

Egyptian Journal of Anaesthesia

ISSN: (Print) 1110-1849 (Online) Journal homepage: https://www.tandfonline.com/loi/teja20

RETRACTED: Can sugammadex improve the reversal profile of Atracurium under Sevoflurane anesthesia?

Heba Ismail Ahmed Nagy & Hany Wafik Elkadi

To cite this article: Heba Ismail Ahmed Nagy & Hany Wafik Elkadi (2014) RETRACTED: Can sugammadex improve the reversal profile of Atracurium under Sevoflurane anesthesia?, Egyptian Journal of Anaesthesia, 30:1, 95-99, DOI: <u>10.1016/j.egja.2013.09.007</u>

To link to this article: https://doi.org/10.1016/j.egja.2013.09.007

© Production and hosting by Elsevier B.V. on behalf of Egyptian Society of Anesthesiologists.

0

Published online: 17 May 2019.

_	
Γ	
	0
-	

Submit your article to this journal 🗹

Article views: 149

View related articles

View Crossmark data 🗹

Citing articles: 1 View citing articles

Research Article

Egyptian Society of Anesthesiologists

Egyptian Journal of Anaesthesia

www.elsevier.com/locate/egja www.sciencedirect.com

ossMark

Can sugammadex improve the reversal profile of atracurium under sevoflurane anesthesia?

Heba Ismail Ahmed Nagy *, Hany Wafik Elkadi

Department of Anesthesiology, Faculty of Medicine, Cairo University

Received 28 February 2013; revised 1 September 2013; accepted 20 eptember 201 Available online 15 December 2013

reversal of

critical

KEYWORDS

Sugammadex; Reversal of neuromuscular blockade; Critical respiratory events

ative study aimed at the clinical outcome of sugammadex Abstract The current spect C COL ckade (NMB) and the evaluation of its impact on the frequency of omuscula pirat ring sevoflurane anesthesia. events

s and met ds: The dy included 100 male patients with mean age of 33.1 \pm 7.5 years; 67 Pati nts of AS L 27 predents of ASA grade II and 6 patients of ASA grade III. Patients were pa qual groups: Group N received reversal of NMB using intravenous (IV) ated to tw and (6 µg/kg) and Group S received IV sugammadex (2 mg/kg). After induction of anestheneostign sia, NM fu. on was monitored, at the wrist; using the TOF-Watch-SX. At the end of the surgery, the reversal of MB assigned for each group was administered at least after 15 min after the last e of atracurium and NM monitoring was continued until recovery of the TOF T4/T1 ratio to 0. ime since injection of the reversal drug till recovery to TOF ratio of 0.9 was recorded and spiratory events (CRE) were monitored. critica

vpt

Results: Both groups showed non-significant difference as regards the frequency of patients required top doses of NMBD or the mean number of top doses of NMBD. Time till achievement of TOF ratio of 0.9 was significantly shorter with sugammadex compared to neostigmine. Moreover, mean time to achieve TOF ratio of 0.9 was 2.76 ± 1.5 min with sugammadex, but was 9.78 ± 2 min with neostigmine with significant difference in favor of sugammadex. CRE were recorded in 5 patients (5%); 3 patients with neostigmine (6%) and 2 patients (4%) with sugammadex.

Conclusion: NMB reversal using sugammadex allowed significantly earlier achievement of TOF ratio of 0.9 in significantly higher number of patients with minimally and acceptable respiratory events at PACU in comparison with neostigmine.

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Society of Anesthesiologists.

Corresponding author. Tel.: +20 1220807670.

E-mail address: drheba@hotmail.com (H.I.A. Nagy).

Peer review under responsibility of Egyptian Society of Anesthesiologists.

1. Introduction

The problem of residual neuromuscular blockade dates since the introduction of general anesthesia and the use of neuromuscular blockers; earlier studies reported a 6-fold increased risk of death in the perioperative period in association with

1110-1849 © 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Society of Anesthesiologists. http://dx.doi.org/10.1016/j.egja.2013.09.007

the use of neuromuscular blocking drugs (NMBD) [1]. Thereafter, the advances in manufacturing of NMBD in parallel with development of new inhalational anesthetics promoted the use of general anesthesia and lessened its risks [2,3].

