
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2009 

Robust Estimation And Adaptive Guidance For Multiple Uavs' Robust Estimation And Adaptive Guidance For Multiple Uavs' 

Cooperation Cooperation 

Randal Allen 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Allen, Randal, "Robust Estimation And Adaptive Guidance For Multiple Uavs' Cooperation" (2009). 
Electronic Theses and Dissertations, 2004-2019. 3933. 
https://stars.library.ucf.edu/etd/3933 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3933?utm_source=stars.library.ucf.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


ROBUST ESTIMATION AND ADAPTIVE GUIDANCE FOR MULTIPLE UAVS’ 

COOPERATION 

 

 

 

by 

 

 

 

RANDAL T. ALLEN 
B.S. University of Illinois, 1988 
M.S. University of Illinois, 1990 
E.A.A. Stanford University, 1994 

 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy 

in the department of Mechanical, Materials, and Aerospace Engineering 
in the College of Engineering and Computer Science 

at the University of Central Florida 
Orlando, Florida 

 

 

 

Spring term 
2009 

 

 

 

Major Professor: Chengying Xu 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2009 Randal T. Allen 
 

 
 

ii



ABSTRACT 
 

In this paper, an innovative cooperative navigation method is proposed for 

multiple Unmanned Air Vehicles (UAVs) based on online target position measurements.  

These noisy position measurement signals are used to estimate the target’s velocity for 

non-maneuvering targets or the target’s velocity and acceleration for maneuvering 

targets.  The estimator’s tracking capability is physically constrained due to the target’s 

kinematic limitations and therefore is potentially improvable by designing a higher 

performance estimator.  An H-infinity filter is implemented to increase the robustness of 

the estimation accuracy.  The performance of the robust estimator is compared to a 

Kalman filter and the results illustrate more precise estimation of the target’s motion in 

compensating for surrounding noises and disturbances. 

Furthermore, an adaptive guidance algorithm, based on the seeker’s field-of-view 

and linear region, is used to deliver the pursuer to the maneuvering target.  The initial 

guidance algorithm utilizes the velocity pursuit guidance law because of its insensitivity 

to target motion; while the terminal guidance algorithm leverages the acceleration 

estimates (from the H-infinity filter) to augment the proportional navigation guidance law 

for increased accuracy in engaging maneuvering targets. 

The main objective of this work is to develop a robust estimator/tracker and an 

adaptive guidance algorithm which are directly applicable UAVs. 
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CHAPTER ONE: INTRODUCTION 
 

Recently, there has been a shift from conventional warfare where one nation 

attacks another nation, e.g. Japan attacking the United States at Pearl Harbor on 7 

December 1941, followed by combat with clear lines of friendly and enemy troops, to 

asymmetric warfare where a few individuals attack a nation, e.g. the terrorist’s attack of 

New York City’s World Trade Center on 11 September 2001, followed by combat where 

enemy combatants are embedded in personnel and non-combatant areas. 

Since the “Twin Towers” attack, an increasing need has arisen to intercept what 

are known as time-critical threats.  As the name implies, time-critical threats reveal 

themselves for only brief moments in time or highly mobile.  The challenge is that they 

are difficult to acquire and track by such assets as reconnaissance satellites which may 

only be available to view the area of interest for a limited period of time or may be 

optically impaired by atmospheric interferences.  Also, if its attributes should happen to 

be compromised, it would be easy for the threat to relocate while the reconnaissance 

satellite is not overhead.  This demonstrates a requirement for what is known as 

persistence.  Persistence is the ability to gather intelligence, surveillance, and 

reconnaissance (ISR) over a continuous and extended period of time.  Pierce et al. (2002) 

indicates that there is an increasing demand for immediate intelligence on the battlefield. 

Along with the “Twin Towers” attack, the United States has been experiencing a 

contracting economy (some say a recession) while other nations are emerging/expanding, 

e.g. China and India.  With a flattening or reduction in Gross Domestic Product (GDP), 

the United States is under fiscal pressure to make cuts to the Department of Defense 
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(DoD) budget.  This has led to a reduction in military force where soldiers are already 

serving multiple tours of combat duty. 

While time-critical threats have led to the need for persistence, persistence and the 

reduction in military forces (through budget cuts) have led to the improved development 

of Unmanned Air Vehicles (UAVs).  Schulze and Buescher (2003) described how UAVs 

have evolved from remotely piloted vehicles (RPVs) to fully autonomous systems, which 

were capable of performing aerial objectives and full missions without assistance from a 

human operator.  Christophersen et al. (2004) described future UAVs requiring enhanced 

capabilities, such as seeing and avoiding obstacles, tolerating unpredicted flight 

conditions, interfacing with payload sensors, tracking moving targets, and cooperating 

with manned and unmanned systems.  Minor et al. (2005) reported the United States Air 

Force (USAF) Test Pilot School (TPS) recently developed and taught its first-ever 

Unmanned Air Vehicle (UAV)/Unmanned Combat Air Vehicle (UCAV) flight Test and 

Evaluation (T&E) course.  With regard to performance, current light-weight UAVs are 

able to maintain a persistence of up to 48 hours, e.g. I-GNAT (General Atomics).  With a 

persistent view of the area of interest, situational awareness is increased, and military 

forces are more responsive to time-critical threats.  Still, in some cases, the threat 

manages to take evasive action and avoids interception.  This is primarily due to the time 

lag between threat classification as the stimulus and weapon mobilization as the response. 

Characteristically, these time-critical threats are “smart” surface targets (land or 

sea) with complex evasive dynamics, including anything above and beyond static fixed 

targets or surface targets with a constant velocity.  In particular, the targets are intended 

to be maneuvering, i.e. accelerating and/or decelerating with random steering motion.  
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Furthermore, these “smart” surface targets have the capability of outmaneuvering their 

pursuers and potentially “know” they are being engaged.  For example in the case of the 

Copperhead Semi-Active Laser (SAL) guided projectile program (Lundquist (2008)), the 

target could know it was being designated and therefore employ evasive counter actions. 

The combination of asymmetric warfare, time-critical threats, persistence, and 

restrictive Rules of Engagement (RoE) are driving the need to arm the UAV platform 

with a precision, low collateral damage pursuer.  The low collateral damage requirement 

stems from the public’s low tolerance for casualties (Pierce et al. (2002)).  Of particular 

importance is the desire to take immediate action once a threat has been acquired, 

classified, and is being tracked. 

Because the UAV platform is light-weight to begin with, the pursuer system itself 

must be light-weight.  Even if the target cannot outmaneuver the pursuer or if the target 

doesn’t know it is being designated / engaged, the pursuer system needs to be effective 

because of the threat’s “high value,” e.g. a mobile scud launcher or a mobile command 

and control center.  Other factors driving the pursuer system’s requirements are to carry 

multiple pursuers per sortie (high-density carriage) and to be low-cost due to the DoD’s 

budget cuts. 

These qualitative requirements translate into a particular quantitative requirement: 

a highly effective guidance law is needed for a light-weight (less than 25lbs), low-cost, 

high-precision and low collateral damage (less than 3m Circular Error Probable, CEP) 

pursuer with limited acceleration capability (less than 5g), (Roemerman 2006).  CEP is 

approximately equal to the 1  miss distance, (Fleeman 2006). 
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The remainder of this section includes a literature review of classical and modern 

guidance algorithms comparing their quantitative results with the quantitative 

requirements outlined in the previous paragraph.  Subsequently, control systems literature 

will be reviewed for identical reasons.  Note, however, that the research focus of this 

dissertation is on navigation and guidance algorithms, instead of control systems, i.e. 

autopilots.  Next, cooperative control literature will be reviewed to examine its 

application in an attempt to meet the quantitative requirements.  Finally, the author’s 

philosophical approach will be discussed, including defined success criteria. 

1.1 Classical Guidance Algorithms 

By “classical,” the author is referring to guidance algorithms applied to a pursuer 

engaged with a static fixed target or a target moving with a constant velocity relative to 

the pursuer.  Historically, these guidance algorithms were easily implemented using 

analog circuitry. 

In general, guidance algorithms are characterized by their lateral acceleration 

commands.  Pastrick et al. (1981), Lin (1991), and Song (2004) described the two most 

common types of classical guidance, pursuit guidance and Proportional Navigation 

Guidance (PNG), each of which has its own advantages and significant disadvantages. 

With pursuit guidance, the angle between the longitudinal axis of the pursuer 

(attitude pursuit) and the line-of-sight to the target, called the “look angle” or the velocity 

vector of the pursuer (velocity pursuit) and the line-of-sight to the target, called the “lead 

angle” is driven to zero or some constant value (deviated pursuit).  Even though this type 

of guidance algorithm is noise insensitive and easy to use with strapdown seekers, it is 
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impractical against moving targets owing to the high maneuver requirement.  The high 

maneuverability requirement originates from the lack of line-of-sight rate information. 

Proportional navigation guidance is where the heading rate is made proportional 

to the rate of the line-of-sight angle from the pursuer to the target.  Mathematically, the 

acceleration command is given by: 

 c ca V    (1.1) 

where   is a proportional constant,  is the closing velocity, and cV   is the rate of the 

line-of-site angle.  The constant of proportionality varies between 2 and 4 (Lin (1991)).  

Values less than 2 require infinite acceleration, while values greater than 4 tend to steer 

the pursuer in response to high frequency noise.  Therefore, PNG is accurate against 

constant velocity targets, but is inaccurate against maneuvering targets, and as mentioned 

previously, stability is inevitably sensitive to noise. 

Pursuit plus proportional computes guidance commands based on both algorithms 

and combines them with a time-varying weighting factor.  At long ranges, the target 

motion appears noisy and the accuracy requirement is low, therefore the pursuit 

algorithm is weighted more heavily.  At short ranges, the target’s motion increases the 

acceleration requirement on the pursuer; therefore the proportional navigation algorithm 

is weighted more heavily.  The combined performance of the pursuit and proportional 

navigation algorithm takes care of the disadvantages of both algorithms and improve the 

overall system performance.  In fact, Takehira et al. (1998) combined pursuit guidance 

and proportional navigation guidance into a new guidance algorithm.  However, the goal 

of their paper was to achieve an analytical solution without any consideration of the 
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acceleration requirements.  No information was given with regard to the magnitude of the 

lateral acceleration command imposed on the pursuer. 

With classical guidance algorithms, the common disadvantage is its incapability 

of intercepting maneuvering targets. 

1.2 Modern Guidance Algorithms 

As the pursuer’s performance requirements increase, the demand for the 

associated hardware (e.g. seekers, gyroscopes, and accelerometers) and corresponding 

software also increases the need to modify guidance algorithms in order to intercept 

maneuvering targets. 

Chadwick and Rose (1983) described a modification to the attitude pursuit 

guidance algorithm incorporating the flight heading.  In terms of fin deflection ( ) for 

control, the modification may be expressed as: 

 (pδ k )    (1.2) 

where   is the pursuit error,  and pk   are constants, and   is the flight heading.  

However, the guidance algorithm was applied to a certain category of moving targets 

with a constant crossing velocity or a constant crossing acceleration.  It was assumed that 

there were no variations in the target’s velocity or acceleration, i.e. the target was not 

maneuvering; therefore, this algorithm is not suitable for a maneuvering target 

application. 

Chatterji, G. and Pachter (1991) described a modification to the velocity pursuit 

guidance algorithm to account for crosswinds in the presence of stationary and moving 
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targets.  In terms of fin deflections for yaw ( y ) and pitch ( p ) control, the modification 

may be expressed as: 

 (y yK ) w         (1.3) 

 (p pK ) w         (1.4) 

where y  and p  are the yaw and pitch bore sight errors,   and   are the yaw and pitch 

attitude angles,   and K  are proportional gains,   is the rate gain, and w  and w  are 

the yaw and pitch angle corrections for crosswind.  However, there was no mention of the 

characteristics of the target’s motion in the paper. 

 Rusnak (1996) developed explicit, closed-form solutions of advanced guidance 

algorithms for an acceleration-constrained missile and a randomly maneuvering target 

with noisy measurement positions.  The derivation of the complicated, yet closed-form 

solution is rather complicated and will not be redeveloped here.  However, the 

acceleration-constrained pursuer still needed 70g of acceleration to achieve a miss 

distance of 5 meters.  This stringent acceleration requirement is difficult to implement 

with the current hardware capability. 

Vergez and McClendon (1982) combined the proportional guidance algorithm 

with an extended Kalman filter to intercept a low-maneuverability target.  

Mathematically, the missile’s acceleration command is expressed as follows: 

 23( )/ /MC R go R go T TA S t V t K A    (1.5) 

where  is the relative position referenced to the missile body,  is the relative 

velocity referenced to the missile body,  is the target acceleration referenced to the 

missile body, and  is the target acceleration gain.  While the target performed a 9g 

RS RV

TA

TK
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maneuver, no information was given about the pursuer’s acceleration requirement.  Lin 

(1991) stated that a pursuer’s acceleration requirement is typically three times the target’s 

maneuverability when proportional navigation guidance is employed.  Thus, the pursuer 

would require approximately 27g of acceleration, if Vergez’s and McClendon’s 

algorithm is applied. 

Deyst and Price (1973) developed an optimal stochastic guidance algorithm to 

intercept a maneuvering target with limited pursuer acceleration capability.  While the 

derivation of the algorithm was rather complicated, the pursuer’s acceleration 

requirements were reported to be between 10g and 20g of acceleration.  This is 

approximately a 50% improvement over the previous results with regard to acceleration 

requirements. 

 From the aforementioned papers, it is clear that modern guidance algorithms 

reduce the pursuer’s acceleration requirement for intercepting a maneuvering target.  For 

the low-cost, light-weight pursuer system under consideration, it is desired to reduce the 

lateral acceleration requirement to 5g of acceleration or less.  It is important to recognize 

the lateral acceleration requirement.  This is because the proposed pursuer system has no 

longitudinal (thrust) acceleration capability.  Because of this limiting acceleration 

requirement, alternative guidance algorithms or other strategies must be explored. 

1.3 Control Developments 

The previous two sub-sections focus on guidance algorithm development.  

Thereafter, the literature survey on the recent advancements in control will be presented.  

While guidance is the process of comparing the measured navigation state with a required 

navigation state and then computing acceleration commands to correct differences 
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between the two, control is the deflection of physical surfaces (fins) to bring about the 

required velocity change (Cochran et al. (1985)). 

