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ABSTRACT 

 

Microelectromechanical systems (MEMS) have widespread applications in medical, electronical 

and mechanical devices. These devices are characterized by the smallest dimension which is 

atleast one micrometer and utmost one millimeter. Rapid progress in the manufacture and 

utilization of these microdevices has been achieved in the last decade. Current manufacturing 

techniques of such devices and channels include surface silicon micromachining; bulk silicon 

micromachining; lithography; electrodeposition and plastic molding; and electrodischarge 

machining (EDM). In recent years, electrostatic, magnetic, electromagnetic and thermal 

actuators, valves, gears and diaphragms of dimensions of hundred microns or less have been 

fabricated successfully. Sensors have been manufactured that can detect pressure, temperature, 

flow rate and chemical composition in such channels. Physical effects such as electrokinetics, 

pressure gradient and capillarity become prominent for channels where the length scales are of 

the order of hundreds of micrometers. Also, at such length scales, the application of conventional 

numerical techniques that use macroscale equations to describe the phenomenon is questionable 

as the validity of the no-slip boundary condition depends on the ratio of the mean free path of the 

fluid molecules to the characteristic dimension of the problem (called the Knudsen number). 

Macroscale equations can only be applied if Knudsen number is of the order of 10-3 or less. 

 

In recent years, the lattice Boltzmann method (LBM) has emerged as a powerful tool that has 

replaced conventional macroscopic techniques like Computational Fluid Dynamics (CFD) in 

many applications involving complex fluid flow. The LBM starts from meso- and microscopic 

 iii



Boltzmann’s kinetic equation and can be used to determine macroscopic fluid dynamics. The 

origins of LBM can be drawn back to lattice gas cellular automata (LGCA) which lacked 

Galilean invariance and created statistical noise in the system. LBM on the other hand possesses 

none of these drawbacks of LGCA, and is easy to implement in complex geometries and can be 

used to study detailed microscopic flow behavior in complex fluids/fluid mixtures. Nor does it 

have any of the drawbacks of the Navier-Stokes solvers of implementing the slip boundary 

condition on the surface of a solid. It has also been found to be computationally fast and an 

alternative to Navier-Stokes equations.  

 

In this study, LBM is used to simulate two-fluid flows such as bubbles rising in a liquid, droplet 

impingement on a dry surface and creation of emulsions in microchannels. Simulation of 

disperse flows in a continuous medium using simple boundary condition methods lays the 

foundation of conducting complex simulations for the formation of droplets past a T-junction 

microchannel in the framework of this statistical method. Simulations in a T-junction illustrate 

the effect of the channel geometry, the viscosity of the liquids and the flow rates on the 

mechanism, volume and frequency of formation of these micron-sized droplets. Based on the 

interplay of viscous and surface tension forces, different shapes and sizes of droplets were found 

to form. The range of Capillary numbers simulated lies between . Different 

flow regimes are observed that can be described based on the Capillary number of the flow. A 

flow regime map that lists where droplet or parallel flow may occur has been created based on 

the flow rate ratio and Capillary number for a purely laminar flow in the microchannel.  

0.001 1.0Ca≤ ≤
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CHAPTER ONE: INTRODUCTION 

In his lecture titled “There is Plenty of Room at the Bottom” delivered in 1959, Richard 

Feynman postulated the fabrication of micro-devices that ‘might not be of any use for mankind 

but would be fun to create and work with’. Not many in that room would have realized that less 

than half a century later, miniaturization would be the order of the day. Microelectromechanical 

systems (MEMS as they are commonly referred to), are devices that are characterized by the 

smallest dimension which is atleast one micrometer and utmost one millimeter. Rapid progress in 

the manufacture and utilization of these microdevices has lead to the widespread use of these 

devices for both scientific and the industrial community in a variety of applications. These 

devices are currently being manufactured using techniques such as surface silicon 

micromachining, bulk silicon micromachining, lithography, electrodeposition and plastic 

molding, and electrodischarge machining (EDM). In recent years, electrostatic, magnetic, 

electromagnetic and thermal actuators, valves, gears and diaphragms of dimensions of hundred 

microns or less have been fabricated successfully. Sensors have been manufactured that can 

detect pressure, temperature, flow rate and chemical composition in micron-sized channels.  

 

Many of these microdevices, for instance microducts, micronozzles, micropumps, and 

microturbines, involve or operate on the basis of fluid(s) flowing through narrow crevices. 

Depending on the application, these devices can either have liquid or gas as the working fluid. 

According to Kandlikar (2002), who has classified thin channels based on their hydraulic 

diameters, microchannels (10 µm to 200 µm) are employed in inkjet printers and many Micro-
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Elecro-Mechanical Systems (MEMS); minichannels (200 µm to 3 mm) in compact plate-fin 

evaporators; and conventional channels (>3 mm) in steam tube boilers, evaporator tubes, etc. 

This classification is evolving with rapid advances made in this field.  

 

In the past, flows of gas-liquid or liquid-liquid mixtures have been studied both experimentally 

and numerically for many macroscopic systems. For instance, in two-fluid mixtures, the 

commonly used parameters that characterize the flow are the Reynolds number ( Re b eU d υ= ), 

the Eotvos ( 2
eEo g dρ σ= ∆ ), Morton number ( 2 4

LMo g 3ρ ρυ σ= ∆ ), and Weber number 

( ). As the size of the physical system changes, the set comprising the 

parameters is subject to change, often in a dramatic way (Trimmer (1989); Madou (1997)). 

Understanding scaling laws guides our understanding of how to design micro-electro-mechanical 

systems. If ‘S’ is the scale factor that denotes the scaling down of the dimensions of any 

mechanical drawing of an object that is to be built on a scale much smaller than what is apparent, 

then according to Trimmer and Stroud (2002), some of the important forces scale down as 

follows. 

2 1/ 2 1/Re /We Mo Eo= 2

⎥

 

1

12

0.53

04

Surface tension

Electrostatic, Pressure, Biological, Magnetic ( )

Magnetic ( )

Gravitational, Magnetic ( )

S

J SS
F

J SS

J SS

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ =⎣ ⎦⎣ ⎦

                                      (1.1) 
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It is quite apparent that the surface tension forces become more important than hydrodynamic 

pressure and gravitational forces as the physical scale of a device is lowered. Thus, the solution 

of these non-linear equations to analyze flows in microscale geometries could lead to erroneous 

interpretation of real physical phenomenon if surface tension is ignored as is frequently done 

while solving the Navier-Stokes equations. According to a recent review article regarding 

multiphase flows in microchannels (Stone et al (2004)): 

 

When discussing multiphase flows in microdevices there are likewise a myriad of 

questions that arise in even simple configurations. For example, it is frequently of 

interest to determine the size of droplets of the dispersed phase or the speed at which the 

dispersed phase moves relative to the continuous phase. Also, when two different phases 

are injected as adjacent streams in one channel, the flow can be stable but, alternatively, 

one phase can preferentially wet the boundaries and encapsulate the second fluid, either 

as a continuous stream or discrete drops. Two phase flows in microdevices can also be 

used to focus columnar liquid samples for flow cytometry. 

 

The above quoted paragraph indicates the need to study microscopic physics of flows in 

microchannels because of the length and breadth of applications that are encapsulated in the 

realm of MEMS devices at present and future applications. As an example, if we look at 

multiphase flows in microchannels, it has been observed that nucleating bubbles grow in size and 

quickly span the width of the channel, due to which the slug and churn-turbulent regimes are 

dominant in microchannels. This increases the pressure gradient and the heat transfer coefficient 
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of these thin channels compared to large channels. The existing correlations in literature are 

applicable for macroscopic channels, and not for thin channels. These correlations could have 

been proposed for situations where the gravity and vapor shear forces play a dominant role.  

However, in thin geometries, the surface tension effects are significant. It is still not clear 

whether there is a critical channel size at which the surface tension effect begins to dominate. 

Only a detailed numerical study, with an appropriately chosen numerical technique, could lead to 

possible explanations of fluid behavior that is so unfamiliar to that observed in macroscopic 

channels. 

1.1 Numerical Techniques 

One of the other issues with microchannels is the geometric shape. It is known that flow in 

rectangular channels is more complex and less well understood than in circular geometries. The 

behavior of bubbles and slugs in a confined space between two walls has been observed to be 

different from that in a circular geometry. Thus, the number of flow and geometric variables, for 

instance, the shape and flow passage, system pressure, mass flux and fluid properties, increases 

and it becomes even more important to focus on the fundamental understanding of two-phase 

flow behavior in thin geometries and rely less on empirical correlations.  

 

Figure 1 shows the currently used fluid modeling techniques commonly used by researchers in 

the past few decades. In multiphase flows, the standard method has been to use continuum based 

techniques; either the fluid-mixture or the two-fluid model. Each fluid is modeled by a modified 

Navier-Stokes (NS) equation, with extra source terms accounting for interfacial effects and 
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forces. But these models ignore the molecular nature of fluid-fluid interactions that become 

prominent at the length scales of microchannels, and it is difficult to handle the interface in 

continuum models as they can fail to capture an interface that rapidly evolves with time. 

Molecular based models, on the other hand, work with a bunch of individual fluid 

atoms/molecules and are used to determine their position, velocity and temperature at all times, 

and the macroscopic properties can then be derived by a suitable statistical averaging technique 

(for example, the Green-Kubo method to determine the thermal conductivity). This way of 

simulating fluid-fluid mixtures can be computationally expensive, especially if a microchannel is 

to be filled up with the molecules whose size is of the order of 1 Å (=10-10 m). Statistical 

methods of modeling these fluids, on the other hand, deal with the probability density function at 

a given location as the sole variable. The lattice Boltzmann method (LBM) is one such statistical 

method that is widely used by researchers lately to study two-fluid mixtures. For dilute flows 

near equilibrium, these statistical methods can be shown to lead to the familiar Navier-Stokes 

equations using the Chapman-Enskog expansion. 

 

Table 1 below lists some of the methods used in modeling multiphase flows with the achievable 

spatial resolution as given by Tomiyama (1998). For flows in microchannels, the conventional 

no-slip boundary condition does not remain valid any longer if the Knudsen number (Kn) is 

greater than 0.001. The Knudsen number is the ratio of the mean free path of the 

atoms/molecules of the gas/liquid and the characteristic length of the flow domain. The 

continuum equations (Navier-Stokes, Euler) are found to be valid as long as Kn<0.1, albeit with 

modified boundary conditions. As we move to sub-micrometer dimensions the assumptions used 
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in the continuum models do not hold, thereby inhibiting the applicability of such techniques to 

model the systems with sub-micrometer length scales. At this scale, Monte Carlo (MC) method 

or lattice Boltzmann Method offer advantages in terms of computationally cheaper and reliable 

forms of numerical techniques that can be used to accurately simulate the fluid flow and heat 

transfer behavior. As we move to nanometer length scales, MC and LBM can not be used to 

simulate the physics of the atomic scale system. At these scales, there is a need to use a 

numerical technique which can deal with individual atoms. Molecular dynamics (MD) based 

simulation is the appropriate method to simulate such atomic scale phenomenon. As the length 

scale decreases further and reaches levels where we deal with electrons and nuclei, Quantum 

Chemistry (QC) based methods, for example, Quantum Molecular Dynamics or Density 

Functional Theory (DFT), should be used to model the systems. Figure 2 depicts these length 

scales and the regime where each of the above-discussed simulation techniques is used. 

 
According to Tomiyama (1998), applicability of LBM to practical problems is considered to be 

low. This has changed over the past decade with the advent of new models that can handle 

complex multiphase behavior like phase separation and modeling of liquid droplets and bubbles 

in the presence of another medium. One of the many interesting advantages of LBM over other 

conventional multiphase methods, like the level-set and volume-of-fluid methods, is that the 

interface is no longer a mathematical boundary in the former, nor does it need to be tracked 

unlike these latter techniques. Rather, it is a post-processed quantity that can be detected by 

monitoring the variation in fluid properties. 
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Table 1 : Numerical Methods for Computational Bubble Dynamics after Tomiyama (1998) 
 
Spatial 

Resolution 

Method Fundamental  

Equations 

Applicability to 

practical problems

Low 

(∆x>>d) 

Averaging methods 

(homogenous, drift-flux, 

two fluid models) 

Averaged field 

equation + 

constitutive equation 

high 

Intermediate Bubble tracking method 

(one-way, two-way 

methods) 

Equation of bubble 

motion + constitutive 

equations 

Intermediate 

High 

(∆x<d) 

Interface tracking method 

(front-tracking, volume 

tracking, level set). 

Navier-Stokes 

equation + Surface 

tension 

Low 

High 

(∆x<<d) 

Microscopic method 

(Lattice Gas, lattice 

Boltzmann method). 

Translation and 

Collision and Pseudo 

molecules 

Low 

∆x: cell size, d: Bubble diameter.  
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Figure 1: Molecular and continuum flow models (from Gad-el-Hak (1999)). 
 

 
Figure 2: An overview of the different simulation techniques with the length and time-scales for 
which they are applied (after Smith (1999)). 
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1.2 Motivation 

In the literature, many applications can be found that involve the formation of droplets or 

bubbles using dissimilar fluids in a novel microchannel arrangement. The three primary methods 

of separating drops at regular and periodic intervals are described by Christopher and Anna 

(2007). These are droplet formation using (i) co-flowing streams, (ii) using cross-flowing 

streams, and (iii) using elongational stresses. Droplets produced through any of these methods 

can be collected or utilized in situ for applications such as drug delivery, microanalysis, tumor 

destruction, as ultrasound agents, in chemical reactions at the micron level, protein 

crystallization, DNA analysis and in synthesis of nanoparticles.  

 

In addition, many applications can be thought of where microreactors or microlaboratories could 

include immiscible liquid-liquid and gas-liquid systems. Some of these include miniature 

distillation units, bubble generators, multiphase separation units and chemical processes. Gas 

bubbles could be used as spacers for samples in a channel or to act as a piston to produce 

pressure-driven flow on top of the electrokinetic flow. Flow valves and pumps that employ air-

bubbles, like those in the ink reservoirs of ink-jet printers are already being tested for 

microchannels. Drug-delivery and diagnostic devices including colloids, molecules and 

biological cells are also active areas of research (see Chang (2002)).  

 

Buoyed by the tremendous potential microfluidic droplet generators have exhibited in the open 

literature, and the lack of theoretical treatment for an accurate control and prediction of the flow 

regimes possible in such geometries, it is proposed to develop a numerical framework which 
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would shed light and enhance our understanding of the fluid mechanics at the micron level in 

such devices. 

1.3 Proposed Problem Description 

In the present work, three-dimensional simulation of fluid flow consisting of two dissimilar 

liquids through a T-junction microchannel has been selected due to the non-trivial nature of the 

flow physics that emanates from this complex geometry. The two fluid streams are laminar in 

nature, and the dynamic interface is handled through a three-dimensional numerical model that 

can model the stress boundary condition and satisfies the continuity of velocity for the 

incompressible fluids. The two fluids are modeled through an incompressible form of the lattice 

Boltzmann formulation (He and Luo (1997)), that enables an accurate prescription of the 

pressure boundary conditions at the inlet and exit of the microchannel. Due to the length scales 

involved in the problem, that range from 50 microns to 300 microns, a continuum description of 

the fluids is found to be valid. This enables application of the (i) no-slip boundary condition, and 

(ii) a continuum model of wetting (Dupin et al (2006)) at the walls of the channel. The rest of the 

thesis is divided as follows. In Chapter 2, an overview of the available literature on formation of 

droplets and emulsions using the three microfluidic arrangements is presented. In Chapter 3, a 

foundation for LBM is laid out, followed by description of exisiting theoretical models on 

handling multiphase flows in LBM. The numerical methodology adopted to simulate three-

dimensional fluid two-phase flows is outlined. This is followed by Chapter 4 in which LBM is 

tested and shown to be accurate in predicting simple single-phase flows. Results are presented 

for validation of some of the common benchmark problems that have been solved using the 
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simulation technique. Chapter 5 discusses the method of simulating two-phase flows, such as 

single and multiple bubbles rising due to buoyancy in a quiescent fluid and droplet impingement 

behavior on a smooth dry surface, followed by results and key findings using a pseudo-potential 

variant of the multiphase model in the framework of LBM. In Chapter 6, results are compiled 

and presented for simulation of droplet formation in a T-junction microfluidic device for a range 

of Capillary numbers, flow rate ratios, different viscosities and varying channel geometries. 

Chapter 7 outlines the conclusions and key findings of this work, which is followed by a brief 

summary and ideas for future work on the current topic in Chapter 8. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

In this chapter, an overview of the existing literature, both experimental and theoretical, on 

creation of droplets and dispersions by suitable selection of microchannel arrangement is 

presented. Three basic ideas pertaining to droplet generation are discussed. These are: (a) co-

flowing fluids, (b) formation at a T-junction, and (c) formation due to elongational stresses. 

Through suitable arguments, the importance of pursuing a theoretical study to understand the 

fundamental behavior of the interfacial phenomenon responsible for creation of micron-sized 

droplets is established.  

2.2 Experimental Investigations in Microchannels 

Many applications are found that involve multiphase transport through thin capillaries and 

microchannels. For instance, miniature evaporative and distillation units and bubble generators, 

flow cytometers and emulsions all use transport of two dissimilar fluids through a microchannel. 

For such cases, a large pressure drop is required to drive the fluid mixture through a length of the 

channel.  

 

One of the important and upcoming areas of research in microfluidics is mixing and dispersion 

of reagents. These reagents can be large or small molecules, particles, and drops or bubbles. One 

such application requires control of axial dispersion of plugs of a solute which is to be 
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transported to a detector, as shown in figure 3. At least three applications of such small droplets 

(or bubbles) can be identified (Stone et al (2004)) and are given as follows: 

1) drops as actuators for pumping a primary flow or driving mixing flows, 

2) drops as individual ‘chemical reactors’, and 

3) emulsion formation with a controlled drop size and size distribution. 

 

Many different forms of microdevices have been designed, fabricated and tested for the 

formation of flow dispersions with emphasis mostly on creating a dispersed phase in a 

continuous medium that is transported downstream and can be received and processed at some 

detector at regular intervals of time. There is a need to isolate discrete nanoliter droplets in many 

applications, especially those that concern biomedical and drug manufacturing industries. A 

system that can control the size of these droplets at a minimum work, and at the same time 

maximize the production rate is very much needed.  

 

Researchers have shown various ways of using internal flows in drops to accomplish ‘chemical 

reactions’ in droplets of nanoliter sizes. Kataoka and Troian (1999) demonstrate a simple 

technique, and an alternative to the use of electric field to achieve bubble/droplet movement, that 

utilizes temperature gradients to direct microscopic flow on a selectively patterned surface. This 

surface consisted of alternating stripes of bare and coated Silica. The liquid was manipulated by 

applying a shear stress at the air-liquid interface and a variable surface energy pattern at the 

liquid-solid interface. The authors showed that this novel idea can be used to direct microscale 

flow along prescribed lanes. Sugiura et al (2001), in their method of droplet formation, passed 
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the dispersed phase through a channel, then inflated it on a terrace in a disk-like shape, and 

subsequently the droplets that were formed were cut off spontaneously on the terrace into 

spherical droplets by interfacial tension. Ward and Humsy (2001) demonstrate the use of AC 

electric fields to enhance the mixing inside droplets in a microchannel. These electric fields 

produce Marangoni stresses that drive motion in such geometries. Song et al (2003) show the use 

of a curved channel to enhance the mixing inside drops that is used to generate time dependent 

internal flows. Their system could be used to transport solutions with rapid mixing and no 

dispersions. Since pair of co- and counter-rotating vortices both generate chaos in periodic time 

dependent flows, they induced such a flow in plugs by replacing the conventional straight 

channel with a winding channel. Work has also been carried out in the fabrication of nanojets 

that can deliver a stream or discrete droplets depending upon the driving pressure of the 

dispersed phase. Naik et al (2007) demonstrate the use of a microfluidic system for the 

generation and characterization of liquid and gaseous micro- and nanojets. Their approach allows 

for important three-dimensional features of nozzle, channel and fluidic reservoir that are defined 

by design and do not depend on fabrication constraints, thereby a fully developed flow could be 

achieved.  

2.2.1 Formation of Droplets in a Co-flowing Geometry 

In one of the earliest reported experiments on a droplet formation of this kind, Umbanhowar et al 

(2000) show the formation of highly monodisperse droplets of the dispersed phase in a 

surfactant-laden continuous phase via a converging capillary. Droplet formation was described to 

be the result of a competing nature of the drag force, experienced by the expanding dispersed 
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phase due to the co-flowing outer liquid, exceeding the interfacial force that holds the droplet on 

the tip of the capillary. Cramer et al (2004) have demonstrated the use of a co-flowing 

arrangement to form droplets at the tip of the dispersed phase channel. They have outlined the 

two forms of flow patterns that emanate for such geometry. These are dripping and jetting flows, 

as shown in figure 4. Their experiments were focused on studying the dripping mode of droplet 

formation by varying the flow rates, viscosities and interfacial tension in the context of the 

droplet sizes and possible formation of satellite droplets.  

