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ABSTRACT 

This research thesis aims to achieve the structural analysis and active vibration damping 

of the Tetraform machining structure.  The Tetraform is a space frame made up of four 

equilateral triangles with spherical masses at the four vertices.  This frame was originally 

developed for grinding of optical lenses and is now being adapted for use in micro-precision 

milling.  The Tetraform is beneficial to the milling process due to its exceptionally high dynamic 

stiffness characteristics, which increases the machining stability and allows for higher material 

removal rates and accuracy.  However, there are still some modes of vibration that are critical to 

the milling process and need to be dampened out. 

Under operating conditions of many structures, resonant modes of vibration can easily be 

excited which often lead to structural failure or significant reduction in operating performance.  

For the milling application, resonant frequencies of the machining structure can severely limit 

the milling process.  The goal of the presented research is to increase surface and subsurface 

integrity with optimal material removal rate and least possible machining vibration, while 

maintaining accurate precision and surface finish.  The vibrations from the machine tool not only 

affect the quality of the machined part but also the machine tool itself, since the cutting tool is 

susceptible to break or wear quickly when operating at high vibration modes, thus inevitably 

decreasing tool life. 

Vibration control has gained considerable attention in many areas including aerospace, 

automotive, structural, and manufacturing.  Positive Position Feedback (PPF) is a vibration 
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control scheme that is commonly used for its robust stability properties.  A PPF controller works 

as a low pass filter, eliminating instability from unmodeled higher-frequency modes.  The PPF 

controller concept is used in developing an active vibration control scheme to target the critical 

frequencies of the Tetraform.  The controller is implemented with use of piezoelectric actuators 

and sensors, where the sensors are bonded to the opposing sides of the beams as the actuators, 

allowing for the assumption of collocation.  The sensor/actuator pairs are placed at an optimal 

location on the Tetraform with high modal displacements for all the critical frequencies. 

Multiple finite element models are developed in order to analyze the structural dynamics 

and allow for controller design.  A model is developed in the finite element software ANSYS 

and is used to obtain the Tetraform’s dynamic characteristics, which include natural frequencies 

and mode shapes.  This model is also used to visualize the changes in mode shapes due to 

structural modifications or different material selections.  Other models are also developed in 

Matlab and Simulink.  This consists of the creation of a finite element model which is then 

converted to state space.  The piezoelectric transducers are included in this model for the input 

and output of the state space model.  This model can be used for controller design where the goal 

is to create maximum decibel reduction at critical frequencies while attempting to minimize 

controller effort. 
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1 CHAPTER 1  –  INTRODUCTION 

There are two main goals of this research.  They are to analyze the Tetraform space frame 

and to develop a method of vibration control of the Tetraform intended to optimize the 

machining process.  The Tetraform is a tetrahedral frame used to hold a high speed spindle for 

micro-scale milling.  It is essential to the machining process to have minimal vibrations in the 

structure holding the spindle.  The Tetraform prototypes were analyzed to determine how 

susceptible the structure is to vibration.  An active vibration control scheme was then designed to 

dampen out natural frequencies that are critical to the machining process. 

Structural vibration is very critical to machining performance.  When machining on the 

micro/nano scale, it is desirable to operate at a high material removal rate to increase economic 

efficiency.  The goal of present research is to increase surface and subsurface integrity with 

satisfactory material removal rate by decreasing the vibrations of the tool holding structure.  This 

helps to prevent fatigue cracking and increase part life.  Structural vibrations play an important 

role in the ability to machine at a very high material removal rate while maintaining high 

precision and surface finish.  The vibrations felt by the machine tool not only affect the quality of 

the machined part but also the machine tool itself, since the cutting tool is susceptible to pitting 

and wear when operating at high speeds, thus inevitably decreasing tool life. 

While the Tetraform displays favorable dynamic stiffness compared to the more 

commonly used machining structures [4][5], there is still a need to dampen out certain modes of 
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vibration.  For this, an active vibration control scheme was developed to target such frequencies.  

The Tetraform is converted to a smart-structure by implementing piezoelectric sensors/actuators.  

The positions of the sensors/actuators are chosen to effectively dampen out the modes of 

vibration that are most critical to the machining process, i.e., induces the largest displacement to 

the spindle holder.  The actuators and sensors will be collocated to best obtain a displacement 

signal for the controller.  Positive Position Feedback is then used to control the input signal to the 

actuators.     

With the increasing demand for micro-scale devices, the need for improved accuracy and 

precision in machining processes goes up continuously.  This has driven research in the 

development of a machine tool structure that contains the dynamic stiffness properties to 

machine with nano-scale accuracy and precision.  One way to achieve this goal is the Tetraform, 

which was originally designed by Kevin Lindsey [1] at the UK’s National Physical Laboratory.  

In his research he developed the Tetraform 1 for grinding of optical lenses with ultra smooth 

surfaces. 

The Tetraform consists of four equilateral triangles connected by spherical masses at the 

vertices, which is ideal for a machining structure due to how vibration waves propagate through 

the structure.  The vibrations travel through the closed loops of the space frame creating high 

dynamic stiffness with the companion of high static stiffness [2]. 

In this study, the Tetraform is adopted for use in micro-machining by Dr. Mark Jackson 

[3], where the frame has been scaled down significantly and a spindle holder in the center of the 

structure was added in. The modified Tetraform is used to hold a high speed spindle while the 
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work piece is moved with three linear position stages for two horizontal degrees of freedom and 

a vertical degree of freedom.  The complete setup is shown in Figure 1. 

 

Figure 1-1  Tetraform Space Frame 

The structural dynamics of the Tetraform were thoroughly analyzed to compare structural 

modifications and to help develop and simulate active vibration control schemes.  Modal analysis 

consists of obtaining mode shapes, natural frequencies, and damping values.  The mode shapes 

show the displaced structure for each natural frequency.  This gives insight into where areas of 

high vibration energy occur in the structure for different natural frequencies.  The ultimate goal 

is to minimize modes with high energy influence on the spindle position, which create mal 

effects on the machining process.  The Finite Element Analysis (FEA) software, ANSYS, was 

used to calculate and display the modal responses of the Tetraform.  This software is an effective 

way of displaying the mode shapes along with visualizing the effects of structural modifications. 
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Dynamic responses of the Tetraform were also studied.  Frequency response functions 

(FRFs) created experimentally and from simulation models show the responses of different 

points on the Tetraform to a dynamic input at a particular point on the Tetraform.  The dynamic 

relationships between the spindle location and other points on the structure are of most 

importance.  Input forces from machining can trigger certain modes of vibration when there is a 

strong dynamic relationship between theses two points along with the inverse affect of outer 

disturbance inputs creating a large dynamic response of the spindle location.  Structural 

modifications can be conducted to strategically reduce the dynamic response between different 

points on the Tetraform.  Dynamic analysis is also useful for the application of active vibration 

control.  Locations of actuator-sensor pairs are critical to the effectiveness of the vibration 

control scheme.  It is desirable to place the actuators at a point the high influence on the dynamic 

response of the spindle location while minimizing the dynamic response of the sensors to inputs 

from modes that do not significantly affect the spindle.  FRFs obtained experimentally are also 

used to verify the simulation models created in Matlab and ANSYS. 

Active vibration control via piezoelectric transducer patches is used to dampen out the 

critical modes which have high influence on the spindle location.  Piezoelectric materials 

generate an electric potential from an applied mechanical stress.  They also exhibit the inverse 

effect of expanding when subjected to an applied voltage.  The development of ceramics that 

possess very strong mechanical electrical coupling properties is one of the driving factors behind 

the emergence of active vibration control as a more viable solution to vibration than passive 

control techniques.   
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These piezoelectric patches, shown in Figure 1-2, can be used as both actuators and 

sensors.  It is beneficial to use the piezoelectric sensor to measure the strain because it is a 

passive sensor, as opposed to the alternative, strain gauge sensors, which require power and a 

Wheatstone Bridge.  Sensors convert the surface strain vibration waves into an electric signal 

which is sent to the controller.  The control algorithm is programmed onto the controller which 

runs in real-time.  For this research, Positive Position Feedback (PPF) is chosen for its desirable 

stability characteristics and effective damping of multiple modes.  The output control signals are 

input to high power amplifiers, which drive the actuators.   

 

Figure 1-2  Piezoelectric Actuator/Sensor from Mide [20] 

 

The actuators and sensor patches are mounted opposite each other on the tubular beams 

of the Tetraform.  This allows for the assumption of collocation, which is essential for control 

robustness and for significant decibel reduction of critical frequencies.  Optimal locations of the 

actuator-sensor pairs were determined from the simulation models.  The mode shapes from 

ANSYS were used to locate areas of large displacements for the critical modes.  Locations of 

large surface strain due to beam bending displacements are the most efficient locations for 
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mounting the actuators.  FRFs were setup to display the dynamic relationships between the 

surface strain at possible mounting locations and the spindle point. 

Simulations, using the Matlab FEA model, were conducted to design multiple PPF 

controllers and test their controllability over the targeted modes.  The FEA model was converted 

to state space to allow for output and input matrices.  Piezoelectric sensor and actuator equations 

were derived and input into these output and input matrices.  Three piezoelectric actuator-sensor 

pairs were positioned at symmetric locations on the Tetraform.  Different locations were tested 

for their controllability and required control effort.  In order to dampen out modes of the 

Tetraform, root locus was  used to tune second order PPF filters to optimal damping and 

stability.  The effectiveness of the controllers are displayed by decibel reduction of the critical 

frequencies in the bode plots. 
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2 CHAPTER 2  –  BACKGROUND 

2.1 Tetraform 

The first prototype of the Tetraform was the Tetraform 1, created by Lindsey [1] for 

grinding glass and quartz to optical quality at high material removal rates.  With the Tetraform 1, 

10 μm cuts were able to produce 5nm Ra surface finish.  This model consisted of steel tubular 

members that were 600 mm long with an outside diameter of 131 mm.  The Tetraform concept 

has inherently desirable dynamic characteristics.  Internal damping was included for the 

Tetraform to further increase it’s resistance to vibration.  Pistons were inserted into the inner 

diameter of the tubular members with viscous damping material in the gaps for damping.  The 

legs were attached to the spheres with pin joints that could be tightened or loosened to change 

the magnitude of the resonant frequencies.  By loosening the joints, frictional damping by the pin 

joints became effective [1].  This along with the internal damping and dynamic stiffness 

properties of the frame made the Tetraform 1 highly resistant to vibration across a wide range of 

frequencies. 

The Tetraform 1 was limited to one degree of freedom for grinding.  The z-axis was on 

the inner portion of the structure, attached under the top sphere.  It was clear that development of 

multi-axis machines with high stiffness were possible using the Tetraform concept.  The 

Tetraform ‘C’ [13] was created adding in the two horizontal degrees of freedom.  It was also 

determined that the pin jointed Tetraform frame had sufficient damping properties and the 

hydraulic damping was omitted for the Tetraform ‘C’ [14]. 
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Figure 2-1  Tetraform 'C' [13] 

 

The Tetraform concept has recently been adapted by Dr. Mark Jackson [3] at Purdue 

University to a smaller scale for use in micro-scale milling.  The degrees of freedom needed for 

the machining can be implemented by linear stages mounted to the base surface, eliminating the 

extra mass and complexity added to the Tetraform and allowing the size of the frame to be scaled 

down.  The pros and cons of two different models are currently being researched for the micro-

milling application.  Full scale and 2/3 scale models are both being built.  The full scale 

Tetraform was shown in Figure 1-1 and a model of the 2/3 scale Tetraform is shown in Figure 2-

2.  The 2/3 scale model is minus some of the lower brackets and the spindle holder is also raised 

to a higher location in proportion of the structure. 
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Figure 2-2  Solid Model of 2/3 Scale Tetraform 

  

2.2 Vibration Control 

Vibration control methods consist of passive control, active control, or hybrid 

combinations of both.  Some of the most common passive damping solutions are fluid damping, 

viscoelastic materials, and tuned mass dampers.  Active damping is most often implemented by 

piezoelectric materials when possible, but also could use controlled magnetism, shape memory 

alloys, and voice coil actuators among others.  This research was only concerned with active 

vibration control using piezoelectric patches.   

Positive Position Feedback control was chosen as the method to control the input to the 

piezoelectric actuators.  The idea of PPF controllers was first put forth by Goh and Caughey [15].  

Fanson and Caughey [8] discovered that the PPF controllers act as a low pass filter, rolling off 

after the controller’s natural frequency, eliminating the effects of higher unmodeled modes on 
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the controller’s output.  Therefore, the controlled system will not become destabilized due to the 

unmodeled modes.  Although PPF control guarantees robustness against the spillover of higher 

modes, it does not guarantee absolute stability.  Conditions for the controller constants to 

guarantee stability can be derived by requiring the closed loop stiffness matrix to be positive 

definite [16].  Poh and Baz [17] modified the PPF concept to a controller which they named 

Modal Positive Position Feedback (MPPF).  They used first order filters to obtain similar 

damping results as PPF filters.  However, using first order filters allows lower modes to have 

higher influence on the control signal than the targeted mode, causing spillover effects from 

lower modes [16].   
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3 CHAPTER 3  –  TETRAFORM MODELING 

3.1 Introduction 

Different models of the Tetraform were created using Finite Element Analysis (FEA).  

FEA is the process of breaking a complex object under analysis into smaller simpler elements in 

order to derive a series of equations to accurately describe it.  Discretizing the object into 

elements allows the ability to approximate values at connecting points, or nodes.  The elements 

that connect the different nodes use interpolation functions to approximate the relationship 

between the values at those nodes.  In the case of structural analysis, the values being 

approximated are the physical displacements.    Reducing the size and therefore increasing the 

quantity of the elements will reduce the errors produced from using approximation functions.  

