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ABSTRACT 

 

In applied mechanics it is always necessary to understand the fundamental properties of a 

system in order to generate an accurate numerical model or to predict future operating 

conditions. These fundamental properties include, but are not limited to, the material parameters 

of a specimen, the boundary conditions inside of a system, or essential dimensional 

characteristics that define the system or body. However in certain instances there may be little to 

no knowledge about the systems conditions or properties; as a result the problem cannot be 

modeled accurately using standard numerical methods. Consequently, it is critical to define an 

approach that is capable of identifying such characteristics of the problem at hand. In this thesis, 

an inverse approach is formulated using proper orthogonal decomposition (POD) with an 

accompanying radial basis function (RBF) network to estimate the current material parameters of 

a specimen with little prior knowledge of the system. Specifically conductive heat transfer and 

linear elasticity problems are developed in this thesis and modeled with a corresponding finite 

element (FEM) or boundary element (BEM) method. In order to create the truncated POD-RBF 

network to be utilized in the inverse approach,  a series of direct FEM or BEM solutions are used 

to generate a statistical data set of temperatures or deformations in the system or body, each 

having a set of various material parameters. The data set is then transformed via POD to generate 

an orthonormal basis to accurately solve for the desired material characteristics using the 

Levenberg-Marquardt (LM) algorithm. For now, the LM algorithm can be simply defined as a 

direct relation to the minimization of the Euclidean norm of the objective Least Squares 

function(s).  
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The trained POD-RBF inverse technique outlined in this thesis provides a flexible by 

which this inverse approach can be implemented into various fields of engineering and 

mechanics. More importantly this approach is designed to offer an inexpensive way to accurately 

estimate material characteristics or properties using nondestructive techniques. While the POD-

RBF inverse approach outlined in this thesis focuses primarily in application to conduction heat 

transfer, elasticity, and fracture mechanics, this technique is designed to be directly applicable to 

other realistic conditions and/or industries.  
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CHAPTER 1 – INTRODUCTION 

  

The topic of proper orthogonal decomposition (POD) has been around for more than a 

century, as a means of optimally correlating data using lines and planes as developed by Pearson 

in 1901 [13]. However, its application to the field of inverse problems, and engineering as a 

whole, has only begun to unfold in the last few decades. From an engineering aspect, POD 

produces many essential qualities that make it a valuable technique to implement practically and 

continuously. First, POD generates a series of optimal basis functions that allow for the best 

approximation of the field under study based on orthogonal constraints. Moreover, this 

optimality allows for the truncation of excess error that lies within the data or solution of the 

problem. By removing excess error, an enormous reduction in the computational time is 

established with respect to direct solvers such as the finite element method (FEM) [2][7]. This 

reduction in computing time is created due to the truncation aspects of POD. Essentially, POD is 

removing unnecessary constraints, or degrees of freedom, that have little effect on the system as 

a whole.  

 In regard to inverse problems, POD possesses many of the ideal characteristics that 

inverse algorithms pursue; mainly, model reduction, error filtration and regularization 

capabilities [2][7][11]. By utilizing these ideologies, the method of POD can be applied to 

numerous engineering applications that may have been tedious or laborious to solve otherwise. 

As will be seen in this thesis, POD (and its underlying family) has a natural ability for parameter 

estimation based on its inverse characteristics. Accordingly, POD combined with a radial basis 
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function (RBF) interpolation network can accurately reproduce material properties, dimensional 

aspects or even boundary conditions as they apply to an experimental or numerical model. In 

fact, it is the direct purpose of this thesis to use a POD-RBF network to inversely approximate 

material constants and dimensional traits in various engineering applications.  

 As will be discussed in Chapter 2, the method of POD utilizes the eigenvalues of the 

system in order to truncate excess error and significantly reduce the size of the problem. 

However, the interpretation of the eigenvalues may have a suggestively different meaning in 

regard to the POD family. Specifically the POD family is an assortment of many external 

methods, namely principal component analysis (PCA), Karhunen-Loéve decomposition (KLD) 

and singular value decomposition (SVD) [2][4][7][10]. While these methods have different 

formulations, it will be shown that they all share the same optimal equivalency, despite their 

various internal meanings. 

 Chapter 3 will take the reign in establishing the POD methodology as it applies to an 

inverse technique. It will illustrate the introduction of the RBF interpolation network in order to 

reproduce the experimental or numerical data field as well as the desired parameter(s). Once 

established the POD-RBF network will be applied to various applications presented in Chapter 4. 

These applications include a variety of examples from heat conduction, elasticity and fracture 

mechanics.  
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CHAPTER 2 – BACKGROUND 

 

The concept of proper orthogonal decomposition (POD) began over a century ago as a 

statistical tool developed by Pearson [13] in order to correlate unclear data using only spatial 

lines and planes. Since that time POD has been redeveloped under various names and in vastly 

different applications. Depending on how the input data is utilized POD is also similarly known 

as Karhunen-Loéve decomposition (KLD), principal component analysis (PCA) or singular 

value decomposition (SVD) [2][4][7][10]. Furthermore, these techniques have been implemented 

in applications from signal processing and control theory, human face recognition, data 

compression, parameter estimation and many others [2][7]. Over the past thirty years these 

techniques have been greatly implemented into the engineering fields. The first reported use of 

these techniques into modern engineering applications was in the disciplines of fluid mechanics 

or computational fluid dynamics (CFD) in order to generate reduced modeled simulations [9]. 

This would then allow for much faster computational times while maintaining overall accuracy 

due to the optimal bases of POD. These techniques would later be expanded into more 

engineering applications such as heat transfer and elasticity as will be outlined in this thesis. 

  

2.1 - Proper Orthogonal Decomposition 

 

To begin the topic of proper orthogonal decomposition (POD), one should imagine a 

collection of vectors inside a Cartesian coordinate system [9][20]. Shown in Figure 1, a set of 
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vectors are assumed to be correlated if they are parallel to one another. Likewise, the vectors are 

said to be uncorrelated if the vectors appear orthogonal (or perpendicular) to one another.  

 

 

Figure 1 - Illustration of uncorrelated (left) and correlated (right) vectors 

 

The primary goal of POD is to establish a rotated coordinate system using the smallest amount of 

coordinates needed [9]. For example, it may be possible to reduce the three dimensional 

Cartesian space into a two dimensional rotated coordinate frame if there is little variation in the 

third dimension. POD does this by capturing the maximum projections of the vectors (or data 

points) in the original frame. Accordingly, the first axis in the rotated POD frame captures the 

maximum projection of the vectors. This may commonly be referred to as the first principal 

component [16] (which will be defined further in section 2.1.1). The second axis in the POD 

frame, called the second principal component, captures the next orthogonal direction with the 

largest projection and so on. The rotated frame is illustrated in Figure 2. 

x1 

x2 

x3 

Uncorrelated Vectors 

x1 

x2 

x3 

Correlated Vectors 
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Figure 2 - Comparison of original and rotated (POD) coordinate system 

 

The term projection is used loosely here since it may have some statistical, numerical or even 

physical meaning yet to be described. Nevertheless it is important to note that the variations of 

the projections diminish with respect to the new POD coordinate system. For instance, the first 

axis will hold the largest projection, the second axis will hold the next largest projection and the 

third axis (if there is one) will hold the third largest projection. Utilizing this feature allows POD 

to give a better approximation of the higher correlated (parallel) vectors with fewer coordinates 

(or components).  

x1 

x2 

x3 y3
 

Original 
Coordinate System 

Rotated (POD) 
Coordinate System 
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Figure 3 - Approximation of a Vector in the Original (left) and POD (right) Coordinate Frame 

 

It can be seen in Figure 3, that it would take two coordinates of the original frame to approximate 

a vector u accurately. However in the POD rotated configuration, one coordinate could produce 

an excellent approximation since there is little variation in the second coordinate. In an ideal 

scenario POD can represent all vectors using only one coordinate axis, as seen in Figure 4 

(right). On the other hand, POD may have to use many coordinate axes to produce an accurate 

depiction of the data as shown in Figure 4 (left). However, it should be noted that Figure 4 (left) 

and Figure 4 (right) represent extreme cases of data collection [16]. Typical data would fall into 

a variation of Figure 4 (middle). 

