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ABSTRACT 

Rocketry employs cryogenic refrigeration to increase the density of propellants, such as oxygen, 

and stores the propellant as a liquid.  In addition to propellant liquefaction, cryogenic 

refrigeration can also conserve propellant and provide propellant subcooling and densification.  

Previous studies analyzed vapor conditioning of a cryogenic propellant, which occurred by either 

a heat exchanger positioned in the vapor or by using the vapor as the working fluid in a 

refrigeration cycle.  This study analyzes the refrigeration effects of a heat exchanger located 

beneath the vapor-liquid interface of liquid oxygen.   

 

This study predicts the  mass liquefaction rate and heat transfer coefficient for liquid oxygen 

using two different models, a Kinetic Theory Model and a Cold Plate Model, and compares both 

models to experimental data.  The Kinetic Theory Model overestimated the liquefaction rate and 

heat transfer coefficient by five to six orders of magnitude, while the Cold Plate Model 

underestimated the liquefaction rate and heat transfer coefficient by one to two orders of 

magnitude.  This study also suggested a model to predict the densification rate of liquid oxygen, 

while the system is maintained at constant pressure.  The densification rate model is based on 

transient heat conduction analysis and provides reasonable results when compared to 

experimental data. 
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CHAPTER ONE: INTRODUCTION 

 

Cryogenic Background 

Refrigeration is an important technology that sustains our society and economy.  One of the 

initial uses of refrigeration preserved food, enabling the economic shipment of food from source 

to market.  Today refrigeration provides many uses, ranging from conditioning the air within 

buildings and vehicles to cooling the magnets in medical instruments, such as the Magnetic 

Resonance Imaging (MRI).  A special branch of refrigeration emerged in the nineteenth century 

known as cryogenics, defined as temperatures below -150°C. 

 

Prior to the 1840s, mechanical refrigeration by compression and isenthalpic expansion could 

condense most elements and compounds; the remaining elements and compounds were termed 

“permanent gases”.  After 1875 refrigeration technology entered the cryogenic temperature range 

when scientists condensed air.  Scientists condensed the remaining “permanent gases” one by 

one until Onnes finally condensed helium in 1908.  Cryogenic refrigeration was confined to the 

bench top until the early 1900s when Linde developed an economic process on an industrial 

scale to purify oxygen by the cryogenic distillation of air [1].  Eventually rocketry would take 

advantage of the industrial scale production of liquid oxygen and other cryogenic propellants and 

pressurants. 
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In 1903 the early Russian rocket scientist, Tsiolkovsky, predicted the velocity needed to reach 

orbit about the Earth and suggested that liquid oxygen and liquid hydrogen offered optimum 

performance to achieve the orbital velocity [2].  The American, Goddard, launched the first 

liquid fueled rocket using the cryogenic oxidizer, liquid oxygen, with ethanol in 1926.  The 

Americans also developed the first fully cryogenic rocket engine, powered by liquid oxygen and 

liquid hydrogen, in 1963 [3].  Today, the hydrogen-oxygen rocket engine remains a common 

propellant combination, used by the nations of Japan, Europe, India, China, Russia, and the 

United States [1].  Since the beginning of the space age, rocket scientists have looked to 

cryogenic refrigeration for efficient transport, thermal control, to increase the propellant density 

and conserve propellant.  Figure 1 shows the cryogenic refrigeration for aerospace applications. 

 

 

 

 

Figure 1: Cryogenic Refrigeration for Aerospace Applications 
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Liquefaction 

Liquefaction of propellant gases typically occurs at the source plant and offers efficient storage 

and transportation of propellant gases.  For instance, liquid oxygen is approximately five times 

denser than gaseous oxygen transported at the typical industrial pressure of 2400 psi.  

Accounting for the thicker walls of the pressure vessels on the compressed gas trailer when 

compared to a cryogenic vessel, six compressed gas trailers deliver the same amount of oxygen 

as a single delivery of liquid oxygen.  Within the rocket, higher rocket efficiencies are gained 

with higher combustion chamber pressures, which require a pump-fed system.  Rocket engines 

employ turbo pumps to pump liquid to the high pressure, offering better efficiencies than using 

gas compressors if gas were stored on the rocket as a gas.   

 

A typical liquefier uses some variation of the Claude cycle, which compresses the fluid and 

subsequently expands the fluid both, isentropically and isenthalpically after removing the heat of 

compression.  An expansion engine, such as a turbine, accomplishes isentropic expansion, while 

an expansion valve, also known as a Joules-Thomson valve, accomplishes isenthalpic expansion 

[4].   

 

Currently, no liquefaction occurs at the launch pad of any United States launch facility, since the 

cryogenic propellant required for launch is delivered as a liquid to storage tanks near the launch 

pad.  However, space missions to other surfaces with in-situ resource utilization, liquefaction at 

the launch site will be necessary.  Proposed methods of propellant liquefaction on other planetary 

surfaces utilize the compression – heat rejection – expansion methods, such as the Sterling cycle 

refrigerator [5]. 
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Zero Boil-off 

Due to the temperature difference between the ambient temperature surrounding a cryogenic 

vessel and the temperature of the cryogen, heat transfers from the ambient to the cryogen and the 

cryogen eventually evaporates from the cryogenic vessel.  Early cryogenic scientist/engineer, 

James Dewar, developed insulated cryogenic vessels, consisting of one glass flask inside of 

another glass flask.  Dewar evacuated the annular space between the two glass flasks to inhibit 

conductive and convective heat transfer, and Dewar silvered the glass between the glass flasks to 

inhibit radiation heat transfer.  Currently, stainless steel replaced the glass as the vessel material 

and perlite powder or multi-layer insulation replaced the silvering of vessel material. These 

vessels are termed dewars, named after James Dewar.   

 

Insulation attempts to reduce heat entering the cryogenic vessel from the ambient, however, no 

insulation completely stops heat from entering the cryogenic vessel.  Thus, heat removal from 

the dewar remains the only method to maintain the dewar contents at cryogenic temperature.  

Evaporation of the cryogen removes heat from the dewar through latent heat, but this method 

expends a portion of the cryogen in order to maintain the temperature.  Active cooling employs 

refrigeration to remove the heat that enters the vessel and requires energy, but conserves the 

cryogen by prohibiting cryogen evaporation or zero boil-off (ZBO).  Economic analysis 

determines the most beneficial type of insulation for ground support system, while space 

missions consider overall payload weight and length of service to determine insulation and active 

cooling requirements. 
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Zero Boil-off Benefits in Rocketry 

Space missions consider ZBO concepts for propellant management and cryogenic coolant.  

Typically, hypergolic propellants are used on long-term or deep space missions due to the 

storability of the hypergolic propellants.  Although cryogenic propellants offer higher 

performance than hypergolic engines, no cryogenic propellant will remain through the duration 

of the long-term mission unless the spacecraft employs a zero boil-off concept.  Simple analysis 

shows that any mission longer than 60 days for liquid hydrogen or 10 days for liquid oxygen 

benefit from ZBO [6].  Some telescopic instruments aboard spacecraft use cryogens, such as 

liquid helium, to cool the instruments to reduce radiation noise, however, the mission typically 

lasts three months because the helium warms to a temperature that can no longer shield radiation 

noise. 

 

Zero Boil-off Challenges in Rocketry 

No technical challenges exist to employ ZBO concepts for ground storage tanks, however, two 

technical challenges exist for ZBO in space: heat rejection and fluid thermal stratification.  A 

spacecraft relies on radiation heat transfer to reject any heat that an onboard cryogen (1) absorbs 

from other planetary or stellar bodies through radiation heat transfer or (2) absorbs because of 

spacecraft electrical power generation through conduction heat transfer.  Microgravity, as 

experienced in space, limits natural convection.  Without convection, a spacecraft’s cryogenic 

vessel can experience localized heating leading to complete vaporization in the immediate 

vicinity of heating even though the mean bulk temperature may remain below the saturation 

temperature.  Thus, other means of convection, such as fans, magnets, or artificial gravity, 
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provide the heat transfer needed to cool the cryogen evenly while in space.  Numerous studies 

have addressed these issues [7] [8]. 

 

Zero Boil-off History in Rocketry 

Earth Ground Systems 

In the years prior to the Space Shuttle Program, NASA studied concepts to capture the 

evaporated hydrogen from the two liquid hydrogen storage tanks at Launch Complex 39 (LC-39) 

at the Kennedy Space Center.  At that time approximately 400 gallons of liquid hydrogen 

evaporated from each of the KSC storage tanks every day.  Two studies in the late 1970s 

suggested to place a cryocooler in the storage tank’s existing manhole, located at the top of 

storage tank, to condense the ullage vapor, maintaining the storage tank at a constant pressure 

[9][10].  Later in the 2006, Ames Research Center (ARC) analyzed the LC-39 cryogenic tanks 

for use in the Constellation Program.  ARC concluded that a refrigeration system on the LC-39 

tanks would be technically viable, however, the study questioned the economic benefits [11]. 

   

Passive In-Space Zero Boil-off 

While in space, heat is transferred to the cryogenic propellant tank by two modes, conduction 

and radiation.  The Sun, planets, and other stellar bodies transfer heat by radiation to the 

spacecraft.  Also, the spacecraft itself conducts heat, which it absorbs from stellar bodies and 

generates for spacecraft power, toward the cryogenic propellant tank.  Although most spacecraft 

with cryogenics aboard employ radiation shields and insulation supports to protect the cryogenic 

propellant tanks from both modes of heat transfer, passive zero boil-off rely exclusively on 

radiation shields and insulation supports to conserve cryogenic propellant.  Passive zero boil-off 
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is possible for missions beyond the orbit of Mars [12] and for special applications such as the 

James Webb Space Telescope, which will be deployed to the L2 point where Earth and Sun are 

aligned so that a single radiation shield can protect the telescope from both bodies [13].   

 

Active In-Space Zero Boil-off 

As mentioned above, most spacecraft employ insulation techniques to reduce heat transfer while 

in space.  If the insulation is insufficient to negate the overall heat transfer to the cryogenic 

propellant tank, active cooling can be employed to offset the heat into the cryogenic propellant 

tank. In the past 20 years, approximately twenty cryocoolers have been launched aboard NASA 

satellites.  The cryocoolers operated in a temperature range of 55K to 150K, with the exception 

of the 20K cryocooler aboard the Plank spacecraft.  More recent cryocooler designs hope to 

achieve 6K operational temperatures [14]. 
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Subcooling 

Removing sensible heat from the liquid reduces the temperature of a liquid.  Also, the vapor 

pressure of a liquid decreases as the liquid temperature decreases.  The saturated temperature 

occurs at the temperature at which the liquid vapor pressure equals the system pressure.  To 

subcool a liquid, the vapor pressure must be lowered below the system pressure, or stated 

another way; the temperature must be lowered below the saturated temperature.  For further 

liquid subcooling, the liquid approaches the melting line.  A propellant, at the melting line, can 

exist as a liquid, solid, or slush defined as a mixture of liquid and solid.   

 

Subcooling Benefit in Rocketry 

A subcooled propellant provides cooling, or a thermal sink, to a rocket with a small change in 

volume in the propellant.  The amount of cooling a subcooled propellant can store depends on 

the specific heat of the propellant and the temperature difference between the subcooled liquid 

temperature and the saturation temperature.   

 

Subcooling History in Rocketry 

The National Aerospace Plane (NASP) intended to use slush hydrogen as a propellant.  NASA 

designed the NASP to be capable of withstanding the extreme heat caused by hypersonic 

velocity.  The slush hydrogen was intended to provide cooling to the plane structure prior to 

combustion.  
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Densification 

As with subcooling, the removal of sensible heat from a liquid increases the density of the liquid.  

The liquid density depends on temperature alone since a liquid is considered incompressible.  

Liquid density continually increases from the critical point to triple point regardless of level of 

subcooling.  Since NASA typically stores propellants as single component-two phase with the 

ullage and liquid at atmospheric pressure, the term densification is typically applied to any 

density increase above the normal boiling point density. 

 

Density Benefit in Rocketry 

Propellant comprises the majority of a rocket’s weight just prior to launch; rocket engines, 

propellant tanks, and payload make up the remaining weight.  In order to maximize the payload 

weight, rocket scientists attempt to minimize the propellant tank weight.  Altering the tank 

material is one method of reducing the propellant tank weight.  NASA reconfigured the Space 

Shuttle’s External Tank three times throughout the history of the Space Shuttle Program to 

reduce weight.  Propellant densification, or increasing the density of the propellant, offers 

another method of reducing the overall rocket weight by making the tank smaller.   

 

Density Challenges in Rocketry 

If the propellant refrigeration occurs on the earth’s surface and the ullage is not pressurized with 

a non-condensable, the propellant tank pressure becomes sub-atmospheric, which produces two 

challenges: (1) structural integrity of the propellant tank as well as (2) possible atmospheric 

intrusion into the propellant tank.  If the intent of refrigeration is to maintain a consistency of 

slush propellant, further difficulty arises as the liquid temperature approaches the propellant 
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melting line.  Because refrigeration equipment would add weight to a launch vehicle, propellant 

densification occurs away from the launch vehicle.  Difficulty arises when maintaining the 

propellant in a densified state during transfer from the refrigeration equipment to the launch 

vehicle due to the heat leak through the propellant transfer lines.  

