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ABSTRACT 

In the recent years, there has been a growing interest in droplet-based (digital) 

microfluidic systems due to their ability to handle multiple discrete samples in a 

self-contained configuration compared to continuous flow systems. Various 

methods for droplet manipulation are currently available based on hydrodynamic, 

electrostatic, chemical, photonic and thermal interactions. High speed, controlled 

response and minimal thermal loading with least contamination are required in 

practical applications, especially in chemistry and biology. Although, thermal 

actuation of droplets has been recognized as an attractive choice due to a wide 

range of thermomechanical properties that can be exploited, the previous studies 

yielded limited success in addressing issues such as droplet evaporation, 

contamination, pinning, hysteresis and irreversibility that are associated with using 

solid substrate platforms In order to overcome shortcomings of traditional 

approaches, a novel thermally-actuated droplet manipulation platform based on 

using an inert liquid film was proposed and its working mechanisms were studied. 

Droplets at the air-liquid interface of immiscible liquids usually form partially-

submerged lens shapes (e.g. water on oil). In the thermally-induced motion of 

droplets on the free surface of immiscible liquid films, lens-shaped droplets move 

from warm toward cooler regions. In addition to this structure, we showed that 

droplets released from critical heights above the target liquid can sustain the impact 
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and at the end maintain a spherical ball-shape configuration above the surface, 

despite undergoing large deformation. It was discovered in this study that such 

spherical droplets migrate in the opposite direction to lens droplets when subject to 

a thermal gradient; i.e. direction of increasing temperatures. The existence of this 

metastable spherical state above the free surface and its transition into more stable 

lens configuration was investigated using optical diagnostic tools and theoretical 

analysis.  

Opposite direction of motion observed for droplets at the free surface of 

immiscible liquids was explained based on droplet shape at the interface and the 

dynamics of thin liquid films subject to lateral thermal gradients: mainly 1) 

deformation of the free surface and 2) development of an outward moving flow 

(hot to cold) at the free surface due to surface tension gradients caused by thermal 

gradients. A lens droplet moves due to the free surface flow caused by Marangoni 

convection which is from hot to cold. On the other hand, the spherical droplet 

moves towards the maximum depression on the free surface, occurring at the 

hottest region as a result of the balance between gravity and drag forces from the 

opposing free surface flow. The proposed theoretical models predict experimental 

observations of droplet motion due to thermal gradients satisfactorily.  

Opposite responses of thermally-induced motion of lens and spherical droplets on a 

thin liquid layer, were characterized experimentally and compared to theory by 
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studying droplet motion in an exponentially-decaying temperature field maintained 

across the length of a shallow liquid layer. The effect of droplet size and magnitude 

of thermal gradient (slope) on drop velocity were investigated. The down-scaling 

effect is prominent, which shows that the proposed concept of droplet manipulation 

could be used favorably in miniaturized platforms. 

Based on the theoretical development and measurements obtained from meso-scale 

experiments, a silicon-based droplet transportation platform with embedded metal 

film micro heaters was developed. A thin layer of a chemically-inert and thermally 

stable liquid was chosen as the carrier liquid. Heaters were interfaced with control 

electronics and driven through a computer graphical user interface. By creating 

appropriate spatio-temporal thermal gradient maps, transport of droplets on 

predetermined pathways was demonstrated with a high level of controllability and 

speed. 
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CHAPTER 1: INTRODUCTION 

Background 

A gradient in surface tension, resulting from non-uniformity in chemical composition, thermal 

gradients or electrical fields causes an imbalance of tangential stresses at fluidic interfaces 

resulting in local or bulk flow. A general class of phenomena which are all characterized by the 

bulk motion under the effect of surface tension gradients are termed as Marangoni flows after 

the observations made by Carlo Marangoni who studied spreading of oil on the surface of water 

[1].  

Wine tears having a back and forth motion on the inner rim of a glass containing wine is a 

familiar observation, which is caused by surface tension gradients due to varying chemical 

composition of liquids. Swirling the wine in the glass leaves a thin film on the glass surface. 

Evaporation of the alcohol content causes the thin film to have higher content of water and hence 

a higher surface tension compared to that of the bulk mixture at the bottom of the glass. The thin 

film will roll upward towards higher tension regions and accumulate in form of drops. As drops 

get larger, gravity would pull them down again (Figure 1). Thermal gradients can cause similar 

effects by variation of surface/interfacial tension. Vapor bubbles formed on a heating wire 

immersed in a liquid swim towards hotter regions at the center of the wire before detaching and 

rising up [2]. Locally heating or cooling a thin sheet of liquid that rests upon a solid surface will 

cause depression or humps on the surface of the liquid, respectively. The humps and hollows on 

the thin liquid sheet are due to the higher surface tension of colder liquid which pulls the warmer 

surrounding fluid with lower surface tension. 
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Figure 1 a) Top view of wine glass and wine tears (chemical variation of surface tension)
1
 b) Vapor bubbles 

move toward hotter region in the center of the heater wire (thermal variation of surface tension)
2
 

It has been pointed out by Ostrach [3] that there are essentially two basic modes of flow 

generated by surface-tension gradients. Gradients that are perpendicular to the interfaces cause 

the so called "Marangoni instability" which leads to cellular flows. Marangoni instability flows 

have received wide attention and the subject is well established [4]. Surface tension gradients 

applied parallel to the fluidic interfaces give rise to tangential stresses acting similar to viscous 

shear stresses and can cause local or bulk flow across the interfaces. Specifically, in multiphase 

fluid systems, the dispersed (e.g. bubbles and immiscible droplets) and the continuous phases can 

be set in motion by differentials of various parameters that affect the surface (interfacial) tension 

of fluids. For example, temperature and chemical gradients alter the cohesion among molecules 

within the bulk of a fluid as well as the tension at the surface (interface) with other adjacent 

phases (vapor or other fluid). In majority of fluids, local increases in temperature results in a 

decrease of the local surface energy (tension), giving rise to a non-uniform tangential stress 

                                                 

1 Image courtesy of John Bush and Peko Hosoi, MIT 

2 http://web.mit.edu/hml/ncfmf.html 

a b
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along the surface (interface). Thermally or chemically induced tangential stresses at the interface 

result in a flow in either of the fluid phases across the interface. In this thesis, motion of droplets 

on the free surface of a thin liquid (immiscible) film due to lateral thermal gradients has been 

investigated. 

Thermally-induced Motion of Droplets in Interfacial Systems 

The literature addressing thermocapillary motion of droplets and bubbles in interfacial systems 

can be categorized in two major sets: first, droplets (bubbles) dispersed in a second liquid phase 

and second are droplets on free surfaces which have usually been limited to the study of sessile 

droplets on chemically or thermally patterned solid surfaces.  

Dispersed Droplets 

The motion of droplets (liquid in liquid) and bubbles (vapor/gas in liquid) has been studied 

extensively by means of theoretical and experimental tools. In almost all earth-bound 

experiments, there exists a density difference between the fluid phases that would cause the 

droplets (bubbles) to rise due to buoyancy or pulled down because of the gravitation force. It 

turns out that the buoyancy (gravity) forces are typically larger in magnitude than the 

thermocapillary forces resulting from thermally induced surface tension gradients; hence the 

effect of interfacial forces in causing droplet motion can easily be diminished in comparison to 

the larger forces.  

In one of the earliest investigations, Young et al. designed an experiment to determine the 

relationship between the critical bubble radii and the negative vertical temperature gradient 

necessary to keep the bubbles motionless with respect to the liquid or make the bubbles to 

migrate downward, opposite the direction of buoyancy force [5]. The experiment consisted of a 



 

4

small cylindrical liquid sample held between copper blocks which were fastened between the 

anvils of a Machinist micrometer. The bottom copper block was heated accordingly, to adjust the 

vertical temperature gradient (hot to cold from bottom to top) and convection flow was avoided. 

Bubbles were in the micrometer range and the observed velocities were in the range of μm/sec. 

The critical temperature gradient required to keep bubbles motionless was found to be 

proportional to the bubble radius but was not affected by the viscosity of surrounding liquid. In 

another experiment conducted by Bratukhin et. al, bubbles were release from the bottom of a 

liquid container subject to a horizontal thermal gradient [6]; one millimeter transverse drift was 

observed for every 24 millimeters of vertical rise of the bubble from the bottom to top of the test 

chamber due to a lateral thermal gradient. 

 

Figure 2 Left) Transverse drift due to thermal gradients in vertically rising bubbles taken from [6] Right) 

Thermocapillary drift of bubbles/drops  in reduced gravity conditions taken from [7] 
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Buoyant velocity of a bubble is proportional to the square of its radius, whereas the 

thermocapillary velocity is proportional to the first power of the radius [6]. Therefore, one can 

eliminate/reduce the effect of gravity/buoyancy by making the dimensions small enough (10 fold 

reduction in characteristic length of a setup will reduce the effect of gravity 100 times while 

thermocapillary motive force is lessened by a factor of 10 and the overall ratio of 

thermocapillary to gravitation forces would increase by a factor of 10). By taking such measures, 

experiments and theoretical models have been devised in horizontal setups as well, to study 

thermocapillary drift of bubbles and drops in two-phase systems. A liquid layer (2mm thick, 

35x35mm
2
 in area), sandwiched between glass plates forms a Hele-Shaw cell. Generating a 

horizontal temperature gradient across the cell causes bubbles to migrate from colder to warmer 

regions of the liquid layer [8]. 

 

Figure 3 Thermocapillary drift of an air bubble in a horizontal Hele-Shaw cell. Drift velocity is dependent on 

the bubble radius corresponding to three curves (o: experimental data, solid line: theory)  [8] 
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Some theoretical work has been conducted to construct models for explaining and predicting 

thermocapillary drift of bubbles and drops in two phase systems. A common assumption made in 

such studies is that of all fluid properties, only surface tension varies with temperature and that 

the surface (interfacial tension) is a linear function of temperature (ds/dT = constant < 0). 

Existing theoretical studies further simplify the solution of the problem by making a pre-

assumption that the droplet shape is a sphere which moves in an infinite medium with a fixed 

velocity. The temperature, pressure and velocity field in the two phases are then found by 

solving the energy conservation, continuity and momentum equation (Navier Stokes equations) 

by attaching the reference frame to the center of the moving drop. The surface tension gradient is 

not treated as a motive term in the equations and the problems are solved assuming that there 

already exists a bulk flow with a preset velocity in the far field [9].  

A general finding in most experimental and theoretical studies is that drops and bubbles migrate 

toward the hotter regions. However, in this study, droplets were observed to move in either 

direction of the thermal gradient depending on their shape. 

 

Drops at Free Surfaces 

Most studies available on the subject of liquid droplets on free surfaces have been done on solid 

surfaces. According to Brochard [10], non-uniform spreading coefficient  values across a droplet 

cause motion of the droplet( s sl lS σ σ σ= − −  where σ is surface/interfacial tension and s, sl and l 

refer to solid, solid-liquid and liquid phases, respectively). The approach to predicting and 

modeling thermocapillary drift is based on a driving force found by considering the virtual work 

principle. The drift velocity would then be chosen such that the resulting viscous drag balances 
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out the driving force and allows for a constant-speed drift. Non-uniformity of spreading 

coefficients could be due to chemical agents on the solid surface, thermal gradients or electrical 

charge (potential). Brzoska et al. [11] studied droplet motion on non wettable surfaces (silanized 

silicon wafers) with horizontal temperature gradients. They found that the droplets only moved if 

their size was above a certain critical limit and that motion is in the direction of decreasing 

temperatures; otherwise they would remain pinned to the surface. This critical radius was 

dependent on the contact angle hysteresis of the surface and was found to be inversely 

proportional to the imposed temperature gradient. Unlike results of Young and Goldstein [5] 

where the thermocapilary drift of bubbles were not affected by viscosity, it was observed in this 

study that the more viscous liquid drops migrated at a relatively lower speed compared to 

droplets of less viscous liquids. It should be noted that the maximum velocities reported are 

limited to 2.5 mm/min (~40 μm/sec) due to a temperature gradient equal to 0.56°C/mm.  

Recently, there have attempts to take advantage of the thermocapillary drift to manipulate 

bubbles and droplets for lab on chip applications. Common shortcomings of the proposed 

methods were low speed (in the range of tens of micrometers per second), relatively high 

temperatures (70°C), surface contamination, contact angle hysteresis and sample loss in form of 

evaporation or trailing streaks on the solid substrate. In addition, droplets usually get pinned to 

the surface, where assist mechanisms are required to jump-start droplets in to motion. Clearly, 

these conditions are not compatible with biological and fine chemical compounds that are highly 

sensitive to temperature fluctuations and contaminants. For example, a thermocapillary pumping 

mechanism has been proposed for pumping nano-liter and pico-liter sized drops in 

microfabricated flow channels created in glass [12]. One end of a single drop is heated to create a 
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surface tension difference between the two ends of the droplet. The resulting capillary pressure 

sets the drop into motion. Contact angle hysteresis was recognized as the major limiting factor 

which was compensated for, by using tapered channels and external pumping assist mechanisms. 

Recently, another thermocapillary actuation mechanism was proposed for droplets that were 

dispensed on chemically patterned surfaces [13]. This microfluidic device was designed for 

actuation of droplets or continuous streams of fluid on solid surfaces by means of integrated 

micro-heaters arrays. Results showed that droplets moved away from the heat sources. Using 

liquo-phobic and liquo-philic chemical surface patterning, droplet motion was limited to 

predefined paths under the influence of thermal gradients (Figure 4). 

 

Figure 4 Left) The array of micro-heater under liquo-philic stripes are used to move liquid droplets via 

thermal gradients while keeping droplets on predefined pathways Right) Snapshots of the motion of a PDMS 

droplet at 44 seconds time interval taken from [13] 

As mentioned earlier, theoretical and experimental studies available for droplet motion at free 

surfaces are mostly focused on sessile droplets on solid surfaces. A common result found in the 
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reviewed publications is that droplets dispensed on solid surfaces migrate toward colder regions 

of the thermal gradient. 