 

Figure 4 - Various Data Representations. Highly Uncorrelated Data (left), Correlated Data 

(middle), Highly Correlated Data (right).  

x1 

x2 

u u x2 

u x1 
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u 

y1 

y2 

u y2 

u y1 
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x1 

x2 

x’ x’ x’ 
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To put a mathematical interpretation to POD, one can imagine the approximation of a 

continuous function that exists within a known domain Γ.  

 
1

( )
M

i i

i

f x A


  (1) 

Of course   can be chosen arbitrarily (or by a set of shape functions, etc…) such that as M 

approaches infinity, the approximation typically approaches exactness. However the best 

approximation is not always guaranteed. In POD the best approximation is guaranteed by using 

the least squares minimization of the L2 norm [4][9][10]. 

 ( )f x A    (2) 

POD also establishes a set of orthogonality constraints for the selection of the basis functions  . 

Where orthogonality states 

 T I    (3) 

which allows for the approximation of the amplitudes A. 

 TA f  (4) 

In a more general discrete case, a matrix U can be used to store previously known information of 

the problem. In a transient problem, the previously known information may refer to data attained 

during the first initial time steps [2][7]. The matrix U is called the snapshot matrix and can be 

defined as follows 

 
1

M
i

i

i

U A


  (5) 

In matrix-vector notation (5) can be rewritten as 
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 U A  (6) 

In our discrete case U and   are rectangular matrices of dimensions N x M and A is a rectangular 

matrix of dimensions M x M. Where M corresponds to the total number of snapshots and N 

represents the number of nodes used to approximate the system. The method of snapshots will be 

defined later in Chapter 3. 

 On the other hand, if only K terms are now used to approximate U whereby K < M, then 

the problem may be reduced (often times significantly) and look similar to the continuous case in 

(1). 

 
1

K
i

i

i

U A


  (7) 

The selection of K can be chosen arbitrarily for a quick solution, although this is not ideal. In 

regards to the family of POD, the selection of K yields very important information regarding the 

internal structure of the data [10][16] and will be the discussion of the next few sections. 

 It may also serve to note that the basis vectors generated via POD may entail some sort of 

physical meaning. As will be shown in Chapter 4.1, the POD basis vectors possess a correlation 

to analytical eigenfunctions from Fourier analysis in heat transfer. In elasticity (and even 

vibration problems), the basis vectors may also be related to the modal shapes as well. Although 

elasticity examples are not shown in this thesis, the reader may refer to [21].  
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2.1.1 - Principal Component Analysis 

 

Regarded as the oldest method in the POD family, principal component analysis (PCA) 

was developed as a statistical method by Pearson [13] and Hotelling in the early twentieth 

century [2][4]. Its purpose is to identify a hidden or unclear internal structure within a collection 

of multivariable stochastic data. Like POD, PCAs main objective is to reduce the dimensionality 

of the data. Typically the data set has a large number of interrelated variables which may be 

indistinguishable to a human eye. So in order to reduce the dimensionality PCAs goal is to 

maintain as much variation in the data as possible. To achieve this, PCA transforms the original 

variables into new variables called principal components. The principal components are entirely 

uncorrelated and ordered such that the first principal components have the most variation of the 

original variables. In POD, this would correspond to the optimal selection of coordinate axes to 

best fit the data. In PCA (or statistics in general), the variation is the measure of the variance 2  

inside the data [16]. For a more applied sense, the variance is simply the eigenvalues of a 

modified covariance matrix of the data U. The modified covariance matrix C takes the form 

 TC U U  (8) 

such that the variances (or eigenvalues) can be determined from the nontrivial solution of a 

standard eigenvalue problem. 

 CV V   (9) 

The eigenvalues   and eigenvectors V can be determined via singular value decomposition 

(SVD) or eigenvalue decomposition. For the sake of later validity and common practice, SVD is 

used to estimate the eigenvalues and eigenvectors. The corresponding singular values correspond 
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to the standard deviations   of the data set (where the variance is the square of the standard 

deviation). 

 i i   (10) 

Of course   represents the eigenvalues. The optimal basis can be generated in PCA as 

 1UV    (11) 

where   represents a diagonal matrix of singular values (or standard deviations) found in (10). 

For completeness a comparison of the PCA to SVD [9][10] is shown in the Appendix. 

 The next important step in PCA (and POD methods in general) is the truncation process. 

The truncation procedure is commonly referred to as model reduction because the main goal is to 

reduce the total number of degrees of freedom inside the system. To do so in PCA, one must 

look at the variances occurring at each principal component. The variances will decrease in a 

rapid sense from a large initial variance (first principal component) to a small variance that 

remains relatively constant through the remainder of the data set. The truncation of the variances 

can then occur when there is little change in the variation, as shown in Figure 5. 

 

Figure 5 - Truncation of Eigenvalues for Model Reduction 
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As will be later noted in Chapter 4, the truncation process can significantly reduce the size of the 

problem while maintaining a large level of accuracy in the estimation of the solution. While 

some authors [16][17] denote a specific point (or equation) at which the truncation of data begins 

to severely affect the error of the estimation, a good rule to follow is to truncate the eigenvalues 

once they get below a minimum value or begin to remain constant in value.  

 

2.1.2 - Karhunen-Loéve Decomposition 

 

Another aforementioned member in the family of POD is called Karhunen-Loéve 

decomposition (KLD). Although the name refers to both Karhunen and Loéve, the method was 

independently developed by Karhunen in the 1940’s and further expanded upon by Loéve in later 

years [4][10]. KLD represents a theory regarding optimal series expansion of continuous 

stochastic processes. This can also be seen as an extension of PCA to infinite dimensional 

spaces; however, in a discrete sense KLD has the same optimal properties as variance 

maximization in PCA [10]. The primary difference of KLD is that it measures the mean square 

error that is generated after reducing the dimensionality.  

The concept of KLD can be developed from [9][10] which utilizes the covariance of the 

matrix U. 

 TQ UU  (12) 

It should be noted that in PCA a modified covariance matrix C is used (the benefits of each 

covariance matrix will be touched upon later in this section). Analogous to PCA, KLD will use 
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the nontrivial solution to the eigenvalue problem to determine the eigenvalues   and 

eigenvectors L of the covariance matrix Q. 

 QL L   (13) 

The eigenvectors L in KLD and the eigenvectors V in PCA are not equivalent as a result of the 

choice of covariance matrices used in each method. However, once the eigenvectors and 

eigenvalues are calculated, the selection of the basis functions can then be chosen. In KLD the 

basis functions can be written as 

 L   (14) 

This states that the basis functions   are equivalent to the KLD eigenvectors L. In turn, the 

selection of the KLD eigenvectors as the basis functions can be proven to be a good choice, since 

the basis functions in both KLD and PCA are identical despite the different derivations. This also 

relates to the equivalency of the POD methods (which is shown in detail in the Appendix).  

