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ABSTRACT 

Multilayer insulation (MLI) has been shown to be the best performing cryogenic 

insulation system at high vacuum (less than 10
-3

 torr), and is widely used on spaceflight vehicles.  

Over the past 50 years, many numerous investigations of MLI have yielded a general 

understanding of the many variables associated with MLI.  MLI has been shown to be a function 

of variables such as warm boundary temperature, the number of reflector layers, and the spacer 

material in between reflectors, the interstitial gas pressure and the interstitial gas.  Because 

conduction between reflectors increases with the thickness of the spacer material, and yet the 

radiation heat transfer is inversely proportional to the number of layers, it stands to reason that 

the thermal performance of MLI is a function of the number of layers per thickness, or layer 

density.  Empirical equations that were derived based on some of the early tests showed that the 

conduction term was proportional to the layer density to a power.  This power depended on the 

material combination and was determined by empirical test data. 

 Many authors have graphically shown such optimal layer density, but none have provided 

any data at such low densities, or any method of determining this density.  Keller, Cunnington, 

and Glassford showed MLI thermal performance as a function of layer density of high layer 

densities, but they didn’t show a minimal layer density or any data below the supposed optimal 

layer density. However, it was recently discovered by the author that by manipulating the derived 

empirical equations and taking a derivative with respect to layer density, a solution for on 

optimal layer density may be obtained.  
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 Several manufacturers have begun manufacturing MLI at densities below the analytical 

optimal density.  This trend is apparently based on the theory that increased distance between 

layers lowers the conductive heat transfer and that there are no limitations on volume.  By 

modifying the circumference of these blankets, the layer density can easily be varied.  The most 

direct method of determining the thermal performance of MLI at cryogenic temperature is by 

evaporation (or “boil-off”) calorimetry. Several blankets were procured and tested at various 

layer densities by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The blankets 

were tested over  a wide range of layer densities including the analytical minimum.  Several of 

the blankets were tested at the same insulation thickness while changing the layer density (thus a 

different number of reflector layers). 

 Heat transfer optimization of the layer density of multilayer insulation systems would 

remove the variable of layer density from the complex method of designing such insulation 

systems.  Since the layer density is one of the variables that in those complex equations that 

require more experience to understand fully grasp, this significantly simplifies the blanket design 

process.  Additional testing was performed at various warm boundary temperatures and 

pressures.  The testing and analysis was performed to determine thermal performance data and to 

simplify the analysis of cryogenic thermal insulation systems. 
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CHAPTER ONE: INTRODUCTION 

 Heat transfer is at the heart of life on earth as we know it.  Radiation from the sun beams 

down on earth after travelling 93 million miles from the surface of the sun to the surface of the 

earth keeping the earth in a habitable condition.  Convection and conduction from water boiling 

over a hot bed of coals or fire are at the heart of many of the power plants that dot the country 

and provide the power that runs modern society.  Alternatively, the removal of heat is just as 

important in the operation of air conditioners that keep many homes and offices cool as well as 

in refrigerators and freezers that preserve food for long durations.  Yet at the heart of heat 

transfer is insulation.  While many operations depend on the transfer of thermal energy, they 

depend just as much on the containment of that same thermal energy.  The earth contains an 

atmosphere that traps radiation and other forms of heat to minimize the night time cooling of the 

earth and keep the temperature band generally within 30 degrees Celsius.  However, on celestial 

bodies without such atmospheres, such as our moon, the temperature can swing in excess of 250 

degrees Celsius between day and night.  Similarly, in modern power plants, the efficiency of the 

power plant is what makes a successful power plant.  This efficiency is determined by the plants 

ability to contain the energy it produces and minimize the heat transfer that is lost to its 

surroundings.  Thus the efficiency of insulation plays a large role in energy usage, efficiency, 

and the advancement of society. 

 There are three general forms of heat transfer: radiation, conduction, and convection.  

Radiation is caused by the transfer of photons through a space.  It does not require a media 
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through which to travel, and is prevented by reflecting the photons.  Surfaces have properties, 

often called optical properties, that determine the propensity of the surface to emit (or generate or 

reflect, as in a source) photons, to absorb (as in a sink) photons, or to transmit photons (allow 

them to pass through).  These properties are known respectively as emissivity, absorptivity, and 

transmissivity, and are on a scale from zero to one, representing the percentage of photons acting 

in each case.  Because heat transfer is related to the reaction of these photons between surfaces, 

radiation can be generically represented as follows:                      (1) 

Conduction is the transfer of energy through a media, usually in reference to a solid 

material, but also in reference to a gaseous or liquid material.  Conduction is also based on 

material properties, in general the ease of energy transfer through the material is known as 

conductivity, or thermal conductivity.  Additionally, the material has a certain quantity of energy 

that raises the temperature of the material. This property is known as the specific heat of the 

material.  Thus the relationship between the conductivity and the specific heat can be arranged to 

determine how quickly the energy will be dispersed through the material (i.e. how quickly can 

the conductivity get the energy to remote parts of the material while the energy is absorbed along 

the way in heating the material). This property is known as thermal diffusivity.  Conduction heat 

transfer is generally considered using the Fourier equation:                      (2) 

However, because heat transfer is a function of the temperature difference and not of exact 

temperature, the Fourier expression can be expressed more appropriately as: 
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                     (3) 

Where the first integral is the shape factor and the second integral is the apparent thermal 

conductivity integral at the given temperature difference.   The thermal conductivity of a material 

is determined by experimental means. 

 Convection is type of conduction through a moving media, such as a flowing liquid or 

gas.  Because the flowing motion of the media allows for a quicker dispersion of the energy, 

convection generally transfers more energy than conduction through the same media would.  

Convection heat transfer is determined experimentally and published as a convection coefficient, 

h that fits the form of:                  (4) 

 There has been much effort put forth to determine the best methods of minimization of 

heat transfer.  At ambient temperatures, both convection and conduction when present tend to be 

much more important than radiation as the energy flow through these paths is much greater than 

through radiation alone.  Thus any method of eliminating any form of heat transfer by these 

methods is highly sought after. 

 A simple method to eliminate or minimize convection and gaseous conduction is to 

simply remove the gas.  This is done by pulling a vacuum on the insulation in question.  Now, 

within the vacuum we only have any solid conduction and radiation to deal with.  Conduction 

can be dealt with by simply increasing the vacuum space between the hot side and cold side 

using minimal structural supports to keep them at a distance.  The radiation can be greatly 
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minimized by putting reflective shields in between the hot side and cold side.  This effectively 

divides the heat transfer by the number of shields (N) that are used such that: 

                     (5) 

Thus by putting many reflective shields in between the hot side and cold side, the heat transfer is 

greatly reduced.   This works very effectively as long as my reflective shields don’t touch each 

other or anything else for that matter, they must effectively become floating shields [1].  

Anything physically put in between these shields to hold them apart, keep them from touching 

each other, or keep them from touching either boundary degrades the value of the insulation by 

introducing conduction between these layers.  This conduction will always degrade the insulation 

system performance [2].  Multilayer insulation systems are built upon this trade, many radiation 

layers reduces the radiation heat transfer; however the conduction between layers must be kept to 

a minimum. 

 These principles are important in the design of thermal insulation systems for many 

terrestrial applications where the isolation of the warm and cold boundaries contributes greatly to 

the efficiency of the application.  Cryogenic applications are one of the many types of systems 

where this principle is very much in play.  Cryogenic systems are usually several hundred 

degrees below the earth’s ambient temperature, and thus the temperature differences across the 

insulation systems can be as large as several hundred degrees Celsius.  Thus the building and 

maintenance of vacuum jacketed insulation systems is a must for system efficiency and the long 

term profitability of cryogenic procedures.  These principles are even more important outside of 

the Earth’s protective atmosphere, while the vacuum is provided there, the efficiency of the 
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reflection shields is much more important due to the large amounts of radiation heat transfer 

from both the sun and the earth (or other celestial bodies that may be in a closer proximity to that 

particular spacecraft). 

 Recently, NASA has become interested in long duration storage of cryogenic propellants 

such as oxygen, hydrogen, and methane in Low Earth Orbit (LEO) and beyond.  Thus high 

performance MLI once again has become very important in the design and fabrication of new 

spacecraft.  A complete understanding of MLI needs to be established, including all variables 

that come into play when designing and fabricating these systems.  While system level 

demonstrations of passive thermal insulation systems (no cryocoolers or other active cooling 

mechanisms) can show that an engineering knowledge of MLI exists presently as long as enough 

conservatism is used, some of the more precise (and hard to measure) variables are not as well 

understood and accounted for.  This has led to a recent activity, the Methane Lunar Surface 

Control Test (MLSTC), to request calorimeter testing of their MLI system, in order to aid in the 

design and development of future systems, two different MLI systems were bought, the first was 

designed exactly and the insulation system was designed for the system level test and the second 

to allow for the change of a key and largely quantified variable, the layer density.  Thus the 

second blanket system was designed such that it could be installed on the cylindrical calorimeter 

in successively tighter configurations by removing portions of the blanket and reinstalling.  The 

importance for this testing for the MLSTC is that comparing the calorimeter results with the 

system level test results and taking into account the structural support system for the tank, effects 

of these structural penetrations can be determined.  
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CHAPTER TWO: BACKGROUND & LITERATURE REVIEW 

Calorimeters and MLI have often been joined together in development projects.  In order 

to understand the small idiosyncrasies of the heat transfer through MLI, high performance 

calorimeters are needed.  These calorimeters must measure thermal performance on the order of 

milliwatts or even microwatts to be able to detect the small differences between various MLI 

systems. 

