencies and is approximately equal to the product of the plasma frequency and the 

relaxation time.  The largest permittivity change was found to be Δεr = 2 and occurs over 

the spectral range from 650 to 2000 cm-1.   

 

Although it was possible to achieve a change in steady-state permittivity using the 

photoconductive method the quality and Δεr of the a-Si:H-N films varied somewhat from 

sample to sample.  This was largely due to inconsistent sample temperature during the 

various depositions.  Although the sample temperature issue has since been resolved, the 

low-mobility problem still remains as a limitation on the performance of a-Si:H-N.  It is 

possible to achieve a change in permittivity, but it is not large enough for the a-Si alloys 

to function as a photoconductive switch in a reconfigurable unit cell as was done in the 

RF band in Ref. 6.11. As a tunable metamaterial method we conclude that while 

photoconductivity may be feasible, it is not practical. Without a full insulator-to-metal 

transition the results would be limited and insufficient to justify the system level 

problems created by the pump source. 

 

Following the experiments detailed in section 6.3, thermochromic materials were 

identified as an alternative to photoconductivity approaches.  After initial investigations 

showed that a full insulator to metal transition could be achieved by heating and cooling 

VO2, and that the permittivity change associated with this transition was orders of 

magnitude bigger than what could ever be achieved with a-Si:H-N, thermochromic 

metamaterials were aggressively pursued in place of continued photoconductive work. It 
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was these thermochromic experiments that would ultimately solve the tunable IR system 

problem.      
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6.4 Thermochromic Tunable Metamaterials 

In a thermochromic material a reversible insulator-to-metal transition occurs upon 

heating or cooling through a set transition temperature TC. Vanadium dioxide (VO2) was 

first observed in Ref. 6.20 to undergo a transition from a semiconducting-to-metallic 

phase at TC = 67°C.  Such thermochromic behavior has been observed in other transition 

metal oxides such as MnO3 [6.21], but VO2 has produced the best results to date and may 

be integrated into metamaterials with a relatively low transition temperature. As with 

other tunable methods using diodes and photoconductivity, the mechanism of 

thermochromic tuning depends upon the creation of free electrons.  However in this case 

instead of depleting electronic states, or generating carriers, in thermochromic materials 

such as VO2 carriers are liberated by a symmetry-raising phase transformation. Figure 54 

shows the crystal structure of VO2 at T < TC and T > TC. In the high temperature phase 

VO2 has the rutile crystal structure characteristic of TiO2 rich minerals and tetragonal 

symmetry. In the low temperature phase VO2 has a distorted rutile structure with 

monoclinic symmetry. [6.22] 

 
Figure 54: Crystal structure of VO2 relative to TC = 67°C. Diagrams taken in part from 

Ref. 6.22. 
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The metal-to-insulator transition in VO2 is largely a result of the change in symmetry 

along the c axis in Fig. 54 [6.23]. At T < TC V-V bonds are in pairs with associated 

localized electron states. At T > TC the V-V bonds now have long-range order that results 

in delocalized electronic states. Thus electrons have been freed for transport resulting in 

metallic optical properties. This phase transformation is diffusionless and occurs on a 

picosecond time scale [6.24]. As Ref. 6.22 shows via ultrafast electron diffraction studies, 

the V atoms shift by small fractions of an angstrom during the reorientation from 

monoclinic to tetragonal symmetry. The V atoms do not shift along a single direction but 

rather it is a four-step process. A hysteretic response is therefore expected because the 

atoms move along one route during heating, but must then take this route in reverse order 

upon cooling. Due to the picosecond speed of the phase transformation illustrated by Ref. 

6.22, the transition rate of a thermochromic-tunable metamaterial is effectively limited 

only by the rate at which the elements may be heated and cooled.  