The eigenvalues   now represent the error produced from the KLD approximation. 

While the main goal of KLD is to minimize the mean square error [10], its goal as a member of 

POD is to create a reduced order model for approximation while maintaining overall accuracy. 

By observing the error (and as a result the eigenvalues), a point K can be chosen so the error 

remains at a suitable minimal value. The mean square error is denoted as the summation of the 

eigenvalues with respect to the truncation point K. 

 2

1

M

i

i k

 
 

   (15) 
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Notably the first eigenvalues represent the most information (and have higher values) which 

would dramatically increase the error if the process was truncated early. So as the eigenvalues 

begin to achieve constancy, as in Figure 5, the truncation process can then occur. 

For earlier clarity, one may take into account the choice of the covariance matrices used 

in PCA and KLD for computational considerations [9]. Specifically, the covariance matrix C in 

PCA is of size M x M, while the covariance matrix Q in KLD is of size N x N. In large examples 

where the number of nodes N is much greater than the number of snapshots M ( N M ), the 

method of KLD will prove to be more time consuming as a result of the covariance matrix 

selection. In this situation, the method of PCA may yield much faster results (which is the 

primary goal of model reduction techniques). In regards to this thesis, the size of U is relatively 

equivalent on each dimension so the choice of each method yields similar computational times 

and will not be further discussed. 

 

2.1.3 - Singular Value Decomposition 

 

Unlike the other POD methods stated above, the singular value decomposition (SVD) 

approach does not present a suitable physical meaning to the data. In the logic of POD, the 

eigenvalues represent the energy present within the system (or the amount of information each 

principal component holds). The eigenvalues in PCA and KLD represent the variances [16] and 

errors [10], respectively. Nevertheless SVD is still directly comparable to POD because it finds 

the same essential characteristics that operate under POD, the eigenvalues and eigenvectors. 



 14 

While a true (in depth) derivation of SVD can be found within many references [10][14][19], a 

short overview in regards to POD will be given here from [9].  

Our matrix of data U can be broken into SVD components, as shown in (16). 

 TU S D   (16) 

Where S and D represent the left and right singular vector matrix of U respectively and   

denotes a matrix of singular values i  arranged in descending order ( 1 2 r     ). 

Furthermore, if the matrix U is real, the matrices S and D are always orthogonal (or S
T
S = I and 

D
T
D = I where I is the identity matrix). U can now be decomposed into a series of additive 

component matrices 

 1 2 rU E E E     (17) 

where r represents the minimum dimension of the matrix U (N x M). Equating the above 

equations yields 

 i i T

i i iE S D   (18) 

where the upper and lower indices in (18) represent the corresponding i
th

 column and row vector 

respectively. The component matrices E are also known to be orthogonal to one another. Now 

the singular values   can be extracted using the norm of the component matrices 

 i iE   (19) 

which are the diagonal terms stored in  . Like the other POD methods Ei can be considered as 

the critical components of U (or the principal components). As stated above, the singular values 

are stored in descending order. This now provides insight to the contribution of each component 

matrix Ei because the largest singular value corresponds to the greatest contribution (or 
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knowledge) to the data matrix U. This result can then be substituted into the general POD 

approximation (6) which yields 

 i

i iE A  (20) 

Comparing (18) and (20) it can be denoted that the left singular vector matrix S corresponds to 

the orthogonal basis functions  . 

 S   (21) 

This also means that the left singular vector matrix corresponds to the eigenvectors (as already 

known through references of SVD).  

 Like the other POD methods, the truncation point can be determined by observing the 

rapid decrease in the eigenvalues as shown in Figure 5. 

 

2.2 - Inverse Methods 

 

The idea of inverse algorithms has been studied for decades, ever since the mainstream 

use of numerical methods began to emerge. Different concepts have been outlined by many 

authors [14] with techniques to retrieve the best solution. The main technique developed for 

solving inverse problems is primarily regularization; however, other methods like model 

reduction and/or error filtration also benefit the inverse approximation.  

The application of POD as an inverse method arose due to the demanding task of solving 

an ill-posed inverse problem. POD is utilized by finding the correlation between the known 

direct problem and the solution to be desired [11]. Moreover, POD is utilized to produce a low-

order but high quality approximation of the solution field. As stated previously, POD is capable 
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of capturing dominant components of the data with typically only a few modes or degrees of 

freedom. This is due to the ability of POD to approximate a set of vectors using an optimal 

rotated coordinate frame [9][11][16].  

Of course, the primary reason POD is favorable in solving inverse problems is that it 

provides many of the desired characteristics for solving inverse problems. These ideal attributes 

include model reduction, error filtration and regularization. 

  



 17 

CHAPTER 3 – METHODOLOGY 

 

The first step in the implementation of POD is the creation of the snapshot which is the 

collection of N sampled values of u of the field under consideration [2][7][11]. In the case of this 

thesis the sampled fields recorded represent the temperatures or deformations within a body or 

system. Accordingly each snapshot is stored in a vector u. A collection of M snapshots denoted 

as u
j
 (for j = 1, 2 … M) are then generated by altering the parameter(s) p upon which the field 

depends on. In the current scope of this thesis, the altered parameters are essentially material 

properties but can likewise be a combination of material properties, boundary conditions or 

dimensional characteristics. Each u
j
 is then stored inside rectangular N x M matrix U denoted as 

the snapshot matrix (with N corresponding to the number of sampled nodes or locations). The 

concept of the snapshot can be seen in Figure 6.  

 

 

Figure 6 - Illustration of a snapshot of the data field 
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The snapshot field may be created by numerical modeling of the system, say FEM or BEM, or 

from actual empirical data. The goal of POD is to establish a set of orthonormal vectors j  

resembling the snapshot matrix U in an optimal way [11]. The matrix   is commonly referred to 

as the POD basis and can be seen in (22). 

 U V    (22) 

As denoted in Chapter 2, V represents the eigenvectors of the covariance matrix C and can easily 

be derived using the nontrivial solution of the general eigenvalue problem denoted in (9). It may 

also serve to note that the covariance matrix C is symmetric and positive definite and the 

eigenvalues λ are always real and positive. Typically at this time the eigenvalues are sorted in 

descending order and can be directly attributed to the energy of the system. This energy 

decreases rapidly with the increasing mode number as illustrated in Figure 5. This allows the 

user to neglect majority of the modes of lower value since they hold little energy (or information) 

within the system. As stated throughout Chapter 2, this is referred to as the truncation of the 

POD basis and is accomplished by deciding which fraction energy inside the system should be 

removed for later calculations. The resulting POD basis   referred to as the truncated POD 

basis consists of K < M vectors such that 

 U V    (23) 

Which corresponds to the truncation of the eigenvector matrix denoted as V . This also stores the 

first K eigenvectors of the covariance matrix. The truncated POD basis in (23) is also orthogonal 

and presents optimal approximation properties as described in Chapter 2. Once   is known, the 

snapshot matrix U can be regenerated using 
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 U A   (24) 

A stands for the amplitude’s associated with u
j
. Referring to the orthogonality of the basis 

functions, the amplitude’s can be determined from 

 TA U   (25) 

At this time the data may begin to be extrapolated for information on the current problem. To do 

this, consider a vector p which stores the necessary parameters on which the solution depends. In 

the current scope only one parameter is to be considered; however, in the presence of a transient 

problem other parameters may be stored, such as time and other properties. The transient 

derivation is not described in this thesis, for more information refer to [2][7][12].  