Problem Statement - Thesis Outline  

In this thesis, we deal with the thermally-induced motion of droplets (water) at the air-liquid 

interface of a thin liquid layer (Perfluorotributylamine, FC43). This problem is of importance 

both from a fundamental science point of view as well as from an applied perspective. Droplet 

manipulation using thermal gradients has been mostly studied and reported for chemically 

patterned solid substrates; in this study drop motion is investigated on liquid buffer layers where 

we find that the direction of motion is dependent on the droplet configuration at the interface 

(lens vs. sphere). Motion of normally occurring lens droplets on liquid surfaces was recently 

studied[14-16]; however the dependency of the direction of thermal motion on droplet shape at 

the free surface has not been observed or described in the past[17]. We observed that lens drops 

move in the direction of decreasing temperatures, consistent with the observations reported in 

existing studies. However, we discovered that droplets released from a critical height above the 

target liquid can sustain the impact and maintain a spherical ball shape above the surface. We 

observed that such spherical droplets move in the opposite direction of lens droplets; i.e. towards 

increasing temperatures.  

The observations for droplet motion on free liquid interfaces are mainly explained based on the 

physics of thin liquid layers subject to lateral thermal gradients and the shape of droplets at the 

air liquid interface. Droplets can acquire a lens shape or a spherical configuration at the air-liquid 

interface. The requirements for droplets impacting on target liquid surfaces to maintain a 

spherical shape are found by experiment and investigated theoretically in chapter 2. The effect of 
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temperature gradients on interfacial tensions has been demonstrated in an experimental setup 

designed for measuring the temperature dependency of surface (interfacial) tension among 

various fluid pairs. In chapter 3, the theoretical framework for the dynamics of thin liquid films 

under the influence of an imposed thermal gradient has been developed, which together with the 

details of droplet shape at the interface is used to explain the opposite direction of motion 

observed for interfacial droplets. Experimental results of uni-direcitonal thermally-actuated 

motion of lens and spherical droplets on the surface of fluorocarbon liquid have been provided in 

chapter 4 where the effect of droplet size and magnitude of temperature gradient on the drift 

velocity has been investigated. In chapter 5, experimental results are compared to the theoretical 

models.  

The last portion of the thesis is concerned with the design, fabrication and testing of a droplet 

manipulation platform based on the physical understanding of this phenomena. With the recent 

advent of novel Microsystems (microfluidics) and Lab on Chip applications, droplet-based 

systems have received widespread attention. Droplets offer a self-contained and contamination-

free microreactor environment, which also serve as vehicles for material transport. Large surface 

to volume ratio in droplets offers superior control over process parameters such as temperature 

within the droplet. One of the major challenges however, is the transportation and manipulation 

of droplets in a robust and predictable manner. A prototype of a droplet manipulation platform is 

presented in chapter 6. In this method, droplets are dispensed on the free surface of a two 

dimensional liquid pool that is formed on a silicon wafer with embedded microheaters. 

Microheater elements generate the desired thermal maps necessary for droplet motion on a preset 

pathway. Experiments show that switching to a liquid platform yields significant increase in 
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migration speed and also eliminates the need for the direct application of heat to the droplet 

which may be carrying temperature-sensitive materials. 

In this study, high speed droplet transport has been achieved by replacing the solid substrate with 

a chemically-inert and thermally-stable liquid film. Spherical drops offer superior control on 

droplet location and motion. Lens droplets can take on any arbitrary path away from a hot spot, 

while spherical droplets always get pulled to known locations (hot spots). Through a computer 

interface, the user can control the droplet position and transport it on the platform using spatio-

temporal thermal gradient maps. 
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CHAPTER 2: DROPLETS AT INTERFACES 

Introduction 

The study of droplet impingement on solid and liquid surfaces is of importance in the 

fundamental understanding of the underlying physics and the applied aspects of the subject for 

example spray cooling [18, 19], inkjet printing [20], soil erosion due to rain [21] and 

understanding and quantifying rainfall [22]. Phenomena that occur following the impact of 

droplets on solid and liquid surfaces are fascinating observations; yet their physical and 

mathematical description often lead to complex formulations [22-26]. A thorough review on the 

topic has been carried out by Rein [27] and Yarin [28].  

Droplets impinging on the surface of a liquid can splash [23, 29], coalesce with or bounce off the 

target surface [27] depending on various factors including impact velocity of the droplet, the 

depth of the target liquid and the physical properties of the fluids. Typically, when a droplet 

collides with the liquid surface at a relatively high speed, a crater is formed. Due to instability of 

the rising liquid sheet on the rim, smaller jets are ejected and the resulting structure resembles a 

crown; these jets further breakup into spray droplets. As the walls of the crater rim subside, the 

receding flow towards the center shoots up in form of a column of fluid which also breaks up and 

secondary droplets are ejected in the vertical direction [22, 24, 28]. In addition to the impact 

velocity, experimental results show the dependency of splashing, deposition and crown 

formation of impinging droplets on liquid films on the fluids’ viscosity and film thickness [30, 

31]. It has been found that in the limit of extremely thin target films, the critical splashing 

following impact of droplets is insensitive to the film thickness for given underlying solid 

surfaces [32].  
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Generally, droplets impinging on the surface of self similar liquids eventually coalesce with the 

target pool, or form a lens-shaped structure on the free surface if liquids are immiscible. 

However, spherical ball-shaped droplets have also been observed that exist at the air-liquid 

interface. Such isolated droplets on the surface of similar liquids have been attributed mainly to 

the existence of a cushion of trapped air which serves as a lubricating film, preventing it from 

coalescing with the bulk liquid [33, 34]. The non-coalescence effect requires continuous drainage 

of the air cushion; for example when the target liquid pool is set to vibrate in the normal 

direction [35, 36]. A similar bouncing/anti wetting effect is observed for droplets impinging 

upon superhydrophobic solid substrates [37]. 

In this study, it is shown that droplets impinging upon the surface of an immiscible liquid can 

retain a metastable spherical configuration above the surface following the impact, without 

collapsing into the target liquid to form partially submerged lenses that are commonly observed 

for droplets resting at the air-liquid interface of immiscible liquids. We found that under certain 

conditions, the spherical droplets can retain their shape for relatively long periods (without 

external stimuli) unless the system is disturbed causing them to collapse into the stable lens 

structures.  

Droplet Impact 

A set of precision dispensing needles with various tip diameter sizes were used to release 

pendant droplets of deionized water on the surface of FC-43. Droplet impact was recorded by a 

high speed camera at a rate of 2000 frames per second.  
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Figure 5 (Droplet Impact Video) shows the time progression of the droplet impact and one cycle 

of oscillation of the droplet on the surface. It is seen that both the target liquid and the droplet 

undergo large deformations during the impact; however, the droplet is able to maintain its 

spheroid structural integrity after the impact. The deformations are similar to the morphologies 

reported for droplets impacting upon soft solids [38] but they are not large enough to result in the 

splitting of the original droplet. The amplitude of deformation dies out quickly within the first 

few oscillation cycles to viscous effects. 

 

Figure 5 Impact and oscillation of a drop of water on the surface of fluorocarbon liquid FC-43 

In another experiment, the imaging was done from the liquid side below the free surface (Figure 

6). It is seen that the maximum penetration of the drop is almost two times the static deflection. 

In order for pendant water droplets to sustain the impact and retain a spherical configuration at 

the air-liquid interface of the target liquid pool, it is required that they be of a critical size and be 

released from a certain height range. Figure 7 provides the range of the critical release heights 

for which various size droplets are able to sustain the impact and retain a spherical shape while 

the underlying liquid sheet stretches to accommodate the impact.  
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Figure 6 Sequence of drop impact; free surface has been illuminated and imaged from below (liquid side) 

 

 

Figure 7 Characterization map for drop impact as function of release height and drop diameter; b) 

Representation of the characterization map in terms of non dimensional parameters (We, Oh). In the gray 

region, drops sustain the impact and assume a spherical ball shape above the surface of the target liquid; in 

the region above the upper bound of the gray area, impacting drops collapse into lens-shaped drops; whereas 

below the lower bound, free-falling pendant drops cannot be formed since drops bridge the gap between the 

dispensing tip and the liquid interface. 

t = 0 t = 40 ms t = 80 ms t = 120 ms t = 160 ms t= 200 ms 

t = 240 ms t = 280 ms t = 320 ms t = 360 ms t = 400 ms t = 440 ms 

t = 480 ms t = 520 ms t = 560 ms t = 600 ms t = 640 ms t = 700 ms 
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The gray area on the graph represents a collection of release-heights for which droplets rebound 

on the surface and form a spherical structure above the interface. Similar spherical droplets on 

liquid surfaces have been shown by isolating the two fluids for example by coating the exterior 

of the droplets by super-hydrophobic powders [39]. The critical release height for droplets 

released from a 27G (resulting droplet diameter is 2.6 mm) needle ranges from about 1.5 to 3 

times the drop diameter and gets narrower for smaller gauged needles (larger drops). A cubic 

relationship was found between the diameter of the needle tip and the pendant drops that pinched 

off the tip due to their own weight. 

Weber number (
2U D

We
ρ

σ= ), Ohnesorge number ( Oh
D

μ
ρσ

=  ), normalized film 

thickness (th*=th/D) and the Bond number (
2gh

Bo
ρ

σ= ) are commonly used in analysis of 

such systems (σ is the target liquid’s surface tension with air,  ρ, the density of the drop, D is  the 

drop diameter and U is the impact speed which is a function of release height given as 

2U gH= ). The Ohnesorge number relates the viscous forces to inertial and surface tension 

forces, Weber number is used for evaluating the relative importance of inertia and surface 

tension and the Bond number compares the gravitational force to surface tension effects. Using 

the physical properties of water and FC-43, the conditions of the experiment are characterized by 

Oh ≈ 0.02, We ≈ 20 (Bo ≈ 10) for th*≈ 4. It is seen that for larger droplets, the critical height 

range for successful rebound is narrower. Larger droplets and those released from higher than 

critical heights were found to collapse immediately into a lens-shaped structure in the process of 

impact as commonly observed. The lower bound of release heights in experiments resulted from 

the minimum distance between the needle tip and the interface such that pendant droplets could 
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be formed; for shorter distances droplets formed a bridge between the tip and the target liquid 

and could not get released into a free fall. 

The spherical droplets can remain intact on the surface; however, they are usually short lived and 

unstable; they have a tendency to collapse into the submerged configuration if there are any 

perturbations or vibrations. Figure 8 (Droplet Breakup Video) shows the breakup and 

transformation of a spherical droplet into a lens structure at the air-liquid interface in slow 

motion; a process which completes in less than a tenth of a second. It is seen that the droplet 

undergoes rapid and asymmetric deformations from the bottom and the sides until it eventually 

settles into a symmetric shape in form of a partially submerged lens. Static conditions for the 

droplet can be determined by carrying out a force balance or by evaluating the total energy of the 

system. 

 

Figure 8 Collapse of a spherical drop into partially-submerged lens configuration 
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Equilibrium Static Configuration of a Droplet at an Air-Liquid Interface 

A balance of forces in the vertical direction can be used to find the equilibrium static states of a 

droplet resting at the air-liquid interface. Similarly, extrema of the system’s energy (surface 

energy and work of the external forces acting on the system) can also provide equilibrium states 

(droplet configuration at the interface) that determine the stability of a given static configuration 

[40]. Considering Figure 9, there are three forces that act on the drop in the vertical direction 

[41]: 

Gravity force (drop weight): 

34
3G wF g rπ ρ=  

(1) 

Surface tension force exerted on the drop by the target liquid: 

2 sin( )sin( )S fF rπσ ϕ ϕ θ= +   

(2) 

and finally the Buoyancy force which is found by integrating the vertical component of the 

hydrostatic pressure around the surface of the drop: 

2 2 3 2 3 3

0
2sin ( ) sin ( )cos( ) (cos ( ) 1)

3B fF g h r r rπ ρ ϕ ϕ ϕ ϕ⎡ ⎤= + + −⎣ ⎦   

(3) 

The net force is the algebraic sum of three forces. 
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In these expressions, r is the equivalent radius of a sphere that has a volume equal to the drop, ρf 

= 1880kg/m
3
, ρw = 998kg/m

3
 are the density of the base liquid and the water droplet and the 

density of the surrounding air is neglected. σf=16 dyne/cm, σw=71dyne/cm and σfw=52dyne/cm 

are the surface (interfacial) tensions of the target liquid (FC-43) – air, drop (water) – air and  

drop – target liquid pairs respectively, measured by the pendant drop method implemented in this 

study.  

 

Figure 9 Schematic of a spherical drop resting at the liquid-air interface 

 

The angle φ represents the extent of submergence of the droplet in the target liquid; by varying φ 

from 0 (droplet above the surface and touching) to 180º (fully submerged), the normalized net 

force fNET (normalized by frσ ) acting on the droplet can be plotted as a function of φ using the 

equilibrium contact angle as a parameter. 
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(4) 

1

f

f

g
C

ρ
σ

=  and 2
w

f

C
ρ
ρ

= are constants based on the droplet size and physical properties of fluids; 

for water droplets at the air-interface of a fluorocarbon liquid pool: 1 2

1
1.152C

mm
=  and C2=0.53. 

Considering equation 4, submergence angles, which correspond to 0NETf =  would be the 

equilibrium static conditions for droplets resting at the interface. 

It is noted that in order to evaluate the buoyancy force term (equation 3), the capillary rise (fall) 

of the target liquid on the drop, h0, is needed (h0, is measured from the free surface to three phase 

contact line, 0 cx r xh z z= →∞= − ). For the case of spherical drops, h0 is not readily available [42] and 

is found by numerically solving the Young-Laplace equation governing the free surface profile 

in the vicinity of the drop-liquid-air contact line: 

2

2

3 1
22 22

0

1 ( )1 ( )

f

f

d z dz gzdr dr

dzdz r
drdr

ρ
σ

⎡ ⎤
⎢ ⎥+ − =⎢ ⎥

⎡ ⎤⎡ ⎤ ++⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 

(5) 
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The governing equation for the capillary profile is normalized by letting 
1

* 2
1z C z= and 

1
* 2

1x C r= : 

2 * *

*2 *
*

3 1
** 22 * 22

**

0

1 ( )1 ( )

d z dz
dx dx z

dzdz x
dxdx

⎡ ⎤
⎢ ⎥

+ − =⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤ ++ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 

(6) 

Equation 6 was numerically solved with boundary conditions as: 
*

* tan( )dz dz
dr dx

α= = at r=rc 

(rc is contact line radius) and 
*

* 0dz
dx

= as x
*→∞ (∞ found to be around 3 times the drop 

diameter by extending the solution for larger x). α θ ϕ π= + − , and θ is the equilibrium contact 

angle measured counterclock wise from σfw to σf.  

