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ABSTRACT 
 

In this work, a two-phase lattice Boltzmann method (LBM) approach is implemented to 

investigate the hydrodynamic behavior of a single droplet impingement on a dry surface. 

LBM is a recently developed powerful technique to compute a wide range of fluid flow 

problems, especially in applications involving interfacial dynamics and complex 

geometries. Instead of solving the non-linear Navier-Stokes equations, which are 

complicated partial differential equations, LBM solves a set of discretized linear 

equations, which are easy to implement and parallelize. The fundamental idea of LBM is 

to recover the macroscopic properties of the fluid which obeys Navier-Stokes equations, 

by using simplified kinetic equations that incorporate the essential physics at the 

microscopic level.  

 

Considering the numerical instability induced by large density difference between two 

phases during the LBM simulations, the particular LBM scheme used in this study has its 

benefits when dealing with high density ratios. All the simulations are conducted for 

density ratio up to 50 in a three-dimensional Cartesian coordinate system, and three 

important dimensionless numbers, namely Weber number, Reynolds number and 

Ohnesorge number, are used for this study. 

 

To validate this multiphase LBM approach, several benchmark tests are conducted. First, 

the angular frequency of an oscillating droplet is calculated and compared with the 

corresponding theoretical value. Errors are found to be within 6.1% for all the cases. 

Secondly, simulations of binary droplet collisions are conducted in the range of 
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20<We<80. Three different types of outcome, namely coalescence collision, separating 

collision and stretching collision, are presented. Then, the normal impact of a liquid drop 

impinging on a smooth dry surface is simulated at various liquid Weber and Reynolds 

numbers. A novel wall boundary condition is implemented in order to study the effects of 

wetting characteristic of the impinging surface. Results are shown to compare the spread 

factor dependence on impact velocity, liquid density, liquid viscosity, surface tension and 

surface wetting characteristics. The results are validated with experimental data. Two 

different outcomes are obtained: deposition and splashing break-up. The transition to 

splashing is found to be dependent on the liquid Weber and Reynolds numbers. 
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CHAPTER ONE: INTRODUCTION 
 

 

The droplet impingement on surfaces is an everyday occurrence which has several applications 

in fluid mechanics. Interactions between drops and surfaces are encountered both in nature and a 

wide range of science and engineering applications, such as rain drops falling on the ground, ink-

jet printing, spray cooling of hot surfaces (turbine blades, lasers, semiconductor chips), spray 

painting and coating, plasma spraying, fuel spray atomization in combustion chambers of both 

gas turbines and internal combustion engines, industrial washing, and more recently in 

microfabrication and microchannels. Another very practical application is in metallurgy. Metals 

or alloys during their processing are usually liquids. This fact is used to study their properties by 

determining the surface tension of metals from the shape of a molten metal drop to understand 

reactions on the drop surface. At high impact velocity, the drop may splash, forming secondary 

drops. This is obviously undesirable in applications such as ink-jet printing and spray coating. 

However, splashing may be desirable in combustion chambers for instance. Thus, a fundamental 

understanding of fluid dynamics associated with droplet impingement on surfaces and their 

interactions with one another and then correctly predicting its subsequent outcome are very 

important to achieve the desired performance in those applications.  
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Figure 1: Six different outcomes of drop impact on a dry surface (From Rioboo et al. (2001)) 
 

When a droplet hits on a rigid dry surface, several outcomes may occur, and they may be broadly 

classified as deposition, splashing and rebounding. In a recent experimental study conducted by 

Riboo et al. (2001), six possible outcomes of drop impact on a dry wall were revealed, shown in 

Figure 1, namely deposition, prompt splash, corona splash, receding break-up, partial rebound 

and complete rebound.  In their study, the droplet size, impact velocity, droplet viscosity, surface 

tension of the droplet, the surface roughness amplitude and the surface wettability characteristics 

were varied to examine their influence on the impingement outcomes. Thus, the physics of 
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droplet impingement is fairly complex. To systematically study the dynamics of a spreading 

droplet, three important dimensionless numbers are usually employed: 

Weber number: 
2

LWe=  V Dρ
σ

 (1.1) 

Reynolds number: LRe=
L

VDρ
μ

 (1.2) 

Ohnesorge number: / Re /L LOh We Dμ ρ σ= =   (1.3) 

where Lρ , Lμ ,σ , D  are the density, dynamic viscosity, surface tension and the diameter of the 

liquid droplet,  respectively. V  is the impact velocity. Ohnesorge number is a combination of 

Weber number and Reynolds number, and the importance of it is that it solely represents the 

properties of the liquid droplets, while Weber number represents the ratio of the droplet kinetic 

energy on impact to the surface tension energy, and Reynolds number represents the inertial 

force of the droplet to viscous force. Another important dimensionless parameter which is used 

to characterize the drop/surface interactions is the spread factor, defined as the ratio of the 

spreading film diameter to the initial spherical droplet diameter:  

* /d d D=  (1.4) 

 

Studies of droplet impingement on dry surface have been mostly experimental so far. However, 

as argued by Mukherjee (2006), experimental investigations are not adequate enough to clarify 

the controlling physics because the impingement process occurs at vastly different length and 

time scales. For example, surface tension forces may act over the length scales only of the order 

of several molecular mean free paths while fluid flow scales may be of the order of the drop 
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diameter. Scales ranging from microscopic to macroscopic may be involved. Thus, multi-scale 

modeling is needed for computational studies.  The relevant traditional computational fluid 

dynamics methods will be reviewed in next chapter.  

 

The numerical simulation of multiphase flows is a very challenging class of problems because of 

the inherent difficulty in tracking the fluid interfaces, mass conservation and correct treatment of 

the surface tension force. In recent years, the lattice Boltzmann method (LBM) has emerged as a 

very promising numerical approach for simulation of complex and multiphase flows. The 

success of LBM based simulations is mainly due to their mesoscopic and kinetic nature, which 

enables the simulation of macroscopic interfacial dynamics with the underlying microscopic 

nature.  

 

In this thesis, the lattice Boltzmann method is employed to study the droplet impingement on a 

dry surface in a three-dimensional Cartesian coordinate system. The thesis consists of six 

chapters, and it is organized as follows. In chapter 2, the literature review of both experimental 

studies and traditional computational fluid dynamics (CFD) methods on droplet impingement is 

presented, and various LBM schemes for multiphase flow are discussed and compared. In 

chapter 3, a brief history of LBM developed from lattice gas automata (LGA) is reviewed, and 

the mathematical derivations of lattice Boltzmann equation (LBE) from continuum Boltzmann 

equation, Navier-Stokes from LBE are presented. Single phase fluid flow simulation, e.g., 

Poiseuille flow, is presented as a benchmark test. Two different kinds of wall boundary 

conditions are implemented and the results are compared. In chapter 4, the multiphase lattice 
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Boltzmann scheme employed in this study is presented, and its algorithm is discussed. Capillary 

wave and binary drop collision are simulated as benchmark tests to validate the LBM scheme. In 

chapter 5, simulations of a droplet impingement on a dry surface are presented under a variety of 

different Weber numbers, Reynolds numbers and Ohnesorge numbers. Deposition, splashing and 

rebound are investigated as different outcomes of the impingement. The transition for the 

impingement outcome from deposition to splashing is qualitatively studied by a simple energy 

conservation analysis. In chapter 6, conclusions of this study are presented.  
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CHAPTER TWO: LITERATURE REVIEW 
 

 

In one of the earliest studies of drop-surface interactions, Worthington (1876) reported his 

experimental observations of drops of milk and mercury impacting on glass. Other notable 

earlier works were done by Engel (1955), Ford et al. (1967). However, most significant studies 

of droplet impingement have been done in the last two decades using high-speed photographic 

techniques. There are three main types of investigations in this field: experimental, 

computational simulation and theoretical calculations. They will be discussed in this chapter.  

2.1 Experimental studies of drop-wall interactions  
 

Experimental studies have been done mostly by using imaging capture systems. Some of the 

most important experimental studies are briefly discussed in this section, and the primary 

experimental data of all those studies are summarized in Table 1.   

 

Engel (1955) conducted one of the first studies that utilized a high-speed camera to photograph 

the impingement process. His work verified some of the observations made by Worthington 

(1876). Ford & Furmidge (1967) contributed to the understanding of the impingement process by 

dividing it into several stages (initial spreading, retraction, secondary spreading). The importance 

of viscosity, kinetic energy and surface energy were also discussed. In 1990s, several droplet 

impingement studies were conducted using improved camera techniques. Chandra & Avedisian 

(1991) employed a single shot photographic technique with a laser triggering system to study the 
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effect of surface temperature on spreading. Scheller & Bousfield (1995) used a video recording 

system to study the effect of viscosity on the impingement process.  

 

Table 1: Summary of the parameters from important experiments on droplet impingement on dry 
surface (From Ok (2005)) 

Authors 
(Year) Liquids Surfaces V (m/s) d (mm) μ (cP) σ  

(mN/m) Re We *
maxd  

Worthington 
(1876) 

Milk, 
Mercury 

Smoked and 
unsmoked glass 

1, 1.4, 
1.7 

2.0, 2,2 

6.0 and 
4.1 N/A N/A N/A N/A N/A 

Engel 
(1955) 

Water, 
surfactant 
solution 

glass and 
filter paper 

3 and 
11 N/A N/A N/A N/A N/A N/A 

Ford et al. 
(1967) 

Water, 
surfactant 
solution 

beeswax, 
cellulose 

acetate glass 
2.6-4.3 

0.62, 
0.78, 
0.89, 
1.1 

1 72.8, 
other 

1600- 
4496 57-256 2.65- 

4.40 

Tsurutani et 
al. (1990) 

Fluorescent  
dye solution glass ~3.1 5.2 1 60 16300 1020 5.5 

Chandra et 
al. (1991) n-heptane 

stainless  
steel surface, 

ceramic 
0.93 1.5 0.42 20.8 2300 43 4.0 

Asai et al. 
(1993)  

3 water-based 
ink 

bond paper, 
transparent 

film 
2.5-20 (44~81) 

*10-3 2.0-7.5 50-54 56-59 5.3-5.5 ~1.42 

Fukai et 
al. (1995) Water 

Pyrex glass plates and 
a plate coated with 

wax 
1.5-3.8 3.6 1 72.8 

~3000 
and  

~8000 

~60 
and 

~360 

~2 
to 
~6 

Scheller  
et al. (1995) 

Glycerin- 
water- 
ethanol 
mixture 

polystyrene  
and glass 4.9 0.8-4 1-300 65-72 20- 

2*104 

0.002- 
0.585 
(Oh) 

1.5- 
5.5 

Pasandideh- 
Fard et al. 

(1996) 

Water, 100 and  
1000 ppm 

SDS  
solution 

stainless 
steel 1 ~2.0 1 

50, 
70, 
73 

2112 27 2.15- 
2.62 

Mao et al. 
(1997)  

water, 
aqueous 
sucrose 
solution 

wax, 
stainless 

steel, 
glass 

0.55, 
1.86, 
2.77, 
4,58 

2.5, 
2.6, 
2.7 

1.0, 
2.0, 
16.4 

72.8 1485- 
1.0*104 

11.2- 
513 

1.65- 
4.94 

Thoroddsen 
et al. (1998) 

Fluorescent 
water solution glass N/A 5.5 1 60 ~ 

1.5*104 
~ 

1000 
4.5- 
5.2 
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Table 1: Summary of the parameters from important experiments on droplet impingement on dry 
surface (From Ok (2005)) (continued) 

Authors 
(Year) Liquids Surfaces V (m/s) d (mm) μ (cP) σ  

(mN/m) Re We *
maxd  

Bergeron 
et al. (2000) 

Wate, 
dilute 

polyethylene 
oxide 

solution 

glass 
coated 
with a  
acid 

complex 
agent 

~3 ~2 1 73 6000 250 ~4.2 

Crooks et al. 
(2001) 

Water, glycerol, 
PEO solution, 

surfactant  
solution 

glass, 
Parafilm M, 

Perspex, 
dichloro 

-silane, and 
PS 

1-3 2.3 1-64 35-73 440- 
1320 

30- 
300 2-4 

Kim et al. 
(2001) 

Deionized 
water, 
Ink, 

Silicone oil 

Polycarbo- 
nate, 

Silicone 
oxide 

0.77-3.47 2.8-3.7 
0.867, 
2.6, 
36.3 

71.7, 
55, 
37.3 

120- 
1.4*104 30-582 2.3-3.2 

Sikalo et al. 
(2002) 

water, 
isopropanol, 

and  
glycerin 

glass, 
wax, 
and 
PVC 

1.17-4.55 2.7-3.3 
1, 

2.4, 
116 

21, 
73, 
63 

500- 
1.5*104 

50- 
1000 2-6 

Richard 
et al. 

(2002)  
Water Super-hydrophobic 

surface 0.2-2.3 0.2-8 1 73 N/A 0.3-37 N/A 

Rioboo 
et al. 