However, it should be noted that the size need only be reduced so much as the error will 

converge to zero.  Further reduction is unnecessary and could even induce calculation error.   

Different types of elements can be used to approximate displacements of a structure.  The 

basic structural elements include solid, shell, plate, beam, link, and point elements.  Solid 

elements, which are most commonly tetrahedral and brick elements, are used to mesh volumes.  

These are usually used when other elements are not feasible due to a large quantity of required 

nodes and hence a longer computing time.   Shell and plate elements are surface elements with 

thickness used to mesh curved or flat surfaces and can allow for bending and membrane 

displacements.  Beam elements are used for objects whose length is larger than its other two 

dimensions.  It’s most dominant displacement is beam bending but beam elements may also 
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include axial and torsional displacements.  Link elements are line elements that act as a spring 

with either axial or torsional displacements.  And finally point elements are used to represent 

mass or inertia at one node.  There are many types of these elements as there are varying theories 

and combinations of the different elements. 

The derived element equations are in matrix form which contains mass and stiffness 

matrices.  All of the element matrices are combined to create global mass and stiffness matrices 

to represent the entire structure.  Both are symmetric n x n matrices where n is the total number 

of degrees of freedom for the entire structure.  The constructed global mass and stiffness 

matrices are then used in a second order differential equation to describe the dynamics of the 

structure.   

The derived FEA models of the Tetraform can then be used for modal analysis, dynamic 

analysis, and controller design simulations.  The models were created both manually in Matlab 

and also in the FEA software ANSYS.  The model in ANSYS was used in the modal analysis to 

display the mode shapes.  Both were used to compare structural changes and different scales of 

the Tetraform.  The Matlab model was used to create a state space model to be controlled for 

vibration control simulations. 

3.2 ANSYS Finite Element Model 

FEA software is a very powerful tool in the design and simulation process.  In addition to 

the numerical solver, the modeling and results may be monitored visually.  This has cut the time 

down significantly of today’s design processes by eliminating the need for excessive 
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prototyping.  Static stresses and dynamic characteristics can now be analyzed without the 

creation of entirely new prototypes.  This software allows for quick and easy implementation of 

structural changes.  Addition of structural members and changes to existing members can be 

done with ease while being able to visualize the resulting changes in stress and dynamic 

characteristics.    

For this research, ANSYS 11.0 was used.  When using this software, and most other FEA 

software, there are three steps in the analysis process.  These are preprocessing, solution, and 

postprocessing.  For the preprocessing, the model is created, meshed and the boundary 

conditions and input forces are applied.  The solution involves defining and setting up the solver.  

Postprocessing is where listing and displaying of the results takes place.  ANSYS combines all 

three into a graphical user interface environment. 

Preprocessing is the first step in the analysis process.  This involves the creation of the 

structural geometry in ANSYS.  Beam elements were chosen to model the Tetraform.  It is well 

suited for this due to its slender tubular frame without any solid volumes consisting of any 

significant stresses.  It was assumed that the solid spheres at four outer joints and the spindle 

holder could be accurately represented as point masses since the internal displacements of the 

volumes are negligible compared to the bending of the tubular frame.  It was also assumed that 

the bracketed sections could be modeled as thick beam sections. 

Depending on the complexity of the object under analysis, it is often created in modeling 

software and imported into the Finite Element Software.  Since the beam elements that were used 

are line elements, the structure was modeled in ANSYS directly as a simple wire frame.  
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Keypoints were used to create the basic geometry.  Each keypoint’s coordinates were input 

manually and were placed at all the points that represent a change in element orientation or 

cross-section.  The keypoints are then connected with lines to give a wire frame representing the 

Tetraform.  Figure 3-1 shows this wire frame before element meshing. 

 

Figure 3-1  ANSYS Wire Frame Model 

 

As can be seen from Figure 3-1, the spheres and the spindle holder are not represented in 

this model.  They will be represented as mass elements.  It is very beneficial in Finite Element 

Analysis to simplify the model as much as possible without affecting the results.  Different FEA 

software packages have different limits to the allowable quantity of nodes and solution time may 

become excessive with larger quantities of nodes.  To reduce the model, the legs of the structure 

were represented with beam elements while the spheres and spindle holder were represented with 

point mass elements.  The elements used for the point masses are Mass21 elements.  These are 
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purely inertial elements and do not affect the stiffness of the structure.  This means that the input 

for these elements will consist of linear inertia terms, 𝑚𝑥 ,𝑚𝑦 , and 𝑚𝑧 , and rotational inertia 

terms, 𝐼𝑥𝑥 , 𝐼𝑦𝑦 , and 𝐼𝑧𝑧 .  The three linear inertia terms are the same and are equal to the mass of 

the element.  The rotational inertia terms, or mass moments of inertia, were found by solving 

(3.1) for each axis.  The inertia terms for the sphere and spindle holder are listed in Table 3-1 

where 𝑧 is the vertical axis and 𝑥 and 𝑦 are the horizontal axis. 

𝐼 =  𝑟2𝑑𝑚                                                               (3.1)  

 

Table 3-1  Point Mass Inertia Values 

 𝑚 

(𝑘𝑔) 

𝐼𝑥𝑥  

(𝑘𝑔 −𝑚2) 

𝐼𝑦𝑦  

(𝑘𝑔 −𝑚2) 

𝐼𝑧𝑧  

(𝑘𝑔 −𝑚2) 

Spheres 2.6 2.153e-3 2.153e-3 2.153e-3 

Spindle Holder 1.7 1.485e-3 1.485e-3 2.225e-3 

 

The beam elements that were used are Beam188 elements.  These are used to represent 

slender beam structures.  They are based on Timoshenko beam theory which includes shear 

deformation.  Beam188 elements consist of two end nodes, I and J, with a total of 12 degrees of 

freedom.  The degrees of freedom include translation on the 𝑥, 𝑦 and 𝑧 axes and rotation about 

the 𝑥, 𝑦 and 𝑧 axes for both end nodes.  Figure 3-2 shows the orientation of this element where 𝑥, 𝑦 and 𝑧 are the local element coordinates and 𝑋, 𝑌 and 𝑍 are the global coordinates.  A third 
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orientation node, J, is also included when the 𝑧 direction needs to be specified.  This is the case 

when the cross-section is not circular.  This node is input to define the IJK plane.   

 

Figure 3-2  Beam188 Element [19] 

 

Other input data for the beam elements include material properties and cross-sectional 

data.  For this structure, there are four different beam cross-sections that need to be defined.  The 

first is the tubular beam section and the other three are the different bracketed sections.  ANSYS 

has options for common cross-sections where only dimensions need to be input.  For uncommon 

cross-sections, the area moments of inertia, polar moment of inertia, and area must be input.  A 

tubular cross-section is a common cross-section in ANSYS so the outer and inner radii are the 

only required input.  The inner and outer radii of the legs are 𝑅𝑖 = # and 𝑅𝑜 = # respectively.  

The area, area moments of inertia, and polar moment of inertia are then calculated by ANSYS.  

For the bracketed sections, the area moments inertia, 𝐼𝑦  and  𝐼𝑧 , were calculated from the 

moment of a rectangular cross-section minus the moment of the circular area inside the tubular 
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beam.  The polar moment of inertia 𝐽 is the summation of 𝐼𝑦  and  𝐼𝑧 .  The three bracketed cross-

sections are labeled in Figure 3-3 while the calculated moments of inertia are listed in Tables 3-2 

to 3-4.  The Tetraform is made of steel and the material properties are listed in Table 3-5.   

 

Figure 3-3  Bracketed Cross-Sections 

 

Table 3-2  Bracketed Beam Cross-Section 1 Properties 

Area 𝐴 (𝑚2) 𝐼𝑦  (𝑚4) 𝐼𝑧  (𝑚4) 𝐽 (𝑚4) 

1.799e-3 2.502e-7 3.788e-7 6.289e-7 

 

 

Table 3-3  Bracketed Beam Cross-Section 2 Properties 

Area 𝐴 (𝑚2) 𝐼𝑦  (𝑚4) 𝐼𝑧  (𝑚4) 𝐽 (𝑚4) 

1.17e-3 2.191e-7 3.624e-7 5.816e-7 

 

Bracket 2 

Bracket 1 

Bracket 3 
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Table 3-4  Bracketed Beam Cross-Section 3 Properties 

Area 𝐴 (𝑚2) 𝐼𝑦  (𝑚4) 𝐼𝑧  (𝑚4) 𝐽 (𝑚4) 

1.813e-3 2.333e-7 4.174e-7 6.5073e-7 

 

Table 3-5  Tetraform Material Properties 

Density  𝜌 (
𝑘𝑔𝑚3

) 

Young’s 
Modulus  𝐸   𝑁𝑚2

  

Poison’s ratio  𝑣  

Shear Modulus  𝐺   𝑁𝑚2
  

7750 207e9 0.3 79e9 

 

The next step in the modeling process is to mesh the structure.  The element length needs 

to be defined.  For the bracketed sections, the element lengths were set to the length of the 

brackets.  This section was not separated into multiple elements to avoid losing the slenderness 

ratio necessary for beam behavior.  The reference node was used for this cross-section. 

Finally, the boundary conditions must be defined.  These were applied to the three 

spheres at the base of the Tetraform.  The nodes at these points were restrained to zero 

displacement in all three translational directions.  The three rotational degrees of freedom at 

these points were still allowed to permit transfer of vibrational energy in the lower portion of the 

structure.  It was assumed that the weight of the Tetraform is enough to keep permanent contact 

with the base surface and eliminate vertical displacements of the three spheres.  It is also 

assumed that the friction between the three spheres and the base surface are enough to eliminate 

horizontal movements of the spheres. 
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3.3 Matlab Finite Element Model 

A derived Finite Element model was also created by manually coding the model in 

Matlab.  This mathematical model serves several purposes.  This FEA model was used to verify 

the ANSYS model by comparison of the calculated natural frequencies.  It can be used to quickly 

implement small structural changes.  Some changes are easier and quicker to change in code as 

opposed to making the changes in the ANSYS model.  It was also used, along with the addition 

of the piezoelectric coupled equations, to develop a state space model that could be used for 

simulating the active vibration control of the Tetraform.  This state space model has an input of 

voltage to the three piezoelectric actuators and an output of voltage from the three piezoelectric 

sensors.  The state space model was also used to calculate the FRFs in Matlab. 

The same modeling techniques used in ANSYS were used here.  The frame legs were 

represented as Timoshenko beam elements and the spheres and spindle holder were represented 

as point mass elements.  The same boundary conditions were applied to the three base spheres.  

The elements lengths were different from those of the ANSYS model.  As the input data needed 

to be set up for each element individually, the element lengths were made larger to give fewer 

elements.  Also, the element lengths in the area of the mounted piezoelectric sensors and 

actuators were setup based on optimal placement of these transducers for vibration control. 

Using the element interpolation functions that approximate the displacement values 

across the element, equations of motion were developed to approximate the displacement values 

at the connecting nodes.  The resulting element mass and stiffness matrices are input into the 

differential equation to describe the nodal displacements.  The differential equation is of the form 
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shown in (3.2).   𝑀𝑒  is the element mass matrix,  𝐾𝑒  is the element stiffness matrix,  𝑓𝑒   is the 

nodal force vector, and  𝑟  is the nodal displacement vector. 

 𝑀𝑒  𝑟  +  𝐾𝑒  𝑟 =  𝑓𝑒                                                   (3.2) 

The process of finite element analysis is to ultimately obtain global mass and stiffness 

matrices to represent the entire system.  First, the mass and stiffness matrices are derived for 

each element in local coordinates (x,y,z).  The mass and stiffness matrices are then converted to 

the global coordinate system (X,Y,Z).  Finally, all the element matrices are input into the global 

mass and stiffness matrices that represent the entire structure.  These can be used in a differential 

equation similar to that of (3.2). 

3.3.1 Element Modeling 

The element equations used for the legs were not restricted to beam theory.  They also 

include axial and torsional displacements.  The dynamic equation matrices for bending, axial and 

torsional movements are derived independently and superimposed into the final element 

matrices.  These equations can be uncoupled and still represent an accurate assumption as long as 

large deformations do not occur.  Each beam element contains twelve degrees of freedom.  These 

include translational displacements, 𝑢,𝑣, and 𝑤, in the 𝑥,𝑦 and 𝑧 directions for both nodes i and 

j and rotational displacements, 𝜃𝑥 ,𝜃𝑦 , and 𝜃𝑧 , about the 𝑥, 𝑦 and 𝑧 axis for both nodes i and j.  

The beam element displacement vector is represented as 𝑟𝑇 =  𝑢𝑖 ,   𝑣𝑖 , 𝑤𝑖 , 𝜃𝑥𝑖 , 𝜃𝑦𝑖 , 𝜃𝑧𝑖 , 𝑢𝑗 ,𝑣𝑗 , 𝑤𝑗 , 𝜃𝑥𝑗 , 𝜃𝑦𝑗 , 𝜃𝑧𝑗  .   
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The beam or bending equations were developed for transverse displacements, 𝑣 and 𝑤.  

However, the derivation will just be shown for the transverse displacement 𝑤, or bending about 

the 𝑦 axis.  As in the ANSYS analysis, Timoshenko beam theory is used for the beam elements.  