In Figure 10, the balance of forces resulting from equation 4 and numerical solution of the 

meniscus profile (equation 6) for an interfacial drop (R=1.25mm) using corresponding values of 

C1 and C2 of water and FC43. Equilibrium contact angle θe.is chosen as a variable.  
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Figure 10 Equilibrium balance of forces (normalized by Rσf ≈ 20μN) is plotted as a function of the level of 

immersion of the drop in the underlying liquid pool. 

Based on experiments, the equilibrium contact angle at the triple contact line was found to be 

θe=15º±3º (error is due to the misalignment of the imaging camera with the horizontal line). 

Solving equation 4 for a water droplet with r=1.25mm, the normalized net vertical force becomes 

zero at φ ≈ 135º (Figure 11a) which shows that the partially submerged lens configuration is the 

only static equilibrium condition. This calculated angle is in good agreement with the observed 

extent of immersion of the droplet in the lens configuration (φs=140º) (Figure 12b). Figure 11b 

shows the capillary rise and the meniscus profile of the free liquid surface.  
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Figure 11 a) Net vertical force as a function of the extent of drop submergence in the target liquid (θe=15˚); b) 

Free surface profile of the liquid film in vicinity of the contact line C, (angle between the horizon and the free 

surface tension σf, α ≈ - 30˚, equilibrium contact angle θe =15˚) 

 

It is noted that the force analysis is performed by approximating the droplet as a perfect spherical 

volume, while this not exactly true for lens shaped drops at the interface. The exact shape of a 

droplet residing at the interface of two fluids has been described in detail [14]. 

a 
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σfw 

α

θ

Contact Point 
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Figure 12 Spherical drop (a) converts into the stable partially submerged lens shape configuration (b) 

While we observe two distinct static configurations for the droplets at the interface, only the lens 

configuration is predicted by the force balance model (fNET plotted against φ has a single 

zero, Figure 11a). The net force (sinking) has a negative slope when passing the equilibrium, 

which physically translates to the following: the sinking force decreases (changes signs and 

becomes upward) if the droplet were to be further immersed in the base liquid and since the 

droplet would not accelerate against the direction of gravity, it has to eventually rest at this state. 

The force balance provides only the equilibrium static states because the thermodynamic 

equilibrium contact angle θe is used; in addition it is assumed that the Young Laplace equation is 

satisfied at the drop – liquid interface profile. Static conditions other than the equilibrium, for 

example the spherical configuration observed here, are known as mechanically enforced 

stationary states [40, 43] that are achieved with the aid of some external agents present in the 

system that compensate for the imbalanced equilibrium forces. The spherical droplet in our case 

is predicted not to be at static equilibrium due (nonzero equilibrium force balance); however it 

does exist in a static state in our experiments. Existence of a fine interfacial air film has been 

confirmed for non-coalescent drops impinging on the surface of self-similar liquid films [33, 34].  
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It is likely that an extremely thin cushion of air balances the net vertical force and allows the 

existence of the isolated spherical drop on the free surface. The lower bound of the thickness of 

such an air film has been estimated to be on the order of 10nm (Van der Waals attraction) and 

upper bound of  1 - 10μm considering the continuously-drained air film due to relative motion of 

the fluid interfaces which is explained in subsequent sections. Based on calculations carried out 

in the work, the air gap was found to have a thickness of around 7μm. 
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Effect of Temperature on Fluid Interfaces 

In order to describe and formulate the problem of thermally induced motion of water droplets on 

the surface of FC43, interfacial tension among all fluid pairs (water – air, FC43 – air and water – 

FC43) is needed. In addition, temperature dependency of the tension values is required. For most 

fluids, surface tension decreases with increase of temperature. Surface tension is defined as the 

energy per unit area of the surface of a liquid with its vapor (gas). At the critical temperature the 

surface tension approaches zero since there is no distinction between the liquid and gaseous 

phases and a definite interface cannot be defined among the two phases. A comprehensive theory 

capable of predicting surface tension and its dependency on temperature does not exist and semi 

empirical methods are used [44]. 

An in-house experimental setup based on the pendant drop method was developed to measure 

surface (interfacial tension). A pendant drop is formed in air or within the other immiscible 

medium. The profile of the droplet is captured by imaging the droplet and using backlighting. 

Based on the Young-Laplace equations, the shape of a pendant droplet can be found theoretically. 

By comparing the actual droplet curvature and the theoretically-predicted shape, the appropriate 

value for surface (interface) tension can be determined.  

Bashforth and Adams first developed the drop-shape method by numerically solving the 

theoretical equations describing the shape of a static droplet in a gravitation field [45]. The 

equations are derived in the following manner. Consider R1 and R2 to be the principal radii of 

curvature at point P on the surface (Figure 13). 

 



 

27

 

Figure 13 Drop shape, R1 (vertical plane, xz) and R2 (horizontal plane) are the principal radii of curvature at 

P on the surface. φ is the angle radius R1 makes with the z 

Hydrostatic pressure, P gz Cρ= + , were ρ and g are the density and the gravitational constant 

and C is a constant dependent upon where the reference is chosen. The pressure difference across 

a curved interface is governed by the Young-Laplace relationship. 

1 2

1 1 P gz C

R R

ρ
σ σ
Δ Δ +

+ = =  

(7) 

Apex O 
x

z

R

R

φ

P



 

28

At the droplet apex (z=0), R1=R2=b therefore 2C
b

σ=  and since 2 sin
xR ϕ= : 

1

1 sin 2gz

R x b

ϕ ρ
σ

Δ
+ = +  

(8) 

Using * xx
b

= , * zz
b

= , * 1
1

R
R

b
=  and grouping physical properties and constants in the 

gravitational parameter, 
2gbρβ

σ
Δ

≡  the dimensionless differential equation is found as follows  

*

* *

1

1 sin
2z

R x

ϕ β+ = +  

(9) 

R1 and sinφ can be replaced in the following manner to achieve a differential equation that 

describes the curve in the form z=f(x).  
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(10) 

It is noted that the form of the curve (droplet shape) only depends on the magnitude of the 

gravitational parameter β (superscript * has been dropped). First boundary condition is: 

0 : 0x z= = . The other boundary condition is not apparent and results from examining 

equation 9 at the apex of the drop (z
*
=0, x

*
=0), *

1 1R = ( 1R b= ), therefore the term, 

*

* 0

sin
lim 1

xx

ϕ

→

⎛ ⎞ =⎜ ⎟
⎝ ⎠

. This formulation is not suitable for solving the second order differential 

equation using a numerical solver. Another approach is to form a set of first order differential 

equations (for x, z and φ) as function of the curve length, s, starting from the apex (origin). In this 

way boundary conditions can be set explicitly. 

From the definition of sinφ it can be seen that ( )
1

1
sin

d d

R dx ds

ϕϕ= = since the differential curve 

length is written as: 1ds R dϕ= ; similarly cos
dx

ds
ϕ=  and sin

dz

ds
ϕ= .  

Considering equation 9, and the auxiliary equations for the coordinates, the set of first order 

differential equations that are solved simultaneously to give the drop shape is as follows: 
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(11) 

Fourth order Runge Kutta solver is used to solve the set of differential equations.  

The experimental setup shown in (Figure 14) is used to take images of pendant drops of each 

liquid formed in air (vapor) and other immiscible liquids.  

 

Figure 14 Experimental setup; images of pendant drops formed in a fluidic chamber are transferred to a 

processing unit 

 

A computer code was written that could read the image files and find the boundaries; the drop 

was then rescaled for plotting. By considering a least square method, surface tension that is 
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incorporated in the β parameter is found, such that the closest overlap of the two profiles is 

achieved. Consistency, accuracy and reproducibility of results based on this method was verified 

by comparing the measurements with data for water available in references, as well as 

measurements made by a commercially-available tensiometer (SITA bubble pressure 

tensiometer) (Figure 15).  

 

Figure 15 Surface tension of water as a function of temperature measured by commercially available 

tensiometer (SITA bubble pressure tensiometer) and the in-house graphical method.  
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Figure 16 Left) Actual imaged pendant oil drop immersed in water (transparent); Right) By choosing an 

appropriate value of interfacial tension, s, the theoretical and actual drop profile overlap. The interfacial 

tension calculated for oil in water drops was found to be 52dyne/cm. 

 

The unknown interfacial tension between the oil (FC43) and water at room temperature was 

extracted in multiple runs at identical conditions which yielded the result with less than 5% in 

repeatability error. It should be noted that the performance of the developed system matches with 

that of commercially available products and is far less expensive. A hotplate is used to maintain 

temperature inside the fluid chamber. Images were taken when steady temperatures were reached. 

Temperature was increased in increments from room temperature up to 85˚C.   
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Figure 17 Variation of surface tension with temperature of fluid pairs (FC43-air, water-air, FC43-water). 

For liquids (FC43 droplets in water), at higher temperatures, convective currents inside the fluid 

chamber caused refractive index changes resulting in blurred edges. At such high temperatures, 

the graphical method looses accuracy. 
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In summary, we studied the impact of droplets onto the surface of an immiscible liquid and 

demonstrated the possibility of creating isolated spherical droplets above at a liquid interface 

without external stimuli such as induced vibration on the surface [37] or hydrophobic coatings 

[39] or temperature difference between drop and target liquid [46]. Released from a controlled 

height and depending on their size, liquid droplets colliding on the air-liquid interface of 

immiscible liquids can sustain the impact and maintain their spherical integrity over the air-

liquid interface. The target liquid deforms similar to an elastic membrane and causes the droplet 

to rebound and oscillate on the surface. The impact and the oscillation process are completed in 

less than 70ms due to relatively large viscous damping. Spherical droplets collapse and transform 

into the more stable and commonly-observed partially submerged lens-shaped configuration if 

any perturbations exist. The equilibrium force balance predicts only the lens-shape as the stable 

configuration and the extent of submergence found is in good agreement with our observations 

from imaging. Liquid drops resting on the free surfaces of inert liquid platforms exhibit 

interesting features and show promise for various applications such as material transport vehicles 

for lab on chips [47]. 
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CHAPTER 3: EFFECT OF THERMAL GRADIENTS ON THIN LIQUID 
LAYERS 

Introduction 

This thesis is primarily concerned with explaining the motion of droplets at the free surface of a 

thin liquid layer due to a lateral thermal gradient. Partially submerged lens shaped droplets move 

in the direction of decreasing temperature while in this study it was discovered that spherical 

droplets, which form under special conditions at the interface, move in the opposite direction; i.e. 

direction of increasing temperatures. The primary objective of this work is to explain this dual 

behavior (Figure 18). 

 

Figure 18 Snapshot images taken at Δt=0.5sec (left) an Dt=2sec (right) from the actual motion of drops 

showing attraction/repulsion thermocapillary motion. Spherical droplets (left) get attracted to heat source 

while sessile droplets (right) get repelled down the thermal gradient 

The experimental setup consists of a thin liquid layer (2mm deep, 10mm wide and 55mm long) 

formed in a rectangular pocket. Since surface tension of most fluids varies with temperature, 

C 

H

C 

H 

H C 

H C 
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thermal gradients imposed on the free surface cause surface tension gradients which in turn cause 

changes in the free surface profile and flow in the thin layer. Mainly, the free surface deforms 

such that the maximum depression occurs at the maximum temperature and an outward moving 

flow develops on the free surface that carries fluid from the hot end to the cold extreme of the 

thermal gradient. The essentials of the problem were first discussed by Levich [48-50] and later 

by Yih [51] and Pimputkar and Ostrach [52].  

 

Figure 19 Schematic of the thin liquid layer subject to a thermal gradient; the thickness H and surface 

velocities can be found by solving the momentum and conservation of mass equations (Navier Stokes) 

The governing equation for fluid flow and free surface deformation are derived from the full 

Navier-Stokes equation and further simplified based on order of magnitude analysis and other 

considerations (small aspect ratio ~1/30). The equations are numerically solved for geometrical 

and physical parameters of the experiments carried out in this study. The outcomes of the 

theoretical analysis that follows is used to explain the motion of droplets on the free surface of 

liquid films.  

H(X,t)
X

Y

HOT COLD
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The full set of non dimensional Navier Stokes equations (continuity, momentum in x and y 

directions and the energy equation) and the corresponding boundary conditions are summarized 

below (for complete derivation and non-dimensionalization process see APPENDIX): 
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( ) ( )
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2 2
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2 2
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2 2
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(12) 

Initial condition:  

0 : 0, 0, 0, 1t u v hθ= = = = =  

Boundary conditions: 
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Scaling is done in the following manner: 

฀ ฀ ( )
฀ 1

2, , , , , , . ,
.

C
atm

H C

X Y d U V T TUL
x y A u v t p P P g H Y

dL d L T TU U A

τ μρ θ
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−
−⎛ ⎞= = = = = = = − − − =⎡ ⎤ ⎜ ⎟⎣ ⎦ −⎝ ⎠%

where the velocity scale ฀ ( ) 1

H CU T T
T

σ μ −∂= −∂ is defined considering the fact that flow is 

primarily affected by surface tension effects caused by temperature differentials across the liquid 

layer. θ(x) is the temperature profile prescribed on the free surface. 