Despite the application of techniques proven to limit the degree of residual paralysis as the use of intermediate-acting NMBD and pharmacological reversal, up to 33–64% of patients have evidence of inadequate neuromuscular recovery on arrival to the post-anesthetic care unit (PACU) [4–6]. Acetylcholinesterase inhibitors, such as neostigmine and edrophonium carry a risk of unwanted effects, such as bradycardia, hypotension, broncho-constriction and hyper-salivation. These side effects were opposed by the concomitant use of anticholinergic drugs, such as atropine or glycopyrrolate, but anticholinergic drugs have their inherent side effects as tachycardia, blurred vision and sedation, and so should be administered cautiously especially in high risk and elderly patients [7–9].

Studies in volunteers have demonstrated that train-of-four (TOF) fade ratios < 0.7-0.9 are associated with upper airway obstruction, inadequate recovery of pulmonary function, reduced pharyngeal muscle coordination, an increased risk for aspiration and an impaired hypoxic ventilatory response [10,11].

Sugammadex, a water-soluble, modified specifically designed γ -cyclodextrin, the first of a new class of selective relaxant binding drugs developed for the rapid and complete reversal of neuromuscular blockade induced by aminosteroid NMBD. Sugammadex acts by encapsulating unbound molecules of NMBD, thus reducing its free fraction and process them from binding to nicotinic receptors in the neurom ucular junction thus inducing rapid reversal of their effect [12-14].

Clinical studies of sugammadex in surgi batients shown that sugammadex provides effect ۱t -depend e, a reversal of both moderate and deep dense ro roniumduced neuromuscular blockade duce propole intenand anesthesia. Sevoflurane is wide cliv nd al pracue de, the s. y and efficacy of enhances neuromuscular blog under maint various doses of sugamme nce anesthesia n la with volatile drugs repr ly unknown ecially after ar blockade [15–17]. administration at deep neuromus

The current propective comparence study aimed at the clinical outcome of sugammadex reveal of neuromuscular blockade and the evalution of its impact on the frequency of critical realizatory cents during sevoflurane anesthesia.

atient, nd met.

The current process conducted at Anesthesia department, New A-Aini University Hospital since January 2011 till October 11. After approval of the study protocol by the local Ethican committee and obtaining written fully informed patients' consent, 100 adult male patients assigned to undergo open abdominal surgical procedures were enrolled in the study. Patients with cardiac, renal or hepatic diseases or sensitivity to used drugs were not enrolled in the study.

Patients were assigned using sealed envelopes, allocated to two equal groups (n = 50): Group N included patients who received reversal of NMB in the form of intravenous (IV) neostigmine in dose of 6 µg/kg and 10 µg/kg of atropine while Group S included patients who received reversal of NMB using IV sugammadex in dose of 2 mg/kg.

All patients were premedicated with IV atropine 0.6 mg and midazolam 1-2 mg 5 min before induction of anesthesia. Before induction, patients were preoxygenated and base line mean arterial blood pressure (MAP), heart rate (HR), respiratory rate (RR) and peripheral arterial O_2 saturation (SaO₂) were recorded. induced Anesthesia was with propofol 1.5–2.5 mg/kg and fentanyl 0.5–1 µg/kg. Then, neuromuscular function was monitored, at the wrist; using the TOF-Watch-SX (Schering-Plough Corporation, Swords-Dublin, Ireland). Briefly, according to good clinical resear in pharmapra codynamic studies of NMBD [18], the evice was bilized by using repetitive TOF stimulation 1 min followed v 50 Hz titanic stimulation given for 5 s, and titive TOF st ulation for 3-4 min. After calibration on of the device a curium trachea was in. 0.5 mg/kg was given and t ated nen the response to TOF stimulation ceased up of up do, of 0.1 mg/kg were used as required upon rear f atracurium d upon reappearance of the To a Type maintain perfomuscular block-peration. Valation as controlled and minsecond twitch (T2 n a T ade during the ute ventila as adjusted ntain end tidal CO₂ at m sthesia was haintained with sevoflurane 35 ± 5 r . Hg. A 2–4%. Lactated Rin 's solution at a rate of 10 ml/kg/hr was ing anesthesia and 2 ml/kg/hr after anesthesia until oi atients tolerated oral fluids. At the end of the surgery, the eversal of NMP assigned for each group was administered at east 15 min aft the last dose of atracurium (with the appearce of the fou contraction of the TOF) and neuromuscular continued until recovery of the TOF T4/T1 itoring y Th. Following extubation patients were maintained ratio \mathbf{n} supplemental O_2 until awake in the recovery room.