 

Guillot et al (2007) have studied the stability of a jet in a confined two-fluid flow in a cylindrical 

capillary. The droplet regimes that they observe can be classified in terms of the shape and size 

of the droplet formed. These are (a) droplets smaller than the capillary, (b) droplets in the form 

of plugs, (c) wavelike jets, (d) straight jets and (e) thin jets that break into droplets. They 

obtained a regime map in which for a fixed flow rate of the external liquid, when the inner fluid 

flow rate was increased, the flow regime changed progressively from (a) to (d). At very high 

flow rates of the external flow rate, as the internal fluid flow rate was increased, wavelike jets 

were followed by formation of thin jets that formed droplets at a fixed location downstream of 

the channel. The authors found that this data was found to agree well with a linear stability 

analysis based on lubrication theory considerations.  
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Figure 3: An illustration of formation of water droplets in oil in a microchannel (after Joanicot 
and Ajdari (2005)).  

 
                                                           (a)                              (b) 

Figure 4: Drop formation in a co-flowing arrangement. The two modes of (a) dripping and (b) 
jetting are shown (from Cramer et al (2004)). 

 16



2.2.2 Formation of Droplets in a T-junction Microchannel 

In one of the earliest studies carried out on a microfluidic T-junction, Thorsen et al (2001) 

demonstrate how such a device could be designed to produce reverse micelles that could 

generate ordered or complex patterns based on the flow rates of the two liquids. They mention 

that since most microfluidic devices operate at low Reynolds number conditions, the Navier-

Stokes equations for fluid flows become linear and the observed flow is laminar. Through their 

pioneering work, it was demonstrated how the interaction between two immiscible fluids can be 

used to introduce non-linearity and instability in a microfluidic device. In their study, emulsions 

were formed by colliding an oil stream and a water stream at a T-shaped junction. Droplet 

formation was achieved by high shear forces that are generated at the leading edge of the water 

side of the channel that is perpendicular to the oil flow (see figure 5). This shear causes the 

formation of picoliter scale droplets and creating a nonlinear system because of the boundary. 

The ensuing instability drove the formation of the water drops which results from the imbalance 

between the surface tension and shear forces. 

  

Link et al (2004), on the other hand, demonstrate two methods for passively breaking larger 

drops into precisely controlled daughter drops under pressure-driven flow in different 

configurations. They chose a T-junction, and flow past isolated objects to break up larger drops 

into smaller drops at high dispersed phase volume fractions. Their method of breakup with the T-

junction configuration works on exploiting the extensional flow in the neighborhood of the 

stagnation point of the junction to break bigger drops into smaller ones. They found out that for 
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any ratio of the drop length to the channel width, there is a critical flow rate above which the 

drop will always break into two daughter droplets (see figure 6). This kind of a passive breakup 

technique could also be used to facilitate asymmetric breakup of droplets by adjusting the lengths 

of the side channels. An alternative breakup configuration was also fabricated in their work 

which uses the principle of flow past an obstacle to effect “controllable” changes in drop size 

(figure 7). Huh et al (2002) have described a disposable flow cytometer that use a two-phase air-

liquid microfluidic system to produce highly focused high speed liquid sample stream of 

particles and cells. By controlling the flow rates and suitable surface chemistries on the channel 

walls, thin and partially bounded sample streams of thickness ranging in 15-100 microns were 

produced and found applicable for rapid cell analysis. Okushima et al (2004) have reported a 

method for preparation of double emulsions using a two-step T-junction arrangement, as shown 

in figure 8. They show that emulsions such as water-in-oil-in-water can be formed by changing 

the flow conditions at the points of formation and carefully controlling the breakup rates at the 

two T-junctions.  

 

Cristobal et al (2006) have experimentally demonstrated the design of a microfluidic device that 

can allow for equal and periodic distribution of droplets as they are collected at the two outlets of 

a T-junction. Tice et al (2004) have shown that the formation of droplets and plugs can be 

accomplished in a T-junction microfluidic device using both viscous and non-viscous aqueous 

solutions. In their experiments, plugs were found to form dominantly for Ca<0.01, and for higher 

Capillary numbers but at low values of the flow rate ratios. They also show that mixing in 

droplets can be enhanced by combining viscous and non-viscous reagents and moving them 
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through straight microchannels. Xu et al (2006a) have shown the formation of air microbubbles 

surrounded by aqueous phase that was accomplished with less than 2% polydispersity in sizes of 

the bubbles produced. They show that increasing the continuous phase viscosity at a fixed flow 

rate of the dispersed and continuous fluids results in lower volumes of the droplets formed at the 

T-junction, a result that they believe is consistent with other experimental observations. In a 

separate study, Xu et al (2006b) showed that as the continuous flow rate is increased at a 

constant flow rate of the dispersed phase, the volume of the droplets formed decreases rapidly. 

These recorded droplet volumes were also found to be a function of the viscosity of the 

continuous phase. At the same fixed value of the dispersed fluid flow rate, it was observed that 

the volume of the droplets decreases as the viscosity of the continuous fluid increased.  

 

Engl et al (2005) report that a train of confined droplets flowing through a T-junction channel 

can be distributed or collected into the shortest channel for low Capillary number flows. They 

have attributed this behavior to a ‘hydrodynamic feedback’ that occurs as the droplets approach 

different outlets. One of the more comprehensive studies on the droplet formation process for T-

junction microfluidic channels has been carried out by Garstecki et al (2006). In this work, 

droplet formation has been studied for low Capillary number flows and for channels where 

 lies between 0.25 and 1. According to their experimental data, the lengths of the 

drops formed at low Capillary numbers and for the range of channel widths given earlier can be 

written as  

/dw wΛ = c

/ 1cL w Qα= +                                                                                                                            (2.1) 

where 
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/ cd wα =                                                                                                                                   (2.2) 

is a fitting parameter based on the characteristic width of the neck (‘d’). They noticed that the 

prediction of this fitting parameter is difficult as the speed at which the neck collapses on the 

sharper downstream edge of the dispersed phase channel and the speed of the continuous fluid 

are not the same. Hence, this parameter was fitted to their experimental data and was found to be 

of order one. They also noted that the limiting case of droplet lengths correspond to , 

suggesting that the continuous channel width plays a major role in the formation of the droplets. 

Although equation 2.1 was found to match well with their experimental results, the authors 

noticed that the applicability is questionable for channel geometries where .  

cL w∼

/ 1/ 2d cw wΛ = <

 

Guillot and Colin (2005) have focused on the stability of parallel flows in a microfluidic T-

junction. Based on their experiments, a regime map was created that describes the three modes of 

flow that are commonly encountered in T-junctions, i.e. droplets formed at the T-junction (DTJ), 

droplets formed in the channel (DC) and parallel flow (PF). The geometry of the microchannel 

chosen was different from the conventional T-junction microchannels, and the droplet formation 

was a consequence of the competing nature of two fluid streams colliding head-on, and 

subsequently guided through a funnel into the main channel. Their experimental findings reveal 

that the stability of parallel flows in a funneled T-junction is linked to the flow rates, wetting 

behavior, viscosity contrast and aspect ratio of the inlet channel for the two liquids. 
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Figure 5: The T-junction geometry and emulsion formation of water in oil (from Thorsen et al 
(2001). 
 

 

 
Figure 6: Passive breakup at T-junctions depending upon the flow resistances which are fixed by 
varying the lengths of the flow channels at the T-junction. Different lengths yield different 
droplet sizes at different frequencies (from Link et al (2004).  
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Figure 7: Obstruction induced passive breakup as shown by Link et al (2004).  
 

 

 

 

 
Figure 8: The concept for preparation of double emulsions (water-in-oil-in-water) using T-
shaped microchannels as proposed by Okushima et al (2004) (from Okushima et al (2004)). 
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Xu et al (2008) have analyzed the formation of droplets in a T-junction microchannel and 

classified the flow regimes based on the Capillary number of the continuous phase. These are: 

squeezing ( ), transient (0.002Ca < 0.002 0.01Ca< < ) and dripping ( ). Based on 

the flow regime prevalent at a particular Capillary number, correlations have been proposed to 

calculate the effective diameter of a spherical drop for Ca>0.01, and the length of the plugs 

formed for Ca<0.002. In the dripping regime, droplets of sizes comparable to the channel 

dimensions could be formed. This blocks the flow of the continuous phase, thereby increasing its 

velocity as it passes through a narrow constriction past the expanding droplet. Applying 

continuity based on the average velocities of the flow before and at this narrow gap, 

0.01 0.3Ca< <

2

4
g

c c D c cU w h d U w h
π⎛ ⎞− =⎜ ⎟

⎝ ⎠
                                                                                                          (2.3) 

where 
D

d  is the diameter of the droplet. The Capillary number, based on the average velocity of 

the continuous phase in the narrow gap, was used to estimate the droplet diameter as 

20.7851 1 cD

g

i c

w h dd

d Ca Ca w h

−
≈ = D                                                                                                  (2.4) 

where  is the characteristic cross-section dimension of the main channel.  id

 

Christopher et al (2008) have proposed a scaling mechanism by which the size of the droplets 

formed at a microfluidic T-junction can be written in terms of the Capillary number of the flow. 

According to this analysis, droplet formation occurs when the interfacial force resisting the 

detachment of the expanding droplet cannot hold against the sum of the viscous drag acting due 

to the flow of the continuous phase and the pressure force that is generated due to a blockage of 
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the passage for the continuous phase to flow because of the protruding dispersed phase (see 

figure 9). The interfacial, shear and pressure forces in the original work were written as 

stensionF hσ≈                                                                                                                           (2.5a) 

( )2
c c

shear

c

Q b
F

w b

µ
≈

−
                                                                                                                 (2.5b) 

( )

2

3
c c

p

c

Q b
F

w b

µ
≈

−
                                                                                                                     (2.5c) 

From a force balance, stension shear pF F= + F , one can write this in terms of the non-dimensional 

length of the droplet b  as 

( )3

1 b bC− = a                                                                                                                          (2.6) 

The roots of this cubic polynomial were used to estimate the dimensionless volume of the droplet 

formed as 

2

2
c

V
V b

w h
= ≈ + ΛQ                                                                                                               (2.7) 

They compared their experimental data with the theoretically derived equation 2.7, and found 

their results to be in reasonable agreement. Although they contend that due to an approximate 

form of the forces and simplistic assumptions that have been made to predict the dynamics of 

droplet formation in their model, discrepancies can arise when comparing other experimental 

data with their formulation of the same problem. A more robust and accurate model is required 

that can be used universally for such class of geometries. 
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Figure 9: Schematic diagram showing the expanding droplet in the main channel, and (inset) 
experimental image of the droplet expansion (after Christopher et al (2008)). 

 
Figure 10: Phase diagram for a drop formation in flow focusing taken from Anna et al (2003). 
Each image represents the drop sizes and drop patterns that form at the specified value of Qo and 
Qi/Qo.  
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Murshed et al (2008) have experimentally studied the effect of temperature on the droplet 

formation mechanism in a T-junction microchannel. In their experiments, TiO2 nanoparticles of 

size 15 nm were dispersed in water and this nanofluid was used as the dispersed phase in a 

channel with . As the surface tension and viscosities reduce with an increase 

in temperature of the system, their findings reveal that droplets of a relatively larger size are 

formed as compared to droplets formed by using deionized water as the dispersed phase at the 

same temperature. In a separate study, Murshed et al (2009) describe the role of the nanoparticle 

shape on the droplet volumes for a range of temperatures in an oil-water system. Their work was 

carried out for two nanoparticle sizes of TiO

/ 1/
d c

w wΛ = = 3

2 corresponding to spherical particles of size 15 nm 

and cylindrical particles of size 10 nm by 40 nm. It was found that cylindrical particles yield 

droplets of size larger than those observed for spherical particles. They attributed the role played 

by nanoparticles in the aqueous phase to the alteration in the interfacial slip due to the presence 

of the nanoparticles in the pure liquid. 

2.2.3 Formation of Droplets using Elongational Stresses 

Another innovative emulsification arrangement involves a configuration as shown in figure 10. 

Two dissimilar fluids flow in from the left hand channels, and are diverted through a thin orifice 

into a bigger channel. Depending upon the ratio of the flow rates of the two fluids, droplets of 

different sizes may form downstream that can be transported or used for analysis as in 

cytometers, or can be used to create emulsions that are mono- or polydisperse depending upon 

the coalescence/breakup of the dispersed phase. Droplets of one fluid in a second immiscible 

fluid are useful in a wide range of applications, particularly when the droplet size and the size 
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distribution can be prescribed on a micro- and nanoscale (Anna et al, 2003). Much of recent 

work on flow dispersions has centered on formation of emulsions in which the drop size and size 

distribution could be controlled. Anna et al (2003), using a flow focusing geometry, studied drop 

formation in liquid-liquid systems. They constructed a phase diagram that illustrates the drop 

size as a function of flow rates and flow rate ratios of the two liquids, as shown in figure 10. The 

technique was found to be successful in producing monodisperse and polydisperse emulsions 

that can be used in personal care products, foods, delivery of drugs and for organizing liquid-

crystal droplets into optical devices (Hamouda et al, 1999).  

 

Huang et al (2006) have shown experimental results of flow pattern arising as a consequence of 

two fluids passed through a thin orifice to produce single and double emulsions in a planar 3D 

flow focusing device. Their device could form monodisperse droplets ranging from 50 to 300 

microns in diameter, with a coefficient of variance <4% in measured sizes. In another study, 

Takeuchi et al (2005) conducted experiments on an axisymmetric flow focusing device that 

produced droplets with significantly reduced polydispersity. They found that the size of the 

droplets formed in a vertically oriented arrangement was smaller than those formed at the same 

flow rates when the device was kept horizontal.  

 

Garstecki et al (2004) describe a method of producing gas bubbles of sizes between 100 and 

1000 microns in a heavier liquid through a flow focusing device. Their analysis showed that the 

volume of the bubbles formed could be written in terms of the flow rate and viscosity of the 

liquid, and the pressure of the gas stream as 
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b

p
V

qµ
∝                                                                                                                                      (2.8) 

which was found to be consistent with experimental findings and suggests that the volume of the 

bubbles decreases as the product qµ increases. On the other hand, Yobas et al (2006) describe a 

flow focusing geometry which can produce water-in-oil droplets at a frequency as high as 10 

kHz, thereby showing an improved performance over other similar geometries described in the 

literature. Although, due to a weak dependence of the frequency on the flow rate of the dispersed 

phase (water), their results can only be explained on the basis of significant numerical modeling 

to delineate the effect of the geometry on the formation of droplets. 

 

Anna and Mayer (2006) studied the droplet formation in a microfluidic flow focusing device 

using moderate concentrations of characterized surfactants in one of the liquid streams. They 

observed that the presence of surfactants influences the droplet formation mechanism. Their 

observation on the formation of droplets resembles the physical phenomenon which is similar to 

the formation of a tip on the exposed side of the interface that lies upstream of the narrow orifice 

of the flow-focusing geometry. Presence of surfactants in such concentrations was found to 

create droplets of size of the order of nanometers.  

 

Nie et al (2008) report emulsification in a microfluidic device and study the effect of the 

viscosity on the droplet formation for a flow-focusing geometry. They found that the dominant 

mechanism of droplet formation is controlled by the flow rates for low viscosities of the 

dissimilar fluids. It was also inferred that the size of the droplets cannot be described based on 
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the Capillary number only. Other parameters, such as the physical properties of the fluids, and 

the flow rates play an important role as well. 

2.3 Theoretical Work on Creation of Droplets in Microchannels 

In the literature, two of the most frequently used approaches to model multiphase flows are the 

interface tracking (sharp interface) and the interface capturing (diffuse interface) methods. 

Interface tracking methods, though are accurate in predicting complex phenomena, suffer from 

numerical singularities that arise in the transitional zone when the interface is rapidly evolving 

(Cristini and Tan (2004)). This class of simulation technique includes the boundary integral 

method and finite-element based modeling of multiphase flows. On the other hand, techniques 

such as lattice Boltzmann, level-set, volume-of-fluid (VOF) and phase-field method are grouped 

into the interface capturing or diffuse interface methods. In these simulation techniques, the 

interface is spread over a finite thickness of the grid spacing(s), hence resulting in the 

terminology ‘diffuse’. Fluid discontinuities that would generally appear in sharp-interface 

methods are smoothed out due to a gradual change across the interface. According to review of 

Anderson et al (1998): 

 

…developments in modern computing technology have simulated a recent resurgence in 

the use of the diffuse interface models for the computation of flows associated with 

complex interface morphologies and topological changes, such as droplet breakup and 

coalescence… 
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Diffuse interface techniques have found widespread acceptance in the research community for 

simulating flows with complex interfacial dynamics, and have been proven to be highly 

successful methods as well. A brief review on the existing work on simulation of droplet 

formation in the three most frequently used microfluidic geometries is described here in the 

context of sharp- and diffuse-interface methods. 

2.3.1 Numerical Simulation for Co-flowing Fluids 

In addition to the experimental studies carried out on formation of droplets in microchannels, 

theoretical work has gained attention in the past few years as well. Earliest theoretical work 

available on the formation of droplets has been on co-flowing geometries using the boundary 

integral method for the solution of the Stokes flow equations. Through their study, Zhang and 

Stone (1997) have studied the process with particular emphasis to understand the effect of 

viscosity on the size of the droplets formed. The range of parameters chosen for their study were 

given in terms of the Capillary number ( 0.01 1Ca< < ), viscosity ratio ( 0.01 1λ< < ) and the 

Bond number ( ), where 0.1 5Bo< <
2
0gR

Bo
ρ
σ

∆
= . Their simulations show that at a fixed Bo, the 

volume of the droplet increased as the Capillary number increased. Viscosity ratio variations did 

not result in a significant difference in the volume of the drops at low Capillary numbers in their 

simulations. Although it was found that for a fixed Ca, an increase in the viscosity ratio resulted 

in longer breaking times of the drops. Suryo and Basaran (2006) conducted simulations in a 

microfluidic device working on the co-flowing principle by solving the Stokes equation using the 

finite element method. They found that increasing the flow rate ratio , where 2 /Q Q Q= 1
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1  and Q 2Q are the flow rates of the inner and outer fluids respectively, results in reduced volume 

of the drops formed at the tip of the concentric capillary. When this ratio was small, droplets 

were formed that almost occupied the whole width of the outer capillary and had a shape that 

resembled a cylinder with a hemispherical rear end. At higher values of the flow rate ratio, the 

drops became more spherical, with the radius of such a drop measured to be of the order of the 

inner radius of the capillary. Beyond a critical flow rate ratio, droplet formation occurred through 

the mechanism of tip streaming, in which the shape of the front interface of the expanding drop 

changed into a cone with a thin fluid jet, which had a radius at least an order of magnitude 

smaller than the inner capillary radius, that emanate from the tip of this cone.  

2.3.2 Numerical Simulation in T-junction Microchannels 

In a recent study by De Menech (2006), the phase-field method was applied to model the 

breakup of confined droplets at a symmetric T-shaped junction for low Reynolds number flows. 

The critical Capillary number at which the drop can be broken into daughter droplets was found 

to be a function of the viscosity contrast between the two liquids. Van der Graaf et al (2006) 

investigate the formation of droplets in a T-junction device using LBM. In their simulations, the 

widths of the continuous and dispersed phase channels were kept equal (i.e. ), and 

simulations were conducted for 

1Λ =

0.0033 0.065Ca≤ ≤  and flow rate ratios of 0.05  and a 

fixed viscosity ratio of 

1Q≤ ≤

3.44λ = . Through LBM simulations, they proposed that the radius of the 

drops at pinch-off follows a relationship given by 
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1/ 4

c

r
Ca

w

−∼                                 (2.9) 

 

In a similar study with the same ratio for the widths of the channel widths by de Menech et al 

(2008), volume measurements of droplets formed at the T-junction were compared with existing 

experimental data and correlations. In this study, the viscosity ratios simulated were in the range 

0.125 1λ≤ ≤ . Two important inferences from this study for the formation of droplets in the 

squeezing regime were made. Firstly, the size of the droplets was not found to depend on the 

physical properties, such as viscosities and the interfacial tension of the two fluids. Secondly, the 

breakup for such low Capillary numbers was not driven by shear stresses that are typically 

exerted on the emerging droplets. In this squeezing regime, the time it took for the droplet to 

block the main channel and then pinch-off because of pressure build-up on the upstream 

continuous liquid, squeezeτ , was found to depend on the velocity of the continuous liquid only for 

the range of viscosities chosen in their study. On the other hand, in the dripping regime 

( ), the normalized radius of the drops formed was found to obey a relationship given 

by 

0.02Ca ≥

( )0.4

1

c d

r
R

w Caε
= =                                                                                                                  (2.10) 

where  

/d cw Ucε ε=                                                                                                                           (2.11a) 

and  
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g

g

U

L
ε =                                                                                                                                   (2.11b) 

is the shear strain in the narrow gap. It is worth noting that Thorsen et al (2001) had estimated 

the radius of the drops to be given by a balance of the interfacial and shear stress exerted by the 

accelerated continuous liquid as it moved through the narrow gap. Accordingly, the radius was 

written as 

1

c d

r
R

w Caε
= ∼                                                                                                                        (2.12) 

2.3.3 Numerical Simulation of Flow-Focusing 

Jensen et al (2006) presented a numerical study of creation of gas bubbles in an axisymmetric 

flow focusing device, where the motion of the liquid phase is simulated through the governing 

equation for Stokes flow. In another study, Harvie et al (2006) simulated the motion of a 

Newtonian droplet as they passed through an axisymmetric contraction, similar to the flow 

focusing method of droplet generation. They used a transient form of the VOF method using the 

finite volume approach to model the behavior of the two liquids. Using numerical simulations, 

they created a phase chart of possible outcomes depending on the Capillary and Weber number 

of the flow. Under certain conditions, the spherical drop broke up into smaller drops as it passed 

through the contraction. Their results also reveal that for high Capillary number flows 

( ), the thread that is formed inside the contraction, as the spherical droplet passes 

through it, exhibits a wavelike pattern, the wavelength of which decreased as the Weber number 

was increased.  