(2002) 

Acetone, 
isopropanol, 

ethanol, 
water, 

silicone oils, 
glycerine/ 

water 

glasses, 
PVC, 
wax, 

polymer 
coatings, 

AKD 

0.78-4.1 1.2-4.9 0.3- 
934 N/A 9- 

8842 
33- 
396 

2.3- 
5.2 

Park et al. 
(2003) 

Water, 
n-octane, 

n-tetradecane, 
n-hexadecane 

glass, 
silicon wafers, 

Teflon 
0.082-4 2.3 1 73 180- 

5513 
0.2- 
176 2-4 

Kim et al. 
(2003) Distilled water Poly-carbonate 

surface 8-16.2 0.213- 
0.26 1 73 1700- 

3900 
190- 
860 3.2-4.4 

 

The effect of polymer additives is studied by several authors [Bergeron et al. (2000); Crook et al. 

(2001)]. Polymer additives are used to increase the extensional viscosity of the liquid, which is a 

material property of a fluid to characterize the resistance to stretching. They showed that the 

height of rebounding is reduced when extensional viscosity is increased. 
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Effects of surface tension of the liquid droplet were studied [Zhang et al. (1997); Mourougou-

Candoni et al. (1999)] mainly by using surfactant in liquids.  The use of surfactant is to decrease 

the surface tension of the fluids. They found that the maximum spread factor increased by adding 

surfactant into the liquids.  

 

2.2 The Navier-Stokes based computational methods for multiphase flow 
 

There are two main traditional numerical approaches that have been employed to study the 

multiphase flow problems: front capturing methods and front tracking methods. Here, we will 

mainly discuss the front capturing methods since they are often employed to study the problems 

of droplet impingement on surfaces. Front tracking methods will be briefly discussed in section 

2.2.2.  

2.2.1 Front capturing method 

Front capturing methods ‘capture’ the two-phase interface between a known number of 

computational cells. In other words, the interface is known to be located somewhere between two 

locations, but the exact location needs to be constructed numerically. There are several types of 

front capturing methods: Marker-and-Cell (MAC), Volume-of-Fluid (VOF) and Level-Set 

method (LSM).  

 

The first numerical simulation of droplet impact was reported by Harlow and Shannon (1967), 

using so-called “Marker-and-Cell” (MAC) finite difference method, which was proposed by 

Harlow and Welch in 1965. In the original MAC method, the Navier-Stokes equations were 
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solved using an Eulerian grid. Lagrangian marker particles are used to identify Fluid 2. For a 

computational cell without a marker particle, it is considered empty without fluid 2, but filled 

with fluid 1. For a cell with a marker particle, but lying adjacent to an empty cell, it is called a 

surface cell. All other cells are considered to be filled with fluid 2. A schematic view of MAC 

method is shown in Figure 2.  

 

 

Figure 2: Schematic view of Marker-and-Cell method (From McCracken (2004)) 
 

However, in Harlow and Shannon’s study, all viscous, surface tension and wetting effects are 

neglected in their modeling. Thus, their model is only applicable to the initial stages of droplet 

impact when these effects are negligible due to inertia effect, and their calculations could not 

predict the maximum spread factor during the impact. In a separate study of high-speed droplets 

impinging on rigid plane conducted by Huang et al. (1973), they proved MAC method was 

capable of calculating the peak liquid pressures immediately after the impact, making it useful in 

research on erosion of turbine blades by high-speed impinging drops.  
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Later, in the work by Tsurutani et al. (1990), they developed a modified MAC method, called 

“SMAC-simplified marker and cell”, to study the deformation process of a droplet impinging 

upon a hot flat surface. Surface tension and viscous effects were successfully incorporated in the 

SMAC method. The numerical calculation was carried out on cylindrical coordinates assuming 

axisymmetric deformation of the droplet. The dimensionless spreading radius and dimensionless 

height at any dimensionless time obtained by the numerical calculation showed very good 

agreement with the experiments conducted by the same group at the same Reynolds number and 

Weber number. Since convection and evaporation were neglected, the computed temperature 

profile was only showed qualitatively.  

 

The major shortcoming of MAC method is that a large amount of computational time is 

consumed to track all the marker particles since a large number is required in order to accurately 

determine the interface. To overcome this drawback, another numerical method, called Volume 

of Fluid (VOF) was invented by Hirt and Nichols (1981). The method of VOF is based on the 

idea of the so-called fraction function C, which is defined as integral function of fluid’s 

characteristic function in every computational cell. Thus, instead of tracking several marker 

particles in a cell, a single marker function C is used to identify the fluid phase. If the cell is 

empty (no tracer fluid inside the cell), C=0; if the cell is filled with tracer fluid, then C=1; and 

when 0<C<1, that means the interface between two phases cut across the cell. Trapaga and 

Szekely (1991) employed the “SOLA-VOF” (Solution Algorithm of VOF) to study the influence 

of surface tension, viscosity and surface wetting properties on the spread factor evolution. 
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Pasandideh-Fard et al. (1996) developed a modified version of SOLA-VOF method to model the 

droplet deformation after impact on a solid surface. They used measured values of dynamic 

contact angles as a boundary condition for the numerical model, and accurate predictions were 

obtained for droplet diameter during spreading and at equilibrium.  

 

In general, the VOF algorithm consists of two steps: propagation and reconstruction. First, the 

volume fraction function C at the current time step is solved by the fixed grid, the velocity field 

and the previous field of C. Second, after the field of C has been updated, the interface will be 

reconstructed based on the approximation to the section of the interface in each cut cell. The 

simplest types of VOF methods are the simple line interface calculation (SLIC) of Noh & 

Woodward (1976) or the SOLA-VOF algorithm of Hirt & Nichols (1981). However, these 

methods of interface reconstruction are only of the first order accuracy of the characteristic 

length of the computational cell. In a recent study by Rider & Kothe (1998), a more accurate 

approach, named piecewise linear interface construction (PLIC) algorithm, was employed. The 

piecewise linear interface reconstruction insures second order spatial accuracy. A schematic view 

of SLIC and PLIC is shown in Figure 3. A systematic review of VOF methods can be found in 

the work done by Scardovelli & Zaleski (1999). 

 

The above-mentioned numerical techniques, such as MAC and VOF, are based on fixed grid. 

Fixed grid posed problems when the interface between two fluids experiences large deformations. 

In order to solve this problem, Fukai et al. (1993) proposed a new finite element-based technique 

to model the droplet spreading process. The inertial, viscous, gravitational, and surface tension 
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effects were accounted for in this technique. In contrast to other earlier studies of the droplet 

impingement process, the Lagrangian approach was employed to facilitate the accurate 

simulation of the motion of the deforming interface. In a later work by Fukai et al. (1995), 

wetting effects were also incorporated to enhance the capability of their model. They found that 

the wettability of the substrate upon which the droplet impinges was found to affect significantly 

all phases of the spreading process, including the formation and development of the ring 

structure around the splat. 

 

                                      (a)                                                                        (b) 

Figure 3: Two ways to reconstruct the interfaces (shaded areas) for a circle (continuous line) (a) 

First-order or simple line interface calculation (SLIC); (b) second-order or piecewise linear 

interface construction (PLIC) (From Rider & Kothe (1998)) 

 

Very similar to VOF method, Osher & Sethian (1988) proposed a level-set method (LSM) for 

capturing the interfaces. In LSM, a level-set parameter, ϕ  is used to define two phases. When 
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0ϕ > , it is considered as phase 1; when 0ϕ < , it is considered phase 2; 0ϕ =  is considered 

where the interface between two phases exits. The computations are carried out on fixed grids. 

However, unlike VOF, the LSM does not involve interface reconstruction. A recent review is 

done by Sethian & Smereka (2003). This method has not been used in the study of droplet 

impingement on surfaces.  

 

2.2.2 Front tracking method 

Unlike front capturing methods, front tracking methods directly ‘track’ the location of the 

interface between different phases instead of constructing the interface. As reviewed by 

McCracken (2004), the major types of front tracking methods are: boundary-fitted grid method, 

fixed grid method, hybrid method, and Boundary Element Method (BEM).  

 

Haller et al. (2002) investigated the fluid dynamics of high-speed (500 m/s) small size (0.2 mm 

in diameter) droplet impact on a rigid substrate using a front tracking solution procedure, named 

FronTier, which was originally proposed by Glimm et al. (1998). They found that compressible 

flow patterns dominate the early droplet impact process and splashing. Their simulations showed 

that upon collision, a shock wave attached to the contact edge of the droplet was generated. The 

liquid zone adjacent to the target surface was highly compressed and bounded by the shock 

envelope, which separated it from the unaffected bulk of the liquid. Subsequently, the radial 

velocity of the contact edge decreased below the shock velocity. The pressure difference across 

the free surface at the contact edge region triggered the eruption of intense lateral jetting of high 

velocity.  
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2.3 Theoretical approach for multiphase flows 
 

Several theoretical modeling for predicting the maximum spreading factor during the 

impingement process are reviewed in this section, and the relevant correlations are listed in 

Table 2. Most of models are based on an energy balance with some assumptions made on the 

dissipated energy term. Two states are usually chosen: the state just before the drop hits the 

surface and the state when the drop reaches maximum spreading factor on the surface. The 

energy balance can be written by: 

' ' ' '
k p s k p s dE E E E E E E+ + = + + +  (2.1) 

where Ek, Ep, Es and Ed are the kinetic, potential, surface, dissipated energies respectively. The 

corresponding primed quantities are after impact.  

Table 2: Summary of theoretical models to predict maximum spread factor (From Ok (2005)) 
Authors Models 

Chandra et al. (1991) * 4 * 2
max max

3 1( ) (1 cos )( ) ( 4) 0
2 Re 3

We d d Weθ+ − − + =  

Asai et al. (1993) * 0.5 0.22 0.21
max 1 0.48 exp( 1.48 Re )d We We −= + −  

Scheller et al. (1995) * 2 0.166
max 0.61(Re )d Oh=  

Fukai et al. (1995) * 4 * 2
max max0.772

1 1( ) 2.29(1 cos )( ) ( 4) 0
2 Re 3

We d d Weψ+ − − + =  

Pasandideh-Fard et al. (1995) 

*
max

12
3(1 cos ) 4( / Re)a

Wed
Weθ

+
=

− +
 

For ReWe , * 0.25
max 0.5Red ≈  

Mao et al. (1997) 
0.83

* 3 *
max max0.33

1 2(1 cos ) 0.2( ) ( ) ( 1) 0
4 Re 12 3

We Wed dθ
⎡ ⎤

− + − + + =⎢ ⎥
⎣ ⎦

 

Notation: 

θ : equilibrium contact angle ψ : dynamic contact angle aθ : advancing contact angle 
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Although there are various correlations derived from experiments or theoretical calculations, 

Rioboo et al. (2001) claimed that the thresholds between various outcomes in Figure 1 can not be 

simply quantified in terms of the dimensionless groups, We, Re, Oh and K (K=We*Oh-0.4), a 

clear manifestation that these dimensionless groups are insensitive to the surface wettability and 

roughness effects, which are of the utmost importance in the drop impingement on a dry surface.  

 

 

Figure 4: Photographs of a liquid drop hitting on a smooth dry substrate at different surrounding 
pressure (From Xu et al. (2005)) 
 

For all the previous studies, including experimental and numerical work, the surrounding 

medium of the gas phase was not considered to have any influence on the impingement outcome. 

However, in a very recent study by Xu et al. (2005), they found that the pressure or the 
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molecular weight of surrounding gas phase is critical for the impingement outcome of splashing 

or not. By decreasing the surrounding pressure or using gas with low molecular weight, the 

splashing can be completely depressed. The results of their experiments are shown on Figure 4. 

 

2.4 Lattice Boltzmann schemes for multiphase flows 
 

The lattice Boltzmann method (LBM) is a relatively new technique for simulating fluid flows 

and modeling physics in fluids. So far, it has shown great success in fluid flow applications 

involving interfacial dynamics and complex geometries (Chen & Doolen (1998)), and it is still 

under development. So far, there have been a number of multiphase flow LBM models existing 

in literature. 

 

Gunstensen et al. (1991) first developed the multiphase LBM method using two particle 

distribution functions. This method introduced unphysical velocity currents at the interface. In 

addition, this method would not be applicable to our current problem where densities of the two 

phases need to be different.  

 

In the first methodology that used different densities for phases, Shan & Chen (1993) proposed 

what is so-called pseudo-potential LBM model using non-local interaction between particles. 

Despite the high spurious currents at the interface, several researchers have used this method 

[Yuan & Laura (2006); Shan & Doolen (1995); Sankaranarayanan et al. (1999, 2002)]. Later, 

Swift et al. (1995, 1996) proposed a famous thermodynamic based LBM model, which is also 
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known as free energy approach. More details for the review of all those multiphase LBM models 

will be provided in Section 4.1. 

 

All LBM schemes mentioned above are restricted to small density ratios which are less than 10, 

and suffer from instability when dealing with larger density ratios. By modifying the free energy 

approach, Inamuro et al. (2004) first proposed an LBM scheme which is able to deal with such 

two-phase fluid flows of density ratio up to 1000. More recently, Lee and Lin (2005) devised a 

new LBM scheme which enables stable simulation of two-phase flows with high density and 

viscosity ratios. However, they reported that their method introduces anisotropy due to the 

special treatment of discretization of the forcing terms in the lattice Boltzmann equation.  