 

Densification History in Rocketry 

The sub-orbital launch vehicle, X-15, from the 1960s utilized a passive system of liquid oxygen 

densification by replenishing the liquid oxygen from the B-52 carrier aircraft.  As the B-52 and 

X-15 rose to altitude, the liquid oxygen boiling point reduced as the ambient pressure lowered, 

thus, the bulk liquid oxygen temperature decreased resulting in densified liquid oxygen.  The X-

33 was intended to use densified liquid oxygen and densified liquid hydrogen, to accomplish a 

single stage to orbit vehicle.  Several ground support systems to provide propellant densification 

were proposed in the late 1990s to support X-33 flights.  One used a sub-atmospheric liquid 

nitrogen as the working fluid [15] while another proposal bubbling liquid hydrogen through a 

liquid nitrogen working fluid [16].  The Space Shuttle Program studied densified propellants in 

the mid 1990s and identified the changes needed to launch the STS with densified propellants; 

the result was considered too expensive to retrofit the current infrastructure, but recommended 

looking at densified propellants for a new program [17].   
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Purpose of This Work 

For ground systems, the argument for cryogenic refrigeration system becomes purely economic. 

The economic trade for propellant ZBO, propellant subcooling, and propellant densification 

depends on the cost of propellant and rocket specification and performance versus the 

operational and capital costs of a cryogenic refrigeration system.  Propellant liquefaction may 

occur at the launch site on other planetary surfaces, but will probably occur away from the 

launch site for future NASA launch concepts from Earth.   

Previous concepts use propellant ullage vapor as working fluid to produce refrigeration, which 

introduces the possibility of contaminating the propellant.  Other concepts employed a heat 

exchanger or cold head within the ullage to control dewar pressure.  This paper studies the effect 

of employing a heat exchanger or cold head beneath the liquid surface.  Because the location of 

the heat exchanger or cold head is inside the tank, this type of configuration is intended for the 

ground storage tanks on Earth or other planetary surfaces.  Specifically, this paper investigates 

the heat and mass transfer at the vapor-liquid interface as a result of cooling the liquid. 
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CHAPTER TWO: LITERATURE SEARCH 

Condensation 

Condensation occurs by four different methods – film condensation, dropwise condensation, 

homogeneous condensation and direct contact condensation.  Film condensation and dropwise 

condensation occur at a solid surface and depend on surface conditions.  Film condensation 

occurs on a surface that promotes liquid wetting, thus, a thin film of liquid covers the solid 

surface.  Dropwise condensation occurs on a solid surface that inhibits liquid wetting, therefore 

drops or beads of liquid form over the solid surface.  Homogeneous condensation occurs when 

vapor condenses in the gas phase and the condensation remains suspended in the gas phase.  

Direct contact condensation occurs when vapor condenses into a body of liquid.  Vapor can 

come in direct contact with a liquid by either the vapor directly above a liquid or by vapor 

bubbles rising through a body of liquid.  The type of condensation investigated in the IRAS 

experiment is direct contact condensation [18].  Models below predict mass liquefaction rates 

and heat transfer coefficient of both types of direct contact condensation. 

 

Direct Contact Condensation Models 

 

Direct Contact Condensation by Ullage Collapse 

Due to safety concerns, vapor exists above a layer of cryogenic liquid, known as ullage.  As the 

liquid achieves a subcooled state, the ullage pressure above the liquid decreases.  In accordance 

with the gas laws, the decrease in ullage pressure can be attributed to a (a) decrease in ullage 
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temperature, (b) an increase in ullage volume due to liquid densification, or (c) a decrease in 

ullage mass due to ullage condensation.  Direct Contact Condensation by Ullage Collapse refers 

to the ullage condensation on a liquid surface and is (a) modeled using kinetic theory and (b) 

modeled the liquid as a flat, horizontal, cold plate. 

   

Kinetic Theory Model 

Condensation heat transfer coefficient has been estimated with the use of kinetic theory.  Kinetic 

theory characterizes the random motion of molecules using statistical mechanics.  Equation (1) 

and Equation (2) are used to predict the mass condensation rate and heat transfer coefficient, 

respectively [19].   

                          
 

(1) 

                       

 

(2) 

 

 

Equation (1) was modified by applying correction factors to both individual condensation and 

evaporation mass flux equations.  Both mass flux equations are combined into Equation (3), with 

supporting definitions provided by Equation (4) and Equation (5).  No additional heat transfer 

coefficient is predicted using Equation (3) [19]. 

                                  
 

(3) 

 

                            
 

(4) 
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                 (5) 

 

Cold Plate Model 

The cold plate model assumes the heat from the enthalpy of condensation is transferred though 

the liquid to the cold plate.  The heat transferred through the liquid is by thermal conductance 

and neglects convective heat transfer.  The thermal resistance increases with time because the 

height, or thickness, of the liquid increases as the ullage condenses. Equation (6)  and Equation 

(7) give the mass condensation rate and the heat transfer coefficient, respectively, for the cold 

plate analysis, as derived in APPENDIX D. 

                                                      (6) 

 

                                       (7) 

 

 

Direct Contact Condensation by Bubble Collapse 

Direct contact condensation of a bubble rising through a layer of subcooled liquid is a complex 

subject.  Typically, the bubbles are injected into the liquid by a nozzle and the bubble separates 

from the nozzle at a specific diameter, called the bubble departure diameter.  Equation (8)  

estimates the bubble departure diameter [20].   

                  
 (8) 
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The diameter of the bubble continually decreases as the bubble rises through the subcooled liquid 

because of bubble vapor cooling.  The vapor within the bubble cools as the bubble transfers heat 

to the subcooled liquid, which reduces the volume of the bubble according to the gas laws and 

ultimately condenses portions of the bubble.  Equation (9) shows the rate at which the bubble 

diameter decreases as with time [21].   

                                        (9) 

 

 

Although literature has suggested that a bubble rising through subcooled liquid goes through an 

acceleration and deceleration phase [22], this study assumes constant vertical velocity.  Equation 

(10) calculates the vertical bubble velocity [23].   

        
        

       (10) 

 

As mentioned above, the bubble collapses as it rises to the surface, partly due to condensation of 

the vapor within the bubble.  The mass of the vapor that condenses while the bubble rises is 

dependent on the heat transfer rate and the residence time the bubble spends within the 

subcooled liquid.  Given the above constant bubble rise velocity assumption, Equation (11) 

calculates the residence time of the bubble within the subcooled liquid. 

       (11) 

 

Equation (12) calculates the mass that condenses from a single spherical bubble. 

                                   (12) 
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However, during the proposed IRAS test matrix as outlined in the following chapter, a steady 

stream of bubbles departs from the nozzle instead of a single bubble.  The frequency at which a 

bubble departs the nozzle depends on the mass flow rate of the gas flowing through the nozzle 

and the mass of the bubble at departure.  Equation (13) and Equation (14) calculate the bubble 

departure frequency and mass condensation rate of the bubble.  APPENDIX D shows the 

derivation for Equation (13) and Equation (14). 

            
           (13) 

                        (14) 
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Densification Rate Models 

The densification of liquid oxygen occurs during the cooling of liquid oxygen, however, the rate 

at which liquid oxygen densifies is important.  Transient heat conduction analysis is used to 

predict the densification rate of liquid oxygen in the IRAS dewar.  Equation (15) is used to 

predict the position-temperature profile of the liquid above the heat exchanger, while Equation 

(16) is used to predict the position-temperature profile of the liquid below the heat exchanger.  

APPENDIX D derives the Equation (15) and Equation (16).   

                                                
       (15) 

 

                                                              
       (16) 
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Previous IRAS Work 

The Integrated Refrigeration and Storage (IRAS) system is a dewar with a large flanged 

connection at the top of the dewar.  The large flanged connection allows instrumentation cables 

and fluid connections pass from the inside of the dewar to the outside.  The fluid connections are 

intended for liquid nitrogen coolant to flow through a heat exchanger, which is intended to 

simulate the cold head of a Brayton cycle cryocooler.  The flange connection allows cold head 

height to be altered.  The following chapter provides additional details of the IRAS system and 

supporting equipment. 

 

Eden Cryogenics delivered the IRAS to KSC in the summer of 2008.  Over the next nine months, 

the IRAS was cleaned to oxygen cleanliness specifications, integrated with the rest of the test 

apparatus, and functionally tested with liquid nitrogen.  The liquid nitrogen functional test 

determined the heat transferred to the IRAS wall from the ambient as 17.5W [25].   

 

Following the liquid nitrogen functional test, ZBO experimentation began with liquid oxygen.  

Liquid oxygen filled the IRAS dewar to approximately 70% of full capacity.  The heat exchanger 

was placed at the 10%, 40%, and 60% locations inside the IRAS dewar, and ZBO runs occurred 

at an IRAS dewar pressure of 3 psig, 5 psig, and 7 psig.  Results from these experimental testing 

showed that the optimum heat exchanger location was at the 40% level [26]. 
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CHAPTER THREE: METHODOLOGY 

Experimental Setup 

The Integrated Refrigeration and Storage (IRAS) dewar comprises the main test article for this 

study and is complimented by a liquid nitrogen supply, a gaseous oxygen supply, a nitrogen 

subcooler, numerous analyzers and sensors, and a data acquisition system. Figure 2 shows the 

simplified schematic of the experimental setup, while Table 1 shows the component legend.  

APPENDIX B provides the detailed schematic and component specification list. 

 

Figure 2: Experimental Setup - Simplified Process and Instrumentation Diagram 
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Table 1: Experimental Setup - Simplified Process and Instrumentation Diagram Legend 

REFERENCE 

DESIGNATOR 

DESCRIPTION 

 HV-1 IRAS Dewar Inlet Valve 

 HV-2 IRAS Dewar Exit Valve 

 PT-7 IRAS Dewar Pressure Transducer 

 CV-8 IRAS Heat Exchanger Mass Flow Control Valve 

 HX-9 IRAS Heat Exchanger 

 HX-10 Coolant Ambient Heat Exchanger 

 KB-12 Gaseous Oxygen K-Bottle 

 CV-19 Mass Flow Control Valve (GO2) 

 MCV-20 Manual Mass Flow Control Valve (GO2) 

 D-21 Liquid Nitrogen Supply Dewar 

 SC-22 Subcooler 

 TC-24 Subcooler Cooling Fluid Exit Temperature Sensor 

 TC-25 Subcooler Process Fluid Exit Temperature Sensor 

 PT-26 Subcooler Process Fluid Exit Pressure Transducer 

IRAS 

The IRAS was custom built, consisting of a 400 liter dewar and a male bayonet.  Both 

components were constructed of 304 stainless steel and double walled with a nominal vacuum of 

five microns of mercury within the annular space.  The IRAS dewar has an inner diameter of 30 

inches with F&D ASME heads.  Figure 3 shows a cross-sectional view of the IRAS.  

 

Male Bayonet 

The male bayonet connects to the IRAS dewar by a ten inch flange and all sensor and nitrogen 

fluid connections route through the male bayonet.  Non-vacuum jacketed nitrogen fluid lines 

extend approximately one foot below the male bayonet and terminate with threaded fittings.  

Stainless steel tubing connects the terminated nitrogen fluid fitting to a copper heat exchanger.  

The copper heat exchanger is in the shape of a “U” and has annular fins.  The stainless steel 
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Figure 3: Cross-Section of IRAS Dewar and Male Bayonet

IRAS Heat Exchanger 

IRAS Gaseous 

Nitrogen Vent Tube 

IRAS Liquid  

Nitrogen Fill Tube 

IRAS Dewar 

IRAS Annular Space 

IRAS Male Bayonet 
Red line represents boundary 

between IRAS Male Bayonet 

and IRAS Dewar  

Liquid Oxygen   

Fill Line 

Liquid Nitrogen 

Thermocouple 

Liquid Nitrogen 

Pressure Transducer 

Nitrogen System 

Relief Valve 
Nitrogen Vent 

Heat Exchanger 

Sensor Rake 

Temperature Sensor 

IRAS Heat Exchanger 

Tubing Insulation 
Teflon 

Liquid Nitrogen  

Inlet 
From Subcooler  

Gaseous Oxygen 

Inlet (Top) 

 
Oxygen Fill  

Valve (Top) HV-2 
Gaseous 

Oxygen 

Inlet 

(Bottom) 

Oxygen  

Fill Valve 

(Bottom) 

HV-1 



  

22 

 

tubing is insulated with Teflon tubing from the copper heat exchanger to the bottom of the 

vacuum insulated male bayonet.  Heat transfer analysis of the Teflon insulated stainless steel 

tubing and copper heat exchanger is provided in APPENDIX A.   Also attached to and extending 

below the male bayonet is a micarta instrumentation rake, where the internal temperature 

sensors, resistance temperature diodes, are strategically placed.  The instrumentation rake 

extends to about six inches above the bottom of the IRAS dewar, with two horizontal rakes 

measuring the lateral temperature gradient. 

 

IRAS Dewar 

The IRAS dewar is an open container with a neck sized to accept the IRAS Male Bayonet.  The 

liquid oxygen fill line and gaseous oxygen vent line are routed through the annular space, around 

the neck, and routed to the inside of the IRAS Dewar.  Both lines have an external manual valve.  

Two pressure relief valves and a burst disc, which are located between the IRAS Dewar and the 

valve in the gaseous oxygen vent line, provide over-pressurization protection of the dewar.  The 

IRAS dewar pressure is monitored by a pressure gauge and a pressure transducer, which is 

connected to the data acquisition system. 