The auxiliary equation (see details in APPENDIX) that governs the free surface profile is given 

as: 
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Using initial conditions: 
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Analysis 

• The assumption that the liquid layer is “thin” implies that the aspect ratio A=d/L << 1 

and accordingly it can be assumed that A
2→0. [In our case dmax=2mm and L=55mm; 

hence A
2≈0.0013] 

• β(TH-TC)≈ 0.01, Re.A
2≈0.18. [In our case, β=0.0012ºC

-1
, considering there is a 

temperature differential ΔT~10ºC across the length then: 

฀ 2~ 7 , Re ~ 130, . 75mmU Bo A
s

=  

• Pressure change normal to the free surface due to curvature is neglected [radius of 

curvature is 3m which is not comparable to the characteristic length scale of the problem]. 

• Considering that ( ) ( )O y A O x= ⋅ , performing an order of magnitude analysis on the 

continuity equation and assuming ( ) 1O x = , shows that vertical velocity component is on 

the order of the aspect ratio, much smaller than unity and hence negligible: 

(1) ( )
0 0 ( ) 1

(1) (1)

u v O O v
O v A

x y O A O

∂ ∂
+ = → + = → = <<

∂ ∂ ⋅
 

Accordingly the y-momentum equation is not entered in to the solution. Furthermore, in 

the x-momentum equation, the convective term on the left hand side term can be 

neglected: 

2 2 2 3 1Re. Re. (1) (10 )(10 ) 10
u u

A u v A O
x y

− −⎛ ⎞∂ ∂
+ ≈ ⋅ ≈ ≈⎜ ⎟∂ ∂⎝ ⎠
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Since there is no external pressure gradient in the x-direction and the pressure difference 

resulting from the curvature has been neglected ( 0
p

x

∂
=

∂
). Finally, the viscous term 

(
2

2

u
A

x

∂
∂

) is neglected because it is multiplied by the small aspect ratio (A<<1).  

The x-momentum equation in the following form is considered: 
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It should be noted that 2 h
Bo A

x

∂
⋅

∂
, involves the surface slope 

dh

dx
 and is retained. 

Elimination of this term would result in governing equations similar to the Couette flow, 

which is not compatible with the physics of the problem at hand, at least for steady state 

solutions. 

In summary, two equations govern the behavior of the thin liquid layer subject to a thermal 

gradient: the simplified momentum equation and the conservation of mass equation involving the 

thickness of the liquid layer. Simultaneous solution of governing equations gives the velocity 

field and the free surface profile. 
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(14) 

Solution Strategy 

In order to solve the coupled equations, it is noted that the momentum is primarily dominated by 

viscous effects; hence the relevant time scale is on the order of 
2

1

d
t

υ
= . The equation governing 

the thickness involves the longitudinal domain and the relevant time scale would be on the order 

of 
฀2

L
t

U
= . In other words, variations in thickness occur on the time scale of t2 which is greater 

than t1 (

2

21

2

Re Re 1
t d

A
t L

⎛ ⎞= = ⋅ <<⎜ ⎟
⎝ ⎠

) [52].  

The transient term in the momentum equations can be neglected when solutions are acquired on 

the larger time scale. The parametric solution to the momentum equation follows by integration: 

2
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1 2.
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h y
u Bo A C y C

x

∂
= + +

∂
 

Integration constants C1 and C2 are found by using the boundary conditions ( x
x

θθ ∂
≡
∂

): 

2

2

1

0 0 0;

.x

y u C

u h
y h C Bo A h

y x x

θ θ

= → = ⇒ =

∂ ∂ ∂⎛ ⎞= → = − ⇒ = − +⎜ ⎟∂ ∂ ∂⎝ ⎠

 



 

42

2
2 2. .

2
x

h y h
u Bo A Bo A yh y

x x
θ∂ ∂

= − −
∂ ∂

 

(15) 

By replacing u in the conservation equation the following relationship is found for τ~t2: 
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(16) 

This equation is solved numerically using the partial differential equation solver in MATLAB. 

 Validation of Solutions 

The physical properties of the fluids used in experiments are given in Table 1.Water droplets are 

dispensed on the free surface of fluorocarbon liquid, Perfluorotributylamine (FC 43). The major 

outcomes predicted by the current model –deformation of the free surface and an outward 

moving flow at the free surface – are used to explain the dual direction of motion of droplets at 

the surface of thin liquid layers subject to lateral thermal gradients. 
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Table 1 Physical properties of aqueous droplet and the fluorocarbon carrier liquid 

 

ρ 

[g/cm3] 

Ν 

[centiStoke] 

k 

[W/mºC] 

β 

[1/ºC] 

σ  

[10-3·N/m] 

dσ/dT 

[(10-3·N/m)/ºC] 

FC-43 1.88 2.8 0.066 1.2 ·10-3 16 -0.099 

Water 1 1 0.58 0.21 ·10-3 71 -0.20 

FC-43 /Water     52 -0.14 

 

Using aspect ratio ( 1
30

dA
L

= ≈ ) and the range of temperature difference across the surface 

(ΔT = Th – Tc) from 5 – 25˚C, the non dimensional parameters are given in Table 2  

Table 2 Range of Scaling parameters in experiments 
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 ฀

310Ca

Uμ
σ
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1
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(s)

d

τ

υ
 ฀

2( )s

U
L

τ
 

7.5 - 20 150 - 390 84 1.9 – 5.1 1.2 − 3.3 2.5 − 6.5 1.43 2.8 − 7.3 

The normalized temperature field imposed at the interface has the form of a exponentially 

decaying function: exp( )a bxθ = ; typical values for coefficients are 1a = and 1.7b = − .The 

model provided here is based on the assumption that the thin layer of liquid extends to infinity; 

however, mathematically speaking a finite number must be chosen to achieve the numerical 

solution. One way to assign a numerical value for infinity is to extend the steady-state solution 
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far enough such that the resulting profile flattens out completely (i.e. 1& 0hh
x

∂= =∂ ). Figure 

20 shows the value of the far field slope of the free surface for extended solutions x∞ of 3 and 

higher result in a far field slope reasonably close to zero ( 310h
x

−∂ <∂ ). 

 

Figure 20 Solution (steady state) is extended to find appropriate value for x∞ 
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Results and Discussion 

Figure 21 shows the free surface profile at steady state (large time). The original thickness of the 

layer is (h=1). The deformed surface shows a deficit in the total volume (integral under the 

curve); in other words the conservation of mass seems to be violated. However, taking into 

consideration the assumption that the liquid layer is infinite allows for the excess volume to be 

disbursed in the far field. To better explain this, the transient evolution of the free surface is 

considered. 

 

Figure 21 Free surface profile at large times for A=1/30, ΔT=22˚C (Bo = 2.8x10
4

, Ma = 2.5x10
4
) 

Figure 22 shows the transient response of the thin liquid layer subject to the imposed thermal 

gradient. It is seen that the hump generated on the right side of the depressed region, moves 

towards the far field as time progresses, carrying away the excess liquid to form the permanent 

depression. This hump dies out for large times (steady state solution). 
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Figure 22 Transient behavior of the liquid layer; A=0.03, ΔT=22˚C (Bo = 2.8x10
4

, Ma = 2.5x10
4
); τ=3.5s (time 

scale used for non-dimensionalization 

In the experiments, the liquid layer was formed in a shallow rectangular pocket and temperature 

gradient was provided by a coiled Ni-chrome wire heater. From the sequence of images taken at 

short times following the development of the thermal gradient, it is seen that the free surface 

deforms with a downhill slope towards the maximum temperature where the maximum 

depression occurs. A slight overshoot above the dotted line (original flat surface) is observed 

which is compatible with the predictions of the theoretical model. The depression can also be 

noticed on the close up images taken of the heating coils (Figure 23, Free Surface Deformation 

Video) when the heater is OFF and when it is turned ON. 
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Figure 23 Depression of the thin FC 43 layer (d=1.75mm); ΔT=22˚C, τ=3.5s, A=0.03, (Bo=2.8x10
4
, 

Ma=2.5x10
4
) 

t= 0.1 

t= 0 

h=1 

t= 0.2 

t= 0.3 

t= 1 
h0=0.9 

Free surface 

OFF ON 



 

48

Comparison of maximum depression from theory (h0=0.965) and experiment (h0=0.9) are in 

good agreement (~7% difference) at steady state. The numerical model is solved for various 

temperature differentials (steady state) to investigate the effect of temperature gradient 

magnitude on surface deformation. 

 

Figure 24 Effect of ΔT= Th-Tc on the deformation of the free surface (normalized temperature field at the free 

surface has the form θ = ae
-bx

 , a=1, b= -1.7) 

In addition to surface deformation, an outward moving flow develops on the surface. The viscous 

stress due to flow, balances the shear stress generated due to surface tension gradient on the 

surface. Figure 25 shows the velocity profile across the depth of the liquid layer at various 

locations along the length for short (t=0.01) and large times (t=1). Noting velocity profiles it is 

seen that the flow develops from a Couette-like nature to a circulatory flow as time progresses.  
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Figure 25 Velocity profiles across the layer at t=0.01 and t=1 (A=0.03, ΔT=22˚C, Bo = 2.8x10
4

, Ma = 2.5x10
4
). 

The outward moving Couette flow( solid blue line at x=1, t=0.01) develops into a recirculation flow as time 

proceeds. Recirculation forms in regions close to maximum temperature (x=0) first and progresses far field as 

steady state is achieved.  

The motion of the lens shaped droplet is explained based on the outward moving flow on the free 

surface (y~1). As seen in Figure 26, for time scales larger than t=0.1 (~ 0.3s), the surface 

velocity does not vary significantly with time. This is a key result, since the velocity of the lens-

shaped droplets which are driven from hot to cold end of the platform is compared to the steady 

state surface velocity (t>1). Experimental results suggest the monotonic decrease in drop velocity 

which is similar to the behavior of the surface flow found by the theoretical model. 
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Figure 26 Velocity at the free surface at instances t=0.01, t=0.1 and t=1 (ΔT=22˚C, τ=3.5s, A=0.03, 

฀U =15mm/s, Bo=2.8x10
4

, Ma=2.5x10
4
, Re=290). 

A number of simplifying assumptions have been made in the theoretical model. First, the 

experimental setup is a bounded domain where as the fluid domain in the theoretical model is 

assumed to be unbounded for making the analyses simple. The vertical component of the flow 

and the end effects, where flow completely reverses, has been neglected. Sen and Davis [53] 

provided an analytical solution for steady thermocapillary flow in two dimensional slots where 

the entire flow field is divided into two distinct regions: 1) near wall boundary region where flow 

reverses direction and turns around to conserve mass forming a recirculation loop and 2) the core 

flow where only longitudinal velocity is significant. In their analysis, flow in the two domains 

were solved separately and later joined by the use of an asymptotic matching procedure. 

Furthermore, the laminar flows caused by surface-tension variation can be unstable and in such 

conditions the longitudinal variation of velocity cannot be ignored [54] which is not taken into 

account in this study. 
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In summary the behavior of droplets resting at the free surface of a thin liquid layer subject to 

thermal gradients can be explained based on the outcomes of the theoretical model. The surface 

events – deformation of free surface and development of a flow moving from the hot side 

towards the cold side – cause droplets with different interfacial configurations to drift in different 

directions; lens droplets that are partially submerged in the underlying liquid move along with 

the fluid at the surface being carried away towards colder regions. Numerical simulations of 

thermocapillary motion of interfacial droplets by Greco and Grigoriev [14] suggest that the 

dominant contribution to the migration speed is given by the advection of the surrounding flow. 

We explain motion of the spherical droplets, supported at the interface like a solid object on an 

elastic membrane, considering the free surface slope generated by the lateral thermal gradient. 

Droplets move towards the shallowest regions of the liquid layer which happen to be the hottest 

locations across the liquid film. In other words the motion is a result of the gravitational pull and 

the opposing drag exerted by the free surface flow moving in the opposite direction. Details of 

the physical model developed to describe the motion of spherical droplets are provided in 

Chapter 5 

Levitation of Droplets on Liquid Surfaces 

Non-coalescence of droplets on liquid pools has been attributed to the existence of an air gap [33, 

55]. Electrical or magnetic fields, high viscosity ratio between the droplet and the liquid pool, or 

presence of thermocapillary flows can sustain the air (gas) film that separates adjacent bodies of 

fluid, preventing coalescence in the case of similar drop and film liquids or collapse of the 

droplets into partially submerged lens configurations. Considering thermocapillary effects, it has 

been experimentally and numerically shown that a droplet can be kept floating on the surface of 
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a liquid pool by maintaining a temperature difference between the droplet and the liquid pool 

[46]. Similarly, coalescence of a droplet into a liquid pool can be prevented by setting the pool 

into a vertical vibration [35]. The fact that an active external source of stimulation is required to 

prevent the droplet from coalescing (collapsing) into the underlying pool suggests that that the 

thin air gap is continuously drained and replenished. Non-coalescent droplets of water formed on 

a fluorocarbon liquid (FC-43) film in isothermal conditions and without external stimulation 

were observed to be relatively short-lived [56]. This is due to the complete drainage of the air 

film leading to the collapse of the droplet into the underlying liquid pool.  

The entrainment and drainage of air in the thin gap between liquids is related to the relative 

motion of the fluid interfaces, which in turn is generated due to surface tension gradients across 

interfaces. Two possibilities exist: i) air is trapped in a gap with closed boundaries between fluid 

interfaces ii) air drains in and out of the gap with open boundaries. The first is ruled out because 

trapped air implies that non-coalescent droplets can exist at the surface permanently, while this is 

not true. The assumption that drainage of air within the thin gap is able to sustain the droplet 

weight requires that there be a pressure build up due to the motion of air within the gap [57]. The 

build up of pressure due to motion in the narrow gap between fluidic interfaces can be 

understood and modeled with reference to the theory of Low Reynolds number Flows and 

Lubrication where significant parameters involve pressure, viscosity and moving walls forming 

inclined narrow gaps (Figure 27) [58].  
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Figure 27 Schematic of flow in a narrow gap (h/L→0) with inclined (small slope) moving wall which is a 

combination of Couette and Poiseuille flow.  