ToF ratio of 0.9 was recorded. Critical respiratory events were monitored and included the following items: requirement for intervention for upper airway obstruction, occurrence of hypoxemia categorized according to SaO_2 , the presence of manifestations of respiratory distress, need for re-intubation in the recovery room and/or the presence of manifestations of pulmonary aspiration.

2.1. Statistical analysis

Obtained data were presented as mean \pm SD, ranges, numbers and ratios and median values. Results were analyzed using Wilcoxon's ranked test for unrelated data (Z test) and Chisquare test. Statistical analysis was conducted using the SPSS (Version 15, 2006) for Windows statistical package. P value <0.05 was considered statistically significant.

3. Results

The study included 100 male patients with mean age of 33.1 ± 7.5 ; range: 28-52 years. There were 67 patients of ASA grade I, 27 patients of ASA grade II and 6 patients of ASA grade III. Details of patients' enrollment data are presented in Table 1 showing a non-significant (p > 0.05) difference between both study groups.

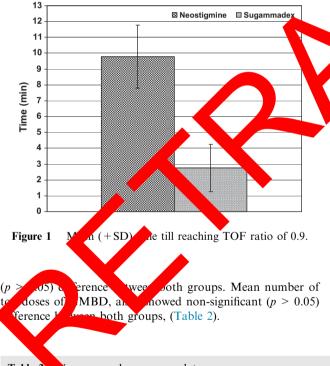

There was non-significant (p > 0.05) difference between both study groups as regards mean operative time and total dose consumed of NMBD (Table 2). Fifty-six patients (56%) required top doses of NMBD; 24 patients (48%) in group N and 32 patients (64%) in group S with non-significant

Table 1 Patient	ts' enrollment data.			
Data		Group N	Group S	Total
Age (years)		32 ± 6.7 (29–52)	34.1 ± 8.1 (28–49)	33.1 ± 7.5 (28–52)
Weight (kg)		84.5 ± 5.9 (69–92)	83.2 ± 7.7 (66–93)	$83.8 \pm 6.8 \ (66-93)$
Height (cm)		$167.5 \pm 2.5 \ (165 - 181)$	$165.7 \pm 3.2 \ (162 - 179)$	$166.6 \pm 3 (162 - 181)$
BMI (kg/m ²)		$30.1 \pm 2.1 \ (25 - 33.8)$	$30.3 \pm 2.9 (23.7 - 35.4)$	$30.2 \pm 2.5 (23.7 - 35.4)$
ASA grade	Grade I	35 (70%)	32 (64%)	67 (67%)
	Grade II	13 (26%)	14 (28%)	27 (27%)
	Grade III	2 (4%)	4 (8%)	6.00
Data are presente	d as mean + SD and n	number: ranges and percentages are	in parenthesis	

Data are presented as mean \pm SD and number; ranges and percentages are in parenthesis A non-significant (p > 0.05) difference between both study groups.

Table 2Operative data.		
Data	Group N	Group S
Operative time (min)	95.5 ± 22.4 (60–13	9 ± 20.1 (65–150)
Total dose of NMBD	42.2 ± 2.9 (34.5 J)	$1.6 \pm 3.9 (33-47)$
Number of patients required top doses of NMBD	29 (58%)	31 (62%)
Number of top doses	2.5 ± 1.8 (5)	$2.7 \pm 1.5 (1-5)$
Data are presented as mean \pm SD and number: ranges and pe	proentages are in parenthesis	

Data are presented as mean \pm SD and number; ranges and percentages are in parenthesis A non-significant (p > 0.05) difference between both study groups.

ment of TOF ratio of 0.9 was significantly ime till achie (Z = 6, p < 0.001) with sugammadex compared shc (Fig. 1). Moreover, only 5 patients (10%) in sugto neos. madex group reached TOF ratio of 0.9 within a, 21 patients (42%) reached TOF ratio of 0.9 in range of 3-5 min and 24 patients (52%) reached TOF ratio of 0.9 in less than 3 min with a mean time for patients received sugammadex to achieve TOF ratio of 0.9 of 2.76 ± 1.5 min. On the contrary, only 4 patients (8%) reached TOF ratio of 0.9 within 5-7 min, 23 patients (46%) within 8–9 min, 18 patients (36%) within 10– 12 min and 5 patients (10%) achieved TOF ratio of 0.9 within 13-14 min with a mean time for patients received neostigmine to achieve TOF ratio of 0.9 of 9.78 \pm 2 min, (Table 3).