IRAS Support Equipment 

Liquid Nitrogen Supply 

A 110 liter dewar provides liquid nitrogen to the IRAS dewar.  The liquid nitrogen supply dewar 

has a MAWP of 90 psi, however, the liquid nitrogen dewar pressure was typically maintained 

between 20 psig and 40 psig.  The liquid nitrogen is procured to a military specification, MIL-
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PRF-27401E Grade B, which is industrial grade nitrogen.  The procurement requirements and 

laboratory analyses are found in APPENDIX C. 

 

Gaseous Oxygen Supply 

A 1.5 cubic foot water volume k-bottle provides gaseous oxygen to the IRAS dewar.  The 

gaseous oxygen k-bottle has a MAWP of 2,200 psi.  The gaseous oxygen is procured to a 

military specification, MIL-PRF-25508G Grade F, which is electronic grade oxygen.  The 

oxygen is 99.99% oxygen allowing a maximum impurity concentration of 100 parts per million.  

The procurement requirements and laboratory analyses is found in APPENDIX C.  The gaseous 

oxygen pressure is regulated down to approximately 50 psig upstream of the mass flow 

controller. 

 

Nitrogen Subcooler 

The liquid nitrogen supply dewar is operated at an elevated pressure in order to flow liquid 

nitrogen to the IRAS dewar.  Once the liquid nitrogen supply tank reaches steady state 

conditions, the nitrogen becomes saturated at the elevated pressure, which corresponds to an 

elevated bulk liquid nitrogen temperature.  As the liquid nitrogen flows to a lower pressure, a 

portion of the liquid nitrogen evaporates increasing the quality of the liquid nitrogen.  Since the 

heat removed from the IRAS dewar is calculated by the latent heat of liquid nitrogen flowing 

through the IRAS, the validity of the calculation depends on the ability to obtain liquid nitrogen 

with no quality.  The nitrogen subcooler is employed to subcool the liquid nitrogen and 

subsequently ensure the quality remains negligible.   
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The nitrogen subcooler is composed of copper tubing and a double-walled vat.  The vat is 

approximately 18 inches deep, 18 inches wide, and 36 inches long, constructed of double-walled 

aluminum.  For all test runs, the vat is filled with liquid nitrogen.  The copper tubing is ½” tubing 

that coiled at a diameter of 12 inches.  The copper tubing is located downstream of the liquid 

nitrogen supply dewar and upstream of the IRAS dewar and is physically located in the vat.  The 

copper tubing is connected to the LN2 supply dewar and the IRAS dewar by ½” vacuum 

insulated flexible hoses. 

 

Flow Control Valves 

The flow control valves measure and set the mass flow rates of the liquid nitrogen and the 

gaseous oxygen, which controls the cooling rate in the IRAS and measures the oxygen 

condensation rate.  The oxygen and nitrogen flow control valves range from 0-20 standard liters 

per minute (sLm) and 0-100 sLm, respectively, with a tolerance of ±0.2 sLm and ±1 sLm, 

respectively.  In addition to the GO2 flow control valve, a manual metering valve, with a range of 

0-10 sLm, is in parallel to the GO2 flow control valve, providing a total possible oxygen 

condensation of 30 sLm.   

 

Data Acquisition 

The computer software, Labview, acquires data from the IRAS sensors or pressure transducers, 

thermocouples, resistance diodes, and mass flow controllers.  The IRAS sensors are connected to 

field points and then to an ethernet switch.  The ethernet switch is connected to the computer by 

a single RJ45 network cable.  Labview records the signals from the pressure and temperature 

sensors and records and controls the mass flow controllers.   



  

25 

 

Test Configurations 

The Integrated Refrigeration and Storage (IRAS) dewar is designed to measure the energy flow 

in a cryogenic storage system during active refrigeration.  Figure 4 shows the energy balance 

about the IRAS, with the dotted line representing the control volume. 

 
Figure 4: IRAS Energy Balance 

Table 2: IRAS Energy Balance Definitions 

Label Definition 

QMGO2 Heat entering IRAS dewar with gaseous oxygen 

QHX Heat exiting IRAS dewar through the IRAS heat exchanger 

QEVAP Heat exiting IRAS dewar through evaporation 

QAMB Heat entering IRAS dewar through IRAS dewar insulation 
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The IRAS energy balance from Figure 4 is defined by Equation (17). 

                      (17) 

 

From Equation (17) the individual heat components will be isolated for possible quantification in 

the following tests.   

 

Test 1 

The first test quantifies the ambient heat component by not adding gaseous oxygen or liquid 

nitrogen through the heat exchanger.  This type of operation is typically termed normal 

evaporation, and the mass flow rate exiting the IRAS is typically termed the Normal Evaporation 

Rate.  Under the normal evaporation configuration, Equation (17) reduces to Equation (18).              
 

            (18) 

 
 

Test 2 

The second test quantifies the efficiency the heat exchanger by operating the IRAS dewar in a 

zero boil-off (ZBO) configuration, or no evaporation, with no addition of GO2 into the IRAS 

dewar.  Three variations of Test 2 are run, which varies the vertical height of the IRAS heat 

exchanger.  Under ZBO conditions, Equation (17) reduces to Equation (19).                 

          (19) 

 
 

 

Test 3 
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The third test quantifies the liquefaction rate of the IRAS dewar.  Gaseous oxygen enters the 

IRAS dewar, while the IRAS maintains ZBO conditions and no gaseous oxygen enters the IRAS 

dewar.  Two variations of Test 3 are run; one test flows gaseous oxygen into the ullage, while the 

other test flows gaseous oxygen into the liquid. The two tests are intended to isolate the 

condensation rate, or liquefaction rate, at the surface of the liquid.  For the liquefaction runs, 

Equation (17) reduces to Equation (20).          

                 (20) 

 

 

Test 4 

The fourth test quantifies the densification rate of liquid oxygen in the IRAS dewar.  Since the 

ullage pressure becomes sub-atmospheric if the temperature of liquid oxygen is reduced below 

its normal boiling point, gaseous oxygen enters the IRAS dewar in order to maintain a positive 

pressure.  Under the densification conditions, IRAS still maintains ZBO conditions and Equation 

(17) reduces to Equation (20). 
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Test Matrices 

 

Although Test 1 was performed in a previous study, Test 1 was performed again at atmospheric 

pressure under this study and compared to the reported value of 17.5W.  The remaining tests will 

be performed at three different IRAS dewar pressures.  Table 3, Table 4, and Table 5 show the 

test matrices to accomplish Test 2, Test 3 and Test 4. 

 

Table 3: Test 2 Matrix – Zero Boil-off 

Test Run Number IRAS Set Pressure  Gaseous Oxygen      

Flow Rate 

Test Run 2a 
3 psig                            

(20.7 kPag) 
 0 sLm 

Test Run 2b 
5 psig             

(34.5 kPag) 
 0 sLm 

Test Run 2c 
7 psig              

(48.3 kPag) 
 0 sLm 

 

Table 4: Test 3 Matrix – Liquefaction 

Test Run Number    

GO2 Top Fill 

Test Run Number   

GO2 Bottom Fill 

IRAS Set Pressure Gaseous Oxygen      

Flow Rate 

Test Run 3a Test Run 3aa 

3 psig                            

(20.7 kPag) 

 

 2.5 sLm 

Test Run 3b Test Run 3bb  5.0 sLm 

Test Run 3c Test Run 3cc  7.5 sLm 

Test Run 3d Test Run 3dd  10.0 sLm 

Test Run 3e Test Run 3ee  15.0 sLm 

Test Run 3f Test Run 3ff  20.0  sLm 

Test Run 3g Test Run 3gg 

5 psig                            

(34.5 kPag) 

 

 2.5 sLm 

Test Run 3h Test Run 3hh  5.0 sLm 

Test Run 3i Test Run 3ii  7.5 sLm 

Test Run 3j Test Run 3jj  10.0 sLm 

Test Run 3k Test Run 3kk  15.0 sLm 

Test Run 3l Test Run 3ll  20.0  sLm 

Test Run 3m Test Run 3mm 

7 psig                            

(48.3 kPag) 

 

 2.5 sLm 

Test Run 3n Test Run 3nn  5.0 sLm 

Test Run 3o Test Run 3oo  7.5 sLm 

Test Run 3p Test Run 3pp  10.0 sLm 

Test Run 3q Test Run 3qq  15.0 sLm 

Test Run 3r Test Run 3rr  20.0  sLm 
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Table 5: Test 4 Matrix – Densification 

Test Run Number IRAS Set Pressure  Liquid Nitrogen      

Flow Rate 

Test Run 4a 
3 psig                            

(20.7 kPag) 
 100 sLm 

Test Run 4b 
5 psig             

(34.5 kPag) 
 100 sLm 

Test Run 4c 
7 psig              

(48.3 kPag) 
 100 sLm 
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CHAPTER FOUR: RESULTS AND DISCUSSION 

Initial IRAS Checkout 

Instrument Checkout 

Prior to liquid oxygen test runs, the IRAS was filled with liquid nitrogen to checkout or ensure 

proper performance of the pressure, temperature, and flow instrumentation.  Initially, the IRAS 

was subjected to atmospheric pressure by opening of hand valve, HV-2.  During this phase of 

checkout, resistance temperature diode, T27, T30, T32,and T33 read off-scale high at 1123K, 

while thermocouple, TC1 (Labview designator) read off-scale high at 2048K.  The T27 

temperature sensor was not replaced because T27 measures the temperature of a lateral position 

provides no relevant information for the calculations of liquefaction and densification.  The T30 

thermocouple was damaged during the installation of the Teflon tubing on the vent and fill 

tubing in the IRAS heat exchanger.  The T32 and T33 thermal resistance diodes were never 

connected to Labview. The thermocouple, TC1, was used for previous IRAS testing and not 

connected to Labview during the liquefaction and densification testing outlined in this report.  

Thus, the temperature sensors were deemed capable of providing sufficient measurements for the 

test matrices outlined above in CHAPTER THREE. 

 

The second phase of checkout ensured the proper performance of the pressure transducers.  The 

IRAS dewar was allowed to pressurize to the relief valve, RV-11, set at 8 psig.  The pressure 
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gauge, PG-6, correlated well with the PT-7 as read on the Labview program during the 

pressurization. The IRAS heat exchanger loop was pressurized with gaseous helium to 25 psig, 

as recorded with a separate pressure gauge, while PT-26 correlated well to that pressure input. 

IRAS Heat Exchanger Leak Check 

As mentioned in CHAPTER THREE, stainless steel and copper compose the IRAS heat 

exchanger.  The tubing were connected using a threaded fitting at ambient conditions and as the 

metals cool to liquid nitrogen temperatures, the two metals contract at different rates.  A pressure 

decay test was conducted to ensure the IRAS heat exchanger did not develop a leak during cool 

down.  While liquid nitrogen was in the IRAS dewar, the IRAS heat exchanger loop was 

pressurized to approximately 25 psig with gaseous helium and allowed to decay for fifteen 

minutes.  The pressure decay was approximately 0.5 psig over the fifteen minutes and the profile 

is shown in Figure 5.  Equation (21) represents an isentropic pressure vessel blowdown analysis, 

while Equation (22) represents an isothermal blowdown analysis to estimate the size of the leak 

within the heat exchanger loop [28].  Equation (21) and Equation (22) estimate a 0.00010 inch 

diameter leak and 0.00023 inch diameter leak, respectively.  Equation (23) estimates the mass 

flow rate [29] through the leak at 0.0071 sLm of nitrogen and 0.028 sLm of nitrogen by the 

isentropic blowdown analysis and isothermal blowdown analysis, respectively.  Assuming an 

eight-hour test with an initial volume of 200 L of LO2 in the IRAS dewar, Equation (21) and 

Equation (22) estimates an increase in the nitrogen content of liquid oxygen within the IRAS 

dewar by approximately 20 ppm and 80 ppm, respectively.  The isentropic blowdown analysis 

predicts the LO2 remains within specification limits (APPENDIX C), while the isothermal 

blowdown analysis predicts the nitrogen content within the LO2 slightly exceeds the 
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specification limits.  Nevertheless, the assumption that the liquid and ullage are composed of a 

single species is reasonable. 

               
                               

        
 (21) 

 

                 
                                (22) 

 

                      
                (23) 

 

 

Figure 5: IRAS Heat Exchanger Leak Check 
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Temperature Profile within the IRAS Dewar 

Figure 6 shows the temperature profile of saturated liquid oxygen within the IRAS at steady state 

conditions.  Natural convection currents within the liquid provide sufficient mixing to maintain a 

uniform temperature with no thermal stratification within the liquid.  However, a temperature 

gradient exists within the ullage and is thermally stratified.  Thermal stratification in the ullage 

occurs because a constant temperature boundary condition exists at the liquid portion of the 

liquid-vapor interface due to the consequent vaporization.  Heat transfer from the ambient warms 

the vapor at the dewar wall causing the vapor to become less dense and more buoyant.  Because 

the lowest temperature in the ullage exists at the bottom of the ullage, natural convection is too 

weak to provide sufficient mixing within the ullage.   

 
Figure 6: Temperature Profile of IRAS Containing Liquid Oxygen at Steady State Conditions 

80K 

90K 

100K 

110K 

120K 

130K 

140K 

150K 

160K 

170K 

Temperature      

 Profile   



  

34 

 

Normal Evaporation Test 

From Equation (18), the heat transferred to the IRAS dewar from the ambient can be determined 

by measuring the mass flow rate that evaporates from IRAS.  The heat released from the IRAS 

with the evaporation is calculated by Equation (24).   