The amplitudes A are defined as a nonlinear interpolation function of the parameter 

vector p described in (27). Of course, the amplitudes A can be related to the interpolation 

functions by an unknown matrix of constant coefficients B. 

 A B F   (26) 

F is defined as the matrix of interpolation functions, where the set of interpolation functions fi(p) 

can be chosen arbitrarily. However, some choices of interpolation functions may lead to an ill-

conditioned system of equations for the coefficient matrix B. In this analysis, radial basis 

functions (RBF) have been used as the interpolating function of choice due to their nice 

approximation and smoothing properties [11]. Here the Hardy inverse multi-quadric radial basis 

function has been employed and is defined as 

 
2

2

1
( ) ( )i

i i
i

f p f p p

p p c

  

 

 (27) 
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where c is defined as the RBF smoothing factor and p
i
 corresponds to the same parameter p used 

to generate u
i
 (for i = 1, 2 … M). It should be seen that the argument of the i

th
 RBF is the 

distance | p - p
i 
| or the distance between its current parameter p and the reference parameter p

i
 

[11]. 

To use (26), the matrix of coefficients B needs to be evaluated, which can be done by 

simple inversion methods.  

 1B A F    (28) 

As stated, F is the matrix of interpolation functions defined as a set of M vectors f(p), which can 

be visualized as 

 

1 1 1 1

1 1 1

1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j M

i j i M i

i i i

M j M M M

M M M

f p p f p p f p p

F f p p f p p f p p

f p p f p p f p p

   
 
 
 

    
 
 
   
 

 (29) 

where p
i
 and p

j
 are used to generate i

th
 or j

th
 snapshot respectively. This is commonly referred to 

as collocation.  

At this point it should be emphasized that the matrix of amplitudes A and the matrix of 

coefficients B are known using the above relations. Now equating (25) and (26) yields the 

following 

 T U B F     (30) 
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Using the orthogonality of   it can easily be seen that the snapshot matrix U can be 

approximated as  

 U B F    (31) 

Now a low dimensional truncated model of (24) can be seen in vector form as 

 ( ) ( )u p B f p    (32) 

This model will now be referred to as the trained POD-RBF network and is completely capable 

of reproducing the data field that correspond to any arbitrary set of parameters p within the initial 

snapshot domain [2][7][11]. Likewise, extrapolation outside the range of p used to generate the 

initial snapshots u
i
 can lead to poor accuracy and approximation of the model. 

Finally, the trained POD-RBF network in (32) is used to retrieve the values of the 

unknown parameter vector p for the inverse method. This is done in a least squares sense by 

taking the sum of the squares of the data obtained from u(p) and subtracting it from the actual 

experimental (or numerical) data y. It is typically best to use the same sensor points utilized in 

empirical data as the same nodal points, N, used in the numerical simulation as it leads to less 

interpolation and better overall accuracy; however, it is not necessary. In a general form, the 

nonlinear least squares equation is written as 

  
2

1

( )
N

i i

i

u p y


    (33) 

In the case of this thesis, the least squares equation is implemented using Levenberg-Marquardt 

(LM) to solve for the desired parameter p. This generates what is known as the least squares 

objective function [14] and is shown in (34) with the addition of a regularization parameter   

for further accuracy. 
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      
1 1

( ) ( )
( )

N N
i i

i i i

i i

u p u p
J p u p y u p y

p p


 

    
      

    
   (34) 

(34) simply represents the partial derivative of (33) with respect to the unknown parameter p 

with y  denoting the mean of y.  

Now (34) can be solved using LM to estimate the unknown parameter p. Applications of 

this methodology are shown in Chapter 4 with examples ranging from basic conductive heat 

transfer to linear elastic fracture mechanics. 
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CHAPTER 4 – APPLICATIONS 

 

A wide variety of applications in mechanics are used to demonstrate the robustness and 

importance of this POD-RBF technique to inverse methods. Specifically, applications will range 

from simple heat conduction problems to more comprehensive elasticity problems.  

The first set of examples in Section 4.1 will outline basic heat conduction problems using 

simple domains in order to determine the spatially dependent thermal conductivity of an 

unknown material. Likewise, a more detailed two dimensional heat conduction problem using a 

complex domain will then be used to determine the thermal conductivity using noisy temperature 

distributions from random points within the body.  

In Section 4.2, a series of elasticity problems will be modeled in order to accurately 

estimate the modulus of elasticity, the shear modulus and Poisson’s ratio using only noisy 

deformation data. The first elasticity example will use a two dimensional cantilever beam under 

uniform loads. The next example will be an extension to a three dimensional case using a 

cantilever beam in tension.  

Section 4.3 will be a further extension of elasticity using fracture mechanics, where the 

POD-RBF technique will be used to estimate the crack length of a compact tension specimen 

under ASTM E399 standards.  
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4.1 - Heat Conduction 

 

 The first set of applications to be covered will deal with the basic idea of conductive heat 

transfer. In order to set the premise for the rest of the examples, a simple heat conduction 

problem using a square block will be given in order to inversely estimate a spatially dependent 

thermal conductivity. This problem and its solutions will be outlined in detail with the later 

examples presented for broadness.  

 

4.1.1 - Square Domain 

 

In the first example, the POD-RBF network will be utilized to approximate the 

temperature distribution at points within a square block, shown in Figure 7, as well as estimate 

the spatially dependent thermal conductivity.  

 

Figure 7 - Illustration of square domain for heat conduction case 
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The thermal conductivity in this first case is a linear function of the x (horizontal) 

direction and can be written as 

  k x a bx   (35) 

where k(x) denotes the thermal conductivity at some point x. This relation is used to establish the 

initial parameter matrix which will be referred to during RBF extrapolation. For our first 

application, the Hardy inverse RBF interpolation equation can be seen as 

   
 

2 2

1
,

,
if k a b

k a b c





 (36) 

where 

    , ik a b a bx p    (37) 

which is used to approximate the temperature distributions u within the body. 

     , ,u a b B f k a b    (38) 

The temperature distributions (or the snapshot vector u) are then used to estimate the constants 

of the spatially dependent thermal conductivity shown in (35), using the least squares objective 

function utilized by LM 

      
1 1

( ) ( )
( )

N N
i i

i i i

i i

u p u p
J p u p y u p y

p p


 

    
      

    
   (39) 

where the vector p represents the thermal conductivity constants to be determined. 

 
a

p
b

 
  
 

 (40) 
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For our initial validation case, the thermal conductivity constants are chosen to be a = 1.234 and 

b = 3.456. Although not described here, the direct heat conduction problem is solved using the 

following exact solution 

 ( , ) ln( )
C

T x y a bx Dy E
b

     (41) 

where the constants C, D and E are chosen arbitrarily (but in this case were chosen as C=100, 

D=10 and E = 0). The snapshot matrix U is then set up using 16 equally spaced nodes N 

throughout the square region. A total of 100 snapshots M were created using various values of a 

and b to establish the thermal conductivity field k(x), or the initial parameter matrix.  

 Performing POD on the covariance matrix C defined in (8) produces the following 

eigenvalues shown in Table 1, truncated after the 5
th

 term of a possible 100.  

 

Table 1 - Table of truncated eigenvalues of square region heat conduction case 

λ 

9.605 x 106 

1.715 x 104 

1.348 x 103 

23.903 

0.026 

 

It is important to note that at this point, the approximation of the temperature field and thermal 

conductivity parameters p may not be accurately estimated. In order to achieve an accurate 

approximation, the selection of the regularization parameter   must be chosen. Initially this can 
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be accomplished by randomly selecting regularization constants and comparing the POD-RBF 

approximations to the analytical solution of the temperature field, as seen in Figure 8.   