Timoshenko beam theory differs from classical beam theory in that it includes bending shear and 

rotational inertia.  The equations of motion for the Timoshenko beam elements for bending about 

the 𝑦 axis will be of the form 

 𝑀𝑏    
  𝑤 𝑖𝜃 𝑦𝑖𝑤 𝑗𝜃 𝑦𝑗   

  
+  𝐾𝑏  𝑤𝑖𝜃𝑦𝑖𝑤𝑗𝜃𝑦𝑗 =   

 𝑄𝑧𝑖𝑀𝑦𝑖𝑄𝑧𝑗𝑀𝑦𝑗  
 

                                             (3.3) 

where   𝑀𝑏   is the Timoshenko beam mass matrix,  𝐾𝑏  is the Timoshenko beam stiffness 

matrix, 𝑄𝑧   is the nodal shear force, and 𝑀𝑦  is the nodal bending moment about the 𝑦 axis. 

Hamilton’s Principle will be used to derive the Timoshenko equations of motion.  This 

principle is the variational equation listed in (3.4).  The strain energy, 𝑈, kinetic energy, 𝑇, and 

work due to external forces, 𝑊, are derived and input into this equation to obtain the 

Timoshenko beam equations.  The axial and transverse displacements used to derive these terms 

are approximated by (3.5) and (3.6) respectively.  𝜃 𝑥, 𝑡   is the cross-section rotation about the 𝑦 axis and 𝛽(𝑥) is the slope due to shear. 

  𝛿𝑈 − 𝛿𝑇 − 𝛿𝑊 𝑑𝑡 = 0                                                (3.4) 

𝑢 𝑥,𝑦, 𝑧, 𝑡 = 𝑧𝜃 𝑥, 𝑡 = 𝑧  𝜕𝑤𝜕𝑥 − 𝛽(𝑥)                                     (3.5) 

𝑤 𝑥, 𝑦, 𝑧, 𝑡 = 𝑤(𝑥, 𝑡)                                                   (3.6) 
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As can be seen from the axial displacement, 𝑢 𝑥,𝑦, 𝑧, 𝑡 , the total slope, 𝜃 𝑥, 𝑡 , of the 

cross-section is determined by the slope from bending, 
𝜕𝑤𝜕𝑥 , and the slope from shear, 𝛽(𝑥).  This 

is one of the aspects that differentiate Timoshenko beam elements from Euler-Bernoulli beam 

elements.  The latter does not account for shear and assumes that the beam cross-section remains 

perpendicular to the neutral axis.  These displacements are then used to obtain the energy 

variation terms for Hamilton’s Principle equation.  The strain energy, 𝑈, and kinetic energy, 𝑇, 

are shown in Eqs. (3.7) and (3.8) respectively.  The strain energy accounts for both linear and 

shear strain.  These are then converted to matrix form and are given in Eqs. (3.9) and (3.10). 

 

𝑈 =
1

2
𝐸𝐼𝑦  𝜕𝜃𝑦𝜕𝑥  2

+
1

2
𝐾𝐺𝐴 𝜕𝑤𝜕𝑥 + 𝜃𝑦 2

                                       (3.7) 

𝑇 =
1

2
𝜌𝐴  𝜕𝑤𝜕𝑡  2

+
1

2
𝜌𝐼𝑦  𝜕𝜃𝑦𝜕𝑡  2

                                             (3.8) 

𝑈 =
1

2
  𝜕𝜃𝑦𝜕𝑥𝜕𝑤𝜕𝑥 + 𝜃𝑦 

𝑇  𝐸𝐼𝑦 0

0 𝐾𝐺𝐴  𝜕𝜃𝑦𝜕𝑥𝜕𝑤𝜕𝑥 + 𝜃𝑦 𝐿𝑒
0

𝑑𝑥                            (3.9) 

𝑇 =
1

2
  𝜕𝑤𝜕𝑡𝜕𝜃𝑦𝜕𝑡  

𝑇  𝜌𝐴 0

0 𝜌𝐼𝑦  𝜕𝑤𝜕𝑡𝜕𝜃𝑦𝜕𝑡  𝑑𝑥𝐿𝑒
0

                                   (3.10) 

Here, 𝑤 is the transverse displacement in the z direction, 𝜃𝑦  is the rotation of the beam 

cross-section about y axis, 𝐿𝑒  is the length of the element, 𝐴 is the cross-sectional area, 𝐸 is the 
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Modulus of Elasticity, 𝐼𝑦  is the bending moment about the y axis, 𝐾 is the shear coefficient and 

is most often given the value of 
9

10
 [18], and 𝐺 is the shear modulus. 

The work done by external forces 𝑊 is also given as 

𝑊 =   𝑤𝜃𝑦  𝑇  𝑄𝑀 𝑑𝑥𝐿𝑒
0

                                                 (3.11) 

where 𝑄 is the shear force and 𝑀 is the bending moment. 

Equations (3.9), (3.10) and (3.11) are then substituted into (3.4).  The resulting equations 

of motion are the Timoshenko beam equations and are given in (3.12) and (3.13).  

𝜕 𝐾𝐺𝐴 𝜕𝑤𝜕𝑥 +𝜃𝑦   𝜕𝑥 + 𝑄 = 𝜌𝐴 𝜕2𝑤𝜕𝑡2
                                              (3.12) 

𝜕 𝐸𝐼 𝜕𝜃𝑦𝜕𝑥   𝜕𝑥 −𝐾𝐺𝐴 𝜕𝑤𝜕𝑥 + 𝜃𝑦 + 𝑀 = 𝜌𝐼𝑦 𝜕2𝜃𝑦𝜕𝑡2
                                  (3.13) 

From this, it can be seen that a quadratic interpolation function for 𝑤 must be used.  The 

interpolation function for 𝜃𝑦  can be obtained from taking the spatial derivative of 𝑤.  Both of 

these equations for displacements are then used along with the boundary conditions listed in 

(3.16) and (3.17) to calculate the shape functions.  The shape functions for transverse 

displacement, rotations and accelerations are  𝑁𝑤  ,  𝑁𝜃  and  𝑁𝑎  respectively where  𝑁𝜃 = 𝑁𝑤  ′ and  𝑁𝑎 =  𝑁𝑤  ′′.  (. )′ denotes the spatial derivative in the 𝑥 direction. 

𝑤 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑥2 + 𝑎4𝑥3                                           (3.14) 

𝜃𝑦 = 𝑤′ = 𝑎2 + 2𝑎3𝑥 + 3𝑎4𝑥2                                          (3.15) 
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𝑤 0 = 𝑤𝑖 ,𝜃𝑦  0 = −𝜃𝑖                                                (3.16) 

𝑤 𝐿𝑒 = 𝑤𝑗 ,𝜃𝑦 = −𝜃𝑗                                                  (3.17) 

𝑤 𝑥, 𝑡 =  𝑁𝑤  𝑇 𝜑                                                    (3.18) 

𝑤  𝑥, 𝑡 =  𝑁𝑤  𝑇 𝜑                                                     (3.19) 

𝑤 ′ 𝑥, 𝑡 =  𝑁𝜃 𝑇 𝜑                                                    (3.20) 

𝑤′′ 𝑥, 𝑡 =  𝑁𝑎 𝑇 𝜑                                                    (3.21) 

Finally, these shape functions along with the Timoshenko beam equations listed in (3.12) 

and (3.13) are used to obtain expressions for the stiffness matrix  𝐾𝑏  and the mass matrix  𝑀𝑏  
listed in (3.22) and (3.23).  Solving these expressions gives the matrices listed in (3.24) and 

(3.25).  The first term in the mass matrix is the translational inertia and the second term is the 

rotational inertia. 

 𝐾𝑏 =   𝜕𝜕𝑥  𝑁𝜃   𝑁𝜃  +
𝜕𝜕𝑥  𝑁𝑤  

𝑇  𝐸𝐼𝑦 0

0 𝐾𝐺𝐴  𝜕𝜕𝑥  𝑁𝜃   𝑁𝜃  +
𝜕𝜕𝑥  𝑁𝑤   𝑑𝑥𝐿𝑒

0
                 (3.22) 

 𝑀𝑏 =   𝑁𝑤𝑁𝜃  𝑇  𝜌𝐴 0

0 𝜌𝐼𝑦 𝐿𝑒
0

 𝑁𝑤𝑁𝜃  𝑑𝑥                                    (3.23) 

 𝐾𝑏 =
𝐸𝐼𝑦

(1+𝜎)𝐿𝑒3    
 12 6𝐿𝑒 −12 6𝐿𝑒

6𝐿𝑒  4 + 𝜎 𝐿𝑒2 −6𝐿𝑒 (2 − 𝜎)𝐿𝑒2−12 −6𝐿𝑒 12 −6𝐿𝑒
6𝐿𝑒 (2 − 𝜎)𝐿𝑒2 −6𝐿𝑒 (4 + 𝜎)𝐿𝑒2    

 
                         (3.24) 
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 𝑀𝑏 =

𝜌𝐴
210 1+𝜎 2

   
   
  70𝜎2 + 147𝜎 + 78  35𝜎2+77𝜎+44 𝐿𝑒

4
 35𝜎2 + 63𝜎 + 27 −   35𝜎2+63𝜎+26 𝐿𝑒

4
   35𝜎2+77𝜎+44 𝐿𝑒

4
   7𝜎2+14𝜎+8 𝐿𝑒2

4
   35𝜎2+63𝜎+26 𝐿𝑒

4
 −  7𝜎2+14𝜎+6 𝐿𝑒2

4
  35𝜎2 + 63𝜎 + 27   35𝜎2+63𝜎+26 𝐿𝑒

4
  70𝜎2 + 147𝜎 + 78 −   35𝜎2+77𝜎+44 𝐿𝑒

4
 −   35𝜎2+63𝜎+26 𝐿𝑒

4
 −  7𝜎2+14𝜎+6 𝐿𝑒2

4
 −   35𝜎2 +77𝜎+44 𝐿𝑒

4
   7𝜎2+14𝜎+8 𝐿𝑒2

4
    

   
 

+   

𝜌𝐼𝑦
30 1+𝜎 2𝐿𝑒    

 36 −(15𝜎 − 3)𝐿𝑒 −36 −(15𝜎 − 3)𝐿𝑒−(15𝜎 − 3)𝐿𝑒  10𝜎2 + 5𝜎 + 4 𝐿𝑒2 (15𝜎 − 3)𝐿𝑒  5𝜎2 − 5𝜎 − 1 𝐿𝑒2−36 (15𝜎 − 3)𝐿𝑒 36 (15𝜎 − 3)𝐿𝑒−(15𝜎 − 3)𝐿𝑒  5𝜎2 − 5𝜎 − 1 𝐿𝑒2 (15𝜎 − 3)𝐿𝑒  10𝜎2 + 5𝜎 + 4 𝐿𝑒2    
 
    

(3.25) 

 

where 𝜎 =
12𝐿𝑒2  𝐸𝐼𝑦𝐾𝐴𝐺 . 

The axial and torsional equations use classical element stiffness and mass matrices.   The 

axial equations of motion will be in the form of (3.26).  The torsional equations of motion will be 

in the form of (3.27). 

 𝑀𝑎   𝑢 𝑖𝑢 𝑗  +  𝐾𝑎   𝑢𝑖𝑢𝑗  =  𝐹𝑥𝑖𝐹𝑥𝑗                                               (3.26) 

 𝑀𝑡  𝜃 𝑥𝑖𝜃 𝑥𝑗  +  𝐾𝑡  𝜃𝑥𝑖𝜃𝑥𝑗  =  𝑀𝑥𝑖𝑀𝑥𝑗                                             (3.27) 

The axial stiffness,  𝐾𝑎  , and mass,  𝑀𝑎  , matrices are given in (3.28) and (3.29) and the 

torsional stiffness,  𝐾𝑡 , and mass,  𝑀𝑡 , matrices are listed in (3.30) and (3.31). 
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 𝐾𝑎  =  𝐴𝐸𝐿𝑒 − 𝐴𝐸𝐿𝑒− 𝐴𝐸𝐿𝑒 𝐴𝐸𝐿𝑒                                                       (3.28) 

 𝑀𝑎  =  𝜌𝐴𝐿𝑒3

𝜌𝐴𝐿𝑒
6𝜌𝐴𝐿𝑒

6

𝜌𝐴𝐿𝑒
3

                                                      (3.29) 

 𝐾𝑡 =  𝐺𝐽𝐿𝑒 − 𝐺𝐽𝐿𝑒− 𝐺𝐽𝐿𝑒 𝐺𝐽𝐿𝑒                                                       (3.30) 

 𝑀𝑡 =  𝜌𝐽 𝐿𝑒3

𝜌𝐽 𝐿𝑒
6𝜌𝐽 𝐿𝑒

6

𝜌𝐽 𝐿𝑒
3

                                                      (3.31) 

The bending, axial and torsional matrices are then input into (3.2) to give the element 

stiffness,  𝐾𝑒 , and mass,  𝑀𝑒 , matrices displayed in (3.32) and (3.33). 