                                                  (24) 

 

Once the liquid within the IRAS dewar reaches steady conditions, the liquid is saturated at the 

IRAS dewar pressure, however, a temperature gradient exists within the ullage as discussed 

above.  Thus, the liquid sensible heat portion of Equation (24) can be neglected, while the vapor 

sensible heat portion of Equation (24) remains a significant fraction of the total evaporation heat 

calculation.   

 

With the IRAS dewar filled with liquid nitrogen, a flow meter was placed on the IRAS dewar 

vent, downstream of HV-2, during normal venting to measure the mass flow rate of the normal 

evaporation.  The average flow rate over the period of an hour measured 5.3 sLm, and the 

measured ullage temperature gradient ranges from 77 K to 160 K.  The measured flow rate 

represented an average heat transfer rate of 17.6 W, which agrees well with the value reported by 

Notardonato.   
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Zero Boil-off 

From Equation (19), the heat transferred to the IRAS dewar from the ambient can be removed by 

the coolant through the IRAS heat exchanger.  The heat removed from the IRAS dewar is 

measured and calculated by Equation (25). 

                                                                              (25) 

 

The inlet condition is measured by TC-24 and PT-26 to determine saturation conditions and level 

of subcooling, while the exit condition is by TC-27.  The cooling requirement as determined by 

Equation (25) is 81.4 W, 67.8 W, and 60.7 W for IRAS pressures of 3 psig, 5 psig, and 7 psig, 

respectively.   

Liquefaction 

From Equation (20), the heat that enters the IRAS dewar with the oxygen flow rate is removed 

by the coolant through the IRAS heat exchanger.  The heat removed from the IRAS dewar is 

measured and calculated by Equation (20) and Equation (25).  Another way to measure the heat 

removed from the IRAS dewar during the liquefaction tests is by Equation (26). 

                                                                   (26) 

 

Equation (20) coupled with Equation (25) or Equation (26) provides the heat transfer for the 

entire IRAS dewar.  The results from Equation (26) predict that the cooling rate for GO2 starting 

at a temperature of 295K is 8.75 W/sL, 8.71 W/sL, and 8.66 W/sL for 3 psig, 5 psig, and 7 psig, 

respectively.  Liquefaction of oxygen at varying pressures requires different cooling 
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requirements because of (1) oxygen latent heat decreases as pressure increases, and (2) sensible 

heat decreases as pressure increases due to the higher boiling point.  Equation (1), Equation (2), 

Equation (3), Equation (6), and Equation (7) predict the heat and mass transfer at the vapor-

liquid interface.   

Liquefaction – Top Fill 

For the Test Run 3a through Test Run 3r, the gaseous oxygen flows through the IRAS vent 

valve, HV-2, and enters the IRAS dewar from the top.  The gaseous oxygen enters the IRAS 

dewar at a temperature close to ambient, which is the temperature the gaseous oxygen k-bottle.  

The gaseous oxygen stream enters as a jet into the ullage, however, the gas begins to rise due to 

buoyancy effects as soon as the downward velocity dissipates.  Figure 7 shows the warm gaseous 

oxygen entering the IRAS dewar, with the isotherms within the ullage. 

 

Because of the buoyancy effects within the ullage, liquefaction by the top fill method condenses 

the cold isothermal layers nearest the liquid-vapor interface.  No mass motion occurs in the 

ullage except for the general bulk downward movement of the ullage to replace the volume 

occupied by the vapor that is condensed. Thus, the heat transfer from the liquid surface to the 

gaseous oxygen is conduction dominant. 

 

Once active cooling is initiated, the cooling from IRAS heat exchanger establishes an artificial 

boundary, where natural convection currents exist below the heat exchanger and heat is 

transferred by conduction above the heat exchanger.  No convection exists above the heat 
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exchanger because the lower temperature at the heat exchanger is on the bottom, while the 

warmer temperature at the vapor-liquid interface is on the top. 

 
Figure 7: Convection Currents within IRAS Dewar during Top Fill Liquefaction 

Liquefaction-Top Fill Experimental Data 

Figure 8 shows the liquid temperature data for liquefaction runs (3q,  3b, 3d, 3e, and 3r) that 

occurred on 9/1/10 and 9/2/10.  The bold line represents oxygen saturated temperature, which is 

calculated from Equation (112), and is located between the temperature sensors, T7 and T8.  

Thus, the vapor-liquid interface is located between 53 cm, the height of T7, and 61 cm, the 

height of T8.  During active cooling through the IRAS heat exchanger, HX-9, the liquid below 

the IRAS heat exchanger experiences no thermal stratification, while the liquid above the IRAS 

heat exchanger is thermally stratified.   
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Figure 8: Liquid Temperature Profile During Top Fill Liquefaction 

Figure 9 shows the ullage temperature data for liquefaction runs (3q, 3b, 3d, 3e, and 3r) that 

occurred on 9/1/10 and 9/2/10.  Although, the ullage temperature remained thermally stratified 

throughout the entire test, the stratification increased as the gaseous oxygen flow rate increased. 

Although all temperature locations within the ullage increased linearly at a constant pressure and 

constant gaseous oxygen flow rate, the higher the temperature locations increased at a greater 

rate.  Also, an increase in IRAS dewar pressure drives an instantaneous increase in the 

temperature at all locations within the ullage.   
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Figure 9: Ullage Temperature Profile During Top Fill Liquefaction 

Figure 10 shows the results of the cooling requirement for Test Run 3a through Test Run 3r.  The 

cooling requirement was calculated by Equation (25), where TC-24 and PT-26 provide the 

nitrogen inlet conditions and TC-27 provides the exit conditions.  The cooling requirement 

increases as the oxygen condensation rate increases; the measured cooling requirement, as shown 

in Figure 10, agrees with anticipated cooling requirement increase of approximately 8.7 W/sL. 
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Figure 10: Cooling Requirement for Top Fill Liquefaction 

Liquefaction-Top Fill Mathematical Model Results 

Using temperature and pressure measurements during the test runs 3a through 3l, Equation (1), 

Equation (3), and Equation (6) estimate the oxygen condensation rate through direct contact.  

Figure 11, Figure 12, and Figure 13 show the results of the estimates provided by Equation (1), 

Equation (3), and Equation (6), respectively.   

 
Figure 11: Equation (1) Results for Test Run 3a through Test Run 3r 
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Figure 12: Equation (3) Results for Test Run 3a through Test Run 3r 

 

 
Figure 13: Equation (6) Results for Test Run 3a through Test Run 3r 

Equation (27) determines the heat transfer coefficient as measured by the sensors within the 

IRAS dewar.   

                                    (27) 

Figure 14 shows the results for heat transfer coefficient as determined by Equation (27).  Figure 

15 and Figure 16 show the results for Equation (2) and Equation (7), respectively. 
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Figure 14: Measured Heat Transfer Coefficient for Test Run 3a through Test Run 3r 

 
Figure 15: Equation (2) Results for Test Run 3a through Test Run 3r 
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Figure 16: Equation (7) Results for Test Run 3a through Test Run 3r 

Liquefaction-Top Fill Mathematical Model Discussion 

Kinetic Theory Model Discussion 

The results from both Equation (1) and Equation (3) are five to six orders of magnitude higher 

than the actual GO2 flow rate.  The two kinetic theory models, Equation (1) and Equation (3), 

depend on the temperature at the vapor-liquid interface.  However, the temperature sensors on 

each side of the vapor-liquid interface are separated by a distance of four inches and a minimum 

temperature difference of 3K.  The precision and accuracy of the temperature and pressure 

sensors also contribute to the lack of model verification. 
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respectively.  However, the  error of the PT-7 and T1 through T8 are ±0.1 psig and ±0.5K, 

respectively.  Thus, the instruments within the IRAS lack the precision and accuracy to confirm 

the equations derived from kinetic theory, which are Equation (1), Equation (2), and Equation 

(3). 

 
Figure 17: Sensitivity of Equation (1) With Respect to Small Changes in Pressure 

 
Figure 18: Sensitivity of Equation (1) With Respect to Small Changes in Temperature 
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Likewise, the results of the heat transfer coefficient using the Kinetic Theory Model, Equation 

(2), predicts a heat transfer coefficient approximately five orders of magnitude higher than 

results from Equation (27).  Since Equation (1), Equation (2), and Equation (3) all use the 

Kinetic Theory Model, all three models predict suffer from the lack of precision and accuracy of 

the temperature and pressure sensors and result in predictions about five to six orders of 

magnitude higher actual result. 

Cold Plate Model Discussion 

The liquefaction prediction from Equation (6) was relatively constant across all GO2 flow rates 

and about an order of magnitude lower than the actual gaseous oxygen flow rate.  Likewise the 

Equation (7) results are about one or two orders of magnitude lower than the actual results from 

Equation (27).  In an attempt to understand the reasons why the Cold Plate Model failed to 

predict the liquefaction rate, additional analysis of the IRAS dewar was performed.  The actual 

GO2 flow rate was measured by CV-18 and MCV-19, which was the flow rate of the gaseous 

oxygen entering the IRAS dewar.  This gaseous oxygen could either (1) accumulate in the ullage 

represented by a pressure increase or decrease, (2) condense on the liquid nitrogen fill and vent 

tubes, or (3) condense on the liquid oxygen surface.  APPENDIX E and APPENDIX A provide 

the methods and equations to determine the accumulation due to IRAS dewar pressure variations 

and possible condensation on the fill and vent tubes, respectively.  Alternatively, Equation (6) 

did not consider an energy accumulation within the liquid layer between the heat exchanger and 

the vapor-liquid interface in the form of heat capacitance.  APPENDIX E provides the equations 

and methods to determine the variation in heat capacitance within the liquid layer between the 

heat exchanger and vapor-liquid interface.  Nevertheless, Figure 19 shows the above corrections 
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for the top-fill liquefaction for Test Run 3a-3e.  As Figure 19 shows, there are still some 

unaccounted for liquefaction that occurs.  Possible leaks downstream of the GO2 flow controller 

could have been the reason for the unaccounted liquefaction, however, no leaks were determined 

about the IRAS dewar.  

 
Figure 19: Correction to Equation (6) Prediction 

Liquefaction – Bottom Fill 

For Test Run 3aa through Test Run 3rr, gaseous oxygen enters the IRAS dewar through the hand 

valve, HV-1, to the liquid oxygen fill line.  The liquid oxygen fill line is routed through the 

annular space and enters the inner tank near the top and runs vertically down the interior of the 

tank to the bottom as shown in Figure 20.  The gaseous oxygen temperature is close to ambient 

as it enters the liquid oxygen fill line, however, the gaseous oxygen cools while flowing down 

the liquid oxygen fill line.  The gaseous oxygen departs the liquid oxygen fill line as bubbles that 

flow upward through the liquid oxygen and into the ullage. 
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The gaseous oxygen within the bubbles continues to cool and collapse as the bubbles rise 

through the liquid oxygen.  If insufficient cooling is provided to the bubble, the gaseous oxygen 

eventually reaches the liquid oxygen surface.  The gaseous oxygen continues to rise into the 

ullage until the bubble reaches the isotherm equal to the temperature of the cooled gaseous 

oxygen as shown in Figure 20.  The bottom fill takes advantage of the convection currents within 

the liquid to provide cooling to the gaseous oxygen bubble as well as placing the gaseous oxygen 

in the ullage at a distance closer to the liquid surface.  Since the ullage remains conduction 

dominant, the shorter distance to the liquid surface allows for more efficient heat transfer than 

the top fill where the gaseous oxygen is placed at the top of the IRAS dewar. 

 
Figure 20: Convection Currents within IRAS Dewar during Bottom Fill Liquefaction 
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Figure 8 shows the liquid temperature data for liquefaction runs (3aa, 3bb, 3cc, 3dd, 3gg, 3hh, 

3ii, 3mm, 3nn, 3oo, and 3pp) that occurred on 8/20/10 through 8/23/10.  The bold red line 

represents the saturated temperature, which is calculated from Equation (112), and is located 

between the temperature sensors, T6 and T7.  Thus, the vapor-liquid interface is located between 

46 cm, the height of T6, and 53 cm, the height of T7.  Once gaseous oxygen is introduced to the 

bottom of the IRAS dewar with active cooling through the IRAS heat exchanger, HX-9, the 

temperature at all positions within the liquid approach the saturation temperature.  Also, no 

thermal stratification occurs within the liquid regardless of position above or below the heat 

exchanger.   

 
Figure 21: Liquid Temperature Profile During Bottom Fill Liquefaction 
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Figure 22 shows the ullage temperature data for liquefaction runs (3aa, 3bb, 3cc, 3dd, 3gg, 3hh, 

3ii, 3mm, 3nn, 3oo, and 3pp) that occurred between 8/20/10 and 8/23/10.  The ullage 

temperature remains thermally stratified throughout the entire test.  Unlike the top-fill 

liquefaction results, the position temperature sensors along the upper boundary, were slower to 

react to the gaseous oxygen flow rate than the position temperature sensors at the lower 

boundary of the ullage, thus, the qualitative description of Figure 20 provides an accurate 

description of the bottom-fill liquefaction.  As in general operation of the IRAS dewar, an 

increase in IRAS dewar pressure drives an instantaneous increase in the temperature at all 

locations within the ullage.   