0.01Ca
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Yu et al (2007) have used the lattice Boltzmann method to model the formation of droplets and 

bubbles in a flow-focusing cross-junction and converging channels. The dissimilar phases were 

modeled using a pseudo-potential model of LBM, given by Shan and Chen (1993), and the 

results were compared with in-house experiments conducted on the same geometries. The 

pseudo-potential method suffers from high spurious velocities at the interface. Thus it becomes 

questionable to use this method when the flow velocities are very small (i.e. for ). In a 

separate study, Wu et al (2008) have used a continuum surface force (CSF) description of the 

surface tension to simulate droplet formation in a cross-junction microchannel. This model is 

more robust and does not suffer from high spurious velocities as the Shan-Chen model. Their 

simulations, which were conducted for the range of Capillary numbers given by 

, show that the droplet size decreases as Ca increases. Their numerical 

results were found to be in good match with experimental data collected for the same geometry 

and flow conditions. 

Re 1

0.00014 0.084Ca< <

 

In another study, Zhou et al (2006) have used finite element based simulations in the framework 

of diffuse interface methods to study and characterize breakup of simple and compound droplets 

in an axisymmetric flow focusing microfluidic device. They observed that dripping is the 

mechanism for droplet formation at low flow rates. At higher flow rates, jetting becomes 

dominant. In addition, their work has focused on exploring the influence of a non-Newtonian 

liquid on the formation of droplets. More so, it was shown that the size of the droplets formed 

depends on the diameter of the downstream collection tube, thereby indicating the role of the 

device geometry on the mechanism as well. 
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2.4 Summary 

In this chapter, an overview of the rich literature on droplet generation using passive microfluidic 

methods was provided. Although a vast array of studies have concentrated on fabrication and 

experiments on these devices, theoretical work has been rather limited. Theoretical work on 

understanding the role of the channel geometry, the flow rates and the physical properties of the 

two liquids in a T-junction microfluidic device has been limited to simplistic geometries, low 

viscosity ratios, and Capillary number less than 0.1. Keeping these issues in mind, as well as the 

difficulty encountered with numerical simulation of multiphase flows in complex geometries, 

there is a growing need to study the fundamental behavior in such two-fluid flow devices. To 

accomplish this, the lattice Boltzmann method is proposed as a tool to model the fluids and the 

interfacial phenomenon that arises through the dynamic movement of the interface separating the 

two liquids. In the following chapter, a foundation is laid that describes the path to model simple 

fluid flows using the discretized Boltzmann’s equation. Thereafter, illustrations of the 

applicability of this novel technique are shown for some simple single and two-phase flows.  
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CHAPTER THREE: METHODOLOGY 

3.1 Introduction 

In the following sections, the lattice Boltzmann equation (LBE) has been derived from the 

Boltzmann’s kinetic equation. The collision operator in the traditional Boltzmann’s equation for 

the particle distribution function 
i

f  is written in terms of a local Maxwellian distribution. This 

leads to a linear differential equation for the particle distribution function. In addition, three 

important features of LBM distinguish it from other numerical methods. These are: 

1) The convection operator in velocity (phase) space is linear, which has been brought from 

kinetic theory and is in stark contrast with the non-linear convection terms in other 

approaches like the Navier-Stokes equations. 

2) The incompressible form of the Navier-Stokes equations can be obtained in the nearly 

incompressible limit of LBM. 

3) In the Maxwell-Boltzmann equilibrium distribution, the phase space is a complete 

functional space, due to which the averaging involves the whole velocity (phase) space. 

In LBM, only a few moving directions are used and thus the transformation that relates 

the microscopic properties is simplified. 

 

To show that the LBE bridges the gap from microscopic physics to the real world fluid 

phenomenon, the Navier-Stokes equations have been derived starting from the Bhatnagar-Gross-

Krook (BGK) form of the collision operator (Bhatnagar et al (1954)) using the zeroth and first 

order moments of the particle distribution functions, and for the special form of the equilibrium 
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distribution function in section 3.3. The numerical implementation of the LBGK has been 

described in section 3.4. Since LBM deals with the distribution function as the dependent 

variable, applying macroscopic boundary conditions in terms of velocity of pressure becomes a 

non-trivial process. Some of the available methods to accomplish this task are discussed in 

section 3.5. The multiphase models used in the current study for simulating two immiscible 

phases have been described in section 3.6. The advantages and disadvantages of these models are 

explained in addition to a discussion on existing models for simulation of two-phase flows in the 

context of LBM.  

3.2 Lattice BGK from Boltzmann’s Equation 

In LBM, the evolution equation for the particle distribution function is very similar to the kinetic 

equation in lattice gas automata, given by 

( ) ( ) ( ), ,

where 0,1,....,

i i i ,if t t t f t f t

i M

+ ∆ + ∆ = + Ω ⎡ ⎤⎣
=
i

x e x x ⎦

i i

                                                                               (3.1) 

Ωi is the collision operator and takes into account the collision of the fluid particles and satisfies 

the relationships given by, 

0   &    0i

i i

Ω = Ω =∑ ∑ e                                                                                                        (3.2) 

at each lattice location. 

If equation (3.1) is expanded in a Taylor series aboutε , a small parameter and proportional to the 

Knudsen number, i.e. 

( ), t O ε∆ ∆ ≈x                                                                                                                           (3.3) 

Then on expansion, we get 
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( ) ( ) ( ) ( ) ( )
22 2 2

2 3

2
, , . . .

2 2 2
i i i

i i i i i i i i

f f f
f t t t f t f f O

t tt

ε ε εε ε ε
∂ ∂ ∂

+ ∆ + ∆ = + + ∇ + + ∇ + ∇ +
∂ ∂∂

x e x e e e  

( ),if t= +x iΩ                                                                                                                          (3.4a) 

( ) ( ) ( )
2

2

2

1 1 1
. : .

2 2 2
i i i

i i i i i i

f f f
f f

t tt
ε ε iO

ε
⎡ ⎤∂ ∂ ∂

⇒ + ∇ + + ∇∇ + ∇ + =⎢∂ ∂∂⎣ ⎦
e e e e

Ω
⎥                             (3.4b) 

Using the Chapman-Enskog expansion, where we use 

2

1 2

   ;   
x xt t t

ε ε ε∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ 1

2

0

                                                                                          (3.5) 

where t1 is the convection time scale and t2 is the diffusion time scale such that . Further, 

the particle distribution functions can be expanded as 

1t t

i i

   &  0 , eq neq eq eq

i i i i i if f f f fε= + = =∑ ∑ e                                                                       (3.6a) 

( )(1) (2) 2neq

i i if f f Oε ε= + +                                                                                                     (3.6b) 

and                                                                                              (3.6c) 1,2 1,20   ;   i i

i i

f f=∑ ∑ ei = 0

Thus the collision operator up to third order is given by 

( ) ( ) ( ) ( ) ( )2

(1) 2 (2) (1) (1) 3( )

eq eq eq

i i ieq

i i j j j k

j j j k

f f f
f f f f f f O

f f f f
ε ε ε

⎛ ⎞∂Ω ∂Ω ∂ Ω
⎜ ⎟Ω = Ω + + + +
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

     (3.7) 

For smallε , ( )
0

lim 0eq

i f
ε →

Ω = . Thus the above equation would reduce to 

( ) ( ) ( ) ( )(1) (2) 2

eq eq

i ii

j j

j j

f ff
f f

f f
Oε ε

ε

∂Ω ∂ΩΩ
= + +

∂ ∂
                                                               (3.8a) 
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eq eq

i i neq
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eq

i eq
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ij eq
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f
f f

f

M
f f

ε

ε

ε

∂Ω ∂Ω
⎡ ⎤ ⎡= + =⎣ ⎦ ⎣∂ ∂

∂Ω
= −

∂

= −

⎤⎦

                                                             (3.8b) 

where ijM  is the collision matrix (Higuera and Jiminez (1989)). Further assuming that the local 

particle distribution function relaxes to an equilibrium state at a single rate ‘τ’, so that 

1
ij ijM δ

τ
= −                                                                                                                             (3.9) 

we arrive at the lattice BGK collision term, 

( )eqneq
i ii i

f ff

ε τ ετ
−Ω

= − = −                                                                                                 (3.10) 

This form of the collision operator with the single time relaxation approximation is also known 

as the lattice BGK (Bhatnagar-Gross-Krook) operator. This form of the collision operator 

reduces (3.1) to a differential equation of the form 

( )
.

eq

i ii
i i

f ff
f

t τ
−∂

+ ∇ = − + Φ
∂

e i                                                                                          (3.11) 

where  is the potential as a consequence of any external force applied on the fluid. Equation 

3.11 can be discretized in time and discrete-velocity space. There are two commonly used 

discretization methods for this differential equation that are widely cited and used. The most 

commonly used is the ‘explicit’ formulation in which the collision operator is written in terms of 

the distribution functions calculated on the previous time step. This results in 

iΦ
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( ) ( )

( ) ( ) ( ) ( )( )

, ,

, ,, ,

i i i i

eq

i ii i i

i

f t t t f t t

t

f t f tf t t f t

x

δ δ δ
δ

δ
δ τ

+ + − +
+

−+ −
= − + Φ

x e x e

x xx e x
                                               (3.12) 

Assuming 1x tδ δ= = , equation 3.12 simplifies to the most commonly used ‘explicit’ lattice 

Boltmann equation (LBE), given as 

( ) ( )
( ) ( )( ), ,

, ,
eq

i i

i i i

f t f t
f t t t f tδ δ

τ
−

+ + − = − +
x x

x e x iΦ                                      (3.13a) 

This is the ‘explicit’ lattice BGK equation (LBE). Recently, Sankaranarayanan et al (2002) have 

suggested a ‘Crank-Nicolson’ way of discretizing the collision operator that according to them is 

a more stable scheme and is much more suitable for simulating low viscosity fluids. In this 

formulation, equation 3.11 is discretized based on ‘one-half’ contribution from the current time 

step, and the other half from the previous time step. This would reduce the differential equation 

to 

( ) ( )
( ) ( ) ( ) ( ),

, ,

, , , ,

2 2

AC

i i

AC eq AC eq

i i i i

i

f t t f t

f t t f t t f t f t

δ

δ δ
τ τ

+ − =

⎡ ⎤+ − + −
− +⎢ ⎥

⎣ ⎦

x x

x x x x
+ Φ

                            (3.13b) 

where ‘AC’ denotes the quantities after the collision step. Due to its implicit nature, this equation 

is no longer a time-marching algorithm and needs multiple iterations at each time step for the 

solution to converge. Subsequent to finding the converged solution, these after-collision 

distributions are streamed to the neighboring lattice nodes. 
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3.2.1 Original Lattice Boltzmann Equation 

The density per node and the macroscopic momentum flux in the weakly compressible 

formulations as defined in equation (3.13a,b) is given by 

   ;  i

i i

i if fρ ρ= =∑ ∑u e                                                                                                   (3.14) 

The equilibrium distribution functions depend only on local density and velocity and for a three-

dimensional lattice (D3Q19) can be expressed in the following form: 

( )

( )
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1                           , 0
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u u

e ue u u u

e ue u u u

,1 6

7 18

i                                                            (3.15) 

where 
eq

if  is the equilibrium distribution of particles moving in direction ‘i’. For the ‘explicit 

scheme’ the leading truncation error of a velocity-space discretization is taken into account in a 

way scuh that to ensure that the viscosity in the NS equation derived from equation 3.11 

becomes 

21

2 sc tν τ⎛ ⎞= −⎜ ⎟
⎝ ⎠

δ                                                                                                                 (3.16a) 

where the positivity of the viscosity requires that 1 2τ > . For the ‘Crank-Nicolson’ scheme of 

discretizing the collision operator, the kinematic viscosity has the form 
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2
sc tν τ δ=                                                                                                                              (3.16b) 

Since the ‘implicit’ scheme does not have any requirement on the minimum viscosity that can be 

simulated (except 0τ > ), the scheme may present a more viable option for simulating flows 

where the viscosity of the fluid is needed to be kept small, with a slight disadvantage as the 

solution procedure is iterative as compared to the explicit formulation of the LBE. 

3.2.2 Incompressible Lattice Boltzmann Equation 

In the original LBE, derivation of the incompressible form of the Navier-Stokes equation is 

possible through the Chapman-Enskog expansion, assuming that the density fluctuation in the 

main flow is of ( )2O M , where M is the Mach number. Due to the nature of the moment 

equations, given by equation (3.14), numerical artifacts and rounding-off errors may introduce 

compressibility in the density of the fluid. More so, as the pressure is tied to the local density and 

hence is not an independent variable in the LBE, flows with moderate to large pressure gradients 

result in substantial changes in the density of the supposedly ‘incompressible’ fluid. Through an 

incompressible formulation of the original Boltzmann’s equation, density fluctuations can be 

minimized, but at the cost of temporal variation of the fluid flow. A definite advantage of this 

method over the original LBE is the ease and accurate specification of pressure boundary 

conditions. The only modifications made to the original formulation are in the form of the 

equilibrium distribution function, as well as the fact that the zeroth order moment yields the 

pressure (and not the density) of the fluid as a function of space and time. The equilibrium 

functions are written as (He and Luo (1997)): 
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such that 

2

0

i
i

s

p
f

c
ρ

ρ
= =∑                                                                                                                  (3.18a) 

i i
i

f =∑ e u                                                                                                                            (3.18b) 

where 0ρ  is the density of the fluid and is a constant parameter. Although this formulation of the 

LBE recovers the steady incompressible Navier-Stokes equation, the scheme is not conducive for 

high Reynolds number flows as is the case with the original formulation.  

3.3 Navier-Stokes from LBE 

The particular form of the collision operator with the single time relaxation approximation, also 

known as the lattice BGK (Bhatnagar-Gross-Krook) operator leads to a differential equation of 

the form given by equation 3.11 for the Boltzmann’s kinetic equation. In the low frequency, long 

wavelength limit and under zero external forces, the Chapman-Enskog expansion can be used 

under the assumption that x tδ δ≈ ≈ ε , where ε  is a small parameter as compared to the 

macroscopic scales and is proportional to the Knudsen number. Thus, the particle distribution 

functions can be expanded in a Taylor series aboutε ,  
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( )(1) 2 (2) 3eq

i i i if f f f Oε ε= + + + ε                                                                                     (3.19) 

Similarly, the time and space derivatives can be expanded as 

2

1 2

   ,   
t t t x

ε ε ε∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ 1x

∂
                                                                                  (3.20) 

To recover the Navier-Stokes equations from the BGK form of the LBE, we need to substitute 

equation 3.19 and 3.20 into 3.11. This would give  
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where higher order terms have been grouped together. Filtering out ( ) (0 1 and O O )ε ε  terms 

leads to 

(1)
1

1

1eq
eqi

i i i

f
f f

t τ
∂
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∂

e                                                                                               (3.22a) 

and 
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2 1

1 1
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i i
i i i

f f
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t tτ τ
⎛ ⎞∂ ∂⎛ ⎞+ − + ⋅∇ = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

e                                                           (3.22b) 

Using the condition that the zeroth and first order moments of the equilibrium particle 

distribution function give the macroscopic density and momentum flux respectively (equation 

3.14), and the form of the equilibrium distribution function as given in equation 3.15 simplifies 

equation 3.22 to the governing equations that have the form given by, 
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Chen and Doolen (1998) show that the two summations in equation 3.23b can be reduced to 
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where . The resulting momentum equation is (2 2 & 1/ 2s sp c cρ υ τ= = −

( ) (2. p
t

).ρ υ ρ υ ρ∂⎛ ⎞+ ∇ = −∇ + ∇ + ∇∇⎜ ⎟∂⎝ ⎠
u

u u u u                                                          (3.25) 

As is evident, the lattice Boltzmann equation is able to recover the weakly incompressible form 

of the Navier-Stokes equation in the low Mach number limit using the Chapman-Enskog 

expansion, and is second order accurate in space. Hence, the lattice Boltzmann’s equation is a 

tool which can bridge the gap between the microscopic fluid interactions and the macroscopic 

world.    
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Figure 11: Discrete velocity vectors for the (a) 2-D nine speed, and (b) 3-D 19 speed model. 
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3.4 Numerical Implementation 

In this work, the D2Q9 and D3Q19 form of the discrete velocity space would be used that yield a 

square and cubic lattice for the space discretization, respectively. For such a model, the phase 

space velocities are shown in figure 11. The velocity vectors are given as: 

(0,0),                    0;

( 1,0) ,(0, 1) ,   1,2,3,4;

( 1, 1) ,              5,6,7,8.
a

a

c c a

c a

=⎧
⎪= ± ± =⎨
⎪ ± ± =⎩

e                                                                              (3.26a) 

for the D2Q9 lattice arrangement, and  

(0,0,0),                                              0;

( 1,0,0) ,(0, 1,0) ,(0,0, 1)           1,2,..,6;

( 1, 1,0) ,( 1,0, 1) ,(0, 1, 1)     7,8,..,18.
a

a

c c c a

c c c a

=⎧
⎪= ± ± ± =⎨
⎪ ± ± ± ± ± ± =⎩

e                                         (3.26b) 

for the D3Q19 configuration, where ‘c’ is the lattice speed and is given by c x tδ δ= . The other 

forms of the velocity discretization commonly used are D2Q7 (hexagonal lattice) and D3Q15 (15 

velocity 3-D model). 

 

Broadly, the ‘explicit’ lattice Boltzmann scheme consists of two computational steps, 

collision step: ( ) ( ) ( ) ( )1
, , , ,AC eq

i i i if t f t f t f t
τ

⎡− = − − +⎣x x x x i
⎤ Φ⎦                           (3.27a) 

streaming step: ( ) ( ), AC

i i i ,f t t t f tδ δ+ + =x e x                                                             (3.27b) 

where 
if  and 

AC

if  denote the pre- and post-collision state of the distribution function, 

respectively. This form of an implementation justifies the very reason why the LBE has been 

regarded as a preferred tool over the Navier-Stokes equations and solvers. As is evident from 
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equation 3.27, the LBE is a simple time-marching algorithm for the particle distribution function, 

whereas the NS involves non-linear advection terms that make the process iterative. Because of 

its explicit form, the LBE is easy to implement, and natural to parallelize as the collision step is 

completely local and the streaming step takes very little computational effort at every time step. 

However unlike the macroscopic solvers for which a no-slip boundary condition for the velocity 

u on the wall is easily satisfied, there is no similar form available for boundary condition for the 

particle distribution function(s). Several different ways and treatments have been proposed in 

literature to date, and have been summarized below.  

3.5 Boundary Conditions in LBM 

A lot of work has been done on creating newer and reliable boundary conditions in the 

Bhatnagar-Gross-Krook variant of the LBE. Some of the boundary conditions commonly 

encountered in fluid flows are related to stationary or moving wall, inlet or outlet velocity, and 

inlet/outlet pressure. Since the lattice Boltzmann method works with the particle distribution 

function as the dependent variable, specification of velocity or pressure boundary conditions 

becomes a highly complex process. In many scenarios, solving for the distribution function 

based on the macroscopic variables on the boundary could lead to a set of equations that may not 

have a closed form solution. With regard to such issues, simple rules have been formulated and 

proposed in literature through which a closure, which is physically harmonious to the problem at 

hand and at the same time is easy to implement with good accuracy, can be achieved.  
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The simplest form of wall boundary condition that has been quoted innumerably in literature is 

the pure wall bounceback proposed by Wolfram (1986) and Lavallée at al (1991). In this form, 

the particle distribution function streamed to the wall is scattered (reflected) along the same 

direction it came from, as shown in figure 12a. Accordingly, the unknown distributions going 

from the wall into the fluid nodes can be written as 

2 4 5 7 6 8( ) ( ),  ( ) ( ),  ( ) ( ) f f f f f f= = =x x x x x x                                                                    (3.28) 

 

Because of the local nature of the standard bounceback scheme, it was later found by many 

groups (Cornubert et al (1991), Ziegler (1993) and Guinzbourg and Adler (1994)) that the no-slip 

boundary condition described by equation 3.28 is only first order accurate. Since the LBE is 

second order accurate in space, use of the standard bounceback results in loss of accuracy near 

the walls. Skordos (1993) suggested that to eliminate this fallacy, velocity gradients should be 

included in the equilibrium distribution function at the wall nodes. It was also found that in 

certain situations, using wall bounceback resulted in a fictitious slip velocity near the wall nodes. 

Though it has disadvantages, because of its simplicity and ease of handling even in complex 

geometries and flow situations, the standard wall bounceback is the easiest of all no-slip 

boundary conditions that can be found in literature.  

 

Ziegler (1993) in his work found that shifting the wall (boundary) half-mesh unit into the fluid, 

in other words applying the bounceback between the nodes, yields second order accuracy at the 

walls. This scheme is popularly known as the half-way bounceback method and is shown in 

figure 12b. The unknown distributions streamed into the fluid from the wall side are given as
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(a) Standard Bounceback 

 

(b) Half-way Bounceback 
Figure 12: Schematic to show the working of the standard and half-way bounceback schemes for 
enforcing zero velocity on the wall. The physical location of the wall is shown by dotted 
horizontal lines. The known (unknown) distributions are shown by solid (dashed) arrows. 