 

So far, there have been a few studies dealing with liquid-wall interaction using LBM (Briant et al. 

(2004); Mo et al. (2005); Kang et al. (2005)). These studies have separately validated their 

method by using Young’s equation, according to which the static contact angle between the 

liquid-gas interface and the wall is an outcome of the surface tension forces between the three 

phases: liquid, gas and solid. However, there are only two prior studies of droplet impact on a 

dry surface using LBM. The first one, by Mukherjee and Abraham (2007), employed an axi-

symmetric LBM model to study the impact of a droplet on a wall within a density ratio of 10.  

They found that a droplet impinging on a super hydrophobic surface may completely lift off 

from the surface, leading to a rebound. In another separate work, Gupta and Kumar (2008) 

systematically studied the droplet spreading diameter at various Weber and Reynolds number by 

using the pseudo-potential model, and found that droplet impinging on a non-wetting surface 
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may result in an in-plane break-up of the spreading film. Again, their simulations were done 

within a density ratio of 10. In this present study, a relatively high density ratio of 50 will be 

used for entire simulations. 
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CHAPTER THREE: LATTICE BOLTZMANN METHOD 
 

 

3.1 History review of LBM from LGA 
 

LBM originated from lattice gas automation (LGA) method, a discrete particle kinetic method 

involving discrete lattice and discrete time. In LGA, the motion of gas or liquid particles is 

constrained only through the lattice. The first LGA model with full discretized particle velocity, 

space and time was proposed by Hardy, de Pazzis and Pomeau (1976), also known as HPP model. 

In HPP model, the lattice is square, and the particles can only move axially, but not diagonally. 

Thus, the HPP model is highly anisotropic. Later, in 1986, Frisch, Hasslacher and Pomeau (1986) 

introduced a LGA model employing a hexagonal lattice, as shown in Figure 5. They recognized 

that lattice symmetry is very important to recover the Navier-Stokes equations. Also because of 

higher symmetry, the hexagonal lattice does not suffer as large anisotropy troubles as of HPP’s 

square lattice.  

 

In LGA, a set of Boolean variables ( , )( 0,1,2...., )in t i M=x  describing the particle occupation 

number at space and time ( , )tx  is defined. The concept of occupation number in  is borrowed 

from statistical mechanics. The evolution equation of LGA is given as: 

( , 1) ( , ) ( ( , ))i i i in t n t n t+ + = +Ωx e x x  (3.1) 
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Where ie  is discretized particle velocity in direction i, and ( ( , ))i n tΩ x  is the collision operator. 

This evolution equation consists of two sub-steps at every time step: 

Collision:  ( , ) ( , ) ( ( , ))p
i i in t n t n t− =Ωx x x  (3.2a) 

Streaming: ( , 1) ( , )p
ii in t n t+ + =x e x  (3.2b) 

Where p
in  means post-collision quantity of particle occupation number.  

1

23
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Figure 5: D2Q7 lattice structure 
 

However, the major drawback of LGA is that it suffers large statistical noise. Under this 

background, McNamaro & Zanetti (1988) invented the earliest LBM scheme, in which the 

particle occupation number in  is replaced by single particle distribution function, if . This is the 

first time that the lattice Boltzmann equation was used in numerical calculations and it brought a 

whole new perspective in the area of computational fluid dynamics (CFD). In LBM, instead of 

tracking single Boolean particle, we follow the averaged particle distribution function, which 

means the probability of finding a particle at a given location and a given time. This procedure 
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eliminates statistical noise in the LBM. And because of the averaged kinetic equations and 

variables, LBM is a kind of mesoscopic method.  

 

In the above sense, LBM may be essentially considered as an improvement of the LGA. On the 

other hand, it was also believed that the LBE could be directly connected to the Boltzmann 

equation, which is a well known kinetic equation in non-equilibrium statistical mechanics, 

describing the evolution of particle populations in terms of distribution functions. Later, He & 

Luo (1997) successfully derived LBE starting from the continuum Boltzmann equation. We will 

show the details in next section.  

 

3.2 From Boltzmann equation to lattice Boltzmann equation 
 

We start this section by the well known Boltzmann equation, i.e.: 

collision

Df f ff f
Dt t t

∂ ∂= + ∇ + ∇ =
∂ ∂ξξ Fi i  (3.3) 

where ( , , )f f t≡ x ξ  represents the single-particle distribution function in the phase space ( , )x ξ , 

x is the position in space, ξ  is the microscopic velocity, F is the external force. The term on the 

right hand side of the equation is the collision term, which accounts for the change of particle 

distribution function due to the collision. Here, we are using the Bhatnagar-Gross-Krook (BGK) 

collision operator. Hence,  

1 ( )eq

collision

f f f
t λ

∂ = − −
∂

 (3.4) 
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where λ  is the relaxation time due to collision, and eqf  is the Boltzmann-Maxwellian 

distribution, given by: 

2

/ 2
( )exp

2(2 )
eq

Df
RTRT

ρ
π

⎡ ⎤
⎢ ⎥
⎣ ⎦

−= − ξ u  (3.5) 

where R is the ideal gas constant, D is the dimension of space, ρ , u  and T are fluid density, 

velocity and temperature, respectively. The macroscopic variables, ρ , u  and T can be 

computed from the moments of the distribution function, given as  

eqfd f dρ = =∫ ∫ξ ξ  (3.6a) 

eqfd f dρ = =∫ ∫u ξ ξ ξ ξ  (3.6b) 

2 21 1( ) ( )
2 2

eqfd f dρε = − = −∫ ∫ξ u ξ ξ u ξ  (3.6c) 

where ε  is the internal energy, which can be written in terms of temperature: 

2 2 BA
D DRT N k Tε = =  (3.7) 

where NA is Avogadro’s number and kB is the Boltzmann constant. Thus, 

2 2( ) ( ) eqDRT fd f dρ = − = −∫ ∫ξ u ξ ξ u ξ  (3.8) 

Here we only consider the system without external force, 0≡F . Therefore, the Boltzmann 

equation becomes: 

1 ( )eqf f f f
t λ

∂ + ∇ = − −
∂

ξi  (3.9) 

Use the total derivative notation, d
dt t

∂= + ∇
∂

ξi , we can simplify the Boltzmann equation to: 
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1 1 eqdf f f
dt λ λ

+ =  (3.10) 

The equation above is written in form of an ordinary differential equation. Integrate the above 

equation over a time step tδ , we can get: 

'/ // ' ' '
0

1( , , ) ( , , ) ( , , )t
t tt eq

t tf t e e f t t t dt e f t
δδ λ δ λλδ δ

λ
− −+ + = + + +∫x ξ ξ x ξ ξ x ξ  (3.11) 

Assuming that tδ  and eqf  is smooth enough locally, by using linear interpolation, the 

equilibrium distribution function can be approximated as follows: 

'
' ' 2( , , ) ( , , ) ( , , ) ( , , ) ( )eq eq eq eq

t t t
t

tf t t t f t f t f t Oδ δ δ
δ

⎡ ⎤⎣ ⎦+ + = + + + − +x ξ ξ x ξ x ξ ξ x ξ  (3.12) 

With '0 tt δ≤ ≤ . Simplify the equation,  

' '
' ' 2( , , ) (1 ) ( , , ) ( , , ) ( )eq eq eq

t t t
t t

t tf t t t f t f t Oδ δ δ
δ δ

+ + = − + + + +x ξ ξ x ξ x ξ ξ  (3.12) 

The above order of accuracy are of the order of 2( )tO δ . Substituting the above equation into Eq. 

(3.11), we can get: 

/

/

( , , ) ( , , ) ( 1) ( , , ) ( , , )

1 ( 1) ( , , ) ( , , )

t

t

eq
t t

eq eq
t t

t

f t f t e f t f t

e f t f t

δ λ

δ λ

δ δ

λ δ δ
δ

−

−

⎡ ⎤⎣ ⎦
⎡ ⎤

⎡ ⎤⎢ ⎥ ⎣ ⎦
⎣ ⎦

+ + − = − −

+ + − + + −

x ξ ξ x ξ x ξ x ξ

x ξ ξ x ξ
 (3.13) 

Performing Taylor expansion for the term /te δ λ− , as of the order of 2( )tO δ , we get: 

/ 21 / ( )t
t te Oδ λ δ λ δ− = − +  (3.14) 

Substitute it into Eq. (3.13), and simplify the equation, we can get: 

1( , , ) ( , , ) ( , , ) ( , , )eq
t tf t f t f t f tδ δ

τ
⎡ ⎤⎣ ⎦+ + − = − −x ξ ξ x ξ x ξ x ξ  (3.15) 
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where / tτ λ δ≡  is the dimensionless relaxation time with the scaling time of tδ . Hence, Eq. (15) 

is accurate to the first order in tδ , and it is the time evolution equation of the distribution 

function f . Although ( , , )eqf tx ξ  is written as an explicit function of time t, its time 

dependence is in the hydrodynamic variables, ρ , u  and T. Thus, we can interpret the 

equilibrium distribution function as of ( , ; , , )eqf Tρx ξ u . Thus, it is important to calculateρ , u  

and T in discretizing the Boltzmann equation.  

 

In order to numerically evaluate the hydrodynamic moments, appropriate discretization in 

velocity space ξ  must be accomplished. Employing 

( ) ( , , ) ( ) ( , , )eq eqf t d W f tα α α
α

ψ ψ=∑∫ ξ x ξ ξ ξ x ξ  (3.16) 

where ( )ψ ξ  is a polynomial of ξ , Wα  is the weight coefficient of the quadrature and αξ  is the 

discrete velocity set or the abscissas of the quadrature. Accordingly, the hydrodynamic moments 

of Eqs. (3.6a)-(3.6c) can be evaluated as:  

eqf fα α
α α

ρ = =∑ ∑  (3.17a) 

eqf fα α α α
α α

ρ = =∑ ∑u ξ ξ  (3.17b) 

2 21 1( ) ( )
2 2

eqf fα α
α α

ρε = − = −∑ ∑ξ u ξ u  (3.17c) 

where 

( , , ) ( , , )f f t W f tα α α α≡ ≡x ξ x ξ  (3.18a) 

( , , ) ( , , )eq eq eqf f t W f tα α α α≡ ≡x ξ x ξ  (3.18b) 
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The equilibrium distribution function is obtained from a truncated small velocity expansion or 

low-Mach number approximation: 

2

/ 2
( )exp

2(2 )
eq

Df
RTRT

ρ
π

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

−− ξ u  

2 2

/ 2 ) )exp( exp(
2 2(2 )D RT RT RTRT

ρ
π

= −− uξ ξ ui  

2 2

2

2
3

/ 2
( )) 1 ( )
2( ) 2

exp(
2(2 )D O

RT RT RTRTRT
ρ

π
⎡ ⎤

= × + + − +⎢ ⎥
⎣ ⎦

− ξ u ξ u uξ ui i  

2 2

2

2

/ 2
( )) 1
2( ) 2

exp(
2(2 )

eq
D RT RT RT

f
RTRT

ρ
π

⎡ ⎤
= × + + −⎢ ⎥

⎣ ⎦
− ξ u ξ u uξ i i  (3.19) 

Although above equation for eqf  only retains the terms up to 2( )O u , it could also be expanded 

to higher-order in terms of u , if necessary.  