 
Figure 22: Ullage Temperature Profile During Bottom Fill Liquefaction 
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Figure 23 shows the results of the cooling requirement for Test Run 3aa through Test Run 3rr.  

The cooling requirement was calculated by Equation (25), where TC-24 and PT-26 provide the 

nitrogen inlet conditions and TC-27 provides the exit conditions.  The cooling requirement 

presented in Figure 23 is corrected for the variation in heat capacitance within the liquid as 

calculated by Equation (111).  As mentioned above in the top-fill liquefaction discussion, the 

cooling requirement should decrease as the IRAS dewar pressure increases.  However, the 

cooling requirement, as presented in Figure 23, does not show an explicit trend with respect to 

cooling requirement and pressure.  Nevertheless, the cooling requirement increases as the oxygen 

condensation rate increases; the measured cooling requirement, as shown in Figure 23 agrees 

with the 8.7 W/sL. 

 
Figure 23: Cooling Requirement for Bottom Fill Liquefaction 
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because of the inability of precision from the sensors as discussed above.  Figure 26 shows the 

results of Equation (27) to show the measurement of the heat transfer coefficient during the 

bottom fill liquefaction.  Figure 27 shows the results of Equation (7) to predict the heat transfer 

coefficient during the bottom fill liquefaction. 

 

 
Figure 24: Bubble Collapse During Bottom Fill Liquefaction 

 
Figure 25: Equation (89) Results for Test Run 3aa through Test Run 3rr 
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Figure 26: Measured Heat Transfer Coefficient for Test Run 3aa through Test Run 3rr 

 
Figure 27: Equation (7) Results for Test Run 3aa through Test Run 3rr 
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with respect to order of magnitude and no observable trend.  Likewise the heat transfer 

coefficient from the bottom fill liquefaction and top fill liquefaction showed similar results.  The 

liquefaction rate and heat transfer coefficient models were discussed in the top fill liquefaction 

section and any further discussion would be redundant.  

 

As Equation (89) predicts, the amount of oxygen liquefied from the bubble collapse should 

always be greater than Liquefaction by Ullage Collapse due to the convection heat transfer.  

However, no difference between the bottom fill liquefaction and top fill liquefaction was 

observed. 
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Densification 

Densification Below Heat Exchanger 

Densification Below Heat Exchanger Mathematical Model Results 

The subcooling and densification data as presented in Figure 28 and Figure 29 was taken during 

liquefaction test runs, Test Run 4a through Test Run 4c.  As mentioned in CHAPTER TWO, the 

heat transfer within the liquid is modeled by transient heat conduction analysis.  The liquid 

below the heat exchanger is an average temperature across the entire height of liquid below the 

heat exchanger.  The summation of the Equation (16) to n=1500, as opposed to n=∞.  The 

position of the IRAS heat exchanger remained stationary throughout the entire test at the T5 

position or 15 inches (0.381 m) above the bottom of the IRAS dewar.  To determine i, the 

surface temperature of the heat exchanger and the initial temperature of the liquid were 

determined by an average of TC-23 over the entire test period and an average of the T1 through 

T4 initial observations, respectively.   

 

 
Figure 28: Temperature Profile Below Heat Exchanger of 8/19/10 Test 
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Figure 29: Temperature Profile Below Heat Exchanger of 9/2/10 Test 

 
Figure 30: Temperature Profile Below Heat Exchanger of 9/24/10 Test 
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heat conduction assumes uniform temperature not only but vertically but also horizontally, which 

is confirmed by the temperature profile of T21 through T24. 

Densification Above Heat Exchanger 

Densification Above Heat Exchanger Mathematical Model Results  

The subcooling and densification data as presented in Figure 31 and Figure 32 shows the liquid 

temperature data above the heat exchanger during the same timeframe as Figure 28 and Figure 

29. As mentioned in CHAPTER TWO, the heat transfer within the liquid is modeled by transient 

heat conduction analysis of Equation (15).  For predicting the temperature with respect to height 

and time, the summation of the Equation (15) was from n = 1 to n=1500, as opposed to n=∞.  

Although, the position of the IRAS heat exchanger remained stationary throughout the entire test 

at the T5 position or 15 inches (0.381 m) above the bottom of the IRAS dewar, the total height of 

the liquid was determined by the method described in APPENDIX E.  The constant temperature 

at the upper boundary is the saturated temperature of the liquid as determined by Equation (112) 

and Equation (113). The constant temperature of the heat exchanger surface at the lower 

boundary is determined by an average of the TC-3 observations over the test period.  The 

i, is determined by Equation (93) and other the other constraints of Equation (15) are 

noted in each figure.  
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Figure 31: Temperature Profile of Liquid Above Heat Exchanger for 8/19/10 Test 

 
Figure 32: Temperature Profile of Liquid Above Heat Exchanger for 9/2/10 Test 
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Figure 33: Temperature Profile of Liquid Above Heat Exchanger for 9/24/10 Test 

Densification Above Heat Exchanger Mathematical Model Discussion 

The transient heat conduction analysis provided a good prediction of the densification rate of 

liquid oxygen above the heat exchanger.  The transient one-dimensional heat conduction analysis 

neglected the heat flux through the IRAS dewar walls.  The transient heat conduction assumes 

uniform temperature horizontally, which is confirmed by the temperature profile of T25 through 

T28.  The transient heat conduction analysis predicted by Equation (15) assumes the upper 

boundary remains constant throughout the entire densification test runs.  However, the IRAS 

dewar pressure varied throughout the densification test runs, thus, the saturation temperature, or 

upper boundary temperature, varies throughout the densification test runs. 

 

If the ullage is pressurized with a non-condensable, such as helium, the densification rate of the 

liquid above the heat exchanger should show similar results as when the ullage remains at 

constant pressure with gaseous oxygen.  The liquid oxygen at the vapor-liquid interface begins 

the densification at the boiling point  
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Combined Densification Model Discussion 

Both mathematical models for the densification of liquid oxygen have the same boundary 

condition at the heat exchanger.  However, an average of Equation (16) is used to model the 

liquid oxygen below the heat exchanger to account for the convection.  Using the average of 

Equation (16) yields a temperature discontinuity at the heat exchanger as shown in Figure 34.  

Figure 34 also shows the combination of the two mathematical with a continuous temperature 

distribution.  The continuous temperature distribution is based on convection principle that the 

density at any position must be less than the density at all lower vertical positions.  As Figure 51 

shows, liquid oxygen density increases as the temperature decreases across the entire liquid 

range, from the triple point to the critical point.  Thus, the convection principle implies that the 

temperature at any position must be greater than or equal to the temperature at all lower vertical 

positions.  Figure 34 assumes a heat exchanger temperature location at T5, a heat exchanger 

temperature at 83K, and a liquid oxygen initial temperature of 94K.   



  

60 

 

                                                                                                                             

 
Figure 34: Combination of Densification Models 

Figure 35 is from the 9/24/10 densification test.  The densification test was run at a constant 

pressure of 5 psig, however the first hour was dedicated to reducing the IRAS pressure from 8 

psig to the intended test pressure of 5 psig.  The temperature remains uniform throughout the 

liquid, independent of vertical position for the first hour, or until the test pressure was achieved 

and setting a constant temperature at the upper boundary as described in CHAPTER TWO and 

APPENDIX D. 
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Figure 35: Vertical Temperature Profile at Given Time Intervals for 9/24/10 Test 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK 

Conclusions 

 Experimental results could not verify Kinetic Theory Model for direct contact 

condensation due to lack of precision and accuracy of the pressure and temperature 

sensors, and perhaps the fixed locations of the temperature sensors.  Results from the 

Kinetic Theory Model overestimated the observed liquefaction rate and calculated heat 

transfer coefficient by five to six orders of magnitude. 

 Experimental results could not verify Cold Plate Model for direct contact condensation.  

Results from the Cold Plate Model underestimated the observed liquefaction rate and 

calculated heat transfer coefficient by one to two orders of magnitude.  

 Experimental results could not verify the Bubble Collapse model, nor that bottom fill 

liquefaction is a more efficient manner for liquefaction as predicted by Equation (89). 

 Experimental results verified the qualitative models for Top Fill Liquefaction, Figure 7, 

and Bottom Fill Liquefaction, Figure 20. 

 Experimental results verified the transient heat conduction model, Equation (15), applied 

to the liquid above the IRAS heat exchanger during active cooling and gaseous oxygen 

flowing into the ullage to maintain the IRAS at a constant pressure.   
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 The transient heat conduction model, Equation (16), provided reasonable prediction of 

the densification rate.  The liquid below the heat exchanger is not thermally stratified and 

the temperature is estimated by averaging the temperature across all positions in Equation 

(16). 

Future Work 

Liquefaction 

Future liquefaction work should test the Cold Plate Model with respect to liquid height above the 

heat exchanger.  Figure 36 shows the predictions of the Cold Plate Mode, Equation (6), with 

respect to initial liquid height and time equal to zero. 

 
Figure 36: Predicted Liquefaction Rate from Equation (6) with Respect to Liquid Height 
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pressure goes sub-atmospheric, then no constant pressure is maintained in the ullage, thus, the 

upper boundary above the heat exchanger is not maintained at a constant temperature.  In this 

case, the average of Equation (16) should be used to model the entire liquid, above and below the 

heat exchanger.  If a non-condensable, such as gaseous helium, is used to maintain constant 

ullage pressure, then the liquid should be modeled as discussed in CHAPTER TWO.  Although 

the ullage gas does not condense, the liquid at the vapor-liquid interface absorbs heat from 

ambient and ullage until it reaches the boiling point.  Thus, the top boundary of the liquid is still 

held at constant temperature when the ullage is held at constant pressure, regardless of the ullage 

constituents. 
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APPENDIX A: HEAT TRANSFER ANALYSIS 
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Heat Transfer Analysis Through Teflon Insulation 

 

The vertical tubing carrying the liquid nitrogen to the heat exchanger and the vaporized gaseous 

nitrogen from the heat exchanger needs to be insulated to minimize heat transfer into the ullage.  

It is desired to optimize the insulation thickness before specifying the design requirements for the 

insulation.  An optimum insulation thickness, or heat transfer minimum, does not exist for radial 

systems, but a heat transfer maximum can exist [18].  To ensure that the insulation thickness 

inhibits heat transfer, the heat transfer through the fill and vent tubes are analyzed.   

 
Figure 37: Fill and Vent Tubing Thermal Resistance Model 
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Figure 37 shows cutaway of the fill and vent tubes.  The fill and vent tubes are composed of the 

stainless steel tubing surrounded by the Teflon tubing as insulation.  Depending on the Teflon 

outer wall temperature, oxygen may condense on the outside of the Teflon.  The nitrogen flows 

down through the fill tube as two phase fluid; then the nitrogen flows up through the vent tube as 

a gas.   The outside of both the fill and vent tube is the natural convection.  Heat transfers from 

the gaseous oxygen ullage through the natural convection boundary layer, through the oxygen 

condensate, through the Teflon and stainless steel by conduction, and through the internal 

convection layer. 

 

Overall Radial Heat Transfer to the Fill Tube and Vent Tube  

Equation (28) calculates the overall heat transfer through the fill and vent tubes [18]. 

                     (28) 

 

                                                                             
 

(29) 

 

Convection of Nitrogen Flowing Inside Fill Tube  

Equation (30) through Equation (38) develop the convective heat transfer coefficient from the 

stainless steel tube wall to the nitrogen.  Even though the nitrogen is subcooled before entering 

the IRAS, these calculations assume two-phase flow once entering the fill tube.  The Chen 

correlation and the Kandlikar correlation were considered to evaluate the heat transfer 

coefficient, which provided the same order of magnitude result.  The Chen correlation sums the 

convective contributions from the bulk convection and the microscopic nucleate boiling [30].   
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              (30) 

 

                                
                                                            (31) 

                                 (32) 

                      (33) 

                 
                (34) 

                                                                                                              (35) 

               (36) 

                           (37) 

        
     (38) 

 

Convection of Nitrogen Flowing Inside Vent Tube  

Equation (39) calculates the convective heat transfer coefficient across the boundary layer from 

forced convection of the gaseous nitrogen flowing upward through the inside of the vent tube.  

Equation (39) is developed by solving the Navier-Stokes energy equation in cylindrical 

coordinates and assuming (1) laminar, fully developed flow and (2) isothermal inner vent tube 

wall [18].   
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                    (39) 

 

 

Equation (40) calculates the convective heat transfer coefficient across the boundary layer from 

forced convection of the gaseous nitrogen flowing upward through the inside of the vent tube 

[18].  Equation (40) uses the Gnielinski correlation by assuming (1) turbulent flow through (2) a 

smooth tube.  For the most realistic flow regimes (GN2 flows above 5 sLm), the GN2 flow is 

turbulent.   

                                                          (40) 

                       (41) 

 

Condensation Correlation 

Equation (42) represents the condensation convection coefficient and was developed using the 

Nusselt approximation for laminar flow, which is conditional on the value of the Reynolds 

number defined by Equation (44).    Equation (45) and Equation (46) represent the condensation 

convection coefficient for the wavy and turbulent flow, respectively [18]. 