 50



( ) ( ) ( ) ( ) ( ) ( )2 4 4 5 7 7 6 6, ,f f f f f f= + = + = +x x e x x e x x 6e                                        (3.29) 

According to this closure of the wall boundary distributions, it can be observed that the fluid 

momenta carried by each of the distributions cancels off completely half-way between the wall 

(green) and fluid (red) nodes, and thereby making the boundary treatment second order accurate. 

 

Other than the traditional bounceback schemes described earlier, other methods that deal with 

handling of the wall and inlet-outlet boundary conditions in context of LBM also exist. For 

instance, Inamuro et al (1995) proposed a new form of LBE in which a slip velocity was 

included to nullify the effect of the ‘false’ slip created at the boundary because of the use of 

bounceback. In their study, unknown distribution functions at the wall, which point towards the 

fluid region, were assumed to be equilibrium distribution functions with a counter slip velocity 

which was determined by setting the fluid velocity at the wall to the wall velocity. Although 

novel in its treatment, their method had shortcomings in dealing with corners. In a separate work, 

Noble et al (1995) proposed the use of hydrodynamic boundary conditions on no-slip walls by 

enforcing a pressure gradient. During each time step in the LBM procedure, the particle 

distribution at each node is modified by collision, forcing and streaming. The goal of the 

hydrodynamic approach was to prescribe this process in a way such that the desired velocity 

conditions are satisfied at the end of the time step. Maier at al (1996) in their work modified the 

bounceback condition to nullify net momentum tangent to the wall and preserve momentum 

normal to the wall. In their work, they proposed that for the case in 3-D lattices where the 

number of unknown particle distribution functions at the boundaries exceeds the number of 

equations to be solved, supplementary rules for the external links need to be enforced, which 
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employ extrapolation for density conditions and mass addition and redistribution for velocity 

conditions. Their methods were tested for standard benchmark problems like Poiseuille flow, 

Couette flow, and duct and pipe flow.  

 

Chen at al (1996) adopted a staggered mesh discretization from the traditional finite difference 

methods and proposed using a second-order extrapolation scheme of distributions in the flow to 

obtain the unknown distribution functions. They proposed a simple extrapolation scheme in 

place of wall bounceback method (figure 13). They argued that the bounceback scheme works 

well only when 1τ = . For other values of the relaxation parameter, the bounceback scheme does 

not yield results that match analytical solutions. It was also emphasized that since the relaxation 

parameter is a measure of the fluid viscosity, and since high velocities cannot be simulated in 

lattice Boltzmann method because of the inherent low Mach number restriction, simulating high 

Reynolds number flows can be a problem with conventional treatment of the wall which limit the 

minimum viscosity of the fluid. Their extrapolation employed one additional set of nodes beyond 

the boundary nodes which lie inside the wall. The distribution functions at this row of nodes 

were calculated using the particle distribution function values at the wall and the layer of one 

lattice nodes of fluid adjacent to the boundary nodes. Thus if 
1 0,  and i i

1
if f− f

1
i

 are the 

distribution functions on the outside layer, the wall layer and the first layer inside the fluid 

respectively, then according to Chen et al (1996) 

1 02i if f f− = −                                                                                                                      (3.30) 
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Once 
1

if
−

 is known, streaming of the distribution function is carried out. The collision step is the 

normal collision carried out for all fluid nodes, except the wall nodes where velocity or pressure 

boundary conditions are enforced using the equilibrium distribution function. The important 

thing to note about this method is that it does not require any assumptions about the incoming 

distribution functions as was the case with other schemes like that proposed by Zou and He 

(1997). This scheme was tested by the authors for Poiseuille flow, flow in a lid-driven cavity and 

flow over a column of cylinders among other standard problems with success.   

 

In a separate paper, Mei et al (1999) developed a second accurate treatment of boundary 

conditions for curved boundaries. Until then, a standard way to deal with irregular boundaries 

was to treat the surface as a series of stairs, which invariably resulted in less accurate 

computations. In their formulation, as shown in figure 14, the location of the wall is recorded and 

used to calculate the fractional distance of the nearest fluid node from which distribution would 

be streamed to the corresponding wall node. Hence, 

f w

f b

−
∆ =

−

x x

x x
                                                                                                                        (3.31) 

According to the definition, . The unknown distribution functions that are to be 

streamed from the wall node to the fluid nodes are computed as 

0 ≤ ∆ ≤1

( ) ( ), 1 ,f b bf t f αα α= + + =x x e x t                                                                                   (3.32) 

where 
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( ) ( ) ( ) ( )( )

2

3
, 1 , , 2b f bf t f t f t w

c
α α αα αχ χ ρ∗= − + + ⋅x x x we u

)

                                    (3.33) 

and  is the velocity of the wall node, ( ,
w w w

t≡u u x χ  is a weighing factor and 
( )fα
∗

is a 

fictitious equilibrium distribution, given as 

( ) ( ) ( )2( )

2 4 2

3 9 3
, , 1 . .

2 2b f bf f
f t w t

c c c
α α α αρ∗ ⎧ ⎫= + + −⎨ ⎬

⎩ ⎭
x x e u e u u u.

f f
                       (3.34) 

In equation 3.34, is chosen according to the following criteria, bfu

( )1 1 (2 -1)
+    and   =   for 1/ 2bf f w χ

τ
∆ − ∆

= ∆
∆ ∆

u u u ≥                                            (3.35a) 

( ) (2 -1)
,    and   =   for 1/ 2

( 2)bf ff f f tα χ
τ

∆
= = + ∆ <

−
u u u x e                                       (3.35b) 

 

This scheme was found to give better accuracy than standard bounceback. Also, flows at a lower 

value of the relaxation parameter could be solved without the system becoming unstable. In a 

later work, Mei et al (2000) extended the idea to deal with arbitrary curved 3-D solid geometry 

and found the method to possess good stability characteristics and second order accuracy 

 

Other than these methods that have relied on specification of zero velocity on the boundary, Zou 

and He (1997) extended the wall bounceback of the non-equilibrium part of the particle 

distribution function. They used the macroscopic variables known at the boundary to determine 

the unknown distribution functions pointing into the fluid by using bounceback for the non-

equilibrium part of the particle distribution function. According to this method shown in figure 
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15, the unknown distributions at the inlet and outlet can be prescribed based on the velocity (or 

pressure) boundary condition for the macroscopic variables. For example, if the velocity is 

known on the inlet nodes, such that ( ) ( )0,  and 0, 0x in yu y u u y= = , then the unknown 

distributions given by 1 5 8,  and f f f

8

 (in a D2Q9 system) can be found as 

8

0 1 2 3 4 5 6 7
0

i

i

f f f f f f f f f fρ
=

= = + + + + + + + +∑                                                  (3.36a) 

8

1

1 5 8 3 6

    i ix in

i

in

f e u

7f f f u f f f

ρ

ρ
=

=

⇒ + + = + + +

∑
 

( ) (0 2 4 3 6 7

1
2

1 in

)f f f f f f
u

ρ ⎡⇒ = + + + + +⎣−
⎤⎦                                                         (3.36b) 

Also, from the bounceback of the non-equilibrium part of the distribution functions normal to the 

boundary, 

1 3

1 1 3 3

      neq neq

eq eq

f f

f f f f

=

⇒ − = −
                                                                                                         (3.37) 

Thus solving equations 3.36 and 3.37, one can get 

1 3

2

3 inf f uρ= +                                                                                                                     (3.38) 

( )5 7 4 2

1 1

2 6 inf f f f uρ= + − +                                                                                            (3.39) 

( )8 6 4 2

1 1

2 6 inf f f f uρ= − − +                                                                                            (3.40) 
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For the pressure boundary condition, a similar procedure is implied. Consider a node that lies on 

the right outlet. After streaming, the following distributions will be unknown: 3 6 7,  and f f f . 

Assuming that the density (pressure) at this boundary is known and the y-component of the 

velocity is zero (i.e.  and ( , ) 0out y xu L yρ ρ= = ), the following equations can be written. 

8

0 1 2 3 4 5 6 7
0

i out

i

8f f f f f f f f f fρ
=

= = + + + + + + + +∑                                               (3.41a) 

8

1

6 7 4 8 2 5

    0

( )

i iy out y

i

f e u

f f f f f f

ρ
=

= =

⇒ − = + − +

∑
                                                                                      (3.41b) 

8

1

3 6 7 1 5 8

     i ix out x

i

out x

f e u

f f f f f f u

ρ

ρ
=

=

⇒ + + = + + −

∑
 

( )0 2 4 1 5 82
1x

out

f f f f f f
u

ρ
+ + + + +

⇒ = − +                                                                   (3.41c) 

Using the bounceback rule for the non-equilibrium part of the distribution function normal to the 

outlet, 

3 1

3 3 1 1

      neq neq

eq eq

f f

f f f f

=

⇒ − = −
                                                                                                         (3.42) 

As done earlier, solving equations 3.41 and 3.42, one can get 

3 1

2

3 out xf f ρ= − u                                                                                                                  (3.43) 

( )6 8 4 2

1 1

2 6 out xf f f f ρ= + − − u                                                                                          (3.44) 
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Figure 13: Basic cell for the ‘9 speed’ lattice Boltzmann model. The center of the cell is occupied 
by the rest particle (after Chen et al (1996)). 

 57



 

 
Figure 14: Layout for boundary conditions with curved boundaries (after Mei et al (1999)). 

 

 
Figure 15: Schematic for velocity and pressure boundary conditions (after Zou and He (1997)). 
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( )7 5 4 2

1 1

2 6 out xf f f f ρ= − − − u                                                                                          (3.45) 

3.6 Multiphase Models in LBM 

Numerous methods have been used by researchers over the past decade to conduct multiphase 

simulations using LBM. These include the model proposed by Rothman and Keller or better 

known as the R-K model (1988), where the two fluids are denoted by different colors. In this 

model, phase separation is produced by the repulsive interaction based on the color gradient. The 

R-K model was originally meant for lattice gas simulations (LGCA). Grunau et al (1993) 

introduced some free parameters in this model. 

 

The lattice Boltzmann implementation was first introduced by Shan & Chen (1993). In Shan-

Chen’s (S-C) model, multiphase phases were simulated by introducing non-local interactions 

between particles at each lattice site, thereby making it hard to parallelize. Hou et al (1997) in 

one of the earliest works on multiphase LBM studied the chromodynamic (RK) and the 

pseudopotential (SC) models. Their simulations were done for a static bubble with the ideal 

equation of state and in a static medium. They showed that the pseudopotential model is a major 

improvement over the chromodynamic model. This static bubble test has since then been used as 

a benchmark for conducting multiphase simulations using LBM. Yang et al (2001) used the 

pseudopotential method for their LBM simulations and have qualitatively proved that results 

from LBM are very similar to experimental observations for saturated pool boiling. 

Sankaranarayanan et al (2002) proposed closures for drag and virtual mass terms that appear in 

two-fluid models through simulations performed using an implicit LBM. They also used the 
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pseudopotential method to model the liquid-vapor interaction. Gupta and Kumar (2008) have 

used the pseudo-potential method to conduct three-dimensional simulations of bubbles rising in a 

quiescent liquid, and calculate drag of a rising bubble for a range of Eotvos an Reynolds 

numbers.  

 

Swift et al (1996) proposed the “free-energy” approach. In this model, unlike the S-C model, the 

local momentum conservation was satisfied. However, Swift’s model suffered from the lack of 

Galilean invariance. Inamuro et al (2004b,c) used the projection method together with the free 

energy model to deal with immiscible fluids with large density ratios. In their work, they 

demonstrated the applicability of the algorithm developed for the case of droplet collisions 

surrounded by a lighter fluid. Takada et al (2001), in their work on bubble motion under gravity, 

developed a 3-D version of the binary fluid model that introduces a free energy function into the 

lattice Boltzmann equation (LBE). Their results showed that LBM is suitable for numerical 

analysis of bubble motion under gravity. Their simulations were conducted using a two-

dimensional hexagonal lattice arrangement. They have also shown bubble migration towards the 

center of the channel for wall-driven shear flows. In more extended simulations, they 

demonstrate binary bubble coalescence and the stages involved in the process. 

 

Recent work has been focused towards development of new methods that could simulate high 

density ratios for the liquid-vapor mixture. Inamuro et al (2004b) developed a multiphase model 

that could be used to simulate dissimilar fluids with large density difference and show its 

applicability by conducting droplet collision and bubbly flow simulations for a density ratio of 
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50. Although the large density contrast was an exciting development, the model suffers from 

time consuming iterations for solving the pressure field, which is given by a Poisson equation. In 

another work, Inamuro et al (2004a) conducted simulations for bubbly flows with large density 

ratios using the projection method. Kurtoglo and Lin (2006) used the phase-field method to 

assess its applicability to single bubble dynamics. 

 

A more recent variant that modifies the R-K model and introduced an explicit specification of 

the surface tension parameter was given by Lishchuk et al (2003). This model enhanced the 

suitability of LBM as a tool to simulate multiphase flows due to its robust nature and reduction 

of spurious velocities, a phenomenon commonly encountered in the R-K and S-C model, by a 

great extent. Recently, Dupin et al (2006) have applied this method to simulate a flow-focusing 

microfluidic device, and show results that agree well with experimental results of Anna et al 

(2003). In the next sections, the S-C and Lishchuk’s model are described, which have been used 

in this work to simulate and study bubbly flows, impingement of droplet on a dry surface, and 

formation of droplets in a microfluidic T-junction device.  

3.6.1 S-C Model for Multiple Phases and Components 

Shan & Chen (1993) in their work proposed a lattice Boltzmann based model that could simulate 

multiple phases and components. They incorporated non-local interactions amongst particles to 

simulate multiple component fluids. The interaction potential between components σ and σ  was 

defined as 

( ) ( ) ( ) ( ), ,V G σ σ
σσ ψ ψ′ ′=x x x x x x′                                                                                 (3.46) 
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where ( ),Gσσ ′x x  is the Green’s function. The quantity 
σψ  is the “effective mass”. If only 

nearest neighbor interactions were considered, then 

( )
0        ;  

,
G    ;  

c
G

c
σσ

σσ

′⎧ −⎪′ = ⎨
′− =⎪⎩

x x
x x

x x

>
                                                                                    (3.47) 

The magnitude of Gσσ  controls the strength of the interaction between components σ andσ , 

while its sign determines whether the interaction is attractive or repulsive.  

 

This form of the potential gives the rate of net momentum change at each lattice site to be  

( ) ( ) ( )
1 0

G
S b

a a
a

d

dt

σ
σ σ

σσ
σ

ψ ψ
= =

= − +∑ ∑p
x x x e e                                                                        (3.48) 

Therefore, this change in momentum is applied at each lattice site in the equilibrium distribution 

function before the collision, as shown by Buick and Greated (2000): 

( )d

dt

σ
σ σ σ σρ ρ τ= + p
u u x                                                                                                    (3.49a) 

where  

( )m fσ σ σρ = x                                                                                                                     (3.49b) 

is the mass density of the σth component and  

S

a a
a

S

a
a

m f

m f

σ σ σ

σ

σ σ σ

σ

τ

τ
=

∑ ∑

∑ ∑

e

u                                                                                                         (3.49c) 

and 
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( ) a
a

f fσ σ= ∑x                                                                                                                     (3.49d) 

3.6.2 Lishchuk Model for Greatly Reduced Spurious Currents 

In a recent and more robust scheme for the treatment of the interface, Lishchuk et al (2003) 

proposed an algorithm by which a two-fluid mixture is kept separated through a diffuse interface 

that spans a few lattice nodes. The location of the interface is controlled by a surface tension 

force which is incorporated such that the stress boundary condition and the continuity of velocity 

across the interfacial line are satisfied. This model begins with the elementary two-phase method 

of Gunstensen et al (1991). In the original method of Gunstensen, two particle distributions 

denote the two different fluids. Each fluid is assigned a ‘color’ (the use of the word ‘color’ is 

meant for identifying the fluid only) at all locations in the domain of interest. Each of these 

colored phases undergoes the collision and streaming operations, given as 

( ) ( ) ( ) ( ),
, , ,

, ,
k k eq

i ik AC k
i i k

f t f t
f t f t

τ
−

= −
x x

x x                                                                       (3.50) 

where  denotes the ‘Red’ or ‘Blue’ distribution. More so, the densities of each of the phases is 

given by 

k

( ),R
iR

i

f tρ = ∑ x                                                                                                                   (3.51a) 

( ),B
iB

i

f tρ = ∑ x                                                                                                                  (3.51b) 

In addition to a collision operation given by the above mentioned equation, the particle 

distributions undergo a second collision (also known as the perturbation step), 

( ) ( ) ( ),, 1 , cos 2k k AC
i i i i ff t f t A θ θ+ + = + −x e x G                                                             (3.52) 
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where ‘A’ is a parameter related to the interfacial tension, iθ  is the polar angle of the lattice 

direction ‘i’, 
fθ  is the polar angle of the local color gradient G, which is calculated as 

( ) ( ) ( )(, ,i i i iR B
i

t w tρ ρ= + − +∑G x e x e x e ),t

),t

                                                                (3.53) 

In order to prevent the numerical diffusion of the two fluids across the interface, a re-coloring 

step is required that enables to keep the interface sharp, and at the same time prevents mixing of 

the two fluids at the interface. The colored distributions are de-mixed by maximization of the 

work done by the color flux  

( ) ( ) ( )(, ,R B
i i i i

i

t w f t f= −∑q x e x x                                                                               (3.54) 

The original model carries certain disadvantages which crucially underpins its applicability to 

study low Reynolds number flows. First, the re-coloring step is known to introduce lattice 

pinning, a phenomenon in which the interface can be stuck at a lattice node and is unable to 

conform to the physical motion of the dynamic interface, rendering the simulation ineffective. 

Secondly, the perturbation step has the side effect of introducing anisotropy and high spurious 

velocities at the interface, as shown by Wu et al (2008) and Lishchuk et al (2003). 

 

The recent method of Lishchuk modified the original model to relieve the method of the 

perturbation step. In their work, this step is replaced with a direct forcing term at the sites where 

mixing of the two phases occurs. In order to impose the stress boundary condition and the 

continuity equation for the incompressible fluids, Lishchuk’s model introduced a local pressure 

gradient throughout the interface, which is incorporated into the LBE at the collision step. This 
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force is defined such that it acts normal to the interface, centripetally and with a magnitude that 

is proportional to the gradient of the phase field, Nρ , defined as 

( ) ( ) ( )
( ) ( )

, ,
,

, ,

R B
N

R B

t t
t

t t

ρ ρ
ρ

ρ ρ
⎛ ⎞
⎜
⎜ ⎟
⎝ ⎠

−
=

+
x x

x
x x

⎟

1

                                                                                       (3.55) 

Clearly, 1 ( , )N tρ− ≤ ≤x . The local curvature at the ‘mixed’ locations on the interface is 

computed based on the normal vector computed at the particular lattice location. The normal 

vector, n, is defined as a function of the phase field, and is given by 

N

N

ρ
ρ

∇= −
∇

n                                                                                                                             (3.56) 

Based on the local normal vector, the radius of curvature, R, of the interface is computed as 

1
SR

κ = = −∇ ⋅n                                                                                                                    (3.57) 

where 

κ is the curvature and  

( )S∇ = − ⋅∇I nn                                                                                                                  (3.58) 

where I is the unit tensor and  is the surface gradient operator. In two-dimensions, the 

curvature can be simplified to  

S∇

2 2y yx x
x y x y

n nn n
n n n n

x y y
κ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∂ ∂∂ ∂= + − −
∂ ∂ ∂ ∂x

                                                                       (3.59a) 

and in three-dimensions, the curvature is given as 

 65



2 2

2 2 2 2      

y yx x xz z
x y x z y z y z

y z
x z x y

n nn n n n
n n n n n n n n

y x z x z y

n n
n n n n

y z

κ
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

∂ ∂∂ ∂ ∂ ∂= + + + + + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂− + − +
∂ ∂

n

x

∂

         (3.59b) 

Based on the curvature, the source term 
i

Φ  is calculated such that it incorporates the surface 

tension force, and is given as 

2
.i

i

s

w

c
Φ = F e

i
                                                                                                                          (3.60) 

where  

( ) 1
,

2
Nt

R
σ ρ= ∇F x                                                                                                             (3.61) 

The partial derivatives of the components of the normal vector are computed based on a 

formulation for discretizing a general function φ  on a regular lattice with contributions from the 

neighboring lattice sides, 

( )
2

1
i ix i

i
s

e w
x c

φ φ∂
=

∂
∑ x + e                                                                                                  (3.62a) 

and 

( )
2

1
i iy i

i
s

e w
y c

φ φ∂
=

∂
∑ x + e                                                                                                 (3.62b) 

3.7 Summary 

In this chapter, the lattice Boltzmann equation was presented. The route from the discretized 

Boltzmann’s equation to the incompressible form of the Navier-Stokes equation was also 
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illustrated. The key ideas regarding the numerical implementation of LBE and the methods of 

boundary conditions were laid out. This was followed by a discussion of the multiphase models 

of simulating two-phase flows in the existing literature, with their advantages and disadvantages 

listed as well. As a closing remark, two methodologies were presented that are the basis of 

further investigation of multiphase flows in the context of the present study. 
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CHAPTER FOUR: LBM FOR SINGLE-PHASE FLOWS 

4.1 Introduction 

Some of the test problems that were conducted to test the understanding of the lattice Boltzmann 

method are described in the next few sections of this Chapter. These include typical benchmark 

problems that have been solved using LBM for single-phase flows. These are: pressure driven 

flow in a channel (Poiseuille flow) using different treatments of the wall boundary conditions, 

for periodic and non-periodic boundary conditions, and flow in a lid-driven cavity using the 

extrapolation form of the wall boundary condition described in Chapter 3. Building on the 

foundation laid by these simulations, calibration of a three-dimensional T-junction microfluidic 

device is demonstrated with a single fluid passed through the two inlets and recording the 

pressure profiles along the length of the main channel.  