Since Ben-Asher and Yaesh (1998) authored advances in guidance algorithms, a 

number of papers have been written (Sharma and Calise (2000), Sharma and Lavretsky 

(2006), Stepanyan and Hovakimyan (2005), Wise et al. (2005), and Wise and Lavretsky 

(2006)) laying the foundation for adaptive and neural control as applied to autopilot 

design.  In fact, Sharma and Lavretsky (2006) cited an adaptive autopilot application to 

the Joint Direct Attack (precision-guided) Munition (JDAM).  DARPA report (2002), 

DARPA report (2003), and The Boeing Company report (2006) cited a successful 

intercept of an armored personnel carrier moving at 25 mph.  However, no additional 

information was mentioned with regard to the target’s maneuverability or the pursuer’s 

acceleration requirement.  Furthermore, because JDAMs range in size from 500lbs to 

2000lbs, it is infeasible to utilize JDAM as a pursuer system for a UAV. 

While adaptive and neural control autopilot developments have been 

implemented, their inherent complexity increases the cost for software development, 

hardware/software integration, and system testing.  Therefore, this research focus is on 

developing a simple acceleration autopilot (Zipfel (2000)) which has been implemented 

and successfully tested over many years, thus meeting the need for a low-cost pursuer 

system. 

Note that the research focus of this dissertation is on navigation and guidance 

instead of on control, i.e. autopilots.  The autopilot content is included in order to 

complete the navigation, guidance, and control loop. 
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1.4 Cooperative Control 

A cooperative control system is defined to be multiple dynamic entities that share 

information to accomplish a common objective.  Childers (2007) reported that the United 

States Army is committed to a paradigm shift in the way future ground military 

operations will be conducted.  With the deployment of unmanned systems, future forces 

will achieve increased mobility, lethality, and survivability.  Clough (2003) reported on 

the United States Air Force’s challenges related to autonomous control for unmanned air 

vehicles, including the need for situational awareness (which relates to persistence); the 

need for autonomous UAVs and their human supervisors to understand one another’s 

intent and actions; and the need for artificial intelligence in the UAV’s “brain” to plan 

and react as humans would, yet with some amount of unpredictability.  There have been a 

number of papers written in response to these challenges.  Reichard et al. (2003) 

described the use of a behavior-based, intelligent control architecture to integrate internal 

self-situational awareness, external self-situational awareness, and autonomous control.  

White (2004) claimed that a human operator will probably be required to supervise the 

Unmanned Combat Air Vehicle (UCAV) to satisfy some Rules of Engagement (RoE) and 

international legal obligations.  Price (2007) introduced the “virtual UAV leader” as a 

new concept for semi-autonomous control of UAVs that bridges the gap between 

conventional manual control of a single UAV and fully autonomous, cooperative control 

of UAVs in large numbers.  While the aforementioned papers address semi-autonomy, 

Johnson et al. (2004) proposed the design, development, and testing of unmanned aerial 

vehicles with highly automated search capabilities where all functions are automated and 

human operator assistance is not required. 
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These developments have led Murray (2006) to report on military applications of 

cooperative control.  Examples of cooperative control include multiple UAV path 

planning with collision avoidance and rendezvous for use in surveillance and air support 

missions (Leonard and Fiorelli (2001), McLain et al. (2001), Arslan et al. (2002), 

Bellingham et al. (2002), Yang and Zhao (2002), Rysdyk et al. (2005), and Rysdyk 

(2006)); search and acquisition for rescue operations (Ablavsky and Snorrason (2000), 

Polycarpou et al. (2001), Flint et al. (2002), Yang et al. (2002), and Yang et al. (2004)); 

and Suppression of Enemy Air Defense (SEAD) (Atkinson (2003)).  Recently, Clifford et 

al. (2007) reported on the success of the Target Acquisition Cooperative (TAC) 

Unmanned Vehicle System (UVS) in which a group of autonomous vehicles worked 

cooperatively to identify and classify targets in a predefined target area. 

While path planning, collision avoidance, rendezvous, search, and acquisition are 

important aspects of cooperative control, classification and tracking are fundamental in 

the author’s application.  Chandler et al. (2001) discussed cooperative target 

classification where multiple views are statistically combined using “joint probabilities” 

to maximize the probability of correct target classification over various aspect angles.  

Rao et al. (1993), Mutambara (1999), Julier et al. (2000), Brunke and Campbell (2004), 

and Whitacre and Campbell (2007) discussed various ways of combining the statistical 

information as well.  This is referred to as “cooperative information fusion.”  Once a 

target is correctly classified, it must be continually tracked.  In the context of spacecraft 

tracking for rendezvous and docking, Thienel et al. (2006) introduced the notion of “non-

cooperative” targets, i.e. the target (to be docked with) does not transmit knowledge of its 

attitude or position.  Compare this with other “targets” that do cooperate, e.g. a ground 
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convoy transmits its kinematic information to UAVs for support.  Brown and Carter 

(2005), Frew and Lawrence (2005), Wise and Rysdyk (2006), and Frew et al. (2008) 

discussed tracking of a non-cooperative target while UAVs avoided collision as they 

loitered overhead.  The purpose was to maintain a stand-off distance to avoid surface-to-

air attack while the UAV successfully tracked a maneuvering target. 

While target classification and tracking are current capabilities of UAVs, a natural 

extension is to utilize this information for command and control of an on-board light-

weight, low-cost pursuer system.  This will be one contributor toward designing a simple 

guidance algorithm to intercept a maneuvering, non-cooperative, target. 

1.5 Approach 

In an effort to construct a pursuer system for UAVs, a system-of-systems 

approach will be taken.  Stevenson et al. (2007) commented on how pursuer systems and 

Intelligence, Surveillance, and Reconnaissance (ISR) systems are becoming more 

network-enabled.  State-of-the-art systems technology enables improved military mission 

effectiveness and situational awareness.  Collaborative on-board adaptive mission 

controllers improve mission management for teams of semi-autonomous entities.  These 

controllers automate path planning, perform pursuer-target pairing, and optimize task 

allocation in real-time; all with minimum human intervention.  The intent is to reduce the 

resource management and mission planning burden on the battle commander by using 

adaptive on-board targeting maps to do dynamic planning in real-time. 

Because UAVs are capable of individual target classification and tracking, they 

are being designed to participate in “cooperative navigation,” where one UAV shares 

information with one another vehicle through active message passing.  In this application, 
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one UAV tracks the maneuvering (or non-maneuvering) target and shares the information 

with the pursuer aboard another UAV.  The pursuer estimates the target’s kinematics by 

implementing a 3-state, discrete-time, H-infinity filter with inequality constraints placed 

on the estimates.  Note that a maneuvering target has position, velocity, and acceleration 

kinematics while a non-maneuvering target possesses only position and velocity 

kinematics.  Therefore, the H-infinity filter will assume noisy acceleration for estimating 

position and velocity in the case of a non-maneuvering target; and will assume noisy jerk 

(acceleration rate) for estimating position, velocity, and acceleration in the case of a 

maneuvering target.  Once the UAV with the pursuer has confirmed the target and is in 

position to release the pursuer, the tracking UAV continues to communicate target 

location information directly with the pursuer for command guidance purposes.  Later in 

the pursuer’s trajectory, the tracking UAV becomes the designating UAV.  At this time, 

the target is illuminated with laser energy for the pursuer to switch from the command 

guidance mode to semi-active laser mode, thus reducing the error in the maneuvering 

target’s location leading to improve performance by reducing the miss distance. 

 Recall that there is still a guidance issue related to the light-weight, acceleration-

limited pursuer to be dealt with.  Because classical and modern guidance algorithms and 

adaptive/neural autopilot control laws require at least 10g of acceleration capability, a 

new guidance algorithm needs to be developed to intercept maneuvering surface targets.  

The algorithm will incorporate pursuit guidance at long ranges (because of its noise 

insensitivity) and an augmented form of proportional navigation guidance at short ranges 

(because of its accuracy).  Pursuit guidance plus augmented proportional navigation 

guidance computes acceleration commands based on both algorithms and combines them 
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based on the field-of-view of the pursuer’s seeker.  At long ranges with a wide field-of-

view, the target motion appears noisy and the accuracy requirement is low, therefore the 

pursuit guidance algorithm is implemented.  At short ranges with a more narrow field-of-

view, the target’s motion increases the acceleration requirement on the pursuer; therefore 

the augmented proportional navigation guidance algorithm is used.  It is proposed that the 

combined performance of the pursuit and augmented proportional navigation algorithm 

will be within the 5g acceleration requirement.  Note that the augmented form of the 

proportional navigation guidance algorithm includes a term representing the acceleration 

estimate of the target.  The augmented proportional navigation guidance algorithm will 

be constructed such that the original form of the proportional navigation guidance 

algorithm will be implemented for case of a non-maneuvering target at short ranges. 

For completeness, there is a simple acceleration autopilot (flight control system) 

proposed by (Zipfel 2000) which controls the pursuer’s airframe. 

1.6 Scope of Research 

The main objective of this work is to develop a robust estimator and an adaptive 

guidance law and simulate the performance as applied to Unmanned Air Vehicles.  The 

following tasks are to be fulfilled in this research. 

 Implementation of cooperative navigation where one UAV measures a (non-

cooperative) target’s position and shares the information with another UAV 

containing the pursuer; where the pursuer estimates the target’s kinematics using 

a constrained, 3-state, discrete-time, H-infinity filter 

 Implementation of an adaptive guidance algorithm to intercept a maneuvering 

target where the lateral acceleration requirement is less than 5g. 

 
 

14



 Development of a high-fidelity simulation to support feasibility studies. 

If these criteria can be achieved, then a recommendation may be made to incorporate this 

guidance algorithm with cooperative estimation into low-cost, light-weight, precision 

pursuer systems, with limited acceleration capability, currently in development. 
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CHAPTER TWO: COOPERATIVE NAVIGATION 
 

Target estimation is a procedure to estimate the kinematics of a maneuvering or 

non-maneuvering target.  It is an important problem in target tracking due to the 

uncertainty in maneuvers of the target.  In a hostile environment, the target will try to 

avoid being tracked by maneuvering in such a way so that its motion is difficult to 

follow.  While classical approaches to estimation include linear weighted and unweighted 

least squares, these algorithms require all the data available beforehand.  In this 

application, the data is measured sequentially.  One could consider the recursive least 

squares algorithm, but this does not take the state dynamics into consideration.  However, 

it is the precursor to the Kalman filter. 

The conventional approach to estimation is to use a Kalman filter [Kalman 

(1960)] which minimizes the variance of the estimation error.  However, the innovation 

in this application is to use an H-infinity filter and compare its performance to that of the 

Kalman filter.  Please see Simon (2006) for greater detail on the development of the H-

infinity filter. 

In this section, both the discrete-time Kalman and H-infinity filters are presented.  

This is followed by the development of the target model with its associated kinematic 

limitations.  Next, the implementation details of the Kalman and H-infinity filters are 

discussed.  Finally, the simulation results are presented to compare the performance of 

the two filters. 
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2.1 Discrete-Time Kalman Filter 

2.1.1 Recursive Least Squares 

Although recursive least squares does not account for the state dynamics, the 

algorithm aims to achieve the same result of the Kalman filter, i.e. it minimizes the 

variance of the estimation error.  It also sets the stage for estimating the state when all the 

measurements are not available ahead of time.  As each new measurement is made 

available, the estimate  is updated.  Suppose  is the estimate after time x̂ x̂ 1k   

measurements are taken.  Then, a new measurement yk  is obtained at time .  It is 

desired to update the estimate using only the new information from the measurement 

k

yk .  

This is because the size of the data grows with increasing measurements which would 

lead to processor overflow. 

The recursive least squares algorithm is written as 

 k

( )

y H x v

ˆ ˆ ˆx x K y H x
k k k

k k-1 k k k k-1

= +

= + -
 (2.1) 

where Hk  determines which states are being measured,  is the measurement noise,  

is the state estimate,  is the gain and the quantity (

vk x̂k

kK )ˆy H xk k k-1-  is the difference 

between the measurement and the state estimation, named as the measurement residual 

error. 

In order to optimize , the sum of the variances of the estimation error  is 

minimize where the cost function  is defined as 

kK ˆx x-

kJ
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where  is the dimension of the vectors  and  and n x x̂ kP  called the estimation error 

covariance matrix, is symmetric.  At this point, a recursive formula for kP  is

] }

 developed to 

better define the cost function kJ . 

  (2.3) 
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If 1k  and v  are uncorrelated and v  is zero-mean k k

 1( ) ( ) ( )v vT
k k k kE E E 1 0    (2.4) 

Therefore, with , equation ( )P ε εT
k-1 k-1 k-1E (2.3) becomes 

 ( ) ( )P I K H P I K H K R KT
k k k k -1 k k k k= - - + T

k

)k

 (2.5) 

where  is the covariance of .  This form of the covariance matrix is 

guaranteed to be positive definite, provided the initial estimation error covariance matrix 

(R v vT
k kE vk

Pk-1  and the measurement covariance matrix kR  are both positive definite.  This is the 

recursive relationship used to calculate the covariance of the estimation error. 

 Returning to the optimization of , the partial derivative of  is computed and 

set it equal to zero 

kK kJ
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 12( ) ( ) 2 0I K H P H K R
K

Tk
k k k k k k

k

J



    


 (2.6) 

Solving this equation for  results in kK

 1K P H RT
k k k k

  (2.7) 

Equations (2.1), (2.5), and (2.7) represent the recursive least squares algorithm.  It is 

useful for estimating a constant vector .  However, it is challenging if the vector  is 

time-dependent, which leads to the development of the Kalman filter. 

x̂ x̂

2.1.2 The Discrete-Time Kalman Filter 

The Kalman filter (Kalman (1960)) is an enhancement to the recursive least 

squares filter because it allows for estimation of a time-dependent vector.  As it will be 

explained in the section, the Kalman filter incorporates the propagation of the state mean 

and state covariance through time. 