 𝐾𝑒 

=

   
   
   
   
 𝐾𝑎11 0 0 0 0 0 𝐾𝑎12 0 0 0 0 0

0 𝐾𝑏11 0 0 0 𝐾𝑏12 0 𝐾𝑏13 0 0 0 𝐾𝑏14

0 0 𝐾𝑏11 0 −𝐾𝑏12 0 0 0 𝐾𝑏13 0 −𝐾𝑏14 0

0 0 0 𝐾𝑡11 0 0 0 0 0 𝐾𝑡12 0 0

0 0 −𝐾𝑏12 0 𝐾𝑏22 0 0 0 −𝐾𝑏14 0 𝐾𝑏24 0

0 𝐾𝑏12 0 0 0 𝐾𝑏22 0 𝐾𝑏14 0 0 0 𝐾𝑏24𝐾𝑎12 0 0 0 0 0 𝐾𝑎22 0 0 0 0 0

0 𝐾𝑏31 0 0 0 𝐾𝑏32 0 𝐾𝑏33 0 0 0 𝐾𝑏34

0 0 𝐾𝑏31 0 −𝐾𝑏32 0 0 0 𝐾𝑏33 0 −𝐾𝑏34 0

0 0 0 𝐾𝑡12 0 0 0 0 0 𝐾𝑡22 0 0

0 0 −𝐾𝑏32 0 𝐾𝑏42 0 0 0 −𝐾𝑏34 0 𝐾𝑏44 0

0 𝐾𝑏32 0 0 0 𝐾𝑏42 0 𝐾𝑏34 0 0 0 𝐾𝑏44    
   
   
   
 
 

(3.32) 
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 𝑀𝑒 

=

   
   
   
   
 𝑀𝑎11 0 0 0 0 0 𝑀𝑎12 0 0 0 0 0

0 𝑀𝑏11 0 0 0 𝑀𝑏12 0 𝑀𝑏13 0 0 0 𝑀𝑏14

0 0 𝑀𝑏11 0 −𝑀𝑏12 0 0 0 𝑀𝑏13 0 −𝑀𝑏14 0

0 0 0 𝑀𝑡11 0 0 0 0 0 𝑀𝑡12 0 0

0 0 −𝑀𝑏12 0 𝑀𝑏22 0 0 0 −𝑀𝑏14 0 𝑀𝑏24 0

0 𝑀𝑏12 0 0 0 𝑀𝑏22 0 𝑀𝑏14 0 0 0 𝑀𝑏24𝑀𝑎12 0 0 0 0 0 𝑀𝑎22 0 0 0 0 0

0 𝑀𝑏31 0 0 0 𝑀𝑏32 0 𝑀𝑏33 0 0 0 𝑀𝑏34

0 0 𝑀𝑏31 0 −𝑀𝑏32 0 0 0 𝑀𝑏33 0 −𝑀𝑏34 0

0 0 0 𝑀𝑡12 0 0 0 0 0 𝑀𝑡22 0 0

0 0 −𝑀𝑏32 0 𝑀𝑏42 0 0 0 −𝑀𝑏34 0 𝑀𝑏44 0

0 𝑀𝑏32 0 0 0 𝑀𝑏42 0 𝑀𝑏34 0 0 0 𝑀𝑏44   
   
   
   
 
 

(3.33) 

3.3.2 Construction of Global Matrices 

Once these element matrices are calculated, they need to be converted from local to 

global coordinates.  This is done by computing a transformation matrix,  𝑇 .  Matrix  𝑇𝑒  is made 

by inputting the angles between the local and global axes.  This matrix is then input into  𝑇 .  
There are four 𝑇𝑒  terms in this matrix because there are six degrees of freedom per node or 

twelve per element.  The element stiffness and mass matrices are then converted using Eqs. 

(3.36) and (3.37) where  𝐾𝑒′   is the element stiffness matrix in global coordinates and  𝑀𝑒′  is 

the element mass matrix in global coordinates. 

.   
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 𝑇𝑒 =  cos( 𝑥,𝑋 ) cos( 𝑥,𝑌 ) cos( 𝑥,𝑍 )
cos( 𝑦,𝑋 ) cos( 𝑦,𝑌 ) cos( 𝑦,𝑍 )
cos( 𝑧,𝑋 ) cos( 𝑧,𝑌 ) cos( 𝑧,𝑍 )                                (3.34)   

 𝑇 =  𝑇𝑒 0 0 0

0 𝑇𝑒 0 0

0 0 𝑇𝑒 0

0 0 0 𝑇𝑒                                                   (3.35) 

 𝐾𝑒′ =  𝑇 𝑇 𝐾𝑒  𝑇                                                     (3.36) 

 𝑀𝑒′ =  𝑇 𝑇 𝑀𝑒  𝑇                                                    (3.37) 

Now that the element matrices are in the global coordinates, the global matrices can be 

constructed.  Each matrix can be broken up to the form of (3.38), where i and j are the node 

numbers for that particular element.  Therefore, each quadrant of the matrix can be input into the 

global matrix at a place that corresponds to the global node numbers for the element. 

 𝐾𝑒′ =  𝐾𝑖𝑖 𝐾𝑖𝑗𝐾𝑖𝑗𝑇 𝐾𝑗𝑗                                                        (3.38) 

The last step in creation of the model is to add the mass elements.  These include four 

spheres and the spindle holder.  Since these are point masses, the inertia terms will lie on the 

diagonal of the mass matrix.  These point masses will have no affect on the stiffness matrix.  The 

terms in the matrices will be the same as those calculated for the ANSYS method.  These point 

mass matrices will be input to the global matrix where the diagonal terms correspond to that 

particular node.  Here, m is the mass of the object and 𝐼𝑥𝑥 , 𝐼𝑦𝑦 , and 𝐼𝑧𝑧  are the mass moments of 

inertia. 
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 𝑀𝑝𝑜𝑖𝑛𝑡𝑚𝑎𝑠𝑠  =

   
   
𝑚 0 0 0 0 0

0 𝑚 0 0 0 0
0 0 𝑚 0 0 0

0 0 0 𝐼𝑥𝑥 0 0

0 0 0 0 𝐼𝑦𝑦 0

0 0 0 0 0 𝐼𝑧𝑧    
                                       (3.39) 
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4 CHAPTER 4  –  MODAL ANALYSIS 

4.1 Introduction 

Modal analysis was conducted on the different Tetraform prototypes.  This was done 

using both the ANSYS and Matlab models.  The modal analysis results are the natural 

frequencies and the mode shapes.  The mode shapes are the structural displacements at a 

particular natural frequency and are used to analyze where the areas of high energy are on the 

Tetraform for that natural frequency.  It is not desirable to have modes with high vibrational 

energy at the point of the spindle holder.  The frequencies that fall into this category are 

considered critical frequencies.  The mode shapes for the critical frequencies can be used to 

identify all of the areas of high surface strain that could be used to attach the piezoelectric 

sensors and actuators.  The mode shapes and frequencies for different Tetraforms are also 

compared to see the advantages of the different models. 

4.2 Full Scale Modal Analysis Results from ANSYS 

The first modal analysis results are from the full scale Tetraform.  This is the Tetraform 

model to which active vibration will be applied to.  The modal analysis method used in ANSYS 

was Block Lanczos.  The first results obtained were for the full scale Tetraform without the 

spindle motor and bearing attached to the spindle holder.  This additional mass and inertia is 

added for the second set of results.  The mode shapes and frequencies for the first 12 modes are 

displayed in Figures 4-1 to 4-12.  These mode shapes are used to analyze which modes are 
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critical to the machining process.  The modes which contain large displacements at the center 

point mass, which represents the spindle holder, are the critical modes of interest. 

4.2.1 Full Scale Mode Shapes without Spindle 

 

Figure 4-1  Mode 1 @41.0 Hz 
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Figure 4-2  Mode 2 @ 51.3 Hz 

 

Mode 1 contains most of its energy in the lower portion of the structure.  The lower 

beams vibrate with full length bending with the largest displacement at the middle of the beam.  

Some of the vibrational energy is translated to the upper portion of the structure, creating slight 

vertical displacement of the spindle.  Mode 2 is similar in the fact that it is mostly made up of 

full length bending of the lower beams.  It, however, creates small horizontal displacements of 

the spindle holder.  The brackets in the lower portion of the structure apply little stiffness to these 

modes.  This, along with the added mass of the lower brackets, keeps these frequencies in the 

lower end of the frequency spectrum. 



33 

 

 

Figure 4-3  Mode 3 @ 63.4 Hz 

 

 

Figure 4-4  Mode 4 @64.0 Hz 
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Modes 3 and 4 consist of full length bending of the upper beams.  The bending from 

Mode 3 causes the Tetraform to sway horizontally creating large horizontal displacement of the 

spindle holder.  Mode 3 is the dominant critical mode for horizontal displacement of the spindle 

holder.  The bending of the beams in Mode 4 causes the Tetraform to rotate about its center 

vertical axis.  This creates only a rotational displacement about the vertical axis for the spindle 

holder. 

 

Figure 4-5  Mode 5 @ 95.7 Hz 
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Figure 4-6  Mode 6 @ 101.6 Hz 

 

Mode 5 contains horizontal bending of the lower beams with minimal energy translated 

to the rest of the structure.  Mode 6 causes bending of the upper beams with small horizontal 

displacements of the spindle holder. 
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Figure 4-7  Mode 7 @ 112.1 Hz 

 

 

Figure 4-8  Mode 8 @ 140.6 Hz 
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Mode 7 contains bending of the inner beams which attach the spindle holder, creating 

large vertical displacements of the spindle holder.  This mode is the dominant critical mode for 

vertical displacement of the spindle holder.  This mode is also highly sensitive to the addition of 

mass and inertia of different spindles attached to the holder.  Mode 8 consists of energy 

throughout most of the structure but does not affect the inner beams attaching the spindle holder. 

 

Figure 4-9  Mode 9 @ 200.2 Hz 
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Figure 4-10  Mode 10 @ 204.4 Hz 

 

 

Figure 4-11  Mode 11 @ 235.5 Hz 
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Figure 4-12  Mode 12 @ 279.5 Hz 

 

Modes 9 and 10 consist of bending of the top portion of the upper beams with little to no 

energy in the rest of the Tetraform.  Mode 11 has vibration through out the structure with a wave 

node placed at the spindle holder.  This wave node has no translational displacements.  However, 

the spindle point has large rotational displacements.  Mode 12 contains nearly all of its energy as 

horizontal displacements of the lower beams.  Here, the bracketed sections translate as three rigid 

bodies. 

4.2.2 Full Scale Mode Shapes with Spindle 

Next, the mode shapes were obtained for the Tetraform with the spindle motor and 

bearing mass and inertia included.  These are the mode shapes which represent the Tetraform 

which will be used for the active vibration control simulations.  It is important to conduct a 

modal analysis for the Tetraform with and without the spindle.  For different machining 
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applications, different sized spindles and spindle holders would be used.  Therefore, it is 

important to understand how the changes in mass and inertia of this point will affect the mode 

shapes and frequencies.  Figure 4-13 shows the spindle assembly mounted in the spindle holder. 

 

Figure 4-13  Spindle Bearing and Spindle Motor 

 

Spindle Motor 

Spindle Bearing 
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Figure 4-14  Mode 1 @ 40.9 Hz 

 

 

Figure 4-15  Mode 2 @ 50.8 Hz 
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Figure 4-16  Mode 3 @ 60.8 Hz 

 

 

Figure 4-17  Mode 4 @ 63.95 Hz 
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Figure 4-18  Mode 5 @ 93.1 Hz 

 

 

Figure 4-19  Mode 6 @ 95.6 Hz 
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Figure 4-20  Mode 7 @ 99.6 Hz 

 

 

Figure 4-21  Mode 8 @ 140.4 Hz 
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Figure 4-22  Mode 9 @ 200.1 Hz 

 

 

Figure 4-23  Mode 10 @ 203.5 Hz 
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Figure 4-24  Mode 11 @ 235.4 Hz 

 

 

Figure 4-25  Mode 12 @ 269.4 Hz 
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The added inertia from the spindle will have a greater affect on the modes with larger 

displacements at the spindle location.  However, many of the modes contain significant moving 

mass throughout the structure which causes the inertia of the spindle location to be of smaller 

importance.  For some critical modes, the modal mass is dominated by the mass of the spindle.  

For instance, Mode 5 with the spindle added is very sensitive to the mass at the spindle location.  

This mode acts similar to a large mass connected to three cantilever beams.  Changing the mass 

in the middle has a large affect on this mode.  This mode was shifted from 112.1 Hz, without the 

spindle, to 93.1 Hz, with the spindle.  Comparison of the frequencies for the Tetraforms, with 

and without the spindle, is shown in Table 4-1. 

 

Table 4-1  Full Scale Tetraform Natural Frequencies without Spindle 

Mode 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 10

th
 11

th
 12

th
 

No Spindle 

(Hz) 
41.0 51.3 63.4 64.0 95.7 101.6 112.1 140.6 200.2 204.4 235.5 279.5 

Spindle Added 

(Hz) 
40.9 50.8 60.8 64.0 93.1 95.6 99.6 140.4 200.1 203.5 235.4 269.4 

 

4.2.3 Full Scale Mode Shapes without Lower Brackets 

The Tetraform was also analyzed without the lower brackets.  Depending upon the 

machining application, it may be needed to remove the lower brackets to create more room for 

the linear stages which move the workpiece.  Therefore, the effects of removing these brackets 

were important to be investigated. 
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Figure 4-26  Mode 1 @ 57.1 Hz 

 

 

Figure 4-27  Mode 2 @ 60.5 Hz 
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Figure 4-28  Mode 3 @ 75.2 Hz 

 

 

Figure 4-29  Mode 4 @ 84.7 Hz 
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Figure 4-30  Mode 5 @ 89.6 Hz 

 

 

Figure 4-31  Mode 6 @ 107.5 Hz 
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Figure 4-32  Mode 7 @ 124.2 Hz 

 

 

Figure 4-33  Mode 8 @ 138.6 Hz 
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Figure 4-34  Mode 9 @ 196.4 Hz 

 

 

Figure 4-35  Mode 10 @ 235.5 Hz 
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Figure 4-36  Mode 11 @ 264.0 Hz 

 

 

Figure 4-37  Mode 12 @ 278.5 Hz 
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Modes 4 and 6 both contain vertical displacement of the spindle holder.  They both also 

have a large amount of energy in the lower beams.  For Mode 4, the lower beams displace 

downward when the spindle moves upward.  This mode is similar to Mode 5 of the Tetraform 

with the brackets and spindle.  When removing the lower brackets, more of the energy is 

transferred to the lower portion of the Tetraform for this mode.  For Mode 5, the lower beams 

and the spindle both displace in the same vertical direction.  This mode is similar to Mode 1 of 

the Tetraform with the brackets and spindle.  Removing the brackets for this mode creates more 

modal energy at the spindle location. 