4.2 Poiseuille Flow 

Pressure driven flow in a rectangular channel is a problem that has an exact analytical solution. 

For a two-dimensional Poiseuille flow in between parallel plates separated by a distance ‘h’, the 

velocity profile at any location ‘x’ and along the vertical ‘y’ direction is given as 

2

1
2

h y y

h hυ
⎛ ⎞= −⎜
⎝ ⎠

G
u ⎟                                                                                                                 (4.1) 

where G is the pressure gradient per unit density along the ‘x’ axis and ‘h’ is the height of the 

channel is lattice units.  
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In LBM, the described flow situation is simulated using various treatments for the wall boundary 

condition. A rectangular domain with grid points 101 51×  was chosen. A pressure gradient of 

 (in non-dimensional units) was chosen as the driving force with a relaxation time 

of 1 (

51 10G −= ×

1/ 6υ⇒ = ) and periodic boundary conditions at the inlet and exit. Simulations were run 

for a time period until there was no appreciable change in the velocities at the outlet. Velocity 

profile obtained using the half-way bounceback boundary condition at the wall was compared 

and observed to match very well with the analytical solution derived for the same flow 

conditions, as is shown in figure 16. In addition to the half-way bounceback method, velocity 

profile was also calculated for the extrapolation scheme of Chen et al (1996), and the result is 

shown in figure 16. Clearly, the two methods of handling the zero velocity profile yield the same 

results and are in agreement with theory. 

 

Simulations were also done to study a case in which the periodicity at the inlet and exit of the 

domain is replaced with finite pressure (density) values that would drive the same flow between 

the parallel plates. The pressure boundaries were enforced using the method proposed by Zou 

and He (1997). The results of such an exercise are shown and compared with the analytical 

profile in figure 17. For the sake of comparison, the velocity profile for a fully periodic boundary 

is also shown. The good agreement of a flow profile using a finite length of the plates (pressure 

boundary) as compared to an infinite long domain (periodic boundary) would be helpful in 

conducting simulations for creation of flow dispersions in a microchannel, to be discussed in 

Chapter 6. 
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Figure 16: Poiseuille velocity profiles at the outlet computed using LBM for the half-way 

bounceback and extrapolation scheme compared with the analytical profile for 
51 10

dp

dx

−= − ×  

and τ=1. 
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Figure 17: Comparison of horizontal velocity profiles using the periodic boundary and fixed 

pressure boundaries for 
51.0 10

dp

dx

−= − ×  and 1.0τ = . 
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4.3 Lid-Driven Cavity 

To further check the applicability of LBM in simulations pertaining to incompressible single-

phase flows, steady state simulations were done for a lid-driven cavity flow with the upper wall 

moving at a fixed velocity of Uw using the extrapolation method of enforcing stationary and 

moving walls. The extrapolation scheme proposed by Chen et al (1996) was used for all the 

walls (see section 2.3 for more details about this method) together with the explicit form of the 

LBE. This gave better accuracy for the flow field at smaller relaxation parameters as compared 

to the pure bounceback that yields accurate results only at relaxation time of close to 1. The 

Reynolds number of the cavity is defined as Re wU L

υ
= , where ‘L’ is the characteristic 

dimension of the square cavity. A square grid of 167 × 167 nodes was used for the simulation 

that gives grid independent results. The driving lid was placed on top of the cavity and moves at 

a velocity of Uw=0.04 and 0.1 lattice units corresponding to Re 100 and 250= , respectively. 

The relaxation time was chosen to be 0.7 in order to simulate flow for both the Reynolds 

numbers. The streamlines inside the cavity at steady state are shown in figure 18 for (a) Re=100 

and (b) Re=250. The flow behavior obtained is in good agreement with previous studies. The 

two recirculation zones (secondary vortices) at the bottom corners of the domain are captured 

very well with the present grid resolution, and are found to strengthen as Re increased from 100 

to 250. In addition, the normalized horizontal velocities calculated at the vertical centerline of the 

cavity are compared for the Reynolds numbers simulated, and are compared in figure 19. The
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(a) 

    
(b) 

Figure 18: Streamlines for a 2-D lid-driven cavity simulation obtained using LBM at a Reynolds 
number of (a) 100 and (b) 250. 
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Figure 19: Normalized horizontal velocity as a function of the vertical coordinate for two 
different Re values plotted at the mid-plane corresponding to x=L/2. 
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simulation values are found to be in agreement with existing CFD simulations present in the 

literature. 

4.4 Calibration of the T-junction 

A sample T-junction channel was simulated for testing the geometry and the boundary 

conditions before proceeding with numerical experiments on a slightly more complex problem of 

the flow of dissimilar liquids in the proposed geometry. Figure 20 illustrates three-dimensional 

simulations of a single-phase fluid passing through the two inlets (denoted by  and ) into 

the right side outlet. The channel number of grid points was chosen to be 201  along 

the x, y and z axes, respectively. Fully developed velocity conditions were specified at both the 

inlets and the exit of the channel. The velocity profile imposed at each of these boundaries was 

specified based on the pressure gradient and the widths of the inlet section. The pressure at the 

right hand exit was kept fixed by imposing a particle distribution function based on the fully 

developed flow and constant density, i.e. 

1Q 2Q

41 11× ×

( )0 ,out eq

i if f ρ= u . The inlet pressure was allowed to 

build-up during the course of the simulation. At steady state, depending on the flow rate at the 

two inlets, the two inlet streams were found to mix and subsequently change the local pressure at 

the mouth of the T-junction, as shown by the velocity vectors in figure 20 for two different 

Reynolds numbers for face 2, keeping the Reynolds number for face 1 to be fixed at 

. At steady state, the pressure profile along the horizontal center line passing 

through the mid-section of face 1 was recorded, and is shown in figure 21. For the two cases 

simulated, the inlet pressure at face 1 shows a higher jump when  was increased.  

1Re 0.16=

2Re
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(a) 2Re 0.1=  

 Q2 

Q2 

Q1 

Q1 

(b) 2Re 0.26=  

Figure 20: Velocity vectors for different flow rates of the bottom inlet channel. Reynolds number 
corresponding to Q1 fixed at .1Re 0.16=
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Figure 21: Pressure profile as a function of the grid location.  
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CHAPTER FIVE: LBM FOR TWO-PHASE FLOWS 

5.1 Introduction 

This chapter contains benchmark problems that have been solved using LBM for two-phase 

flows. These benchmark problems are: simulation of single and multiple bubbles in a periodic 

domain and droplet impingement on a dry surface. Computer codes were developed for all the 

problems and solved with appropriate form of boundary conditions. 

5.2 Single Bubble Dynamics using LBM 

Boiling and two-phase flow situations are of major importance in industrial applications. Micro- 

and mini-channels are very commonly used these days in residential air-conditioners and thin 

compact evaporators that are being used in automotive and aerospace industries. The flow 

topology in such channels needs to be understood well for development of mechanistic models. 

Although the two-fluid technology has progressed significantly, there is little precedence 

describing the interfacial forces, heat and mass transfer in difficult transition flow regimes. In the 

slug and churn-turbulent regimes, where all types of interfaces exist, it is difficult to develop 

continuum transport equations and closure models for each phase, in particular the vapor phase 

which exists in different forms and shapes. For example, a bubble can be spherical, distorted, 

confined and/or elongated. The behavior of bubbles and slugs in an infinite medium depends on 

several parameters such as Reynolds number ( Re b eU d υ= ), Eotvos number ( 2
eEo g dρ σ= ∆ ), 

Morton number ( 2 4
LMo g 3ρ ρυ σ= ∆ ) and Weber number ( 2 2

L b eWe U dρ σ= ). Fan and Tsuchiya 
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(1990) have described the importance and distinction between the Weber and the Reynolds 

number in a classical manner. The Weber number is a ratio of the dynamic pressure ( )2
L bUρ∼  to 

the surface tension pressure ( )/ edσ∼ , whereas the Reynolds number is a ratio of the inertial 

force ( )2 2
L b eU dρ∼  to the viscous force ( )L b eU dµ∼  from the surrounding liquid. The Weber 

number becomes even more important for , because for flows of this kind the bubbles 

maintain a spherical shape all throughout their life. These parameters have been used to record 

and observe bubble shapes and flow regimes. There are empirical correlations that exist for 

terminal velocity and drag coefficient in terms of these non-dimensional parameters, such as 

those given by Grace (1973), Bhaga and Weber (1981) and Kumar (2004). 

1We

 

In a previous study, Gupta (2007) conducted numerical simulations of bubbly flows to study the 

motion and dynamics of a single-isolated and multiple bubbles under buoyancy in fully periodic 

domains. Shan and Chen’s (1993) model for multiphase flows was adopted as the simulations 

involve a mixture of fluids with a density ratio of ( )1O , and the particular method is found to be 

computationally efficient for such cases. The gravitational force is directed in the negative 

vertical direction. Sanakaranarayanan et al (2002) have suggested that this external force can be 

introduced into the force equation using the expression 

1ext

ρ
ρ

⎛ ⎞
= −⎜

⎝ ⎠
a g ⎟                                                                                                                        (5.1) 

where ρ  is the mixture number density at the node of interest and ρ  is the average number 

density of the mixture in the entire domain. This choice ensures that the average value of the 
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external force is zero in the periodic domain, and hence the mass-average velocity of the mixture 

is constant. For all the liquid-vapor simulations described below, τ=1. Figure 22 shows bubble 

snapshots at different instants of time as the bubble shape evolves under the influence of gravity. 

Liquid to vapor density ratio was 2.66. The interaction strengths for the gas-gas, liquid-liquid 

and liquid-gas interactions were taken to be 11 22 120, 0.3, 0.15g g g= = − =  respectively. The 

simulation was done at  and 10.7Eo = 32.38 10Mo −= × . At this Eotvos number, the bubble shape 

changes from a sphere to an ellipse. The bubble forms an oblate ellipsoidal shape as has been 

discussed by Bhaga & Weber (1981), who conducted experiments to study wake behavior behind 

moving bubbles with hydrogen bubble tracer technique. 

 

Figure 23 shows the well-known bubble shape regime map constructed by Grace (1973) using 

flow visualization of hydrogen gas bubbles. For various Re and Eo, the bubbles were 

characterized as spherical (s), oblate ellipsoid (oe), oblate ellipsoidal disk-like (oed), oblate 

ellipsoid cap (oec); spherical cap with closed wake (scc), and skirted (sks). Six representative 

results obtained using LBM are plotted along with Grace’s (1973) regime map in figure 23. The 

comparison shows that the current numerical simulation using LBM yields excellent quantitative 

and qualitative results for single bubble simulations. In addition, it was shown that the drag 

coefficient for single bubbles rising in two- and three-dimensional periodic domains matches 

with the correlations of Bhaga and Weber (1981) and the theoretical solution of Joseph (2003).  
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Figure 22: Bubble shape evolution under gravity at an Eotvos number of 10.7. The time instants 
are at (a) initial condition, and (b) time=3000 timesteps. Red depicts the lighter vapor and blue 
denotes the heavier liquid surrounding the bubble. 
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Figure 23: Shape regime map for isolated bubbles in liquids taken from Bhaga & Weber (1981). 
The pictures in the inset show the results of the numerical simulations using LBM; s, spherical; 
oe, oblate ellipsoidal; oed, oblate ellipsoidal disk-like and wobbling; oec, oblate ellipsoid cap; 
scc, spherical cap with closed wake,; sks, skirted with smooth steady wake. 
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 5.3 Multiple Bubble Dynamics using LBM 

Esmaeeli and Tryggvason (1998,1999) conducted two- and three-dimensional simulations of 

buoyant bubbles in periodic domains for a range of low to moderate Reynolds numbers using 

their hybrid method. They found that a regular array of (slightly perturbed) bubbles is an 

unstable configuration that eventually leads to an asymmetrical arrangement. Therefore, three-

dimensional simulations were conducted for an inline arrangement of bubbles without any initial 

random perturbation in the lateral positions. Multiple bubbles were simulated in large periodic 

domains and bubble coalescence characteristics studied for different initial sizes of the bubbles. 

Figures 24 and 25 show two such cases in which the current methodology has been used to study 

bubble coalescence. Figure 24 shows the time variation of the Reynolds number, based on the 

initial diameter of the bubbles, for an Eo=4.26 and figure 25 is at Eo=35.93, where t  is the non-

dimensional time given by 

∗

/ /t t d g∗ = . The preliminary cases were run with two bubbles, 

whose line connecting the centers is parallel to the gravitational vector.  

 

One of the objectives was to study the influence of the coalescence of the bubbles on the 

variation in the bubble rise velocity, recorded through the Reynolds number based on the initial 

bubble diameter. Coalescence occurs due to a non-zero relative velocity of the lower bubble as it 

rises opposite the gravity. The upper bubble flows ‘through’ the quiescent liquid, while the lower 

one is traveling ‘into’ the wake left behind the upper bubble. Thus, the wake left behind by the 

upper bubble results in lower drag for the lower bubble. Since the relative velocity of the bubbles 

is non-zero, the distance between the two bubbles keeps decreasing with time. Eventually the 
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bubbles touch/collide (see insets of figure 24 & 25), and soon after form a larger bubble with 

twice the volume as the initial bubble. The shape of the intermediate larger bubble, at the time 

when the thin liquid film separating the two bubbles has just ruptured, is different for the two 

cases shown, thereby indicating that bubble coalescence and behavior is a function of the Eotvos 

number and is not the same for all situations. Eventually at steady state, the bubble shapes for the 

two cases are found to be much different as was expected.  

 

Simulations were also done for cases with three bubbles of equal size that were initially placed in 

a staggered arrangement. This was done to study how the wakes behind the bubbles affect the 

motion of the downstream bubbles and the bubble rise velocity. The three bubbles were 

staggered by a lateral distance of the order of the initial diameter of the bubble with respect to the 

gravitational vector. The Eotvos number of the flow was set at Eo=4.02. It was observed that as 

the bubbles rise, the wake behind the upper bubble(s) creates an artificial lift force for the 

downstream bubble(s), thereby causing them to move in a helical path, as shown by the bubbles 

shapes in figure 26. The effect of the lift force is such that the bubble shapes are no more oblate 

elliptical, rather change to oval-like. These oval bubbles seem to follow each other, into the wake 

left by the upstream vapor. Eventually the bubbles coalesce and the shape of the coalesced 

bubble is shown (inset of figure 26). An observation common to all the cases discussed so far, as 

can be noticed from the plots of Reynolds number with time, is that the momentum associated 

with the dispersed phase reaches a maximum when the bubbles start to coalesce. To study the 

rise velocity characteristics of bubbles and to avoid coalescence (which is a numerical
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Figure 24: Simulation of two bubbles in a periodic domain for Eo=4.26. 
 

 
Figure 25: Simulation of two bubbles in a periodic domain for Eo=35.93. 
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Figure 26: Simulation of three bubbles placed in a staggered arrangement for Eo=4.02. 
 

 
 
Figure 27: Simulation of 27 bubbles perturbed from the inline arrangement for Eo=1.37. 
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consequence and is unavoidable with the choice of the model used), a simulation with 27 bubbles 

of equal size but slightly perturbed from the inline arrangement was carried out, and the results 

are shown in figure 27. The Eotvos number was fixed at Eo=1.37, which was low enough to 

ensure that the bubbles remain nearly spherical for the duration of the simulation. It can be 

observed from the plot of Re vs time that the rise velocity attains a nearly steady value until 

, after which the instability caused by the motion of rapidly rising bubbles leads to a 

deviation from the plateau and the Reynolds number rises with large perturbations in the velocity 

of the bubbles.  

* 25t ≈

5.4 Droplet Impingement on a Dry Surface 

Collision of droplet(s) on solid or liquid surfaces is a phenomenon that occurs widely in nature. 

Droplet impact dynamics is an area which has long been an area of interest. Impact of drops on 

solid surfaces is a very common phenomenon in many modern engineering applications ranging 

from ink-jet printing to spray cooling, internal combustion engines to spray painting and plasma 

spraying, and more recently in microfabrication and microchannels (Yarin (2006)). In high 

pressure applications such as in nuclear reactors, the liquid to vapor density ratio is less than 10 

at 2.4 MPa. When these liquid droplets hit a solid surface, the accompanying physical behavior is 

observed to be very different, depending upon whether the surface is hydrophobic or hydrophilic, 

rough or smooth and whether it is dry or wet. The final shape and spreading of the liquid drop 

also depends on a range of parameters, like the impact velocity, the size of the droplet, the angle 

of attack to the surface, the physical properties of the liquid drop and the surrounding pressure.  
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Experimental investigations have been carried out extensively to study the mechanism of droplet 

impact and the subsequent spreading process on a dry surface (Wachters and Westerling (1966), 

Stow and Hadfield (1981), Yarin and Weiss (1995)). These studies show the formation of a 

watersheet as well as the subsequent breakup into daughter droplets. The difference in the 

dynamics of a single drop impact with a dry wall as compared to that of a train of drops has also 

been demonstrated by Yarin and Weiss (1995). In a detailed experimental study by Rioboo et al 

(2002), it was shown that for the case of water drops impacting a wax surface, the perturbations 

during the receding process merge continuously leading to a rebound of the droplet from the 

surface. For the case where there is no rebound of the liquid film from the surface, the spreading 

diameter may stay constant or increase depending upon the wettability of the surface used. In a 

separate study by Scheller and Bousfield (1995), it was shown that the maximum spread factor 

follows the correlation given by ( )0.1662
max 0.61 Re Ohξ = , and that the contact angle effect on 

the spreading diameter is negligible for droplet Re>10.  

 

Simulations of droplet splashing phenomenon have mostly focused on impact dynamics on a wet 

surface with a thin liquid film (Morton et al (2000), Josserand and Zaleski (2003)), 

deposition/splashing behavior of impact of single drop on a wet surface (Mukherjee and 

Abraham (2007a,b), Lee and Lin (2005)) and the study of droplet spreading behavior for very 

low Oh and subsequent rebound on a dry surface for low density ratios (Mukherjee and Abraham 

(2007c)). However, an analytical investigation of the droplet spreading behavior in high pressure 

systems at early times of impact and droplet breakup at later times has not been carried out so 

far. Through lattice Boltzmann simulations, we illustrate the mechanism of droplet collision on a 
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dry surface during all phases of impact and to develop criteria for breakup. In addition, the effect 

of the interactions between the fluid and hydrophobic and hydrophilic surfaces and their 

influence on the breakup will be studied. 

 

Since the proposed work is to understand the droplet interactions at high pressures and low 

density ratios, SC model has been used. The net force due to surface tension-based interactions at 

each lattice site is incorporated as  

( ) ( ) ( )
1 0

int G
S b

a a
a

σ σ
σσ

σ

σ ψ ψ
= =

= − +∑ ∑x x x eF e                                                              (5.2) 

 

Similarly, at the solid-fluid interface, a force as proposed by Martys and Chen (1996) can be 

incorporated. This form of the interaction can be written as 

( ) ( ) ( ),
0

G
b

wwall
a

σσ
σρ ρ

=
= − +∑x xF a a

σ x e e                                                               (5.3) 

where the interaction parameter ,wG σ  denotes the intensity of interaction from the wall and the 

sign (positive/negative) indicates whether the interaction is repulsive/attractive (non-

wetting/wetting). For the D3Q19 lattice used in this work, 

( ),

G        ; 

, G   ; 

1

/2 2

0        ;  otherwise.

w

w wG σ

⎧
⎪
⎪
⎨
⎪
⎪⎩

′−

′ = − ′

=

=

x x

x x x x                                                                         (5.4) 
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The external force is directed in the negative vertical direction as shown in equation 5.1. The 

total force on each component at each lattice site can thus be found as 

inttot extwall
σ σ σ= + +F F F Fσ

                                                                                               (5.5) 

This change in momentum is applied at each lattice site in the equilibrium distribution function 

before the collision. 

 

Multiphase simulations of droplet impact on a wall were started by conducting static droplet tests 

to generate a good initial condition with one (or more) droplet in a channel in which the top and 

bottom boundaries are walls and the side boundaries are periodic. Changing the boundary 

condition criteria on the upper boundary of the domain to a free-slip layer from the no-slip 

condition did not yield significantly different results presented herein. The nearest neighbor SC 

model as explained by Yuan and Schaefer (2006) has been used in which the next-nearest 

neighbor is also used in the force discretization. This leads to a non-ideal equation of state for the 

liquid that is given as  

( )2 23Sp c gρ ρ= + Ψ                                                                                                            (5.6) 

It should be noted here that if there is no interaction amongst the same kind of fluid, then the 

equation of state would reduce to the ideal gas equation of state given by
2
Sp c ρ= . The 

‘effective mass’ function, Ψ , is given by Shan and Chen (1993), 

( ) ( )0 1 exp / 0ρ ρ ρ⎡⎣Ψ = − − ρ ⎤⎦                                                                                          (5.7) 

In this study, the values of this fluid-fluid interaction parameter are selected in a way that a 

particular density ratio and a specific Weber number can be achieved. A low value of the 

 90



interaction strength would result in a higher density ratio. In the simulation results described 

below, 0 10ρ = . The computational domain is divided into 120 ×  120 ×  120 lattice points which 

was tested to be adequate to resolve the thin films on the wall. 