Multilayer Insulation 

Multilayered insulation (MLI) was first experimentally tested by Sir James Dewar in 

1900 when he experimented with three layers of aluminum foil [3]. However, it was not until the 

late 1940s when Cornell described his layered radiation shield system that MLI was born [4].  

However, Peterson is often credited as the first to describe modern MLI. 

With the advent of space travel within the natural vacuum of space and the large 

quantities of hydrogen needed for the hydrogen bomb, MLI became a highly studied topic with 

funding from NASA and the Defense Departments.  Glaser, Fredrickson, Leonard, and many 

others continued to research MLI from the 1960s and 1970s, with an underlying premise for 

applications involving long duration lunar and Martian missions. Glaser, Black, and Hinckley at 

the A.D. Little Corporation (an offshoot of the Massachusetts Institute of Technology) pushed 

the theoretical threshold of radiation heat transfer through parallel radiation shields, 

determination of emissivity of various materials, comparing various seam and penetration 

concepts, and measuring the effects of compression in MLI systems [5-8].  They also formulated 
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the physical concepts of which to base future cryogenic stages and long duration hydrogen 

storage [9, 10].  

Fredrickson lead a group of engineers at Douglas Aircraft who sought the optimal design 

for insulating the Mars Nuclear Vehicle that was being designed by NASA as a follow on 

program to the Apollo program [11].  Their efforts culminated in the insulation of a 105 inch 

diameter tank at MSFC and a battery of tests that checked the performance of the insulation at 

many different environments that were expected to be encountered, from ascent to long duration 

storage [12].  Eventually, their insulation system did fly on the forward dome of Skylab.  During 

the 2 year Skylab program, no degradation was noted through the insulation, however, the “cold” 

boundary was the ambient interior of the manned cabin as opposed to the intended liquid 

hydrogen tank [13].   

Leonard and Walburn with their group at General Dynamics/Convair developed novel 

insulation systems such as Superfloc spacer based MLI, which were micro-needle Dacron tufts 

that focused on minimizing the conduction area between radiation shields while maximizing 

contact resistance [14].  They also developed a reusable system that could survive as many as 

100 launches on the Space Shuttle Transportation System using a purge and repressurization 

scheme to minimize the air intrusion and variable pressures that would be seen over the life of 

the system [15].  Over the course of the 100 pressure cycles, the MLI degraded by 26% between 

cycles 1 and 52 and 10% between cycles 53 and 100.  The post test inspection determined that 

this effect was due to the opening up of the blankets at the seams during the pressure transients.  

This work was the first of many research projects in support of the Centaur G-prime project to 
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put liquid oxygen and liquid hydrogen fueled upper stages in the Shuttle payload bay for 

delivering satellites to various orbits.  Such research and development often focused on trying to 

define the best system for a specific mission.  

In the late 1960s and early 1970s, Brogan, Keller, and Cunnington at Lockheed delivered 

the most extensive set of data currently in existence on a wide variety of MLI systems [16, 17]. 

Their tests were completed on both flat plate calorimeters and small tanks. Additionally, the 

expertise and data from Lockheed were used as the basis for the international standard practice 

for MLI, ASTM C-740 [18].  Cunnington also worked with Prof. Tien at UCLA on several 

projects aimed at understanding the effects of specific phenomena such as reflector perforations 

and the combined modes of heat transfer [19, 20].  The group developed at Lockheed during this 

time continued to produce significant work on MLI, such as testing and analyzing performance 

at low temperatures (between 4 and 77 K) [21].  Nast published a fairly comprehensive review of 

their MLI-based work in 1993 [22]. 

Since the mid-1970s, cryogenic engineering for aerospace application saw a sharp decline 

in the quantity of research. Much of the work that did occur focused on the development of the 

specific Centaur upper stage for the Space Shuttle, which was cancelled after the Challenger 

accident in 1986 [23]. In the late 1980s, Mohling led a group of Ball Aerospace engineers in 

developing MLI systems for possible long duration Air Force satellites [24].  This project was 

cancelled in 1989 before a true demonstration could be completed.  However, a fully 

comprehensive report on the development and fabrication of the test article was given to AFAL 

at contract termination [25].  This effort focused on the small pieces that can make or break a 
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true MLI system.  Structural and fluid penetrations, insulation blanket seams, attachment to large 

tank areas, and system construction (human vs. machine, as well as ease of assembly) were a few 

of the main areas studied with each topic being thoroughly  modeled and considered from 

multiple aspects.  Many aspects of the MLI blankets were allowed to depart from perfect 

performance in order to develop a more repeatable method of construction and application. 

Many groups studied the effects of layer density on MLI throughout the years preceding 

and following Dr. McIntosh’s innovation.  The subject of variable density multilayer insulation 

(VD-MLI) was pioneered by McIntosh in the early 1990s [2]. The theory behind variable density 

MLI is that because there is an optimal density for MLI as a function of both boundary 

temperatures, a more optimal solution exists if the MLI system is split into multiple sections or 

segments.  Hyde [26], Stuckey [27], Fredrickson [11], and Spradley [21] have each shown 

analytically based graphs that suggest an optimal layer density for different systems.  This work 

led to the variable density MLI testing on the SMiRF [28] and the MHTB [29].  While testing 

performed on the SMiRF does not appear to match predicted results, testing performed on the 

MHTB suggested that VD-MLI cut the mass of the blanket in half.  In fact, the many tests run on 

the MHTB over the course of the approximately 15 years that it was insulated has led to many to 

consider VD-MLI to be a superior form of MLI and an advancement of MLI [30].   

Calorimeters 

When dealing with cryogenic fluids, there are two general types of calorimeters: Boil-off 

calorimeters, which use the known heat of vaporization of the fluid at a given saturation 

condition in conjunction with a measured mass or volumetric flow, and electrical calorimeters 
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which measure the heater power required to maintain a steady-state flow of heat energy.  Both 

types of calorimeters have been around because the 1960s in a variety of geometries, mainly flat-

plate and cylindrical. 

Currently, the majority of calorimeters that use electrical power based systems are of a 

flat plate configuration.  These include the calorimeters located at Ames Research Center (flat 

plate), Lockheed Martin – Palo Alto (flat plate), Sierra Lobo (flat plate), and Florida State 

University (cylindrical). 

Steady state electrical calorimeters work controlling heaters to maintain a constant 

temperature on the warm boundary of the insulation; thus the heater power is measured.   By 

maintaining both boundary temperatures at constant values, the power required by the heater to 

maintain the warm boundary is the power that is going through the insulation.  This type of test 

is called a guarded hot plate and conforms to ASTM-C177.  The design and operational 

challenge about such a system is making sure the system is completely isolated so that the heater 

power does solely traverse through the test insulation and not in any other direction; this lateral 

isolation is done by having a guard heater, similar to guard fluid tanks in boil-off calorimetry. 

Other systems are transient in nature and can measure both the thermal conductivity and the 

thermal capacitance of the insulation system by monitoring the system temperatures when a set 

power is applied (either cold or warm). 

The system at Ames Research Center (ARC) is designed to use cryocoolers that maintain 

the insulation sample cold boundary at any temperature between 4 K and 290 K (no liquid is 

involved).  This system is unique in that it places the warm boundary heater in the middle of two 
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flat plate test specimens in order to force all of the heat to go through the test specimens.  The 

ARC calorimeter also allows gas to be inside of the insulation sample during testing if desired.  

A schematic of the ARC calorimeter is shown in Figure 1 [31]. The Lockheed Martin system 

used heaters on both side of the insulation that were attached to plates that whose temperatures 

were could be conditioned by cryogens on both sides, thus by varying the fluid and tank pressure 

a much wider  test conditions, a schematic of the double electrical calorimeter is shown in Figure 

2 [17].  Sierra Lobo [32] uses liquid hydrogen to maintain the cold boundary on their system, 

which is very similar to the aforementioned system at Lockheed Martin and one that was used at 

Glenn Research Center during the 1970s [33].  The calorimeter in use at Florida State University 

(FSU) is similar to the system at Ames Research Center in that it uses a cryocooler to maintain 

the cold boundary; however, the cold temperature limit is approximately 10 K as opposed to 4 K 

at ARC.  The calorimeter at FSU is cylindrical in nature, but the top and bottom are not guarded 

and thus need to be properly insulated using the same insulation as the cylindrical length.  This 

approach is acceptable for bulk-fill materials, but presents challenges for testing MLI [34].  