 

Now, two factors have been taken into consideration in the discretization of phase space. First, 

the discretized velocity space is coupled to the configuration space such that a specific lattice 

structure is obtained. Second, quadrature must be accurate enough such that not only the 

conservation constraints are preserved, but also the symmetry requirement in the Navier-Stokes 

equations is satisfied, i.e., isotropy of the stress tensor. In the next section of this chapter, it will 

be shown that Navier-Stokes equation can be derived from LBE via the Chapman-Enskog 

analysis. In order for this to happen, the quadrature used to compute the hydrodynamic moments 

must be able to compute the following moments with respect to eqf  exactly: 

:1, ,i i jρ ξ ξ ξ  (3.20a) 
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: , ,i i j i j kξ ξ ξ ξ ξ ξu  (3.20b) 

where iξ  is the component of ξ  in Cartesian coordinates. Computing the hydrodynamic 

moments of eqf  is equivalent to evaluating the following integral  

2 2

2

2

/ 2
( )) 1
2( ) 2

( ) ( )exp(
2(2 )

eq
DI

RT RT RT
f d d

RTRT
ρψ ψ

π
⎡ ⎤

= = × + + −⎢ ⎥
⎣ ⎦

−∫ ∫
ξ u ξ u uξξ ξ ξ ξi i  (3.21) 

where ( )ψ ξ  is a polynomial of ξ . The above integral is of the following type: 
2 ( )xe x dxψ−∫ , 

which can be evaluated numerically with a Gauss-type quadrature. Our objective is to evaluate 

the hydrodynamic moments. Here, the two-dimensional, nine-velocity (D2Q9) model invented 

by Qian et al. (1992) is employed. The lattice structure is shown in Figure 6. To recover this set 

of discrete set of velocities, ( )ψ ξ  is set to: 

, ( ) m n
m n x yψ ξ ξ=ξ  (3.22) 

where xξ  and yξ  is x and y component of ξ . Now, the integral of moments in Eq. (3.21) 

becomes: 

2

,

2 2
1 1 2 1 1 2

( 2 ) (1 )
2

2( ) 2
2

( ) m n
m n m n

x n y m x n x y y mm n m m n n

eqI RT I I
RT

u I I u I I u I I u u I I u I I
RTRT

f d ρ
π

ψ +

+ + + + + +

⎧
⎨
⎩

⎫⎪
⎬
⎪⎭

= = − +

+ + +
+

∫
uξ ξ

 (3.23) 

where 

2 m
mI e dζ ζ ζ

+∞ −

−∞
= ∫ ,        / 2RTζ ξ=  (3.24) 

is the m th order moment of the weight function, 
2e ζ−  on the real axis. Employing a third-order 

Hermite formula, mI  may be expressed as: 
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3

1

m
m j j

j
I ω ζ

=
=∑  (3.25) 

The three abscissas of the quadrature are: 

1 3/ 2ζ = − , 2 0ζ = , 3 3/ 2ζ =  (3.26) 

and the corresponding weight coefficients are: 

1 / 6ω π= , 2 2 / 3ω π= , 3 / 6ω π=  (3.27) 

Then the integral of the moment in Eq. (3.23) becomes 

2 23
, ,

, 2
, 1

( )
( ) 1

2( ) 2
i j i j

i j i j
i j

I
RT RT RT

ρ ωω ψ
π =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

= + + −∑
ξ u ξ u uξ
i i

 (3.28) 

where , ( , ) 2 ( , )i j i j i jRTξ ξ ζ ζ= =ξ . Comparing Eq. (3.21) and Eq. (3.28), we can identify: 

2 2
, ,

, 2

( )
1

2( ) 2
i j i j i jeq

i jf
RT RT RT

ωω
ρ

π
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

= + + −
ξ u ξ u ui i

 (3.29) 

With the discrete velocities defined as: 

(0,0) 0
(cos ,sin ) ( 1) / 2 1,2,3,4

2(cos ,sin ) ( 5) / 2 / 4 5,6,7,8
e c

c
α α α α

α α α

α
θ θ θ α π α

θ θ θ α π π α

⎧
⎪
⎨
⎪
⎩

=
= = − =

= − + =

 (3.30) 

where x

t
c δ

δ
= , xδ  is the lattice spacing, tδ  is the advection time for the particle to travel from 

one site to the adjacent site along coordinate directions.  

4 / 9 2 0
1/ 9 1, 2,....., 1,2,3,4
1/ 36 1,....., 5,6,7,8

i j
i j

w i j
i j

α

α
ωω

α
π

α

⎧
⎪
⎨
⎪
⎩

= = =
= = = = =

= = =
 (3.31) 
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Now substituting 2 2 / 3sRT c c= = , the final form of equilibrium distribution function for D2Q9 

lattice structure is obtained: 

2 2

2 4 2
3( ) 9( ) 31

2 2
eq e ef w

c c c
α α

α α ρ
⎧ ⎫
⎨ ⎬
⎩ ⎭

= + + −u u ui i  (3.32) 

Finally, the time-discrete version of Boltzmann equation is given by: 

1( , , ) ( , , ) ( , , ) ( , , )eq
t tf t f t f t f tα α α αδ δ

τ
⎡ ⎤⎣ ⎦+ + − = − −x ξ ξ x ξ x ξ x ξ  (3.33) 

In this section, we have systematically shown that the lattice Boltzmann equation can be derived 

from Boltzmann equation. In the next section, we will show how the Navier-Stokes equations 

can be derived from the lattice Boltzmann equation.  
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Figure 6: D2Q9 lattice structure 

3.3 Derivation of Navier-Stokes equations from LBE 
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Since the fundamental idea of LBM is to construct simplified kinetic models that incorporate the 

essential physics of microscopic or mesoscopic processes so that the macroscopic averaged 

properties obey the desired macroscopic equations (Chen & Doolen (1998)), it is important to 

derive the Navier-Stokes equations directly from the LBE. In this section, by employing the 

Chapman-Enskog multiscale expansion technique which is used to solve Boltzmann equation in 

kinetic theory, the Navier-Stokes equations are successfully derived from LBE. This method has 

been applied by several authors in the LBM context (Hou et al. (1995); Chen & Doolen (1998)). 

In this method, an asymptotic expansion is performed with the Knudsen number which acts as 

small variable of expansion. The requirement of isotropy, Galilean-invariance and velocity 

independence is imposed during the analysis.  

 

We begin our derivation process by considering the basic BGK model of LBE using the D2Q9 

lattice structure. However, the process would be similar for other lattice models. 

 

Tensor properties are very important during the analysis. Following Wolf-Gladrow (2000), the 

second and fourth order tensors are given as: 

2 22i i
i

e e c eσ α σσ β αβδ=∑  (3.34) 

where 1e c= , 2 2e c= , and αβδ  is the Kronecker delta, i.e., 

1
0

if
ifαβ
α β

δ
α β

⎧
⎨
⎩

=
=

≠
 (3.35) 

Similarly, 



 

 

31

4

4 4

2 , 1

4 8 , 2i ii i
i

c
e e e e

c c
αβγθ

σ α σ γσ β σ θ
αβγθ αβγθ

δ σ

δ σ

⎧⎪
⎨
⎪⎩

=
=

Δ − =∑  (3.36) 

where αβγθδ  is similarly as αβδ , and αγαβγθ αβ γθ βθ αθ βγδ δ δ δ δ δΔ = + + . These lattice tensors 

upto fourth order are isotropic, and there isotropic nature is important to correctly recover the 

viscous stress for the fluid. 

 

The general form of LBE with BGK collision operator is given as:  

01( , ) ( , ) ( , ) ( , )i it ti i ief t f t f t f tσ σσ σ σδ δ
τ
⎡ ⎤
⎣ ⎦+ + − = − −x x x x  (3.37) 

The macroscopic fluid density and velocity are defined as kinetic moments of the distribution 

functions: 

( , )i
i

f tσ
σ

ρ = ∑∑ x  (3.38a) 

( , )i
i

f tσ
σ

ρ =∑∑u x  (3.38b) 

For ease of presentation of the asymptotic analysis, we let: 

0( , ) ( , )eq
i if t f tσ σ=x x  (3.39) 

Then let the unknown equilibrium distribution function be expanded upto the quadratic term in 

fluid velocities: 

0 2 2( , ) ( ) ( )i i if t A B e C e Dσ σ σ σ σ σ σ= + + +x u u ui i  (3.40) 

Employing the conservation equations: 

0( , ) ( , )i i
i i

f t f tσ σ
σ σ

ρ= =∑∑ ∑∑x x  (3.41a) 
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0( , ) ( , )i i
i i

f t f tσ σ
σ σ

ρ= =∑∑ ∑∑x x u  (3.41b) 

We will obtain the coefficients below: 

0 1 24 4A A A ρ+ + =  (3.42a) 

1 2 0 1 22 4 4 4 0C C D D D+ + + + =  (3.42b) 

1 22 4B B ρ+ =  (3.42c) 

 

As we mentioned earlier, to facilitate the asymptotic expansion, we will introduce a small 

parameter, Knudsen number which is the ratio of the mean free path of the molecules to the 

length scale of the problem. Here, we let the particle advection time to be that small parameter 

(Hou et al. (1995)), i.e., tε δ= . 

Expanding the particle distribution function about its local equilibrium distribution in terms of ε : 

0 1 2 2 3( )i i ii f f f Of σ σ σσ ε ε ε= + + +  (3.43) 

To compute variations of ifσ  at different time scales, two time scales are introduced following 

the multi-scale procedure, i.e., 

0t t=  and 1t tε= . 

Thus, the procedure for multiple time scales can be written as: t=t(t1,t2), following this: 

0 1
.....

t t t
ε∂ ∂ ∂= + +

∂ ∂ ∂
 (3.44) 

Substituting Eqs. (3.43) and (3.44) into Eq. (3.37), the ( )O ε  equation is: 

0

0 11( )t i i ie f fσ σ στ
∂ + ∇ = −i  (3.45) 
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Similarly, 2( )O ε  is: 

1 0

0 1 21 1( )(1 )
2t i t i i if e f fσ σ σ στ τ

∂ + ∂ + ∇ − = −i  (3.46) 

Taking the zeroth kinetic moment of Eq. (3.45) and enforcing the consistency condition, we get: 

0
( ) 0t ρ ρ∂ +∇ =ui  (3.47) 

This is the first order continuity equation. Next, take the first kinetic moment of Eq. (3.45), we 

get the first order momentum equation:  

0

0( ) 0t ρ∂ +∇ Π =u i  (3.48) 

where 0Π  is the first-order momentum flux tensor, and it is given by: 

0 0
i i i

i
e e fσ σ σ

σ
Π = ∑∑  (3.49) 

Similarly, the equations of second order can be obtained by taking the moments of Eq. (3.46). 

1
0t ρ∂ =  (3.50) 

This is the second-order continuity equation. 

1

11( ) (1 ) 0
2t ρ
τ

∂ +∇ − Π =u i  (3.51) 

This is the second-order momentum equation, where 1Π  represents the second-order momentum 

flux tensor, given by: 

1 1
i i i

i
e e fσ σ σ

σ
Π = ∑∑  (3.52) 

Now, let us proceed to simplify the momentum flux tensors. By substituting the equilibrium 

distribution function into the expression for 0Π  , we can get:  
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0 2
1 2 2 1 2 2 1 22 4 (4 2 4 ) 8 (2 8 )A A C D D C u u C C u uα ααβ αβ β β αβδ δ⎡ ⎤⎣ ⎦Π = + + + + + + −u  (3.53) 

The first term on the right hand side of Eq. (3.53) represents pressure, thus,   

2 1 24 2 4 0C D D+ + =  (3.54) 

Otherwise, we would obtain unphysical velocity-dependent pressure. Also, in order to satisfy 

Galilean invariance, we need: 

1 22 8 0C C− =  (3.55) 

Thus, Eq. (3.53) can be simplified to: 

0
1 2 2(2 4 ) 8A A C u uααβ αβ βδΠ = + +  (3.56) 

Assuming that (Hou et al. (1995)) 

28C ρ=  (3.57) 

and 

2
1 22 4 sA A c ρ+ =  (3.58) 

where cs is the speed of sound, which will be determined later, we get 

0 2
sc u uααβ αβ βρδ ρΠ = +  (3.59) 

Thus, the first-order momentum equation simplifies to: 

0

2( ) ( ) ( )t scρ ρ ρ∂ +∇ = −∇u uui  (3.60) 

Eqs. (3.47) and (3.60) construct the Euler’s equations which are derived from the first-order 

expansion of the LBE. And the pressure is given by 2
sp c ρ= .  
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Now let us proceed to derive these equations to the second order of ε , i.e., 2( )O ε . In order to 

simplify 1Π , we need to find the non-equilibrium part of the distribution function, 1
ifσ . From Eq. 

(3.45), we can get: 

0

1 0 0( )i t i i if f e fσ σ σ στ= − ∂ + ∇i  (3.61) 

Substitute Eq. (3.61) into Eq. (3.52), and using the properties of the lattice tensors, we can obtain: 

{ }0

1 2
1 2( ) 2 (4 8 )t sc u u B u B uα γ γαβ αβ β θ αβγθ θ αβγθ αβγθτ ρ δ ρ δ δ⎡ ⎤⎣ ⎦Π = − ∂ + +∂ + ∂ Δ −  

{ }0

2
1 2 2 2 2( ) ( ) (2 8 ) 4 ( ) 4 ( ) 4 ( )s tc u u u B B u B u B u B uγ γ α α γ γ α ααβ β β αβ αβ β βτ δ ρ ρ δ δ= − − ∂ +∂ +∂ − + ∂ + ∂ + ∂

 (3.62) 

To maintain isotropy, setting: 

1 22 8 0B B− =  (3.63) 

Incorporating Eqs. (3.42c) and (3.63), the coefficients can be uniquely determined: 

1 3
B ρ=  (3.64a) 

2 12
B ρ=  (3.64b) 

Then Eq. (3.62) becomes: 

0

1 21 1 1( ) ( ) ( ) ( ) ( )
3 3 3s tu c u u u u uγ γ γ γ α α ααβ αβ αβ β β βτ δ ρ ρ δ ρ ρ ρ⎧ ⎫

⎨ ⎬
⎩ ⎭

Π = − ∂ − ∂ + ∂ + ∂ +∂  (3.65) 

The time derivative term in the above equation could be simplified by Eqs. (3.47) and (3.60): 

0

2 2( ) ( ) ( ) ( )t s su u u c u c u u uα α α γ α γβ β β βρ ρ ρ ρ∂ = − ∂ − ∂ −∂  (3.66) 

Eq. (3.65) becomes: 
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1 2 2 21 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3 3s s sc u u u u c u c u u uγ γ α α α α γ α γαβ αβ β β β β βτ δ ρ ρ ρ ρ ρ ρ⎧ ⎫

⎨ ⎬
⎩ ⎭

Π = − − ∂ + ∂ + ∂ − ∂ − ∂ −∂

 (3.67) 