 

Figure 55 shows the measured optical constants at 20 and 70 °C for the VO2 used in these 

experiments.  The spectrum is shown in the visible and near IR in part A of Fig. 55, and 

part B shows the mid and thermal IR portions of the spectrum. In the visible there is little 

change in optical properties with temperature. This is consistent with Eq. 2.1 because the 

T > TC plasma frequency appears to be around 350 THz (850 nm) in Fig. 55 A, so the 

metallic phase should be transparent at wavelengths below 850 nm. In the near IR, and at 

important telecommunication wavelengths, the metallic phase plasma frequency is 

sufficient to produce a large contrast in refractive index in extinction coefficient. In the 
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mid IR the low temperature phase has a low extinction coefficient and minimal loss.  The 

mid IR properties are ideal for transparent to opaque transitions. The thermal IR 

properties are similar, but the low temperature extinction coefficient is higher because of 

proximity to the V-O transverse-optical phonon mode. Based on Eq. 2.1 a permittivity 

change is expected to continue into the THz band as well. Table 8 compares the optical 

properties of VO2 in both temperature states for key IR laser lines. 

 
Figure 55:  Measured optical properties for VO2, A: Visible and near IR, B: mid and 

thermal IR (index of refraction n, extinction coefficient k) for VO2 measured by 
ellipsometry. 
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Table 8: Optical properties of VO2 in high and low T phases for key IR laser lines. 

 
 

Since the optical properties depend upon the liberation of free carriers by the symmetry 

transformation there should be a direct correspondence between n and k and electrical 

resistivity. A larger contrast in electrical resistivity will yield a larger optical contrast. 

The electrical hysteresis versus temperature and temperature range ΔT over which the 

phase transformation occurs will also transfer from the electrical to optical properties. 

Since more information is available on the electrical than optical properties, resistivity 

versus temperature is a good metric for evaluating the quality of VO2 thin films. 

 

VO2 thin films may be fabricated by reactive electron-beam evaporation [6.25], reactive 

sputtering [6.26], pulsed-laser deposition [6.27], or thermal oxidation of metallic 

vanadium [6.28]. The VO2 thin films used in these experiments were grown using a 

thermal oxidation process similar to Ref. 6.28. This method was selected because 

metallic V elements could be patterned and then oxidized to form VO2 metamaterial 

elements. Figure 56 shows the electrical resistivity as a function of temperature during 

heating and cooling for the VO2 films used in these experiments as well as films grown 

by pulsed-laser deposition in Ref. 6.27 for comparison.  Compared to pulsed-laser 
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deposition, the thermal oxidation process has a lower TC, less hysteresis, and a wider ΔT. 

The resistivity contrast between states is also smaller in the thermal oxidation method 

than the pulsed-laser deposition.  

 
Figure 56: Electrical resistivity versus temperature for A) pulsed-laser deposition from 

Ref. 6.27, and B) thermally oxidized VO2 used in these experiments. 
 

Depending upon the deposition or growth method and crystalline quality the contrast 

between states can vary significantly. For a VO2 single crystal of good quality the 

contrast between high and low temperature states is on the order of 104 Ω-cm.  In a single 

crystal the resistivity contrast is greatest along the c axis, and decreases by nearly an 

order of magnitude along direction perpendicular to the c axis. [6.29] Because of this 

anisotropy randomly oriented polycrystalline films can never match the contrast 
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obtainable in the single crystal variety. Because of the impact of grain boundaries and 

orientation dependent resistivity, the electrical contrast obtainable in high quality 

polycrystalline film is on the order of 103 Ω-cm. As shown in Fig. 56 part B, the 

resistivity contrast for the VO2 films grown by thermal oxidation is on the order of 102 Ω-

cm. It would be difficult to account for this smaller response compared to higher quality 

polycrystalline films on basis of factors such as small grains and defects alone, so the 

smaller contrast is likely a result of the VO2 films being not entirely single phase. Since 

has V has at least half a dozen possible oxidation states it is possible for regions to exist 

in the crystal that are in a VOx phase where x is less than 2.  Future work may address 

this issue, and an order of magnitude improvement in the contrast between low and high 

temperature states should be possible. 