 

Figure 8 - POD estimates of temperature distributions at various regularization constants for 

square region heat conduction 

 

However, a more general case can be followed as it applies in [14]. This states that a regression 

optimization curve, shown in Figure 9, can be established utilizing the norm of the first and 

second term in (39).  

 

Figure 9 - Alpha optimization curve, courtesy of Numerical Recipes [14] 
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Applying this to our heat conduction problem yields Figure 10 below. The black box in Figure 

10 denotes the optimal regularization value which is also highlighted in Figure 8 above. In this 

case the regularization parameter is chosen as   = 0.01.  

 

Figure 10 - Alpha optimization curve for simple heat conduction cases 

 

After the regularization parameter is selected, the POD-RBF inverse approach can be fully 

implemented to accurately estimate the temperature distribution and thermal conductivity 

constants within the system. The POD-RBF estimation of the temperature distribution can be 

seen in Figure 11, while the error of the approximation is shown in Figure 12. 
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Figure 11 - Comparison of exact solution against POD estimation of temperature distribution for 

square region 

 

Figure 12 - Error against POD-RBF solution to exact solution for square region 

 

It can be seen that the error produced in the POD-RBF approximation is never larger the 10% for 

this example. More importantly, the approximation of the thermal conductivity constants and its 

distribution through the domain is shown below in Table 2 and Figure 13, respectively. 
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Table 2 - Comparison of Actual and POD-RBF estimation of thermal conductivity of square 

region 

 Actual Estimate 

a 1.234 1.169 

b 3.456 3.668 

 

 

Figure 13 - Comparison of POD-RBF estimate of thermal conductivity against measured data for 

square region 
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 Noise is added to the exact temperature solution at ± 0.5
o
 and the POD-RBF inverse 

approach is then reapplied to the system. The corresponding results are shown in Figure 14 and 

Figure 15. 

 

Figure 14 - Comparison of measured noisy (± 0.5
o
) data against POD estimation of temperature 

distribution for square region 

 

Figure 15 - Error against POD-RBF solution to measured noisy (± 0.5
o
) data for square region 
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Once again, the temperature distribution is estimated accurately with only small amounts of error 

present in the approximation, as noted in the previous example. Moreover, the thermal 

conductivity is also estimated closely with minimal error as shown in Table 3 and Figure 16. 

 

Table 3 - Comparison of Measured and POD-RBF estimation of thermal conductivity of square 

region using noisy data (± 0.5
o
) 

 Actual Estimate 

a 1.234 1.157 

b 3.456 3.645 

 

 

Figure 16 - Comparison of POD-RBF estimate of thermal conductivity against measured noisy 

(± 0.5
o
) data for square region 
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 ( , ) sin cos
n x m y

eig x y
L L

    
    

   
 (42) 

where x and y are physical locations throughout the domain and n = 1, 2, 3… and m = 0, 1, 2… 

Applying the analytical eigenfunction to the current square domain yields the following in Figure 

17. 

 

Figure 17 - Comparison of analytical eigenfunctions to POD basis vectors 
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vectors may be used to represent the eigenfunctions, when an analytical solution is hard to derive 

effectively.   

While these basic examples only outline the premise of the topic of the POD-RBF 

network it can be expanded into more complicated domains, as will be shown in future sections. 

 

4.1.2 - L Shaped Domain 

 

 In this section, a variation of the previous heat conduction example will now be studied. 

For this case, the square region will be modified to represent an L shaped region as shown in 

Figure 18.  

 

Figure 18 - Illustration of L shaped region for heat conduction case 
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Since the only change to the problem will be to the domain, the same POD-RBF derivations will 

be applied from Section 4.1.1. The main objective of this section is to study how the change in 

domain shape will affect the POD-RBF approximation, if any.  

 The temperature field was set up using 12 nodes spaced throughout the domain using 100 

snapshots to create the thermal conductivity field k(x) and snapshot matrix U. Performing POD 

on the covariance matrix C produced the following eigenvalues shown in Table 4, truncated after 

the 5
th

 term (of 100).  

 

Table 4 - Table of truncated eigenvalues of L region heat conduction case 

λ 

6.560 x 106 

9.623 x 104 

1.032 x 103 

18.241 

0.015 

 

Unlike Section 4.1.1, an alpha optimization curve will not be generated for this example. Based 

on similarities to the previous problem, the same regularization parameter   will be used ( = 

0.01). Doing so now allows for the POD-RBF inverse technique to be applied in order to 

estimate the temperature field and thermal conductivity field, respectively.  

 The first case studied will have no noise added to the solution for initial verification. The 

results are shown below in Figure 19 - Figure 21. 
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Figure 19 - Comparison of measured data against POD estimation of temperature distribution for 

L region 

 

Figure 20 - Error against POD-RBF estimate to measured data for L region 
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Figure 21 - Comparison of POD-RBF estimate of thermal conductivity against measured data for 

L region 

 

Again the temperature distribution and thermal conductivity are estimated precisely using the 

POD-RBF technique, despite the shape of the domain. A maximum error just above 10% is 

shown in Figure 20 which is still extremely accurate considering only 5 eigenvalues were used to 

estimate the system. Accordingly, the newly approximated constants for the L region are shown 

in Table 5 below. 

 

Table 5 - Comparison of Measured and POD-RBF estimation of thermal conductivity of L region  

 Actual Estimate 

a 1.234 1.182 

b 3.456 3.486 
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For the next case studied, a small amount of noise (± 0.5
o
) will be incorporated into the 

solution to act as empirical data. The corresponding results are shown below in Figure 22 - 

Figure 24. 

 

Figure 22 - Comparison of measured noisy (± 0.5
o
) data against POD estimation of temperature 

distribution for L region 

 

Figure 23 - Error against POD-RBF solution to measured noisy (± 0.5
o
) data for L region 
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Figure 24 - Comparison of POD-RBF estimate of thermal conductivity against measured noisy 

(± 0.5
o
) data for L region 

 

Despite the small amount of noise present in the data, the POD-RBF network was still able to 

estimate the temperature field and thermal conductivity quickly and effortlessly. The estimated 

thermal conductivity constants, with a small amount of noise (± 0.5
o
) added into the solution, are 

shown in Table 6. 

 

Table 6 - Comparison of Measured and POD-RBF estimation of thermal conductivity of L region  

 Actual Estimate 

a 1.234 1.177 

b 3.456 3.504 

 

In comparison to Section 4.1.1, the POD-RBF method still produces accurate results despite the 

shape of the domain being used. This is great news as it will allow the POD-RBF method to take 

on much more complicated domains.  
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 As done in the section 4.1.1, the POD basis vectors can be shown to have a direct 

correlation to the eigenfunctions represented in (42). Using the same ideology outlined 

previously, the analytical eigenfunctions in an L shaped domain are represented in Figure 25. 

 

Figure 25 - Comparison of analytical eigenfunctions to POD basis vectors in L shaped domain 
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solution to a problem of this nature is not readily available by simple derivation. As a result, 

BEM will be implemented in order to generate the snapshot data u. An illustration of the 

complex domain is shown in Figure 26. 