A moving wall sweeps fluid into the narrowing passage resulting in a flow which is a 

combination of Couette flow and Poiseuille flow. The scaling factors are: x ~ Lc, y ~ h and 

considering continuity, v ~ in

c

Uh
L

.  The pressure in inertia-less flows in usually scaled 

by
2

~ c

in

UL
p

h

μ
. The momentum equation is simplified based on the assumption of low Reynolds 

number and h/Lc→0 (z component of the flow is neglected by assuming a two dimensional 

configuration; in other words infinite length in z as compared to the gap thickness). The 

simplified momentum equation in the direction of flow is as follows: 

2

2

0

0

, 0y y h

up
x y

u U u

μ

= =

∂∂= − +∂ ∂
= =

 

(17) 

Integration of equation 17 provides the velocity profile which is the sum of a Couette and 

Poiseuille component: 

x 
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h(x) 
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( ) ( )21
1

2

p y
u y yh

hxμ
∂⎛ ⎞= − + −⎜ ⎟∂⎝ ⎠

 

(18) 

Considering the original problem of non-coalescing droplets, it is assumed that the pressure 

buildup in the air gap is due to the moving interfaces, which prevents fluid surfaces to come in 

direct contact and cause coalescence for similar liquids or collapse of droplets into partially 

submerged lens configurations in the case of immiscible liquids. It is essential to find the 

pressure distribution within the air gap based on the relative wall velocities.  

Integrating the continuity equation over y from 0 to h, and using the Leibnitz theorem gives: 

0 0

h hu v
udy

x y x

⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫  

(19) 

since 0
0

0
h

y h y
v dy v v

y = =
∂ = − =∂∫ ; substituting u from equation 18, and carrying out the 

integration in equation 19 leads to: 

31 ( )
( ) 6

d p dh x
h x U

dx x dxμ
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

 

(20) 

From equation 20 and knowing the geometry of the air gap h(x), wall velocity Us and viscosity of 

fluids, the pressure field can be found by integration over x and using appropriate boundary 

conditions for pressure at inlet and outlet (ambient pressure is chosen at the boundaries). The 
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integration constant hC, corresponds to a gap height were pressure is maximum ( 0
p

x
∂ =∂ ). 

Using the scaling factors introduced above, the non dimensional equation that relates the 

pressure field to the height in the narrow gap is: 

( )
*

* 2 * * 3

*
6 C

dp
h h h

dx

− −= −  

(21) 

An order of magnitude analysis can be used to approximate the gap size required to build the 

necessary pressure to sustain the weight of the droplet ( projected dropPA m gΔ ≈ ). From the 

thermocapillary analysis and experimental data, the fluid interfaces were found to move with a 

typical velocity scale of Us~ 20 mm/s; considering the pressure scale (

( )2

s c airU L
P

h

μ
Δ ฀ ), it is 

concluded that for a drop of water with a diameter of 3mm, the gap thickness should be 

7h mμ฀ using the following relationships and (Figure 28): 
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(22) 



 

56

 

Figure 28 A spherical drop of water resting above the surface of a pool of FC 43 liquid. 

The air gap thickness is on the order of micrometers, which is three orders of magnitude smaller 

that the drop diameter. This allows us to treat the gap at the interface between the droplet and the 

underlying liquid to be a narrow gap formed between infinite flat surfaces with a slight incline 

(relative wall motion will not cause any pressure build up within parallel plates). The gap 

thickness is assumed to vary with a small linear slope with respect to the length of the gap as 

shown in (Figure 27). 

The numerical solutions to equation 21 has been carried out below for various linear slopes 

( in out

in

h h
s

h

−
= ) and it is found that pressure build up increases with the increase of the incline. It 

is also noted that the dimensional pressure buildup (P-Pref) scales with the relative interfacial 

velocity. 

 3
πϕ ฀

R 

Rc
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Figure 29 Pressure build up in the air gap. The gap geometry has been simplified as a narrowing gap with a 

small constant slope as shown in Figure 27  

As noted earlier, due to extremely small 
c

h
L

ratios, the gap between the drop and the underlying 

liquid can be modeled as flat surfaces. The flat surfaces are considered here as circular disks. The 

characteristic length scale Lc, as the average cord length (gap length) over the projected area Ap, 

of the drop on the liquid pool is: 

 .c p cord pL A L dA= ∫  

(23) 

where coscord cL R θ= and 2

p cA Rπ=  

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

s=0.1

s=0.5

s=0.7

s=0.1

s=0.5

s=0.7

x*  

 
*

2

ref

s c

p p
p

U L

h

μ
−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠



 

58

Integration of the normalized pressure difference p
*
, over the projected area and multiplication 

by the scaling factor provides a vertical force, which is found to be comparable to the weight of 

the droplet; for example for a droplet with a radius of R=1.5mm, Rc=Rsin(π/3): 

( )1
* * 2

2 0

3

0.25

4
~ 0.14

3

s c
c

U L
p dx R mN

h

R g mN

μ π

π ρ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ฀

 

(24) 

 

Figure 30 Surface between the drop and underlying liquid is modeled as a flat circular surface. 

In the range of thermally-induced interface velocities, the air gap thickness is found to be a few 

micrometers. Similar values have been reported for droplets levitated on liquid surfaces having a 

radial flow (14μm) [57] and drops floating on liquid pools due to temperature difference (1-

10μm) [55]. Here, not only the drop is levitated above the liquid pool without coalescing 

(collapsing) but also propelled by the imposed thermal gradients in the desired path. Pressure 

build up due to entrainment of flow due to the relative motion of fluidic interfaces explains long-

lived levitated droplets above the surface. 
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CHAPTER 4: EXPERIMENT RESULTS OF DROPLET MOTION ON A 
LIQUID LAYER DUE TO THERMAL GRADIENTS 

Experiment 

A thin liquid layer is formed in a shallow pocket, cut in rectangular slabs made of acrylic 

(thermal conductivity k=0.2 W.m
-1

K
-1

) and copper (k=400 W.m
-1

K
-1

). When placed on heat sinks 

(large metal block), different thermal conductivity containers, transient and steady thermal 

gradients of various slopes can be created. The thermal gradient was created by using a Ni-

chrome wire heater (Gauge 28, 4.15 Ω/ft, Pelican) as a heating element by passing current 

through it. The transient thermal field in the liquid layer was measured initially by placing fine 

wire thermocouples (K Type, beaded wire exposed G27, Omega) along the length. Such 

thermocouples have a response time on the order of 0.4 seconds (measurement time needs to be 

at least 5 times the response time) and accuracy of 1.5± ˚C within a range of -40 to 375˚C. 

From Figure 31 it can be seen that in a transient mode, steeper gradients are achieved using the 

copper base as compared to acrylic. In addition, temperature recovery is achieved within a 

shorter period of time in copper containers compared to acrylic containers, which is expected due 

to the significantly larger thermal conductivity or in general lower thermal resistance of copper 

for heat dissipation.  
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Figure 31 Measurement of temperature field using fine wire thermocouples ( TON=10s, TOFF=30s); qin=6.2W 

 

Figure 32 Thermal gradient formed in the liquid layer using acrylic and copper container (t=15 sec, q=6.2W) 
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Figure 32 shows the one dimensional thermal gradient across the platform measured in the thin 

liquid layer using an acrylic and copper containers. The simplified model for the temperature 

distribution across the liquid layer is heat transfer in a semi infinite body subject to a constant 

flux. 

Lens and spherical droplets are dispensed on the liquid layer and the effect of thermal gradient 

magnitude and droplet size is investigated on the instantaneous and average thermally-induced 

velocity. Internal droplet temperature fluctuation along the migration path is measured, which is 

important for applications where droplets should be transported with least thermal loading.  
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Results 

The central focus of this work is on the following observation: droplets of equal volume when 

placed on a liquid platform migrate in opposite direction depending on their shape 

(configuration) at the air-liquid interface. Equal volume droplets in the spherical and lens 

configuration are shown in Figure 33. Lens-shaped droplets drift away from high temperature 

regions (Lens Droplet Motion Video) while spherical droplets get attracted to the higher 

temperature end of the thermal gradient formed on the platform (Spherical Droplet Motion 

Video). 

 

Figure 33 Drops of equal volume resting an the air liquid interface in spherical configuration (a) and lens 

configuration (b). 

 

Lens Droplets 

A set of experiments is carried out to investigate the effect of the thermal field (temperature 

gradient) on the instantaneous and average drift velocity of lens shaped droplets of various sizes. 
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Droplet volumes ranging from 1μL to 15 μL were used for two cases of constant heat flux 

qin,1=11.9 W and qin,2=4.3W that provided thermal gradients with different slopes. When using 

thermocouples, internal temperature of the droplet was found by interpolation from 

measurements made by the array of thermocouples at known locations. Interpolation requires the 

assumption that the droplets are isothermal with the surroundings (it is shown in later sections 

that this is assumption is not accurate using infrared real-time temperature measurements). 

Temperature and velocity measurements were done in two separate runs when thermocouples 

were used. Ample time was provided between each experiment to ensure initial conditions for all 

cases would be similar (room temperature). Lens droplets were dispensed by a precision micro 

pipette. Experiments were repeated two times for each droplet volume and thermal field 

(gradient).  

Average velocity for smaller lens droplets was larger for similar thermal gradients. The steeper 

thermal gradient resulted in larger average velocity for any given droplet size (Figure 34). Since 

temperature on the liquid layer is available from thermocouple readings, at each instance, droplet 

temperature was interpolated using the location of the drop relative to the location of fixed 

thermocouples. An important parameter in many bio-chemical applications is that temperature 

fluctuations should be limited to a narrow range due to the presence of temperature sensitive bio-

chemical substances in the droplets. It is found that smaller droplets migrate at higher speeds; in 

other words the contact time of the droplets with high temperature regions is lower as compared 

to larger droplets, which move with a lower drift velocity. Favorable working conditions (low 

temperature fluctuation) are achieved for smaller droplets showing favorable scalability for 

miniaturized applications. 
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Figure 34 Effect of thermal gradient and size (volume) on motion of lens drops; qin_1=11.9W, qin_2=4.3W). 

Internal temperature of the drop is found by spatio-temporal interpolation of thermocouple readings. Left 

column graphs are for drop size: 2μL and right column graphs are for drop size: 10μm. 
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Although, steeper thermal gradients allow for larger drift velocity, it is observed that for a given 

droplet size, large thermal gradients cause larger increase in the internal droplet temperature 

(Figure 35). 

 

Figure 35 Average drift velocity for lens drops decreases with increasing drop size while internal temperature 

of drops increases. Larger thermal gradients result in higher average drift velocity for give drop size. 

Temperature measurements made by thermocouples for studying thermocapillary motion of 

droplets in this work showed the following shortcomings: 

- The temperature field across the liquid platform was approximated by curve fitting and 

interpolation of measurements of a limited number of thermocouples at fixed locations. 

- Since the thermocouple probes would block the passage of droplets, all experiments had 

to be run twice. The first time to record the spatio-temporal temperature field across the 

platform, and the second time motion of the droplets was recorded using a video camera. 

As such, the temperature fields from the first and second run might not necessarily match 

and significant variability enters the data. 
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- In order to estimate the internal temperature of moving droplets a simplifying assumption 

was made where the droplet and the surrounding liquid were considered to be isothermal, 

i.e. have the same temperature. In this way, the droplet temperature could be interpolated 

from the readings of nearby thermocouples. This assumption is not accurate (as shown by 

real time infrared thermography method adopted in following subsections). In other 

words, due to thermal capacitance, the time scale for the droplets to acquire the 

temperature of the surrounding fluid is larger than the time scale over which droplets 

move along the length of the platform; hence they are essentially not at the same 

temperature as the surrounding liquid. 

- Thermocouples always sense the temperature at the bimetallic junction and the accuracy 

of readings depends on the material within which it is embedded and the nearby surfaces. 

Thermocouple size, location, wire lead arrangement and materials affected the reading. 

Considering the limitations mentioned above, a high-resolution, high-speed infrared thermal 

imaging system was used for measurement and characterization. The data presented in the 

following sections are real time infra red measurements. 

Surface Temperature Measurement using Infrared Imaging 

Infrared thermal imaging is an attractive measurement technique because it provides non-

invasive spatially and temporally resolved readings of temperature on surfaces. In relevance to 

the current study, this technique is especially useful because surface temperature (temperature 

gradients) is of interest. Similar to any other measurement tool, calibration is an important issue 

where surface temperatures can be correlated to different shades, gray scale or a spectrum of 

colors. There are two forms of calibration: external and internal; external calibration is based on 
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analytical calculations, where a variety of thermo-physical characteristics, such as emissivity, 

transmittance of the ambient and the surroundings should be known. Incident radiation to the 

sensors is made up radiation from the surface of interest – attenuated by the transmittance of the 

ambient – radiation from the surrounding surfaces and the radiation that is reflected from the 

surface of interest. 

( ) ( )1incident obj surrounding mediumI I I Iτ ε ρ τ= + + −   

(25) 

τ is the transmittance of the medium (air, vapor or gas between the sensor and measured 

surfaces, Figure 36) and ε and ρ are the emissivity and reflectivity of the measured surface. 

 

Figure 36 Spectral transmittance of air (10 m, 25 °C, 1013 mbar, 85% relative humidity)
3
 

  

                                                 

3 http://www.infratec.de 
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This method of calibration is usually not practiced because exact values of the physical 

properties are not readily available and the irradiation from surrounding surfaces cannot be 

calculated or measured reliably. The emissivity of distilled water is reported to be 0.98 and this 

value has not been reported for FC-43 and considered similar to that of water.  

On the other hand, internal calibrations are more convenient where infrared readings from the 

detectors are calibrated against known temperatures in every specific test setup in order to 

achieve a calibration function (for example in form of a polynomial function). 

Two major categories of infrared cameras are available: scanning and staring devices. In the 

former, surface radiation is measured in a point by point manner where mirrors and prisms that 

oscillate or rotate transfer the signal to a single detector. The latter take advantage of an array of 

detectors that are arranged on the focal plane of the receiving optics. Conventionally, the infrared 

spectrum is divided into there three sub regions: 

Far infrared (wavelength of 8 – 12 μm), mid infrared band (wavelength 2 - 5μm) and the near 

infra red band (wavelength 0.4 – 2 μm). For thermal applications, the mid and far infra red bands 

are used. Depending on the wavelength and spectral emissivity various combination of photo 

detector sensors (solid state devices) are used that may require cooling of the detector array for 

making measurements.  