Since LBE and the associated equilibrium distribution functions is valid only for small velocities, 

we neglect terms of the order of 3( )O u  in the above equation, we obtain: 

1 2 2 2 31 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3 3s s sc u u u u c u c O uγ γ α α α ααβ αβ β β β βτ δ ρ ρ ρ ρ ρ⎧ ⎫

⎨ ⎬
⎩ ⎭

Π = − − ∂ + ∂ + ∂ − ∂ − ∂ +  

 (3.68) 

Finally, we get the continuity equation: 

( ) 0tρ ρ∂ +∇ =ui  (3.69) 

Momentum equation: 

2 21 1( ) ( ) ( ) ( )( ) ( )
2 3t s su u u c c uα α α α γ γβ βρ ρ ρ ε τ ρ

⎧ ⎡ ⎤
⎨ ⎢ ⎥⎣ ⎦⎩

∂ + ∂ = −∂ + ∂ − − ∂  

2 3 31 1 1( ) ( ) ( )( ) ( ) ( )
2 3 3 su u c u u O u Oα α α αβ β β β βτ ρ ρ ρ ε

⎫⎡ ⎤
⎬⎢ ⎥⎣ ⎦⎭

+∂ − ∂ +∂ + − ∂ + ∂ + +  (3.70) 

The above equation can be significantly simplified is we set the speed of sound: 

2 1
3sc =  (3.71) 

This tactic provides us the speed of sound in the LBM framework. Thus, the momentum 

equation becomes: 

2 3 3( ) ( ) ( ) (2 ) ( ) ( )t su u u c S O u Oα α αβ β β αβρ ρ ρ νρ ε∂ + ∂ = −∂ + ∂ + +  (3.72) 

where Sαβ  is the strain rate tensor, defined as: 
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1 ( )
2

S u uα ααβ β β= ∂ + ∂  (3.73) 

Also, assume that the kinematic viscosity is defined as: 

2 1
6 t
τν δ−=  (3.74) 

With the pressure 2
sp c ρ= , we can get: 

3 3( ) ( ) (2 ) ( ) ( )t u u u p S O u Oα α αβ β β αβρ ρ νρ ε∂ + ∂ = −∂ +∂ + +  (3.75) 

Neglecting all the terms of the order of 3( )O u  and 3( )O ε , finally, we get the momentum 

equation: 

( ) ( ) (2 )t u u u p Sα α αβ β β αβρ ρ μ∂ +∂ = −∂ +∂  (3.76) 

which is the Navier-Stokes momentum equation.   

 

3.4 Single phase LBM benchmark test 
 

To test the applicability of LBM, single phase flow is first simulated and compared to the 

analytical solutions. Only few analytical solutions of Navier-Stokes equations are known. One of 

them is the plane Poiseuille flow in a channel of height H where the flow is steady. For this fully 

developed 2-D channel flow driven by constant pressure gradient, the analytical solution is given 

as follows: 

2
21( ) ( )

2exact
dp H y yy
dx H H

u
ρν

⎡ ⎤
⎢ ⎥⎣ ⎦

= − −  (3.77) 
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where dp
dx

 is the constant pressure gradient, ν  is the kinematic viscosity, ‘x’ is along the flow 

direction, ‘y’ is the vertical direction.  

In order to evaluate the computational error of the model, the following relative error is defined: 

( ) ( )

( )

LBM
j

j

exact

exact

u j
E

j

j

u

u

−
=
∑

∑
 (3.78) 

 

The grid size for the 2-D channel is fixed at 51×51. The periodic boundary condition is imposed 

on the left and right side of the domain, the rigid wall boundary condition is imposed on the top 

and bottom of the domain. Two different wall boundary conditions are used: half-way bounce 

back and extrapolation scheme proposed by Chen et al. (1996). 

3.4.1 Boundary conditions 

Periodic boundary conditions are most desired due to its simplicity. The term ‘periodic’ is self-

explanatory in the way the boundary works, i.e., all the particle distribution functions leaving the 

domain exit will enter the inlet from the direction they leave, and it will apply for the inlet 

particle distribution function in the same way.  

 

To generate a non-slip wall boundary condition, the ‘bounce-back’ boundary condition was first 

proposed. This concept was borrowed from LGA, where the particles will be bounced back 

opposite to the direction in which it hits the wall. However, this bounce-back technique only 

gives first order accuracy, while the LBE is second order accurate. Thus, errors will be 



 

 

39

propagated from the wall boundary into the fluids. Later, Ziegler (1993) proposed a half-way 

bounce back scheme for the non-slip wall boundary condition. In their scheme, the wall was 

placed half way between the fluid nodes and the imaginary nodes, which are used to bounce back 

the particle distribution functions streaming out of the wall. In this manner, they acquired second 

order accuracy for the boundary condition.  
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Figure 7: The schematic view of extrapolation boundary condition. 
 

Later, Chen et al. (1996) proposed an extrapolation scheme for the non-slip wall boundary 

condition, which is also second order accurate. The idea of this scheme is very simple: they 

assume there is one additional layer beyond the wall boundary, as shown in Figure 7. In Figure 7, 

the layer labeled with ‘0’ represents the wall, ‘-1’ represents the additional layer and ‘1’ 
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represents the first layer inside the fluid. To calculate the particle distribution functions 

streaming out of the wall, the following equation is employed: 

1 1
0

2
i i

i
f ff
− +

=  (3.79) 

where 1
if − , 0

if  and 1
if  are the particle distribution functions on the outside layer, the wall layer, 

and the first layer inside the fluid, respectively.  

3.4.2 Results  
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Figure 8: Both LBM and analytical velocity profiles at the outlet for a fully developed pressure 
driven flow in a 2-D channel with the height of 51 in LBM units are compared, the pressure 
gradient is set to be 10-5, 1.0τ = , half-way bounce back wall boundary condition is used for 
LBM simulation. 
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Figure 9: Both LBM and analytical velocity profiles at the outlet for a fully developed pressure 
driven flow in a 2-D channel with the height of 51 in LBM units are compared, the pressure 
gradient is set to be 10-5, 1.0τ = , extrapolation wall boundary condition is used for LBM 
simulation. 
 

From Figure 8 and Figure 9, where the relaxation time is set to be unity, excellent matches 

between the LBM simulation results and the analytical solution are found. In Figure 10, the LBM 

simulation results are compared with the analytical solution at different relaxation times. In 

Table 3, the relative errors are computed for both half-way bounce and extrapolation schemes. 

For relaxation time in the range of 0.8 4.0τ< < , the LBM results are found to be acceptable.  
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Figure 10: Both LBM and analytical velocity profiles at the outlet for a fully developed pressure 
driven flow in a 2-D channel with the height of 51 in LBM units are compared, the pressure 
gradient is set to be 10-5, 0.8 4.0τ< < , half-way bounce back wall boundary condition is used 
for LBM simulations. 
 

Table 3: Relative errors for two different boundary conditions are different τ  values 
τ  0.7 0.8 0.9 1.0 2.0 4.0 10.0 

Half-way 6.66% 1.94% 0.72% 0.38% 0.74% 3.89% 29.3% 

Extrapolation 6.52% 1.77% 0.53% 0.13% 0.076% 0.96% 11.6% 
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CHAPTER FOUR: MULTIPHASE LBE AND BENCHMARK TESTS 
 

 

4.1 Review of existing multiphase LBM schemes 
 

4.1.1 Chromodynamic model 

Gunstensen et al. (1991) were the first to develop a multiphase LBM method. Their model was 

developed from the two-component LG model proposed by Rothman & Keller (1988). In their 

model, there are two particle distribution functions, red-colored and blue-colored particles, which 

represent two different kinds of fluids. To maintain interfaces and to separate different phases, a 

“recoloring” process was introduced to enforce the colored fluids to move toward fluids of the 

same kind. Thus, this method is also called chromodynamic model. And during this “recoloring” 

process, the conservation laws are strictly imposed.  It has been used in a number of applications, 

such as flow through porous media, Rayleigh-Taylor instability and so on. However, this method 

has two main drawbacks. First, the “recoloring” process is artificial and does not have a sound 

physical background. Thus, this perturbation step involving the color redistribution results in 

artificial anisotropic surface tension which induces unphysical velocity currents at the interface. 

Second, the “recoloring” process requires time-consuming computations for the local maxima. In 

addition, another drawback of the original chromodynamic model is that the density and 

viscosity of two fluids must be the same. Later, Grunau et al (1993) modified this model to allow 

the variations of density and viscosity.  
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4.1.2 Pseudo-potential model 

Shan & Chen (1993) proposed a pseudo-potential LBM model using a non-local interaction 

between particles at neighboring lattice sites. This additional force at each lattice site was 

employed to approximate the effects of the microscopic level of molecular interactions. 

Although it can be shown that the total momentum is conserved over the whole computational 

domain, the momentum is not locally conserved because of these non-local interactions. As a 

result, a spurious velocity field always exists at the interface. In Shan-Chen’s model, different 

equation of state (EOS) will be formed by using different interaction potentials, and phase 

separation occurs automatically when interaction potentials are properly chosen. Yuan & Laura 

(2006) presented a summary of a few different EOS by using different interaction potentials to 

compare the spurious currents, density ratio of two fluids, and temperature range. Although this 

method has several drawbacks, it has been used for a wide range of problems (Shan & Doolen 

(1995); Sankaranarayanan et al. (1999)). Since the collision model in the original Shan-Chen’s 

method is explicit, Sankaranarayanan et al. (2002) proposed an implicit collision formulation to 

allow the change of viscosity in a much wider range. Thus, a very broad range of Morton number 

and Eotvos number were obtained to simulate the rise behavior of a single bubble and multiple 

bubbles.  

 

4.1.3 Free energy model 

Instead of using interaction potential between the computational particles, Swift et al. (1995, 

1996) developed a two-phase LBM model based on a thermodynamic approach. They introduced 

a bulk Helmholtz free energy per unit volume, which made the equation of state for the two 
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phases as an outset. Thus, Swift’s LBM model was usually known as free energy model in LBM. 

However, there were serious problems with non-Galilean invariant terms that were associated 

with density variations in the liquid-gas two phase system. Later, Inamuro et al. (2000) modified 

Swift’s model to by applying a so-called asymptotic theory, and obtained a Galilean-invariant 

model. They demonstrated drop deformation and break-up in a shear flow by using this model. 

The advantage of the thermodynamically based free energy model is that it is straightforward to 

incorporate surface tension, and this allows better parametric control for the simulations. 

 

4.1.4 HSD model 

He, Shan, and Doolen (HSD) (1998) proposed a novel LBE formulation for non-ideal gases 

based on the continuous discrete Boltzmann equation (DBE), in which the interfacial dynamics 

are modeled by incorporating molecular interactions. The collision term in lattice Boltzmann 

equation can be well modeled by Enskog’s theory for short-range molecular interaction and the 

mean-field approximation for long range molecular interaction. Later, He et al. (1999) 

themselves extended the HSD model to be able to simulate incompressible multiphase flow. In 

this extended model, two distribution functions are employed. The first distribution function is 

used to calculate the pressure and velocity fields, while the other one is used only to locate the 

interface.  
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4.2 Formulations of multiphase LBE and boundary condition 
 

4.2.1 Multiphase LBE 

In this study, the fifteen-velocity model for three-dimensions (D3Q15) proposed by Inamuro et al. 

(2004) has been implemented. The velocity vectors in this model are given by (see Figure 11): 

[ ]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15, , , , , , , , , , , , , ,

0 1 0 0 1 0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 1 0 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 1 1 1 1 1 1 1 1

e e e e e e e e e e e e e e e

− − − − −⎡ ⎤
⎢ ⎥= − − − − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

 (4.1) 

 

Figure 11: Discrete velocity vectors for D3Q15 lattice Boltzmann model 
 

In the present method, two-phase fluid flow simulations have been carried out for a purely 

isothermal system. Two particle distribution functions, if  and ig , have been introduced. The 

Function if  is used to calculate the order parameter, φ , which distinguishes the two phases, 

while ig  is used to calculate a predicted velocity, *u , of the two-phase fluids without a pressure 
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gradient. The evolution of the particle distribution functions ( ),if tx  and ( ),ig tx  with particle 

velocity ie  at the point x  and time t  is carried out by the following equations: 

( ) ( ) ( ) ( ), ,
, ,

eq
i i

i i i
f

f t f t
f t t t f t

τ
−

+ Δ + Δ = −
x x

x e x  (4.2) 

( ) ( ) ( ) ( ), , 1, , 3 ( )
eq

i i
i i i i i

g

g t g t
g t t t g t E x

x x x
β α

α
αβ β

μ
τ ρ

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∂− ∂∂+ Δ +Δ = − + + Δ
∂ ∂ ∂

ux x ux e x e  (4.3) 

where fτ and gτ  are the single relaxation time parameters for the two particle distribution 

functions if  and ig  respectively, xΔ  is the unit spacing of the cubic lattice and tΔ  is the time 

step for the particles to travel through the lattice spacing. The last term in Eq. (4.3) represents the 

viscous stress tensor. eq
if  and eq

ig  are the modified particle equilibrium distributions for this 

heuristic two-phase model chosen in order to satisfy the desired evolution equations as is shown 

below. 