Suppose a linear discrete-time dynamic system is given as follows: 

 1 1x F x w 1

y H x v
k k k k

k k k k

   

 
 (2.8) 

where  and v  are assumed to be zero-mean, uncorrelated, white noise with known 

covariance matricies and 

1wk k

kQ kR , respectively 
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( )

[ ]

[ ]

[ ] 0

w Q

v R

w w Q

v v R

v w

k k

k k

T
k j k k j

T
k j k k j

T
k j

~ 0,

~ 0,

E

E

E





 

 



 (2.9) 

where jk  is the Kronecker delta function; that is 1 jk  if jk   and 0 jk  if 

.  As before, the task is to estimate  based on the noisy measurements jk  xk yk .  
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However, now the dynamic system will also be part of the estimation process.  It is noted 

that if all of the measurements (including the measurement yk  at time ) are available to 

estimate , then an “a posteriori” estimate is computed, denoted by .  If all of the 

measurements (not including the measurement 

k

x̂xk k


yk  at time ) are available to estimate 

, then an “a priori” estimate is computed, denoted by 

k

xk x̂k
  (figure 1). 

 
Figure 1  Time and Measurement Updates 

Furthermore, it is noted that both x̂k
  and x̂k

  are estimates of .  However, the 

estimate  is better than the estimate 

xk

x̂k
 x̂k

  because x̂k
  incorporates the most recent 

measurement yk .  0x̂
  represents the initial estimate or the expected value of the initial 

state of  0x

 0 [ˆ
0 ]x xE   (2.10) 

In general, kP  represents the covariance of the estimation error.  In particular, k
P  

represents the covariance of the estimation error of x̂k
 , while  represents the 

covariance of the estimation error of 

k
P

x̂k
  

  (2.11) 
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
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Figure 1 shows that for the measurement at time 1k  , the estimate  and the 

covariance of the estimate error 

1x̂k



1Pk

   are computed.  This is known as the measurement 

update at time .  Between time 1k  1k   and time k , the estimate 1x̂k

  and the 

covariance of the estimate error 1Pk

  are propagated to x̂k

  and Pk
 , respectively.  This is 

known as the time update from 1k   to k .  Then, at time , the estimate k x̂k
  and the 

covariance of the estimate error Pk
   are computed.  This is known as the measurement 

update at time . k

The estimation process starts with the initial state estimate 0x̂
 .  From equation 

(2.8) the mean of propagates with time as x

 1x F xk k k 1   (2.12) 

since  is assumed to be zero-mean.  Therefore, the state estimate is propagated from 

 to  as 

wk

k1k 

 1
ˆ

1
ˆx F xk k k

 
   (2.13) 

This is the time update equation for the state estimate.  Therefore, using the initial state 

estimate 0x̂
 , the time update 1x̂

  is obtained from equation (2.13) with . 1k 

The time update for the covariance of the estimate error starts with the initial 

covariance 0
P .  Incidentally, if  is known perfectly, then 0x 0

  0P ; if  is unknown, 

then 

0x

0P I   , where 0
P  is the uncertainty in the initial estimate 

  (2.14) 0 0 0 0 0ˆ ˆ[( )( ) ]P x x x x TE    

In general,  
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 (2.15) 

Substituting equation (2.12) for xk  yields 
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 (2.16) 

Because the estimation error 1x xk k 1  and the process noise 1wk  are uncorrelated, the 

covariance of the estimation error propagates with time as 

 1 1 1 1P F P F QT
k k k k k      (2.17) 

where  and  1Qk 1Pk  are defined as 1 1[ ]w wT
k kE    and 1 1 1 1[( )( ) ]x x x x T

k k k kE      , 

respectively.  Therefore, the estimation error covariance is propagated from  to k  by 

the following equation 

1k 

 1 1 1P F P F QT
k k k k k
 

1      (2.18) 

This is the time update equation for the propagation of the estimate error.  Therefore, 

using the initial state estimate 0
P , the time update 1P

  is obtained from equation (2.13) 

with . 1k 

 Next, the measurement update equations are derived to take x̂k
  to x̂k

  and Pk
  to 

Pk
 .  The measurement yk  changes the estimation based on the recursive least squares 

algorithm: equations (2.7), (2.1), and (2.5) 

 

1

1 1

1

ˆ ˆ ˆ( )

( ) ( )

K P H R

x x K y H x

P I K H P I K H K R K

T
k k k k

k k k k k k

T T
k k k k k k k k



 





  

    k

 (2.19) 

 
 

22



where  and 1x̂k 1kP  are the estimate and the covariance of the estimate error before the 

measurement yk , and x̂ and kk  P  are the estimate and the covariance of the estimate error 

after the measurement yk .  Analogously, x̂k
  and k

P  are the estimate and the covariance 

of the estimate error before the measurement yk , and x̂k
  and k

P  are the estimate and 

the covariance of the estimate error after the measurement yk .  These relationships are 

shown in Table 1 below. 

Table 1 Relationships Between Estimates and Covariances 
Recursive Least Squares Filtering Kalman Filtering 

1x̂k = estimate before  is processed ky x̂k
 = a priori estimate 

1kP = covariance before  is processedky
k
P = a priori covariance 

x̂k = estimate after  is processed ky x̂k
 = a posteriori estimate 

kP = covariance after  is processed ky
k
P = a posteriori covariance 

 
By replacing  with , 1x̂k


 x̂k


1kP  with k

P ,  with x̂k x̂k
 , and kP  with k

P , 
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 (2.20) 

the measurement update equations for  and x̂k kP  are obtained.  The matrix  is called 

the Kalman filter gain. 

kK

A summary of the Kalman filter includes both the time update equations and the 

measurement update equations from equations (2.13), (2.18), and (2.20) or 
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 (2.21) 

Recall that there were assumptions associated with the derivation of the Kalman 

filter.  In particular equation (2.5) was developed assuming 1k  and v  were 

uncorrelated and  was zero-mean and equation 

k

wvk (2.13) was developed assuming  was 

zero-mean.  Additionally, if the statistics of the process noise  and the measurement 

noise v  are unknown, then the performance of the Kalman filter will be suboptimal. 

k

wk

k

While the Kalman filter performs well if the noise statistics are known, it is 

desired to have a filter that is more robust to uncertainties in the noise statistics.  Simon 

(2000) notes that the Kalman filter is also called the 2H  filter because it minimizes the 

two-norm of the transfer function from the process noise w  to the estimation error 

. 

k

ˆx xk k


2.2 Discrete-Time H-infinity Filter 

The Kalman filter is effective for estimating the states of a system when the noise 

statistics are known and the assumptions associated with the Kalman filter are satisfied.  

However, modern applications need a filtering algorithm that is robust with regard to 

various process noises (dynamic system modeling errors and disturbances) and 

measurement noise.  The superiority of the H-infinity filter over the Kalman filter is that 

it does not make any assumptions about process noise or measurement noise while 

minimizing the worst case estimation error. 
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Suppose a linear discrete-time dynamic system is given as follows: 

 1 1x F x w 1

y H x v
k k k k

k k k k

   
 

 (2.22) 

where  is the state vector, xk yk  is the output vector, 1Fk  is called the system matrix, 

and Hk  is called the output matrix.  The statistics of the noise processes w  and  are 

unknown. 

k vk

The objective of the H-infinity filter is to find a state estimate  that will 

minimize the worst possible effect that w  and  have on the estimation error 

x̂k

k vk ˆx xk k .  

While the H-infinity filter is trying to minimize the estimation error,  and v  are 

conspiring against this objective.  In mathematical notation, this is written as 

 where  is some measure of how well the estimator is performing.  If w  

and  were large, then their mission would be accomplished.  Moreover, in order to 

make this method more meaningful, limits are placed on w  and . 

wk k

kˆ ,min maxx w v J

vk

J

k vk
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 (2.23) 

where  and Qk Rk  are positive definite matricies selected by the designer.  For example, 

the designer could use the covariance of the process noise and measurement noise, 

respectively.  The discrete-time performance index is given by 

 ˆ( ) ( ˆ )x x S x xT
k k k k k   (2.24) 

where Sk  is also a positive definite matrix selected by the designer.  In this application, 

the designer uses a diagonal matrix where the elements are weighted to reflect the 
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importance of each state to be estimated.  Combining the constraints from equation (2.23) 

to the performance index from equation (2.24) yields the discrete-time cost function 

 

1
1
2

0
0 1

1 11
2

0

ˆ ˆ( ) ( )

( )

x x S x x

w Q w v R v

N
T

k k k k k
k
N

T T
k k k k k k

k

J






 



 







 (2.25) 

While this problem poses difficulties in attempting a solution, a related problem can be 

solved.  It is desired to find an estimator such that 

 0 1/J    (2.26) 

where   is some constant selected by the designer.  A state estimate can be found so that 

the maximum value of  is always less than 1/0J   regardless of the process noise  and 

measurement noise v .  Combining equation 

wk

k (2.25) with equation (2.26) yields 

 

1
1
2

0
0 1

1 11
2

0

ˆ ˆ( ) ( )
1

( )

x x S x x

w Q w v R v

N
T

k k k k k
k
N

T T
k k k k k k

k

J






 



 










 (2.27) 

Cross multiplying and simplifying yields 

 
1 1

1 11 1
2 2

0 0

ˆ ˆ( ) ( ) ( )w Q w v R v x x S x x
N N

T T T
k k k k k k k k k k k

k k


 

 

 

     0  (2.28) 

The state estimate that solves this problem is found by letting the Hamiltonian, , be 

defined as the adjoint of the cost function through the use of the Lagrange multiplier 

H

k , 

equation (2.28) with the state equation(2.22), that is 

 1 11 1 1
1 1 12 2 2 ( ) ( ) (ˆ ˆw Q w v R v x x S x x F x wT T T T

k k k k k k k k k k k k k k kH  
          )  (2.29) 

The solution of this problem is based on optimal control, Bryson and Ho (1975).  

Substituting v  from equation k (2.22) into equation (2.29) yields 
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1 11 1

2 2

1
1 1 12

( ) ( )

( ) ( ) (

w Q w y H x R y H x

ˆ ˆx x S x x F x w

T T
k k k k k k k k k k

T T
k k k k k k k k k

H  

  

   

      )
 (2.30) 

Next, the partial derivative of the Hamiltonian  is computed with respect to  to 

obtain the Lagrange multiplier 

H xk

k , that is 

 1 x
T
k

k

H



 


  (2.31) 

where the negative sign is introduced to compute the minimum of .  After computation 

and simplification, this yields 

H

 1 1
1

ˆS x S x H R y H R H x FT T
k k k k k k k k k k k k k

 
       T

k   (2.32) 

Then, the partial derivative of the Hamiltonian  is computed with respect to , that is H wk

 0
wk

H



 (2.33) 

Upon computation and simplification, this yields 

 w Qk k k    (2.34) 

Substituting this result back into the state equation (2.22) 

 1 1 1x F x Qk k k k k 1       (2.35) 

Since this problem is linear, a linear solution is postulated as: 

 1 1 1
ˆx x Pk k k k 1       (2.36) 

where  and 1x̂k 1Pk  are to be determined. 

Substituting equation (2.35) on the left side and equation (2.32) on the right side and 

substituting equation (2.36) for each occurrence of , yields the following equation in 

, 

xk

x̂k yk , and k  

 
 

27



 
1

1 1 1

1 1
1 1

ˆ ˆ

1

F x F P Q x + P S P P H R y

ˆ+P H R H x P H R H P P F P

T
k k k k k k k k k k k k k k k k

T T T
k k k k k k k k k k k k k k k k


  

 
 

    

 

  

   
 (2.37) 

Collecting k  terms and rearranging yields 

  (2.38) 1 1
1 [P F P I S P H R H P F +QT

k k k k k k k k k k  
    ] T

k

Collecting  and x̂k yk  terms and rearranging yields 

 1 1 1
1ˆ ˆ ( ) ( ˆ )x F x F P I S P H R H P H R y H xT T

k k k k k k k k k k k k k k k   
      k  (2.39) 

Substituting equation (2.38) and equation (2.39) into equation (2.36) substantiates the 

initial postulate.  Summarizing the H-infinity equations: 

 

1 1 1

1

1 1
1

[ ]

ˆ ˆ ˆ( )

[ ]

K P I S P H R H P H R

x F x F K y H x

P F P I S P H R H P F +Q

T T
k k k k k k k k k k

k k k k k k k k

T T
k k k k k k k k k k

  



 


  
  

  



 k

 (2.40) 

Notice both  and Kk 1Pk

0Pk

 involve identical matrix inversions thus requiring that 

.  However, this poses no problem because the calculations 

of  and 

1I S P R Hk k k k 

Kk

H T
k



1



Pk  are independent of the measurements yk .  Therefore, the possible 

existence of singularities may be checked at each time-step to make sure the matrix may 

be inverted.  Furthermore, since both  and Kk 1Pk  reach steady-state values quickly, their 

calculations may even be taken off-line and hard-coded into the processing software 

ensuring there will be no matrix inversion problems. 

By examining equation (2.40), one sees the term S Pk k  is subtracted from both 

the  and the Kk 1Pk  calculation making the gain and the estimation error covariance 

matrix larger.  This effectively places more emphasis on the measurements which is a 

way of making the H-infinity filter more robust to uncertainty in the process noise 
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(dynamic system modeling errors and disturbances) of the system model.  In fact, the H-

infinity filter was made to be robust by optimal design. 

 Having presented both the discrete-time Kalman filter and the discrete-time H-

infinity filter, the next section will discuss how to apply these filters to target estimation. 

2.3 Navigation Design 

In this application, a UAV will estimate the maneuvering (or non-maneuvering) 

target’s kinematics.  A maneuvering target has position, velocity, and acceleration 

kinematics while a non-maneuvering target possesses only position and velocity 

kinematics.  Therefore, a 3-state H-infinity filter will assume noisy acceleration for 

estimating position and velocity in the case of a non-maneuvering target; and will assume 

noisy jerk (acceleration rate) for estimating position, velocity, and acceleration in the case 

of a maneuvering target.  Additionally, inequality constraints are placed on the H-infinity 

filter due to the limitations of the target’s velocity and acceleration capabilities.  In 

particular, the target’s velocity is limited to 90 miles-per-hour and the target’s 

acceleration is limited to 0.27g.  The performance of the H-infinity filter will be 

compared to the Kalman filter. 