 

Although it is possible to improve contrast, any difference in processing that improves 

contrast will likely also result in increased hysteresis, TC and smaller ΔT.  This is 

demonstrated in Fig. 56 by comparing the higher contrast pulsed-laser depositon VO2 to 

the thermally grown VO2. In addition experiments have shown that adding W impurities 

to single phase VO2 lower TC while also decreasing hysteresis, ΔT, and the contrast 

between states. [6.27] If a 102 Ω-cm contrast is sufficient to significantly change the 

optical properties, which Fig. 55 shows to be the case, then it makes sense to give up 

some contrast for less hysteresis in some cases. For example in beam steering 

applications smaller hysteresis and larger ΔT is desirable to change the reflected phase of 

a surface in an analog fashion rather than simply being able to switch between binary 

states. In some other applications having just two discrete states with a large contrast may 
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be preferred. It is useful then to consider Fig. 57 which plots properties of VO2 versus 

various processing techniques and resulting structure features. Figure 57 is a composite 

of data from sources such as Ref. 6.24 to 6.29 and thermal oxidation experiments 

conducted by the author. A generally linear trend exists in the tradeoff between hysteresis 

and contrast. 

 
Figure 57: Hysteresis, TC, and ΔT vs. contrast for various processing methods and their 

resulting crystal structures and quality. 
 

The T > TC phase of VO2 does not have sufficient conductivity to serve as metamaterial 

elements in traditional split-ring resonator (SRR) designs, and thus the use of VO2 in 

such designs will only result in a small shift in the resonance frequency.  This can be seen 

in Ref. 6.30.  The transition from a transparent to absorbing state that occurs in VO2 may 

be best exploited in a metamaterial by coupling VO2 elements to a resonating microcavity 

which is similar to an absorber frequency selective surface.      
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Tunable metamaterials using thermochromic thin films have recently been demonstrated 

in the THz band [6.31] and in the near IR [6.30]. Both articles use a layer of 

thermochromic VO2 underneath the elements that broadens and removes the resonance as 

the temperature increases. In this section the ability to control reflected phase in a tunable 

metamaterial is demonstrated for the first time.  The results also mark the first tunable 

metamaterial demonstrated in the thermal infrared band, and the largest resonance shift 

measured to date in the infrared.  This was accomplished using a reflectarray 

metamaterial configuration [6.32] consisting of thermochromic VO2 square-patch 

elements on an amorphous silicon (a-Si) microcavity as shown in Fig. 58.  The reflection 

spectrum was measured by FTIR at 20 and 70 °C, and the reflected phase was measured 

at 10.6 μm by a Twyman-Green interferometer as a function of temperature.  The 

reflectarray consisted of an array of square-patches 1.7 μm wide spaced at a 2.1 μm 

periodicity populating a 15 mm by 4 mm array.  

 
Figure 58: Reflectarray metmaterial diagram, A: patterned stripe with 1.7 μm square-

patch VO2 elements, B: reflectarray cross section. 
 

 

The reflectarray metamaterial from Fig. 58 was fabricated by depositing 100 nm of Cr on 

a Si wafer followed by the deposition of 580 nm of a-Si by electron-beam evaporation.  

V elements were fabricated on the a-Si cavity using electron-beam lithography.  The VO2 
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elements used in this article were made using a reactive-ion version of the thermal 

oxidation process in Ref. 6.28 to convert metallic V elements to VO2.  V square-patch 

elements were fabricated using standard electron-beam lithography methods as in 

previous chapters.  Following liftoff processing the reflectarray was annealed to convert 

the V elements to VO2.  Results from the FTIR measurement compared to finite-element 

method (FEM) simulations are shown in Fig. 59.  The simulations were done using 

Ansoft HFSS software which included the measured optical constants of VO2 at 20 and 