4.3 Modal Analysis in Matlab 

Using the model that was created in Chapter 3 in Matlab, the natural frequencies, ωn , can 

be calculated and checked with the ANSYS results.  The structural equation of motion can be put 

into the form of (4.1).   𝐼  is an identity matrix and  𝜑  is the eigenvector.    𝐾 − 𝜔𝑛2 𝐼  𝑀   
is referred to as the dynamic stiffness matrix. 

  𝐾 − 𝜔𝑛2 𝐼  𝑀   𝜑 =  𝐹                                               (4.1) 

Taking the determinant of the dynamic stiffness matrix and setting it equal to zero yields 

a polynomial of 𝜔𝑛2 which are the eigenvalues of the system.  The eigenvectors of the system are 

the relative nodal displacement vectors for their corresponding natural frequencies, or the mode 

shapes.  The mode shapes will not be plotted in Matlab.  However, they will be needed for 

converting the model to modal coordinates in the next chapter. 
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From the results of the Matlab code, the output results are a vector of eigenvalues and a 

matrix of the eigenvectors.  These are represented by the variables D and V in the code.  The 

eigenvalues are resorted in ascending order and the eigenvectors then needed to be rearranged to 

match their respective eigenvalues.  The first 12 natural frequencies from the Matlab model are 

compared to the ANSYS results in Table 4-2.  These values correspond well, validating the 

comparison of the Matlab dynamic results, in the next chapter, with the mode shapes plotted by 

ANSYS. 

 

Table 4-2  Full Scale Tetraform Natural Frequencies without Spindle 

Mode 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 10

th
 11

th
 12

th
 

Matlab 

(Hz) 
41.7 52.1 64.6 65.1 98.5 103.5 114.3 144.0 203.6 208.5 242.3 293.9 

ANSYS 

(Hz) 
41.0 51.3 63.4 64.0 95.7 101.6 112.1 140.6 200.2 204.4 235.5 279.5 
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5 CHAPTER 5  –  DYNAMIC ANALYSIS 

5.1 Introduction 

Dynamic analysis of the Tetraform is important to realize how different points on the 

structure respond to force inputs at different areas.  FRFs were plotted to show the dynamic 

response between these points.   They consist of a magnitude response and a phase response.  

The magnitude plot shows the amplitude of the output vs. the frequency of the input where the 

amplitude is in decibels (dB) and the frequency is on the log scale in either radians/s or Hz.  The 

phase plot shows the phase shift between the input force and the output response plotted vs. 

frequency on the log scale.  These plots are also referred to as Bode plots.  When carried out 

experimentally, the input force must be measured in order to compute the relationship between 

the input amplitude and phase to that of the output amplitude and phase. 

The force inputs of interest are disturbance forces, machining forces, and actuator forces.  

Therefore, the FRFs were setup to display responses to these inputs.  The relationship between 

responses of the spindle holder from machining forces were plotted to show which modes are 

easily triggered by machining.  Similarly, the relationship between input disturbance forces at 

various points throughout the structure to the response of the spindle is important to show how 

easily the different critical modes can be triggered by external disturbances.  These FRFs are also 

needed to determine the placement of the actuator to have the highest influence over the critical 

modes.  Location of the actuators can be fine tuned by this method to find optimal placement for 

the vibration controller.  Since the sensors and actuators are collocated, this location also allows 
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the sensor to receive the strongest response from the critical modes.  It is also desirable for the 

sensor to have little response from non-critical modes. 

Dynamic responses were conducted both experimentally and by simulation.  

Experimentally, the FRFs were obtained using the impact hammer method.  This method uses an 

impact hammer to apply a measured impulse input while an accelerometer measures the dynamic 

response at the output point.  Similar responses were also plotted by simulation to compare and 

validate the mathematical model.  The simulation model was then used for structural analysis 

and design purposes due to the ease at which the inputs and outputs may be changed in 

simulation. 

5.2 Impact Hammer Method 

Experimental FRFs are most often obtained by one of two methods.  The first method 

uses a force input of varying frequency to excite the structure while measuring the dynamic 

response with an accelerometer.  A common device used to apply the force input for this method 

is a shaker.  A shaker either mounts the test object on top of it or applies the input force to a 

point by way of an armature.  Forcing frequency is then varied to measure the amplitude and 

phase of the response for a range of frequencies. 

The alternative method is that of the impact hammer method.  A hammer is used to apply 

an input that acts as an impulse.  An impulse is a force input of constant amplitude and infinitely 

small duration.  Ideally, this input triggers the entire frequency.  In actuality, the hammer force 

input cannot be of infinitely small duration.  Interchangeable hammer tips may be used to obtain 
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responses from different ranges of the frequency spectrum.  The harder tips create shorter time of 

impacts and are used to trigger higher frequencies. 

The impact hammer contains a load cell to measure the input force while the dynamic 

response is measured from accelerometers.  The input and output signals are then compared to 

give the FRF.  A 086C03 impact hammer from PCB, shown in Figure 5-1, was used as the 

impact force transducer.  Two single-axis PCB 352C65 and one tri-axis PCB 356A32 were used 

for the accelerometers. 

 

Figure 5-1  PCB Impact Hammer 

 

It should also be noted that all FRFs were conducted while the spindle motor and bearing 

were mounted in the spindle holder.  It was found that the different modes were not clearly 

defined without this added mass of the spindle motor and bearing due to the high dynamic 

stiffness in the closed loops of the structure along with the localized damping of the brackets and 
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joints.  The addition of the mass and inertia of the spindle motor and bearing will also more 

accurately represent the Tetraform under machining conditions. 

Multiple impact hammer responses were conducted on the full scale Tetraform.  These 

were used to verify the FEA simulation models and to obtain damping values.  Damping must be 

added to the FEA models in order to accurately simulate any type of forced response.  The 

comparison of these results with the FEA model results are shown at the end of the chapter. 

5.3 Matlab Simulation 

The FEA model must be converted to a form that will give the displacement response to a 

force input.  Therefore, the model must be reduced in size, damping must be added, and then 

must be converted over to state space. The FEA model that was created in Matlab, (5.1), must be 

converted into a form that will give the displacement response to force inputs.  Therefore, it was 

required that the model be reduced in size, damping to be added, and the model to be converted 

to state space. 

 𝑀  𝑟  +  𝐾  𝑟 =  𝑓                                               (5.1) 

This model contains 101 nodes with six degrees of freedom at each node.  The size of this 

model creates much difficulty in computation during simulation.  By using the method of 

decoupling the model into modal coordinates, we can reduce the size of the model significantly.  

This is done by using the eigenvectors that were solved from the model described in (5.1) to 

manipulate the mass and stiffness matrices into decoupled equations of motion in modal 
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coordinates.  An eigenvector matrix  𝛷  was constructed from the eigenvectors 𝜑𝑖 where 𝑖 = 1:𝑛 

and 𝑛 is the number of degrees of freedom.  These were sorted in ascending order where 𝜑
1
 is the 

eigenvector of the first mode. 

 𝛷 =  𝜑1
𝜑

2
… . . 𝜑𝑛                                             (5.2)  

Using this modal matrix, the dynamic equation is converted from structural coordinates,  𝑟 , to modal coordinates,  𝑞 . Equation (5.3) shows the conversion between the two 

coordinates.  By plugging this into (5.1) and multiplying through by  𝛷 𝑇 results in (5.4). 

 𝑟 =  𝛷  𝑞                                                      (5.3) 

 𝛷 𝑇 𝑀  𝛷  𝑞  +  𝛷 𝑇 𝐾  𝛷  𝑞 =  𝛷 𝑇 𝑓                            (5.4) 

Due to orthogonality of the eigenvectors, the mass and stiffness matrices are diagonalized 

into the modal mass and stiffness matrices shown in Eqs. (5.5) and (5.6).   Here, 𝑚𝑖  and 𝑘𝑖  are 

the modal mass and stiffness values for the 𝑖𝑡  mode. 

 𝛷 𝑇 𝑀  𝛷 =  𝑀′ =    
  𝑚1 0 … … 0

0 𝑚2 0 … 0

: 0 𝑚3 0 0

: : 0 … 0

0 0 … 0 𝑚𝑛    
  
                         (5.5) 

 𝛷 𝑇 𝐾  𝛷 =  𝐾′ =    
  𝑘1 0 … … 0

0 𝑘2 0 … 0

: 0 𝑘3 0 0

: : 0 … 0

0 0 … 0 𝑘𝑛    
  
                              (5.6) 
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Equation (5.7) is the new dynamic equation in modal coordinates.  This shows the 

response is the superposition of 𝑛 uncoupled modal equations.  The number of eigenvectors, 𝑛, 

may then be limited to the highest mode of interest.  With 101 nodes and six degrees of freedom 

at each, there are 606 eigenvectors before removing nine through boundary conditions.  As a 

majority of the higher modes are dampened out and nonexistent in reality, the number of 

included modes can be greatly reduced. 

 𝑀′  𝑞  +  𝐾′  𝑞 =  𝑓′                                             (5.7)                        

Once the model in modal coordinates is reduced, damping may be included.  The 

damping matrix is determined by Rayleigh’s damping coefficients, 𝛼 and 𝛽,  and is given in 

(5.8).  These coefficients are determined from experimental results.  For this simulation, 

damping will be given the values 𝛼 = 2 and 𝛽 = 3𝑒 − 5.  The equation of motion with damping 

is now (5.9). 

 𝐷 = 𝛼 𝑀′ + 𝛽 𝐾′                                                (5.8) 

 𝑀′  𝑞  +  𝐷  𝑞  +  𝐾′  𝑞 =  𝑓′                                     (5.9) 

Converting the equation of motion to state space form gives an output vector of 

displacements,  𝑦 , to an input vector,  𝑢 .  The size of the input and output vectors depends on 

the number of inputs and outputs of the system.  For frequency responses, only one of each is 

required, making these terms scalar.  The second order differential equations from (5.9) will be 

separated into first order equations by defining the state vector,  𝜉 , in (5.10). 
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 𝜉 =   𝑞  𝑞                                                         (5.10) 

Redefining the system in terms of the state vector gives Eqs. (5.11) through (5.14) where  𝑓  is the force input vector and  𝐶  is the output matrix.  These are defined based on the input 

and output locations on the Tetraform.  For these simulations, the feed through matrix,  𝐷 , is set 

to zero.  The sensor responses used the piezoelectric sensor equations that are defined in Chapter 

6. 

 𝜉  =  𝐴  𝜉 +  𝐵  𝑢                                              (5.11) 

 𝑦 =  𝐶  Φ  𝜉 +  𝐷  𝑢                                            (5.12) 

 𝐴 =  0 𝐼− 𝑀′ −1 𝐾′ − 𝑀′ −1 𝐷                                      (5.13) 

 𝐵 =  0− 𝑀′ −1 Φ 𝑇 𝑓                                             (5.14) 

5.4 Interpretation of Results 

Since the impact hammer method used accelerometers for the response, the FRFs reflect 

the relationship between acceleration outputs to a force inputs.  The previously made FEA model 

was set up to output displacement.  Just for the purpose of comparison to the experimental plots, 

the state space model was converted to acceleration output.  This was done by multiplying the 

output by the transfer function 𝑠2.  All the FRFs that were not compared to experimental results 

were kept as position responses. 
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Figure 5-2  Accelerometer Locations 

 

Three impact hammer responses were attained for comparison with the FEA model.  The 

impacts were applied in the vertical direction on the spindle holder.  Three accelerometer 

locations then measured the response.  The location of these accelerometers is shown in Figure 

5-2.  Figures 5-3 through 5-5 show the comparison between the theoretical and experimental 

FRFs.  The experimental phase plot has been shifted positive to become comparable to the 

theoretical phase plot.   

Accelerometer 1 

Accelerometer 2 

Accelerometer 3 
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Figure 5-3  Accelerometer 1 Response to Vertical Input at Spindle 

 

 

Figure 5-4  Accelerometer 2 Response to Vertical Input at Spindle 
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Figure 5-5  Accelerometer 3 Response to Vertical Input at Spindle 

 

The theoretical and experimental results correspond very well.  For the experimental 

response, it can be seen that some of the peaks are separated into multiple frequencies.  Ideally, 

symmetric modes have the exact same frequency and would display one peak.  In reality, 

structures almost never display perfectly symmetric modes.  Because of the high dynamic 

stiffness of the closed loops of the Tetraform and localized damping of the brackets and joints, 

the non-symmetry of the modes is exploited.  Also, some of the theoretical peaks are shifted in 

the frequency domain.  Assumptions made while creating the model could have under or over 

estimated the mass and stiffness of certain areas of the Tetraform.  These differences will change 

the peaks as an increase in stiffness or mass will shift the natural frequency positive or negative 

respectively.  Overall, the FRF curves support the use of the FEA model for dynamic analysis 

and vibration control simulations. 
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The rest of the figures in this chapter display displacement responses as opposed to 

acceleration responses.  The following FRFs are used to test modal displacements of the spindle 

from machining forces, disturbance forces, and actuator forces.  It is desirable to have minimum 

modal displacements from the machining and disturbance forces while having maximum modal 

displacements from the actuators.  Therefore, FRFs were set up to display which modes were 

triggered by force inputs at locations representing machining forces and disturbance forces.  