2.3.1 Target Modeling 

Consider a target whose acceleration and jerk are modeled by zero-mean process 

noise  and  with variances  and , respectively.  The target’s position 

measurement  includes zero-mean noise  with variance 

2w 3w 2q 3q

y v r  representing the sensor 

noise. 
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By letting , , and 1x 2x 3x  represent the position, velocity, and acceleration states, 

respectively, the three-state discrete-time representation of the system is 

 

1 2

2 3

3 3

1

x x

2x x w

x w

y x v



 



 





 (2.41) 

In matrix form 

 

 

1 1

2 2

3 3

1

2

3

0 1 0 0

0 0 1

0 0 0

1 0 0

x x

2

3

x x w

x x w

x

y x

x

       
               
              

 
   
  





v

 (2.42) 

In general 

 
x Ax w

y Cx v

 
 


 (2.43) 

In the discrete case,  was defined to be Qk
T

k kE w w  

T

 after equation (2.17), therefore in 

the continuous case, Q  is defined to be c E ww   .  The continuous-time process noise 

covariance matrix is represented by 

  (2.44)   2
2 2 3 2 2

2
3 2

0 0 0

0 0

0

Qc q q q q q q

q q

   
       
      

3

3 3

0

q q
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Now, the discrete-time system is represented by 

 1 1x F x w 1

y H x v
k k k k

k k k k

   
 

 (2.45) 

where 

 2 21
2exp( ) ( )F A I A Ak t t t         (2.46)  

 
0

exp[ ( t )]dw A
t

k


     (2.47) 

H Ck   (2.48) 

 1 10
Q F Q F

t T
k k c k d



     (2.49) 

Hence the three-state discrete-time system is represented by 

 

 

2 21 1 1
2 32 2 6

21
1 2 32

3

1

1 ( ) ( ) (

0 1 ( )

0 0 1

1 0 0

x x

y x v

k k

k k k

t t q t q t

t q t q t

q t




      
         
     

 

3) 




 (2.50) 

such that the discrete-time system matrix 

 

21
21 (

0 1

0 0 1

Fk

t t

t

)  
   
  

 (2.51) 

and 

  1 0 0Hk   (2.52) 

The discrete-time process noise covariance matrix is represented by 

 
11 12 13

21 22 23

31 32 33

Qk

Q Q Q

Q Q Q

Q Q Q

 
   
  

 (2.53) 

where 
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2 3 4 2 51 1 1
11 2 23 33 4 20

2 2 3 21 1 1
12 21 2 23 32 2 8

2 2 31 1
13 31 23 32 6

2 2 2 31
22 2 23 33

2 21
23 32 23 32

2
33 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

Q q t q t q t

Q Q q t q t q t

Q Q q t q t

Q q t q t q t

Q Q q t q t

Q q t

     

      

    

     

    

 

4

 (2.54) 

and the discrete-time measurement noise covariance is represented by 

 kR r  (2.55) 

2.3.2 Target Kinematic Limitations 

Before implementing the filters, it is worthwhile to briefly discuss the 

characteristics of moving targets.  Roemerman (2006) published information from a 

moving target study which placed limits on the velocity, acceleration, and Circular Error 

Probable (CEP) for moving targets.  Recall Fleeman (2006) defined CEP as 

approximately equal to the 1  miss distance.  In the Roemerman (2006) report, the 

maneuvering target engagement velocity was limited to 90 miles-per-hour or less and the 

total acceleration (longitudinal and lateral) was limited to less than 0.27g.  Therefore, 

when it comes to designing an estimator for velocity and acceleration, this limiting 

information may be used to constrain the filter’s estimate.  Also to be noted from the 

Roemerman (2006) report is the requirement that the pursuer accuracy (CEP) must be 

less than 3m in miss distance.  (This will be used later to measure the success of the 

guidance design.) 

One may call into question whether limiting the kinematic estimates in this 

manner is viable.  Consider another approach taken by Simon (2006) where the H-infinity 

problem is solved, subjected to inequality constraints associated with the estimate.  This 
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algorithm locates the optimal estimate that meets the inequality constraint at each point 

along the trajectory.  However, this requires an optimization routine, such as Matlab’s 

fmincon function to compute the solution.  The problem with this approach for a real-

time system is that the computation of time of the optimal solution is indeterminate. 

2.3.3 Discrete-Time Kalman Filter Implementation 

The algorithm is implemented by first initializing the Kalman filter 

  (2.56) 0 0

0 0 0 0 0

ˆ [ ]

ˆ ˆ[( )( ) ]

x x

P x x x x T

E

E



 



   

where  is the expectation of  and  is the expectation of 0[ ]xE

0 0ˆ( )

0x 0 0 0 0
ˆ ˆ[( )( ) ]x x x x TE   

0 0ˆ( )x x x x T  ]. If  is unknown, use 0[xE 0 0x̂   as the initial value and if 

 is unknown, use  as the initial value.  In this application, 

the initial target position will be known with some nominal amount of error. 

0 0ˆ )(x x 0 0[( x xE   ˆ ) ]T
0
P 

Then, the following equations are computed at each time step , k

 

1 1

1 1 1 1

1

ˆ ˆx F x

P F P F Q

K P H R

ˆ ˆ ˆx x K ( H x )

P ( I K H )P ( I K H ) K RK

k k k

T
k k k k k

T
k k k k

k k k k k k

T T
k k k k k k k

y

 
 

 
   

 

  

 



 



  

    k

 (2.57) 

where the subscript k  represents time at ktt   and the subscript 1k   represents time at 

.  Also, note that if  and 1 ktt 10  ktt ktt   then 1 kk ttt . 

 The Kalman filter of equation (2.57) is implemented with Fk  defined in equation 

(2.51), Hk  defined in equation (2.52),  defined in equationQk (2.53), and Rk  defined in 

equation (2.55). 
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2.3.4 Discrete-Time H-infinity Filter Implementation 

The same as the case with the Kalman filter, the H-infinity filter is initialized with 

the target’s position including some error, i.e.  and 0x 0P . 

At each time step , the following equations are computed k

 

1 1
1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1

[ ]

[ ]

ˆ ˆ ˆ( )

1P F P I S P H R H P F +Q

K P I S P H R H P H R

x F x F K y H x

T T
k k k k k k k k k k k

T T
k k k k k k k k k k

k k k k k k k k





 
         

  

      

  

  
  

 (2.58) 

where the subscript  represents time at 1k  1kt t   and the subscript k  represents time at 

.  Also, note that if  and kt t 0 kt t 1kt t   then 1kt t tk   .  The matrix Sk  determines 

which states of the system are to be estimated.  Whether the target is maneuvering or not, 

estimations of both velocity and acceleration are needed.  In state form, velocity and 

acceleration are represented by  and , respectively.  Therefore,  2x 3x

 

0 0 0

0 1 0

0 0 1

Sk

 
   
  

 (2.59) 

 The H-infinity filter of equation (2.58) is implemented with Fk  defined in 

equation (2.51), Hk  defined in equation (2.52),  defined in equationQk (2.53), Rk  

defined in equation (2.55), and Sk  defined in equation (2.59). 

 The only remaining parameter is   which is the cost function bound specified by 

the designer.  Recall the matrix inversion requirement for the H-infinity filter, i.e. 

.  This equation can be used to place limitations on 1 0I S P H R H PT
k k k k k k

    .  In 

fact, using 1Sk  defined in equation (2.59), Hk  defined in equation (2.52), and Rk  

defined in equation (2.55),   must be less than 1
22P  and less than 1

33P . 
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2.4 Simulation Results 

2.4.1 Target, UAV, and Pursuer Modeling Parameters 

The target is modeled as a surface vehicle with an initial position and velocity.  Its 

acceleration and jerk are modeled as process noise with magnitudes 1m/sec2 and 

0.1m/sec3, respectively. 

The UAVs are modeled to operate at an altitude of 20,000 feet with 200 knots true 

air speed.  The UAV sensors are modeled to measure position within a resolution of 5m.  

The time-delay used for communicating estimation information to either the UAV 

containing the pursuer or the pursuer itself is 500msec. 

The pursuer’s mass properties are company proprietary information due to the 

current competitive nature of the market.  However, suffice it to say that its form factor 

would allow high-density carriage, i.e. multiple pursuers per UAV platform. 

The position estimates are initialized to the target’s actual position plus some 

normally distributed random error representing uncertainty; while the velocity and 

acceleration estimates are initialized to zero. 

Finally, the tuning parameter   for the H-infinity filter is set to 1E-2. 

2.4.2 Simulation Case One: Zero-Mean Noise Statistics 

The process noises (jerk and acceleration) are initialized to be unbiased, i.e. with 

zero-mean.  The error covariance matrix, , is initialized with the uncertainties in the 

position (5m), velocity (3m/sec), and acceleration (1m/sec2); while the off-diagonal 

elements are set to zero. 

P
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 (2.60) 

Figure 2 displays the target’s motion when driven by noisy jerk and acceleration. 
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Figure 2  Target Footprint 

Figure 3 and figure 4 display the relative error between the actual and the 

estimated down range and cross range position for both the Kalman and the H-infinity 

filters. 
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Figure 3  Relative Down Range Position Errors 
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Figure 4  Relative Cross Range Position Errors 

Table 2 below shows the Kalman filter outperforms the H-infinity filter.  This is 

expected because the noise statistics were initialized without any biases which are 

precisely the assumptions associated with the optimal development of the Kalman filter 

algorithm. 
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Table 2 RMS Position Errors for Zero-Mean Noise 
 Down Range 

Position Error (m) 

Cross Range 

Position Error (m) 

Kalman 0.4 0.3 

H-infinity 1.9 1.5 

 

Figure 5 and figure 6 display the relative error between the actual and the 

estimated down range and cross range velocity for both the Kalman and the H-infinity 

filters. 
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Figure 5  Relative Down Range Velocity Errors 
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Figure 6  Relative Cross Range Velocity Errors 

Figure 7 and figure 8 display the relative error between the actual and the 

estimated down range and cross range acceleration for both the Kalman and the H-

infinity filters. 
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Figure 7  Relative Down Range Acceleration Errors 
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Figure 8  Relative Cross Range Acceleration Errors 

The significance of examining the estimated acceleration is because, in the next chapter, 

it will be shown that the terminal guidance system depends on an estimate of the target’s 

acceleration. 

2.4.3 Simulation Case Two: Biased Noise Statistics 

The process noises (jerk and acceleration) and the measurement noise are now 

initialized with biases, i.e. non-zero-mean statistics.  The process noise biases are 

0.01m/s3 in jerk and 1m/s2 in acceleration. Recall the error covariance matrix, P , is 

initialized with the uncertainties in the position (5m), velocity (3m/sec), and acceleration 

(1m/sec2).  In the previous case considered, the off-diagonal elements of the error 

covariance matrix, P , were set to zero, implying the estimation errors are uncorrelated.  

If the error covariances of the states are not independent, then the estimation error in 

position and velocity, position and acceleration, and velocity and acceleration are 

correlated. 
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  (2.61) 

5 5 5 3 5 1 25 15 5

3 5 3 3 3 1 15 9 3

1 5 1 3 1 1 5 3 1

* * *

P * * *

* * *

  
     
    






Figure 9 and figure 10 display the relative error between the actual and the 

estimated down range and cross range position for both the Kalman and the H-infinity 

filters. 
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Figure 9  Relative Down Range Position Errors 
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Figure 10  Relative Cross Range Position Errors 

The Root-Mean-Square (RMS) errors in down range and cross range position are 

summarized in Table 3 below. 

Table 3 RMS Position Errors for Biased Noise 
 Down Range 

Position Error (m) 

Cross Range 

Position Error (m) 

Kalman 1.3 3.1 

H-infinity 0.7 0.5 

 
Now that biases have been included in the noise statistics, the assumptions of the Kalman 

filter have been violated and the solution is no longer optimal.  This is why now, the H-

infinity filter outperforms the Kalman filter. 

Figure 11 and figure 12 display the relative error between the actual and the 

estimated down range and cross range velocity for both the Kalman and the H-infinity 

filters. 
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Figure 11 Relative Down Range Velocity Errors 
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Figure 12 Relative Cross Range Velocity Errors 

Figure 13 and figure 14 display the relative error between the actual and the 

estimated down range and cross range acceleration for both the Kalman and the H-

infinity filters. 
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Figure 13 Relative Down Range Acceleration Errors 
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Figure 14 Relative Cross Range Acceleration Errors 
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2.4.4 Simulation Case Three: Constrained Estimates 

One final excursion is to examine the performance of the filters when the target 

velocity and acceleration state estimates are constrained to 90mph (40m/sec) and 0.27g 

(2.65m/sec2), respectively. 

 Figure 15 and figure 16 display the relative error between the actual and 

the estimated down range and cross range position for both the Kalman and the H-infinity 

filters. 
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Figure 15 Relative Down Range Position Errors 
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Figure 16 Relative Cross Range Position Errors 

The Root-Mean-Square (RMS) errors in down range and cross range position are 

summarized in Table 4 below. 

Table 4 RMS Position Errors for Constrained Estimates 
 Down Range 

Position Error (m) 

Cross Range 

Position Error (m) 

Kalman 1.3 1.3 

H-infinity 0.7 0.4 

 
Now that the state estimates have been constrained, there is a slight improvement in the 

cross range estimate by ther H-infinity filter as compared with Table 3 of the previous 

section.  Additionally, the H-infinity filter still outperforms the Kalman filter because the 

biases in the noise statistics are still in use. 

Figure 17 and figure 18 display the relative error between the actual and the 

estimated down range and cross range velocity for both the Kalman and the H-infinity 

filters. 
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Figure 17 Relative Down Range Velocity Errors 

0 5 10 15 20 25 30 35
-5

0

5

10

15

20

Time [s]

C
ro

ss
 R

an
ge

 V
el

oc
ity

 E
st

im
at

e 
E

rr
or

s 
[m

/s
]

Cross Range Velocity Estimate Errors versus Time

 

 

Kalman

H

 
Figure 18 Relative Cross Range Velocity Errors 

Figure 19 and figure 20 display the relative error between the actual and the 

estimated down range and cross range acceleration for both the Kalman and the H-

infinity filters. 
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Figure 19 Relative Down Range Acceleration Errors 
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Figure 20 Relative Cross Range Acceleration Errors 

2.4.5 Variances, Covariances, and Gains 

Continuing with the biased noise statistics with constrained state estimates from 

the previous section, figures 21-24 display the six unique elements of the (symmetric) H-
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infinity estimation error covariance matrix for both down range and cross range 

estimates.  Recall for a symmetric matrix 21 12P P , 31 13P P , and 32 23P P . 
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Figure 21 Estimation Error Down Range Variances 
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Figure 22 Estimation Error Down Range Covariances 
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Figure 23 Estimation Error Cross Range Variances 
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Figure 24 Estimation Error Cross Range Covariances 
 
The numerical steady-state values of the estimation error covariance matrix are 

 

0 979 0 841 0 011

0 841 1 332 0 018

0 011 0 018 0 004

. . .