All enrolled patients completed the study; CRE were recorded in 5 patients (5%); 3 patients with neostigmine (6%) and 2 patients (4%) with sugammadex. One patient in neostigmine group developed severe hypoxemia with SaO₂ 85% despite the oxygenation in line with signs of aspiration and was recovered on application of oral airway, repeated suction, more atropinization and increasing O₂ flow. This patient required additional dose of neostigmine till achieved TOF of >0.9 and was capable of breathing spontaneously. The other

Data		Group N	Group S
Time to reach TOF ratio of 0.9	< 3 min	0	24 (48%)
	3 - < 5	0	21 (42%)
	5–7	4 (8%)	4 (8%)
	8–9	23 (46%)	1 (2%)
	10-12	18 (36%)	0
	13–14	5 (10%)	0
	Mean	9.78 ± 2 (5-14)	$2.76 \pm 1.5 (1.5 - 7.5)$

Data are presented as mean \pm SD and number; ranges and percentages are in parenthesis.

two patients in neostigmine group and one patient in sugammadex group developed moderate hypoxemia with SaO_2 of 92%, 93% and 92%, respectively and responded to the application of oral airway and increasing rate of O_2 flow. The 2nd patient in sugammadex group required only jaw thrust with maintenance on O_2 mask till full recovery.

4. Discussion

The problem concerning residual neuromuscular blockade is mostly the development of critical respiratory events (CRE) which usually occur in the post-anesthesia care unit (PACU). The current study showed that the reversal of atracurium using Sugammadex to achieve a TOF ratio of 0.9 took statistically significant less time than with neostigmine in a significantly higher number of patients with an overall lower rate of CRE events. In fact, in the neostigmine group one patient experienced severe hypoxemia.

In hand with the aim of the study and the reported outcome, Murphy et al. [19,20] reported a frequency of residual neuromuscular blockade of 4.5% in the PACU at TOF ratio ≤ 0.9 and concluded that incomplete neuromuscular recovery is an important contributing factor in the development of adverse respiratory events in the PACU. Thereafter, Murphy and Brull [21] documented that clinical trials have demonstrated that incomplete neuromuscular recovery during the early postoperative period may result in acute respiratory events (hypoxemia and airway obstruction), delays in trach bation, and an increased risk of postoperative pulmona com plications. Also, Sauer et al. [22] out of their rando zed prospective, placebo-controlled trial conclu that mi residual block was associated with hypot ACU. ala h

Through the present study to exclude the imp t of gend on neuromuscular recovery, all entered patie male so that the difference in the out C .ed d be attra to the type of reversal used. is opinion, Heier support o ifferences in t. et al. [23] reported sex-relat relationship between abductor pollicis f ra and clinical mures of muscle function used to assess recover from neuromuscular block. Also, there was not significant difference between enrolled pa-tients as regarder onstitutional, anesther, and operative data. x was add histered in a dose of 2 mg/kg; in line Sugamm al. [24] reviewed clinical trials concernwith such do Makri rect of sugar and reported that the ing dose-dependent x for reversal of shallow block gamma sug ose or d _____ng/kg for profound level of block. 2 mg/kg les up dose of sugammadex allowed significant shorter The us pry time compared to neostigmine with eurom time till achievement of TOF ratio of 0.9 of 2.76 min). Such duration till recovery coincided with that re- (\sim) Duvaldestin et al. [25] who reported a mean recovery ported time of 3. and 2.8 min with sugammadex 2 mg/kg after rocuronium and vecuronium NMB, respectively. Schaller et al. [26] found sugammadex, 0.22 mg/kg, is able to reverse a TOF ratio of 0.5-0.9 or higher in an average time of 2 min and within 5 min, 95% of patients reach this TOF ratio, while neostigmine, $34 \mu g/kg$, is able to reverse a TOF ratio of 0.5–0.9 or higher within 5 min. Lemmens et al. [27] detected that the mean time to recovery of TOF ratio to 0.9 was 15-fold faster with sugammadex (4.5 min) compared with neostigmine (66.2 min) after profound vecuronium-induced block.