 

Droplet impact and the dynamics depend on Weber number, We, and Reynolds number, Re. One 

other parameter that is very important in drop impact on dry surfaces is the spreading film 

diameter. This quantity is usually represented in terms of the spread factor given by the ratio of 

the diameter of the film and the diameter of the droplet, ξ=d/D. The fluid-interaction parameter 

was varied between  to , and the corresponding density ratio in the simulations 

ranged from 4 and 10. The suspended droplet was equilibrated for a sufficient amount of time, 

after which it was allowed to fall in the downward direction towards the solid surface. The time 

evolution of the spread factor is provided in figure 28 for a ratio of 6 at Re=21.5 and We=20.4. 

The time evolution can be divided into four phases, (a) the kinematic phase, (b) the spreading 

phase, (c) relaxation phase, and (d) equilibrium phase. It has been shown previously by Rioboo 

et al (2002) that the film diameter increases as 

0.024− 0.027−

tξ ∗∝   in the kinematic phase. As the spreading 

phase begins, other parameters such as the diameter of the impacting droplet, the velocity, the 

surface tension and viscosity can start to influence the rate at which the lamella spreads. During 

the later stage of this phase, surface tension effects can play a prominent role in undermining the 

maximum spread the film can achieve. In the relaxation phase, the film diameter may begin to 

recede depending on the surface roughness and the impact velocity, before reaching the 

equilibrium phase where ξ reaches a constant. In the next few sections, the role of these physical 
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properties and their influence on the spreading and breakup behavior of liquid droplets in a low 

density environment are discussed. 

5.4.1 Spreading of a Liquid Droplet 

The spreading diameter was calculated based on the number of lattice points that are in contact 

with the heavier fluid at the wall. In the kinematic phase the contact line corresponds to the 

circumference of a horizontal cut through the drop moving with a downward velocity of V0
 

(Rioboo et al (2002)). Assuming that the diameter of the drop after the impact is still the same, a 

simple expression can be obtained in the kinematic phase (t*<<1) for the spread factor as 

. This expression was validated for different We and Re using 

LBM as shown in figure 29. A curve fit was generated to yield . A similar 

expression was also obtained in the experiments of Rioboo with a coefficient of 2.8. In the 

current simulation, it was also found that changing the wettability of the surface did not lead to 

different results in the kinematic phase of the spreading mechanism.  

*1/2 *
0/ 2  where /d D t t tV Dξ = = =

*0.5/ 1.35d D t=

 

The kinematic phase is followed by the spreading phase in which the impact velocity, drop 

diameter and the surface tension determine the maximum spreading diameter. A comparison for 

the maximum spread factor from the 3D LBM simulations with experimental data of Scheller 

and Bousfield (1995) and Asai et al (1993) is shown in figure 30. The experimental results of 

Scheller and Bousfield show that the maximum spreading diameter is better correlated with the 

parameters, Reynolds number and Ohnesorge number. Ohnesorge number is given by 

 which is dependent on only the fluid properties. ( )1/ 2 1/ 2/ D Weµ ρσ = / Re
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Figure 28: Spreading behavior from the the current LBM simulations showing the four phases of 
droplet impact dynamics at We=20.4 and Re=21.5 at a density ratio of 6. 
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Figure 29: Variation of the instantaneous spread factor with time in the initial phase of a three-
dimensional drop impact on the dry solid surface. The solid line indicates the curve fit 
d/D=1.35t*0.5. 
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Figure 30: (a) Comparison of LBM simulation results (●) with (a) experiments and correlation of 
Scheller (---, ∆), Asai (□) and correlation of Pasandideh-Fard (◊). (b) Comparison of LBM (●) 
with the analytical solution of Pasandideh-Fard (--). 
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Current numerical results are also compared with the correlation proposed by Scheller (figure 

30a), and with the analytical expression proposed by Pasandideh-Fard et al (1996), given as 

 which is applicable for We>12 and Re
0.25

max 0.5Reξ = 1/2<<We (figure 30b). The simulation 

results from LBM match well with these studies.  

5.4.2 Droplet Breakup Analysis 

At higher Weber and Reynolds numbers, an impinging droplet can breakup into smaller drops. 

The dependence of this breakup behavior although may depend on the above mentioned 

parameters, its dependence on the surface wettability and the manner of the dissipation of the 

impact kinetic energy is not well understood. By the principle of conservation of energy of the 

liquid drop before and after impact, we can write 

f f fi i i f
KE PE KE PESE SE DE E E E E E E+ + = + + +                                                               (5.8) 

where  are the kinetic, potential and surface energies before the impact of 

the liquid drop with the solid, and 

,  and i i
KE PE SEE E E i

, ,  and f f f f
KE PE DSEE E E E are the kinetic, potential, surface 

and dissipation energies after the impact (Mundo et al (1995)).  

5.4.2.1 Three-dimensional Breakup Analysis 

For a three-dimensional (spherical) drop falling on a solid surface, the kinetic energy of impact 

per unit length can be written as 

21

2 6KE

3E U D
πρ ⎛ ⎞= ∆ ⎜

⎝ ⎠
⎟                                                                                                         (5.9) 
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where 
l gρ ρ ρ∆ = − . If the drop spreads to a maximum diameter of Dmax and a film thickness of 

h, then by conservation of mass 

3 2
max6 4

D D h
π π

=  

 

2

2
max max

2 2

3 3

D D
h D

d ξ
⎛ ⎞

⇒ = =⎜ ⎟
⎝ ⎠

                                                                                           (5.10) 

where maxξ  is the ratio of the maximum film diameter to the initial diameter of the drop. 

The energy lost in dissipating the kinetic energy of the falling drop against viscosity has been 

shown by Chandra and Avedisian (1991) to follow  

D eE V t≈ Φ                                                                                                                           (5.11a) 

where  Φ is the dissipation function given by 

ji i

j i j

uu u

x x x
µ

⎛ ⎞∂∂ ∂
Φ = +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 

2
U

h
µ ⎛ ⎞⇒ Φ ≈ ⎜ ⎟

⎝ ⎠
                                                                                                                  (5.11b) 

and e

D
t

U
=  is the time taken by the droplet height to go from D to 0. 

Thus, the dissipation energy is given by 

max

43

8D

2E U D
π µ ξ=                                                                                                            (5.11c) 

The surface energy is dependent on the surface tension. Before the impact, it is given by 

2i

SEE Dπ σ=                                                                                                                         (5.12) 
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When the spreading film has stretched to a maximum diameter given by dmax, the surface energy 

can be written as 

 ( ) (2 2 2
max max1 cos 1 cos

4 4
f

SEE d D )π πσ θ ξ σ= − = − θ                                                       (5.13) 

The final surface energy is a function of the contact angle. In earlier studies, it has been found 

that the maximum spread factor has little dependence on the contact angles for Re>10 flows. 

Analytical work by Pasandideh-Fard et al (1996) has also shown that capillary effects can be 

ignored for flows with We>>Re1/2. Thus, it is assumed that the final surface energy is not 

dependent on the contact angle, and by substitution of these expressions in equation 5.8, and on 

simplification, the energy equation can be reduced to 

( )2 4
max max

3 12 9

2Re lWe

ξ ξ ρ
ρ

− ∆
+ =                                                                                                (5.14) 

For large differences in density, the right hand side of equation 5.14 is 1.0. However, in the 

current study, / lρ ρ∆  is found to vary from 0.75 to 0.9.  

 

At the instant when the spreading film diameter has reached a maximum, the interplay of the 

surface and kinetic energies can lead to a possible breakup of this liquid film into smaller 

daughter droplets. Equation 5.14 can be regarded as a criterion for predicting spreading or 

breakup outcomes of an impacting droplet. For a situation when 

( )2 4
max max

3 12 9
1

2Re
l

We

ξρ ξ
ρ

⎛ ⎞−
⎜ +
⎜∆ ⎝ ⎠

⎟ >
⎟

, the spreading film will reach a maximum diameter without 
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breaking up into daughter droplets, whereas when 
( )2 4

max max
3 12 9

1
2Re

l

We

ξρ ξ
ρ

⎛ ⎞−
⎜ ⎟+
⎜ ⎟∆ ⎝ ⎠

<

1

, the 

spreading film will break into smaller drops when the maximum diameter has been reached.  

 

For a water drop impinging a neutral surface and with air as the surrounding medium, i.e., 

/ lρ ρ∆ =  in a three-dimensional system, the demarcation line can be defined. From different 

experiments, the maximum spread factor at breakup has been found to be between 4 and 5 (Yarin 

(2006)). Using these values in equation 5.14, for the maximum spread factor at breakup, the 

analytical expression reduces to 12 / 1152 / 1We Re+ =  for  max 4ξ =  and  39  

for 

/ 2812 / 1We We+ =

max 5ξ = . The map for all such outcomes is given in figure 31. The hatched portion between 

the curves may be considered the region where the droplet may or may not break after reaching 

the maximum spread factor. For low values of Re and We, i.e., on the left side of the region, the 

drop will never break. On the right side of this region, the drop will always break. The two 

limiting cases for the drop to break are given by (1)  and hence We = 12-39, or (2) 

 and Re = 1152-2812. Hence, in 3D, for two fluids with a high density ratio, an 

impinging water drop will definitely not break into smaller drops only if the condition 

 is satisfied. The We=12 limit is well known from the literature. 

Re → ∞

We → ∞

12 / 1152 / 1We Re+ >

5.4.2.2 Two-Dimensional Breakup Analysis and LBM Results 

A similar analysis predicts that the corresponding expression in 2D for equation 5.8 reduces to 

( ) 2
max max

2

18 32

Re lWe

ξ ξ ρ
π π ρ

− ∆
+ =                                                                                              (5.15)
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Figure 31: The hyperbolic curve shown with the regimes of droplet impingement with and 
without breakup for a three-dimensional droplet impingement. The curve on the left indicates the 
breakup criterion for an assumed value for the maximum spread factor of 4. The right curve 
represents the maximum spread factor of 5. 
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Thus, if 
( ) 2

max max
2

18 32
1

Re
l

We

ξρ ξ
ρ π π

⎛ ⎞−
+⎜∆ ⎝ ⎠

>⎟ , the 2D droplet deposits on the solid surface and 

reaches a steady shape eventually. Otherwise, if  
( ) 2

max max
2

18 32
1

Re
l

We

ξρ ξ
ρ π π

⎛ ⎞−
+ <⎜ ⎟∆ ⎝ ⎠

, the 

droplet can break. Using LBM results, an extensive analysis of the 2D droplet breakup can now 

be performed for a range of We and Re at different density ratios to observe a possible breakup 

of the parent drop into daughter droplets due to impact and surface interactions from the wall. 

Such an extensive analysis is not possible for a 3D droplet breakup due to the instability that is 

propagated for low viscosity solutions using the SC model.  

 

For a fixed density ratio that ranged from 3 to 10, the Weber and Reynolds number were 

increased linearly by increasing the diameter of the impacting drop without changing any of the 

other variables. The size of the domain in the direction of spread was correspondingly increased 

to between 8 and 10 times the diameter of the impinging drop to obtain grid independent 

solutions. The current multiphase model precludes any changes in the surface tension parameter 

once the interaction strength Gσσ  is fixed. As the diameter is increased, the maximum spreading 

film diameter increases. At a critical value of Re and We, the drop breaks into daughter droplets 

when the maximum spreading diameter of around 4 is reached. This process was repeated for 

other density ratios as well, and the results for Wecrit and Recrit are listed in table 2. It can be 

observed that as the density ratio increases, the maximum spread factor at breakup also increases, 

reaching an asymptote at a density ratio of 10. Using the density ratio and the Recrit and Wecrit 

values, the maximum spread factor at breakup can be back-calculated from the equation 5.15. 
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Table 2: LBM simulation results at breakup for different density ratios. 
 

Case ρl/ρg We Re ξmax

(a) 3 347.85 75.13 3.7 

(b) 4 330 91.1 4.637 

(c) 5 252.08 97.56 5.01 

(d) 6 222.21 103.87 5.21 

(e) 8 186.85 115.57 5.83 

(f) 10 183.91 132.1 6.1 
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Figure 32: Comparison of LBM results and the analytical solution from equation 5.15 for two-
dimensional droplets. 
 

 102



The maxξ obtained was compared with the actual maxξ obtained from the LBM simulation, and is 

plotted in figure 32. For comparison, a line at 45o is drawn that corresponds to an exact match of 

LBM with theory. The LBM results and the solution from the energy equation were found to be 

accurate within a % error margin.  5±

 

The results of increasing We and Re for different density ratios are shown in figure 11. First, Re 

and We are increased by increasing the drop diameter for each density ratio until breakup occurs. 

As done before, the Weber number and Reynolds number are recorded at the point of breakup 

and used in equation 5.15 to find the maximum spread factor. Through this point, the breakup 

curve for the given density ratio is drawn. For example, at a density ratio of 3 and max 3.7ξ =  (see 

Table 1), a map of the possible outcomes is drawn for 11/ 73/ 1We Re+ =  . Similarly, for 

ρl/ρg=10 and max 6.1ξ = , the curve 14 / 122 / 1We Re+ =  is drawn. Now, all the critical points at 

which breakup would occur would fall in between these two curves. As the density ratio is 

increased, the critical point curve shifts to the right, decreasing the value of Weber number and 

increasing the value of Reynolds number for breakup. Several density ratios were run to generate 

Wecrit and Recrit, and the locus of these points is drawn as the solid curve in figure 33. Below this 

critical line, droplet breakup would not occur, and above it, it would for any density ratio. Above 

Wecrit and Recrit, the drop may break into two to three smaller droplets.  

5.4.2.3 Surface Wetting Characteristics of a 2-D Droplet 

Wetting characteristics play an important role in determining the mechanism of breakup. To 

compare how the wetting nature of the wall can affect a possible breakup of the spreading liquid 
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Figure 33: The spread/breakup regime map for impact of single droplet with a solid surface for 
neutral wetting conditions. The hollow symbols indicate that droplet spreads without breakup, 
and the filled circles indicate a breakup of the parent droplet. The demarcating curves (broken 

lines) that are shown are from the solution of the equation  
( ) 2

max max
2

18 32
1

Re
l

We

ξρ ξ
ρ π π

−⎛ ⎞
+ =⎜ ⎟∆ ⎝ ⎠

 for 

selected density ratios of 3 (— — —) and 10 (— · · —). These curves move to the right as the 
density ratio is increased from 3 to 10. Also shown is the locus (solid line) of the critical 
parameters at breakup. 
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(a) Wetting 

 
(b) Neutral 

 
(c) Non-wetting 

Figure 34: Different outcomes of a droplet splashing mechanism depending on the surface 
wetting characteristics at We=114 and Re=152. The domain size has been shown as truncated on 
the left and right boundaries and extends much further than as depicted. 
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film on the wall, simulations were conducted at different We and Re values, and the density ratio 

was also varied, one of which is shown in figure 34. For this case, We=114 and Re=152, and the 

surface was varied to be wetting, neutral and non-wetting, as is shown in the figure below. For a 

non-wetting surface (figure 34c), the impinging drop was observed to breakup readily upon 

impacting the solid surface. Since the surface is non-wetting, the drop fails to have an affinity for 

the solid wall, and in turn the surface interactions from the solid reduce the surface energy. This 

leads to a strong elongational flow and a high kinetic energy in the direction of spread, 

eventually leading to a breakup of the parent drop. In the case of a wetting surface, the surface 

energy is high, and thus plays a prominent role in reducing the kinetic energy in the transverse 

direction due to which the film spreads to a maximum diameter and yet does not break into 

daughter drops (figure 34a). A neutral surface can be described by equation 5.15, and for the We 

and Re case shown in figure 34b, the outcome lies on the right of this critical curve. It is also 

seen that the nature of the spreading film breakup is vastly different for the non-wetting and 

neutral cases. Hence, a possible breakup of the drop on a neutral or non-wetting surface can be 

averted by altering the surface and making it wetting in nature.  

5.5 Summary 

The lattice Boltzmann method has been used in the current study to simulate single- and two-

phase fluids. Bubble coalescence was found to occur in a three stage process, namely collision, 

draining of the liquid film and eventually its rupture. The bubble dynamics is dictated by vortex 

pattern of the leading bubble, which allows the bubbles to coalesce. Such simulations have also 

been run for different configurations of the initial bubble distribution to show the effect of vortex 
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shedding on the oscillatory motion of the bubbles. Staggered bubbles yield a qualitative 

overview of the process of bubble coalescence in channels in which lift forces come into play 

because of the presence of walls. 

 

In addition, LBM has been used to perform three-dimensional simulations of droplet impact 

dynamics using a model that allows two-phase interactions. The density ratio was varied between 

3 to 10. The model was extended to study the spreading behavior of a single drop colliding with 

a solid dry surface for a range of Weber (5<We<100) and Reynolds (10<Re<100) number. The 

current LBM model is shown to be capable of capturing the four phases of droplet spreading on a 

solid surface, namely (a) kinematic phase, (b) spreading phase, (c) relaxation phase, and (d) 

equilibrium phase. In the kinematic phase, the wettability had no influence on the spreading 

diameter, which was found to obey the relationship, *0.5/ 1.35d D t= . In the spreading phase, it 

was found that the spread factor is higher for high inertia impacts, or high Weber number. The 

results are found to match well with existing experimental results and with the analytical 

expression given as  which is valid for We>12 and Re
0.25

max 0.5Reξ = 1/2<<We.  

 

Criteria for two-dimensional and three-dimensional droplet breakup have been developed, which 

depend on Re and We. Criteria for 3D are provided without results since droplet breakup occurs 

at higher Re and We, which can not be handled by the current model. However, in two-

dimensions, for a wide range of Re and We, the LBM simulations obey the 2D droplet breakup 

criteria developed. The breakup of a 2D droplet is seen to occur only after a maximum spread 

factor is reached. This value increases with the density ratio, but reaches an asymptotic value at a 
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density ratio of 10. The LBM simulation results have been compared with an analytical solution 

for the spread factor based on the conservation of energy and are found to be within ± 5% error 

margin.  

 

The spreading behavior of the drops is also found to be a strong function of the wetting 

characteristics of the wall, although for impacts with high inertia the role of the wall wetting 

characteristics is not very significant as for low inertia impacts. A droplet breaks up easier in 

cases where the wall is non-wetting or neutral as compared to a wetting surface. The wetting 

characteristics of the wall influence the geometric separation in such a drop when it eventually 

breaks up on the wall. Upon breakup, the distance between daughter droplets is much higher in 

cases with a non-wetting wall as compared to breakup at a wetting wall, which illustrates the role 

of the surface interactions in the outcome of the impact. In some cases, the breakup can be 

delayed/averted by suitably altering the wettability of the solid surface by making it hydrophilic. 
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CHAPTER SIX: DROPLET FORMATION AT A T-JUNCTION 

6.1 Introduction 

In recent years, microfluidic devices that generate emulsions of liquid droplets suspended in an 

outer immiscible liquid have found widespread applications in food processing, drug delivery, 

microanalysis, tumor destruction, as ultrasound agents and in chemical reactions at the micron 

level (Christopher and Anna (2007)). Many applications are found that involve multiphase 

transport through thin capillaries and microchannels. For instance, miniature evaporative and 

distillation units and bubble generators, flow cytometers and emulsions all use transport of two 

dissimilar fluids through a microchannel. Over the past few years, numerous experiments have 

highlighted the advances being made in the field of droplet generation using a variety of 

microfluidic devices, particularly using co-flowing fluids (Umbanhowar et al (2000), Cramer et 

al (2004)), passing dissimilar fluids through an orifice (Anna et al (2003), Garstecki et al (2005), 

Tan et al (2004)) and droplet formation at T-junctions (Thorsen et al (2001), Garstecki et al 

(2006), Van der Graaf (2006), Tice et al (2004), Guillot and Collin (2005), Husny and Cooper-

White (2006), Christopher et al (2008)). Due to the length scales involved, the flow of the 

dissimilar fluids falls in the laminar regime, which enables a higher degree of human control on 

the injection process. The large surface-to-volume ratio of microchannel enhances the role of 

surface tension effects as well. In such situations, an understanding of the physical laws depends 

entirely on a sound knowledge of multiphase flows and a strong control of the fluid streams at 

the miniature level. The other aspects that influence such class of problems are the flow rates of 

 109



the continuous and dispersed phases, viscosities of the fluids, geometry of the device, and 

interplay of surface tension and viscous forces.  