Then, different actuator locations were tested to verify their controllability over those modes. 

The responses in Figures 5-6 and 5-7 show the response of the spindle to force inputs at 

the spindle.  These show the dynamic stiffness of the spindle to machining forces.  The 

displacement outputs were setup to correspond to force inputs in the same direction.  In other 

words, the x axis response is to a force input in the x direction.  If a mode has significant 

displacement at the spindle point then it will be easily triggered by a force in that displacement 

direction.  For the model created, the z axis is in the vertical direction while the x and y axis lie 

on the horizontal plane.  For reference, the Tetraform natural frequencies with the spindle added 

are displayed in Table 5-1. 

 

Table 5-1  Tetraform Natural Frequencies with Spindle Added 

Mode 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 10

th
 11

th
 12

th
 13

th
 

(Hz) 41.6 51.5 61.9 65.1 94.8 98.3 101.5 143.9 203.6 207.5 242.2 274.6 297.2 
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Figure 5-6  Translational Force Responses of Spindle 

 

There are significant peaks at about 41, 51, 61, 98 and 101 Hz.  Comparing the responses 

with the made shapes in the previous chapter helps to understand the magnitudes of the spindle 

displacements.  The peaks at 41 and 94 Hz affect the spindle in the vertical direction and 

correspond to the 1
st
 and 5

th
 mode shapes.  Neither of these modes include horizontal 

displacements.  The 1st mode acts as a loop between the lower and inner arms.  Most of its 

energy is contained in the lower potion of the structure but still creates some vertical 

displacement to the spindle.  The 5
th

 mode is the vertical motion of the spindle mass attached to 

three beams.  Most of its modal energy is contained in the inner portion of the Tetraform and 

creates large vertical displacement of the spindle.  The peaks at 51, 61, and 101 Hz correspond to 

the 2
nd

, 3
rd

 and 6
th

 modes.  These only affect the horizontal displacements of the spindle.  The 2
nd

 

and 3
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 are bending modes of the entire Tetraform.  The 2
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lower portion of the Tetraform while the 3
rd

 contains most of its energy above the brackets 

giving it the larger spindle displacement. 

In addition to the translational responses of the spindle, rotational responses were also 

studied.  Three torques were applied to the spindle to obtain responses to their respective degrees 

of freedom.  The magnitude of the rotational responses cannot be directly compared to the 

magnitude of the translational responses as rotational displacements and forces have different 

units than rotational displacements and forces.  The rotational plots are still important to 

understand which modes can be triggered by machining forces. 

 

Figure 5-7  Torque Responses of Spindle 
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Figure 5-6 but contain much less modal energy than the lower modes for the spindle location.  

However, these higher modes are still of importance. 

The translational responses of the spindle to applied torques at the spindle were plotted in 

Figures 5-8 through 5-10 to show the coupling between the translational and the rotational 

degrees of freedom.  For these plots, the three torque inputs were applied at the spindle while the 

output is a single degree of freedom at the spindle.  This could have been done inversely by 

applying one torque and measuring the output in different degrees of freedom for the spindle.  

These FRFs would be interchangeable.  This comes from Maxwell’s Theorem of Reciprocity 

which is applicable to linear structures.  When looking at the force-displacement relationship 

between two points on the structure, the displacement of point 1 from a unit force on point 2 is 

equal to the displacement of point 2 from a unit force on point 1.  This means that the FRF will 

be equal in both directions between the two points.  This property is true because of the 

symmetry of the mass and stiffness matrices for linear structures. 
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Figure 5-8  Z axis Spindle Response to Torque Inputs at Spindle 

 

 

Figure 5-9  X Axis Spindle Response to Torque Inputs at Spindle 
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Figure 5-10  Y Axis Spindle Response to Torque Inputs at Spindle 

 

From Figures 5-8 through 5-10 it is determined that there are three significant 

translational peaks that can be produced by spindle torques.  These are the 2
nd

, 3
rd

, and 7
th
 modes.  

The strongest responses come in the horizontal directions while the vertical displacement of the 

spindle shows less responsiveness to spindle torques.  It should be noted again that the 

magnitudes of these plots are not directly comparable to the magnitudes of the translational force 

plots.  For the machining process, the translational force (N) will be much higher than the torque 

(N/m). 

Next, the affect of disturbance forces on the spindle location are tested.  Inputs were 

applied perpendicular to the beam at three points and in the vertical direction to the top sphere.  

These locations are illustrated in Figure 5-11.  Their spindle displacement responses were 

measured on the x, y, and z axis.  The spindle responses for these disturbances are displayed in 

Figures 5-12 through 5-15. 
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Figure 5-11  Disturbance Locations 

 

 

Figure 5-12  Response of Spindle to Perpendicular Force at Point 1 
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Figure 5-13  Response of Spindle to Perpendicular Force at Point 2 

 

 

Figure 5-14  Response of Spindle to Perpendicular Force at Point 3 
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Figure 5-15  Response of Spindle to Vertical Force at Point 4 

 

The 2
nd
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rd

 modes can easily be triggered by disturbances to most areas of the 
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 mode, which is one of the highest energy modes for the spindle, is mostly 
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as the displacement of the spindle.  The three actuator locations being tested are shown in Figure 

5-16.  The comparison of these three locations is shown in Figures 5-17 to 5-19.  

 

 

Figure 5-16  Actuator Test Locations 

 

Actuator 1 

Actuator 2 

Actuator 3 
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Figure 5-17  Spindle X-Axis Response to Actuators 

 

 

Figure 5-18  Spindle Y-Axis Response to Actuators 
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Figure 5-19  Spindle Z-Axis Response to Actuators 

 

Figures 5-18 through 5-19 show that location 3 has more influence than the other two 

locations for nearly every mode.  Location 3 shows the ability to control these modes more 

effectively than the other two locations.  Also, since the sensors are collocated, location 3 is 

where the sensor would be most sensitive to the critical modes.  However, it will be seen in the 

next chapter that there is a negative effect from using location 3.  The higher DC gain from this 

location can decrease the static stiffness of the Tetraform after the active vibration controller is 

applied. 
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6 CHAPTER 6  –  ACTIVE VIBRATION CONTROL 

6.1 Piezoelectricity 

Piezoelectricity is the coupling affect of mechanical and electrical properties.  When a 

piezoelectric material is subjected to a mechanical stress, a resulting electrical charge develops 

towards the surface of the material.  The inverse affect is also present in the material.  When a 

voltage is applied across the material, a mechanical strain is produced.  This piezoelectric 

phenomenon is a property in natural crystalline materials such as quartz and Rochelle Salt.  

However, due to a small coupling affect, these materials are insufficient for use in most 

engineering applications.  Ceramics have been developed that demonstrate high piezoelectric 

coupling properties.  These include Lead Zirconate Titanate ceramics (PZT).  PZT is one the 

most commonly used materials for piezoelectric applications.  Its strong coupling properties 

make it ideal for vibration control applications.   

The coupled elastic and electric equations for piezoelectric material stressed in the 

longitudinal direction, axis 1, and polarized in the transverse direction, axis 3, are given in (6.1) 

which is an IEEE standard [12].  Here, 𝜖 is the strain, 𝐷 is the electrical displacement 

(charge/area in the transverse direction), 𝐸  is the electrical field (voltage/length in the transverse 

direction), 𝑆𝑝11  is the elastic compliance, 𝜀33
𝑇  is the dielectric constant, and 𝑑31  is the 

piezoelectric strain constant.  The strain constant relates an input voltage on axis 3 to an output 

strain on axis 1 per unit length of width.  This is used to derive the actuator equation.  Another 

useful property is the piezoelectric stress constant, 𝑔31 , which is used to relate an applied stress 
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in axis 1 to the resulting voltage in axis 3.  This is used to derive the sensor equation.  These 

constants are readily available from the manufacturer. 

 

 𝜖𝐷 =  𝑆𝑝11 𝑑31𝑑31 𝜀33
𝑇   𝜎𝐸                                                       (6.1) 

6.2 Active Damping Modeling 

Mide Technology Corporation was chosen as the supplier for the piezoelectric 

transducers.  They produce flexible transducers that conform to curved surfaces.  This was one of 

the primary concerns when selecting the transducer for this application.  The Tetraform beams 

are tubular with an outside diameter of ¾”.  PZT is a brittle material that is generally used as an 

actuator-sensor where it can be bonded to a flat surface.  The Mide pa16n transducers consist of 

strips of PZT in the longitudinal direction of the beam.  This allows the patch to be bent to the 

form of the curved surface without putting any stress on the PZT strips.  That makes them ideal 

for this curved surface with a small radius of curvature. 

 

Table 6-1  Piezoelectric Material Properties 𝜌 

(kg/m^3) 

𝜀33
𝑇  𝑑31  

(m/V) 

𝑔31  

(V-m/N) 

𝐸11  

(N/m^2) 

7700 800 -179E-12 -11.0E-3 6.9 
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The material properties for the pa16n transducer are shown in Table 6-1 and have the 

dimensions of 5.21 x 3.02 x 0.003 cm.  The performance curves for different voltages are shown 

in Figure 6-1.  The patch has an operating range of +/- 120V. 

 

Figure 6-1  Mide pa16n Transducer Performance [20] 

 

The FEA model that was created in Matlab, (6.2), will now be put into a form that can be 

controlled in an active vibration simulation.  The stiffness and mass of the piezoelectric 

transducers must be included in the structural matrices.  The sensor and actuator equations must 

then be developed for the input and output matrices of the state space model. 

 𝑀′  𝑞  +  𝐷  𝑞  +  𝐾′  𝑞 =  𝑓′                                                 (6.2) 
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The sensors and actuators patches were modeled as beams to include in the structural 

mass and stiffness matrices.  These were modeled in a similar manner as the frame beams but 

with the moments of inertia calculated about the tubular beam’s axes.  The smart structure finite 

element model was converted to state space, therefore the actuator and sensor equations needed 

to be developed in input and output vector format [6, 7].  Using (6.1), the actuator force vector  𝑓𝑎   is shown in (6.3) and (6.4) where 𝑢(𝑡) is the input voltage, 𝐸𝑝  is the piezoelectric Young’s 

Modulus, 𝑟 is the radius of the axial force created by the patch, and 𝑏 is the width of the contact 

area between the patch and beam.  Equation (6.4) shows that this vector represents the actuator 

axial force, 𝐹𝑎𝑥 , and the actuator bending moment, 𝑀𝑎𝑦 .  These forces are applied at the end 

nodes of the piezoelectric elements.  The sensor voltage vector, 𝜙, is given in (6.5) where 𝑡 is the 

patch thickness.  The stress in the sensor equation is created from both bending and axial forces 

and is evaluated at the end nodes of the piezoelectric elements. 

 

𝑓𝑎 = 𝑢(𝑡)𝐸𝑝𝑑31𝑏 −1 𝑟 1 −𝑟 𝑇                                            (6.3) 

𝑓𝑎 =  −𝐹𝑎𝑥 𝑀𝑎𝑦 𝐹𝑎𝑥 −𝑀𝑎𝑦  𝑇                                             (6.4) 

𝜙 = − 𝑡𝐿𝑒 𝑔31𝐸𝑝 [𝑟𝜃𝑦−𝑢]𝑛𝑜𝑑𝑒𝑗𝑛𝑜𝑑𝑒  𝑖                                                (6.5) 

The input matrix,  𝐵 , is given in (6.6) where  𝑓𝑎   is the matrix made up of the actuator 

input vectors.  The output matrix,  𝐶 , is given in (6.7) where  𝜙  is a matrix made up of the 

sensor output vectors. 
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 𝐵 =  0− 𝑀 −1 Φ 𝑇 𝑓𝑎                                                   (6.6) 

 𝐶 =   𝜙 0                                                        (6.7) 

6.3 Controller 

A positive position feedback controller will be used in targeting the critical modes.  One 

common task in vibration control is overcoming spillover, which is the affect of out of 

bandwidth modes on the controller.  This can destabilize the controller [9].  The PPF controller 

was chosen for its ability to minimize the effect of the out of bandwidth modes [8].  The 

dynamics of the controller resemble that of a mass-spring-damper system being applied to the 

structure, which the response naturally rolls off after a certain frequency, making it invulnerable 

to higher frequencies.  Shown in Figure 6-2 is the bode plot of a PPF filter. 
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Figure 6-2  Bode Plot of PPF Filter 

 

Positive position feedback is a second order compensator which is forced by the 

structural displacement.  The equations that describe the PPF compensator are given in Eqs. (6.8) 

through (6.11) [10, 11].  Equation (6.8) describes the dynamics of the structure and (6.9) 

describes the dynamics of the controller input. 