The infrared camera (SC 5000 FLIR) used in this study is based on InSb (Indium Antimonide – 

narrow bandgap semiconductor sensor) with a spectral response range of 2.5 – 5.1μm in 

wavelength (mid infrared). The detector array provides a 640x512 pixel digital image where each 

pixel is 15μm x 15μm. Using mid infrared range provides better quality temperature readings; 
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however it requires the sensing elements to be cooled. This camera is cooled by an internal 

Stirling cooler. The maximum framerate is 100 Hz and the nominal temperature measurement 

range is 5 – 300˚C. 

Figure 37 (Lens Droplet Motion – Infrared Video) shows the platform temperature ( , )T X t  as a 

function of the length coordinate (mm) and time (s). Solid circles show the location of the droplet 

as time progresses. The overall slope of displacement vs. time is higher for the larger heat input 

(steeper gradient). 

 

 

Figure 37 Spatio-temporal thermal map for qin_1=5.85W (
1T∇ ) and qin_2=2.6W (

2T∇ ). Solid circles show the 

droplet displacement as a function of time. 

Based on the infrared temperature measurements, the thermal gradient experienced by the 

droplet as it moves across the platform was found by evaluating the temperature distribution 

function gradient 
( , )T x t

x
∂

∂ at Xdrop and tdrop. Velocity and temperature of a 4μL droplet is 

shown in Figure 38 as it migrates away from the source of heat to cooler regions of the platform.  

ºC ºC 
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Figure 38 Lens droplet (4μL) velocity (left) and temperature increase (right) for two thermal slopes.  

Droplet internal temperature increase found by direct infrared measurements shows a different 

trend compared to measurements made by thermocouples and confirms the shortcomings of 

using thermocouples as compared to real time temperature measurements on the surface droplets. 

Spherical Drops  

In similar experiments, droplets were dispensed on the surface of the liquid platform such that 

they were levitated in a spherical shape above the surface (Spherical Drop Motion – Infrared 

Video). Experiments were carried out in transient and steady thermal gradient conditions. In the 

transient condition, the platform was initially at room temperature and the heater was turned on 

and the thermal gradient experienced by the droplet as every location and time was recorded by 

evaluating 
( , )T x t

x
∂

∂ of the curve fitted to temperature measurements along the motion path. 

From the infrared insets, it is seen that the droplet does not move until it senses the thermal 

gradient. This shows that the process is dependent on gradients of temperature, rather than 

temperature itself; therefore droplet motion can be tuned to any temperature range as long as the 

required gradients are maintained. The droplet accelerated as it approached steeper gradients of 
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temperature, while moving towards the maximum temperature on the platform (Figure 39). The 

internal droplet temperature rose as it approached the high temperature regions of the thermal 

gradient, as expected. For example, the internal temperature of a 14μL droplet migrating due to a 

temperature differential of ~ 20o

h cT T T CΔ = − across a 45mm path rose about 8˚C.  

In order to develop a better understanding of the effect of thermal gradient magnitude and 

droplet size on the thermally-induced motion of spherical droplets, the problem was studied 

using steady thermal gradients. Equal-sized spherical droplets were dispensed at the cold end of 

the temperature gradient. Droplets accelerated towards high temperature regions of the platform 

in the direction of increasing temperatures. It was seen that droplets subjected to steeper thermal 

gradients gained higher drift velocity; however, the internal droplet temperature raised almost 

15˚C when steep gradients were implemented. In separate experiments, it was confirmed that in 

order for droplets to move, they should be dispensed within a critical distance from the high 

temperature sources where the effect of the thermal gradient could be sensed, otherwise no 

motion occurred. In effect, the main cause of motion was found to be the presence of a thermal 

gradient and steeper thermal gradients resulted in higher drift velocities. 
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Figure 39 Motion of a spherical drop (14 μL) due to a transient thermal field. Left a) thermal gradient felt by 

the drop along the path b)instantaneous drop velocity c) change of drop temperature. Right column shows 

the infrared images at select times. 
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Figure 40 Steady temperature fields and the resulting thermal gradients cause spherical drops to get 

attracted to high temperature regions. Steeper gradient leads to higher instantaneous velocity (drop volume 

14μL). 
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In order to investigate the effect of droplet size on thermally-induced motion of spherical 

droplets, various size (gauge) needles were used. It is noted that for creating spherical droplets at 

the air liquid interface, it is required that droplets be dispensed as free falling droplets released 

on to the liquid surface from a critical height. It was found by experiment that a cubic relation 

exists between the nozzle size of the dispensing tip and the resulting droplets, pinched off due to 

their own weight from the needle tip (Figure 41). 

 

Figure 41 Relationship between the nozzle radius and the falling pendant drop radius.  

Figure 42 shows the effect of droplet size on the average drift speed and the overall internal 

temperature increase for a given thermal gradient. Unlike in lens droplets, the average velocity 

and droplet size do not follow a monotonic trend. This is attributed to an apparent drag 

coefficient which is a function of droplet size and the relative velocity between the droplet and 

the underlying free surface flow. 
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Figure 42 Effect of drop size on average drift speed and overall increase in drop temperature as it moves 

across the platform. 

Average droplet velocity plotted against droplet size shows a minimum. Spherical droplets were 

dispensed on the surface using needles G27 to G16. Droplets follow the downhill surface slope 

towards the hottest extreme of a thermal gradient formed on the liquid platform where the free 

surface is most depressed. Results show a dependency between the velocity of spherical droplets 

and droplet size, which implies that there exists a force (drag) that is a function of droplet size in 

addition to gravity that pulls droplets downhill the surface slope. If the velocity were only a 

function of the gravitation acceleration, then variation in droplet size should not have had any 

effect on the thermal motion of spherical droplets. 

Droplet temperature increase along the path is a function of contact time (larger average velocity 

corresponds to shorter contact time), effective contact area between the droplet and the 

surrounding liquid and droplet thermal capacity, all of which are functions of the droplet size.  

The overall contribution of these effects should be investigated to predict the temperature 
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variation within the droplet as its size changes. More details of the proposed drag mechanism is 

provided in the following sections where empirical results are compared to the predictions of 

theoretical models developed for thermally induced motion of spherical droplets. 
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CHAPTER 5: DISCUSSION – COMPARISON TO THEORETICAL 
MODELS 

In chapter 2 and 3, the theoretical framework that could explain the thermal motion of lens and 

levitated spherical droplets at an air-liquid interface was provided. The dynamics of the thin 

liquid layer essentially governs the motion of the droplets [14]. It was established that due to the 

influence of the lateral thermal gradient, a thin liquid film undergoes two major changes: 1) a 

flow develops on the free surface which carries fluid in the direction of decreasing temperatures 

2) the free surface deforms and forms a downhill slope towards the hottest region of the gradient, 

where the maximum depression of the free surface occurs. In the following subsection we 

explain why spherical and lens droplets move in opposite directions based on the theoretical 

framework. Experimental observations are characterized and compared to the predictions made 

by the developed models.  

Model for the Motion of Lens Drops 

The direction of thermocapillary motion for the lens-shaped droplets residing at the air-liquid 

interface of a thin film subject to a thermal gradient is in the direction of decreasing temperatures, 

as confirmed in earlier works [11, 13, 14, 16], i.e., droplets moved from warm towards colder 

regions of the platform. If the droplets were placed on solid surfaces (without a carrier liquid), 

the thermocapillary motion would be determined by the balance of the internal flows within the 

droplet (Marangoni flow) together with the change in the spreading coefficient (S=σcarrier – 

σcarrier_drop – σdrop) at the extremities of the droplet[10]. However, for droplets resting on liquid 

films, the overall motion is dictated by the underlying surface/interfacial driven motion of the 

liquid layer and the events occurring at the droplet-liquid-air triple contact line are overshadowed 

by the bulk flow developed in the liquid film. In other words, the lateral thermal gradient across 
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the length of the liquid platform is insignificant over the length scale of the droplet diameter 

( ~ 0.02drop

platform

d

L
). It has been shown by order-of-magnitude analysis that although surface 

(interfacial) tension gradients would exist at the boundaries of droplets or bubbles suspended in a 

liquid subject to thermal gradients, they are too small to affect the overall translation motion 

appreciably. The bulk movement of fluid in the underlying layer is expected to dominate the 

motion of droplets compared to possible motion caused by any interfacial imbalances of forces 

due to dissimilar contact angle, wetting or spreading coefficient across the droplet [59]. The 

order of magnitude for droplet motion due to contact angle change in typical thermal gradients 

used in current experiments is calculated to be on the order of μm/s [60], while average 

translation velocities in the range of mm/s are observed for lens droplets moving on liquid layers. 

The observed motion of the lens droplets from hot to cold regions of the platform is explained 

based on the free surface velocity developed due to the thermal gradients confirmed by the 

physical model developed for thin liquid films. Free surface flow occurs as a result of thermal 

gradients that give rise to surface tension gradients across the free surface. As the fluid 

temperature rises, the surface (interfacial) decreases. Fluid from the hotter portions gets pulled 

by the fluid towards the colder regions due to stronger cohesive forces. In effect, the surface 

tension gradient at the surface causes an effective shear stress that eventually causes bulk motion 

of the fluid.  

Following the thermal gradient formation, a Couette-type flow is initially formed in the quiescent 

liquid layer (Figure 43) and further develops into a recirculation flow due to continuity 

restrictions over time.  
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Figure 43 Initial Couette flow developed in the liquid layer following formation of the thermal gradient (y, t 

and u are normalized depth, time and velocity of the liquid and θx is the temperature gradient distribution on 

the free surface). 

Based on the parameters (exponentially decaying temperature gradient, physical properties of 

water and FC 43) used in experiments, the transient evolution of the free surface velocity is 

shown for a typical case in (Figure 44). It is noted that time scales for Couette flow and the 

following recirculation flow are on the order of 1.5 and 2.8 – 7.3 seconds respectively. From the 

theory, it is seen that within t=0.1 (normalized time), the free surface acquires a relatively non-

varying velocity that monotonically decreases away from the source of heat as a result of the 

exponential temperature gradient imposed on the surface. 
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Figure 44 Velocity at the free surface at instances t=0.01, t=0.1 and t=1 (ΔT=22˚C, τ=3.5s, A=0.03, 

฀U =15mm/s, Bo=2.8x10
4

, Ma=2.5x10
4
, Re=290 

Experimental results suggest that lens droplets that are set in motion in the direction of 

decreasing temperatures essentially get dragged along by the surrounding fluid at the free surface. 

In other words, such droplets act as tracer particles that obey the free surface flow. 

The numerical model is solved for the normalized temperature function measured in experiments, 

which follow a form of ( ) exp( )x a bxθ = . Lens droplets follow the trend of the surface velocity 

(steady state solution). It should be noted that the free surface velocity develops through a 

transient phase; however, considering Figure 44, the time scale elapsed for a non-varying free 

surface velocity is on the order of a tenth of the overall time scale (~0.2 seconds), which is 

significantly smaller than the time scale of the motion of the droplets across the platform. 

Therefore, it is valid to compare the normalized velocity of the droplets with the steady state free 

surface velocity. As seen in Figure 45, there exists an offset between the velocity of the free 

surface and the velocity of the droplet, which is larger for larger droplets (for example 2μL 

droplets acquire a velocity closer to the surface velocity compared to 10μL drops). The free 

surface velocity and the velocity of lens droplets across the platform follow forms of 
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exponentially decaying functions. This is expected based on the prescribed temperature 

distribution across the platform. Droplet velocities found through experiment were normalized 

by the velocity scale ฀ A TdU
dT

σ
μ
Δ

= , found by using the physical properties of fluids and 

temperature differentials measured in experiments.  

 

Figure 45 Droplet velocity from experiments (normalized by ฀ A TdU
dT

σ
μ
Δ

= ) compared to free surface 

velocity calculated using the model for 1.3d e
dx

θ −= .  

Model for the Motion of Spherical Droplets 

In addition to the commonly observed partially submerged lens droplets, it was found that it is 

also possible to dispense droplets in form of levitated spheres. Interestingly, such spherical 

droplets migrate in the opposite direction of lens droplets, when placed on a liquid layer across 

which a thermal gradient is maintained; i.e. direction of increasing temperatures. The attraction 

of the droplets in the direction of increasing temperature is explained based on the surface slope 

and the effect of gravity. Thermal gradients cause surface tension gradients at the free surface, 

causing deformation of the free surface with a downhill slope towards the maximum temperature, 

where maximum depression occurs. In this sense, spherical droplets that are resting above the 
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interface move down the surface slope due to the pull of gravity. In addition, since the carrier 

liquid has lower thermal conductivity than the droplet, the droplet is essentially isothermal, 

ruling out the possibility that the surface tension forces at the triple contact line are responsible 

for droplet migration. 

For spherical droplets, although the motion is against the direction of the surface flow, counter-

intuitive at the outset, a simple analysis shows that spherical droplets should indeed migrate 

down the free surface slope due to gravity. The droplet acceleration can be attributed to the free 

surface slope, Hx(x)=dH/dX = tan(ζ) ~ ζ ~ sinζ due to small slopes ( ζ is the angle the free 

surface makes with the horizon). Droplet motion is affected by gravity and the opposing viscous 

drag exerted by the underlying medium: using balance of forces as 

21sin ( )
2D relma mg C A Vξ ρ= − + where a is the acceleration of droplets and considering 

a.dX=V.dV,  the differential equation governing the droplet velocity is given as follows: 

2

0

( )1
.

surf

x

V VdV
g H C

dX V V

+
= − +  

(26) 

where 0

1( )2
DC

C A
m

ρ≡ and g is the gravitational acceleration and CD is the drag coefficient. 