70 °C.  The reflected phase spectrum calculated by HFSS is shown in Fig. 59 B.  The 

resonating reflection minima shift from 9.2 μm to 11.6 μm covering a significant portion 

of the atmospheric transmission window in the thermal IR band.  This is the first 

demonstration of a tunable metamaterial in the thermal IR and covers a larger portion of 

the spectrum than previous VO2 metamaterial results in the near IR [6.30].  Although the 

bandwidth of the resonance increases at 70°C due to the increased extinction coefficient, 

the reflectarray remains in a resonating state in both VO2 phases.  This may be seen by 

the reflection maxima that occur at 5 μm for both VO2 phases.  Previous VO2 

metamaterial results in the THz band [6.31] which used a continuous layer of VO2 had a 

transition from a resonating to a spectrally flat state in which the device does not appear 

to be in a resonating mode.  Based on the HFSS simulations, the largest change in 

reflected phase occurs at the 20°C resonance at 9 μm where the reflected phase changes 

by more than 180 degrees.  At 10.6 μm the reflected phase changes by 60 degrees in the 

HFSS simulation.  This will be confirmed by the interferometer measurement.      
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A 

 
Figure 59: Reflected power and phase spectrum, A: Measured by FTIR compared to FEM 

simulation, B: Reflected phase spectrum simulated by FEM.    
 

 

A schematic of the Twyman-green interferometer used to measure the reflected phase is 

shown in Fig. 60. 
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Figure 60: Twyman-Green interferometer using 10.6 μm CO2 laser used to measure 

reflected phase. 
 

Interferograms are produced using a 10.6 μm CO2 laser. The signal beam of the 

interferometer is incident on the thermochormic reflectarray sample that is oriented as 

shown in Fig. 58.  A hot plate is used as the sample holder with a thermalcouple in 

contact with the wafer to measure the temperature.  The detector array is a Spiricon 

camera used to take interferogram images.  Figure 61 shows interferograms measured at 

20°C and 70°C. 

 
Figure 61: Interferograms of thermochromic reflectarray at 20°C and 70°C.  White lines 

added to emphasize fringe contrast. 
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The step between successive fringes is equivalent to a 180 degree relative phase 

difference.  The reflected phase of the reflectarray is measured by the size of the step in 

the fringes across the elements which is the region seen in Fig. 58.  At 20°C, when the 

VO2 elements are in the distorted-rutile phase, the reflected phase of the reflectarray is 

nearly equal to the a-Si cavity and thus there is only a small step in the fringes across the 

patterned region.  At 70°C, after the transition to the rutile phase, the reflected phase has 

shifted 60 degrees as evidenced by the step in the fringes across the elements.  This is in 

agreement with the FEM prediction. Thus the ellipsometry measurement of the optical 

constants, the FTIR measurement of the spectral reflectance, and the interferometric 

measurement of the reflected phase are all in agreement.  Figure 62 shows the measured 

reflected phase as a function of temperature. 

 
Figure 62: Measured reflected phase as a function of temperature during heating and 

cooling.  Data points from interferogram analysis with polynomial fit indicated by the 
broken line. 
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The data in Fig. 62 was taken by analyzing the interferograms measured versus 

temperature while the sample was heated from 35 through 75 °C and then cooled through 

the same temperature range.  From 65 though 45 °C, there is a linear decrease in the 

reflected phase corresponding to the exponential change in the resistivity of the VO2 

elements which is seen in Fig. 56 B.  Following the hysteresis in the electrical resistivity 

upon heating and cooling, there is some hysteresis in the reflected phase.         

  

 

The change in both reflected phase and resistivity in the VO2 elements occurs between 45 

and 65 °C for the films used in this article prepared by thermal oxidation.  In pure single 

phase VO2 deposited by pulsed laser deposition as in Ref. 6.27 the transition is more 

abrupt occurring between 65 and 75 °C.  The hysteresis is also more significant in pure 

single phase VO2 resulting in thermochromic transitions occurring over different 

temperature ranges for heating and cooling [6.27].  Lower transition temperature and 

wider thermal range with less hysteresis is seen in VO2 doped with about 1 at.% W 

[6.24], or can be caused by characteristics of the microsctructure such as small grains 

[6.33] or surface roughness and voids [6.29].  The optimal microstructure of VO2 for 

thermochromic metamaterials will be the subject of future work, but the current VO2 

elements result in a linear change in reflected phase that may be easily controlled over a 

20°C range.  This is useful for beam-steering applications as the phase may be scanned 

continuously instead of being limited to binary states.  The reflected phase may also be 

changed quickly by resistive heating in a thin film beneath the groundplane as in Ref. 