 𝑀  𝜉  +  𝐶  𝜉  +  𝐾  𝜉 =  𝐵𝑓  𝑢                                       (6.8) 

 𝜂  + 2𝜁𝑐𝜔𝑐 𝜂  + 𝜔𝑐2 𝜂 = 𝜔𝑐2 𝐶𝑓  𝑇 𝜉                                   (6.9) 

 𝑢 = 𝑔 𝜂                                                         (6.10) 

𝜙 =  𝐶𝑓 𝑻 𝜉                                                        (6.11) 
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Here,  𝜉  is the modal coordinate state vector,  𝜂  is the controller coordinate vector, 𝑔 is 

the controller gain, 𝜔𝑐  is the compensator frequency, and 𝜁𝑐  is the compensator damping.   𝐵𝑓  is 

the input matrix for the control signal  𝑢 .  The control signal is a vector because there is a 

controller for each of the three collocated patch/sensor pairs.  The control system then takes the 

form shown below in Fig. 6-3.  The plant is represented with the state space model previously 

developed where the output  𝜉  is directly proportional to the surface strain of the beam.  The 

damping constant and natural frequency for the controller are chosen to best target the critical 

modes.  As 𝜔𝑐  is increased, so will the roll off frequency [10]. 
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Figure 6-3  Positive Position Feedback Controller 
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6.4 Results 

The first test location for the actuator/sensor pairs will be location 1 described in the 

previous chapter.  Each of the transducer pairs will be placed at this position on the three inner 

spindle arms.  With the three pairs placed equal distance from the spindle on the inner beams, the 

frequency responses will also be equal.  Therefore, the controller for each pair will contain the 

same constants.  It was chosen to target the frequency at 94 Hz which is the dominant mode for 

the spindle z-direction. 

Root locus was used for tuning of the controller.  Root locus plots show how the closed 

loop poles move in the complex domain as a chosen constant is varied.  It was found that with 

higher controller damping, 𝜁𝑐 , a higher controller gain, 𝑔, was required to achieve desirable 

decibel reduction for the target frequency.  However, when the controller damping is decreased 

too much, the controller poles tend to become more dominant, creating their own magnitude 

peaks.  For this controller, 𝜁𝑐  was chosen to be 0.4.  The value of the controller natural 

frequency, 𝜔𝑐 , was chosen to maintain a -90 degree phase shift at the target frequency.  For this 

controller, 𝜔𝑐  is placed at 97 Hz. 

Figure 6-4 shows the root locus for varying the controller gain from 0 to 650.  The largest 

movement is seen from the controller poles and the targeted structural poles.  As the gain 

increases the targeted structural poles are driven to a location of higher damping.  The controller 

poles tend toward the real axis and then move positive and negative on this axis.  Increasing the 

gain beyond this point would push the controller pole into the right side of the imaginary axis, 

causing the controller to become unstable.  The affect of the lower frequencies is also seen here.  
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Although not as much movement is created in these poles, there is damping added to some lower 

frequencies.  It can also be seen that very little movement is seen from the higher frequency 

structural poles.  This corresponds with the controller rolling off after the target frequency. 

 

 

Figure 6-4  Root Locus Plot for Actuator Location 1 

 

With the controller gain set at 650, the controlled structural responses are investigated.  

Figure 6-5 shows the vertical frequency response of the spindle to a vertical force at the spindle 

for both the uncontrolled and controlled Tetraform models.  This shows significant decibel 

reduction for the target frequency at 94 Hz.  This response also demonstrates that a PPF 

controller can also decrease the static stiffness of the structure as the DC gain is raised for the 

controlled response.  The frequency plot also verifies that the -90 degree phase shift is 

maintained for the chosen controller frequency. 
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Figure 6-5  Vertical Spindle Frequency Response for Actuator Location 1 
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Figure 6-6  Vertical Spindle Impulse Response for Actuator Location 1 

 

From the root locus plot, it was seen that some of the lower frequency poles had 

increased damping due to the controller.  These lower frequency modes have little vertical 

spindle displacement but contain significant horizontal spindle displacement.  The affect of this 

controller on these modes was also investigated.  Figure 6-7 shows the x-axis frequency response 

of the spindle.  The two lowest from this plot create the largest horizontal displacements.  While 

not as large as the targeted frequency, there is still significant decibel reduction for these modes.  

Figure 6-8 shows the horizontal impulse response of the spindle.  The two lower modes are 

dampened out fairly quickly while the higher frequency remains unaffected but with little 

amplitude. 
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Figure 6-7  Horizontal Spindle Frequency Response for Actuator Location 1 

 

 

Figure 6-8  Horizontal Spindle Impulse Response for Actuator Location 1 
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Next the controller was tested for location 3 described in the previous chapter.  The 

sensor/actuator pairs are placed on the outer beams just below the spindle arm brackets.  As 

before, this controller is tuned for the frequency at 94 Hz.  For this location the controller 

frequency was set at 103 Hz to maintain -90 degree phase shift for the targeted frequency.  This 

is likely due to the influence of the next mode at 101 Hz.  The controller damping remained at 

0.4. 

Figure 6-9 shows the root locus for tuning the controller gain for this controller.  The 

poles are plotted for the controller gain varied from 0 to 130.  For this actuator location, less 

control effort is required to draw the targeted poles into areas of higher damping.  This also 

shows larger movements from the lower frequency structural poles.  This is due to location 3 

having more influence over these modes which was also shown in the dynamic responses of the 

previous chapter.  There is room for increase in gain, as the controller poles are far from 

unstable.  However, the structural poles see little benefit from increasing the gain.  Also, the 

frequency response shows that the static stiffness is significantly reduced with higher gains for 

this actuator location. 



91 

 

 

Figure 6-9  Root Locus Plot for Actuator Location 3 

 

The vertical spindle frequency response is displayed in Figure 6-10.  Similar decibel 
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Figure 6-10  Vertical Spindle Frequency Response for Actuator Location 3 

 

 

Figure 6-11  Vertical Spindle Impulse Response for Actuator Location 3 
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Figures 6-12 and 6-13 show the horizontal responses of the spindle with the actuator at 

location 3.  Location 3 displays better ability to add damping to the two lower horizontal 

displacement modes than location 1.  This can also be seen from the root locus plot as the lower 

frequency structural poles are easily drawn to locations of higher damping. 

 

Figure 6-12  Horizontal Spindle Frequency Response for Actuator Location 3 
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Figure 6-13  Horizontal Spindle Impulse Response for Actuator Location 3 
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shown in Figures 6-14 and 6-15.  This shows that the two lower horizontal critical modes can be 

nearly removed completely.  This is, however, at further expense of the static stiffness. 

 

 

Figure 6-14  Horizontal Frequency Response of Spindle with Additional PPF 
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Figure 6-15  Horizontal Impulse Response of Spindle with Additional PPF 
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7 CHAPTER 7  -  CONCLUSION AND RECOMENDATIONS 

Finite Element Models of the Tetraform were created in both ANSYS and Matlab.  The 

ANSYS model was used to conduct the modal analysis on the Tetraform.  The resulting mode 

shapes were used to help determine which modes create displacements at the spindle location.  

They are also used to study which areas of the Tetraform contain the most vibrational energy for 

these modes.  Both of FEA models can be used to study structural changes made to the 

Tetraform.  The mode shapes from ANSYS are helpful in showing the changes in the displaced 

structure.   

The Matlab model was converted to state space in order to plot frequency responses 

between different points on the structure.  This shows the modal displacements relative to each 

other.  These are insightful to how easily the modes are triggered by machining forces and 

external disturbances.  This was also used to test the controllability of different actuator locations 

on the modes of interest.  Finally, this state space model was used for active vibration control 

simulations 

Positive Position Feedback Controllers were chosen as the active vibration control 

method and were designed to target the critical modes.  The controllers were designed for 

actuators placed at locations 1 and 3.  Both could significantly reduce the decibels of the target 

mode with the dominant vertical displacement of the spindle.  Location 3 realized this decibel 

reduction with a much lower control effort.  However, this location was much more prone to 

reducing the static stiffness of the Tetraform.  Care must be taken when tuning PPF controller for 
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the Tetraform as reducing the static stiffness can be detrimental to the machining process.  It was 

found that location 3 was more effective at targeting the lower frequency modes which create 

horizontal displacements to the spindle.  Additional PPF controllers can be added to remove 

these lower modes, but once again, at the expense of static stiffness.  This was a very effective 

way of adding damping to most critical modes.  Therefore, this is very beneficial to the micro-

machining process. 

Some structural changes may also benefit the full scale Tetraform.  One such change can 

stiffen the mode that contains significant vertical displacement of the spindle.  The spindle 

holder and arms may be raised to a higher to a higher location on the Tetraform.  This will 

shorten the spindle holder arms, stiffening this area of the mode shape.  This will also transfer 

more energy to the lower portion of the Tetraform.  The bottom brackets may also be removed to 

create more room for the linear position stages.  This increases the transfer of more of the energy 

from some modes to the lower region.  This also reduces the moving mass in this area for some 

modes, raising the frequency for these modes.  It should be noted that these changes create a 

stronger resemblance between the full scale and 2/3 scale Tetraforms. 

It is recommended that some adjustments be made to the tuning method of the PPF 

controllers.  First, it should be converted over to optimal control.  The controller should be tuned 

optimally based on target mode decibel reduction, maximizing static stiffness, and minimizing 

control effort.  Also, the controller should be made adaptable.  The structural poles change 

significantly with different structural modifications and different spindles.  A method of online 

determination of the structural poles would be strongly recommended.  It is also recommended to 
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include disturbance rejection control to supplement the vibration control to further stabilize the 

machining process. 
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APPENDIX A:  MATLAB CODE 
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%Matlab Model Code for Frequency Response 

 

%Define Material Properties 
E=207e9; 
p=7750; 
G=79.3e9; 
alpha=2; 
beta=3e-5; 

  

  
%Define Element Lengths 
l1=.05754; 
l2=.031115; 
l3=.0254; 
l4=.017356; 
l5=.1234; 
l6=.08467; 
l7=.09017; 
l8=.05855; 
l9=.07366; 
l10=.0254; 
l11=.046533; 
  
%Define Point Mass Inertias 
m=2.6;  %sphere mass 
ms=1.32+1.43;  %spindle holder mass 
II=.002153;  %sphere mass moment 
IIx=.001485+.00483;  %spindle holder mass moments 
IIy=.001485+.00483; 
IIz=.002225+.00036; 
  
%Define Beam Cross Section Constants 
%leg constants 
A1=1.583e-4;   %leg area 
Iy1=5.1877E-9;  %bending moments 
Iz1=Iy1; 
J1=2*Iy1;  %torsional constant 
  
%leg w/ bracket1 constants 
A2=.001717;   
Iy2=2.1913e-7;   
Iz2=3.6242e-7; 
J2=Iy2+Iz2;   
  
%leg w/ bracket2 constants 
A3=.001799;   
Iy3=2.5015e-7;   
Iz3=3.7875e-7; 
J3=Iy3+Iz3; 
  
%leg w/ bracket3 constants 
A4=.001813;   
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Iy4=2.3331e-7;   
Iz4=4.1742e-7; 
J4=Iy4+Iz4; 

  

  
%Cross Section Constants 
y1=[Iy1;Iz1;J1;A1]; %leg 
y2=[Iy2;Iz2;J2;A2]; %leg w/ bracket1 
y3=[Iy3;Iz3;J3;A3]; %leg w/ bracket2 
y4=[Iy4;Iz4;J4;A4]; %leg w/ bracket3 
  
%Define Element Angles 
%x=[xX;xY;xZ;yX;yY;yZ;zX;zY;zZ] 
x1=[60;73;35;120;30;90;135;114;55].*(pi/180); 
x2=[60;107;145;60;30;90;45;114;55].*(pi/180); 
x3=[90;55;145;180;90;90;90;35;55].*(pi/180); 
x4=[0;90;90;90;0;90;90;90;0].*(pi/180); 
x5=[60;30;90;150;60;90;90;90;0].*(pi/180); 
x6=[60;150;90;30;60;90;90;90;0].*(pi/180); 
x7=[30;60;90;120;30;90;90;90;0].*(pi/180); 
x8=[150;60;90;120;150;90;90;90;0].*(pi/180); 
x9=[90;180;90;0;90;90;90;90;0].*(pi/180); 
x10=[60;150;90;30;60;90;90;90;0].*(pi/180); 
x11=[0;90;90;90;0;90;90;90;0].*(pi/180); 
x12=[60;30;90;150;60;90;90;90;0].*(pi/180); 
x=[x1,x2,x3,x4,x5,x6,x7,x8,x9]; 

  

  
%Empty Stiffness and Mass Matrices 
K=zeros(101*6,101*6); 
M=zeros(101*6,101*6); 
  

  
%Element Properties (Each column is a different element) 
    %Row1 --> element node 1 
    %Row2 --> element node 2 
    %Row3 --> element length 
    %Row4-9 --> element angles 
    %Row10-12--> element cross section constants 
  
El=[1  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 17 31 32 
33 34 35 36 37 38 39 40 41 42 43  1 44 45 46 47 48 49 50 51 52 53  1 54 55 56 57 58 59 60 61 62 

63  3 64 65 66 67 68 69 70 71 72 73  56  74  75  61  76  77  51  78  79   9  80  81  82  83  84  

85  86  25  87  88  89  90  91  92  93  38  94  95  96  97  98  99 100; 

    4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  2 31 32 33 

34 35 36 37 38 39 40 41 42 43  3 44 45 46 47 48 49 50 51 52 53  2 54 55 56 57 58 59 60 61 62 63  

3 64 65 66 67 68 69 70 71 72 73  2  74  75  46  76  77  66  78  79  71  80  81  82  83  84  85  