Boroski developed a similar calorimeter at Fermi National Accelerator Laboratory for testing 

MLI as low as 20 K [35].  This calorimeter was mainly used for determining heat fluxes through 

insulation designed for low temperature superconducting cables. 
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Figure 1: Ames Research Center Calorimeter (Courtesy of NASA) [31]  
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Figure 2: Lockheed guarded flat-plate electrical calorimeter (Courtesy NASA and Lockheed) [17] 

Boil-off calorimeters are also used currently in both flat plate and cylindrical form. These 

currently exist at Kennedy Space Center (flat plate and cylindrical), Glenn Research Center 

(cylindrical), Europe (cylindrical), University of New Hampshire (cylindrical), Japan 

(cylindrical), and the Indian Institute of Technology (cylindrical).  Before they developed the 
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double electrical calorimeter, Lockheed used a flat plate boil-off calorimeter.  However, with the 

development of the electrical calorimeter, the boil-off one was no longer needed [16]. 

Boil-off calorimetry uses a known fluid property (the specific energy to change phases) 

and a measureable quantity (boil-off mass flow rate) to measure the heat input into a particular 

system.  The known fluid property, the heat of vaporization (hfg) is known for nitrogen as a 

function of liquid saturation temperature and pressure.  Multiplying the heat of vaporization (J/g) 

by the measured mass flow rate (g/s) gives the measured heat leak into the system (J/s or watts 

(W)).  Generally, kinetic, potential, and chemical energies are neglected as they are several 

orders of magnitude less than the thermal energy transported through the insulation.  Even within 

thermal energies, results of a boil-off test can be skewed by changes in liquid, vapor, or tank 

state.  Changes in liquid temperature or pressure should be avoided at any cost.  Stochl presents a 

thorough analysis of such phenomena in Reference [36].  Sass and Fortier noted that even the 

simple daily cycles of atmospheric pressure can cause 25% swings in boil-off [37]. Great lengths 

are taken to insure that the heat input to the system is in a certain direction in order to attempt to 

create one dimensional heat transfer.   

The calorimeter used at the University of New Hampshire is a double guarded cylinder 

with small vacuum spaces in between each chamber.  There are two different outer vessels 

depending on the material being tested, a 4.5 inch ID (3.125 inch OD of calorimeter chambers) 

one for containing bulk fill insulations, and then an 11.25 inch ID chamber for testing laminar or 

layered insulations [38].  The calorimeters at the Indian Institute of Technology (IIT) [39], 

Shanghai Jiao Tong University [40], and Glenn Research Center (GRC) [36] are similar in that 
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the two guard vessels are separated from the main test chamber with a vacuum space (literally an 

open gap in between the chambers).  However, the one at IIT has the two guard chambers 

connected by a fluid well (maintaining the bottom chamber at a slightly higher pressure due to 

the liquid head), whereas the GRC calorimeter guard chambers are connected via a highly 

conductive metal thermal rod in the middle.  The two calorimeters also vary widely in size, the 

IIT calorimeter is 108 mm in diameter while the GRC calorimeter is 762 mm in diameter.  

Additionally, the GRC calorimeter has inverted domes on both the top and bottom of the test 

chamber, which add a small amount of uncertainty due to the fluid dynamics (see Figure 3).  

These two areas represent approximately 10% of the total test tank volume. 

Ishikawajima-Harima Heavy Industries in Japan developed a double guarded cylindrical 

boil-off calorimeter using liquid helium on the cold side and liquid nitrogen as the warm 

boundary, the same calorimeter can be used with liquid nitrogen on the cold side and ambient 

temperatures on the outside.  When using helium a correction factor of 1.157 is used to account 

for the energy absorbed by the gas between vaporization and entrance to the vent [41].   

Cryostat-100 is the most advanced calorimeter developed by the Cryogenics Test 

Laboratory at the Kennedy Space Center.  It was designed based on previous calorimeters [42] at 

Kennedy Space Center to allow for highly repeatable tests over a wide range of insulation 

performance. The versatility of Cryostat-100 allows not only for precise measurement of MLI 

systems performance at the high vacuum design point, but also at off-nominal design points, 

even up to ambient pressure, where gas conduction becomes the dominant mode of heat transfer 
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[43].  This versatility enables the testing that needs to be done to validate or repudiate the heat 

transfer models associated with multilayer insulation. 

 

 

Figure 3: GRC calorimeter (Figure 3 from reference [36]), Courtesy NASA Glenn Research Center 
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CHAPTER THREE: THEORY 

Portions of this chapter were previously published by the American Institute of Physics
1
 

MLI Heat Transfer 

Heat transfer through multilayer insulation systems is assumed to be dominated by 

radiation.  For this assumption to be valid, the insulation system is usually operated in a high 

vacuum environment with low conductance spacer material between the radiation shields.  The 

ideal MLI system is made of floating shields that do not touch each other, however due to 

gravitational forces and other practical considerations this system is not feasible. A low 

conductivity “spacer” material is therefore placed between the radiation shields so that they do 

not touch and a working MLI system is produced.  The solid conduction through these spacers 

must be accounted for in addition to the radiation between the shields.  Finally, even at high 

vacuum levels, some gas molecules do exist between the layers of radiation shields and spacers 

necessitating a term for gaseous convection.  All three modes of heat transfer are accounted for: 

the solid conduction term first followed by the radiation and gaseous conduction terms, 

respectively.  A more thorough discussion of these modes is presented by Brogan [16] and 

McIntosh [2].  The general form of the empirical formulas generated in references [16] and [17] 

is given by equation (6) while the general form for the physics-based equations developed by 

McIntosh is given by equation (7). 
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1
 W. L. Johnson, Analytical Optimization of Multilayer Insulation Systems, in: Advances in Cryogenic Engineering, 

Vol 55A, American Institue of Physics, Melville, NY, 2010, pp. 804-811. 
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                                                      (7) 

In order to minimize the dominant mode of heat transfer, radiation, more radiation shields 

should be used. However, within a fixed thickness, more radiation shields mean less distance 

between the shields, and therefore more conduction between the shields through the spacers.  As 

noted by Barron [44], Hyde [26], and Stuckey [27], for every MLI system there is a layer density 

where heat transfer is minimized.  This layer density will be the same for all thicknesses given 

that the boundary conditions and material stay the same.  The balance point in a real MLI system 

is between the solid conduction through spacers and the number of radiation shields for  a given 

thickness.  This analysis can be carried to its obvious conclusion that for every layer within an 

MLI system there is an optimal layer density. This approach is the basic premise of VD-MLI. 

A few points of clarification are needed before proceeding further.  First, it is well 

understood that decreasing the layer density while maintaining a constant number of radiation 

shields/layers will asymptotically decrease the heat flux through a flat plate, when the test 

chamber is at high vacuum.  This result is due to the effects of decreasing thermal contact of the 

radiation shields and increasing conduction length of the spacers (an effect predicted by 

Fourier’s law) between layers.  Figure 4 shows heat flux for MLI with a constant number of 

layers for several published curve fit equations for varying layer densities at fixed boundary 

conditions of 293 K and 20 K. It is also important to note that, in theory, simple radiation models 

do not account for the layer density.  The model includes floating shields that never touch and 

are separated by vacuum only.   
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Figure 4: Heat flux as a function of layer density with a constant number of layers [1, 2, 11, 16, 17, 45] 

As shown in Figure 4, it appears that the lower the density of the MLI, the lower the heat 

leak.  However, this effect is offset by the increasing thickness of the blanket as the space 

between the layers increases.  Seeing how every MLI blanket has a finite thickness, the thickness 

must be treated as finite, thus decreasing the layer density must either increase the thickness or 

else decrease the number of layers.  Figure 5 shows the heat flux for MLI with a constant 

thickness for the same empirical equations.  Figure 5 shows that for the same conditions as in 

Figure 4, with the exception of holding a constant thickness instead of the number of layers, 

there is a minimum point for each of the published data curve fits. That minimum point is 

generally where conduction begins to take over as the dominant heat transfer mode and the curve 
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breaks from the theoretical radiation lines.  Again, it should be noticed that the theoretical 

radiation heat transfer only (the floating shield concept) is independent of layer density (at a 

constant thickness, increasing the layer density increases the number of shields, so the constant 

downward slope is due to the increased number of shields).  