Also, Illman et al. [28] reported a significant time gap between visual loss of fade and return of TOF ratio >0.9 after reversal of rocuronium block by neostigmine compared to sugammadex which allowed a safer reversal of a moderate NMB with significantly shorter times of recovery. Also, Adamus et al. [29] reported that after sugammadex and neostigmine, the respective intervals until TOF ratio ≥ 0.90 were 2 and 15.9 min.

In hand with the obtained data, Gaszynski et al. [30] reported a mean time to 90% of TOF for morbid obese patients received rocuronium was 2.7 min wi madex and 04. difference 9.6 min for neostigmine with signific favor of sugammadex and concluded that inistration of ammadex provides fast recovery of neuro, scular functi in the morbidly obese, however p stigmine es not. Se nsen et Ince induction al. [31] during rapid sec 1 in Jation, reported that the median one from the cheal interaction to spontaneous ventilation and 90% covery of the first twitch in s and 518 states succinylon ine and 216 s and anonium-suger made successful spectively and con-TOF were 406 s _____d 518 168 s with r cluded that sequence h. v n and intubation with rocuroni 1 follo by reversal with sugammadex allowed earlier re-establishm. of spontaneous ventilation than with oline.

In support of the efficacy and safety of NMB reversal using sugammadex, in applicability in critical situation. Curtis et al. 32] and Barbon and da Cunha [33] presented case reported of tient deterion red from a 'can't intubate, can ventilate' situation to a 'can' intubate, can't ventilate' situation and rocuronium under neuromuscular block was successfully reversed with sugammadex, as evidenced by the restoration of diaphenentic movement, the ability of the patient to move her limbs, and the presence of a train-of-four nerve stimulation with no fade.

The obtained results concluded that neuromuscular blockade reversal of Atracurium under sevoflurane anesthesia using sugammadex allowed significantly earlier achievement of TOF ratio of 0.9 in a significantly higher number of patients with minimal and acceptable respiratory events at PACU in comparison to neostigmine. Hence, Sugammadex improves the reversal profile of Atracurium under Sevoflurane anesthesia.

Conflict of interest

No conflict of interest to be declared.

References

- Beecher HK, Todd DP. A study of the deaths associated with anesthesia and surgery: based on a study of 599, 548 anesthesias in ten institutions 1948–1952, inclusive. Ann Surg 1954;140:2–35.
- [2] Abdulatif M, Naguib M. Accelerated reversal of atracurium blockade with divided doses of neostigmine. Can Anaesth Soc J 1986;33(6):723–8.
- [3] Caldwell JE, Robertson EN, Baird WL. Antagonism of vecuronium and atracurium: comparison of neostigmine and edrophonium administered at 5% twitch height recovery. Br J Anaesth 1987;59(4):478–81.
- [4] Baillard C, Gehan G, Reboul-Marty J, Larmignat P, Samama CM, Cupa M. Residual curarization in the recovery room after vecuronium. Br J Anaesth 2000;84:394–5.

- [5] Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia 2001;56:312–8.
- [6] Cammu G, De Witte J, De Veylder J, Byttebier G, Vandeput D, Foubert L, et al. Postoperative residual paralysis in outpatients versus inpatients. Anesth Analg 2006;102:426–9.
- [7] Fox MA, Keens SJ, Utting JE. Neostigmine in the antagonism of the action of atracurium. Br J Anaesth 1987;59(4):468–72.
- [8] Naguib M, Abdulatif M. Priming with anti-cholinesterases-the effect of different combinations of anti-cholinesterases and different priming intervals. Can J Anaesth 1988;35(1):47–52.
- [9] Naguib M, Abdulatif M, Al-Ghamdi A. Dose-response relationships for edrophonium and neostigmine antagonism of rocuronium bromide (ORG 9426)-induced neuromuscular blockade. Anesthesiology 1993;79(4):739–45.
- [10] Eriksson LI, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 1997;87:1035–43.
- [11] Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans. Pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 2000;92:977–84.
- [12] Bom A, Bradley M, Cameron K, Clark JK, Van Egmond J, Feilden H, et al. A novel concept of reversing neuromuscular block: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew Chem Int Ed Engl 2002;41:266–70.
- [13] Zhang MQ. Drug-specific cyclodextrins: the future of capid reversal? Drugs Future 2003;28:347–54.
- [14] Epemolu O, Bom A, Hope F, Mason R. Reverse of neuromuscular blockade and simultaneous increase in planta rocuronium concentration after the intravenous infusion of novel reversal agent Org 25969. Anesthesic 257 25, 199:632-
- [15] Groudine SB, Soto R, Lien C, Drote D, Roberts K. A randomized dose-finding, phase II sture of the select //e relaxant binding drug, sugammadex, capabilities of superformer of sup
- [16] Vanacker BF, Vermeyer M, Struys MM, vietbergen H, Vandermeersch E, Salara V, et al. Reversal of curoniuminduced neuromuscular block with a novel drug sugammadex is equally effective ader maintenance mesthesia with propofol or sevoflurane maesth Analg 2007;104:2008.
- enkämper AW, Claudius C, Larsen Rex C, S [17] Pühringer ME, et PB, Prin Reversal of profound high-dose euromuser blockade by sugammadex rocuroniumdifferei me point in international multi-center, at ty assessor-blinded phase II trial. dose ng, ogy 2008; 6-97. nesthesi
- Fuchs-Proer T. Meistelman C, Junke E, Longrois D, Donati F. Dose for the providence of the antagonize low levels of arium-induced residual paralysis. Anesthesiology 20, 109:A1402.
- [19] Mury GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Voleer JS, et al. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit. Anesthesiology 2008;109(3):389–98.