 

 

Figure 26 - Illustration of complex domain in heat conduction 

 

As stated above, the thermal conductivity in this case is a spatially dependent in the x and 

y direction and is written as 

   2

1 2 3,k x y a a x a y    (43) 

where k(x,y) denotes the thermal conductivity at points x and y. Analogous to the previous 

examples, (43) is used to establish the initial parameter matrix for RBF extrapolation; whereby 

the RBF interpolation function can be rewritten as 

   
 

1 2 3
2 2

1 2 3

1
, ,

, ,
if k a a a

k a a a c




 (44) 

with 
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   2

1 2 3 1 2 3, , ik a a a a a x a y p       (45) 

In which the temperature distributions u are approximated within the complex domain using 

     1 2 3 1 2 3, , , ,u a a a B f k a a a    (46) 

 Similarly, temperature distributions are used to estimate the parameters p, using the least 

squares objective function inside LM. 

      
1 1

( ) ( )
( )

N N
i i

i i i

i i

u p u p
J p u p y u p y

p p


 

    
      

    
   (47) 

The parameter vector p represents now represents the three thermal conductivity constants to be 

determined. 

 

1

2

3

a

p a

a

 
 

  
 
 

 (48) 

However, in this case it is not entirely necessary to estimate the parameters p exactly. It is our 

goal to accurately estimate the thermal conductivity field at the sampled points within the 

domain shown in Figure 26.  

The snapshot matrix U was assembled using 26 randomly spaced nodes throughout the 

domain and 125 snapshots were taken at various thermal conductivity values. Now performing 

POD on the covariance matrix generates the following eigenvalues truncated after the 4
th

 term 

(of a possible 125) as shown in Table 7. 
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Table 7 - Table of truncated eigenvalues of complex domain heat conduction case 

λ 

1.21 x 106 

157.82 

0.581 

0.106 

 

Of course before the POD-RBF method is used for approximations, an alpha optimization curve 

is generated in order to achieve the best solutions denoted in Figure 9. For this case, the alpha 

optimization curve is shown in Figure 27. 

 

Figure 27 - Alpha optimization curve for complex domain case for heat conduction 
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Applying the POD-RBF network yielded the following temperature distributions and 

Figure 28 Figure 29 The thermal conductivity is also estimated errors shown in  and  respectively. 

accurately across the domain as shown in Figure 30 with the corresponding error plot shown in 

Figure 31.  

 

Figure 28 - Comparison of measured noisy (± 0.5
o
) data against POD estimation of temperature 

distribution for complex domain 

 

Figure 29 - Error against POD-RBF solution to measured noisy (± 0.5
o
) data for complex domain 
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Figure 30 - Comparison of measured thermal conductivity against POD-RBF estimation using 

noisy (± 0.5
o
) temperature distribution data for complex domain  

 

Figure 31 - Error against POD-RBF estimate of thermal conductivity to measured thermal 

conductivity using noisy (± 0.5
o
) data for complex domain 

 

As illustrated in Figure 28 - Figure 31, the POD-RBF technique provides an excellent 
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Although this statement was verified in previous heat conduction examples, it still remains valid 

in the accompaniment of a complex domain and a more indirect problem.  

 For further robustness, noise of ± 2.0
o
 is now added to the BEM solution to see how the 

POD-RBF network reacts in the presence of large amounts of noise within the data. The 

following results are shown in Figure 32 - Figure 35. 

 

Figure 32 - Comparison of measured noisy (± 2.0
o
) data against POD estimation of temperature 

distribution for complex domain 

 

Figure 33 - Error against POD-RBF solution to measured noisy (± 2.0
o
) data for complex domain 
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Figure 34 - Comparison of measured thermal conductivity against POD-RBF estimation using 

noisy (± 2.0
o
) temperature distribution data for complex domain 

 

Figure 35 - Error against POD-RBF estimate of thermal conductivity to measured thermal 

conductivity using noisy (± 2.0
o
) data for complex domain 
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conductivity through the sampled points. In fact, this further helps to show that the POD-RBF 

technique is quite insensitive to noise inside the data, as also reported by [11][16].  

 

4.2 - Elasticity 

 

 The next series of applications will use the POD-RBF inverse technique to accurately 

estimate the modulus of elasticity, shear modulus and Poisson’s ratio of a two dimensional and 

three dimensional bar set up. Using basic relations from linear elasticity, the three material 

parameters are related using 

  2 1E G    (49) 

where E, G and   denote the modulus of elasticity, the shear modulus and Poisson’s ratio 

respectively. This governing relation will be used to establish the initial parameter matrix which 

will be referred to during RBF extrapolation for the inverse approximation. For the elasticity 

applications, the RBF interpolation equation can be seen as 

   
 

2 2

1
,

,
if r G

r G c







 (50) 

where 

    , 2 1 ir G G p       (51) 

which is used to approximate the deformations u within the body. 

     , ,u G B f r G      (52) 
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 The deformation approximation is now used to inversely estimate the material parameters using 

the least squares objective function implemented in LM 

      
1 1

( ) ( )
( )

N N
i i

i i i

i i

u p u p
J p u p y u p y

p p


 

    
      

    
   (53) 

where p is a vector of the material properties 

 
G

p


 
  
 

 (54) 

It should further be noted, that using the elastic relation in (49) only two material parameters 

need to be used since the third property can be determined using the isotropic relation. 

 

4.2.1 - Two Dimensional Cantilevered Beam 

 

 The first elasticity application utilizes a two dimensional cantilever beam under a uniform 

load P shown in Figure 36 to solve for the unknown elastic properties. In the case a validation, 

the selection of the material had the following elastic properties E = 156 GPa, G = 60 GPa and 

  = 0.30.  

 

Figure 36 - 2D BEM Model of Cantilevered Beam 
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The direct problem was solved using BEM to generate the deflections in the y (vertical) direction 

on the discretized mesh. The snapshot matrix U was assembled using 520 equally spaced nodes 

throughout the beam with 100 snapshots at various parameters p. POD was then performed on 

the covariance matrix C to yield the following eigenvalues in Table 8 truncated after the 5
th

 term 

of a possible 100. 

 

Table 8 - Table of truncated eigenvalues for 2D elasticity case 

λ 

1.275 x 10
9 

244.737 

0.113 

5.813 x 10
-5 

5.536 x 10
-5 

 

Now similar to the heat transfer cases, the regularization constant   needs to be determined in 

order to produce an accurate least squares fit of the data. Figure 37 (a) - (c) shows the selection 

of   at various regularization values, as well as how well they approximated the actual modulus 

of elasticity (E = 156 GPa). 
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(c) 

Figure 37 - POD estimation of the deflections at various regularization constants for 2D 

elasticity; (a) α = 0.01, (b) α = 0.005, (c) α = 0.001 

 

In a more general case, the alpha optimization curve can be generated as done in the heat 

conduction examples. For elasticity, the alpha optimization curve is shown in Figure 38.  

 

Figure 38 - Alpha optimization curve for 2D elasticity case 
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Utilizing Figure 37 and Figure 38 now allows for an ideal selection of the regularization 

parameter for the least squares approximation during the inverse procedure. It can be seen that 

the optimal regularization parameter is chosen as   = 0.005 as it leads to a good fit of the 

numerical (or experimental) data. Comparing the POD-RBF approximation of the deflection 

against the actual BEM deflection is shown in Figure 39. 

 

Figure 39 - Comparison of BEM deflection against POD-RBF estimation of deflection for 2D 

elasticity 
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Table 9 - Comparison of Actual and POD-RBF estimation of material parameters for 2D 

elasticity 

 Actual Estimate 

Modulus of Elasticity, E 156 GPa 152.8 GPa 

Shear Modulus, G 60 GPa 61 GPa 

Poisson’s ratio,   0.30 0.25 

 

Moreover, the total error recorded from the POD-RBF approximation against the BEM solution 

is shown in Figure 40. 