                            
                (42) 

                    (43) 

                          (44) 

                                                            (45) 
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                                                              (46) 

 

Natural Convection of Gaseous Oxygen Outside Fill Tube and Vent Tube 

Equation (47) calculates the convective heat transfer coefficient through boundary layer 

developed by the natural convection [18].  Equation (47) assumes (1) flat, vertical plate analysis 

and (2) isothermal tube wall temperature and suggested for Rayleigh numbers below 10
9
.  The 

flat plate assumption can be applied to vertical cylinders if the boundary layer is much less than 

diameter of the cylinder; the condition is satisfied by Equation (48).  The assumption that the 

tube walls are isothermal is a great approximation for the fill tube because the nitrogen is 

saturated and heat transferred to the nitrogen from the ullage gas produces a phase change and 

not a temperature change, thus, the nitrogen maintains the tube wall temperature.  Although heat 

transferred to the nitrogen in the vent tube produces a temperature increase, the temperature 

increase is minimal, typically less than 10°C, and the isothermal assumption for the vent tube 

outer wall remains a good approximation.  

                         
                   

                       
    (47) 

             (48) 

 

The results for simultaneous solutions for Equation (28) through Equation (47) as a function of 

insulation thickness are shown in Figure 38 and Figure 39 for the fill tube and vent tube, 

respectively.  Each figure shows a “break-even” insulation thickness, which is the minimal 
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insulation thickness required to make any thermal resistance improvements. The proposed 

insulation thickness is 1.0625 inches and 1 inch for the fill tube and vent tube, respectively, and 

shown by the arrow on the right hand side of the figure pointing upward.  The proposed 

insulation decreases the heat transfer through the fill tube and vent tube by 1.1W and 2.7W, 

respectively. 
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Figure 38: Fill Tube Insulation Optimization 

 

 

Figure 39: Vent Tube Insulation Optimization  
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Heat Transfer Analysis for IRAS Heat Exchanger 

 

The IRAS heat exchanger is a ½” copper tubing in the shape of a “U” with annular fins.  Figure 

40 represents the heat exchanger and Figure 41 represents a cross-section of the IRAS heat 

exchanger for calculation purposes.  The variables in Figure 41 are consistent with fin heat 

transfer presented in Incropera [18].  The overall length of the heat exchanger is 14 inches and 

the fins extend 5/16” in the radial direction from the base of the tubing.   

 Figure 40: IRAS Heat Exchanger  

 Figure 41: IRAS Heat Exchanger Cross-Section 

Equation (49) calculates the heat transfer through the IRAS heat exchanger. 

                          (49) 

 

From Incropera, the convective heat transfer coefficient is given by Equation (50): 

                                                        (50) 

 

From Incropera, the total surface area of the heat exchanger is given by Equation (51): 

                          (51) 
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From Incropera Table 3.5 for straight fins:                 (52) 

 

From Incropera, the single fin efficiency is given by Equation (53): 

                                   
                  (53) 

 

 

The heat exchanger is capable of transferring 3,400 W of heat.  The fins increase the heat 

transfer rate capability by approximately 1000% when compared to a copper tube without fins. 
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APPENDIX B: EXPERIMENTAL SETUP INFORMATION 
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Figure 42: Experimental Setup - Detailed Process and Instrumentation Diagram 
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Table 6: Experimental Setup - Detailed Process and Instrumentation Legend 

REFERENCE 

DESIGNATOR 

DESCRIPTION SPECIFICATION MANUFACTURER MANUFACTURER 

NUMBER 

HV-1 IRAS DEWAR INLET VALVE (TYPICALLY LO2) ½”  EDEN CRYOGENICS BC-02042-8101-1 

HV-2 IRAS DEWAR EXIT VALVE (GO2 VENT) ½”  EDEN CRYOGENICS BC-02042-8100-1 

BD-3 IRAS BURST DISC  75PSIG FIKE CORPORATION P ST 

RV-4 IRAS MAIN RELIEF VALVE  SET 61.7PSIG, 84SCFM FLOWSAFE, INC 01-2190M-101 

RV-5 IRAS COOLANT LOOP RELIEF VALVE  SET 63PSIG FLOWSAFE, INC. 01-2190M-101 

PG-6 IRAS DEWAR PRESSURE GAUGE 0-100 PSIG ASHCROFT 1008 

PT-7* IRAS DEWAR PRESSURE TRANSDUCER 0-25PSIG TELEDYNE TABER 2415 

CV-8* IRAS COOLANT LOOP MASS FLOW CONTROL VALVE 0-100 SLM ± 1SLM TELEDYNE INSTR. HFC-203 

HX-9 IRAS HEAT EXCHANGER ½” COPPER TUBE   

HX-10 IRAS COOLANT LOOP AMBIENT HEAT EXCHANGER ½” COPPER TUBE   

RV-11 IRAS OPERATIONAL RELIEF VALVE SET 8PSIG   

KB-12 GASEOUS OXYGEN K-BOTTLE  1.5 FT³ (W.V)   

HV-13 K-BOTTLE ISOLATION VALVE    

PG-14 K-BOTTLE UPSTREAM PRESSURE GAUGE 0-4000 PSI 

CONCOA  312-4311-540 
F-15 GASEOUS OXYGEN FILTER 10 MICRON 

PRV-16 K-BOTTLE PRESSURE REGULATING VALVE 3000PSI TO 0-250PSI 

PG-17 K-BOTTLE DOWNSTREAM PRESSURE GAUGE 0-400 PSI 

PT-18* GASEOUS OXYGEN PRESSURE TRANSDUCER    

CV-19* MASS FLOW CONTROL VALVE (GO2) 0-20 SLM  ±  0.2SLM MKS INSTRUMENTS 1179A 

MCV-20 MANUAL MASS FLOW CONTROL VALVE (GO2) 0-10 SLM HOKE 1335M4Y 

D-21 LIQUID NITROGEN DEWAR 110 LITER TAYLOR WHARTON  

HV-22 LIQUID NITROGEN STORAGE DEWAR ISOLATION VALVE    

SC-23 SUBCOOLER    

TC-24* SUBCOOLER COOLING FLUID EXIT THERMOCOUPLE TYPE T (-200 to 350°C) OMEGA  

TC-25* IRAS HEAT EXCHANGER INLET THERMOCOUPLE TYPE T (-200 to 350°C) OMEGA  

PT-26* SUBCOOLER PROCESS FLUID EXIT PRESSURE TRANSDUCER 0-30 PSIG  ± 0.5 PSIG WIKA INSTR. 4258112 

TC-27* IRAS HEAT EXCHANGER EXIT THERMOCOUPLE TYPE T(-200 to 350°C) OMEGA  

T1 – T32 IRAS DEWAR POSITION TEMPERATURE SENSOR 25K-450K ± 0.5K SCIENTIFIC INSTR. Si410 
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Table 6: Experimental Setup - Detailed Process and Instrumentation Legend (Continued) 

REFERENCE 

DESIGNATOR 

DESCRIPTION SPECIFICATION MANUFACTURER MANUFACTURER 

NUMBER 

TC-FP THERMOCOUPLE FIELD POINT 8 CHANNEL NATIONAL INSTRUM  cFP-TC-120 

CB-FP INTEGRATED CONTROL BLOCK FIELD POINT 8 CHANNEL NATIONAL INSTRUM cFP-CB-1 

RTD-FP TEMPERATURE MODULE FIELD POINT  8 CHANNEL NATIONAL INSTRUM cFP-RTD-124 

AO-FP ANALOG VOLTAGE OUTPUT MODULE FIELD POINT 8 CHANNEL 0-10V NATIONAL INSTRUM cFP-AO-210 

CNT-FP INTELLEGIENT CONTROLLER FIELD POINT 2 PORT NATIONAL INSTRUM cFP-2110 

MOD ETHERNET SWITCH MODEM  5 PORT B&B ELECTRONICS ELINX EIR205 

COMP COMPUTER 2.99GHz, 1.00GBRAM DELL PRECISION 670 

*PT-7 (Designated as P1 by Labview) Calibrated by NASA-KSC Calibration Laboratory on 03/23/2010 and found within tolerance 

*CV-8 (Designated as FM1 by Labview) Calibrated by NASA-KSC Calibration Laboratory on 04/09/2010 and found within tolerance 

*PT-18 (Designated as P2 by Labview) 

*CV-19 (Designated as FMC2 by Labview) Calibrated by Teledyne on 3/30/2010 and found within tolerance 

*TC-24 (Designated as TC3 by Labview) 

*TC-25 (Designated as TC2 by Labview) 

*PT-26 (Designated as P3 by Labview) Calibrated by NASA-KSC Calibration Laboratory on 03/29/2010 and found within tolerance 

*TC-27 (Designated as TC4 by Labview) 

 

 

 

 

 

Figure 43: Process and Instrumentation Diagram Legend 
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APPENDIX C: FLUID COMPOSITION 
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Nitrogen 

 

NASA procures nitrogen in accordance with the military specification, MIL-PRF-27401.  The 

purity and impurity limits are listed in Table 7 under the column titled, “Procurement 

Specification.”  The military specification requires the vendor to verify that the individual tanker 

load met the procurement specification prior to shipment, and shows an actual concentrations of 

the liquid procured.  In addition to the vendor analysis, NASA randomly samples a tanker and 

analyzes the sample on a periodic basis. Table 7 provides average results from vendor and 

NASA analysis. 

Table 7: Nitrogen Procurement Specification and Laboratory Analysis 

Component Procurement 

Specification¹ 

Vendor Laboratory 

Analysis 

NASA Laboratory 

Analysis 

Nitrogen  99.5% (min)  99.999 %  >99.99 % 

Oxygen  50 ppm (max)  0.4 ppm  <2 ppm² 

Total Hydrocarbons  25 ppm (max)  0.4 ppm  <1 ppm² 

Water  11.6 ppm (max)  0.9 ppm  <2 ppm² 

Argon Not Required Not Required  7 ppm 

 

¹ Nitrogen is procured to military specification, MIL-PRF-27401F Grade B. 

² The unit, ppm, is parts per million by volume as a gas at standard conditions. 

A less than (“<”) represents a value below the lower detection limit of the analytical equipment. 
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Oxygen 

 

NASA procures oxygen in accordance with the military specification, MIL-PRF-25508.  Table 8 

lists the purity and impurity requirements from the military specification. Like the nitrogen, a 

vendor analysis exists for every oxygen delivery.  Unlike the nitrogen, a NASA analysis exists 

for every oxygen delivery as well the vendor analysis.  Table 8 shows the average analysis for 

oxygen.   

 

Table 8: Oxygen Procurement Specification and Laboratory Analysis 

Component Procurement 

Specification¹ 

Vendor Laboratory 

Analysis 

NASA Laboratory 

Analysis 

Oxygen  99.99% (min)  >99.99 %  >99.989 % 

Total Hydrocarbons  20 ppm (max)  <10.00  ppm²  6 ppm 

Water  3 ppm (max)  <3.00  ppm²  <2 ppm² 

Methane  16 ppm (max)  5.53 ppm  6 ppm 

Ethane  2 ppm (max) Not Measured Not Measured 

Propane  1 ppm (max)  <1.00  ppm² Not Measured 

Nitrous Oxide  1 ppm (max)  <1.00 ppm²  <1 ppm² 

Halogenated Hydrocarbons  1 ppm (max)  <1.00  ppm²  <1 ppm² 

Carbon Monoxide 
1 ppm(max)  <1.00  ppm²  <1 ppm² 

Carbon Dioxide 

Nitrogen 

75 ppm(max) 

 4.50  ppm  <5 ppm² 

Argon  31.56  ppm  19 ppm 

Krypton Not Measured  <5 ppm² 

Helium Not Required Not Required  <10 ppm² 

 

¹ Oxygen is procured to military specification, MIL-PRF-25508G Grade F. 

² A less than (“<”) represents a value below the lower detection limit of the analytical equipment.  

The unit, ppm, is parts per million by volume as a gas at standard conditions. 
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APPENDIX D: HEAT TRANSFER DERIVATION 
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Direct Contact Condensation by Vapor Collapse 

Consider a flat, horizontal, cold plate with quiescent saturated oxygen vapor above the cold 

plate.  A film of liquid oxygen condenses on the cold plate, with the film thickness, (t), 

increasing with time as shown in Figure 44.  A control volume, represented by the dotted line, is 

established around the liquid-vapor interface [31].  The energy balance through the control 

volume is given by Equation (54).   

Figure 44: Heat Transfer Coefficient Derivation Model                           (54) 

 

                               (55) 

 

Where the height of the liquid from the cold plate is given by Equation (56).               (56) 

                   (57) 

 

Equation (58) is obtained by substituting Equation (57) into Equation (55). 

                                     (58) 

 

Rearranging Equation (58) , Equation (59) is obtained. 
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Cold Plate 

(t) 
(t) 
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                             (59) 

 

Integrate Equation (59) to obtain Equation (61). 

                                     
  (60) 

 

                                               (61) 

 

Rearrange Equation (61) to obtain Equation (67).                                                  (62) 

 

                                           (63) 

 

                                     (64) 

 

                                   (65) 

 

                                   (66) 

 

                                         (67) 
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The general definition of the heat transfer coefficient is given by Equation (68).   

 

Substitute Equation (67) into Equation (68) to obtain Equation (69), the derived heat transfer 

coefficient for condensation on flat, horizontal cold plate.   

                                               (69) 

                                        (70) 

 

The condensation mass flux is found by rearranging Equation (55). 

                                   (71) 

 

Substituting Equation (67) into Equation (71), gives the condensation mass flux, Equation (72). 