 

Figure 5: Heat Flux as a function of layer density for a constant thickness (25.4 mm) [1, 2, 11, 16, 17, 45] 

In all the figures below, “Unperforated Lockheed” refers to unperforated double aluminized 

mylar radiation shields with silk net spacers, Reference [17], equation (4-14).  “Perforate 

Lockheed” refers to the S604 perforation pattern on double aluminized mylar with silk net 

spacers, Reference [17], equation (4-18).  The “Modified Lockheed Equation” refers to 

Reference [45], equation (13). 
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Figure 6 shows the heat flux, thermal conductivity, and estimated mass as a function of 

layer density for a constant number of layers.  As previously shown in Figure 4 and Figure 5, the 

heat flux decreases exponentially with the number of layers in the MLI system. However, when 

the heat flux is normalized to thickness (thermal conductivity) there is a minimum.  Interesting in 

comparison is the mass of the insulation system, which decreases asymptotically as the layer 

density increases.  The mass decreases exponentially as the layer density increases; this trend 

occurs because the surface area for each individual layer is decreased when the differential 

between the layers is decreased in a non-flat plate application (i.e. a real tank).  In the later 

derivations, the mass of the blanket is not taken into account, though it could be included through 

a complex set of equations to relate MLI blanket areal density to layer density with a known tank 

surface area.  NASA has recently developed a FORTRAN program that is capable of performing 

such analysis [46].  
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Figure 6: Heat Flux, Thermal Conductivity, and Estimated Mass for MLI as a function of Layer Density with 

40 shields [1, 17] 

Layer Density Optimization 

Quasi-empirical equations such as those from references [17] and [45], contain both layer 

density ( N ) and the number of layers (N) in them.  In order to make the equations a function of 

layer density only, the equations for heat flux (q, Q/A) are converted to an effective thermal 

conductivity, k.  As shown in Figure 7, the first derivative can then be taken with respect to layer 

density and set equal to zero.  Solving for layer density yields an equation for the minimum heat 

flux normalized to thickness.  For example, the process will be demonstrated on the Perforated 

Lockheed equation for double aluminized mylar and Dacron net, where the mylar is 0.55% open 
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due to perforations (reference [17] eq. 4-18).  First, the heat flux is given by the following 

equation: 

N
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52.052.067.467.463.2 











    (8) 

where CS, CG, and CR are the coefficients of solid conduction, gas conduction, and radiation heat 

transfer, ε is the emissivity of the radiation shields, Th and Tc are the cold and warm boundary 

temperatures respectively, and P is the environmental pressure (for P ≤ 10-4
 Torr, or in the free 

molecular flow regime). 

Using Fourier’s law (equation (9)), and assuming that the number of layers is sufficiently 

large (equation (10)), the equation for heat flux can be transformed into an effective thermal 

conductivity as given in equation (11).  
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This equation for thermal conductivity can then be simplified using equation (12) and 

algebra to obtain equation (13). 
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Taking the first derivative of equation (13) yields: 
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In order to solve for a critical point for the equation, the first derivative is  set to zero, then 

solved for the critical point, the optimal layer density. 
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Equation (17) shows that when all coefficients, Cr, Cs, and Cg are positive, the second 

derivative will always be positive.  This result means that the critical point solved for in equation 

(16) is indeed a minimum according to the second derivative rule. 
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The equations derived in this manner are functions only of the materials (CS, CG, CR, ε) and 

environment (Th, Tc, P).   
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Because the layer density is an input for these equations, the optimized density can be 

inserted back into the equations to solve for the heat flux as shown in equation (18).  Similar 

equations (19) can be derived for other equations, such as the Modified Lockheed Equation, 

developed at MSFC, with different coefficients [45].  The results of these two equations are 

shown in Figure 7 plotted over a wide range of warm boundary temperatures and various cold 

boundary temperatures that are associated with commonly used cryogens.
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Figure 7: Optimal Layer Densities for Perforated Double Aluminized Mylar and Dacron Net MLI 

configurations as a function of boundary temperatures for P = 10-5 Torr [17, 45] 
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CHAPTER FOUR: TEST METHODOLOGY 

Various experimental test methodologies have been used to determine the heat transfer 

through MLI; the one used for this study is boil-off calorimetry.   

Experimental Setup 

Testing was performed using Cryostat-100 according to standard laboratory test 

procedures [47].  Cryostat-100, located at the Kennedy Space Center, is a cylindrical boil-off 

calorimeter including three liquid nitrogen tanks.  The main liquid nitrogen tank measures the 

heat flux through the insulation and is guarded by liquid nitrogen tanks kept at the same pressure 

as the main measure tank.  This back pressure can either be allowed to vary with the local 

atmospheric pressure, or it can be controlled by a back pressure chamber which acts to damp out 

the variations due to local tides and weather patterns. 

 

Figure 8: Absolute Cylindrical Boil-off Calorimetry 

 The main measurement of a boil-off calorimeter is the mass flow rate of the boiling 

vapor.  The expansion ratio of nitrogen from saturated liquid to saturated vapor is over 100 (one 

Q 
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cubic meter of liquid produces 100 cubic meters of saturated vapor). As the liquid boils (or in 

most cases of very low heat flux it evaporates; that is, no bubbles are formed) it forces itself out 

of the vent line due to small increases in pressure.  Thus a small amount of the vapor replaces the 

volume of the liquid that is vaporized and the rest leaves the chamber via the vent line and it 

measured.  Equation (20) shows the governing equation for boil-off calorimetry. However, 

because the expansion ratio from liquid to vapor is so large, the liquid density is roughly equal to 

the differential density between liquid and gas.  Thus the error in assuming that portion of the 

equation is less than 1% (for nitrogen it is a 0.6% error) allows simplification of equation (20)  to 

equation (21). 

                       (20) 

                   (21) 

 Additional terms are often needed to account for miscellaneous heat transfer effects.  

Such heat transfer occurs when guard chambers are not exactly isothermal, or if there is two-

dimensional heat transfer through the test article.  If a temperature controlled cold wall is 

available and safe to use, this miscellaneous heat transfer can be determined by running a null 

test as demonstrated by Sumner [33].  In some conditions, especially when the liquid level is 

low, the temperature of the gas at the test chamber exit should be measured with the appropriate 

correction factor shown in equation (22).  This measurement accounts for any superheating that 

may occur after the fluid changes phases, but before it leaves the test chamber [48].                                          (22) 
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 Original attempts at boil-off testing used extruded copper foams and copper wool within 

high conductivity aluminum tanks to try to maintain isothermal conditions throughout the test 

and guard chambers. [36]  This breaks up the normal stratification that is caused by additional 

hydrostatic pressure within the liquid as a function of liquid height, but complete stratification is 

difficult to achieve in standard practice.  More recently, several stainless steel calorimeters have 

been developed that allow for stratification to occur but provide thermal stability over long time 

periods.  However, analysis should be done to determine if the thermal effects of this 

stratification require another correction factor associated with the thermal capacitance of the 

liquid.  For Cryostat-100, the correction factor is less than 0.5% as shown in Figure 9. A 

complete uncertainty analysis was performed on Cryostat-100 previously, and the total 

uncertainty was found to be less than 5% [49]. 
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Figure 9: Error Calculation for Stratified Cryostat-100 

 Using Fourier’s equation (9), a k-value, equation (23), can be defined within the 

cylindrical coordinates of the calorimeter as shown in equation (24).                  (23) 

                             (24) 

 

To determine heat flux, the logarithmic mean area must be determined.  For a cylinder, 

this value is determined by equation (25) and the heat flux is then determined by the power input 

divided by the logarithmic mean area. 
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                                                        (25) 

For further insight into the performance and testing of the samples, thermocouples are 

placed throughout the thickness of the MLI.  This approach allows for the determination of the 

temperature profile of the blanket as a function of thickness.  Generally, more thermocouples are 

placed on the layers closer to the cold mass. Because radiation is a function of T
4
, the 

temperature profiles are generally highly curved, with most of the temperature gradient occurring 

in the first 25% of the insulation.  Thermocouple locations for each test are shown in Table 3.  

Additionally, the interior thermocouples allow insight into the determination of steady state.  

Steady state can be determined to have been reached once the thermocouples begin to vary 

consistently with the cycling of the air conditioning within the laboratory, or varies less than the 

general error of the thermocouple over the course of a day.  Using this method for steady state 

determination allows for a repeatable method of determining steady state within a boil-off 

calorimeter. 

One cause for concern during calorimeter testing is non-one dimensional heat transfer.  In 

a cylindrical calorimeter, this would be caused by non-isothermal layers. Because the thermal 

conduction of aluminum or aluminized mylar is much higher than the conduction through the 

MLI, thermal gradients along an individual shield could cause a large error in the data.  In a 

previous test, 3 thermocouples were placed with roughly 12 inches between each thermocouple 

in order to look for any non-one dimensional temperature gradients within the MLI.  These 

sensors were placed on the 12
th

 out of 40 layers, where the measured temperatures were in the 

160 to 200 K range depending on the residual gas pressure within the MLI.  Using thermal 
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conductivity data for mylar (Polyethylene Terephthalate) from NIST [50] and the geometric 

properties of the 12
th

 layer (see Table 1), parasitic conduction heat loads were calculated for all 

vacuum levels. The maximum heat load (assuming that layer 12 was the average conduction 

load) was less than 1 milliwatt and at high vacuum it was even lower at 0.4 milliwatt for the 

whole system (see Table 2).  This analysis shows that indeed the testing performed on Cryostat-

100 is a one-dimensional cylinder and that any edge effects that occur are minimized by the 

upper and lower guard chambers. 