 

Figure 40 - Error against POD-RBF solution to BEM solution for 2D elasticity 
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POD-RBF inverse process will now be applied to the same problem with the addition of random 

noise ranging from ± 10 - 100 μm.  

 First error was added using a random normal distribution at ± 10 μm. Applying the POD-

RBF inverse method yielded the following results shown in Figure 41 and Figure 42. 

 

Figure 41 - Comparison of POD-RBF estimate of deflection against noisy data measurements 

(±10 μm) for 2D elasticity 

 

Figure 42 - Error against POD-RBF solution to noisy data (± 10 μm) measurements for 2D 

elasticity 
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Despite the presence of small amounts of noise in the data, the POD-RBF approximation was 

still able to achieve a good estimate of the material parameters. The material property estimates 

with small amounts of noise in the data (± 10 μm) are shown in Table 10. 

 

Table 10 - Comparison of Actual and POD-RBF estimation of material parameters with the 

addition of noisy data (± 10 μm) measurements for 2D elasticity 

 Actual Estimate 

Modulus of Elasticity, E 156 GPa 158.82 GPa 

Shear Modulus, G 60 GPa 63.4 GPa 

Poisson’s ratio,   0.30 0.25 

 

It can still be seen that despite the addition of small amounts of random noise to the BEM 

solution, the POD-RBF inverse technique was still able accurately estimate the material 

parameters of the system.  

 Now the amount of noise added into the solution is changed to ± 25 μm. Reapplying the 

POD-RBF inverse technique produced the following results in Figure 43 and Figure 44. 
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Figure 43 - Comparison of POD-RBF estimate of deflection against noisy data measurements (± 

25 μm) for 2D elasticity 

 

Figure 44 - Error against POD-RBF solution to noisy data (± 25 μm) measurements for 2D 

elasticity 
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Table 11 - Comparison of Actual and POD-RBF estimation of material parameters with the 

addition of noisy data (± 25 μm) measurements for 2D elasticity 

 Actual Estimate 

Modulus of Elasticity, E 156 GPa 160.01 GPa 

Shear Modulus, G 60 GPa 63.6 GPa 

Poisson’s ratio,   0.30 0.26 

 

For further verification of the robust nature of the POD-RBF inverse approach in the field of 

elasticity; a large impractical amount of random noise (± 100 μm) will be added to the BEM 

solution. The POD-RBF approximation of the deflections is shown in Figure 45.  

 

Figure 45 - Comparison of POD-RBF estimate of deflection against noisy data measurements (± 

100 μm) for 2D elasticity 
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a smooth approximation (Figure 46 bottom) of the data even in the presence of large noise 

(Figure 46 top). 

 

 

 

Figure 46 - Contour plot of 2D cantilevered beam with noisy solution (top) and POD-RBF 

approximation (bottom) 

 

The approximation of the material properties are shown in Table 12 and still produce remarkably 

accurate estimates of the elastic constants.  
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Table 12 - Comparison of Actual and POD-RBF estimation of material parameters with the 

addition of noisy data (± 100 μm) measurements for 2D elasticity 

 Actual Estimate 

Modulus of Elasticity, E 156 GPa 152.45 GPa 

Shear Modulus, G 60 GPa 60.3 GPa 

Poisson’s ratio,   0.30 0.26 

 

 

4.2.2 - Three Dimensional Bar 

 

 Now let us consider an extension of the two dimensional elasticity problem to a three 

dimensional example shown in Figure 47. The deflections are set up to be extracted at the 

elemental points on the beam in order to replicate the placement of strain gages on the body. The 

actual elastic constants for this material are given as E = 206.85 GPa, G = 80.8 GPa and   = 

0.28. 

 

Figure 47 - 3D bar in tension 
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This time the direct problem was solved using FEM to generate the deflections in all Cartesian 

directions at the elemental locations shown in Figure 47. The snapshot matrix U was created 

using 128 nodes on the surface of the beam, taking a total 81 snapshots at varying elastic 

parameters p. POD was then performed to produce the eigenvalues shown in  

Table 13 which were truncated after the 6
th

 term of a possible 81. 

 

Table 13 - Table of truncated eigenvalues for 3D elasticity case 

λ 

5.12 x 10
6
 

87.265 

0.478 

0.425 

0.293 

0.256 

 

In order to avoid redundancy, the same regularization parameter shown in Figure 38 will be used 

for the three dimensional case inside of the least square objective function (53). Using this 

assumption the POD-RBF approximation can be compared to the direct FEM solution as shown 

in Figure 48 and Figure 49. Accordingly, Figure 48 includes the deflections in each Cartesian 

direction on the same plot; whereas Figure 49 shows each deflection direction individually.  
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Figure 48 - Comparison of FEM solution against the POD-RBF approximation of the deflection 

in 3D elasticity 
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Figure 49 - Comparison of FEM solution against POD-RBF approximation in each Cartesian 

direction for 3D elasticity 

 

Likewise, the POD-RBF approach was able to accurately capture the material constants of the 
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 Actual Estimate 

Modulus of Elasticity, E 206.85 GPa 200.75 GPa 

Shear Modulus, G 80.8 GPa 77 GPa 

Poisson’s ratio,   0.28 0.3 
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Of course this first example provides only a verification of the technique as it uses no noise with 

respect to the FEM solution. In order to reproduce experimental data collection, noise will be 

added to the FEM solution as done in the previous sections.  

The first amount of noise introduced used a random normal distribution of ± 1 μm. 

Applying the POD-RBF inverse technique produced the following results in Figure 50. 

 

Figure 50 - Comparison of the POD-RBF approximation against the noisy data (± 1 μm) in each 

Cartesian direction for 3D elasticity 

 

It can easily be seen that the introduction of small amounts of noise into this example produces a 

large observable change in the deformations in some directions. This is due to the small nature of 

the deflections; however, this magnitude of error is common in many industrial strain gages. 

Nevertheless, the POD-RBF technique still manages to accurately estimate the material constants 

of the bar as shown in Table 15. 
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Table 15 - Comparison of Actual and POD-RBF estimation of material parameters for noisy data 

(± 1 μm) measurements in 3D elasticity 

 Actual Estimate 

Modulus of Elasticity, E 206.85 GPa 199.42 GPa 

Shear Modulus, G 80.8 GPa 77 GPa 

Poisson’s ratio,   0.28 0.29 

 

 Once again the amount of noise is increased, now to ± 10 μm, and the system is 

decomposed via POD. The resulting deformations are found in Figure 51. 

 

Figure 51 - Comparison of the POD-RBF approximation against the noisy data (± 10 μm) in each 

Cartesian direction for 3D elasticity 
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The resulting material constants can now be seen in Table 16 and are still found with relative 

accuracy and efficiency. In fact, this example with the larger noise produced more accurate 

results than the smaller noise approximation. However, this could be attributed to the random 

distribution of data added to the FEM solution.  

 

Table 16 - Comparison of Actual and POD-RBF estimation of material parameters for noisy data 

(± 10 μm) measurements in 3D elasticity 

 Actual Estimate 

Modulus of Elasticity, E 206.85 GPa 205.59 GPa 

Shear Modulus, G 80.8 GPa 78.37 GPa 

Poisson’s ratio,   0.28 0.31 

 

Nevertheless for the problem at hand was still able to produce accurate estimations of the 

material parameters even in the presence of large amounts of noise as seen in both section 4.2.1 

and 4.2.2.  