Equation 

2

0

( )1
.

surf

x

V VdV
g H C

dX V V

+
= − +  is normalized using length and velocity scales 

established in earlier sections (
฀

, ,
V X H

v x h
L dU

= = = ): 
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2

1 2

( )1 surfv vdv dh
C C

dx dx v v

+
= − +  

(27) 

The dimensionless constants are
฀1 2

gAL
C

U
≡  and 2

1 3

2 8

D D
frontal

drop drop

C C fL
C A L

m r
ρ⎛ ⎞≡ =⎜ ⎟

⎝ ⎠
, where f is 

used to define the fraction of total area of the sphere (4πr2
) exposed to the oncoming flow (f=0 – 

1). The effective drag coefficient _D effective DC C f=  captures the effects of both the nominal drag 

coefficient and the frontal area exposed to the oncoming flow. Equation 27 is solved as an initial 

value problem using the normalized thermal fields from experiment (Figure 46) as prescribed 

conditions. Temperature is normalized using the following relationship: 

( )
( ) cold

hot cold

T X T
x

T T

d L dT

dx T dX

θ

θ

−
=

−

⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 

(28) 

The solution involves knowledge of the free surface slope (
dh

dx
) and the free surface velocity 

(
surfu ), which are derived from the solution to the governing equations of thin liquid films 

subject to thermal gradients. Equation 27 is nondimensional and depends on constants C1 and C2 

which represent the overall strength of the driving and opposing terms. 
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Figure 46 Experimental temperature field and corresponding thermal gradient on the liquid platform  

In Figure 47, experimental results are plotted together with the solution of equation 27 using 

appropriate values for C1 and C2 as fitting parameters. Droplets experiencing steeper thermal 

gradients ( 1T∇ ) gained a higher drift velocity. Larger thermal differentials cause steeper slopes 

on the free surface (increased gravitational pull) as well as smaller drag resistance considering 

the fact that the lubrication pressure buildup is directly proportional to the relative velocity 

between fluidic interfaces. 
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Figure 47 Drop (spherical) velocity from experiment is compared by drop velocity calculated from the 

proposed model (effective drag CD effective varies from 0.0566 to 0.132 for various cases) 
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The capability of the model in predicting details of the thermally-induced motion of spherical 

droplets is satisfactory. Experimental measurements of velocity for spherical droplets normalized 

by the thermal velocity scale collapse onto a single curve representing a family of similar curves 

(Figure 48).  

 

Figure 48 Thermally-induced normalized velocity of spherical droplets across various thermal gradients 

collapse onto a single representative curve.  

 

Figure 49 Variation of 1 2

s
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C

U
= and 2
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D

drop

C fL
C

r
=  with thermocapillary velocity scale which is 

proportional to the temperature differential 
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Figure 49 shows empirical values of the fitting parameters C1 and C2 as a function of the 

temperature differential (thermal velocity scale). A declining trend is observed for C1 as the 

thermal gradient gets steeper which is expected from the definition given for 
฀1 2

gAL
C

U
≡ (large 

gradient implies larger thermal velocity). C2 also shows a decreasing trend with increasing 

thermal slopes. All parameters kept constant, from the definition 

of 2

1 3

2 8

D D
frontal

drop drop

C C fL
C A L

m r
ρ⎛ ⎞≡ =⎜ ⎟

⎝ ⎠
, it is concluded that the drag coefficient is indeed variable 

and decreases with increasing temperature differentials across the platform. This is explained by 

using the outcomes of the levitation pressure model developed in the chapter 3. Larger thermal 

gradients result in larger interfacial velocities which in turn result in larger lubrication pressure 

buildup (
2

s cU L
p

h

μ
Δ ∝ ) that reduces the overall interaction among the fluidic surfaces; hence the 

lower apparent drag coefficient. 

The physical model for thermally-induced motion of spherical droplets suggests that the 

gravitational term C1 is not affected by the size of the droplet; only the second term in 

equation 27 is a function of droplet size, and is used to explain the dependency of the thermal 

velocity of spherical droplets on droplet size. C2 represents the resistance (drag) caused by the 

underlying liquid flowing in the opposite direction to the droplet and involves the parameter f 

which enters the definition of C2 in the following form: 2

1 3

2 8

D D
frontal

drop drop

C C fL
C A L

m r
ρ⎛ ⎞≡ =⎜ ⎟

⎝ ⎠
. 

As the droplet size increases, gravity pulls it down deeper into the free surface; however, the 

buoyancy and surface tension forces also increase. It was found earlier that the spherical static 
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configuration of droplets at the air-liquid interface does not satisfy the balance of equilibrium 

forces due to the existence of the lubricating air film, which itself is not well characterized. 

Therefore, f cannot be determined, since the spherical droplet configuration is not described as an 

equilibrium configuration; however the empirical values from experiments provided in Figure 50, 

suggest that the overall drag coefficient (CD.f) exhibits a peak when plotted as a function of 

droplet size.  

 

Figure 50 Normalized drop velocity from experiment (left) and corresponding effective drag coefficient used 

in solving the theoretical drop velocity. 

In summary, it was found that the thermal motion of spherical droplets at an air-liquid interface 

is dependent on the magnitude of the thermal gradient as well as the droplet size. Larger thermal 

gradients cause larger drift velocity but at the same time cause the internal droplet temperature to 

increase. As such, a compromise has to be made between achieving larger drift speeds and the 

maximum allowable temperature fluctuation within the transported droplets. Smaller droplets 

experience smaller drag and in addition formation of smaller spherical droplets is possible with 

more flexibility as compared to larger droplets which shows the system will benefit from down 

scaling (miniaturization). 
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CHAPTER 6: DROPLET MANIPULATION PLATFORM 

Based on the theory and experiments developed in this study for thermally-induced motion of 

droplets at the air liquid interface of a thin immiscible liquid layer, a droplet manipulation 

platform was proposed. There is a growing interest in droplet based systems especially for bio-

chemical applications because droplets offer a self contained micro reactor environment and 

serve as a vehicle for material transport as well [47, 61]. A major challenge is the reliable and 

controllable transport of droplets. Various concepts have been proposed to address this problem. 

Majority of them rely on causing differentials of parameters that affect the surface (interfacial) 

tension of fluids resulting in bulk motion. For example, differentials of temperature [11, 13, 15, 

16], chemical species (surfactant concentration) [62], electric charge [63] and magnetism have 

been used to manipulate droplets. Introducing chemicals and magnetic particles would 

contaminate the content of droplets. Similarly, electrowetting schemes are only applicable to 

electrically conducting liquids which limits their applications. Among thermally-actuated 

platforms, which mostly involve solid surfaces, there are a number of shortcomings that have not 

been addressed; for example: droplet evaporation, droplet pinning, contact angle hysteresis and 

surface contamination. In this study we replaced the solid substrate with a thin layer of a 

chemically inert and thermally stable liquid, Perfluorotributylamine –FC43 (3M) which serves as 

carrier layer for droplet transport. Perfluorocarbon emulsions, including FC-43, have been used 

for biomedical applications such as artificial blood and tissue preservation media. Chemical 

stability and biocompatibility of FC43 has been proven in earlier studies [64-66]. The liquid is 

clear and non-flammable with melting and boiling points of -50o
C and 174

o
C, respectively. 

Thermal conductivity is 0.065Wm
-1o

C
-1

, dielectric constant is 1.9 and resistivity is 3.4 x 10
15

 

ohm-cm.  It is also known not to leave any residue on surfaces upon drying. In this stud, FC-43 
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serves as the buffer liquid on the proposed platform on which droplets are dispensed. Embedded 

microheaters were used to generate the necessary thermal maps (gradients). Spherical droplets 

can be controlled conveniently because they always get attracted to the nearest hot spot, while 

lens droplets would be repelled away from the source of heat in arbitrary directions on the 

surface, which cannot be predicted accurately. In addition, spherical droplets can be trapped and 

released on demand. Methods for creating stable spherical droplets have been described in 

chapter 2.  

Fabrication of Microheaters  

A 500nm thick layer of SiO2 was thermally grown on a 3-inch silicon wafer as an insulator layer. 

A layer of Titanium (1000nm) was then deposited using electron-beam evaporation to serve as 

the heating element material. Heater elements were formed by photolithography by completing 

the following procedure: HMDS (hexamethyldisilizane) was spin-coated (4000rpm for 60 

seconds) for improved adhesion of photoresist on the wafer. Positive photoresist (Shipley S1813) 

was then spin-coated (3000 rpm for 30 seconds). The wafer was soft-baked for 3 minutes on 

105˚C hotplate. Photolithography was continued by exposing the wafer to form the heater 

patterns (G-line, energy dose=13mW/cm
2
 for 8.8 seconds using EVG-620 Aligner system). The 

patterns were developed using CD-26 (Microposit MF). Features were developed in a little more 

than 1 minute. Post development bake was carried out for 12 minutes at 125˚C. The unprotected 

Titanium was etched away using an etchant solution (20 H2O : 1 H2O2 : 1 HF - 49% ) at room 

temperature. Etching was completed (visible inspection) in a minute and 40 seconds. After 

checking the features under the microscope for sharp edges and other feature qualities, the 
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protective photoresist was stripped off using acetone. The wafer was rinsed and blow dried using 

an air gun. 

Device Packaging 

The microfabricated heaters were interfaced with external wiring using thin platinum conducting 

strips. An O ring (n-Buna square cross section, McMaster Carr) was press-glued to fix the 

contact pads and create a sealed area for the carrier liquid pool to be formed. Electrical 

connections were made between the platinum strips and external wiring using terminals (Figure 

51). The resistance measured across contact pads and heater elements were on the order of 12Ω 

and 90Ω, respectively. 

 

 

Figure 51 Device at various fabrication stages  

Device Control Unit 

The control unit consists of hardware and software. The hardware consists of a data acquisition 

device (U12, LabJack Corp. CO), a relay board (RB16, LabJack Corp. CO) to handle high 

current/voltage and 5 output modules (70M-ODC5, Grayhill Inc. IL) that are interfaced with the 

microheaters (Figure 52a). The graphical user interface is designed such that the location of the 

a b 
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droplet can be controlled by scrolling the mouse pointer on the computer screen over the 

designated heaters (circular icons Figure 52b). Based on the live infrared thermal imaging 

window, the user can move the droplet on a desired path on the platform or trap it in one location.  

 

 

Figure 52 Schematic of the control unit hardware (a) and software interface (b) 
1
 

Droplet Manipulation Platform Operation 

In order to demonstrate the performance of the droplet manipulation platform, spherical droplets 

were dispensed on the liquid platform (Droplet Manipulation Platform Video). Droplets get 

attracted to the nearest hot spot (heater element turned ON by user). The platform is in contact 

with a metal block serving as a heat sink, which causes the heat generated from the microheaters 

to be dissipated quickly. Upon the formation of another hotspot, the drop can be moved to 

another location on a path that corresponds to the maximum thermal gradient (Figure 53). Each 

heater on the platform requires about 8W power input in continuous mode operation. This power 

requirement is relatively large compared to the range of typical power consumption rates in 

                                                 

1 The technical support of Dr. Sungmin Kim (Department of Polymer and Fiber System Engineering Chonnam National 

University, Korea) is acknowledged and greatly appreciated 

a b 
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MEMS devices. The power requirements can be reduced by optimizing the design parameters, 

such as the spacing and the design of heaters. Average thermal gradient on the order of 

0.6˚C/mm caused spherical droplets to acquire an average velocity on the order of 10mm/s.  

 

Figure 53 Snapshots of infrared imaging showing a spherical drop move from towards the hot spot at the 

center of the platform;  

Close to a hundred fold increase in average speed is observed for droplet transport on the 

proposed liquid platform as compared to previous studies that used solid substrates [11, 13]. In 

addition, we found that although lens droplets can be set into motion using thermal gradients, but 

lens droplets could move in almost any arbitrary direction away from the source of heat, the 

motion and location of lens droplets cannot be predicted and controlled easily. We proposed 

spherical droplets, which always get attracted to hotspots and are held until another thermal map 

is generated on the surface. In this sense, the position and direction of motion for droplet 

transportation is very well-controlled. Reliable droplet transport with high degree of control is 

t=0 s t=1.4 s t=2 s

Heater ON 
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demonstrated in this study for the first time[17]. Manipulating droplets on a liquid platform using 

thermal gradients offers many advantages. The following comparison provides some of the 

benefits of using the concept proposed in this study: 

- In electrowetting-based actuation schemes, only droplets that are of some electrically 

conducting liquid can be transported. Pollack et al. demonstrated motion of 0.7 – 1μL 

droplets by applying voltage (40-80V) to electrodes on the platform, achieving an average 

velocity of 30 mm/s. In this study the same order of transport speed is achieved, whereas the 

requirement for having ions in the liquid drops is not necessary (100mM KCl solution was 

used in the mentioned study) [63, 67]. 

- Droplet pinning and sample loss due to evaporation and trailing streaks, chemical 

contamination, hysteresis effects and irreversibility of motion do not occur in the proposed 

scheme; while such drawbacks have been reported for platforms that are based on solid 

substrates [10, 11, 13]. 

- Furthermore, because the droplets are separated from the heating elements by an inert liquid 

layer, the inner contents of the droplets are not directly exposed to excessive thermal loading, 

as they might be on solid platforms. High thermal fluctuation is not favorable when 

temperature-sensitive bio-chemical species are transported by the droplets.  
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CHAPTER 7: CONCLUSION 

In this work, droplet motion on the free surface of a thin liquid layer, caused by lateral thermal 

gradients, was investigated. A novel mechanism for thermally-induced motion of droplets on thin 

liquid films was discovered. While normally occurring lens-shaped droplets (e.g. water on oil), 

move in the direction of decreasing temperatures, as established by earlier studies, in this study, 

we showed that it is possible to form levitated spherical droplets on the free surface of liquids. 

For such spherical droplets, thermocapillary motion is in exactly the opposite direction compared 

to lens droplets i.e. direction of increasing temperatures. It was found that the motion of 

interfacial droplets is primarily governed by the dynamics of the underlying liquid film. When a 

thermal gradient is maintained across a thin liquid platform, two key phenomena occur: (1) the 

free surface gets deformed such that the high temperature regions become depressed and (2) a 

flow develops on the free surface that carries fluid from the hot end towards the cold side of the 

thermal gradient. These two findings were used to explain the dual behavior of droplets resting at 

the air-liquid interface of an immiscible liquid, subject to a thermal gradient. Partially submerged 

lens droplets get dragged along with the underlying liquid, following the free surface flow, which 

is from hot to cold; hence the motion of such droplets in the direction of decreasing temperatures. 