                                                                (72) 

                                                         (73) 

                                                       (74) 

 

 

                   (68) 
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Direct Contact Condensation by Bubble Collapse 

Bubble Departure Frequency Derivation 

               (75) 

                  (76) 

                           (77) 

             
           (78) 

 

Mass Condensation Rate of Bubble 

                         (79) 

                  
                                        (80) 

                                                  (81) 

                                 (82) 

                                        (83) 

                                              (84) 
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                            (85) 
                                     (86) 

                                                   (87) 

                       (88) 

                     (89) 
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Transient Conduction Heat Transfer Analysis Above Heat Exchanger 

 

 
Figure 45: Heat Transfer Model in Liquid Above Heat Exchanger 

Figure 45 represents heat transfer analysis for the liquid above the heat exchanger.  The heat 

transfer analysis assumes transient conduction bounded by the constant temperatures of the 

saturated liquid temperature and heat exchanger surface temperature at the upper and lower 

boundaries, respectively.  The initial temperature condition of the liquid within the bounded 

region is the saturation temperature.  The saturation temperature is greater than the heat 

exchanger surface temperature, and the density is directly proportional to the temperature within 

the temperature range of the bounded region. Thus, the liquid within the bounded region is stable 

and the heat transfer is conduction dominant within the bounded region.   
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Equation (90) is the non-homogeneous form of the heat equation, while Equation (91) through 

Equation (93) represent the boundary conditions.  Equation (94) shows the solution to the 

boundary value problem [32]. 

                         (90) 

 

                  (91) 

 

               (92) 

 

                  (93) 
 

                                                    ∞

    (94) 

 

 

Equation (95) shows Equation (94) when r is set to 0.  Equation (96) is the temperature profile of 

the Equation (95). 

                                      
    (95) 

 

                                                
       

(96) 
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Transient Conduction Heat Transfer Analysis Below Heat Exchanger 

 

 
Figure 46: Heat Transfer Model for Liquid Below Heat Exchanger 

Figure 46 represents heat transfer analysis for the liquid below the heat exchanger.  The heat 

transfer analysis assumes transient conduction bounded by the constant temperature of the heat 

exchanger surface temperature at the upper boundary and an insulated condition at the lower 

boundary.  The initial temperature condition of the liquid within the bounded region is the 

saturation temperature.   

 

Convection occurs within the bounded region because the liquid density is greater at the top of 

the bounded region, which is kept constant at a lower temperature than the bulk fluid 

Heat Exchanger Surface 
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temperature.  Nevertheless, the bounded region below the heat exchanger is modeled as using 

transient conduction heat transfer analysis.  The results of the conduction heat transfer is  

averaged with respect to depth below the heat exchanger (y-coordinate) to provide the prediction 

for the cooling rate of the bulk liquid oxygen below the heat exchanger. 

 

Equation (97) is the heat equation, while Equation (98) through Equation (100) represent the 

boundary conditions.  Equation (101) shows the solution to the boundary value problem.   

                       (97) 

                  (98) 

                (99) 

             (100) 

                   (101) 

 

                                                    
    (102) 

 

Equation (103) is the temperature profile of the Equation (102). 

                                                              
       (103) 
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APPENDIX E: IRAS ANALYSIS AND METHODS 
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Determination of Liquid Height 

The vapor-liquid interface remains at the saturated temperature as determined by the IRAS 

dewar pressure and Equation (112) and Equation (113).  For the instance that the saturated 

temperature falls between two position temperature sensors, thus, the vapor-liquid interface is 

between the heights represented by the two temperature sensors, as represented in Figure 47. 

 
Figure 47: Determination of Vapor-Liquid Interface Between Two Temperature Sensors 

An energy balance around the vapor-liquid interface, represented by the red dotted line in Figure 

47, is shown in Equation (104) with heat conduction analysis in Equation (105).  Finally, 

Equation (107) is added to the overall height of the position temperature sensor to obtain the 

Temperature 

Sensor Rake 

TU 

Tsat 

TL 

HU 

HL 

HU+L 
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overall liquid height.  The thermal conductivity, kL and kU, are determined by Equation (122) and 

Equation (118), respectively.       (104) 

                               (105) 

            (106) 

                                           (107) 

                                                                             (108) 

 

 



 

95 

 

Mass Accumulation by Ullage Pressure and Temperature Variation 

The mass liquefaction rate was measured by the CV-18 and MCV-19, assumes that the gaseous 

oxygen flow rate into the IRAS dewar is liquefied, or that no gaseous oxygen accumulates in the 

ullage.  The liquefaction and densification tests were intended to run at a constant pressure, 

however, small variations within the operation of the liquid nitrogen flow controller, CV-8, 

resulted in small variations in the IRAS dewar pressure.  These small variations in the IRAS 

dewar pressure, coupled with small variations in ullage temperature, affected the density of the 

vapor within the ullage of the IRAS dewar and allowed accumulation of gaseous oxygen within 

the ullage.  The density at each position temperature location can be estimated by Equation 

(115).  The product of the density and volume at each position temperature provides the mass at 

each location.  If the position temperature sensor is below the IRAS dewar head, Equation (109) 

calculates the volume.  If the position temperature sensor is within the IRAS dewar head, 

Equation (110) calculates the volume of the spherical cap.                     (109) 

              (110) 

 

The use of the trapezoidal rule provides a mass estimate of the gaseous oxygen within the ullage.  

Calculating the density between two time periods provides an estimate of a mass accumulation 

rate within the ullage. 

 



 

96 

 

Energy Accumulation by Heat Capacitance Variation 

Figure 44 shows heat conduction through the liquid oxygen from the vapor-liquid interface to the 

theoretical cold plate at the bottom of the liquid layer.  However, the model neglects any energy 

accumulation within the liquid layer as heat capacitance.  Nevertheless, energy accumulation 

occurs within the liquid layer due to the temperature variations within the liquid, and Equation 

(111) accounts for any variations within the liquid layer.   The liquid oxygen density and liquid 

oxygen heat capacity is determined by Equation (121) and Equation (120), respectively.  As with 

the above methods, the trapezoidal rule is used to provide the change in overall heat capacitance. 

                      (111) 
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APPENDIX F: DATA REFERENCES 

 



 

98 

 

The data that support the Test Matrices in CHAPTER THREE are presented below as a reference 

to results presented in Figure 10 through Figure 17, Figure 23 through Figure 27, and Figure 28 

through Figure 32. 

Table 9: Data Reference for Test 2 Matrix 

Test Run Pressure GO2 Flow Rate Date Start Time Stop Time 

2a 3 psig  0 sLm 8/19/10 11:02:10 11:41:10 

2b 5 psig  0 sLm 8/19/10 13:08:10 13:43:10 

2c 7 psig  0 sLm 8/19/10 14:50:13 15:00:10 

 

Table 10: Data Reference for Test 3 Matrix - Top Fill Liquefaction 

Test Run Pressure GO2 Flow Rate Date Start Time Stop Time 

3a 

3 psig 

 2.5 sLm 8/20/10 10:10:37 10:23:37 

3b  5.0 sLm 8/20/10 10:34:17 10:45:37 

3c  7.5 sLm 8/20/10 10:56:28 11:05:37 

3d  10.0 sLm 8/20/10 13:01:00 13:12:37 

3e  15.0 sLm 9/2/10 11:45:29 12:17:52 

3f  20.0 sLm    

3g 

5 psig 

 2.5 sLm 8/19/10 16:16:10 16:22:10 

3h  5.0 sLm 8/19/10 16:25:10 16:35:10 

3i  7.5 sLm 8/19/10 16:41:10 16:49:10 

3j  10.0 sLm 8/19/10 16:51:10 17:05:10 

3k  15.0 sLm 9/1/10 15:04:57 15:14:57 

3l  20.0 sLm 9/15/10 15:09:31 15:32:31 

3m 

7 psig 

 2.5 sLm 8/19/10 15:43:10 15:57:10 

3n  5.0 sLm 8/19/10 15:06:10 15:20:10 

3o  7.5 sLm 8/19/10 15:22:10 15:31:10 

3p  10.0 sLm 8/19/10 15:32:10 15:42:10 

3q  15.0 sLm 9/2/10 14:26:09 14:33:09 

3r  20.0 sLm 9/2/10 14:12:09 14:22:09 
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Table 11: Data Reference for Test 3 Matrix - Bottom Fill Liquefaction 

Test Run Pressure GO2 Flow Rate Date Start Time Stop Time 

3aa 

3 psig 

2.5sLm 8/20/10 13:57:44 14:07:45 

3bb 5.0sLm 8/20/10 15:32:45 15:43:45 

3cc 7.5sLm 8/20/10 15:47:45 16:05:45 

3dd 10.0sLm 8/20/10 16:06:45 16:31:45 

3ee 15.0sLm 9/14/10 13:05:59 13:26:59 

3ff 20.0sLm 9/14/10 13:44:59 13:56:59 

3gg 

5 psig 

2.5sLm 8/23/10 10:40:27 11:00:27 

3hh 5.0sLm 8/23/10 11:07:27 11:23:27 

3ii 7.5sLm 8/23/10 12:11:27 12:25:27 

3jj 10.0sLm    

3kk 15.0sLm 9/7/10 14:20:00 14:31:00 

3ll 20.0sLm 9/7/10 14:56:00 15:23:00 

3mm 

7 psig 

2.5sLm 8/23/10 13:07:30 13:32:27 

3nn 5.0sLm 8/23/10 13:33:11 14:09:27 

3oo 7.5sLm 8/23/10 14:09:34 14:31:27 

3pp 10.0sLm 8/23/10 14:54:27 15:13:27 

3qq 15.0sLm 9/13/10 12:48:15 13:07:15 

3rr 20.0sLm 9/14/10 15:14:59 15:40:59 
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APPENDIX G: OXYGEN AND NITROGEN PROPERTY CORRELATIONS 
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Oxygen Vapor Pressure 

Equation (112) and Equation (113) calculate the vapor pressure of oxygen at a given temperature 

[31].  The units for temperature and pressure are Kelvin and bar, respectively. 

                             (112) 

 

                  (113) 

 

Where, 

A =  7.7977723 

B =  4.5773000 

C =  -1.9281264 

D =  3.2931232 

 =  1.5 

Pt =  0.001464 bar 

Tt =  54.359 K 

Tc=  154.581 K 
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Oxygen Vapor Heat Capacity 

 

Equation (114) calculates the heat capacity of oxygen vapor [31].  The units for heat capacity, 

universal gas constant, and temperature are J/kg·K, J/mol·K, and K, respectively. 

                                                             (114) 

 

Where, 

A1 = -1.86442361 x 10
2
 K³ 

A2 = 2.07840241 x 10
1
 K² 

A3 = -3.42642911 x 10
-1

 K 

A4 = 3.50297163 x 10
0
  

A5 = 2.05866482 x 10
-7

 K
-1

 

A6 = -1.11035799 x 10
-8

 K
-2

 

A7 = 2.08612876 x 10
-11

 K
-3

 

A8 = 1.01894691 x 10
0
  

A9 = 2.23918105 x 10
3
 K 
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Oxygen Vapor Density 

Equation (115), Equation (116), and Equation (117) calculate the vapor density of oxygen at a 

given temperature and pressure [31].  The units for pressure, temperature, and density are bar, 

Kelvin, and grams per cubic centimeter.                                 (115) 

 

             
  (116) 

 

Where, 

 B1 =  -8.638001288 x 10
2 

 B2 =  1.733064315 x 10
4
 

 B3 =  -1.241961054 x 10
5
 

 B4 =  3.956609285 x 10
5
 

 B5 =  -4.904475356 x 10
5 

             
  (117) 

 

Where, 

 C1 =  3.569552013 x 10
5 

 C2 =  -2.696578423 x 10
7
 

 C3 =  8.152809009 x 10
8
 

 C4 =  -1.229796911 x 10
10

 

 C5 =  9.252345993 x 10
10

 

 C6 =  -2.771904509 x 10
11
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Oxygen Vapor Thermal Conductivity 

A fifth order polynomial curve was applied to data for oxygen vapor thermal conductivity 

obtained from Barron [32].  Equation (118) shows the third order polynomial curve from 

Microsoft Excel.  The constants, A, B, C, D, E and F, within Equation (118) contain 15 decimals 

to reduce error for data fit to 0.5%.  The result of Equation (118) shall include only four 

significant digits.  Figure 48 shows the thermal conductivity data with the plot of Equation (118). 

                            (118) 

Where, 

 A =  - 0.001223076523818 W/m·K 

 B =  0.000117232490577 W/m·K
2
 

 C =  - 0.000000263079458 W/m·K
3
 

 D =  0.000000001644465 W/m·K
4 

 E =  - 0.000000000005347 W/m·K
5
 

 F =  0.000000000000006 W/m·K
6 

 

 

Figure 48: Oxygen Vapor Thermal Conductivity  
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Oxygen Latent Heat 

A third order polynomial curve was applied to data for oxygen latent heat obtained from Weber 

[31].  Equation (119) shows the third order polynomial curve from Microsoft Excel.  The 

constants, A, B, C, and D, within Equation (119) contain 15 decimals to reduce error for data fit 

to 0.03%.  The result of Equation (119) shall only include significant digits to the tenth’s place.  

Figure 49 shows the thermal conductivity data with the plot of Equation (119). 