P . . .

. . .

 
   
  

 (2.62) 
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for both down range and cross range. 

The conclusion to be drawn from these figures is that each of the elements 

converges to a steady-state value within 2sec.  This is significant if there is a processing 

time issue associated with the H-infinity filter.  Rather than computing each element of 

the estimation error covariance matrix, the designer could simply hard-code the steady-

state values into the embedded systems software.  To determine the stable, steady-state 

values of P , consider equation (2.58) and set 1P Pk k , which yields 

 1 1[ ]P FP I SP H R HP F +QT     T  (2.63) 

where the subscript  has been dropped for legibility.  This is an algebraic, discrete-time, 

Riccati equation which may be solved, off-line, by numerical iteration.  The solution 

yields the steady-state values for . 

k

P

 Figure 25 and figure 26 display the three H-infinity gains for both down range and 

cross range estimates.  As explained in the previous case, each gain converges to a 

steady-state value within 2sec.  The numerical steady-state values of the gains are 

  0 165 0 142 0 002K . . .  (2.64) 

for both down range and cross range. 
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Figure 25 Down Range Gains 

 

0 5 10 15 20 25 30 35
0

0.5

1
Discrete-Time H filter: Cross Range Gains

K
1

0 5 10 15 20 25 30 35
0

0.5

1

K
2

0 5 10 15 20 25 30 35
0

0.1

0.2

K
3

Time [s]
 

Figure 26 Cross Range Gains 
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2.5 Cooperative Navigation Summary 

In the case where the noise statistics are zero-mean, i.e. unbiased, the Kalman 

filter outperforms the H-infinity filter.  This is expected because the Kalman filter is the 

optimal solution when the assumptions of zero-mean noise statistics are true.  While 

figures 3-8 show the relative error of each filter in estimating the target’s kinematics, 

table 2 quantifies the RMS performance of each filter.  Recall the significance of 

examining the acceleration estimate is because the Augmented Proportional Navigation 

Guidance (APNG) law depends on the estimated target’s acceleration as will be seen in 

the next chapter. 

When biases are included in the noise statistics, the assumptions of the Kalman 

filter have been violated and the solution is no longer optimal.  In addition, equation 

(2.12) described the propagation of the state during the time update and equations (2.3) 

and (2.16) described the propagation of the estimation error covariance matrix during the 

measurement and time updates, respectively.  These equations were greatly simplified 

due to the assumption that there is no correlation between the estimation error, the 

process noise, and the measurement noise.  In this case, it was assumed that the off-

diagonal elements of 1Pk  are non-zero.  This is another reason why the H-infinity filter 

outperforms the Kalman filter in this case.  While figures 9-14 show the relative error of 

each filter in estimating the target’s kinematics, table 3 quantifies the RMS performance 

of each filter.  These are the arguments for the robustness of the H-infinity filter.  The H-

infinity filter operates without any knowledge of the noise statistics.  Its goal is to find the 

minimum estimation error given the maximum noise variance.  Recall from equation 

(2.40), the term S Pkk  is subtracted from both the  and the Kk 1Pk  calculation making 
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the gain and the estimation error covariance matrix larger.  This effectively places more 

emphasis on the measurements which is a way of making the H-infinity filter more robust 

to uncertainty in the process noise of the system model.  In fact, the H-infinity filter is 

made to be robust by optimal design. 

When the state estimates are constrained, the overall RMS error is reduced by 

approximately 20% as may be seen by comparing table 4 with table 3.  Also, the H-

infinity filter still outperforms the Kalman filter because the biases in the noise statistics 

are still applied in this case.  Figures 15-20 show the relative error of each filter in 

estimating the target’s kinematics.   

Finally, the six unique estimation error covariance matrix elements (P11, P22, 

P33, P12, P13, and P23) and the three gains (K1, K2, and K3) were plotted in figures 21-

26 for both down range and cross range estimates.  Equation (2.62) showed the steady-

state estimation error covariance matrix values and equation (2.64) showed the steady-

state values of the gains.  It is noted that the steady-state estimation error covariance 

matrix is symmetric.  This indicates that there are no precision issues associated with the 

on-line calculations.  Also, it is noted that if there are issues associated with real-time 

execution of the software, these steady-state values could be written into the software to 

take the calculations off-line. 

In summary, when biases and correlations exist with the noise statistics, the H-

infinity filter outperforms the Kalman filter, particularly in estimating the acceleration of 

the target.  In addition, the overall estimation error was reduced when constraints were 

placed on the state estimates.  Therefore, it is recommended to implement a constrained, 

H-infinity filter to track a maneuvering target.  Furthermore, the H-infinity filter costs no 
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more to implement than the Kalman filter with regard to hardware since both filters are 

strictly software implementations. 

This concludes Chapter Two: Cooperative Navigation.  In the next chapter, the 

constrained H-infinity filter’s estimate of the target’s acceleration will be applied to the 

Augmented Proportional Navigation Guidance (APNG) law. 
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CHAPTER THREE: GUIDANCE AND CONTROL 
 

For this application, recall that one UAV tracks the maneuvering (or non-

maneuvering) target and shares the information with the pursuer aboard another UAV.  

Even though the pursuer has not been released, the pursuer estimates the target’s 

kinematics by implementing a three-state, discrete-time, H-infinity filter with inequality 

constraints placed on the estimates.  Once the UAV containing the pursuer has confirmed 

the target and is in position to release the pursuer, the tracking UAV continues to 

communicate target location information directly with the pursuer for command guidance 

purposes.  It is noted that the pursuer is released into what is known as the Launch 

Acceptability Region (LAR), where the pursuer will reach the target if it is released into 

this “basket” in space.  Later in the pursuer’s trajectory, the tracking UAV becomes the 

designating UAV.  At this time, the target is illuminated with laser energy for the pursuer 

to switch from the command guidance mode to semi-active laser mode, thus reducing the 

error in the maneuvering target’s location leading to improve performance by reducing 

the miss distance.  Command guidance is used for midcourse guidance and semi-active 

laser guidance is used for terminal guidance.  This is known as dual-mode guidance.  

Whether the guidance mode is command or semi-active laser depends on whether the 

UAV is in the tracking or designating mode, respectively. 

 Recall that there is still a guidance law issue related to light-weight, acceleration-

limited pursuers.  Because the literature review showed classical and modern guidance 

laws and adaptive/neural autopilot control laws require at least 10g of acceleration 

capability, a new guidance algorithm needs to be developed to intercept maneuvering 

surface targets.  Therefore, an algorithm is developed that incorporates the Velocity 
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Pursuit Guidance (VPG) law at long ranges (because of its noise insensitivity) and an 

Augmented Proportional Navigation Guidance (APNG) law at short ranges (because of 

its accuracy).  The augmented form of the proportional navigation guidance law includes 

the acceleration estimate of the target as computed from the previous chapter.  The 

algorithm will be constructed such that the original form of the proportional navigation 

guidance (PNG) law will be implemented for a non-maneuvering target. 

The adaptive logic for switching from the VPG law to the APNG law is based on 

the field-of-view and the linear region of the pursuer’s seeker.  The field-of-view is the 

angular region that is seen by the pursuer, measured in azimuth and elevation.  The linear 

region is that portion of the seeker’s optics where the target’s motion is measured 

linearly.  Outside this region, the target’s motion does not appear well-behaved. 

At long ranges, with a wide field-of-view and low accuracy requirements, the 

target motion appears noisy; therefore the VPG law is put to task.  At short ranges, within 

the linear region of the seeker, the target’s motion increases the acceleration requirement 

on the pursuer; therefore the APNG law is utilized.  It is proposed that the combined 

performance of the pursuit and augmented proportional navigation algorithm will be 

within the 5g acceleration requirement.  The other performance requirement from 

Roemerman (2006) is that the miss distance is within 3m. 

In this section, the dynamic equations of the pursuer’s airframe are developed 

followed by the design of the pursuer’s autopilot also known as the flight control system.  

Then, each of the guidance laws (VPG and APNG) is designed.  Finally, simulation 

results are presented for performance analysis. 
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3.1 Airframe Dynamic Equations 

The purpose of the guidance algorithm is to direct the pursuer to the target.  This 

is achieved by commanding changes to the acceleration of the pursuer.  It is noted that 

the pursuer does not have any longitudinal thrust characteristics; therefore, only lateral 

accelerations can be commanded which are achieved by making changes to control 

surfaces by means of fin deflections.  The goal of the flight control system (autopilot) is 

to ensure the pursuer’s airframe responds to these control surface deflections in a stable 

manner.  Hence, it is first necessary to understand how a change in fin deflection affects 

the dynamics of the pursuer’s airframe. 

3.1.1 Lateral Accelerations and Angular Rates 

The aerodynamic forces and moments acting on the pursuer’s airframe are 

developed in Appendix 1.  In particular, the lateral dynamic equations for pitch (yaw) are 

developed based on the normal (side) force and the pitching (yawing) moment.  Then, a 

relationship between fin deflection and lateral acceleration and angular acceleration is 

made. 

From Appendix 1, the lateral acceleration based on the normal force is 

 za N N q q    (3.1) 

where NN C QS m   and q N qN C QS  m  and the angular acceleration based on the 

pitching moment is 

 qq M M q M q  q     (3.2) 

where m yyM C QSd I  , q m q yyM C QSd I  , and 2 2q mq yyM C QSd VI  and all 

quantities are defined as in Appendix 1.  Differentiating equation (3.1) 
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 za N N q q     (3.3) 

Consider figure 27 below which shows pitch angle  , flight path angle  , and angle-of-

attack  .  EX  and EZ  are Earth coordinates, BX  is the airframe’s body longitudinal 

axis, and V  is the velocity of the airframe. 

 
 

 
Figure 27  Kinematic Angles 



XE 

ZE 




XB 

V 

From these relations,     .  Differentiating,       .  It is customary to 

use q  to represent pitch rate  .  Therefore, q      or 

 q   

V

 (3.4) 

Also from the definition of differentiation of a vector whose orientation varies, 

 where V      is the angular velocity of the vector whose orientation is varying.  

Therefore, from these relations, V Y VE 
   or 

 za V   (3.5) 

which is perpendicular to the velocity vector, V .  Combining equation (3.4) with 

equation (3.5) yields 

 
 

za V

q V







 




 (3.6) 
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Substituting   from equation (3.6) into equation (3.3) yields 

 

z
z q

z q

a
a N q N q

V

N
N q a N q

V

 


 





    
 

  

 


 (3.7) 

Eliminating   from equation (3.1) and equation (3.2) yields 

 q
z q q

NM
q a M q M M

N N


 
 

q
 

   
 

   (3.8) 

Ignoring the actuator dynamics for now, 0q   yields the following set of lateral 

dynamic equations for pitch and assuming q
qM M

N

N


 


  

 
z z

z q q

N
a N q a

V
M

q a M q M
N









q

 

  




 (3.9) 

In matrix form 

 
0

q
q

z z

M
M

Mq qN
q

a aN
N

V










 
                     




 (3.10) 

In a similar fashion the set of lateral dynamic equations for yaw are 

 
0

r
r

y y

LN
LN

r r LNY
r

a aY
Y

V










 
                    
 


  (3.11) 
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where  is the lateral acceleration based on the side force,  is the angular acceleration 

based on yawing moment, 

ya r

YY C QS m  , n zLN C QSD I  , 2 2r nr zLN C QSd I V , 

and r n rLN C QSd I  z  and all other quantities are defined in Appendix 1. 

With a relationship between fin deflection and lateral accelerations and angular 

accelerations now defined, the flight control system (autopilot) may be designed. 

3.2 Flight Control System (Autopilot) 

Recall that the goal of the flight control system (autopilot) is to ensure the 

pursuer’s airframe responds to these control surface deflections in a stable manner.  

Because lateral accelerations are commanded by the guidance system, an autopilot that 

utilizes lateral and angular acceleration feedback will be used for stabilizing the pursuer’s 

airframe when the control surfaces (fins) are deflected.  This approach will also provide 

the timely response required during the terminal phase of the homing guidance system. 

3.2.1 Pitch Dynamics 

The lateral dynamics in pitch were developed in the previous section. 
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 (3.12) 

where  is pitch rate,  is normal acceleration, q za q  is fin deflection in the pitch plane, 

and  is velocity magnitude.  V  NC
m
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reference diameter, yI  is moment-of-inertia about the y-axis, and , , , and 

 are the aerodynamic coefficient parameters: normal force due to angle-of-attack, 

pitching moment due to angle-of-attack, pitching moment due to pitch rate, and pitching 

moment due to fin deflection, respectively.  Figure 28 and figure 29 below show the 

open-loop step-response of the airframe’s pitch dynamics at Mach numbers of 0.33 and 

0.80, respectively, where Mach number is defined as the ratio of the air-flow velocity to 

the speed of sound.  Both figures depict the need for a flight control system. 

NC  mC  mqC

m qC 

. 
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Figure 28 Open-Loop Step-Response at Mach 0.33 
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Figure 29 Open-Loop Step-Response at Mach 0.80 

3.2.2 Pitch Control 

The flight control system requirements are fast rise-time and zero steady-state 

errors.  Therefore, proportional (P) control is used to achieve fast rise-time and integral 

(I) control is used to achieve zero steady-state error.  A PI-controller is used because of 

its implementation ease.  The block diagram for the flight control system is shown in 

Figure 30 below, where  represents commanded acceleration, ca   represents fin 

deflection, and  represents achieved acceleration. aa

Lateral 
Dynamics

PI 
Controller

aa ac 

-

+

 

Figure 30 Pitch Control Block Diagram 
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The closed-loop system now consists of three states: two from the lateral pitch 

dynamics (the pitch rate q  and the normal acceleration ) plus the integrator from 

integral control.  Hence three poles need to be placed. 

za

The dominant closed-loop poles are determined from a second-order system 

 2 2 ns s 2
n    (3.13) 

where  is the damping ratio and  n  is the natural frequency.  For a second-order 

system, the percent overshoot is defined by 

 
2

100
1

exp
 



  

 (3.14) 

For 5% overshoot, the damping ratio is  =0.7.  The natural frequency of a second-order 

system is determined from the rise time  - which is the time needed for the response to 

attain 60% of its reference signal. 

rt

 
21 1 1 1 4. .

n
rt

   
   (3.15) 

For  =0.7 and =0.25sec, rt n =9.8rad/sec.  With 0 7.   and 9 8.n  rad/sec, 

 
  
  
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n n n n n ns s s j s

s j s j

           

    

21 j
 (3.16) 

The third pole must be placed to the left, in this case at -15, to obtain the desired closed-

loop step-response characteristics without interfering with the dominant closed-loop 

poles given in equation (3.16).  Figure 31 and figure 32 below show the closed-loop step-

response of the airframe’s pitch dynamics to a step input at Mach numbers of 0.33 and 

0.80, respectively. 
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Figure 31 Closed-Loop Step-Response at Mach 0.33 
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Figure 32 Closed-Loop Step-Response at Mach 0.80 

Notice that both figures depict the same step-response (5% overshoot and a rise time of 

0.25sec) regardless of flight conditions.  In the next section, it will be shown how the 

gain scheduling is achieved for pitch control due to various flight conditions. 