- [20] Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 2008;107(1):130–7.
- [21] Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 2010;111(1):120–8.
- [22] Sauer M, Stahn A, Soltesz S, Noeldge-Schomburg G, Mencke T. The influence of residual neuromuscular block on the incidence of critical respiratory events. A randomsec prospective, placebo-controlled trial. Eur J Au esthesiol 20128(12): 842–8
- [23] Heier T. Feiner JR. Wright PM. T. Caldwell J Sexdifferences ionship related in ween he pollicis tra acceleromyographic addu f-four 10 and clinical manifestations sidual ner omusci k: a study in healthy voluntee during p steady-sta infusion of 18(3):444mivacurium. Br JAnae 2017
- [24] Makri I, Papa La A, Denhati A, Partus AB, George K, Nikolaos KP, et al. Sugamments, a processing reversal drug. A review operational trials. Rev. 2010 Clin Trials 2011;6(3): 250-5.
- [25] Duvaldestin P, Kuchega K, Saldien V, Claudius C, Servin F, Klaude, et al. A undomized, dose-response study of agaminadex given for reversal of deep rocuronium- or vecuronium-induced neuromuscular blockade under sevoflurane anesthesia. Anoth Analg 2010;110(1):74–82.
 - Schaller SJ, Fick H, Ulm K, Blobner M. Sugammadex and eostigmine d e-finding study for reversal of shallow residual pomuser block. Anesthesiology 2010;113(5):1054–60.
- [27] Lennas erIJ, El-Orbany MI, Berry J, Morte Jr JB, Martin G. Reversal of profound vecuronium-induced neuromuscular block sevoflurane anesthesia: sugammadex versus neostigmine. BMC Anesthesiol 2010;10(1):15.
- [28] Illman HL, Laurila P, Antila H, Meretoja OA, Alahuhta S, Olkkola KT. The duration of residual neuromuscular block after administration of neostigmine or sugammadex at two visible twitches during train-of-four monitoring. Anesth Analg 2011;112(1):63–8.
- [29] Adamus M, Hrabalek L, Wanek T, Gabrhelik T, Zapletalova J. Intraoperative reversal of neuromuscular block with sugammadex or neostigmine during extreme lateral interbody fusion, a novel technique for spine surgery. J Anesth 2011;25(5):716–20.
- [30] Gaszynski T, Szewczyk T, Gaszynski W. Randomized comparison of sugammadex and neostigmine for reversal of rocuronium-induced muscle relaxation in morbidly obese undergoing general anaesthesia. Br J Anaesth 2012;108(2):236–9.
- [31] Sørensen MK, Bretlau C, Gätke MR, Sørensen AM, Rasmussen LS. Rapid sequence induction and intubation with rocuroniumsugammadex compared with succinylcholine: a randomized trial. Br J Anaesth 2012;108(4):682–9.
- [32] Curtis R, Lomax S, Patel B. Use of sugammadex in a 'can't intubate, can't ventilate' situation. Br J Anaesth 2012;108(4):612–4.
- [33] Barbosa FT, da Cunha RM. Reversal of profound neuromuscular blockade with sugammadex after failure of rapid sequence endotracheal intubation: a case report. Rev Bras Anestesiol 2012;62(2):281–4.