 

The important parameters that can influence the droplet formation process can be written in 

terms of the physical parameters that define the two-fluid flow. The three-dimensional geometry 

of the T-junction is shown in figure 35, where the top and side views depict the channel 

dimensions and the flow inlets for the continuous and dispersed phase to enter. It is assumed, for 

simplicity, that the two liquids have similar densities, which is given by ρ . Accordingly, the 

problem can be described in terms of the following dimensional and physical 

parameters: ,  ,  ,  ,  ,  ,  ,  and c d c d c dw w h U U µ µ σ ρ . Based on these nine parameters, we can 

define six independent dimensionless parameters, using the Buckingham Pi theorem 

(Buckingham (1914)). Selecting c,   and cw cUµ as the primary dimensions, the volume of the 

droplets that are formed can be written as a function of the following six dimensionless groups: 

( ), , , , ,ReV f Q Caλ= Λ Γ                                                                                                     (6.1) 

where d d d d

c c c c

U w h U w
Q

U w h U w
= = , c cU

Ca
µ

σ
= , Re c c

c

U wρ
µ

= , d

c

µλ
µ

= , 
c

h

w
Γ =  and d

c

w

w
Λ = . 

de Menech et al (2008) argue that for low Reynolds number flows and fixed geometry, the 

number of parameters reduce to ,   and Q Ca λ . As the droplet formation process in 

microchannels is highly laminar in nature, the characteristic velocity of the flow would 

inherently be small. In such a case, a model that can successfully simulate two dissimilar fluids, 

and at the same time achieve numerical stability at low velocities is highly desirable. 
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(a) 

 
(b) 

Figure 35: (a) Top and (b) side view of the T-junction microchannel used for modeling formation 
of droplets. The inlet channels are marked using velocities at the appropriate faces.  
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                                   (a)                                                                       (b) 
Figure 36: Comparison of the spurious velocities at the interface of the two fluids with 

0.01σ =  for (a) Shan-Chen’s model and (b) Lishchuk et al (2003). The spurious velocities in 

(b) have been amplified by a factor of 
42 10×  for visual guideline only.  
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In the last Chapter, the Shan-Chen model was shown to be capable of simulating multiple phases 

in the scope of LBM. However, it was also found to have some shortcomings: velocity vectors 

were high at the interface; the model worked well for low density ratios. Figure 36 represents a 

benchmark case to illustrate this point. Two different simulations for equilibriating a static 

droplet were run, with the same initial diameter, such that the surrounding medium density is 

nearly the same as the liquid drop density. For the sake of comparison, the same surface tension 

parameter was chosen for both Shan-Chen’s and Lishchuk’s model, which was described in 

section 3.6.2, and the results at equilibrium are shown in figure 36. It was found that the ratio of 

the magnitude of spurious velocities for Shan-Chen and Lishchuk’s model was of the order of 

10,000. More so, the magnitude of spurious currents in terms of the droplet diameter and 

viscosities selected was found to be Re 3.6Spur = for Shan-Chen, whereas for Lishchuk’s model 

it was . Clearly for the problem where the flow Reynolds number is of order 

, the Shan-Chen model does not offer a viable option, and thus was discarded, and 

simulation results using the Lishchuk model are presented in the next few sections. 

Re 0.001Spur =

(1)O

 

In addition, the color segregation step of the original Gunstensen model was replaced by a recent 

variant proposed by Latva-Kokko and Rothman (2005), which minimizes the spurious velocities 

even further, and at the same time removes lattice pinning. According to this method, the post-

collision distributions of the two color fluids, red and blue, are computed as 

( )
cosR R R B

i i i

R B R B

f f w f i

ρ ρ ρβ
ρ ρ ρ ρ

= +
+ +

eθ                                                                   (6.2a) 
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( )
cosB B R B

i i i

R B R B

f f w f i

ρ ρ ρβ
ρ ρ ρ ρ

= −
+ +

eθ                                                                   (6.2b) 

where  

.
cos i

f

i

C

C
θ ∇

=
∇

e

e
                                                                                                                   (6.3) 

and β  is the anti-diffusion parameter and is fixed at 0.7 to keep the spurious currents low and 

maintain a narrow interface thickness (Lishchuk et al (2008)).  

 

In the following sections, Lishchuk’s improved model has been used to conduct simulations of 

droplet formation for a range of Capillary numbers. It is known from earlier experimental work 

of Garstecki et al (2006) and Christopher and Anna (2007) that the dominant forces responsible 

for the formation of droplets vary depending upon the Capillary number of the continuous phase. 

At very low Ca, the break-up is dominated by a pressure build-up in the liquid upstream of the T-

junction, that pushes the interface towards the downstream edge of the dispersed phase inlet 

channel, pinching-off the protruding dispersed phase and forming droplets that occupy nearly the 

whole width of the main channel. At slightly higher Ca, a transition regime begins where both 

pressure and shear stress are responsible for the formation of droplets. At even higher Ca, the 

formation of droplets is purely shear driven. Each of these regimes, based on the Capillary 

number of the flow, are described below with results obtained through lattice Boltzmann 

simulations. 
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6.2 Low Ca Regime 

According to Christopher and Anna (2007), at low Capillary numbers ( ), droplet 

formation is a direct consequence of the pressure force exerted by the continuous fluid on the 

dispersed phase. At such low Capillary numbers, the drag force becomes negligible as compared 

to the surface tension forces that hold the interface together. In such a scenario, the viscous 

forces are not strong enough to overcome the interfacial force, and hence the droplets start to 

grow in the main channel and block the flow of the continuous liquid (Garstecki et al (2006)). 

The pressure gradient and the flow of the continuous liquid aid in the distortion of the droplet, 

and the interface moves towards the exit of the main channel. Due to the blockage of the 

available area for the continuous fluid to flow downstream, the pressure upstream of the 

expanding droplet increases, as a consequence of which the upstream interface is pushed towards 

the downstream edge of the junction. Eventually, the upstream interface is cut-off by the 

downstream edge of the dispersed phase channel, and a drop in the form of a ‘plug’ is formed. At 

this time, the interface retracts and a new droplet starts to penetrate the main channel. A time 

history of this movement of the interface is depicted in figure 37, where the upstream interface is 

shown to be pushed down as the pressure of the liquid builds up due to a blockage of the 

available area for the continuous phase to flow. 

1Ca

 

Invariably, plugs formed by such a process are found to have a length that is the same order as 

the width of the continuous phase channel. More so, the length depends on the flow rate of the 

dispersed phase at a fixed Capillary number of the continuous liquid. Figure 38 shows simulation 

results obtained in the current study for Ca=0.001 and 1/30λ =  for a range of flow rate ratios 
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Q . The number of lattice nodes chosen was 201 41 11× × . The flow rate ratio was varied 

keeping the flow rate of the continuous liquid fixed and increasing the inlet velocity of the 

dispersed liquid. As can be observed, the length of the plugs formed was highest when 

, and is much larger than the width of the continuous phase channel. As the 

flow ratio was decreased, plugs of reduced length were formed (figures 38b-f). Below a flow rate 

ratio given by , the length of the plugs was not found to change appreciably, as can be 

observed from the figure. 

/
d c

Q Q Q= 2=

1/5Q ≤

 

Simulations were repeated at Ca=0.0028, with a similar viscosity ratio and the same geometry as 

used earlier for Ca=0.001, and results are shown in figure 39. For the same geometric and 

viscosity parameters, the length of the plugs formed at Ca=0.0028 was found to be slightly lower 

than those formed for Ca=0.001. As the Capillary number was increased based on the velocity of 

the continuous liquid stream, the decrease in the length indicates the minor role that the viscous 

forces start to play in the squeezing regime. Decreasing the area ratio Λ  for Ca=0.0028 gives 

similar results, but with a slight change in the lengths of the droplets that were formed, as shown 

in figure 40. To compare the effect of geometry on the size and shapes of the droplets formed, a 

three-dimensional comparison of the droplet shapes formed for the two different flow situations 

described above is shown in figure 41. The figure indicates that the droplets formed are highly 

confined (i.e. non-spherical), and the lengths strongly depend on the flow rate of the dispersed 

phase liquid. The formation of plugs (at high ) was replaced by formation of circular disk-

shaped ‘cobbles’ as the flow rate ratio was decreased. This change in the shapes of the droplets 

Q
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Figure 37: Formation of a plug for Ca=0.0028 and 1/ 2Λ =  using lattice Boltzmann 
simulations. It can be observed that the upstream interface moves towards the downstream edge 
of the dispersed phase channel with time, where the interface is pinched-off eventually. 
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(a) Q=2 

 
(b) Q=1 

 
(c) Q=1/2 

 
(d) Q=1/5 

 
(e) Q=1/10 

 
(f) Q=1/20 

Figure 38: Variation in the droplet length as a function of flow rate ratio for Ca=0.001, 
1/30λ =  and . 1/ 2Λ =
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(a) Q=1 

 
(b) Q=1/5 

 
(c) Q=1/10 

 
(d) Q=1/20 

 
Figure 39: Plug shapes for Ca=0.0028, 1/ 28 and 1/ 2λ = Λ = . 

 119



 
(a) Q=1 

 
(b) Q=1/5 

 
(c) Q=1/10 

 
(d) Q=1/20 

 
Figure 40: Plug shapes for Ca=0.0028 and 1/3Λ = , 1/ 28λ = , 0.6Γ = . 
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formed, i.e. plugs to cobbles, was again found to occur for Ca=0.006, as shown in figure 42, 

where the shapes as a function of the flow rate ratio is demonstrated. 

 

For the range of Ca simulated in the squeezing regime, a common picture emerges. The droplet 

lengths are found to increase drastically for flow rate ratios given by . For all flow rate 

ratios less than 0.2, the droplet lengths change little and seem to reach an asymptotic value, 

which depends on the Capillary number of the continuous liquid. These are summarized in figure 

43 in terms of the dimensionless length of droplets formed in this regime as a function of Q . For 

the sake of comparison, the droplet lengths as predicted by Christopher et al (2008) for 

0.5Q ≥

1b in 

equation 2.7, and the droplet length as predicted by equation 2.1 by Garstecki et al (2006) are 

shown by dotted lines. Although the results predict droplet lengths of the same order as those 

predicted by the data fitted equation of Garstecki and an approximate force analysis of 

Christopher et al (2008), these analyses do not take into account the Capillary number effect on 

the size of the droplets formed, and on comparison with numerical simulations, are observed to 

be too simplistic in nature. More so, the analytical expression of Christopher et al (2008) is found 

to deviate the most from LBM results, as the maximum droplet length predicted by equation 2.7 

is highly under-predicted as compared to the drop lengths measured in the current study. It is 

worth noting that Christopher et al (2008) have also observed that droplet lengths decrease with 

an increase in the Capillary number, and that the proposed model under-predicts this length 

measured in their experiments for a range of flow parameters.  
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Figure 41: Outcomes for Ca=0.0028 and two different geometries shown as a function of the 
flow rate ratio. 
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Figure 42: Formation of plugs and cobbles as a function of flow rate ratio for Ca=0.006. 
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Figure 43: Non-dimensional length of drops formed vs. flow rate ratio for Capillary numbers in 
the squeezing regime. 
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6.3 Transition Regime 

Between the squeezing and dripping regimes, the droplet formation could be envisaged as a 

consequence of both pressure and shear forces competing against interfacial tension in deciding 

the final outcome. De Menech et al (2008) have shown through numerical simulations that the 

pressure fluctuations decrease remarkably as the Capillary number is increased from 0.004 to 

0.045 for a flow rate ratio of  and viscosity ratio of0.25Q = 1λ = . In the current study, to 

incorporate the effect of the viscosity ratio in conjunction with the pressure build-up mechanism, 

pressure profiles upstream of the T-junction were recorded and the fluctuations noted. These are 

shown in figure 44 for the squeezing regime, and in figure 45 for the Capillary numbers 

until . The interfacial tension, viscosities of the fluids and the geometry are fixed such 

that  and  for 0.01

0.1Ca =

1/ 2Λ = 1/3Γ = 0.1Ca< < , and the Capillary number was increased by 

changing the average inlet flow velocity. Clearly, holding the flow rate ratio constant requires 

that the flow rates of the two fluids be increased for the corresponding increase in Ca. The 

pressure fluctuations for the squeezing regime show that the frequency of oscillations increases 

considerably as the Capillary number is increased from 0.001 to 0.0028. When the Capillary 

number is further increased to 0.006, the relative pressure change or consequently the amplitude 

of oscillations decreases by ~75% and 50% for Ca=0.0028 and 0.006 respectively. The 

frequency of oscillations is also seen to increase with Ca. The pressure fluctuations for 

 are minimal and found to settle down completely, corroborating the theory that 

pressure forces do not play a role for high Capillary number flows. 

0.01Ca >
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According to de Menech et al (2008), the transition regime is also marked with a sharp decrease 

in the volume of the droplets formed at the T-junction, and is also dependent on the viscosity 

ratio. To test the hypothesis, simulations were conducted and droplet volumes and frequency 

measured for the range of Capillary numbers given by 0.01 0.1Ca≤ ≤  and 1/10λ = . For a 

fixed flow rate ratio, the droplet volume in this regime was found to decrease sharply between 

Ca=0.01 and Ca=0.04, beyond which the change was more gradual, as is shown in figure 46. The 

droplet volumes were normalized using 0/V V V= , where  has been used as a 

characteristic volume based on the width and depth of the continuous liquid channel. From LBM 

results, it can be observed that although increasing the flow rate ratio increased the droplet 

volumes, as is evident from the figure, the change was dominant for Ca<0.05. It was also found 

that the equivalent droplet diameter, calculated based on the diameter for a spherical droplet that 

would fit the same volume as the volume of the droplets formed at the T-junction, depends on 

the Capillary number, and was found to obey the following relationship 

2
0 cV w= h

/
sph c

d w Ca α−∝                                                                                                                        (6.4) 

where 0.2,  0.24 and 0.25α =  corresponding to 1/5,  1/10 and 1/20Q =  respectively. 

Clearly, the exponent is α  is a function of the flow rate ratio, and does not change appreciably 

as the flow ratio is decreased. This is similar to the observation of Van der Graaf et al (2006), 

who observed the exponent to be equal to 0.25, but did not discuss the effect of the flow rate 

ratio. 
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In addition to the droplet sizes, the frequency of formation is also calculated, and shown in figure 

47. Again, the Capillary number was increased by increasing the flow velocity of the continuous 

liquid, keeping all other physical properties the same. At a fixed Ca, the flow rate ratio was 

increased by increasing the flow velocity of the discontinuous liquid. From figure 47, it can be 

observed that for a constant Ca, the frequency of formation of these drops increases as the flow 

rate ratio increases. The frequency has been scaled with the capillary break-up time, such that 

. capf f t= , where /cap c ct wµ σ= , as used earlier by Christopher et al (2008). A higher flow 

rate ratio would mean that a larger mass of the discontinuous liquid can be pushed into the 

expanding drop for the same continuous liquid flow rate and viscosity. By conservation of mass, 

the product of the frequency and the volume of droplets formed should be equal to the mass flow 

rate of the dispersed phase, i.e., 
dQ fV= . Thus, a higher flow rate would translate to higher 

frequency of the formation of droplets. More so, the dimensionless volume and frequency are 

related as (Christopher et al (2008)) 

dQ

/f QCa V=                                                                                                                            (6.5) 

As a consequence, the frequency and volume are inversely related. Thus simulation results 

presented in figures 46 and 47 are consistent, as for a fixed flow rate ratio and Capillary number, 

a decrease in the volume of the droplets should lead to an increase in the frequency of their 

formation, which was observed to be true, and corroborates with equation 6.5. In addition, from 

figure 47, it is clear that the frequency of formation increases as the Capillary number increases. 
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Figure 44: Pressure fluctuation measured upstream of the T-junction for different Capillary 
numbers. 

 
Figure 45: Pressure fluctuation measured upstream of the T-junction for different Capillary 
numbers in the transition regime. 

 128



 
Figure 46: Normalized drop volume as a function of Capillary number for different flow rate 
ratios in the transition regime for 1/10λ = . 

 
Figure 47: Dimensionless frequency of droplet formation for various Capillary numbers in the 
transition regime. 
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6.4 High Ca Regime 

Succeeding the transition regime is the dripping mode, in which droplets are formed by interplay 

of viscous and interfacial forces on the expanding discontinuous phase. Earlier studies by de 

Menech et al (2008) and Van der Graaf et al (2006) have only focused on the simulation of 

dissimilar liquids with similar viscosities and a simplistic microchannel geometry in which 

 and . Also, it is not clear whether and how the viscosities of the liquids and the 

channel geometry influence the droplet formation frequency. In this section, the dependence of 

the droplet formation frequency on the geometry and viscosity of the continuous and 

discontinuous liquids for flows in which the Capillary number follows  is investigated, 

followed by an analysis on the stability of formation of droplets for high Capillary numbers. 

1Λ = 1Γ =

0.1Ca ≥

6.4.1 Effect of Geometry 

In the current study, the effect of the width of the continuous phase channel is investigated in 

context of the formation of droplets in the dripping regime. Figure 48 shows the modes and 

shapes of droplets formed at Ca=0.1 and 1/10λ = . The droplets formed are perfectly spherical 

(figure 48) for a low flow rate ratio given by 1/ 20Q = . As the flow rate ratio is gradually 

increased by increasing the dispersed phase flow rate (and keeping the continuous flow rate 

fixed), the frequency of formation of droplets increases, and so does their size. The droplets 

remain nearly spherical in shape until 1/5Q = . At this value, a thread appears that penetrates 

deep into the main channel, and droplet formation occurs some distance from the T-junction. 
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Such a situation is commonly known as droplet formed in the channel (DC) and is explained in 

more depth in section 6.5.  

 

At this point, tests were repeated for the same flow rate ratios but by varying the width of the 

continuous phase channel. In this study, these widths have been chosen such that 

 for simulating the immiscible liquids.  1/ 2,  1/3,1/ 4 and 1/5Λ =

 

Results for  are shown in figure 49. Similar to the earlier case, spherical droplets are 

formed at the T-junction for flow rate ratios up to 

1/3Λ =

1/15Q = . As the dispersed phase flow rate, 

, is further increased such that 
d

Q 1/10Q = , the formation of a thread that penetrates into the 

main channel was evident and droplets similar to the shape of a truncated sphere were formed, as 

is shown in the figure. At higher , the dispersed phase forms a stable jet that remains parallel 

to the continuous outer liquid. 

d
Q

 

For higher widths , a similar observation can be made. In figure 50, droplet formation for 

 for Ca=0.1 is shown. For the range of flow ratios studied, the droplets formed are 

found to be non-spherical and highly confined due to the finite depth of the microfluidic 

assembly. More so, the thread formed at 

c
w

1/ 4Λ =

1/10Q =  is found to penetrate deeper into the main 

channel, and turns into a jet for higher flow rate ratios. For 1/5Λ = , shown in figure 51, the 

thread appears at  and is found to be transformed in to stable jet at .  1/15Q = 1/10Q =
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These observations can be explained as follows. For a fixed Capillary number and the choice of 

the fluids, the interfacial tension and viscosities remain unchanged, and so does the velocity of 

the continuous liquid, . For a fixed flow rate ratio, Q , increasing the width  results in an 

increase in the flow rate, . To account for 

c
U

c
w

c
Q constantQ = , the flow rate of the dispersed phase 

has to increase, and since the dispersed phase width is not increased, the flow velocity of the 

dispersed phase increases. This would result in more volume of the dispersed liquid to be pushed 

into the expanding droplet. Intuitively, for the same velocity and higher width of the continuous 

phase channel, the continuous liquid velocity profile would be less steep and the gradient of 

velocity near the dispersed phase channel inlet would be smaller. This can result in a longer time 

for the droplet to expand and fill the continuous phase channel, and for higher flow rates of the 

discontinuous phase may even result in insufficient shear to break the liquid stream into droplets. 

Borrowing from the definition of Christopher et al (2008), the shear force on the expanding drop 

is written as  

1

(1 )
shear

c

F
w b

∝
−

                                                                                                                    (6.6) 

As the shear force is inversely proportional to the width of the continuous liquid channel, an 

increase in the latter would lead to a decrease in the former. This results in a decrease in the 

dimensionless frequency of formation of droplets as Λ  increases, as shown in figure 52, where 

the dimensionless frequency obtained using LBM simulations is plotted as a function of the flow 

rate ratio Q . As  increases, the frequency increases. The frequency also increases with an 

increase in the width of the continuous phase channel, . 

Q

c
w
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Figure 48: Flow regimes for  at different flow rate ratios. 1/ 2 and Ca=0.1Λ =
 

 
Figure 49: Flow regimes for  at different flow rate ratios. 1/ 3 and Ca=0.1Λ =
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Figure 50: Flow regimes for  at different flow rate ratios. 1/ 4 and Ca=0.1Λ =
 

 
 
Figure 51: Flow regimes for  at different flow rate ratios. 1/ 5 and Ca=0.1Λ =
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Figure 52: Dimensionless frequency as a function of flow rate ratio for different for Ca=0.1 
and 

Λ
1/10λ = . 
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6.4.2 Effect of Viscosity 

According to a recent review by Christopher and Anna (2007), the critical Capillary number 

where the transition from droplet to parallel flow can occur is a function of the viscosity ratio. A 

high viscosity ratio (i.e. csmall µ ) would indicate a relatively smaller shear force on the 

penetrating discontinuous phase, and hence a higher likelihood of the thread remaining stable 

and forming a long jet. In the current work, the effect of viscosity has been studied in the context 

of flow regimes that emanate for different viscosities of the continuous phase. For the sake of 

comparison, the Capillary number is fixed at 0.1Ca = , and the other parameters are fixed at 

 and . Comparisons have been made for the viscosity ratios given by 1/ 2Λ = 1/ 2Γ =

1/10,  1/30, 1/50 and 1/100λ = . Since the Capillary number and the interfacial tension are 

held constant, an increase in the continuous liquid viscosity (and a corresponding decrease in the 

flow velocity) is the method adopted in this work. Results for the range of viscosity ratios in 

terms of regimes observed are shown in figures 48, 53, 54 and 55 for viscosity ratios of 1/10, 

1/30, 1/50 and 1/100 respectively. Based on these, a common theme emerges. The size of the 

droplets can be observed to increase as the flow ratio increases at a constant viscosity ratio. For a 

fixed flow rate ratio Q , the droplets can be found to become more confined and resemble 

truncated spheres as the continuous phase viscosity was increased. More so, formation of 

droplets becomes easier as the viscosity is increased, as the dispersed phase flow goes from 

parallel to droplets-in-channel to droplets-at-the-T-junction with an increase in cµ . This 

indicates that the droplet sizes and frequency could be controlled by suitable addition of 

surfactants that may alter the viscosity of the continuous liquid. 
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The dependence of frequency on the flow rate ratio for the range of viscosities is shown in figure 

56. As can be observed, the frequency increases as the flow rate ratio increases. Furthermore, the 

frequency increased with an increase in the viscosity ratio (or decreasing cµ ). This is against 

common perception, as an increase in the viscosity of the outer fluid would surmount to a higher 

shear force, and hence faster breakup of drops and higher frequency. The behavior observed in 

current simulations can be explained in conjunction with figure 57, where the frequency is 

plotted as a function of the flow rate ratio for various values of the continuous phase Reynolds 

number. Going by the argument presented in the earlier paragraph, an increase in 
cµ  would 

decrease  for the Capillary number to be a constant. This results in a lower volumetric flow 

rate for the continuous liquid (and hence Re ). At the same time, to keep the flow rate ratio 

 fixed, the dispersed phase flow rate would also need to be decreased by the same 

factor. This results in a lower overall shear drag on the penetrating discontinuous liquid, and 

hence a longer residence time in the main channel. A longer residence time results in lower 

frequency, as well as a higher volumetric flow of the dispersed phase into the main channel, and 

therefore, droplet with a higher volume is formed. Clearly, for a fixed flow rate ratio, if  

increases, then the shear on the penetrating droplet would also be higher, and hence the 

frequency of formation would increase, as shown in figures 56 and 57 where the dimensionless 

frequency is found to increase as the continuous liquid flow rate increases. 

cU

c ↓

/dQ Q Q= c

cQ
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Figure 53: Droplet formation for Ca=0.1 and 1/30λ = . 
 