86 101  87  88  89  90  91  92  93 101  94  95  96  97  98  99 100 101; 

    l1 l1 l1 l1 l2 l2 l3 l4 l4 l4 l5 l5 l5 l5 l5 l5 l5 l5 l4 l4 l4 l3 l2 l2 l1 l1 l1 l1 l5 l5 l5 

l5 l4 l4 l4 l3 l2 l2 l1 l1 l1 l1 l6 l6 l6 l7 l8 l8 l8 l7 l6 l6 l6 l6 l6 l6 l7 l8 l8 l8 l7 l6 l6 

l6 l6 l6 l6 l7 l8 l8 l8 l7 l6 l6 l6  l7  l9  l7  l7  l9  l7  l7  l9  l7 l10 l10 l11 l11 l11 l11 

l11 l11 l10 l10 l11 l11 l11 l11 l11 l11 l10 l10 l11 l11 l11 l11 l11 l11; 

    x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x3 x3 x3 

x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x5 x5 x5 x5 x5 x5 x5 x5 x5 x5 
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x5 x6 x6 x6 x6 x6 x6 x6 x6 x6 x6 x6 x10 x10 x10 x11 x11 x11 x12 x12 x12  x7  x7  x7  x7  x7  x7  

x7  x7  x8  x8  x8  x8  x8  x8  x8  x8  x9  x9  x9  x9  x9  x9  x9  x9; 

    y1 y1 y1 y1 y2 y2 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y2 y2 y1 y1 y1 y1 y1 y1 y1 

y1 y1 y1 y1 y1 y2 y2 y1 y1 y1 y1 y1 y1 y1 y4 y1 y1 y1 y4 y1 y1 y1 y1 y1 y1 y4 y1 y1 y1 y4 y1 y1 

y1 y1 y1 y1 y4 y1 y1 y1 y4 y1 y1 y1  y4  y1  y4  y4  y1  y4  y4  y1  y4  y3  y3  y1  y1  y1  y1  

y1  y1  y3  y3  y1  y1  y1  y1  y1  y1  y3  y3  y1  y1  y1  y1  y1  y1]; 

     

  
Ts=[]; %Sensor/Output Transformation Matrix  
  
%Global Matrix Development 
%Run a loop to fill the global matrix one element at a time 
for i=1:length(El(1,:));    
  
%Define Element Constants 
Iy=El(13,i); 
Iz=El(14,i); 
J=El(15,i); 
A=El(16,i); 
L=El(3,i); 
  
Te=[cos(El(4,i)) cos(El(5,i)) cos(El(6,i)); 
    cos(El(7,i)) cos(El(8,i)) cos(El(9,i)); 
    cos(El(10,i)) cos(El(11,i)) cos(El(12,i))]; 
  
%Element Coordinate Transformation Matrix 
T=zeros(12,12); 
T(1:3,1:3)=Te; 
T(4:6,4:6)=Te; 
T(7:9,7:9)=Te; 
T(10:12,10:12)=Te; 
  
%Sensor/Output Transformation Matrix 
TS(i*12-11:i*12,i*12-11:i*12)=T; 
 

 

% Both Timshenko and Classical Beam Elements were created and gave very 

similar results.  Due to size of the Timoshenko matrices, only Classical 

Elements are listed below. 

  
%Define Beam Element Stiffness Matrix 
Kel=[(A*E/L) 0 0 0 0 0 -(A*E/L) 0 0 0 0 0; 
    0 (12*E*Iz/L^3) 0 0 0 (6*E*Iz/L^2) 0 -(12*E*Iz/L^3) 0 0 0 (6*E*Iz/L^2); 
    0 0 (12*E*Iy/L^3) 0 -(6*E*Iy/L^2) 0 0 0 -(12*E*Iy/L^3) 0 -(6*E*Iy/L^2) 0;  
    0 0 0 (G*J/L) 0 0 0 0 0 -(G*J/L) 0 0; 
    0 0 -(6*E*Iy/L^2) 0 (4*E*Iy/L) 0 0 0 (6*E*Iy/L^2) 0 (2*E*Iy/L) 0; 
    0 (6*E*Iz/L^2) 0 0 0 (4*E*Iz/L) 0 -(6*E*Iz/L^2) 0 0 0 (2*E*Iz/L) ; 
    -(A*E/L) 0 0 0 0 0 (A*E/L) 0 0 0 0 0; 
    0 -(12*E*Iz/L^3) 0 0 0 -(6*E*Iz/L^2) 0 (12*E*Iz/L^3) 0 0 0 -(6*E*Iz/L^2); 
    0 0 -(12*E*Iy/L^3) 0 (6*E*Iy/L^2) 0 0 0 (12*E*Iy/L^3) 0 (6*E*Iy/L^2) 0; 
    0 0 0 -(G*J/L) 0 0 0 0 0 (G*J/L) 0 0; 
    0 0 -(6*E*Iy/L^2) 0 (2*E*Iy/L) 0 0 0 (6*E*Iy/L^2) 0 (4*E*Iy/L) 0; 
    0 (6*E*Iz/L^2) 0 0 0 (2*E*Iz/L) 0 -(6*E*Iz/L^2) 0 0 0 (4*E*Iz/L)]; 
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%Define Beam Element Mass Matrix 
Mel=[(140*p*A*L/420) 0 0 0 0 0 (70*p*A*L/420) 0 0 0 0 0; 
    0 (156*p*A*L/420) 0 0 0 (22*p*A*L^2/420) 0 (54*p*A*L/420) 0 0 0 -

(13*p*A*L^2/420); 
    0 0 (156*p*A*L/420) 0 -(22*p*A*L^2/420) 0 0 0 (54*p*A*L/420) 0 

(13*p*A*L^2/420) 0; 
    0 0 0 (p*J*L/3) 0 0 0 0 0 (p*J*L/6) 0 0; 
    0 0 -(22*p*A*L^2/420) 0 (4*p*A*L^3/420) 0 0 0 -(13*p*A*L^2/420) 0 -

(3*p*A*L^3/420) 0; 
    0 (22*p*A*L^2/420) 0 0 0 (4*p*A*L^3/420) 0 (13*p*A*L^2/420) 0 0 0 -

(3*p*A*L^3/420);  
    (70*p*A*L/420) 0 0 0 0 0 (140*p*A*L/420) 0 0 0 0 0; 
    0 (54*p*A*L/420) 0 0 0 (13*p*A*L^2/420) 0 (156*p*A*L/420) 0 0 0 -

(22*p*A*L^2/420); 
    0 0 (54*p*A*L/420) 0 -(13*p*A*L^2/420) 0 0 0 (156*p*A*L/420) 0 

(22*p*A*L^2/420) 0; 
    0 0 0 (p*J*L/6) 0 0 0 0 0 (p*J*L/3) 0 0; 
    0 0 (13*p*A*L^2/420) 0 -(3*p*A*L^3/420) 0 0 0 (22*p*A*L^2/420) 0 

(4*p*A*L^3/420) 0; 
    0 -(13*p*A*L^2/420) 0 0 0 -(3*p*A*L^3/420) 0 -(22*p*A*L^2/420) 0 0 0 

(4*p*A*L^3/420)]; 
  

  

  
%Transform Element Stiffness Matrix 
%Converts local element coordinates to global coordinates 
%Transform Element Stiffness Matrix 
Ke=T'*Kel*T; 
%Transform Element Mass Matrix 
Me=T'*Mel*T; 
  

  
%Global Stiffness Matrix 
%Puts the element stiffness matrix in the global matrix 
K(El(1,i)*6-5:El(1,i)*6,El(1,i)*6-5:El(1,i)*6)=K(El(1,i)*6-

5:El(1,i)*6,El(1,i)*6-5:El(1,i)*6)+Ke(1:6,1:6); 
K(El(1,i)*6-5:El(1,i)*6,El(2,i)*6-5:El(2,i)*6)=K(El(1,i)*6-

5:El(1,i)*6,El(2,i)*6-5:El(2,i)*6)+Ke(1:6,7:12); 
K(El(2,i)*6-5:El(2,i)*6,El(1,i)*6-5:El(1,i)*6)=K(El(2,i)*6-

5:El(2,i)*6,El(1,i)*6-5:El(1,i)*6)+Ke(7:12,1:6); 
K(El(2,i)*6-5:El(2,i)*6,El(2,i)*6-5:El(2,i)*6)=K(El(2,i)*6-

5:El(2,i)*6,El(2,i)*6-5:El(2,i)*6)+Ke(7:12,7:12); 
  

  
%Global Mass Matrix 
M(El(1,i)*6-5:El(1,i)*6,El(1,i)*6-5:El(1,i)*6)=M(El(1,i)*6-

5:El(1,i)*6,El(1,i)*6-5:El(1,i)*6)+Me(1:6,1:6); 
M(El(1,i)*6-5:El(1,i)*6,El(2,i)*6-5:El(2,i)*6)=M(El(1,i)*6-

5:El(1,i)*6,El(2,i)*6-5:El(2,i)*6)+Me(1:6,7:12); 
M(El(2,i)*6-5:El(2,i)*6,El(1,i)*6-5:El(1,i)*6)=M(El(2,i)*6-

5:El(2,i)*6,El(1,i)*6-5:El(1,i)*6)+Me(7:12,1:6); 
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M(El(2,i)*6-5:El(2,i)*6,El(2,i)*6-5:El(2,i)*6)=M(El(2,i)*6-

5:El(2,i)*6,El(2,i)*6-5:El(2,i)*6)+Me(7:12,7:12); 
  
end 
  
%Sphere Mass Matrix 
Msphere=[m 0 0 0 0 0; 
         0 m 0 0 0 0; 
         0 0 m 0 0 0; 
         0 0 0 II 0 0; 
         0 0 0 0 II 0; 
         0 0 0 0 0 II]; 
%Spindle Holder Mass Matrix 
Mspindle=[ms 0 0 0 0 0; 
          0 ms 0 0 0 0; 
          0 0 ms 0 0 0; 
          0 0 0 IIx 0 0; 
          0 0 0 0 IIy 0; 
          0 0 0 0 0 IIz]; 

  
%Global Mass Matrix with Point Masses 
M(1:6,1:6)=M(1:6,1:6)+Msphere; 
M(2*6-5:2*6,2*6-5:2*6)=M(2*6-5:2*6,2*6-5:2*6)+Msphere; 
M(3*6-5:3*6,3*6-5:3*6)=M(3*6-5:3*6,3*6-5:3*6)+Msphere; 
M(17*6-5:17*6,17*6-5:17*6)=M(17*6-5:17*6,17*6-5:17*6)+Msphere; 
M(101*6-5:101*6,101*6-5:101*6)=M(101*6-5:101*6,101*6-5:101*6)+Mspindle; 

  
%Boundary Conditions 
%Sphere at node 1 constrained in x,y and z directions 
lv1=length(K(1,:)); 
K=K(4:lv1,4:lv1); 
M=M(4:lv1,4:lv1); 
TS=TS(4:lv1,4:lv1); 

  
%Sphere at node 2 constrained in x,y and z directions 
lv=length(K(1,:)); 
K=[K(1:3,:);K(7:lv,:)]; 
K=[K(:,1:3),K(:,7:lv)]; 
M=[M(1:3,:);M(7:lv,:)]; 
M=[M(:,1:3),M(:,7:lv)]; 
TS=[TS(1:3,:);TS(7:lv,:)]; 
TS=[TS(:,1:3),TS(:,7:lv)]; 

  
%Sphere at node 3 constrained in x,y and z directions 
lv=length(K(1,:)); 
K=[K(1:6,:);K(10:lv,:)]; 
K=[K(:,1:6),K(:,10:lv)]; 
M=[M(1:6,:);M(10:lv,:)]; 
M=[M(:,1:6),M(:,10:lv)]; 
TS=[TS(1:6,:);TS(10:lv,:)]; 
TS=[TS(:,1:6),TS(:,10:lv)]; 
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%Solve for the Modal Matrix and Eigenvalues 
[V,D]=eig(K,M); 
  

  
%Sort Eigenvectors and Eigenvalues 
[lambda,k]=sort(diag(D)); 
V=V(:,k); 
Factor=diag(V'*M*V); 
Vnorm=V*inv(sqrt(diag(Factor)));  %Normalized Modal Matrix 
Mdiagonal=Vnorm'*M*Vnorm; 
omega=diag(sqrt(Vnorm'*K*Vnorm)); 
nf2=omega./(2*pi); 
V=Vnorm(:,1:60);  %Define number of included modes 
  
%Modal Coordinates Matrices using Modal Matrix 
Km=V'*K*V; 
Mm=V'*M*V; 
  

  
%STATE SPACE 
  
%Input Matrix 
h=zeros(length(K(1,:)),1); 
  
%impulse 
h(101*6-3-9,1)=1; 
  

  
%Sensor Matrix 
s=zeros(1,length(K(1,:))); 
s(1,101*6-3-9)=1; 
  
%Input transformation 
h=TS'*h; 
  
%Define Damping Matrix 
Cd=alpha*Mm+beta*Km; 
  

  
%A Matrix 
UL=zeros(length(Km(1,:)),length(Km(1,:))); 
UR=eye(length(Km(1,:)),length(Km(1,:))); 
LL=(-inv(Mm))*Km; 
LR=(-inv(Mm))*Cd; 
A=[UL,UR;LL,LR]; 

  

  
%B Matrix 
BU=zeros(length(Km(1,:)),1); 
BL=inv(Mm)*V'*h; 
B=[BU;BL]; 
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%C Matrix 
CR=zeros(1,length(Km(1,:))); 
CL=s*TS*V; 
C=[CL,CR]; 
  
D=0; 
  
G=ss(A,B,C,D); 
   
w={10*2*pi,1000*2*pi}; 
h=bodeplot(G,w); 
% Change units to Hz and make phase plot invisible 
setoptions(h,'FreqUnits','Hz'); 
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