6.31 or by optical heating [6.34].   
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Using thermochromic VO2 square-patch elements, the reflection minima was shown to be 

scanned spectrally from 9.2 to 11.6 μm by FTIR measurements.  This was in agreement 

with finite-element HFSS simulations that used the optical constants of VO2 measured by 

IR ellipsometry.  The same HFSS simulation calculated a 60 degree phase change at 10.6 

μm, and this was confirmed by interferometer measurements.  Interferometric 

measurements also showed a linear change in phase that occurred as the sample 

temperature changed from 45 through 65 °C.   

 

The demonstration of tunable reflected phase in a thermochromic metamaterial marks the 

successful completion of a five-year-long effort to produce a tunable metamaterial. Early 

attempts at a tunable device that used Schottky diodes, or some variation with p-n 

junctions, never had near the potential of that has been shown in the thermochromic 

devices. At the beginning of the project tuning the resonance frequency across the 

thermal IR (from 8 to 12 µm) was considered to be more than could reasonably be 

expected. Just half a micron of movement would have been considered a major 

achievement. However, in this chapter it was shown that the resonance frequency could 

be tuned from 9 to past 11 µm. In the next chapter it will be shown how VO2 elements 

can be combined with metallic ones to form a hybrid unit cell. These thermochromic / 

metal hybrids have the potential to scan the resonant frequency across the thermal IR 

band and beyond – and they can do so while maintaining the Q factor of the resonance.   
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CHAPTER 7: CONCLUSIONS 

7.1 Future Work 

Topics of future work from this dissertation come from chapters 5 and 6. In chapter 5 

analytical models were developed to determine the resonance frequency of an SRR 

element based on geometry, fringing-field effects, and plasmon-phonon coupling. A 

metamaterial resonance with Lorentzian lineshape is described by its resonant frequency, 

damping rate, and amplitude. The analytical models developed in chapter 5 address the 

resonance frequency and damping rate but not the amplitude or resonator strength. Future 

work should address this issue, and particularly the effect of resonator strength on 

plasmon-phonon coupling. Resonator strength may be related to the magnitude of the 

electric near fields, so in the case of an SRR element there should be greater sensitivity at 

the gap of the elements. For SEIS applications this could yield high spatial resolution 

since the appearance of coupled modes could be traced to molecules in close proximity to 

the SRR gap rather than just the element in general. It would be interesting to study the 

effects on plasmon-phonon coupling by: further varying element type and geometry to 

control the plasmon resonator strength, using dielectrics other than SiO2 to vary the 

phonon resonator strength, and patterning the dielectric such that it was only in contact 

with portions of the element such as the gap in an SRR. 

 

Another topic of future study related to resonator strength and near-field effects is 

multiple-layer IR metamaterials designed to have layer-to-layer coupling. Some multiple-

layer metamaterials that have been fabricated with meanderline elements to act as IR 
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waveplates. The meanderline waveplates may be differentiated by layers that are spaced 

by a large enough distance to avoid layer-to-layer coupling. In this case registry between 

layers is not critical. In the case where the layer-to-layer spacing is less than the near-

field penetration depth significant coupling will occur between the pair of elements. Two 

such coupled elements may be described as an artificial molecular dimer. [7.1] An 

example of some initial metamaterial dimers is shown in Fig. 63 where the top layer is in 

two different orientation states (symmetric and anti-symmetric modes) relative to the 

bottom layer. These test dimers were built just to prove the feasibility of the fabrication 

process, and to determine if simulations using FEM tools were accurate.  