 

The macroscopic variables, order parameter φ  and the predicted velocity of two-phase fluids 

*u are given from the moments of the functions if  and ig  at each location, and are given as: 

15

1
i

i
fφ

=

=∑  (4.4) 

15

1
i i

i
g

=

= ∑*u e  (4.5) 

The equilibrium functions eq
if and eq

ig  are given by: 
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2
2

0 2 ( ) 3 ( )
6

feq
i i i f i i i f i if H F p E e u E G e e

x x α α αβ α β
α α

κφ φφ κ φ φ κ φ
⎡ ⎤∂ ∂

= + − − + +⎢ ⎥∂ ∂⎣ ⎦
 (4.6) 

2

3 9 3 11 3 ( )( )
2 2 2 2

2( ) ( )
3

eq
i i i i i g i i

g g
i i i i

u ug E e u u u e e u u e e
x x

E G e e F
x

β α
α α α α α β α β α β

α β

αβ α β
α

τ

κ κ ρρ
ρ ρ

⎡ ⎤∂ ∂
= + − + + − +⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∂

+ −
∂

 (4.7) 

where 

i

2 / 9,      =1,
E 1/ 9,      =1,...,7

1/ 72,    =8,...,15 

i
i
i

⎧
⎪= ⎨
⎪
⎩

,   i

7 / 3,      =1,
1/ 3,      =1,...,7
1/ 24,    =8,...,15 
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and  

9 3( )
2 2

G
x x x xαβ αβ
α β γ γ

φ φ φ φφ δ∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂
 (4.9) 

where fκ is the surface tension parameter specified to control the width of the interface between 

two phases, while gκ controls the strength of the surface tension, and 0p is the thermodynamic 

pressure, given by 

2
0

1
1

p T a
b

ψφ ψ φ φ
φ φ

∂
= − = −

∂ −
 (4.10) 

with 

2( , ) ( )
1

T TIn a
b
φψ φ φ φ
φ

= −
−

 (4.11) 

where ( , )Tψ φ is the bulk free energy density. a, b and T are free parameters that can be chosen 

appropriately. 
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The first derivatives and laplacian operators ( / xαφ∂ ∂ , / xαρ∂ ∂ , /u xβ α∂ ∂ , 2φ∇  and  2uα∇ ) are 

calculated using the finite difference approximations in lattice Boltzmann construction and 

involves the effects from all neighboring nodes, given as: 

15

2

1 ( )
10 i i

i
e t

x α
α

λ λ δ
=

∂
≈ +

∂ ∑ x e  (4.12) 

15
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1 ( ) 14 ( )
5 i

i

t xλ λ δ λ
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⎡ ⎤∇ ≈ + −⎢ ⎥⎣ ⎦
∑ x e  (4.13) 

Once the order parameter is determined from the zeroth order moment of the distribution 

function if , the density at the interface is then calculated by:  

*

*
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 (4.14) 

where L Gρ ρ ρΔ = − ， * * *
L Gφ φ φΔ = − ，

* *
*

2
L Gφ φφ +

= . Lρ  and Gρ  are the densities of the bulk 

liquid and gas phases, respectively. It is important to introduce the cut-off values of the order 

parameters, *
Lφ  and *

Gφ , as the maximum and minimum values of the order parameter φ  are 

changed slightly from their initial values during the simulation. These cut-off values help to keep 

the density of each phase at constant values during the entire simulation duration. 

The dynamic viscosity for the two phases across the interface is computed based on a linear 

interpolation as: 

( )G
L G G

L G

ρ ρμ μ μ μ
ρ ρ
−

= − +
−

 (4.15) 
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where Lμ and Gμ are the dynamic viscosity of liquid and gas phases, respectively.  

The surface tensionσ between the liquid and gas phases is given by: 

2( )g dρσ κ ξ
ξ

∞

−∞

∂
=

∂∫  (4.16) 

where ξ  is the direction normal to the interface. In all the simulations carried out in the present 

study, the surface tensionσ is calculated as a post-processing value after conducting static 

droplet tests. σ  is numerically integrated along the interface after the two phases have been 

equilibrated. The predicted velocity given by *u is not divergence free, since it is derived based 

on a flow without a pressure gradient. To acquire the correct velocity field, the following 

corrections are incorporated: 

p
ρ
∇

− = −*u u  (4.17) 

( )p
ρ
∇

∇⋅ = ∇ ⋅ *u  (4.18) 

where ‘p’ is the pressure of the two-phase fluid, which is obtained by solving Eq. (4.19) in the 

following LBM framework: 

( ) ( ) ( ) ( )
*

1 1 1
3

n n n n
i i i i i i

h

h t h h E p E x
x
α

ατ
+ ∂⎡ ⎤+ Δ = − − − Δ⎣ ⎦ ∂

ux e x x x  (4.19) 

where the superscript ‘n’ represents the number of iterations and 1 1
2hτ ρ

= +  is the relaxation 

time for particle distribution function ih  used to update the pressure field. The moment of the 

distribution function hi yields the pressure field as: 
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15

1
i

i
p h

=

= ∑  (4.20) 

The system of Eqs (4.17)-(4.20) is solved until the following convergence criteria are satisfied: 

1n np p ρ ε+ − </  (4.21) 

 

4.2.2 Novel treatment for the wetting boundary condition 

When a liquid-gas interface meets a solid surface, an angle is formed between the interface and 

the surface. This angle, which is measured in the liquid, is called the static contact angle, wθ . 

According to Young’s equation: 

cos sg sl
w

σ σ
θ

σ
−

=  (4.22) 

where sgσ is the surface tension force between solid and gas, and slσ is the surface tension force 

between solid and liquid. 

 

Recently, a novel LBM boundary condition proposed by Briant et al. (2004) enables the static 

contact angle between the liquid-gas interface and the wall to be controlled in a way consistent 

with Cahn theory. In their method, the required wetting potential Ω  is calculated by choosing a 

desired wetting property of the solid surface (i.e., the wetting angel wθ ). Then, the derivative of 

density normal to the wall, / nρ∂ ∂ , can be obtained to calculate the equilibrium particle 

distribution functions on the wall. By doing this, the effect from the input wall wetting 

characteristics can be transmitted to the interior fluid nodes through the equilibrium particle 
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distribution functions. Their static droplet simulations showed that the input and post-processed 

contact angles match accurately. 

 

In the present work, the treatment of the wall boundary condition is similar to Briant’s work, but 

with a minor modification due to a difference in the equation of state. Briant et al. (2004) used a 

modified van der Waals free-energy function that enables the surface tension force to be an input 

parameter. In Inamuro’s method (2004), the traditional form of the van der waals free-energy 

was used, and the surface tension is a post-processed parameter. Therefore, in the current study, 

instead of specifying an input static contact angle wθ , an input surface wetting force, η , is used 

in order to obtain the equilibrium particle distribution functions on the wall. Thus, the first and 

second derivatives of the order parameter can be treated as shown below: 

0zz
φ η

=

∂
= −

∂
 (4.23) 
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2
0 1 20

1 ( 3 4 )
2 z z zzz z z z

φ φ φ φ

= = ==

∂ ∂ ∂ ∂
≈ − + −

∂ ∂ ∂ ∂
 (4.24) 

where z is the direction perpendicular to the wall. Eq. (4.23) is used to calculate the first term on 

the right hand side of Eq. (4.24). The second term is calculated by a standard central-difference 

formula and the third term is calculated by a backward-difference formula taken back into the 

wall, given by: 

2 1 0
2

1 (3 4 )
2 z z z

zz
φ φ φ φ

= = =
=

∂
≈ − +

∂
 (4.25) 
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4.3 Capillary Wave 
 

In this section, the oscillation of a spherical liquid droplet surrounded by gas phase is simulated 

as a benchmark test to validate the multiphase LBE. For all the simulations, the density ratio 

between the two phases, L G/ρ ρ , is fixed at 50 ( L 50ρ = , 1Gρ = ). The viscosities of liquid and 

gas are: 3
L 8 10μ −= × , 41.6 10Gμ

−= × . The free parameters are set at: a=1, b=6.7, T=0.035, it 

follows that 2
max 9.714 10φ −= × and 2

min 1.134 10φ −= × . The cut-off values of the order parameter 

are * 29.2 10Lφ
−= ×  and  * 21.5 10Gφ

−= × . 0.5fκ = , 1fτ = , 1gτ = , 510ε −= . The droplet diameter and 

surface tension are varied. Half of the domain is calculated using the symmetry with y axis. 

Periodic boundary condition is used on all sides of domain, which has the size of 81×41×81. 

 

The analysis of droplet oscillations is of considerable interest for a wide range of phenomena 

both in nature and industry, such as the behavior of raindrops and the fluid in biological cells. 

The surface tension of the droplet acts as a restoring force to maintain its shape in equilibrium. 

Thus, if small perturbations are imposed to the liquid droplet, the droplet will oscillate to regain 

an equilibrium state by the capillary force. Suppose the effect of the gravity is neglected, the 

wave generated by the oscillation process is called capillary wave  

 

Initially, an ellipsoidal droplet is placed in the center of a cubic domain, and the surface of the 

droplet is given by:  

2 2 2

2 2 2 1
( 0.1 ) ( 0.1 ) ( 0.1 )

x y z
R R R R R R

+ + =
+ − −

 (4.26) 
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where R is the radius of the droplet.  

 

The unbalanced surface tension of the ellipsoidal droplet will try to bring the droplet into an 

equilibrium state. The droplet will encounter an oscillating process and eventually, the droplet 

will be in spherical shape. The theoretical oscillating frequency of the disturbed droplet when the 

density of ambient medium is zero is given by (Frohn & Roth (2000)): 

2
3

( 1)( 2)

L

l l l

r
ω σ

ρ

− +
=  (4.27a) 

where l describes the mode of the oscillation, and r  is the mean radius of the droplet.  

When the density of ambient medium is not zero 

[ ]
2

3
( 1)( 1)( 2)

( 1) L G

l l l l

r l l
ω σ

ρ ρ

+ − +
=

+ +
 (4.27b) 

 

The oscillating mode of present simulation is 2, as shown from Figure 12-14. From Eqs. (4.27a) 

and (4.27b), we can get the angular frequency of the oscillation of the droplet is: 

3
8

Lr

σω
ρ

=  (4.28a) 

3

8
2( )
3L Gr

σω
ρ ρ

=
+

 (4.28b) 

The difference between these two equations is small for the present case since G Lρ ρ . Table 4 

shows a good comparison of the calculated angular frequencies of the oscillating droplet with the 

theoretical ones. 
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Table 4: Comparison of the calculated angular frequencies of the oscillating droplet with the 
theoretical ones 

R r  σ  Theoretical Numerical Error 

15 14.43 0.2 3.262×10-3 3.062×10-3 -6.1% 

20 19.25 0.052 1.080×10-3 1.058×10-3 -2.0% 

20 19.25 0.186 2.043×10-3 1.982×10-3 -3.0% 

20 19.25 0.7 3.964×10-3 3.697×10-3 -6.7% 

25 24.06 0.182 1.446×10-3 1.409×10-3 -2.6% 

 

                      

Figure 12: Two extreme states of the two-mode oscillating droplet (3-D view) 
 

 

Figure 13: Two extreme states of the two-mode oscillating droplet with the micro-currents 
generated by the oscillation (2-D view) 
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Figure 14: The time evolution of the oscillating droplet shape (Parameters are chosen from the 
third case of Table 4)  
 

4.4 Binary droplet collisions 
 

In this section, another benchmark test to validate the numerical code, named “binary droplet 

collisions”, are presented and parameters are chosen the same as Inamuro et al. (2004)). Two 

liquid droplets with the same diameter D are placed a distance 2D apart in the gas phase, and are 

allowed to move towards each other with a relative collision velocity given by V, as shown in 

Figure 15. The droplet collision dynamics is described in terms of three important dimensionless 

parameters: Weber number, Reynolds number, which are given by Eqs. (1.1) and (1.2), and 

Impact parameter: B= X
D

 (4.29) 

where X is the vertical distance between the centers of the two droplets (see Figure 14) 
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Figure 15: Computational domain for binary droplet collisions (3-D view and 2-D view) 
 

For all the simulations, the density ratio L G/ρ ρ , is fixed at 50 ( L 50ρ = , 1Gρ = ); The viscosities 

of liquid and gas are, 2
L 8 10μ −= × , 31.6 10Gμ

−= × . The relative velocity is chosen to be V=0.1. 

The initial diameter of the spherical droplets is D=32. The Reynolds number is fixed at Re=2000 

for all the simulations, while We is varied in the range of 20<We<80 by varying gκ . Symmetric 

boundary conditions are employed along the ‘y’ axis, thereby reducing the computational time in 

half. 