 

4.3 - Fracture Mechanics 

 

For the application to fracture mechanics, a compact tension C(T) specimen has been 

modeled using FEM software and the above POD-RBF inverse approach is applied to determine 

the unknown crack length of the C(T) specimen. The C(T) specimen modeled follows ASTM 

E399 standards for plain strain fracture toughness [15] and can be seen in Figure 52.  
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Figure 52 - Model of compact tension specimen 

 

The snapshots were generated by measuring the deformations at the notch opening of the C(T) 

specimen as to replicate a standard fracture experiment with a clip gage. Various crack length 

sizes were then implemented via FEM that ranged from 0.35 to 0.55 in. to create the snapshot 

matrix U, with a total of 21 snapshots M created. Next, the eigenvalues of the covariance matrix 

C were calculated and truncated after the 5
th

 eigenvalue of a possible 21, as shown in Table 17. 
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Table 17 - Table of truncated eigenvalues of fracture mechanics application 

λ 

2.168 x 10
8 

18.05 

3.23 

3.21 

1.25 

 

The experimental data was then attained from the FEM software using an actual crack length of 

0.416 in. No noise was initially added to the FEM solution in order to verify the procedure. The 

POD-RBF problem was then solved and returned an approximate value of the crack length equal 

to 0.4162 in. or an error of 0.045%. Although, not discussed in this section for further 

redundancy, the regularization parameter was chosen as α = 0.001 for this problem. A plot of the 

deformation and error can be seen in Figure 53.  

 

Figure 53 – Deformation (left) and error (right) in no noise solution for fracture problem 
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repeated to return a crack length estimate of 0.4161 in. or an error of 0.035%. The corresponding 

plot of the deformation and error can be seen in Figure 54. 

 

Figure 54 – Deformation (left) and error (right) in ±1 μm noise solution for fracture problem 

 

Additionally, the problem repeated another time with a much larger instrumentation error 

added to the solution. A normal distribution noise of ± 10 μm was added using the same crack 

length dimension as before. Reapplying the POD-RBF technique provided an approximate value 

of the crack length equal to 0.4163 in. or an error of 0.071%. The results can be seen in Figure 

55.  

 

Figure 55 – Deformation (left) and error (right) in ±10 μm noise solution for fracture problem 
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Observing the deformations presented in Figure 53 - Figure 55, it is easy to see the least squares 

fit goes through the mean of data, despite the noisy solutions. This allows the POD-RBF inverse 

routine to optimally pick the crack length with minimal error from the data with regards to the 

initial snapshot matrix developed. It should also be noted that the deformation error presented in 

in these figures increases with respect to larger error added into the system. This is not due to a 

poor estimation of the deformation, but is instead due to the least squares fit capturing the mean 

of data to present a smooth curved solution.  
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CHAPTER 5 – CONCLUSIONS 

 

The POD-RBF inverse technique applied in this thesis provided an excellent approach to 

approximate any unknown parameter to be identified. In the examples outlined, the material 

parameters or dimensional characteristics determined produced relatively small amounts of error 

despite the size of the noise attributed to empirical data. This helps to show that the POD inverse 

technique outlined is quite insensitive to measurement errors, even in the present in somewhat 

unlikely conditions as shown in the ± 100 μm elasticity example. Additionally, it takes only a 

few eigenvalues from the initial snapshot matrices to estimate the desired material parameters 

and return the temperatures or deformations for the problem at hand.  

This technique provides an efficient means of reducing the size and degrees of freedom 

of the problem while also optimizing accuracy of the solution to be determined. With the 

addition of a regularization parameter presented inside the LM method, the solution converges 

effortlessly and quickly. 

Although, this thesis only provides examples in regards to certain engineering 

applications, the overall purpose is to show the reader that the POD-RBF technique can easily be 

applied to much more complicated systems and domains, as well as to other fields of research. 

Ideally, these applications can be further proven with realistic experiments in their fields. 

Nevertheless, the POD-RBF inverse approach provides an inexpensive and nondestructive 

method to efficiently determine the numerous material parameters under different operating 

conditions with minimal knowledge of the system at whole.   
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APPENDIX 

 

Shown below is a direct comparison of the POD methods mentioned throughout this thesis. 

These methods were proved in more detail from Liang [10] but are taken as an excerpt from [9]. 

A direct relation from POD to the method of SVD can be stated as 

 S   (55) 

where the snapshot matrix U is written as 

 TU S D   (56) 

and the amplitude A can be shown as  

 TA D   (57) 

such that the decomposition can be shown equivalent to 

 U A  (58) 

Karhunen-Loéve Decomposition 

The covariance matrix Q is defined as 

 TQ UU  (59) 

In which the eigenvalues and eigenvectors can be calculated from the nontrivial solution to an 

eigenvalue problem  

 QL L   (60) 

Where   and L represent the eigenvalues and eigenvectors of Q respectively. Of course, the 

basis functions are set equivalent to the eigenvectors L  

 L   (61) 
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So that A from (58) can be calculated using the basis’ matrix property of orthogonality 

 TA U  (62) 

Transposing the snapshot matrix U in (56) becomes 

 T T TU D S   (63) 

where the property of matrix transposition is seen as 

  
T T TXY Y X  (64) 

Now substituting (63) and (56) into (59) and utilizing the orthogonality condition of D creates 

 T T TQ UU S S    (65) 

Multiplying (65) by S and further using its orthogonality property generates 

 TQS S   (66) 

Comparing (66) and (60) one can show that the eigenvectors L are said to be equivalent to the 

left singular vector matrix S 

 L S  (67) 

and the eigenvectors   can be denoted as the square of the singular values T  

 T    (68) 

Of course the amplitude matrix A is found by multiplying (56) by S
T
  

 T TS U D   (69) 

And knowing (55) and further comparing (69), (62) and (57); it can be concluded that A is 

equivalent in KLD and SVD. 

 T TA U D    (70) 

  



 74 

Principal Component Analysis 

In PCA the orthogonal basis functions were determined to be 

 1UV    (71) 

where   represents the matrix of singular values (via SVD) of U and V is the matrix of 

eigenvectors of the covariance matrix C. 

 TC U U  (72) 

So that an eigenvalue problem can be stated as 

 CV V   (73) 

and singular values in matrix   are calculated from the eigenvalues   such that 

 i i   (74) 

Substituting the eigenvectors V and eigenvalues   into (71) the basis functions   can be 

determined. The amplitudes A can then be computed by first substituting (56) and (63) into (72) 

 T T TC U U D D     (75) 

where the left singular vector matrix S can be removed from orthogonality. Multiplying by D and 

further using orthogonality 

 TCD D    (76) 

In which (76) can be directly compared to the general eigenvalue problem shown in (73). It can 

be seen that the right singular vector matrix D is equivalent to the matrix of eigenvectors V of the 

covariance matrix C 

 V D  (77) 

and the squares of the singular values T   are equal to the eigenvalues   
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 T     (78) 

Now substituting (56) into (71) and replacing V with D the basis vectors are shown as 

 1TS D D     (79) 

Utilizing the orthogonality of D, (79) can be reduced to 

 1S    (80) 

such that the basis vectors can be rewritten as 

 S   (81) 

Of course the amplitudes A can be found using (62) and transposing (71) to yield 

  1
T

T T TV U    (82) 

Substituting (82) into (62) and replacing V with D produces 

  1
T

T TA D U U   (83)  

Replacing U
T
U with (75) gives 

  1
T

T T TA D D D     (84) 

and is further reduced via orthogonality 

  1
T

T TA D     (85) 

The property of matrix transposition states 

    
1

1
T

TX X


   (86) 

To simplify (85) as 

 TA D   (87) 

which shows the amplitude matrix A is equivalent to both KLD and SVD methods. 
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