Table 1: Geometric properties of the 12th layer of A125 

Diameter 

(m) 

Distance between 

thermocouples (m) 

Mylar 

thickness (m) 

Heat Transfer 

Area (m
2
) 

0.178 0.305 6.35E-6 3.55E-6 

 

Table 2: Measured conduction heat load for all vacuum pressures 

Cold Vacuum 

Pressure 

(mTorr) 

Mylar λ(T) 
(W/m-K) 

12
th

 layer 

top (W) 

12
th

 layer bottom 

(W) 

Total blanket 

top (W) 

Total blanket 

bottom (W) 

0.01 0.082 5.66E-06 5.99E-06 2.26E-04 2.39E-04 

0.1 0.092 4.45E-06 1.61E-05 1.78E-04 6.44E-04 

1 0.108 -1.23E-06 2.46E-05 -4.93E-05 9.85E-04 

10 0.124 -2.70E-06 5.94E-06 -1.08E-04 2.37E-04 

10 0.083 7.20E-06 7.98E-06 2.88E-04 3.19E-04 

100 0.129 -9.42E-06 -1.41E-07 -3.77E-04 -5.63E-06 

1000 0.125 -1.62E-05 2.20E-05 -6.47E-04 8.81E-04 

10000 0.119 -2.45E-05 4.14E-05 -9.82E-04 1.66E-03 

100000 0.104 -2.86E-05 -7.10E-07 -1.14E-03 -2.84E-05 

760000 0.100 -1.87E-05 -3.98E-05 -7.48E-04 -1.59E-03 
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Table 3: Thermocouple placement for each test series 

Thermocouple A138  

Coupon A 

 60 layers 

A139 

Coupon A 

40 layers 

A140 

Coupon B 

10 layer/cm 

A141/A143 

Coupon B 

15 layer/cm 

A142 

Quest 

A144 

Coupon B 

26 layer/cm 

T1,T2, T3 Cold 

Boundary 

Cold 

Boundary 

Cold 

Boundary 

Cold 

Boundary 

Cold 

Boundary 

Cold 

Boundary 
T4 DAK – 

layer 0 

DAK – 

layer 0 

DAK – 

layer 0 

DAK – 

layer 0 
Layer 1 

DAK – 

layer 0 
T5 Layer 4 Layer 4 Layer 4 Layer 4 Layer 2 Layer 4 
T9 N/A N/A Layer 8 Layer 8 Layer 10 Layer 8 
T6 Layer 12 Layer 12 Layer 12 Layer 12 Layer 3 Layer 12 
T7 Layer 20 Layer 20 Layer 20 Layer 20 Layer 4 Layer 20 
T10 N/A N/A Layer 28 Layer 28 Layer 12 Layer 28 
T8 Layer 36 Layer 36 Layer 36 Layer 36 Layer 8 Layer 36 

T11,T12,T13 

Warm 

Boundary 

Layer 60 Layer 40 Layer 60 Layer 60 Layer 20 Layer 60 

 

Experimental Measurement, Uncertainty, and Variability 

Previously, an investigation was done into the uncertainties associated with Cryostat-100 

[43].  This investigation used the least squares method to determine the total uncertainty based 

on the error of the different variables in the equations presented above.  It was shown that the 

uncertainty on Cryostat-100 was approximately 4%.   

In order to measure the performance of multilayer insulation blankets via boil-off 

calorimetry, several major categories of instrumentation are needed.  Flow meters measure the 

volumetric flow of boil-off at standard temperature and pressure (thus a mass flow).  Pressure 

transducers measure the vacuum pressure, both before and after filling with liquid nitrogen as 

well as the back pressure on the liquid nitrogen chambers.  Thermocouples (silicon diodes or 
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resistance temperature detectors - RTDs - can also be used) measure the temperature on the cold 

boundary, warm boundary and other locations in between as desired.   

To measure the boil-off flow, MKS type M10MB mass flow meters are used.  These flow 

meters operate on a thermal bypass theory where a known portion of the flow is diverted through 

a small duct and a known heat is applied, the change in temperature of the gas indicates how 

much flow is going through the entire flow meter.  Generally these flow meters have a published 

1% of full scale error associated with them and are best used between the 20% and 80% full 

scale output.  At high vacuum, the test chamber of Cryostat-100 often has a flow of less than 50 

sccm, while the guard chambers are close to 200 sccm.  At no vacuum, the test chamber can have 

flows in excess of 15,000 sccm with comparable flows on the guard chambers.  This wide range 

of flow creates the need to have multiple ranges of flow meters available..  The flow meters use a 

15 pin D connector (five of which are active), of which three pins provide 15 VDC to the flow 

meter and two pins carry the output signal (0-5 V) to the data acquisition system. 

Vacuum pressure is critical to understanding the gas conduction characterization, 

especially for MLI.  In order to measure the wide range of pressures between 760 torr and 10
-6

 

torr (almost 10 orders of magnitude) several different transducers are needed.  MKS Baratron 

Type 627B are used for the bulk of measurements, they can be ordered in a variety of full scale 

ranges and are generally accurate to 0.25% of the reading.  The Type 627B are capacitance 

manometers made of corrosion resistant Inconel to allow for use in multiple different gasses.  

Because the resolution of a Baratron is roughly 0.001% FS, a 100 Torr Baratron is generally used 

in concert with a 0.1 Torr Baratron, this gives excellent accuracy to 10
-4

 Torr.  At pressures 
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below that, a Granville Phillips ion gauge is used. A full range gage by Pfeiffer is also used to 

provide backup confirmation of the primary gages and to facilitate operations of the vacuum 

system. 

 To measure the warm and cold boundary temperatures, Type E thermocouples are used.  

Type E thermocouples provide the greatest voltage differences between temperatures of any type 

of thermocouple in the cryogenic temperature range.  Typical errors on thermocouples are 2 K or 

less, which is less than 1% of the total temperature difference across the multilayer insulation 

(typically 215 K).  In addition to warm and cold boundary temperatures, thermocouples are used 

to measure various layers in between the two, typical thermocouple placements for different 

numbers of layers are shown in Table 3. 

Previous testing with Cryostat-100 had exhibited a twelve hour cyclical trend in the boil-

off flow rates.  This periodic variation is now known to be caused by fluctuations in the local air 

pressure due to the atmospheric tides as has been previously suggested by Sass and Fortier for 

other boil-off measurement systems [37].  In order to mitigate or dampen this effect, a back 

pressure control system was recently set up for Cryostat-100 (see Figure 10).  The back pressure 

control system has a gaseous nitrogen feed with a control valve attached to a pressure transducer 

(MKS Baratron Type 627D capacitance manometer).  A control box including proportional, 

integral, and derivative (PID) control provides the necessary link between the pressure 

transducer and the control valve. This system effectively dampened the effect and allowed test 

times to be reduced. The small atmospheric changes having a large effect on the condition of the 
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boil-off cryogen illustrate the sensitivity and difficulty in measuring extremely small rates of 

heat energy, such as below 1 W/m
2
. 

 

Figure 10: Cryostat-100 backpressure control system for dampening the effect of the atmospheric tides on the 

boil-off cryogen. 

The back pressure control system was used to damp out the 12 hour tidal cycles.  Figure 11 

shows a comparison of the boil-off flow rates for A138 and A139.  On the left side, A138 did not 

have the back pressure control system in place; however the right side, A139, did have the back 

pressure control system in place.  The y-axis on both graphs is identical; this chart shows that the 

amplitude of the variation was reduced from 5 sccm to less than 1 sccm.  All subsequent tests 

were run with the back pressure control system in place, making the data analysis easier and 

reducing the time required for a given test.  With the back pressure control system in place, the 

variability of the flow within the tests is generally within 10% as the holding chamber is not 
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sufficiently large to prevent slight changes in back pressure that correlate with changes in the 

weather as well as the normal operation of the air conditioning system in the laboratory. 

 

Figure 11: Comparison of Flow Variation before and After Installation of Back Pressure Control System 

Insulation Specimens 

Two MLI “coupon” test articles were procured from Ball Aerospace for testing on 

Cryostat-100.  The first coupon is representative of the insulation installed on the MLSTC test 

tank at GRC by Ball Aerospace personnel and serves to give an approximate heat leak through 

the MLSTC insulation.  The second coupon is a calorimetric test sample intended to test the heat 

transfer effects of changing the layer density of an MLI blanket.  A third coupon was provided 

by Quest Product Development Corporation as a deliverable from their Phase II SBIR, 

Integrated MLI: Advanced Thermal Insulation Using Micro-Molding Technology, contract 

NNC08CA13C [51].  
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The Ball first coupon, Coupon A, consists of 60 layers of alternating double aluminized 

Mylar (DAM) and Dacron netting.  Every four layers are joined to form a “sub-blanket” where 

the outer aluminized Mylar is 1 mil thick (0.001”) and the other three reflectors are 0.25 mil 

thick (0.00025”).  Each reflector is separated by Dacron B4A netting.  There are a total of 15 

“sub-blankets.”  A 0.25 mil layer of double aluminized mylar was placed under the MLI to better 

represent a shiny tank surface (Cryostat-100’s cold mass outer surface is painted black to prevent 

optical interference in most calorimetric situations). The sub-blankets were held together by 

pieces of Velcro sewn into the 1 mil piece of DAM along the seams (see Figure 12); these seams 

were purposely staggered around the circumference of the cold mass to prevent bulges in the 

insulation blanket.   