 
Figure 63: A) Symmetric metamaterial dimer design, B) anti-symmetric metamaterial 

dimer design, C) SEM micrograph of symmetric metamaterial dimer, D) SEM 
micrograph of anti-symmetric metamaterial dimer. 
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The bottom layer of elements were fabricated on Si and the top layer were fabricated on 

an experimental self-planarizing polyethylene film created by Sandia National 

Laboratories. The polyethylene film was only 140 nm thick, and the bottom layer of 

elements were 75 nm thick, so the layer-to-layer spacing was 65 nm. In chapter 5 the 

near-field penetration depth was estimated to be around 60 nm, so the polyethylene 

spacer layer was in the right range for a metamaterial dimer. A spacer layer that is still 

thinner would be preferred in future experiments. Polyethylene does not have any 

absorption bands in the thermal IR, but has a lower refractive index than Si. Thus the top 

layer of elements in Fig. 63 are larger than the bottom layer so that both would resonate 

at the same frequency. Due to misalignment in the initial experiment, which can be seen 

in Fig. 63, the metamaterials behaved like two independent resonators as opposed to a 

single dimer mode. Simulations and the initial experiment showed that layer-to-layer 

position registration was crucial for metamaterial dimers. FEM simulated electric near-

field distributions are shown in Fig. 64 for a range of polyethylene (PE) thicknesses and 

good registration. It is only in the case of good registration and PE layer thickness at 100 

nm (25 nm layer-to-layer spacing) that significant coupling is shown to occur between 

layers. This can be seen by the large magnitude field across the bottom interface of the 

top element for the 100 nm PE layer. For larger thickness the electric field is only 

concentrated at the SRR gap, which is the normal single-element mode. This result is in 

agreement with chapter 5 results that suggest coupling events occur within less than 60 

nm of the elements.    
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Figure 64: Electric near-field distributions for varying polyethylene (PE) spacer layer 

thickness in metamaterial dimers. 
 

A great deal of future work may also be derived from chapter 6 utilizing VO2 for tunable 

metamaterials. One important task will be to improve upon the resonance shift 

demonstrated in chapter 6 by creating hybrid unit cells. An example of a hybrid unit cell 

is shown in Fig. 65. Figure 65 A shows a Pt broken-ring resonator element. Next in Fig. 

65 B V patches have been built across the gaps, and then these patches are thermally 

oxidized to form VO2 patches as shown in Fig. 65 C. A process for aligning arrays was 

developed subsequent to the dimer experiment. Although the lithography in Fig. 65 was 

correct, the devices did not demonstrate tuning.  
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Figure 65: A) Pt broken-ring resonator elements, B) V patches aligned to gaps in Pt 

elements, C) V elements thermally oxidized to VOx 
 

The lack of tuning indicates that the supposed VO2 patches in Fig. 65 B were actually 

some other VOx phase. When such problems occur a useful diagnostic tool is to compare 

the device’s measured room temperature resonance frequency to the one predicted from 

simulation based on measured material properties. If the measured resonance frequency is 
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at a longer wavelength than predicted it is likely a mixed phase lower oxide (i.e. VOx 

with x < 2 in some portions). In this case the problem may be corrected by simply 

repeating the thermal oxidation procedure for a longer time. If the measured resonance 

frequency is at a shorter wavelength than predicted it is likely a mixed phase higher oxide 

(i.e. VOx with x > 2 in some portions). In continuous films a similar diagnostic is to 

measure the DC resistivity. As x in VOx increases the resistivity increases by orders of 

magnitude. VO2 has a room temperature resistivity at 10 Ω-cm as a reference point. The 

hybrid unit cell from the experiment shown in Fig. 65 was unfortunately in a higher oxide 

mixed phase, and thus there was no easy remedy. The cause of this problem stands as an 

issue for future work. Once fabrication process problems are solved, the predicted 

behavior of the hybrid unit cell is shown in Fig. 66 where a resonance in emissivity is 

scanned across the thermal IR while maintaining a similar bandwidth (hence similar Q 

factor). 