 
 

65



3.2.3 Gain Scheduling 

Now that the appropriate poles have been placed, in order to achieve the desired 

closed-loop step-response characteristics, it remains to determine how these poles are 

placed for different flight conditions. 

 If the lateral pitch dynamics of equation (3.12) are represented, generally, by 
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then figure 33 becomes figure 35 below 

1 
s 

u=q KI 
s 

+

-

ac x 
G 

F 

C 

-

xdot az 
H 

D 

+ +

+

 

Figure 33 Pitch Control Block Diagram 

where  x = zq a , F =
q
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,  =u q 0 1H = ,  , 2 1C = k k  

( k  and  are gains to be determined), 2 1k  0D = 1 , and  represents the integral 

control gain to be determined. 

IK

 The closed-loop system is determined from figure 33, where the control input u  

is written as 

  Cx I c zu K a a    dt  (3.18) 
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By introducing , and noting  c za a dt    c za a    

 Cx Iu K     (3.19) 

So that 

 
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 


 (3.20) 

Combining both states into one closed-loop system 
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In matrix form 
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The gains , , and  are determined by placing the poles equal to the eigenvalues of 

this system, where the eigenvalues are determined from 

2k 1k IK

    1 2I As s p s p s     3p  (3.23) 

where 
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 (3.24) 

Expanding F GC  and G  leads to IK
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Recall from equation (3.16) that the dominant closed-loop poles may be represented by 
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The pitch gains are determined from the following equations: 
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where 3p  is the third pole location (distant from the dominant closed-loop poles) and the 

other parameters have previously been defined. 

 Therefore, given any flight condition, the parameters N , qM , qM , V , and M  

are uniquely determined from the corresponding dynamic pressure Q  and the gains 

, , and  are scheduled accordingly.  It is noted that since there is symmetry 

between the pitch plane and the yaw plane, the pitch controller may be used for yaw 

control as well. 

2k 1k IK

3.3 Guidance Laws 

A guidance algorithm is developed that incorporates Velocity Pursuit Guidance 

(VPG) at long ranges (because of its noise insensitivity) and Augmented Proportional 

Navigation Guidance (APNG) at short ranges (because of its accuracy).  The adaptive 

logic for switching from the VPG law to the APNG law is based on the field-of-view and 

the linear region of the pursuer’s seeker.  At long ranges, with a wide field-of-view and 
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low accuracy requirements, the target motion appears noisy; therefore the VPG law is put 

to task.  At short ranges, within the linear region of the seeker, the target’s motion 

increases the acceleration requirement on the pursuer; therefore the APNG law is utilized. 

The design of the guidance algorithm begins with APNG where the control law is 

determined by Lyapunov’s stability analysis (including gain determination by optimal 

methods) followed by VPG gain determination by matching acceleration commands for 

smooth transitioning from one guidance law (VPG) to the other (APNG).  This section 

concludes with a brief discussion on the logic associated with switching between the 

guidance laws. 

3.3.1 Augmented Proportional Navigation Guidance Law 

With proportional navigation guidance (PNG), the flight path angle rate  is 

made proportional to the line-of-sight rate 



  between the pursuer and the target. 

  (3.30)    

where  is the proportional constant.  Recall from equation  (3.5) 

 ca V   (3.31) 

Combining equation (3.30) and equation (3.31) yields 

 ca V    (3.32) 

This is the acceleration command for PNG.  Because the PNG law is based on the flight 

path angle rate and the line-of-sight rate, it performs well in the case of constant 

velocities but is impractical against maneuvering targets. 

 With augmented proportional navigation guidance (APNG), the lateral 

acceleration command  is given by the following equation ca
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 1
2
ˆ

ca V Ta     (3.33) 

where  is the proportional constant,  is velocity,  V   is the line-of-sight rate, and  is 

the acceleration estimate of the target.  This guidance law is more suited for maneuvering 

targets because it includes the target’s acceleration estimate.  Notice that if 

ˆ
Ta

0Tâ  , 

equation (3.32) is obtained.  Please see Appendix 2 for the complete development of this 

guidance law based on Lyapunov’s “direct method” of stability analysis as referenced in 

Narendra and Annaswamy (1989). 

To complete this subsection, please see Appendix 3 for the determination of the 

proportional constant’s value based on optimization methods of Bryson and Ho (1975).  

From the appendix, it is noted that 3   so that the APNG guidance law is 

 3
23 ˆ

ca V aT   (3.34) 

Furthermore, note that this guidance law is fully determined based on the parameters 

associated with the pursuer/target engagement. 

3.3.2 Velocity Pursuit Guidance Law 

With velocity pursuit guidance, the angle between the velocity vector of the 

pursuer and the line-of-sight to the target, called the “lead angle” is driven to zero. 
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Figure 34 Velocity Pursuit Guidance Geometry 

This type of guidance algorithm is noise insensitive which makes it good for initial 

guidance because it avoids any unnecessary corrections due to target maneuvering and 

thus minimizing wasted energy.  The lateral acceleration command  for velocity 

pursuit guidance is given by the following equation: 

ca

 = (c g lead ga K K )     (3.35) 

where gK  is a guidance gain and lead  is the lead angle (the difference between   the 

line-of-sight angle and  is the flight path angle).  A block diagram of the VPG law is 

shown in figure 35 below. 
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Figure 35 Velocity Pursuit Guidance Block Diagram 

Because the VPG law is a proportional control system, the gain gK  may be 

determined from the steady-state error requirements.  However, since it is desired to 
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minimize pursuer response to target maneuvering during the initial engagement, large 

steady-state errors are allowed because the guidance algorithm will eventually transition 

to APNG where accuracy is required.  The steady-state error for proportional control is 

determined from figure 35: 

 (t) = (t) (t)lead     (3.36) 

  (3.37) (t) (t) (t)g leadK G  

where  represents the airframe dynamics.  Substituting equation (t)G (3.37) into equation 

(3.36) yields 

  
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 (3.38) 

Taking the Laplace transform, equation (3.38) becomes 
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 


  (3.39) 

The steady-state error is determined from the Final Value Theorem which states 
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Therefore, the steady-state error, due to a step input (s) = 1/ s , is determined as 

 

0

0

(s)

1

1 (s)

1

1 (0)

, lim

lim

lead ss lead
s

s
g

g

s

s
K G s

K G





  







1
 (3.41) 

 
 

72



Assuming the DC gain of the airframe dynamics  is unity, the steady-state error due 

to a unit step input is given by 

(0)G

 
1

1,lead ss
gK

 


 (3.42) 

Rewriting equation (3.42) to determine gK  

 
1

1
,

g
lead ss

K  


 (3.43) 

in units of (m/s2)/rad.  For zero steady-state error 0,lead ss  , .  However, this 

implies that the pursuer responds to every maneuver of the target.  In application, it is 

desired that the guidance system waits until the target is within the linear region of the 

seeker before switching to the APNG law where the target is followed more accurately.  

Therefore, it is assumed that 10% steady-state error is sufficient to reduce the initial 

pursuer maneuvering to what appears as noisy target motion during the initial 

engagement.  In this case, 

gK 

9gK  .  Reducing the initial maneuvering decreases the 

aerodynamic drag on the pursuer which increases its available kinetic energy at impact. 

3.3.3 Guidance Logic 

Initially, the control surfaces (fins) are not allowed to move for the first 2sec of 

flight.  This is to insure safe separation from the UAV.  Once safe separation occurs, the 

guidance mode is based on pursuer/target engagement parameters.  If the target is being 

tracked, but not designated, command guidance is implemented, i.e. the tracking UAV 

continues to communicate the target location to the pursuer whether it has been released 

from the UAV containing the pursuer or not.  Later in the engagement, the tracking UAV 

designates the target and the guidance mode switches from command guidance to semi-
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active laser (SAL) guidance.  This section addresses the logic of the guidance algorithm, 

i.e. how the guidance law switches from VPG to APNG. 

After release and the  of fin lock, if the initial azimuth and elevation of the 

line-of-sight 

t

  are outside the Field-Of-View (FOV) of the seeker, the pursuer falls 

freely, i.e. ballistically.  Once the azimuth and elevation of the target are within the FOV, 

the initial guidance is based on the VPG law.  Then, once the azimuth and elevation of 

the target are within the Linear Region of the seeker, the guidance switches to the APNG 

law.  Figure 36 below shows a diagram depicting transitions from the Release/Fin Lock 

state, through Search and VPG, to the final state APNG.  The FOV is set to 180 to 

simulate command mode guidance by the tracking UAV.  Therefore, the pursuer always 

“sees” the target.  It is simply a matter of whether the target is within the linear region of 

the seeker whether VPG or APNG is implemented. 

 
Figure 36 State Transition Diagram 
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3.4 Simulation Results 

3.4.1 Simulation of a Maneuvering Target 

The UAV and pursuer parameters modeled as described in section 2.4.1.  The 

target is modeled as a surface vehicle with an initial position and velocity.  Its 

acceleration and jerk are modeled as process noise with magnitudes 1m/sec2 and 

0.01m/sec3, respectively.  However, now the down range acceleration is allowed to 

change every 8 seconds and the cross range acceleration is allowed to change every 2 

seconds.  This is to represent forward acceleration and braking and lateral changes in 

velocity and position.  Recall that the velocity and acceleration magnitudes are limited to 

90mph (40m/sec) and 0.27g (2.65m/sec2), respectively.  Also, a steering model with a 

rate of 45/sec is included to reflect realistic (smooth) changes in the target’s motion. 

The constrained, discrete-time H-infinity filter is implemented in a full six degree-

of-freedom (6DOF) simulation to estimate the target’s acceleration and subsequently 

used for guidance purposes. 

 Figure 37 and figure 38 display the relative error of the H-infinity filter in 

estimating both down range position and cross range position of the target.  The H-

infinity filter performs well in estimating the position of the target, particularly in the last 

10sec of the engagement.  At 30sec into the engagement, the guidance mode switches 

from command mode to SAL mode where the target’s position measurement is 

performed by the pursuer and subsequently, the system delay is reduced from 500msec to 

100msec. 
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Figure 37 Relative Down Range Position Estimate Error 
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Figure 38 Relative Cross Range Position Estimate Error 

Figure 39 and figure 40 display the relative error of the H-infinity filter in 

estimating both down range velocity and cross range velocity of the target. 
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Figure 39 Relative Down Range Velocity Estimate Error 
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Figure 40 Relative Cross Range Velocity Estimate Error 

Figure 41 and figure 42 display the relative error of the H-infinity filter in 

estimating both down range acceleration and cross range acceleration of the target. 
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Figure 41 Relative Down Range Acceleration Estimate Error 
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Figure 42 Relative Cross Range Acceleration Estimate Error 

The acceleration estimate provides a better estimate in the final 10sec of the engagement 

which is critical for the terminal APNG law. 
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Figure 43 displays the seeker look angles and how they come into the field-of-

view (FOV = 90) and linear region (LR = 6) of the seeker.  Since the seeker’s FOV 

is 180, it always “sees” the target.  Notice at 2sec into the engagement, which is the fin 

lock time, the elevation rate changes from an intercept of -60 to a rate with an intercept 

of -40.  This is the transition from the Search state to the VPG state.  VPG drives the 

elevation look angle toward zero.  Notice the azimuth is already near zero. 
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Figure 43 Seeker Look Angles 
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Figure 44 Adaptive Guidance Logic 

Eventually, the elevation comes to be within the linear region of the seeker.  At this time, 

the guidance law switches from VPG to APNG.  Figure 44 (above) displays the 

transitions from the Search state through the VPG state to the APNG state. 
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Figure 45 Side-View Trajectories 
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Figure 46 Top-View Trajectories 

Figure 45 and figure 46 (above) display the side-view and top-view trajectories of 

the pursuer as it inte  targercepts the t. 
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Figure 47 Down Range Trajectories versus Time 
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Figure 48 Cross Range Trajectories versus Time 

In particular, figure 46 shows the initial insensitivity of the VPG law to the 

target’s motion – where the figure shows a smooth, curved trajectory toward the target’s 

general location.  Then, at 15sec (see figure 47 and figure 48 above), which corresponds 

to 50m cross range and 1500m down range, the guidance law switches from VPG to 

APNG.  The response of the pursuer to the target’s motion is observed for the remained 

of the trajectory. 

Figure 49 (below) displays the total lateral acceleration of the pursuer.  The spike 

at the end of the engagement corresponds to the pursuer performing its final maneuver in 

an attempt to intercept the target with zero miss distance.  Theoretically, the lateral 

acceleration would be infinite for zero miss distance.  However, the finite lateral 

acceleration corresponds to  mis ng the spike, it is observed 

that th

a non-zero s distance.  Ignori

e total lateral acceleration was just below 1.5g which is well within the 5g  

requirement. 
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Lateral Acceleration versus Time
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 this particular engagement, the miss distance was recorded to be 0.09m which 

is well within the 3m CEP (Circular Error Probable) required to be considered a 

successful intercept. 

3.4.2 Simulation of a Fixed (Static) Target 

Another case of interest is to simulate the case of a fixed (static) target to be sure 

the system isn’t tuned with any biases toward intercepting maneuvering targets.  After all, 

remaining still could be a tactical countermeasure. 