 

Figure 12: Typical Velcro attachment for MLI Coupon A. 

The second coupon, Coupon B, is nearly identical to Coupon A with several notable 

exceptions.  The sub-blankets are held in place by pieces of tape instead of Velcro; this 
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attachment method brought up the possibility of thermal bridging (heat conduction) between 

layers.  However, bridging was minimized by using pieces of Dacron netting on the tape to 

minimize conduction where the tape was applied across the layers (see Figure 13).  In order to 

keep the sub-blanket layers together, small plastic tags were inserted through each layer.  These 

tags, commonly known as garment tags, are minimal in cross sectional area.   

 

Figure 13: Typical tape attachment on MLI Coupon B using a small piece of Dacron netting to minimize 

thermal bridging. 

Quest has developed an “integrated” multilayer insulation (IMLI) in which there is no 

spacer layer.  Instead, the spacing of the radiation shields is maintained by proprietary micro-

molded polymer stands that are spaced out over the radiation shields and glued to both of its 

boundary shields (see Figure 14).  As a final deliverable to their Phase II SBIR project, 

Integrated MLI: Advanced Thermal Insulation Using Micro-Molding Technology, Contract 
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NNC08CA13C, Quest was required to produce a sample of IMLI that was fitted to Cryostat-100 

dimensions.   

 

Figure 14: IMLI plastic spacer grid 

IMLI is currently designed for a layer density of 5.5 layers/cm (14.1 layer/in).  Quest uses 

one mil thick double aluminized Mylar (DAM) for the main radiation shield layers in the 

insulation system to give rigidity to the layers and prevent film to film contact.  The spacers 

between reflective layers are proprietary micro-molded polymer supports.  The test sample was 

divided into two sub-blankets, each consisting of 10 layers (see Figure 15).  The two sub-

blankets were connected both by tension and by Velcro strips that ran around the circumference.  

Each sub-blanket was taped closed on the outer layer; however, interstitial layers were 

interleaved at the seam. 
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Figure 15: IMLI Cryostat-100 layup 

  



42 

 

CHAPTER FOUR: RESULTS AND DISCUSSION 

Six different test article (coupon) configurations were tested over the course of seven test 

series. These test series covered a wide range of vacuum pressures, warm boundary 

temperatures, and geometric parameters.  The parameters from the various coupons and 

modifications that were used are shown in Table 4.  BATC Coupon B was designed for the layer 

density to be changed during testing.  Some coupons were not tested for the full vacuum range 

due to time and funding restraints, as the main goal of the test program was to determine the 

insulation system performance at high vacuum.  For example, A138 and A139 were only tested 

at high vacuum and ambient pressure (no vacuum), while A140 was tested only at high vacuum 

and slightly degraded vacuum pressures.  The four variables investigated in the study were: 

Number of Layers, Layer Density, Cold Vacuum Pressure, and Warm Boundary Temperature. 

Table 4: Key Geometrical Parameters for MLSTC Cryostat-100 Testing 

Test  

Series 

Coupon Number 

of Layers 

Layer 

Density 

(layer/mm) 

Thickness 

(mm) 

Mean 

Area (m
2
) 

Mass 

Density 

(kg/m
3
) 

A138 BATC A 60 0.95 63.3 0.409 45 

A139 BATC A 40 0.94 42.7 0.377 45 

A140 BATC B 60 0.94 63.6 0.409 37 

A141 BATC B 60 1.45 41.4 0.375 57 

A142 Quest IMLI 20 0.52 38.7 0.370 21 

A143 BATC B 60 1.41 42.6 0.377 55 

A144 BATC B 60 2.61 23.0 0.344 95 
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Test Results 

 Summaries of the Cryostat-100 test results are shown in 5 and 6. The figures in 

parentheses (which are the same used in the legends of the figures) indicate the number of layers, 

the layer density (layer/mm), and the mass density (kg/m
3
).  The average measured boil-off flow 

rate and the corresponding total power, thermal conductivity, and heat flux are shown in addition 

to the cold vacuum pressure and both boundary temperatures.  Results are generally shown to 3-4 

significant figures except on the mass flow rates, where a minimum of three are given. 

Table 5: Test results for calorimeter testing (Part I) 

 

 Test articles A138 and A139 were tested at high vacuum (with WBTs of 305 and 350 K) 

and no vacuum.  Test articles A140, A141 and A144 were tested at high vacuum and slightly 

A138 Ball MLI 60, Coupon A (60, 0.95, 45) Test Flow Qtot k CVP WBT Q/Am CBT

15 sub-blankets (sccm) (W) (mW/m-K) (m) (K) (W/m
2
) (K)

60 Layers, 0.95 layer/mm 1 25.8 0.107 0.073 0.0058 305 0.262 78

2.5 inch total thickness 2 37.3 0.154 0.088 0.0073 349 0.377 78

3 12067 49.94 34.4 760000 303 122.2 78

A139 Ball MLI 40, Coupon A (40, 0.95, 45) Test Flow Qtot k CVP WBT Q/Am CBT

10 sub-blankets (sccm) (W) (mW/m-K) (m) (K) (W/m
2
) (K)

40 layers, 0.94 layer/mm 1 35.2 0.146 0.073 0.0026 305 0.388 78

1.6 inch total thickness 2 50.7 0.210 0.088 0.004 349.5 0.557 78

3 13387 55.4 37.38 760,000 307.5 147.1 78

A140 Ball MLI 60, Coupon B (60, 0.94, 37) Test Flow Qtot k CVP WBT Q/Am CBT

15 sub-blankets (sccm) (W) (mW/m-K) (m) (K) (W/m
2
) (K)

60 layers, 0.94 layer/mm 1 32.8 0.136 0.093 0.0017 305.8 0.332 78

2.5 inch total thickness 2 33.1 0.137 0.094 0.0018 305.6 0.335 78

3 68.2 0.282 0.193 0.106 305 0.689 78

4 79.6 0.329 0.226 0.307 305 0.804 78

A141 Ball MLI 60, Coupon B (60, 1.45, 57) Test Flow Qtot k CVP WBT Q/Am CBT

15 sub-blankets (sccm) (W) (mW/m-K) (m) (K) (W/m
2
) (K)

60 layers, 1.45 layer/mm 1 42.8 0.177 0.087 0.002 304.7 0.472 78

1.6 inch total thickness 2 42.3 0.175 0.085 0.003 304.8 0.467 78

3 90.4 0.372 0.183 0.107 304.5 0.993 78

4 119.6 0.495 0.242 0.303 304.4 1.321 78

m

m

m
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degraded levels of high vacuum in order to establish the curved transition region between high 

vacuum and soft vacuum and how it is affected by layer density at a warm boundary temperature 

of 305 K.  Test article A142 was initially tested in the same conditions as A140 and A141, but 

then subsequently tested for the full vacuum range at a warm boundary temperature of 293 K.  

Test article A141 was then reinstalled as A143 and tested for the full vacuum range at 293 K.  A 

majority of the CVP dependent testing was performed at a WBT of 305 K; these results are 

shown in Figure 16 as heat flux and Figure 17 as apparent thermal conductivity.  Figure 18 (heat 

flux) and Figure 19 (k-value) show the high vacuum performance of multiple insulation systems 

at different warm boundary temperatures.  The no vacuum (ambient pressure, nitrogen back-fill) 

performance of various systems is shown in Figure 20. 
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Table 6: Test results for calorimeter testing (Part II) 

 

m

m

m

m

A143 Ball MLI 60, Coupon B (60, 1.41, 55) Test Flow Qtot k CVP WBT Q/Am CBT

2 subblankets (sccm) (W) (mW/m-K) (m) (K) (W/m
2
) (K)

20 layers, 0.52 layer/mm 1 33.3 0.138 0.073 0.002 292.9 0.4 78

1.5 inch total thickness 2 56.4 0.233 0.123 0.108 292.9 0.6 78

3 70.4 0.291 0.153 0.306 292.8 0.8 78

4 100.5 0.416 0.219 1.0 293.1 1.1 78

5 438.0 1.8 1.0 10.0 292.6 4.8 78

6 2733.0 11.3 6.0 100.0 292.8 30.0 78

7 6296.0 26.1 13.7 1074.0 292.8 69.3 78

8 7274.0 30.1 15.8 10026.0 293.3 79.9 78

9 7139.0 29.5 15.6 100018.0 293.0 78.3 78

10 9780.0 40.5 21.5 760000.0 291.2 107.5 78

A144 Ball MLI 60, Coupon B (60, 2.6, 95) Test Flow Qtot k CVP WBT Q/Am CBT

15 subblankets (sccm) (W) (mW/m-K) (m) (K) (W/m
2
) (K)