 

In Figure 16, the time evolution of the binary droplets after collision is shown for We=20, and 

B=0. The droplet shape represents interface where the mean density, given by 

L G= 25.5
2

ρ ρρ +
= , occurs. It can be observed that the two droplets experience small 

deformation as they approach each other (t*=1.56). The conjoined droplets reach a maximum 

elongation in the vertical direction z at t*=3.13. Subsequently, the extent of deformation 

decreases, as the surface tension force pulls the droplet to recover its spherical shape. However, 

the momentum gained by the recoiling motion enables the droplet to form a stretched liquid 
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cylinder after having reached its maximum deformation in the x direction (t*=6.25). After some 

oscillations, this exchange of surface tension energy and momentum is dissipated completely, 

and the cylinder transforms into a spherical droplet (t*=23.75). This class of collisions is called 

the “coalescence collision” (Inamuro et al. (2004)). 

    

(a) t*=1.56                                                               (b) t*=3.13 

    

   (c) t*=6.25                                                                (d) t*=23.75 

              

                        t*=1.56                t*=3.13                    t*=6.25                       t*=23.75 

Figure 16: Evolution of droplet shape with time for We=20 and B=0 
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In Figure 17, the time evolution of the binary droplets collision mechanism is shown for a 

slightly higher We of 40, and B=0. The droplet interface shown represents L G= 25.5
2

ρ ρρ +
= . 

The time evolution of the droplet shape is very similar to the case shown in Figure 16 up to the 

formation of the long liquid cylinder. However, in this case, the cylinder breaks into two major 

droplets and a small satellite droplet in the middle (t*=15.0). This type of collision is called the 

“reflexive separation collision”. 

     

(a) t*=1.25                                                           (b) t*=3.13 

    

(c) t*=9.38                                                              (d) t*=15.0 
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                    t*=1.25                    t*=3.13                       t*=9.38                        t*=15.0 

Figure 17: Evolution of droplet shape with time for We=40 and B=0 
 

Figure 18 describes the time evolution of the binary droplets collision for a case when We=80, 

and B=0.5.  The two droplets collide at a higher impact parameter, thereby only a small portion 

of them comes in direct contact with each other. The rest of the portion moves with the initial 

inertia. Eventually, the conjoined droplet breaks into two major droplets with a small satellite 

droplet. This type of collision is known as a “stretching separation collision”. 

 

   

(a) t*=1.56                                                             (b) t*=5.0 
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 (c) t*=8.13                                                          (d) t*=15.0 

 

                         

t*=1.56                                         t*=5.0 

      

t*=8.13                                                      t*=15.0 

Figure 18: Evolution of droplet shape with time for We=80 and B=0.5 
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CHAPTER FIVE: DROPLET IMPINGEMENT ON A DRY SURFACE 
 

 

In this chapter, results from the normal impact of a liquid droplet onto a solid, dry surface are 

reported and discussed. The impact is assumed to be isothermal, and the dry surface is assumed 

to be perfectly smooth. The physical variables that affect such an impact include: the initial 

droplet diameter D, impact velocity V, liquid density ρL, viscosity μL, liquid-gas surface tension 

σ, and the surface wettability. These variables are grouped into three dimensionless numbers, 

namely the Weber number, Reynolds numbers and Ohnesorge number, as shown by Eqs. (1.1-

1.3). In addition, the spreading characteristics of this dynamic process are captured by measuring 

the spreading film diameter. This quantity is usually represented by a dimensionless number 

known as spread factor, d*, defined by Eq. (1.4). The evolution time, t, is made dimensionless 

scaled by impact velocity V and the initial spherical drop diameter D, written as:  

* /t tV D=  (5.1) 

 

Usually, the time evolution of spread factor is divided into four phases: the kinematic phase, the 

spreading phase, the relaxation phase, and the wetting/equilibrium phase (Rioboo et al. (2002)). 

Figure 19 shows a typical curve for the time evolution of spread factor for We=36 and Re=200 

with the equilibrium contact angle θw=66.7º. A maximum value of 2.1 for the spread factor is 

observed at the end of the spreading phase. 
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Figure 19: Time evolution of Spread factor showing four distinct phases: kinematic phase, 
spreading phase, relaxation phase, and equilibrium phase. Data obtained using 3-dimensional 
LBM simulation for We=36 and Re=200. 
 

5.1 The computational set-up 
 

The three-dimensional computational domain with length Lx, Ly and Lz along the x, y and z axis 

respectively, and its two-dimensional cross section at y=Ly/2 are shown in Figure 20. Periodic 

boundary condition is used on the sides of the domain (along x and y direction), while no-slip 

wall boundary condition is used on the top and bottom boundaries of the domain. Using free-slip 

or open boundary conditions for the top boundary of the domain was found to have little effect 

on the simulation results presented herein. Due to massive computational requirements of a 

three-dimensional simulation, only a quarter of the domain is simulated, thereby using symmetry 
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at x=Lx/2 and y=Ly/2. The domain size for each case is varied according to the initial size of the 

droplet chosen.  

 

   

D
V

Periodic boundary

No slip wall boundary

No slip wall boundary

Periodic boundary

 

Figure 20: 3-D and 2-D Schematic view of simulation domain for a droplet impingement on a 
dry surface 
 

Initially, the droplet is placed several nodes away from the surface, and is allowed to equilibrate 

for 5000 time steps. At this time, the droplet is assigned a uniform velocity V in the vertical 

direction for about 100 time steps to make sure that the drop attains a steady impact velocity. The 

viscosity ratio of liquid and gas is fixed at: L / 50Gμ μ = . The diameter of the droplet is fixed at 

D=32. For all other parameters: a=1, b=6.7, T=0.035, it follows that 2
max 9.714 10φ −= × and 

2
min 1.134 10φ −= × . The cut-off values of the order parameter are * 29.2 10Lφ

−= ×  and  

* 21.5 10Gφ
−= × . 0.5fκ = , 1fτ = , 1gτ = , 510ε −= . Weber number is varied by changing the 

parameter gκ , while Reynolds number is varied by changing liquid viscosity, Lμ . 
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5.2 Preliminary wetting tests 
 

Even before running a droplet impact case, a preliminary wetting test is conducted to obtain the 

desired surface wetting characteristic, represented by the static contact angle, θw. As an initial 

condition, half of a spherical droplet is placed at the center of the bottom surface with a specified 

value for the surface wetting force, depending on whether the surface is hydrophilic, neutral or 

hydrophobic. This test was allowed to run for 20,000 time steps in order to obtain a stable 

equilibrium state. Figure 21 shows results for such a test with different wetting behavior, namely, 

(a) a hydrophilic surface, where θw=66.7º with η=3×10-3, (b) a neutral surface, where θw=90º with 

η=0, and (c) a hydrophobic surface, where θw=105º with η=-5×10-3. 

      

                                   (a)                                     (b)                                      (c) 

Figure 21: Preliminary wetting tests for three surfaces: (a) Hydrophilic; (b) Neutral; (c) 
Hydrophobic 
 

5.3 Validation of power law during Kinematic phase 
 

Figure 22 shows the droplet shape in the kinematic phase defined for the very early stages of 

impact. During this phase, the spreading droplet represents a truncated sphere without the 

formation of a spreading lamella along the surface of the wall. According to the geometry shown 

in Figure 22, we can write the following approximated equation: 
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2 2 2

2

* * *

( / 2) ( / 2) ( / 2 )

2 ( )

2 (1 )

d D D Vt

d DVt Vt

d t t

= − −

⇒ = −

⇒ = −

 (5.2) 

 

d
V*t

D/2

V

 

Figure 22: Early stage of impact-Kinematic phase 
 

For small t*, i.e. t*<<1, Eq. (5.2) indicates that d* is proportional to t*0.5, with an approximate 

coefficient of 2. Rioboo et al. (2002) obtained a coefficient of 2.8 from numerous experimental 

data. Figure 23 shows a collection of six cases using the current formulation of LBM, with a 

curve fit of d*=2.5*t*0.5, in which the coefficient lies between the theoretical prediction and the 

experimental data. This validation predicts that the droplet spreading factor in the kinematic 

phase is only a function of the dimensionless time, and does not depend on the physical 

properties of the fluids involved. 
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Figure 23: Time evolution of Spread factor during kinematic phase at various Weber and 
Reynolds numbers, the sold line is the curve fit: d/D=2.5t*0.5 
 

5.4 Simulation observations 
 

After the kinematic phase, all other physical parameters, inertia of impact and surface tension 

forces begin to play a role to influence the spread factor and the subsequent droplet deformation 

process. In this section, two different simulation outcomes are shown: deposition and partial 

rebound. 

 

Figure 24 shows how the droplet deforms with time, and velocity vectors both inside and outside 

of the droplet are also clearly presented. Weber number is chosen to be 50, the Reynolds number 

is chosen to be 1000 and the wall has neutral wetting characteristics. The snapshots are taken at 

different stages of the spreading lamella to show different regimes of the droplet shape. Figure 
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24(a) shows the droplet deformation at an early stage of impact. During this kinematic phase, the 

bottom of the spherical droplet is highly squeezed to the sides, thereby producing large velocity 

currents at the edge of the droplet. The formation of a vortex in the gas phase due to the 

movement of the droplet in the downward direction can also be observed.  Figure 24 (b) shows 

that a lamella is formed and bounded by a rim when the droplet continues to spread, which 

reaches its maximum diameter (see Figure 24(b)), indicating the end of the spreading phase. The 

end of the spreading phase can also be judged by observing the velocity vectors at the edge of the 

lamella, which almost turn to zero. Figure 24(d-f) shows the rest of the spreading process as the 

lamella begins to recoil back during the relaxation phase, and eventually reaches its maximum 

height (see Figure 24(f)). After oscillating for a long time between t*=6.8 and t*=23.2, the droplet 

finally reaches the equilibrium state shown by Figure 24(g), where a half spherical droplet sits on 

the dry surface. Figure 25 shows the corresponding three-dimensional droplet deformation with 

time. 

   

                                     (a) t*=0.078                                               (b) t*=0.86                   
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                                       (c) t*=1.8                                                   (d) t*=2.9                  

   

                                         (e) t*=3.8                                                (f) t*=6.8                   

 

                                                                       (g) t*=23.2  

Figure 24: 2-D view of the time evolution of droplet shape for We=50, Re=1000. 
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                                         (a) t*=0.22                                        (b) t*=0.69 

 

        

                                         (c) t*=1.16                                         (d) t*=3.03 

        

                                         (e) t*=5.84                                         (f) t*=23.18 

Figure 25: 3-D view of the time evolution of droplet shape for We=50, Re=1000. 
 

In the case given in Figure 25, since the droplet impinges on a neutral wall, it results in a final 

deposition on the surface although it experiences a long time oscillation induced by the surface 

tension energy of the droplet. As reported by several researchers [Mao et al. (1997); Rioboo et al. 

(2002); Mukherjee & Abraham (2007)], droplet at high impact velocity and large surface tension 

impinges on a super-hydrophobic surface may result in a rebound, meaning completely 

detachment of the droplet from the surface. In our simulation, as shown in Figure 26, we 
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observed that the droplet results in a partial rebound on a hydrophobic surface at We=12.5, 

Re=1000, and 105wθ = . This can be seen in Figure 26(f) that the droplet recoils back to the 

maximum height, with a heavier top and a lighter bottom, where the diameter is less than the 

original diameter. Further studies are needed to simulate the droplet impingement on super-

hydrophobic surface, which may lead to a complete rebound. 

 

                                     (a) t*=0.72                                               (b) t*=1.19 

 

                                      (c) t*=1.66                                               (d) t*=2.59 

 

                                     (e) t*=3.06                                               (f) t*=4.94 

Figure 26: 3-D view of the time evolution of droplet shape for We=12.5, Re=1000. 
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5.5 Maximum spread factor analysis 
 

According to mass conservation of the liquid film before and after impact: 

3 2
max( )

6 4
D Dd hπ π

≈  (5.3) 

where maxd  is the maximum spread factor, h is the height of the lamella when the droplet reaches 

its maximum spread factor. This yields: 

max
2
3
Dd
h

≈  (5.4) 

Due to the diffusive nature of LBM (Lee & Lin (2005); Zheng et al. (2006)), the interface 

thickness between liquid and gas should not be any smaller than 2, otherwise the lamella might 

diffuse away. Since D=32 is used for all the simulation cases, and assuming h≥3, Eq. (5.4) 

reduces to  max 2.67d ≤ . Thus, all the simulations conducted are properly chosen in order to meet 

this requirement on the maximum spread factor.  

 

5.6 Parametric analysis on the maximum spread factor 
 

In this section, three groups: the surface wettability, Weber number and Reynolds number, are 

studied separately to examine their influence on the liquid spreading behavior in the spreading 

phase. 

 

In Figure 27, three different surfaces have been used: hydrophilic, neutral, and hydrophobic with 

static contact angles of θw=66.7º, θw=90º, θw=105º, respectively. As one can observe from the 
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figure, all the three curves behave similarly during most of the spreading phase. However, after 

t*=1, some differences can be seen: on the hydrophilic surface, the droplet reaches a maximum 

spread factor of 2.45; on the neutral surface, the droplet reaches a maximum spread factor of 

2.15; on the hydrophobic surface, the droplet reaches a maximum spread factor of 2.05. These 

results show that the surface wettability does have an influence on the maximum spread factor. 

Clearly, a spreading droplet tends to adhere to a hydrophilic surface while a hydrophobic surface 

tends to repel the spreading motion of the droplet. 