 Figure 50 and figure 51 display the relative error of the H-infinity filter in 

estimating both down range position and cross range position of the target.  The H-

infinity filter performs well in estimating the position of the target, particularly in the last 

10sec of the engagement.  Recall that at 30sec into the engagement, the guidance mode 

switches from command mode to SAL mode where the target’s position measurement is 
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Figure 49 Lateral Acceleration 
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performed by the pursuer and subsequently, the system delay is reduced from 500msec to 

100msec. 
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Figure 50 Relative Down Range Position Estimate Error 
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Figure 51 Relative Cross Range Position Estimate Error 
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Figure 52 and figure 53 display the relative error of the H-infinity filter in 

estimating both down range velocity and cross range velocity of the target.  Note that the 

target is static so the velocity is zero. 
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Figure 5 Relative Cross Range Velocity Estimate Error 3 
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Figure 54 and figure 55 display the relative error of the H-infinity filter in 

estimating both down range acceleration and cross range acceleration of the target.  Note 

that the target is static so the acceleration is zero. 
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Figure 54 Relative Down Range Acceleration Estimate Error 
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Figure 55 Relative Cross Range Acceleration Estimate Error 
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Figure 56 (below) displays the seeker look angles and how they come into the 

field-of-view (FOV = 90) and linear region (LR = 6) of the seeker. 
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Figure 56 Seeker Look Angles 

Notice at 2sec (the fin lock time for safe separation) the elevation rate changes from an 

intercept of -60 to a rate ansition from the Search with an intercept of -40.  This is the tr

state to the VPG state.  VPG drives the elevation look angle toward zero.  Notice the 

azimuth is already near zero. 
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Eventually, the elevation comes to be within the linear region of the seeker.  At this time, 

the guidance law switches from VPG to APNG.  While the APNG law is applied during 

this time in the engagement, the target acceleration estimate component of APNG is zero, 

as seen from Figure 52.  Therefore, this guidance law is actually PNG, Proportional 

Navigation Guidance.  Figure 57 (above) displays the transitions from the Search state 

through the VPG state to the APNG state. 

Figure 58 and figure 59 (below) display the side-view and top-view trajectories of 

the pursuer as it intercepts the fixed (static) target. 

 

gure 57 daptive Guidance Logic 
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Side-View Trajectory
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Figure 58 Side-View Trajectories 
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Figure 59 Top-View Trajectories 
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Figure 60 and figure 61 (below) display the down range and cross range 

trajectories versus time. 
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Figure 60 Down Range Trajectories versus Time 
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Figure 61 Cross Range Trajectories versus Time 
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Figure 62 (below) displays the total lateral acceleration of the pursuer.  It is 

observed that the total lateral acceleration was just below 1.5g which is well within the 5g 

requirement. 
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Finally, it is noted that for this static engagement, the miss distance was recorded 

to be 0.15m which is well within the 3m CEP (Circular Error Probable) required to be 

considered a successful intercept. 

Beyond the success of the two engagements mentioned in the previous section, 

500 additional pursuer/target engagements were simulated to exercise the robustness of 

the design. 
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Figure 62 Lateral Acceleration 

3.4.3 Monte Carlo Simulation of 500 Engagements 

 While the target began with the same initial position; velocity, acceleration, and 

timing associated with changes in acceleration from that initial position were all changed 
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randomly.  The following table summarizes the inputs which were varied for the Monte 

Carlo simulations. 

Table 5  Monte Carlo Input Data 
 Average Standard Deviation

Down Range Velocity -0.60m/sec 16.26m/sec 

Cross Range Velocity -0.46m/sec 16.40m/sec 

Down Range Acceleration 1.09m/sec 0.00m/sec  2 2

Cross Range Acceleration 1.10m/sec 0.00m/sec  2 2

Frequency of Down Range Acceleration Change 1.28sec 0.00sec 

Frequency of Cross Range Acceleration Change 0.71sec 0.00sec 

 

Table 6  Monte Carlo Results 
 Average Standard Deviation Maximum Requirement

The following table compares miss distance and lateral acceleration statistics 

(generated from 500 Monte Carlo simulations) with their requirements: 

Miss Distance 0.97m 1.39m 2.36m 3m 

Lateral Acceleration 3.87g 0.95g 4.82g 5g 

 

3.5 Guidance and Control Summary

Both the maximum miss distance of 2.36m and the maximum lateral acceleration 

of 4.82g were within the 3m and 5g requirements, respectively.  This includes 68% of the 

population (1 standard deviation). 

 

The discrete-time, constrained, H-infinity filter provided very good estimates of 

the target’s kinematics.  With these estimates, the adaptive guidance law based on 

velocity pursuit guidance (VPG) and augmented proportional navigation guidance 
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(APNG

 

which was within the 5g requirement.  This engagement is considered realistic and 

demanding of the pursuer in the sense that: 

(1) The UAV measurements were delayed by 500msec to reflect the time it takes for the 

UAV to obtain the measurement through the laser range finder, perform the necessary 

geo-location calculations, and communicate it to the pursuer for estimation and guidance 

use.  This 500msec delay occurs during command mode.  However, when in semi-active 

laser (SAL) mode, the UAV designates the target while the target location measurements 

are being performed by the pursuer so the delay is reduced to only 100msec. 

(2) The target’s kinematic properties consisted of high velocity and high acceleration, 

including frequent maneuvering, within the limits of representative surface vehicle 

properties. 

(3) The pursuer model includes actual aerodynamic coefficient parameters from recent 

flight tests and ½ of seeker radial bore sight error. 

Next, a fixed (static) target engagement was simulated to be sure that the system 

was not biased for maneuvering target engagements only.  It was shown that the fixed 

target was intercepted with a miss distance of 0.15m and applying a total lateral 

acceleration of 1.5g, which were both well within the limits of the requirements. 

 Finally, 500 Monte Carlo simulations were run to exercise the robustness of the 

design.  It was shown that the statistics of the results proved to be within the limits of the 

requirements, i.e. miss distances were within 3m and total lateral accelerations were 

within 5g. 

) intercepted a maneuvering target with a 0.09m miss distance which was within 

the 3m requirement.  Furthermore, the lateral acceleration on the airframe was under 1.5g
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All of this data combines to suggest that cooperative navigation and adaptive 

guidance are feasible for actual implementation, which was the purpose of this research. 
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CHAPTER FOUR: CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

Chapter 2 “Cooperative Navigation” showed UAVs could estimate the kinematics 

of a (non-coope r.  Clearly, 

the H-infinity filter outperformed the Kalman filter in the case of a maneuvering target.  

It was also shown that the Kalman filter took 15sec to converge while the H-infinity filter 

converged within 2sec.  Furthermore, the H-infinity filter operates without any 

knowledge of the noise statistics, whereas the development of the Kalman filter equations 

is highly dependent on knowledge of noise statistics, i.e. zero-mean, uncorrelated, white 

noise.  It is noted that the innovative steps associated with these results were modeling 

the target as noisy jerk,  ons (constraints) on the 

filter’s estimate of the target’s kin atics. 

Chapter 3 “Guidance and Control” showed ple guidance 

algorithm could be implemented with an adaptive mbination of velocity pursuit 

guidance (VPG) and augmented proportional navigation guidance (APNG) based on the 

field-of-view and linear region of the pursuer’s seeker.  It was also shown that a 

maneuvering target was intercep ith a miss dista f 0.9m.  This is within the 3m 

CEP w tes target intercept.  Furthermore, the lateral acceleration requirement 

of the pursuer was 2.8g.  This is also within the requirement which is 5g. 

These combined results lead the author to make a recommendation to incorporate 

this adaptive guidance algorithm with cooperative navigation into a low-cost, light-

weight, precision-guided pursuer system with limited acceleration capability.  It is noted 

rative) target using a discrete-time, constrained, H-infinity filte

i.e. acceleration rate and placing limitati

em

 that a relatively sim

 co

ted w nce o

hich indica
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that the innovative step e field-of-view and the 

linear region of the seeker as the guidance logic for switching from VPG to APNG. 

 associated with these results was using th

4.2 Assumptions and Limitations 

4.2.1 Time-Delay for UAV to Transmit Target’s Position 

pursuer was 500msec.  Using the single-engagement scenario, the effects of time-delay 

were studie

It was assumed that the time-delay for the UAV to measure and calculate the 

target’s range using an on-board laser range finder and to transmit that information to the 

d.  Table 3 below was constructed from simulation where only the time-delay 

was changed: 

Table 7 Effects of Time-Delay on Miss Distance 
Time-Delay (msec) Miss Distance (m)

10 0.5 

100 0.5 

300 0.6 

500 1.0 

700 1.0 

900 1.4 

 
Considering 500msec to be a nominal time-delay, it is seen from Table 4.1 that 

increasing the time-delay to 700msec had no immediate impact on the miss distance.  

However, a time-delay of 900msec increased the miss distance by 40%.  Of course, 

reducing the time-delay has the benefit of lowering the miss distance. 
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4.3 R ntsecommendations and Improveme  

Although no performance issues occurred, if there were issues, the filter’s 

performance could be enhanced by either increasing the arithmetic precision, i.e. if the 

software developer used float (32 bits with 6 digits of precision) as the initial data type, 

this could be changed to double (64 bits with 10 digits of precision) or ensuring the 

estimation error covariance matrix 

4.3.1 Estimator Performance Improvements 

P  is symmetric by computing 1
2

time-step. 

( )P = P + PT  at each 

e 

e code would be generated and benchmarked.  If the algorithms 

annot be executed in real-time, either increase the m

 ste tate values for the estimation error covariance matrix and gains and hard-

code them in the software. 

4.3.3 Including Velocity Measurement for the Estimator 

easurements of the target.  If the UAV is capable of determining the 

rget’s velocity too, then that information could be used to improve the algorithm for 

estimating the target’s acceleration. 

4.3.2 Algorithm Execution Tim

In order to investigate the time required to execute the estimate and guidance 

algorithms, real-tim

c icroprocessor’s speed, or calculate 

off-line ady-s

The current discrete-time, constrained, H-infinity estimator relies upon the UAV 

providing position m

ta
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4.3.4 Predictor versus Estimator 

The H-infinity estimator is based on filtering techniques where the time at which 

the estimate is desired coincides with the last position measurement.  If the time at which 

the estimate is desired occurs later than the last position measurement, the H-infinity 

estimator is based on predicting techniques.  This can be implemented by simply 

propagating the measured position and the estimated velocity and acceleration forward in 

time.  The guidance algorithm would utilize this information as if it were the actual 

kinematics of the target and intercept this point on the ground – and presumably, the 

target would indeed be there at that point time. 

If  is the measured position of the target, and  and  are the estimated 

velocity and acceleration of the target, respectively, th  location of the 

target ply 

 

Tr

 is sim

ˆ
Tv

en the pred

ˆ
Ta

icted

 T̂r

21
2

ˆ ˆ ˆ
T T T Tr r v t a t    (4.1) 

where sec. 

4.3.5 Designation Leading 

The predictor estimator in the previous section is applicable to command mode 

guidance.  In the case of SAL mode guidance, the UAV would have to lead the target 

during designation. 

 

1t 
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APPENDIX A: AERODYNAMIC FORCES AND MOMENTS 
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 In this appendix, the aerodynamic forces and moments of the pursuer are 

presented.  They are used as the equations of motion for six degree-of-freedom (6DOF) 

simulation. 

A.1 Parameters 

 is the reference diameter [in] 

 is cross-sectional reference area [ft] 

d

S

21
2Q V  is dynamic pressure [lb/ft2] 

  is atmospheric density [slugs/ ft3] 

V  is velocity [ft/sec] 

  is angle-of-attack [rad] 

  is angle-of-sideslip [rad] 

p , q , and r  are angular roll, pitch, and tively [rad/sec] yaw rate, respec

A.2 Coordinate Systems and Sign Conventions 

erodynamic Coordinate System 

he x-axis is longitudinal through the nose of the bod

completes the left-hand orthogonal system and points out the right wing. 

Body Coordinate System 

The x-axis is longitudinal through the nose of the body.  The z-axis is down.  The y-axis 

completes the right-hand orthogo nts out the right wing.  In the 

simulation, 

A

T y.  The z-axis is up.  The y-axis 

nal system and poi

all coefficients are converted to the body coordinate system. 

Fin Deflection Sign Convention 
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A positive fin deflection is leading edge up for the normal force analysis and ding 

edge to the right for the side force s, define odynamic coordinate 

system. 

lea

 analysi d in the aer

A.3 Aerodynamic Forces 

All forces can be derived from the following general expression. 

  oF C C C QS     )   (A1.1

A.3.1 Axial Force 

 is the axial drag coefficient independent of angle-of-attack or fin deflection 

nd is ive aft along the missile’s longitudinal, x-axis.  

to angle-of-attack with dimensions [1/rad] 

AoC

 posita It is dimensionless and 

0AoC .  However, in body coordinates, it is negative as drag opposes velocity. 

AC  is the axial drag coefficient due 

and is defined as ddCA , where 0dCA , i.e. itd  reduces  with positive angles-

of-attack. 

 = (

AoC

)F ma C C QS  (A1.2) x x Ao A 

 ( )x Ao A

QS
a C C

m   (A1.3) 

The net force is positiv  along t  negative x-axis.  This is why e acting he missile’s a 

negative sig

rce coef il fins se

longitudinal x-axis through the C.G. (center-of-gravity) 

n is introduced in the simulation. 

A.3.2 Normal Force 

 is the normal fo ficient from the overall airframe (with the ta t 

to 0) acting perpendicular to the 

NC
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a namic coordinates.  NC  has nd is positive upward along the positive z-axis in aerody

imensions [1/rad] and is defined as  NC , where 0d  NC

of-attack. 

 is the normal force coefficient from the tail fins acting perpendicu e 

ugh the fin hinge and is positive along the positiv is in 

aerodynam c coordinates.   has dimensions [1/rad] and is defined as 

 relative to the angle-

qN

longitudinal x-axis thro

C

i

lar to th

e z-ax

qNC  qqNC   , 

where 0 qNC . q

 ( )z z N N q qF ma C C QS      (A1.4) 

 ( )z q N N q q

QS
a N N q C C

m           (A1.5) 

The net normal force is positive a s negative z-axis.  This is why a 

negative si

 is the side force coefficient from the overall airframe (with the tail fins set to 

0) acting perpendicular to the longitudinal x-axis through the C.G. (center-of-gravity) 

and is positive along the positive y-axis in aerodynamic coordinates.   has dimensions 

[1/rad] and is defined as 

cting along the missile’

gn is introduced in the simulation. 