60 layers, 2.6 layer/mm 1 30.6 0.127 0.037 0.003 305.3 0.369 78

0.9 inch total thickness 2 31.6 0.131 0.038 0.004 305 0.380 78

3 54.5 0.225 0.060 0.056 304.1 0.653 78

4 60.3 0.249 0.073 0.113 304.4 0.723 78

5 72.0 0.298 0.088 0.307 304.8 0.865 78

A142 Quest IMLI (20, 0.52, 21) Test Flow Qtot k CVP WBT Q/Am CBT

2 subblankets (sccm) (W) (mW/m-K) (m) (K) (W/m
2
) (K)

20 layers, 0.52 layer/mm 1 50.7 0.210 0.097 2.50E-03 304.2 0.567 78

1.5 inch total thickness 2 54.2 0.224 0.104 7.80E-03 303.6 0.605 78

3 114 0.472 0.219 1.00E-01 304.3 1.274 78

4 141.4 0.585 0.271 3.00E-01 304.5 1.579 78

5 36.7 0.152 0.074 1.20E-03 291.8 0.410 78

6 107.1 0.443 0.216 1.00E-01 292.7 1.196 78

7 215.4 0.891 0.436 1.00E+00 292.4 2.406 78

8 1144 4.74 2.30 1.00E+01 294.4 12.787 78

9 5032.4 20.8 9.98 1.00E+02 296.3 56.227 78

10 7107.0 29.4 14.06 1.01E+03 296.7 79.406 78

11 9278 38.4 18.36 1.00E+04 296.7 103.679 78

12 17362 71.8 34.83 7.60E+05 293.8 193.979 78
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Figure 16: Heat flux as a function of CVP for various MLI systems as a WBT of 305 K 
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Figure 17: Effective thermal conductivity (k-value) as a function of CVP for MLI systems at a WBT of 305 K 
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Figure 18: High vacuum heat flux for various MLI systems 

 

Figure 19: High vacuum effective thermal conductivity (k-value) for various MLI systems 
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Figure 20: No vacuum k-value test results for various MLI system testing. 

Discussion 

 There are several different pressure regimes that must be considered in the analysis of 

MLI blankets.  The first of these regimes is High Vacuum (HV). For many powder insulations, 

the heat transfer stops decreasing in the pressure range below 1 millitorr (10
-3

 torr). However, 

due to the relatively large gaps between the layers, MLI heat transfer does not reach its minimum 

until 0.001 millitorr (10
-6

 torr).  This vacuum pressure level is well into the range of Knudsen 

numbers (Kn) less than 10
-4

.  The second, most difficult, and least studied regime is Soft 
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Vacuum (SV). Generally considered at approximately 100 millitorr, SV realistically spans the 

gap between high vacuum and the transition to continuum flow (roughly 1 millitorr to 1 torr, the 

linear portion of the thermal conductivity curve).  The third regime is No Vacuum (NV) which is 

the range between about 10 torr and atmospheric pressure (defined as 760 torr at sea-level).  For 

MLI, the heat transfer is generally dominated by gas conduction and convection in this regime 

and rather constant, yielding the upper plateau in the general thermal performance curve. 

Performance at High Vacuum 

The tricky part of analyzing or predicting the MLI performance at high vacuum involves 

picking the correct equation to use. Even though many different spacer materials and perforation 

combinations were tested, the exact combinations were often times not actually used.  Many 

companies use the traditional equations developed by Keller and Cunnington, traditionally 

refered to as the “Lockheed equations” (LE) [17].  Additionally, Hastings and Hedayat 

developed a “Modified Lockheed equation” (MLE) for Dacron netting spacers and a specific 

perforation pattern that was tested at Marshall Space Flight Center [30].  Even though 

Fredrickson did some flat plate calorimeter testing of double aluminized mylar and several 

different types of Dacron netting, no analytical equations was developed [12].  A third equation 

(New) can be derived from a combination of the two, using the Dacron netting portion of the 

MLE and the radiation and gas conduction portions of the Lockheed Equation (see equation 

(26)).  The LE and MLE equations are compared to the actual test results at high vacuum in 

Table 7.   The scale factors (SF), or percent error divided by 100, for the 350 K warm boundary 

test are much lower than the scale factors for the 305 K warm boundary tests, indicating that the 
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temperature dependence of the equations is not entirely correct.  A simple comparison of the 

temperature power factors of the Lockheed equation gives a number of roughly 4.3, whereas the 

tested power factor was 2.7 (the power factor theory is displayed in equation (27)).  The variance 

in power factor suggests that conduction is much more of a factor than allowed by the Lockheed 

equations.  Power factors for the same equations (plus the McIntosh method) are shown in Table 

8.  Care must be taken in applying these equations to the Quest IMLI blanket (A142) due to the 

different spacer approach of the system. 

Table 7: Correlation Comparisons to Test Results 

Test/WBT 
Test Q 

(W/m
2
) 

LE Q 

(W/m
2
) 

LE SF 
MLE Q 

(W/m
2
) 

MLE 

SF 

New Q 

(W/m
2
) 

New Q 

SF 

A138/305 0.262 0.144 1.83 0.156 1.68 0.170 1.54 

A138/350 0.377 0.258 1.46 0.261 1.44 0.288 1.31 

A139/305 0.388 0.206 1.88 0.224 1.73 0.246 1.58 

A139/350 0.557 0.374 1.49 0.376 1.48 0.419 1.33 

A140/305 0.332 0.136 2.45 0.148 2.24 0.162 2.05 

A141/305 0.472 0.176 2.68 0.244 1.94 0.259 1.82 

A142/305 0.567 0.364 1.56 0.330 1.72 0.379 1.49 

A142/293 0.410 0.292 1.41 0.266 1.54 0.306 1.34 

A143/293 0.366 0.148 2.47 0.209 1.75 0.222 1.65 

A144/305 0.369 0.388 0.95 0.756 0.49 0.788 0.47 
 

Further investigating Table 7, it can be seen that there is a sharp increase between identical 

tests of Coupon A (A138) and Coupon B (A140).  This result is due to the seaming method 

discussed in the Experimental Setup section.  Even though great care was taken with Coupon B 

to minimize the tape conduction, the seams contributed 0.13 W/m more heat leak in A140 than 

A138.  Additionally, a previous test series of 40 layers of DAM and Dacron netting was 

performed  at the Cryogenics Test Laboratory., However, in this case each layer was applied 
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individually (i.e. no sub-blankets).  The heat flux for 40 layers at 2.6 layer/mm was 0.398 W/m2; 

scaling to 60 layers to compare to A144 (0.369 W/m2), a heat flux of 0.265 W/m2 is calculated.  

This result would give a heat load penalty of 0.19 W/m of seam between a continuous rolled 

MLI blanket and the Coupon B version of testing.  Subtracting the two yields a 0.06 W/m seam 

penalty for Ball’s Coupon A seaming technique using sub-blankets of 4 layers Velcro-ed 

together. 

                                                                      
                                                         

(26) 

                                 (27) 

Additionally, McIntosh developed a physics-based set of equations that includes terms 

for radiation, solid conduction, and gaseous conduction (or molecular conduction) [2].  Analysis 

by the author indicates that this is a rather accurate model, but needs an additional term to 

account for the contact resistance.  Bapat did try to develop such a term; however it became 

extremely complex very quickly, and was only usable for certain materials [52].  In general 

contact resistance is hard to model a priori; this causes a need for analytical curve fitting or 

empirical postulating within MLI systems.  However, looking at the Temperature Power Factor 

(shown in Table 8), the McIntosh approach has a much closer PF to reality than either of the 

empirical equations. 
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Table 8: Power Factors of and Optimal Layer Densities Various MLI Equations 

Equation 

Temperature 

Power Factor  

(1 layer/mm) 

Optimal Layer 

Density (305 K) 

Optimal Layer 

Density (350 K) 

Lockheed 4.30 1.44 1.63 

Modified 

Lockheed 
3.65 1.06 1.25 

New Q 3.71 1.09 1.29 

McIntosh 2.84 N/A N/A 

Actual Test 

Data 
2.7 1.5 - 2.6 ---- 

 

 Three of the tests of three different layer densities were performed at nearly the same 

thickness.  Test articles A139 (40 layers, 0.94 layer/mm), A141 (60 layers, 1.45 layer/mm), and 

A142 (20 layers, 0.52 layer/mm) were all tested at roughly 40 mm of total blanket thickness. 