On the other hand, spherical droplets, which rest above the surface, get attracted to the hotter 

regions (maximum depression of the free surface) due to the effect of gravity and the downhill 

surface slope, despite the opposing drag from the free surface flow.  

Based on the dynamics of thin liquid films subject to thermal gradients, theoretical models were 

developed to explain the thermally-induced motion of interfacial droplets. Results from 

experiments and those predicted by the models are in good agreement. It was found that the drift 
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velocity for both lens and spherical droplets increases with the increase in the magnitude of the 

thermal gradient. While larger lens droplets move at relatively lower velocities as compared to 

smaller ones when exposed to a given thermal gradient, a monotonic (increasing/decreasing) 

trend was not seen for the drift velocity of spherical droplets as a function of droplet size. This is 

attributed to the overall drag coefficient, which is dependent on the relative interfacial velocity 

between the droplets and the underlying liquid and also the effective exposed area of the droplet 

to the oncoming flow.  

As mentioned earlier, the configuration (shape) droplets assume at the air-liquid interface 

determines the direction of thermocapillary motion for the droplets. In order to study the 

formation of lens and spherical droplets at the air-liquid interface, impact of water droplets on 

the surface of Perfluorotributylamine (FC43) liquid was studied experimentally and theoretically. 

The requirement for free-falling droplets on immiscible liquid surfaces for sustaining the impact 

and eventually forming a spherical configuration was described in terms of droplet size and the 

critical release heights. Balance of forces (buoyancy, gravity and surface tension) predicts the 

lens configuration as the only equilibrium static condition. Existence of the spherical state is 

explained based on the concept of mechanically enforced static configurations, which can occur 

in the presence of an external non-equilibrium agent in the system that compensates for the 

imbalance of equilibrium forces.  

Based on the physical principles explored in this study, a droplet manipulation platform was 

designed and fabricated using conventional microfabrication techniques. Typical thermal 

gradients in the range of 0.3 – 0.7˚C/mm resulted in average velocities in the range of 5 – 
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12mm/s for spherical droplets with a maximum speed of 30mm/s. For gradients of 0.15 – 

0.3˚C/mm, lens droplets moved at an average speed of 2 – 4mm/s. For normal operating 

conditions, maximum temperature rise in droplets was limited to a few degrees Celsius, which is 

a critical requirement in most bio-chemical applications where materials and processes are highly 

sensitive to temperature fluctuations. Perfluorotributylamine (FC43) has been proven to be 

chemically inert and thermally stable and is used as the carrier liquid in the proposed platform 

considering its known safety and biocompatibility. The experiments of droplet manipulation on 

liquid platforms show favorable scaling characteristics; in other words better performance is 

observed for smaller droplets (higher speed and lower thermal fluctuation), which shows that the 

proposed droplet transportation mechanism is compatible for miniaturized droplet-based 

platforms. While the proposed platform provides a reliable means for droplet transport for lab-

on-chips and other applied applications, it could also be used to study the dynamics of interfacial 

fluidic systems from a fundamental science perspective. 

Directions for Future Work 

A comprehensive approach was taken in this study to address both, the theoretical and applied 

aspects of thermally-induced motion of droplets on liquid films; however, the following is 

proposed for further investigation in future works:  

- The dependency of thermocapillary drift of spherical droplets on size needs to be studied 

in more detail. The underlying free surface flow opposes the motion of spherical droplets 

towards the higher-temperature end of the thermal gradient, giving rise to an effective 

drag. Levitated spherical droplets have attributed to a thin air cushion between the droplet 
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and the carrier liquid. The thin air layer was studied in the context of lubrication theory. It 

is necessary to investigate the nature of this drag mechanism given the existence of such 

an air gap which leads to non-equilibrium conditions. For example the dependency of the 

drag coefficient on the relative velocity between fluid interfaces and droplet size can 

provide more details on the dynamics of thermal motion. 

- In this study one pair of droplet – carrier liquid was studied (water – FC43). The choice 

of various combinations of liquids for the droplet and the carrier film, the effect of 

physical properties (surface tension, viscosity, density and thermal conductivity) on 

thermocapillary motion of interfacial droplets could be investigated. 

- Spherical droplets get attracted to hot spots on the liquid platform while lens droplets get 

repelled away from the source of heat, often in a direction that cannot be predicted. As 

such, spherical droplets offer better controllability compared to lens droplets; however 

they are usually unstable on the liquid surface and have a tendency to collapse into the 

lens configuration. A stability analysis is needed to identify the parameters that can 

prevent collapse and prolong the life time of spherical droplets. 

- The performance of the first generation of the droplet manipulation platform was 

demonstrated successfully with a high level of reliability and control; however there is 

room for achieving faster response times, better thermal management and less power 

usage. For example, in the first generation prototype, there are only five heaters (one at 

the center and 4 at the periphery) on the platform that are far spaced (>3cm). Since 

droplets move only if they sense the thermal gradient, it is expected that when heaters are 

spaced far apart, it takes a longer time for the transient thermal gradients to propagate 

along the platform and reach the droplets and cause motion. By creating an array of 
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closely spaced heaters and implement a closed-loop feedback control mechanism, the 

response time of the system can be improved significantly.  

- In this study, manipulation of a single droplet was shown using the proposed concept. 

However, for most applications (e.g. lab on chip), standard operations such as mixing, 

titration, droplet trapping etc, are needed which require control and manipulation of 

multiple droplets. For example two or more droplets containing different reagents should 

merge for a reaction to follow and the resulting combined droplet containing the products 

of the reaction should be transported to another location on the platform for further 

processing (optical diagnostics). Figure 54 and Figure 55 demonstrate transport and 

merger of multiple droplets. 

 

 

Figure 54 Conglomerate of three drops is being transported to a hot spot. 

 



 

100

 

Figure 55 Merger of two spherical droplets and formation of a lens drop 

Detailed theoretical models are needed to increase speed of transport on the platform, optimize 

control mechanisms and add extra functionality to the current droplet manipulation platform.  

The droplet manipulation platform proposed in this study is robust and can be used without 

special requirements or restrictions unlike other transport mechanism such as electrowetting that 

requires transported liquids to be electrically conductive. Droplet pinning and evaporation, 

chemical contamination and extremely slow speeds associated with using solid substrates have 

been avoided by replacing the solid surface with a chemically inert film of liquid. 

 

} Merging of spherical drops 

Mixing and collapsing into a lens drop 
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APPENDIX : DERIVATION OF THE NORMALIZED NAVIER STOKES 
EQUATIONS FOR THIN LIQUID FILMS 
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Each term can be made dimension less as follows: 
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Adding all terms leads to the following expression for the X momentum equation: 
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The momentum equation is given in the following form: 
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Non dimensionalization of each term is as follows: 
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can be treated with regards to expansion; the liquid layer may not expand in the 

lengthwise direction and change in volume is only due to change in height: 
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β is the volumetric coefficient of thermal expansion: 
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Y direction momentum is given in the following form: 
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+ + = − + − + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

%  

 

Energy Equation: 

2 2

2 2

T T T T T
U V

X Y X Y
α

τ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 

Change of variables: 

( )C
H C

H C

T T
dT T T d

T T
θ θ−
= ⎯⎯→ = −

−
 

Note: since all terms contain first order “T”, the coefficient TH-TC cancels out; dimensional 

analysis of each term is as follows: 
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( ) ( )

฀( ) ฀ ( )
฀( )

฀( ) ฀ ( )
฀( )

( ) ( ) ( )

( ) ( ) ( )

2 2

22 2

2 2

22 2

1T

T U UU U u
LXUX xL

L

T V UV U A v
LYU AY yd

d

T

LX XX xL L
L L

T

dY YY yd d
d d

θ θ
ττ ττ τ

τ
θ θ

θ θ

θ θαα α

θ θαα α

∂ ∂ ∂
= =

∂ ∂∂

∂ ∂ ∂
= =

∂ ∂∂

∂ ∂ ∂
= =

∂ ∂∂

⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟= =
⎜ ⎟∂ ∂∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟= =
⎜ ⎟∂ ∂∂ ∂⎝ ⎠

%%
%

 

By multiplying by ( )2 Prd
υ  and substituting for appropriate considering Ma=Re.Pr, terms the 

dimension less equation is in the following form: 

( ) 2 2
2 2 2

2 2
Pr .d A Ma u v A

t x y x y

θ θ θ θ θ
υτ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

%  

 

Initial and boundary conditions: 

dim

0 : 0, 0, , ;

0 : 0, 0, 0, 1

C

non

U V T T H d

t u v h

τ

θ−

= = = = =

⎯⎯⎯⎯→ = = = = =
 

Bottom wall: 

dim

0 : 0, 0,

0 : 0, 0, 0

C

non

Y U V T T

y u v θ−

= = = =

⎯⎯⎯⎯→ = = = =
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On the free surface, i) viscous stress is balance by the surface tension gradient, ii) pressure is due 

to atmosphere, normal stress and the surface curvature, iii) temperature is as prescribed: 

( )

0 :

,

2 ,

,

atm

surf

Y

U V

N S S

V
P P

N R

T T X

σμ

σμ

τ

=

∂ ∂ ∂⎛ ⎞+ =⎜ ⎟∂ ∂ ∂⎝ ⎠
∂

= + −
∂

=

 

i) Shear stress: 

฀( ) ฀
( )

฀( ) ฀
( )

฀( )

( )
฀( ) ฀ ( ) 1

( )

( ) H C

H C

U T T
H C T

U VU U A
U V U V u vU U A U

dXYN S Y X y xLd
Ld

T T T

XS X T T L xL
L

u v T TU
d y x T L x

σ μ

μ μ μ μ

σ σ σ σ θ

σ θμ
−∂= −∂

⎛ ⎞∂ ∂⎜ ⎟ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ ≡ + = + = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ∂∂ ⎝ ⎠⎜ ⎟
⎝ ⎠

∂ ∂ ∂ ∂ ∂ − ∂
= ≡ = − = −
∂ ∂ ∂ ∂ ∂∂

⎛ ⎞∂ ∂ ∂ − ∂
→ + = − ⎯⎯⎯⎯⎯⎯⎯→⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

0
u

y x

θ∂ ∂
+ =

∂ ∂
 

ii) Pressure: 

Since, there is no normal component of velocity at the free surface therefore; 

2atm

V
P P

N
μ ∂

= +
∂ R

σ
−  
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p on the surface is given as: 

( )[ atmP P g H Y
p

ρ− − −
=

฀

฀ ( )

@ :

2

2 2

2 2

2 23 3
2 22 2

2

]

1 1

surface Y H

atm

curvature

UL
d

H h

UL X xdP P p
d LR

H h
A

X x

μ

σμ σ σ

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟⎛ ⎞ ∂ ∂→ − = = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

฀ ( ) ฀ ( ) 1

2

2 2

2 3
2 2

21

H CU A T T
T

h
d xdp

LUL
h

A
x

σ μ
σ

μ

−∂
= −
∂

⎡ ⎤
⎢ ⎥∂
⎢ ⎥⎛ ⎞ ∂= − ⎯⎯⎯⎯⎯⎯⎯→⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎛ ⎞∂⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 

( )

2

1
2

2

3
2 2

2

.

1

H C

h

xp A T T
T

h
A

x

σσ
−

⎛ ⎞
⎜ ⎟∂
⎜ ⎟∂⎡ ⎤ ∂= − − ⎜ ⎟⎢ ⎥∂⎣ ⎦ ⎜ ⎟⎛ ⎞∂⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠

 

iii) Prescribed temperature: 

( , )surface fn x tθ =  

 

Kinematic Condition – Governing equation for the free surface profile: 
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In addition to three conditions mentioned above, it is required that there be no stretch of the fluid 

in the y direction; in other words the scalar ( , )F H X Yτ= − should be conserved throughout the 

computational domain: 

 

( )

( ) ฀( ) ฀
( )

( ) ฀( ) ฀
( )

( )

( ) ฀( ) ฀( )

0

, , ,

0

1 0

F F F
U V

X Y

H X Y H X Y H X Y
d d d

d d dU VU U A
X YU U AL d

L d

h h hd U A u U A v
t x y

τ
τ τ τ

τ τ
τ

τ

∂ ∂ ∂
+ + =

∂ ∂ ∂
− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + =

∂ ∂∂

⎛ ⎞∂ ∂ ∂
+ + − =⎜ ⎟∂ ∂ ∂⎝ ⎠

%
%

%

 

On the free surface (y=h → 0
h

y

∂
=

∂
) this condition: 

฀( ) @ y h

h hLu v
Ux tτ =

∂ ∂
+ =

∂ ∂
  

 

This equation can be further simplified by considering the Liebnitz theorem and the continuity 

equation: 

 

Liebnitz theorem:  

( ) ( )

0 0

( )

h x h x
h

dy dy
x x x

∂ ∂ ∂
Φ = Φ +Φ

∂ ∂ ∂∫ ∫  
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( )

@ @ 0

0

( ) ( )

0 0

( )

0

( )

h x

y h y

h x h x

u continuity

u v

x y

vh x dy v v
y

h
udy u dy u

x x x

v h
dy u

y x

= =

Φ→
∂ ∂

=−
∂ ∂

∂
− = −
∂

∂ ∂ ∂
⎯⎯⎯→ = + ⎯⎯⎯⎯→

∂ ∂ ∂

∫∂ ∂
= − +

∂ ∂

∫ ∫

∫

@ y h

h
v u

x
=

⎯⎯⎯⎯⎯⎯⎯⎯→

∂
= − +

∂

 

By substituting v@y=h the kinematic condition on the free surface is: 

 

฀( )
0

0

h
hLudy

Ux tτ
∂ ∂

+ =
∂ ∂∫ %  

This equation serves as the governing equation for the free surface profile. Naturally, u and h 

become coupled. 
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