A.3.3 Side Force 

YC

YC

 YC , where 0 YC  relative to the a -sideslip. 

 is the side force coefficient from the tail fins acting perpendicular to the 

ngitu nal x-axis through the fin hinge and is positive alo

aerodynam c coordinates.   has dimensions [1/rad] and is defined as 

ngle-of

rYC 

di

i

lo ng the positive y-axis in 

rYC  rrYC   , 

where 0 rYC . r
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 ( )y y Y Y r rF ma C C QS      (A1.6) 

( )y r Y Y r r

QS
a L L r C C

m           (A1.7) 

The net side force is positive acting along the missile’s positive y-axis.  A negative sign 

is not intro

A.4 Aerodynamic Moments

duced because the positive y-axis is the same in both aerodynamic and body 

coordinates. 

 

All moments can be derived from the following general expression. 

 
2

( ) ( ) .
2

..
QSd

M C C C QSd C C          (A1.8) 

the rolling moment coefficient due to angle-of-attack and is positive for 

positive ang

moment coeffic

mensions [1/rad].

 is the rolling moment coefficient due to roll rate.  has dimensions [1/rad] 

o q V  

A.4.1 Rolling Moment 

  is lC

le-of-attack.  It has dimensions [1/rad]. 

plC   is the rolling ient due to fin deflection and is positive for 

positive fin deflections.  It has di  

lpC

and is defined as 

lpC

)2/( VpdCl  .  In order to take the partial derivative, it is necessary to 

ultiply ide by .  .0lpC  /div Vpd 2m

2

2x xx l p lp

QSd
M I C pQSd C p

V     (A1.9)  

2

2p p l p lp
xx x

QSd QSd
p L p L p C p C p

xI VI          (A1.10) 
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No changes are needed for th er rolling moments occur in 

aerodynami

oment coefficient due to the lug producing a nose-up.  

is dimensio

is ngle-of-a ducing a no -

down f  as

e simulation.  Whatev

c coordinates also occur in body coordinates. 

A.4.2 Pitching Moment 

 is the pitching mmoC moC  

nless. 

mC  the pitching moment coefficient due to a ttack pro se 

or static stability.  mC  has dimensions [1/rad] and is defined   mC , where 

 mC <0. 

qmC   is the pitching moment coefficient due to normal fin deflection producing a 

 has dimensions [1/rad] and is defined as qmC  qmCnose-down.   , where 

qmC 

 is the pitching moment coefficient due to pitch rate.   has dim

<0. 

mqC mqC ensions 

[1/rad] and is defined as )2/( VqdCm  .  In order to take the partial derivative, it is 

necessary to multiply/divide by Vqd 2/ .  0mqC . 

2

( )
2y yy mo m m q mq

QSd
M I C C C q QSd C q

V         (A1.11) 

 
2

( )
2q q mo m m q mq

yy yy

QSd QSd
q M M q M q C C C q C q

I VI                 (A1.12) 

No changes are needed for the simulation.  Whatever pitching moments occur in 

aerodynamic coordinates also occur in body coordinates. 
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A.4.3 Yawing Moment 

 has dimensions [1/rad] and is defined as  

nC  is the yawing moment coefficient due to angle-of-sideslip producing  a nose-

left for static stability.  nC  nC , where 

0 nC . 

 is the yawing moment coefficient due to side fin deflection producing  a 

nose-left.   has dimensions [1/rad] and is defined as 

rnC 

C rn rnC  , where 0 rnC  . 

 is the yawing moment coefficient due to yaw rate.   has dimensions 

[1/rad] and is defined as 

nrC nrC

)2/( VrdCn  .  In order to take th l derivative, it is 

necessa  multiply/divide by .  

e partia

ry to Vrd 2/ 0nrC . 

 
2

( )
2z zz n n r nr

QSd
M I C C r QSd C r

V        (A1.13) 

 
2

( )
2r n n r nr

zz zz

QSd QSd
r M M r M C C r C r

I VI                  (A1.14) 

No changes are needed for the simulation.  Whatever yawing moments occur in 

aerodynamic coordinates also occur in body coordinates. 
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APPENDIX B: LYAPUNOV STABILITY PROOF FOR THE 
 P AAUGMENTED ROPORTIONAL N VIGATION GUIDANCE LAW 
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The figure below represents a missile/target engagement where MV  is the 

missile’s velocity,  is the target’s velocity,  is the range between the mi  and the 

target along the line-of-sight (LOS), and 

 TV  r ssile

  is the line-of-sight angle. 

 

al  sed upon the rate of the 

ng-of-sight angle ), a relationship needs to b

Since the Augmented Proportion  Navigation Guidance law is ba

li e defined involving (  .  From the figure 

above 

 sin /y r   (A2.1) 

Assuming the small angle approximation 

 /y r   (A2.2) 

aking the time derivative 

y

T

 r r      (A2.3) 

y

Taking the time derivative again 

 2r r r         (A2.4) 

Rewriting 

LOS 



r 

VM 

V  y T

x 

 
 

107



 
2 1r r

y
r r r



It is noted that 

    
    (A2.5) 

M Ty a a   , where Ma

T

1

 is the acceleration of the missile (a control 

variable of the dynam ) and  is the acceleration of the target (a disturbance to 

i

ic system

c system).  By letting 

a

x 2x  the dynam  represent the line-of-sight angle ( ) and 

represent th  of t e-e ra of-sigte he lin ht angle ( ), the following state-sp tem

med 

ace sys  is 

for

1 2

2 2 1

2 1
( )M T

x x

r r
x x x a a

r r r



     


 

  (A2.6) 

) based on the line-of-sight rate (V 2xThe next step is to select a Lyapunov function ( ) 

 21
22V x  (A2.7) 

hich is positive definite for all 2xw .  The time derivative of

) 

ituting the dynamics from equation (A2.6) yields 

 

 V  is 

 2 2V x x   (A2.8

Subst

2 2 1

2 1
( )M T

r r
V x x x a a

r r r
        

   (A2.9) 

Provided 

 0V   (A2.10) 

the guidance law that stabilizes the system given by equation (A2.6) is 

 

 

1 2M c Ta k v k a   (A2.11) 
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where 1k  and 2  are constan  be det c  is c  the “c city” 

defined as cv ther parameters have been defined earlier.  Sub tituting 

equation (A2.11) into equation (A2.9) yields 

 

k

  

ts to ermined, alled losing velo

r  and all o s

v

,

2 2 1 1 2

2 1
( )

r r
V x x x k v k

     
   0c T Ta a

r r r
   

 (A2.12) 

Recall that  and 

 

1x   2x    

1 2

2 1
( )c T T

r r
k v k a a

r r r
      
   0  (A2.13) 

Grouping like terms 

    2

1
2 1T

c

ar
r kv k

r r r
       
 

  0  (A2.14) 

Assuming the missile has zero acceleration along the line-of-sight ( 0r  ) 

    1 2

1
2 1T

c

a
r k v k

r r
      0  (A2.15) 

For the inequality to hold each of the remaining two terms must be less than or equal to 

zero 

 
 

 

1

2

1
2 0

1 0

c

T

r k v
r
a

k
r

   

  

 
 (A2.16) 

Recalling that , the first equation in (A2.16) yields 

  (A2.17) 

The second equation in (A2.16) yields 

 
0

0

cv r  

1 2k 

2

2

1 ( )

1 ( )

sgn

sgn
T

T

k a

k a

 

 
 (A2.18) 
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Provided  and either  with  or 1 2 T 22k  1k  ( ) 0sgn a  1k   and , the 

guidance 

( ) 0sgn a T

w 1 2M c Ta k v k a   guarantees asymptotic stability with respect to la  .  Note 

this conclusion is based on two assumptions: (1) the small angle approximation and (2) 

the missile has zero acceleration along the line-of-sight. 
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APPENDIX C: OPTIMAL GAIN FOR THE AUGMENTED 
PROPORTIONAL NAVIGATION GUIDANCE LAW 
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The figure below represents a missile/target engagement where MV

ssile

 is the 

missile’s velocity,  is the target’s velocity,  is the range between the mi  and the  TV  r

target along the line-of-sight (LOS), and   is the line-of-sight angle.   

 

ing the target maneuvers with normal acceleration 

with normal acceleration 

Assum A  and the missile maneuvers T

MA , the equatio  is n for the acceleration of the system

 M Ty A A    (A3.1) 

By letting 1x  represent position ( y ) and 2x  represent velocity ( y ), the following state-

space system is formed 

 1 2

2 M T

x x

x A A



  




 (A3.2) 

If the normal acceleration of the missile ( MA

s co

) is considered to be the control ( ) and the 

ormal acceleration of the target (  i nsidered

system may be written as 

u

n  to be a disturbance ( w ), then the TA )

LOS 



r 

VM 

VT y 

x 

AM 

AT 
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 01 1

2 2

0 1 0

0 0 1 1

x Ax Bu Dw

x x
u w

x x

  

      
          
        





   (A3.3) 

Applying optimal control to this problem, the goal is to minimize the following cost 

function 

2 ( )u t dt  (A3.4)  
0

12 ( )min +
ft

b
f tu

J x t 

where  if the miss distance is to be minimized.  Adjoining the state in equation 

 the Ham  

0b 

(A3.3) to the cost function in equation (A3.4) yields iltonian of the system

21
2 ( )Dw  (A3.5)  + Ax BuTH u  

 found by solving the following set of equations 

 

The optimal solution is

0

(t )

x

u

T

i f
i

H

H

x


 

















 (A3.6) 

where 12 ( )b
fx t  represents the terminal portion of the cost function.  Solving the set of 

equations yields 

1

2 1

0

T 



 







 

  

 (A3.7) 

 (A3.8) 

 

 1 2

2

0

0

1

u B

u = B

u =

T

T

u

 



 
  

 
 

 






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1 1

2

( ) = ( )

( ) = 0

f f

f

t bx t

t




  (A3.9) 

Equation (A3.7) gives , hence 1 0 1 const .  Since equation (A3.9) gives 

1 1( ) = ( )f ft bx t  

1 1( ) = ( )ft bx t  (A3.10) 

Equation (A3.7) also gives 2 1   .  From equation (A3.10) ) 2 1= ( fbx t .  Integrating 

from  to  t ft  and noting that equation (A3.9) gives 2 ( ) = 0ft  

2 1( ) = ( )( )f ft bx t t t  (A3.11) 

From equation (A3.8) 

 1( ) ( )( )f fu t bx t t t    (A3.12) 

o the state equation (A3.3) 

 

Returning t

1 2

2

x x

x u w



  




 (A3.13) 

his with equation (A3.12) implies 

 

T

2 1( )( )f fx bx t t t w    (A3.14) 

Integrating from  to  0t ft  yields 

 2 21( ) ( ) ( ) ( ) ) ( )2 1 0 0 2 02 (f f fx t bx t t t t t x t         w t t (A3.15) 

tegrating 1 2x x  from  to  0t ftIn  yields 

 3 3 21 1
1 1

21 ( ) ( )( ) ( )
 

0 0 02 3

0 2 0 0 1 02

( ) ( ) ( ) ( ) ( ) ( )f f f fx t bx t t t t t t t t t           (A3.16) 

At 

w t t x t t t x t    

ft t  
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3 2
0 2 0 0 1 0) ( )( ) ( )f

1 1
1 1 03 2

0 2 0 0 1 0

3 21 1
0 1 03 2

21
0 2 02

( ) ( )( ) (

( ) ( )( ) ( )

1 ( ) ( ) ( ) ( )( ) ( )

( ) ( )(

f f f f

f f

f f f

f f

x t bx t t t w t t x t t t x t

 

3 21 1
1 1 03 2( ) ( )( )f f f

2 0 0 1 0f

1( )f

x t bx t t t   w t t x t t t x t

b t t x t w t t x t t t x t

w t t x t t

    

   

        
  



  

x t 0 1 0

31
03

) ( )

1 ( )f

t x t

b t t



 

 (A3.17) 

Recall from equation (A3.12) 1( ) ( )( )f fu t bx t t t    therefore 

0 1 0

 

21
0 2 0 0 1 02 ) ( )( ) ( )

( ) (
t x t t t x t

u t b t0 031
03

21
0 2 02

0 21
03

0 2 0 0 1 02
0 1 1

3

( ) ( )( )

(
)

1 ( )

( ) (
( )

1 ( )

) ( )
( )

(

f f

f f
f

f

f

f

f f

fb

u t bx t t t

w t
t

b t t

w t t x t
u t b

b t t

t x t
u t

t t



0 1 0)( ) ( )ft t x t

21 ( ) ( )(w t t x t t

0

 




   
  

   
   

 
 

 

   
   

   (A3.18) 

 
2)


 
  

In general 

 



21
2 12

21 1
3

21
2 12

2)t3

21
1 2 2

23

( ) ( )( ) ( )
( )

( )

( ) ( )( ) ( )
( ) 3

(

( ) ( )( ) ( )
( ) 3

( )

f f

fb

f f

fb

f f

fb

w t t x t t t x t
u t

t t

w t t x t t t x t
u t

t

x t x t t t w t t
u t

t t

    
   

   
    

   
   

    
   

   

 (A3.19) 

tance is required to be zero, then the cost .  In this case, b If the miss dis

 1 2 1
2 w

2

( ) ( )
( ) 3

( ) ( )f f

x t x t
u t

t t t t

 
    

   

 Guidance law is based upon the rate of the 

ng-of-sight angle ), a relationship needs to be defi

 (A3.20) 

Since the Augmented Proportional Navigation

li ned involving  .  From the figure (

above 
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 sin /y r   (A3.21) 

Assuming the small angle approximation 

 /y r   (A3.22) 

Taking the time derivative 

 
r r y

y r

r r

  


  

  
 

 (A3.23) 

Defining the closing velocity cV r   , equation (A3.23) becomes 

 cVy

r r


  

  (A3.24) 

Substituting /y r   from equation (A3.22) yields 

 
2

cV yy

r r
  

  (A3.25) 

Also taking note that 

 

cr V t  

2 2

2

2

c

c c

c c

c

V yy

V t V t

y y

V t V t

y y
V

t t

  

  

  







 (A3.26) 

Generalizing 

 2 1
2

( ) ( )

( ) ( )c
f f

x t x t
V

t t t t
  

 
  (A3.27) 

Substituting this into equation (A3.20) yields 

  1
2( ) 3 cu t V w    (A3.28) 
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which shows that the optimal gain for the augmented proportional navigation guidance 

w is 3. la
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