This set of data allows for a direct comparison among tests, with the exception of modifying 

A141 to account for the change from coupon A to coupon B.  Comparative results from these 

three tests are shown in Table 9.  The flux-density product is shown as a hybrid mass and 

thermal performance property and comparison metric.  These comparisons show that while the 

lower the density (at a constant thickness) and the higher the heat flux, the areal density 

decreases much quicker than the heat flux increases.  Figure 21 shows graphically the test data 

for Coupon B, in a similar manner as Figure 6 shows the theoretical data.  The mass curve looks 

about as predicted; however, the thermal conductivity curve does not show an optimal layer 

density probably due to the limiting upper layer density that was tested.  These data combined 

with test data at higher layer densities (see Figure 22) suggest an optimal layer density between 
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1.5 and 2.6 layers/mm.   However, in terms of the combination of mass and heat transfer, the 

optimal layer density appears to be as low as reasonably possible. 

 

Table 9: Effect of Layer Density on Heat Flux and Mass 

 

A141 

60 layers 

1.45 layer/mm 

A139 

40 layers 

0.94 layer/mm 

A142 

20 layers 

0.52 layer/mm 

Heat Flux  

(W/m
2
) 

0.367 0.388 0.567 

Mass  

(gram) 
1565 1265 526 

Areal Density 

(kg/m
2
) 

4.18 3.35 1.42 

Flux Density 

Product  

(W-kg/m
4
) 

1.53 1.30 0.81 
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Figure 21: Test data as function of layer density 



56 

 

 

Figure 22: Thermal conductivity test data plotted as a function of layer density 

Performance at Degraded and No Vacuum 

 Almost no analytical work has been done in the soft vacuum regime.  The transition 

between the continuum and free molecular flow regimes is complicated.  Gu attempted to curve 

fit data from Fesmire and Augustynowicz using a double logistical dose response equation [53].  

The author’s attempts to recreate this equation have yielded different results than the published 

work.  The development of a new pressure fitting equation to match this region is discussed in 

the Modification of McIntosh Model section.  For many cases, such as loss of vacuum in transfer 

lines, a good understanding of the degraded vacuum properties are needed in order to do 
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understand the implications of these failures to the safety of the entire system.  Fesmire [43] and 

Sun [40] have previously performed testing, but did not attempt to model the results. 

 Test results of MLI at no vacuum have shown that the thermal performance is closely 

linked to the performance of the interstitial gas.   However, this has not previously been done 

with low density MLI.  Comparing the results of the blankets that were tested at ambient 

pressure reveals that there is a sharp break between the low density and medium to high density 

blankets (see Figure 20).  These data also suggest that the thickness of the blanket is not the 

prime suspect as A139 and A143 were the same thickness.  Apparently the wide spaces between 

the layers allow for natural convection in the vertical positioning and thus the convection 

increases the total heat transfer through the blanket.  This effect is further suggested when 

examining the temperature profile of the A138 at no vacuum and comparing to the typical no 

vacuum temperature profile (Figure 23).  The temperature gradient is much steeper close to the 

cold mass than it is further from the cold mass, indicating that heat is being transferred in some 

other fashion. 
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Figure 23: Temperature profiles for test series A138. 

Modification of McIntosh Model for all Pressure Regimes 

 In order to account for the various pressure regimes, a modified McIntosh layer by layer 

model was developed.  In a similar fashion as Gu, a pressure coefficient was added to the 

pressure term from the original equations [53].  At high vacuum, this term approaches 1 and at 

soft vacuum and high vacuum, the term forces the gas conduction to dominate the heat transfer.  

However, comparing the test results with several historical data series from the Cryogenics Test 

Laboratory as a function of cold vacuum pressure showed some interesting variations (see Figure 

24).  The transition between high vacuum to soft vacuum appears to change with layer density.  

This observation is most notable with the 0.5 layer/mm Quest blanket, however, each of the 

varying densities does slowly change the transition point at higher pressures.  This effect leads to 
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soft vacuum performance variations by as much as an order of magnitude depending on the layer 

density.  The conclusion that can be drawn from this is two-fold: first, those MLI systems with 

lower layer densities need a lower pressure to achieve the ultimate performance, and secondly, 

that gas conduction at high vacuum is not a function of pressure as suggested by Corruccini, but 

a function of something else. 

 

Figure 24: Heat Flux vs CVP for several MLI systems 

 Further investigation suggested that the heat flux is a function of inverse Knudsen 

number as opposed to pressure (see Figure 25).  The Knudsen number is a non-dimensional 
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number that compares the mean free path of a gas to the geometry containing that gas.  The mean 

free path of the gas (λ) can be found by:                   (28) 

Thus the Knudsen number (Kn) is:                   (29) 

And the inverse Knudsen number (iKn) is:                   (30) 

 In adapting this new relationship to the McIntosh set of equations, a new term must be 

added to account for the Knusden number relationship instead of the pressure relationship.  The 

original term for gas conduction was first derived by Corruccini [54] 

                                 (31) 

This is turned into conductivity by McIntosh [2] such that: 

                                    (32) 

The pressure coefficient is then added such that: 

                       (33) 

where: 

                                      (34) 

Such that: 
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q”low = 0.07 

q”high = 60 

ko = 1.8 

δ = 0.5  

Each of the variables has a purpose q”low quantitative represents the heat flux at high vacuum, 

q”high is a quantitative representative of the heat flux at no vacuum, ko controls the shift of the 

transition as a function of inverse Knudsen number, and δ controls the curvature of the two ends 

as they flow into the diagonal of the function.  The result of applying these correction factors is 

shown in Figure 25 as the Johnson fit.  This curve fit allows the determination of the thermal 

performance of MLI blankets on a layer by layer basis throughout the entire vacuum regime. 
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Figure 25: Heat Flux as a Function of Inverse Knudsen Number for Several MLI Systems 
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CHAPTER FIVE: CONCLUSIONS 

 Several MLI systems were tested on a boil-off calorimeter at the Kennedy Space Center.  

These tests allowed for the following variables: layer density, warm boundary temperature, 

vacuum level, and number of layers.  Existing analytical expressions for determining heat flux 

over a wide range for each of these variables were compared to the test results. 

 MLI was tested at low layer densities.  The performance at lower layer densities was 

shown to vary by over 100% from the predicted performance using existing solution methods. 

However, a new solution method was generated that greatly reduced the error down to 40%. 

 An analytical solution for the optimal layer density of MLI systems was derived and 

compared to the test data. Several modifications were suggested to more closely predict the 

performance of such MLI systems.  The test data indicate that the power factor of the equations 

should be lower than it is in most equations.  The optimal layer density for boundary 

temperatures of 77 K and 305 K was shown to be between 1.5 and 2.6 layers/mm, closer to the 

later.  This value is much higher than the analytically predicted values between 1.0 and 1.5 

layer/mm.  This suggests that radiation is more important in determining this optimal layer 

density than the equations let on. 

 MLI heat transfer was shown to be a function of inverse Knudsen number as opposed to 

strictly cold vacuum pressure.  An analytical solution for MLI performance as a function of 

inverse Knudsen number was obtained using a layer-by-layer analysis.  This solution passes 

through all pressure regimes from high vacuum to soft vacuum to no vacuum.  This solution 

implies that MLI systems with lower layer densities need a lower pressure to achieve the 
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ultimate performance and that gas conduction at high vacuum is not strictly a function of 

pressure as suggested by Corruccini, but a function of the Knudsen number. 
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APPENDIX: VARIOUS DATA PLOTS FROM TESTING 
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Typical temperature profile for entire blanket coming to steady state at high vacuum for first 250 

hours 
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T4 (sub-blanket 1) for first 250 hours of testing, eventually coming to steady state at high 

vacuum 

 



68 

 

 

Typical Temperature profile approaching steady state at 350 K warm boundary temperature 

following a 305 K warm boundary temperature test 
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Typical no-vacuum test boil-off flow and warm boundary temperature, data averaged between 92 

and 88 % full per internal testing standards. 

 

 

 

 

 

 

 



70 

 

 

 

 

High Vacuum test shows repeatability after refill and cool down duration for only 40 layers. 
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Coupon B high vacuum test, doesn’t takes over 100 hours just to chill MLI to steady state 
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Due to improper conditioning (too high of a back pressure maintained), the flow went to zero as 

the liquid in the test chamber warmed up to the new test pressure (this was approximately 5 torr 

– 70 Pa – of differential pressure applied on liquid). 
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Notice loss of back-pressure control during this test at approximately 60 hours. 
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Again, loss of back pressure control shown with variations in room temperature and warm 

boundary temperature. 
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Note: Temperature stability of T4 after a certain length of time.  Notice loss of back-pressure 

control during this test 
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Note:  The period between approximately 56 and 120 hours is the duration that it took the test 

chamber to acclimate to the several torr backpressure being applied.  In this case, as the test was 

run during a slow time in the lab, more backpressure was applied (several torr) and the time was 

not as important. 
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Note: This test was run at 1 Torr (1000 millitorr), the flows are much higher than previous tests 

and the averaged data is between 92 and 88% full per internal test standards. 
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Note:  This test was the second high vacuum test run on A144, it was run after a 0.3 millitorr 

test, and the change in layer temperature is quite evident in the first 60 hours of the test, a refill at 

approximately 90 hours helped to steady the test out. 
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