 

 
 
Figure 54: Droplet formation for Ca=0.1 and 1/50λ = . 
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Figure 55: Droplet formation for Ca=0.1 and 1/100λ = . 
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Figure 56: Dimensionless frequency as a function of flow rate ratio for different viscosity ratios 
at Ca=0.1. 

 
Figure 57: Dimensionless frequency as a function of flow rate ratio for different flow rates of the 
continuous fluid at Ca=0.1. 
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For the range of Capillary numbers simulated in the ‘dripping regime’ in the current work, 

frequency measurements were made and are shown in figure 58. The abscissa is taken as a 

product of the flow rate ratio and Capillary number, as it represents an inverse relationship 

between volume and frequency (see equation 6.5). It was observed, and can be proved 

intuitively, that with an increase in Capillary number the frequency of the droplets formed 

increased. An increase in the Capillary number represents a higher viscous force in comparison 

to interfacial tension forces that hold the dispersed phase thread together. A higher viscous force 

(or a lower interfacial force) would indicate that the shear force can overcome the interfacial 

forces for much smaller drop lengths penetrating into the main channel. Also, the inertia 

associated with the continuous flow can be higher (one method to increase Ca), and therefore, a 

higher drag induced on the discontinuous liquid, and the shear associated with the form drag 

would be higher.  

 

In addition, it was observed that the slope of the dimensionless frequency ( f ) versus the product 

of flow rate ratio and Capillary number (QC ) decreases as the Capillary number is increased. 

This is shown in figure 58. Another point to elucidate from such a behavior is that the frequency 

of formation of droplets does not increase in the manner as it does for lower Capillary numbers. 

In fact, droplet formation at higher Capillary number seems to show less dependence on the flow 

rate ratio. As frequency does not change much with a change in QC , the volume would be 

expected to decrease only slightly at such high Capillary number flows. This point has been 

further discussed in the next section. 

a

a
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Figure 58: Frequency of the droplets as a function of QCa for various Capillary numbers in the 
dripping to jetting regime. 
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6.5 Stability of Droplet Formation in Dripping Regime 

Existing experiments of Guillot and Colin (2005) show that when for a given continuous phase 

flow rate, if the dispersed flow is increased, the flow pattern changes from DTJ (Droplets at T-

junction) to DC (Droplets in Channel). This indicates that for a given Capillary number 

( /c cCa Uµ σ= ), when the flow rate ratio ( /d cQ Q Q )=  in increased, such a regime change 

happens. With further increase of Q , the flow regime changes to PF (parallel flow). These 

regimes appear to be established mostly for low Capillary number. The experimental findings of 

Guillot and Colin (2005) further reveal that the stability of parallel flows in a funneled T-

junction is linked to the flow rates, wetting behavior, viscosity contrast and aspect ratio of the 

inlet channel for the two liquids. The geometry of the microchannel chosen by them was 

different from the conventional T-junction microchannels commonly encountered, and the 

droplet formation was a consequence of the competing nature of two fluid streams colliding 

head-on, and subsequently guided through a funnel into the main channel. Although theoretical 

work on exploring the interplay of surface tension and viscous forces for such devices has gained 

attention (Van der Graaf et al (2006), de Menech et al (2008)), these have primarily focused on 

viscosity ratios / 1/ 8d cλ µ µ= > , and aspect ratios /
c

w h 1=  and /
d c

w w 1Λ = = . A theoretical 

treatment of the problem of stability of flows has not been carried out for Ca>0.1, where 

squeezing pressure is not the dominant mechanism for droplet formation, and for low values of 

the viscosity ratios and dissimilar widths wc and wd. Through LBM simulations, we aim to 

establish the dependence of the shear and surface tension forces for Capillary numbers that 
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define flows in the dripping to jetting regime and quantify the results in terms of the ‘stable’ 

droplet formation regime in a T-junction microchannel, which is yet to be understood.  

 

In the current study, simulations have been carried out for a range of Capillary numbers given by 

. At each Ca, the continuous phase flow rate was held constant while the 

dispersed phase flow rate was gradually increased. For 

0.1 0.7Ca≤ ≤

1/10λ =  and starting from a low value of 

the flow rate ratio Q , droplets were found to form at the entrance of dispersed channel through a 

dripping mechanism. As Qd was increased, droplets were found to pinch-off downstream of the 

T-junction, forming a thread that became unstable after a distance from the dispersed channel 

entrance. For even higher flow rate Qd, the protruding thread was found to be stable and filled up 

the whole length of the channel. The three flow patterns of DTJ, DC, and PF evolve respectively. 

For a fixed 1/10λ = , with an increase in flow rate ratio the droplet formation process (figure 

59c,f) transforms to formation of a thread (figure 59b) and subsequently a stable jet (figure59a) 

or parallel flow (figure 59d,e). For the same geometry and viscosity ratio, the threshold value of 

flow ratio, , at which a stable parallel flow appears for the first time is found to decrease 

as the Capillary number increases. The presence of the parallel flow is marked by shedding of a 

few droplets (<5) before the jet fills the entire length of the main channel. A similar behavior at 

higher Capillary numbers corresponding to 

thresholdQ

0.5 and 0.7Ca = is shown in figure 60, where the 

formation of a thread is observed to happen for 1/15Q =  and 1/ 20Q =  for  and 

 respectively, with a reduction in droplet size observable as well. 

0.5Ca =

0.7
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Figure 59: Regime map of droplet formation and flow pattern in the channel for two different 
capillary numbers and three different flow rate ratios at fixed 1/10λ = : (a) jetting, (b) droplet 
formation with necking or thread, (c and f) droplet formation, and (d and  e) parallel flow. 
 
 

 
 
Figure 60: Regime map of droplet formation and flow pattern in the channel for higher Capillary 
numbers and three different flow rate ratios at fixed 1/10λ = . 
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The interplay of flow rate ratio and viscosity ratio is important in determining whether the flow 

regime is continuous or droplet-laden. When the continuous flow viscosity is increased, i.e., for a 

lower 1/ 30λ = , a slightly different trend emerges. For example, at Ca=0.5, the threshold value 

of flow rate ratio at which a jet becomes unstable is 1/10. For λ=1/10 for the same Capillary 

number, the threshold occurs at a lower , i.e., 
dQ 1/ 20

threshold
Q = . The transition from DC to 

DTJ is also influenced by the viscosities of the two fluids. For 1/ 30λ = , this transition to 

dripping occurs at , whereas for 1/12Q = 1/10λ = , the corresponding flow rate ratio is 

. Similar to an earlier observation (Guillot and Colin (2005)), current results show that 

the viscosity ratio influences the width of the DC regime. With a decrease in

1/ 24Q =

λ , this zone is 

limited to [ ]1/11,1/10Q ∈  as compared to [ ]1/ 24,1/19Q ∈ , indicating ~20% reduction in the 

flow rate of the continuous phase.  In contrast, Guillot and Colin’s (2005) experimental findings 

have been reported for 0.35λ =  and 0.07. The width of the transition zone DC was found to 

increase as the Capillary number was lowered till Ca=0.1 (figure 61). Results at an even lower 

Capillary number i.e., Ca=0.01, show that the width of the two extreme cases shown by the 

curves in figure 61 corresponds to [ ]1/ 2,1Q ∈ . At higher Ca, the width of the DC regime 

decreases until after Ca~0.7, the DC regime ceases to exist.  

 

Figure 62 shows the normalized droplet volume as a function of Capillary number for different 

flow rate ratios and at fixed 1/10λ = . At a fixed Ca, the flow rate ratio was varied by changing 

the dispersed phase velocity. The droplet volume was normalized using . A force 

analysis is used in the present study adapted from Christopher et al (2008), where pressure and  

2
0 cV w= h
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Figure 61: Droplet flow regimes as a function of flow rate ratio (Q) and capillary number (Ca) at 
viscosity ratio 1/10λ = . Symbols indicate (□): parallel flow, PF, (∆): droplet formed in the main 
channel, DC, and (◊): droplet formed at the T-junction, DTJ.  Data at different regimes are 
shown in different colors only for visual guidelines. 
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Figure 62: Normalized droplet volume as a function of capillary number for different flow rate 
ratios.  
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shear forces are assumed to be the same and the interfacial force is scaled down by a factor k, 

(k<1), such that F kσ hσ= . This is to account for the case when the curvature in the depth 

direction is greater than 2/h. On balancing the interfacial, shear and pressure forces, the modified 

form of the cubic polynomial for ( / cb b w= ) , where b is the length of the drop before it pinches, 

becomes  3(1 )k b bC− = a . Based on this, the volume of the droplet in the original work of 

Christopher was computed as   

2V b Q≈ + Λ                                                                                                                            (6.7) 

A comparison of current results with their force analysis and a fourth order polynomial given by 

Husny and Cooper-White (2006) obtained at pinch off shows reasonable agreement in the order 

and dependence of droplet volume on Ca. 

 

The droplet volume decreases as Ca is increased, as shown in figure 62. The non-dimensional 

volume decreases from 1.0 to nearly 0.2 from Ca=0.01 and 0.1. At Ca=0.5, the droplet volume 

for  is the same, reaching an asymptotic , beyond which the drop it 

seems to reach an asymptotic value of nearly 0.1 at Capillary numbers greater than 0.5. Carrying 

forward the same argument from section 6.4.2, the negligible change in the droplet volumes for 

 goes forward with the observation that the frequency does not change with flow rate 

ratio beyond a certain Capillary number, as shown in figure 58. 

0.05, 0.1 and 0.2Q =

0.5Ca ≥

  

For the same Ca, the droplet volume was observed to increase with the flow ratio, a trend seen 

by Christopher et al (2008) and Husny and Cooper-White (2006). This is due to the reason that 
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the dispersed flow increases as the flow rate ratio is increased. Since the time to shear the droplet 

is inversely proportional to the continuous phase flow rate, any increase in Q does not increase 

the shear drag induced on the emerging dispersed phase. Hence, a higher volume of the dispersed 

phase is pushed into the main channel, and thus, forming a droplet with a higher volume as 

compared to those formed at lower flow rate ratios. 

 

In order to determine the influence of continuous phase viscosity on droplet volume, simulation 

results were compared for a range of viscosity ratios at a fixed Ca=0.1 (figure 63). Different 

viscosity ratios of 1/ 30,  1/50 and 1/100λ =  were chosen by keeping the dispersed phase 

viscosity the same value as that used for 1/10λ = , and the continuous phase viscosity was 

increased. This results in a lower average velocity of the continuous phase, and hence a lower 

flow rate Qc. For the same geometric variables wc and wd, Rec decreased by factors of 1/9, 1/25 

and 1/100  corresponding to 1/ 30,  1/50 and 1/100λ = , respectively, as compared to Rec for 

1/10λ = . In the shear dominated regime, the drag force due to viscous effects is dominant as 

compared to the pressure force due to blockage in the main channel. The drag force ( ) is 

, and can be written in terms of stress as 

D

2
D cD C U A∝ 2

D D cC Uτ ∝ . With an increase in the 

continuous phase viscosity, the increase in the drag coefficient (CD) does not match the 

corresponding decrease in Uc
2, resulting in an induced shear drag that is lower as compared to 

that of a lower continuous phase viscosity fluid. Thus, a smaller drag force would act on the 

expanding droplet. This will enable the protuberant dispersed phase to expand in the main 

channel for a longer time before it is pinched off and hence an increase in droplet volume. This 

analysis agrees with current results shown in figure 63, where the normalized droplet volume is 
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shown to increase as the continuous phase viscosity increases (i.e. λ ↓ ). A power-law curve was 

fitted to the experimental data of Christopher et al (2008) for low Ca as 0.3 /V QCa β−= , where 

β  is a measure of the capillary breakup frequency. They reported β  to be 1.13 for 1/ 50λ = . In 

figure 63, 1.37β = for the same viscosity ratio, and is 1.12 for 1/100λ = , where β  was 

estimated from the slope of normalized volume vs. flow rate ratio. Thus, the droplet volume 

increases when the dispersed flow rate or the continuous flow viscosity increases.  
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Figure 63: Normalized droplet volume as a function of the flow rate ratio Q for different 
viscosity ratios at Ca=0.1.  
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CHAPTER SEVEN: CONCLUSION 

It is shown that the lattice Boltzmann method can be used to study fluid flows that occur in a 

variety of applications. These problems include ranging from internal combustion engines, spray 

cooling, ink-jet printing to microfluidic devices for food processing, drug delivery, 

microanalysis, tumor destruction, as ultrasound agents and in chemical reactions. In this work, 

through both single- and two-phase simulations, ranging from pressure-driven flow between 

parallel plates, two-phase flow of single and multiple bubbles rising under buoyancy in a 

periodic domain, droplet impingement and break-up on a smooth dry surface, and formation of 

dispersions in a microfluidic T-junction, the applicability and advantages of using LBM over 

conventional techniques is established.  

 

The important non-dimensional parameters that describe the problem of two dissimilar liquids in 

a T-junction microchannel are: the flow rate ratio ( ), Capillary number ( ), Reynolds 

number ( ), viscosity ratio (

Q Ca

Re λ ), width ratio ( Λ ) and the dimensionless depth of the channel 

(Γ ). In the current work, the effect of varying these parameters is studied in the context of 

measuring and recording the droplet volumes and frequency for various flow conditions. The 

flow regimes emanating as a consequence of the combination of these parameters is also 

illustrated. 

 

At low Capillary numbers ( ), it was found that ‘plugs’ of dispersed phase are formed, 

which occupy the whole width of the continuous phase channel. The length of these plugs was 

0.01Ca <

 153



found to be a strong function of the flow rate ratio of the two liquids. A higher flow rate ratio 

resulted in longer droplets, and the dependence follows a variation that can be best described to 

be linear. The formation of these plugs was also shown to be a consequence of the pressure 

build-up that occurs as the flow of the continuous liquid past the T-junction is slowed down due 

to a blockage created by the expanding discontinuous drop, as shown by the pressure fluctuations 

at a point upstream of the T-junction. Changing the width and height of the channels resulted in 

different shapes of droplets, which indicates that the geometry plays a role in the overall 

formation of these micron-sized droplets. Droplets formed in this regime are highly confined, 

and their lengths decrease slightly as the Capillary number increases. 

 

For slightly higher Capillary numbers, a different trend emerges. The volume of the droplets 

decreases rapidly as Ca is increased. The pressure fluctuations present in the low Ca regime 

disappear, and the pressure upstream of the T-junction shows negligible variation as a function 

of time. The frequency of formation of droplets is found to increase significantly as Ca increases. 

The equivalent spherical diameter of a drop with the same volume as that of the droplets formed 

at the T-junction was found to obey a relationship given as /
sph c

d w Ca α−∼ , where the 

exponent α  was found to be a function of the flow rate ratio, and lies between 0.2 and 0.25 for 

flow rate ratios corresponding to 1/5 and 1/20 respectively. 

 

At even higher Capillary numbers, the dripping regime begins, in which the droplets are 

unconfined for a viscosity ratio of 1/10λ =  and low flow rate ratios. The effect of the 

continuous fluid viscosity and the geometry of the channel were investigated in the same context. 
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It was found that increasing the width of the continuous liquid channel, keeping the flow rate 

ratio constant, results in the formation of droplets that are confined and resemble truncated 

spheres, as opposed to spherical for lower widths, and the dispersed phase flow quickly 

transforms into a parallel jet for slightly lower values of the flow rate ratio. The frequency of 

formation was found to increase; although it could not be measured for flow rate ratios 

 as a stable jet appeared. On the other hand, increasing the viscosity of the continuous 

liquid resulted in a behavior which was in contrast to that observed with the change in geometry. 

Increasing 

1/10Q >

c
µ  resulted in the formation of larger non-spherical droplets, and the droplet flow 

was stable for the range of flow rate ratios simulated. More so, an increase in the viscosity led to 

a decrease in the frequency of droplets. This was explained on the basis of a resident time for the 

penetrating dispersed phase, which is more when the surrounding viscosity is higher (as the flow 

rate  is lower for the same Ca and higher viscosity). In addition, the frequency was found to 

increase as the flow rate of the continuous liquid was increased. The frequency was found to 

increase as the Capillary number was increased, although the increase in frequency with an 

increase in flow rate ratio was not appreciable for , which indicates that the volume of 

the droplets may not change beyond a certain critical Capillary number. This hypothesis was 

found to be consistent with volume measurements made for Capillary numbers as high as 0.7, 

and the change in the former was minimal beyond 

c
Q

0.5Ca ≥

0.3Ca = . 

 

Finally, a regime map was created that listed the possible outcomes when two dissimilar liquids 

interact at a T-junction. These are classified as: droplet at the T-junction (DTJ), droplet in the 

channel (DC), and parallel flow (PF). Based on numerical simulations conducted at various 
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Capillary numbers, it was found that as the flow rate was increased, the flow transformed from 

droplet-laden to parallel flow. The transition from droplets formed at the T-junction to parallel 

flows was found to depend on the Capillary number of the continuous phase. As the Capillary 

number was increased, the transition occurred earlier for a fixed viscosity ratio, indicating that 

the width of the DC regime decreases with an increase in Ca. For higher viscosities of the 

continuous phase, the transition zone was found to become narrower. The volume of the droplets 

was a function of the viscosity ratio as well. As a result of a lower shear on the emerging 

discontinuous liquid into the main channel, the droplet volume increased when the dispersed 

flow rate or the continuous flow viscosity was increased.  
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CHAPTER EIGHT: FUTURE WORK 

Droplet impingement on a dry surface is a problem that is commonly encountered for dissimilar 

fluids with large density contrast, such as water drops surrounded by air, or in internal 

combustion engines, where micron-sized droplets of the fuel are released into the combustion 

chamber. Lattice Boltzmann modeling of such class of problems is not possible with the 

multiphase model adopted in the current work. Thus, future work could be directed towards the 

droplet break-up mechanism in three-dimensions using a model that can simulate high Reynolds 

and Weber numbers. Another problem that can be investigated using a similar methodology 

includes the study of the splashing behavior of drops falling onto wet surfaces for high density 

ratio fluids.  

 

In microfluidic devices, such as the one pursued in the current work, the role of the continuous 

liquid viscosity on the squeezing regime needs to be examined in greater detail, as it is not clear 

when the viscous forces begin to play a prominent role in determining the formation of plus or 

droplets. In addition, significant modeling is required to predict a universal rule that could 

predict the length of droplets formed for flows at very low Capillary numbers. As is evident, the 

empirical correlation proposed by Garstecki et al (2006) is valid only for flow geometries where 

, and also involves an empirical parameter whose value is unknown and must 

depend on the physical properties of the fluids, geometry of the device or viscosity ratio chosen. 

A mechanistic model needs to be developed which would be based on the interfacial physics of 

the two liquids involved, and could help in predicting the performance and output of such 

/ 1/d cw w ≥ 2
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microfluidic devices. The model has to be such that it does not rely on empirical correlations 

whose applicability may become questionable. In addition, the effect of liquid viscosities on the 

stability of droplet formation needs to be investigated further for flows that fall under the 

dripping regime. A regime map could be developed, similar to the one obtained in the current 

study, which could predict the stability of flows for a range of Capillary numbers and flow rate 

ratios. Finally, the role of viscosity on the width of the transition regime should be studied. 

Moreover, the viscosity of the continuous liquid may influence the critical capillary number 

where the transition region begins. Future work can be directed towards modification of the 

multiphase model to account for the effect of surfactants on the droplet formation mechanism. 

 

A major challenge with the current model of LBM that has been used in this work is its inability 

in handling fluid mixtures which have very high density contrast (like an air-water system in 

which density ratios are of the order of 1000). Recently, a new variant of the model used in this 

work has been proposed by Lishchuk et al (2008), and could be implemented to study the 

formation of vapor bubbles in microfluidic devices.  
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