                  (119) 

 

Where, 

 A =  -0.000081397422873 kJ/kg 

 B =  0.014733449692986 kJ/kg·K 

 C =  -1.65158600623311 kJ/kg·K² 

 D =301.861319160972 kJ/kg·K³ 

 

Figure 49: Oxygen Latent Heat
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Liquid Oxygen Heat Capacity 

A fifth order curve was applied to data for liquid oxygen density obtained from Barron [33].  

Equation (120) shows the sixth order curve from Microsoft Excel.  The constants, A, B, C, D, E, 

and F, within Equation (120) contain 15 decimals to reduce error for data fit to 0.11%.  The 

result of Equation (120) shall include only four significant digits.  Figure 50 shows the liquid 

oxygen density data with the plot of Equation (120). 

                               (120) 

 

Where, 

 A = -804.941841795574 J/kg·K 

 B =  157.662398397089 J/kg·K
2
 

 C =  -3.98909926785794 J/kg·K
3
 

 D = 0.049706461920543 J/kg·K
4
 

 E = -0.000304345673485 J/kg·K
5
 

 F = 0.000000737635884 J/kg·K
6
 

 

 
Figure 50: Liquid Oxygen Heat Capacity  
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Liquid Oxygen Density 

A sixth order curve was applied to data for liquid oxygen density obtained from Weber [31].  

Equation (121) shows the sixth order curve from Microsoft Excel.  The constants, A, B, C, D, E, 

F, and G, within Equation (121) contain 15 decimals to reduce error for data fit to 0.005%.  The 

result of Equation (121) shall include only six significant digits.  Figure 51 shows the liquid 

oxygen density data with the plot of  Equation (121). 

                                  (121) 

 

Where, 

 A = 1,828.14835415939 kg/m³ 

 B =  -24.4327054318406 kg/m³·K 

 C =  0.601754991149983 kg/m³·K
2
 

 D = -0.009840755672421 kg/m³·K
3
 

 E = 0.000092502281069 kg/m³·K
4
 

 F = -0.000000472160225 kg/m³·K
5
 

 G = 0.000000001000684 kg/m³·K
6

 

Figure 51: Liquid Oxygen Density  
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Liquid Oxygen Thermal Conductivity 

A third order polynomial curve was applied to data for liquid oxygen thermal conductivity 

obtained from Barron [32].  Equation (122) shows the third order polynomial curve from 

Microsoft Excel.  The constants, A, B, C, and D, within Equation (122) contain 15 decimals to 

reduce error for data fit to 0.06%.  The result of Equation (122) shall include only four 

significant digits.  Figure 52 shows the thermal conductivity data with the plot of Equation (122). 

                 (122) 

 

Where, 

 A =  0.213338803988351 W/m·K 

 B =  0.000289487448988 W/m·K
2
 

 C =  - 0.000014585678268 W/m·K
3
 

 D =  0.000000041651737 W/m·K
4
 

 

Figure 52: Liquid Oxygen Thermal Conductivity 
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Liquid Oxygen Viscosity 

A fifth order polynomial curve was applied to data for liquid oxygen viscosity obtained from 

Barron [32]. Equation (123) shows the third order polynomial curve from Microsoft Excel.  The 

constants, A, B, C, D, E, and F, within Equation (123) contain 25 decimals to reduce error for 

data fit to 0.4%.  The result of Equation (123) shall include only three significant digits.  Figure 

53 shows the thermal conductivity data with the plot of Equation (123). 

                           (123) 

 

Where, 

 A =  0.014715060173857 kg/m·s 

 B =  - 0.000654848991496395 kg/m·s·K 

 C =  0.0000120104628576337 kg/m·s·K
2
 

 D =  - 0.000000111227943528256 kg/m·s·K
3
 

 E = 0.000000000515819966482693 kg/m·s·K
4
 

 F = -0.0000000000009536294392749 kg/m·s·K
5
 

 

Figure 53: Liquid Oxygen Viscosity 
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Liquid Oxygen Surface Tension 

A third order polynomial curve was applied to data for liquid oxygen surface tension obtained 

from Barron [32].  Equation (124) shows the third order polynomial curve from Microsoft Excel.  

The constants, A, B, C, and D, within Equation (124) contain 25 decimals to reduce error for 

data fit to 0.07%.  The result of Equation (124) shall include only three significant digits.  Figure 

54 shows the surface tension data with Equation (124).                  (124) 

 

Where, 

 A =  0.0378427336225679 N/m 

 B =  - 0.000280199822845628 N/m·K 

C =  - 0.00000009855225489719 N/m·K
2
 

 D =  0.00000000194328853049 N/m·K
3
 

 

 

Figure 54: Liquid Oxygen Surface Tension 
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Nitrogen Vapor Pressure 

Equation (125) calculates the vapor pressure of nitrogen at a given temperature [33].   

                                                                   (125) 

 

Where, 

N1 = 0.8394409444 x 10
4
 

N2 = -0.1890045259 x 10
4
 

N3 = -0.7282229165 x 10
1
 

N4 = 0.1022850966 x 10
-1

 

N5 = 0.5556063825 x 10
-3

 

N6 = -0.5944544662 x 10
-5

 

N7 = 0.2715433932 x 10
-7

 

N8 = -0.4879535901 x 10
-10

 

N9 = 0.5095360824 x 10
3
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Nitrogen Vapor Heat Capacity 

Equation (126) calculates the heat capacity of nitrogen vapor [33]. The units for heat capacity, 

universal gas constant, and temperature are J/kg·K, J/mol·K, and K, respectively. 

                                                            (126) 

 

Where, 

N1 = -0.7352104012 x 10
3
 K

2
 

N2 = 0.3422399804 x 10
2
 K 

N3 = -0.5576482846 x 10
0
  

N4 = 0.3504042283 x 10
1
 K

-1
 

N5 = -0.1733901851 x 10
-4

 K
-2

 

N6 = 0.1746508498 x 10
-7

 K
-3

 

N7 = -0.3568920335 x 10
-11

 K
-4

 

N8 = 0.1005387228 x 10
1
 K

-1
 

N9 = 3353.4061 K 
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Nitrogen Latent Heat 

A sixth order polynomial curve was applied to data for nitrogen latent heat obtained from 

Jacobsen and Stewart [33]. Equation (127) shows the sixth order polynomial curve from Excel.  

Figure 55 shows the thermal conductivity data with the plot of Equation (127). 

                                 (127) 

 

Where, 

 A =  -2948.43396606397 kJ/kg 

 B =  227.92849346218 kJ/kg·K 

 C =  -6.72893704038077 kJ/kg·K
2
 

 D = 0.104914396711496 kJ/kg·K
3
 

 E = -0.000915160992150 kJ/kg·K
4
 

 F = 0.000004235559605 kJ/kg·K
5
 

 G = -0.000000008148664 kJ/kg·K
6
 

 

 

Figure 55: Nitrogen Latent Heat 
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Liquid Nitrogen Density 

A sixth order polynomial curve was applied to data for liquid nitrogen density obtained from 

Jacobsen and Stewart [33].  Equation (128) shows the sixth order polynomial curve from Excel.  

Figure 56 shows the thermal conductivity data with the plot of Equation (128).                                   (128) 

 

Where, 

 A = -5,400.66873037872 kg/m³ 

 B =  454.403865170203 kg/m³·K 

 C =  - 13.4124118295119 kg/m³·K
2
 

 D = 0.208986234251856 kg/m³·K
3
 

 E = - 0.001826834840131 kg/m³·K
4
 

 F = 0.000008485691357 kg/m³·K
5
 

 G = -0.000000016386729 kg/m³·K
6
 

 

 
Figure 56: Liquid Nitrogen Density 
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0.208986233818605x3 - 13.412411792742600x2 + 454.403863646451000x -

5,400.668707062450000

R² = 0.999998631088964
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APPENDIX H: ERROR ANALYSIS
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Error Analysis for Equation (1) 

 

                        
                               

 
 (129) 

                                                                (130) 

 

The constants, A, B, C, D, and  are provided by the constants used in Equation (112). 

                    
(131) 

 

The constants Tt and Tc are provided by the same constants in Equation (113). 
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Error Analysis for Equation (6)       
         

                                                              

                                                                                                   
                                                                               

   
 

 

(132) 

                                                                         
(133) 

 

The constants, B, C, D, E, F, and G are provided by the constants used in Equation (121). 

                                    (134) 

 

The constants, B, C, and D are provided by the constants used in Equation (122).  

                                     (135) 

 

The constants, B, C, and D are provided by the constants used in Equation (119).  
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APPENDIX I: SAMPLE CALCULATIONS
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Equation (1) 

                          
 

The molecular weight of oxygen is 0.032 kg/mol.  The universal gas constant is 8.314 J/mol·K.  

The sample calculation for Equation (1) uses a liquid temperature of 94K at an IRAS system 

pressure of 7 psig.  Equation (112) estimates the saturated pressure at a temperature of 94K. 

                                    
                        

                   

 

 

Equation (2)                       

 

The components inside the parenthesis have been addressed in the Equation (1) sample 

calculation.  Equation (119) estimates the latent heat at a temperature of 94K, while the 

difference between the reciprocals of Equation (115) and Equation (121) provides the specific 

volume change from vapor to liquid.   

                                
                                                

 

              

 

 

 

 

Equation (3) 
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The components inside the parenthesis and the two pressures were determined in the two above 

sample calculations.  The condensation coefficient, c, and evaporation coefficient, e, are set 

equal to 1.  The function, (a), is determined by Equation (4) and Equation (5) by iterative 

calculation with Equation (3) using Microsoft Excel.  For this sample calculation, assume GCOND 

equals 0.24 kg/m²·s. 

 Equation (5) 

                                                                             

 

Equation (4) 

                                                                   
            
 

                                    
                                      

                 

No need to continue with iterations, since condensation mass flux agrees with assumption. 
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Equation (6) 

                                                      
The latent heat (hlv), liquid oxygen density (l), and thermal conductivity (kl) are determined by 

Equation (119), Equation (121), and Equation (122).  For the purposes of this sample calculation, 

the saturated temperature is 94K, with an IRAS heat exchanger surface of temperature of 85K, a 

liquid height of 12 inches above the heat exchanger, and an elapsed time of 10 seconds. 

                                                                                 
                                                                                       
                       

Equation (7) 

                                       
The sample calculation for Equation (6) provides the values for each of the components in 

Equation (7). 
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Equation (8) 

                
 

The sample calculation below uses Equation (124) to estimate the liquid oxygen surface tension.  

The nozzle diameter is the inner diameter of the liquid oxygen fill tube, which is a 0.500” x 

0.049” and downstream of HV-1.  The difference between the liquid density and vapor density is 

obtained from Equation  (114) and Equation (115), respectively, at a liquid oxygen temperature 

of 94K. 

                                                              
 

            

 

Equation (9) 
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The sample calculation below uses Equation (121), Equation (120), Equation (112), Equation 

(115), Equation (119), and Equation (123) to estimate the liquid density, liquid specific heat 

capacity, saturation temperature, vapor density, latent heat, liquid viscosity, respectively, 

evaluated at a temperature of 94K and a pressure of 7 psig.  The bubble velocity, ub, and 

departure diameter, Dd, are determined by the sample calculations for Equation (8) and Equation 

(10).   

                                                                                         

                                                                      

                                                           

                                                  
                         

 

        

Equation (10) 
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Equation (11)                        

Assume H = 36 inches or 0.9144 m and the upward velocity, ub, is provided by the result of 

Equation (10) sample calculation.          

Equation (13)  

            
           

Assume the gaseous oxygen mass flow rate is 2 sLm.  The oxygen vapor density is estimated by  

Equation (115) , assuming a vapor temperature of 200 K. Although the oxygen vapor originates 

in k-bottle at ambient temperature, the oxygen vapor flows through ½” stainless steel tubing 

through the IRAS dewar to the bottom of the IRAS dewar.  As the gaseous oxygen flows through 

the tubing, the oxygen cools. Sample calculation of  gives the value for the bubble departure 

diameter, Db,d. 

                                     
                        

             

Equation (21) 

                
                                       

 

 

Rearrange to solve for the area (A). 
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For IRAS heat exchanger leak check, gaseous helium at an initial pressure of 25.2378 psig 

(275,333 Pa) decayed to a final pressure of 24.7485 psig (271,959 Pa) in 1,110 seconds.  The 

specific heat ratio of helium is 1.67 and the initial density of gaseous helium is 2.226 kg/m³.  The 

gaseous helium occupies approximately 0.000445 m³ inside the IRAS heat exchanger. 

                                                                                                                                          

 

Equation  (22)                   
                                

Rearrange to solve for area (A). 

     
                        

                    

                                                                                                                        
 

 

Equation  (23)                     
 

The below sample calculation uses the Isentropic Blowdown area result from Equation (21) the 

liquid nitrogen mass flow rate through the leak.  From orifice flow calculations, CD ranges from 
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a minimum of 0.54 to a maximum of unity [29], thus, the below sample calculation uses CD 

equal to 1.00 to represent a maximum liquid nitrogen flowing through the leak in place of an 

uncertain CD.  The pressure difference (P) is from the pressure of the liquid nitrogen flowing 

through the IRAS heat exchanger at 45 psia (411,588Paa) to the pressure within the IRAS dewar 

of 3 psia (122,588 Paa).  The density of the liquid nitrogen is estimated from Equation (128) at a 

temperature of 80K.   

                                                                                 

                          

 

 

Equation  (24)                                          
From Equation (127),                           
From Equation (126), 
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