 

In Figure 28, the influence of the drop inertia on the spreading of the lamella is shown, keeping 

the Weber number at a constant value of 36. Evidently, increasing the Reynolds number leads to 

an increase in the maximum spread factor. At Re=20, the maximum value for d* is 1.5; at 

Re=100, d*
max=2.0; at Re=200, d*

max=2.1. From Re=20 to Re=100, the maximum spread factor 

increases by 33%, while from Re=100 to Re=200, the maximum spread factor only increases by 

5%. 

 

In Figure 29, the influence of the surface tension on the spreading process is compared by 

varying the Weber number while keeping the Reynolds number fixed at 200. As reported in an 

earlier study (Rioboo et al. (2002)), the influence of Weber number is weak, as can be seen from 

Figure 29. At We=36, d*
max=2.1; at We=83, d*

max=2.2. 
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Figure 27: Wettability influence on the spreading behavior during spreading phase. (We=50, 
Oh=0.0071) 

Dimensionless time (t*=tV/D)

S
pr

ea
d

fa
ct

or
(d

*=
d/

D
)

10-2 10-1 100 1010

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Re=20
Re=100
Re=200

 

Figure 28: Reynolds number influence on the spreading behavior during spreading phase. 
(We=36 for all 3 cases) 
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Figure 29: Weber number influence on the spreading behavior during spreading phase. (Re=200 
for both cases) 
 

5.7 Splashing break-up 
 

In general, there are two possible outcomes of a droplet impingement on a solid dry surface, 

namely, deposition and splashing. Splashing is considered to be a more energetic pattern of 

impact outcome compared to deposition, as secondary droplets are ejected. Several experimental 

correlations have been proposed to quantify the deposition-splashing boundary. However, 

several questions remain unanswered and these correlations do no cover the entire range of 

governing parameters (Bussmann et al. (2000)). In this section, quantitative results of splashing 

will be presented. To the author’s knowledge, such results of LBM or other numerical studies, 

have not been achieved or presented before. Since the quantitative results of splashing are 

computational intensive and they occur only for a certain combination of We and Re, limited 
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results are presented here. However, by invoking theoretical studies from the literature, it will be 

qualitatively shown at what point transition from deposition to splashing may occur.  

 

One important and an easier starting point to look at the splashing problem is by the principle of 

mass and energy conservation before and after the impact (Mundo et al. (1995)): 

' ' ' '
k p s k p s dE E E E E E E+ + = + + + , 'm m=  (5.5) 

where Ek, Ep, Es and Ed are the kinetic, potential, surface, dissipated energies respectively, and m 

and m’ are the mass of the droplet before and after impact.  

Thus, if ' ' ' '
k p s k p s dE E E E E E E+ + > + + + , it indicates that the energy before impact is not 

completely dissipated by the surface tension and viscous forces. This can lead to the formation of 

secondary droplets and splashing may occur.  

The kinetic energy before impact can be written as:  

2 31
12kE V Dρ π= Δ  (5.6) 

where L Gρ ρ ρΔ = − , the density difference between liquid phase and gas phase. 

The surface energy before impact can be written as:  

sE Dπ σ=  (5.7) 

The surface energy after impact can be written as:  

' 2
max (1 cos )

4sE dπ σ θ= −  (5.8) 

where θ is the contact angle between the liquid-gas interface and solid when the lamella reached 

its maximum spreading diameter. 
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It is difficult to determine the dissipated energy because the velocity distribution inside the 

deforming droplet is not known. Chandra et al. (1991) used a very simple approximation to 

determine '
dE :  

'

0
* * * *dt

d dv
E dv dt v t= Φ ≈ Φ∫ ∫  (5.9) 

where Φ is the dissipation per unit mass, and is given by: 

2( ) ( )yx xuu u V
y x y h

μ μ
∂∂ ∂

Φ = + ≈
∂ ∂ ∂

 (5.10) 

td is the time it takes for the drop to deform to a maximum, which is approximated by  td=D/V. v 

is the volume of the lamella and is given by:  

2
max4

v d hπ
≈  (5.11) 

Combining Eqs. (5.5)-(5.11), and assuming Ep=Ep’, we obtain a reduced form of Eq. (5.5) in 

terms of Weber number, Reynolds number and the maximum dimensionless spread factor, 

* 4 * 2
max max

3 1( ) (1 cos )( ) ( 4) 0
2 Re 3 L

We d d Weρθ
ρ
Δ

+ − − + =  (5.12) 

This could also be written in terms of Ohnesorge number as 

* 2
max

2 * 4
max

3(1 cos )( ) 12

Re 4.5( ) Re
c

L

dOh
d

θ
ρ
ρ

− −
=

Δ
−

 (5.13) 

where cOh  is the critical Ohnesorge number. For 
L

ρ
ρ
Δ ~1 at high density ratios, Eq (5.13) reduces 

to: 
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* 2
max

2 * 4
max

3(1 cos )( ) 12
Re 4.5( ) Rec

dOh
d

θ− −
=

−
 (5.14) 

Eq (5.14) is the same equation proposed by Chandra et al. (1991).  

 

Eq. (5.13) may determine the deposition-splashing boundary in terms of Reynolds number and 

the maximum spread factor. If the Ohnesorge number in the flow condition is larger than cOh , 

splashing will occur; otherwise, deposition will occur. However, Eqs (5.9)-(5.11) are very crude 

approximations for the dissipation energy, and the inaccuracy of these approximations may result 

in large uncertainty for predicting the outcomes. At the same time, an analysis of this kind 

qualitatively shows the effect of increasing the Reynolds and Weber number and their influence 

on splashing. 

 

After Chandra’s (1991) proposal of cOh , empirical correlations were proposed by several 

authors [Cossali et al. (1997); Mundo et al. (1995)], the demarcation between deposition and 

spreading of droplets can be determined based on the dimensionless value of K’, defined as: 

0.4' *K We Oh−=  (5.15)  

where K’= 650 is the deposition/splash threshold. When K’>650, splashing will occur; otherwise, 

deposition will occur. 

 

Nine cases of LBM simulations are shown in Table 5, three of which resulted in splashing and 

one with partial rebound. The partial rebound case was reported earlier in Section 5.4. Table 5 

also provides maximum spread factors at different Weber and Reynolds numbers, Ohnesorge 
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number for the simulation case, the critical Ohnesorge number from Eq. (5.13), the K’ parameter 

from Eq. (5.15) maximum diameters from experimental correlations and finally the outcome of 

the particular case. According to the energy analysis and the correlation given in Eq. (5.15), 

when cOh Oh> , splashing should occur or when K’>650. The LBM outcome contradicts both 

criteria for some of the cases, suggesting further work in determining a suitable criterion for 

transition to splashing that covers a broad range of parameters. The current analysis or 

correlation is not accurate enough to be able to predict an outcome for the droplet impingement 

yet.  

 

In Figure 30, two simulation results in the plane of y=Ly/2 are shown to compare deposition with 

splashing at the same Reynolds number of 200, but at different Ohnesorge numbers, Oh=0.03, 

Oh=0.046, respectively. These conditions are represented by Cases 6 and 7 in Table 5. The 

dynamic behavior of the droplets at different t* are given side by side for the two different 

Ohnesorge numbers. The three-dimensional view of the splashing in Case 7 is again shown in a 

different perspective in Figure 31. As seen in Table 5, for both cases 6 and 7, Ohc is exceeded, 

yet splashing occurs only for Case 7. Similarly, the K’ parameter for both cases does not exceed 

the deposition/splash threshold of 650 set by [Cossali et al. (1997); Mundo et al. (1995)] and 

therefore should not result in a splash, yet the outcome in each case is different. 
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Table 5: A list of simulation results with their outcomes and maximum spread factor 

Case 
Droplet 

Radius 
We Re Oh 

Ohc 

(Eq.5.14)

K’ 

(Eq.5.15)

*
max

LBMd **
maxd  Outcome 

1 16 50 1000 0.0071 0.0027 362.4 2.45 2.66 Deposition

2 16 500 50 0.447 0.067 690 1.88 1.96 Deposition

3 16 12.5 1000 0.0035 0.0019 120 2.25 2.37 
Partial 

Rebound 

4 16 36 20 0.3 0.307 58.3 1.5 1.35 Deposition

5 16 36 100 0.06 N/A 111 2.0 1.76 Deposition

6 16 36 200 0.03 0.0074 146.4 2.1 1.98 Deposition

7 16 83 200 0.046 0.012 286 2.2 2.12 Splashing 

8 20 120 500 0.022 0.0024 553.3 2.1 2.54 Splashing 

9 20 150 500 0.024 0.0036 661.4 2.2 2.59 Splashing 

Notation: 

*
max

LBMd : numerical value of maximum spread factor from LBM simulation 

**
maxd : experimental correlation of maximum spread factor from Scheller et al. (1995) 

 Ohc: calculated from Eq. (5.14) 

K’: calculated from Eq. (5.15) 

 

Looking at the discrepancy between the correlation and the existing simulation, there are two 

major differences in the present numerical modeling of splash and the experiments on which the 

empirical correlation (Eq.5.15) is based. First, the density ratio of the liquid droplet to the 
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surrounding gas phase is fixed at 50 for the current simulations. This value is relatively small 

compared to the experimental data, which is in the range of 1000 for an air-water system at 

atmospheric pressure. This difference in density ratio translates to different values of the relative 

pressure between the simulations and experiments, with the relative pressure of the surrounding 

medium to be higher in the present LBM simulations as compared to that of experiments. No 

experiments have ever been reported regarding the influence of the ambient pressure on 

splashing, except one surprising discovery recently brought forward by Xu et al. (2005). They 

experimentally investigated the effect of the ambient pressure or the molecular weight of the 

surrounding gas on the splashing of droplets. Corona splash was the outcome when an alcohol 

drop was allowed to impinge on a dry surface at atmospheric pressure. However, when the 

pressure was reduced by a factor of 5, the corona completely disappeared and no splashing was 

observed. Thus, density (or pressure) of the surrounding gas may have a large influence on 

splashing and may be the cause of the discrepancy in the threshold set by the correlation. Thus, 

the mechanism of this kind of influence warrants further study. Secondly, the surface roughness 

and the uncertainty in the experiments are also factors in splashing. These influences are not 

reproduced in the current LBM simulations, since the surface of impact is considered to be 

ideally smooth and the simulation conditions are isotropic. Since we have validated the LBM 

results both for single- and two-phase flows, and the theory and empirical correlation do not 

match, we conclude that there needs to be more work done in this area to obtain a correlation that 

not only includes a broad range of existing parameters but also a combination of these 

parameters. 
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(a) t*=0.47 

 

(b) t*=1.1 
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(c) t*=1.25 

 

(d) t*=1.41 
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(e) same as (d) for Oh=0.046 zoomed in 

Figure 30: Comparison between deposition and splashing break-up (We=36 on the left for 
Oh=0.03 and We=83 on the right for Oh=0.046, both at Re=200) 

   

                                         (a) t*=0                                                (b) t*=0.16                                   

    

                                      (c) t*=0.31                                              (d) t*=0.47      

     

                                      (e) t*=0.63                                                (f) t*=0.78         
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                                      (g) t*=0.94                                                (h) t*=1.09       

   

                                       (i) t*=1.25                                               (j) t*=1.41          

Figure 31: Three-dimensional simulation results to show splashing break-up after the droplet 
reaches its maximum spread factor (We=83, Oh=0.046) 
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CHAPTER SIX: CONCLUSIONS AND FUTURE STUDIES 
 

 

In this work, a Lattice Boltzmann method is presented to simulate droplet collision and droplet 

impact at a relatively large density ratio of 50 in a three-dimensional Cartesian system. This 

density ratio, although much smaller than that for air-water, is still high compared to what the 

other LBM methods have been able to achieve. The current method has its benefits, considering 

the numerical instability which arises when dealing with large density ratios in LBM 

(Gunstensen et al. (1991); Shan & Chen (1993); Swift et al. (1995); He et al. (1999)). The 

surface wettability is suitably incorporated by a novel boundary treatment. Hydrophilic, neutral 

and hydrophobic surfaces have been successfully simulated to study the role of surface wetting 

characteristics in droplet impingement problems.  

 

It is shown that during the early stage of impact, the spread factor is proportional to a power of 

dimensionless time, given by: d*
max=2.5t*0.5. It compares well with the theoretical analysis and 

existing experimental correlations (Rioboo et al. (2002)). In the spreading phase, it is shown that 

the maximum spread factor increases with an increase in Reynolds number and Weber number, 

with the Reynolds number registering a higher influence. In addition, maximum spread factors 

are found to increase in the ascending order when compared to hydrophobic, neutral and 

hydrophilic surfaces. 
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Two different outcomes of impingement have been shown: deposition and splashing. Splashing 

occurs at a higher Reynolds number and Ohnesorge number compared to deposition. The 

transition to splashing is qualitatively studied by a simple energy analysis. Since the density or 

pressure of the surrounding gas phase also plays a key role in determining the deposition-

splashing threshold, it is shown that the threshold of the present simulation results is lower than 

the experimental data. Although the effect of pressure needs further study, it appears that 

splashing can be avoided by reducing the system pressure.  
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