 
Figure 66: Simulated behavior of hybrid unit cell metamaterial from Fig. 65 assuming 

VO2 elements. 
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The goal of tunable metamaterial work was always to electronically control the resonant 

frequency. This may be achieved indirectly with thermochromic materials by 

electronically heating the VO2 thin film or elements. However there are some cases 

where heating an IR system can be a problem. Thus an electrically induced insulator-to-

metal transition is still desirable. Materials that are closely related to VO2 by crystal 

structure and properties such as WO3 have been shown to be capable of supporting 

electrochromism. Electrochromic materials undergo an insulator-to-metal transition under 

an applied bias potential. Although a phase transformation and symmetry change is 

associated with electrochromism [7.3] there is not the same sort of electron state 

delocalization that occurs in thermochromics. Instead the electrochromic is intercalated 

with cations (usually H+ or Li+) in a wet cell where the electrochromic thin film is 

immersed in an electrolyte solution as shown in Fig. 67 and a bias is applied. After the 

initial intercalation in a wet cell as shown in Fig 67 A, the electrochromic is transformed 

to a new crystal structure with some of the cation species always present. In the case of 

WO3 the electrochromic becomes LixW(1-x)O3 where x may be changed as a function of 

bias potential in a solid-state-electrochomic stack as shown in Fig. 67 B. When x is large 

the electrochromic is in its colored state. In order to maintain charge neutrality in the 

colored state free electrons are pulled from the electrode. These free electrons lead to 

optical properties that follow Eq. 2.1 and an insulator-to-metal transition occurs. When x 

is small in the insulating state the electrochromic is said to be bleached.  
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Figure 67: A) Intercalation wet cell, B) Solod-state electrochromic device from Ref. 7.2. 

 

The transition between bleached and colored states is both reversible and fully 

electronically controlled. However, it is more difficult to implement than 

thermochromism. As shown in Fig. 67 B a three-film stack is required such that there is a 

crystalline electrochromic layer, a cation conductor, and an amorphous cation storage 

layer. [7.2] The cations intercalate into the electrochromic layer in the colored state and 

return to the storage layer in the bleached state. The cation conductor layer allows cations 

to be transmitted but not free electrons – in other words it is a good insulator. The change 

in optical constants between colored and bleached states in electrochromics is very 
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similar to the contrast between high and low temperature states in thermochromics. The 

colored and bleached optical properties of WO3 have been measured using ellipsometry 

by J.A. Woollam in Ref. 7.4. 

 

Since the cation concentration varies as a function of applied bias multiple states between 

two extremes are possible. The optical properties depend more upon the injection of free 

electronics as opposed to a phase transformation, so there is less of a hysteresis problem 

than occurs in thermochromics. However the stack of dielectric films shown in Fig. 67 B 

presents problems because the absorption bands in these films will interact with the 

metamaterial resonance. One obvious way to integrate elements with the electrochromic 

stack is to pattern slotted aperature elements into the top electrode. Such a device would 

resonate in the bleached state, but the resonance would be quenched in the colored state. 

A more interesting solution is shown in Fig. 68 where the electrochromic layer and the 

electrode have been merged into a single layer to form a hybrid metamaterial unit cell. As 

with theromochromic hybrids, such a device would be able to transition between two 

resonating states. Determining the feasibility of such hybrid electrochromic unit cells is 

an interesting topic for future work.       
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Figure 68: Electrochromic metamaterial. 
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7.2 Summary 

The results from this dissertation can be used as the basis for many future experiments 

and metamaterial technologies.  Tunable reflected phase was demonstrated for the first 

time in this dissertation, and the largest resonance-frequency-tuning range reported to 

date was also demonstrated. Interesting static metamaterial properties were also 

investigated including plasmon-phonon coupling which may be used for surface-

enhanced infrared spectroscopy. Metamaterials were shown to be sensitive to 

surrounding dielectric layers as thin as 2 nm. Analytical models were constructed to 

predict the resonant frequency and damping rate of metamaterial extinction spectra. By 

showing agreement between the analytical, simulated, and measured results, some of the 

most accurate metamaterial experiments performed to date were shown. These 

experiments and new technologies all depend upon IR frequency carrier transport. 

Accordingly analytical models were constructed to predict the deviation from the Drude 

model due to the anomalous skin effect. These experiments mark significant progress in 

the physical understanding and utility of IR metamaterials.   
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