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ABSTRACT 
 

 

A Monte Carlo model is developed for predicting electrical conductivity of carbon nanofiber 

composite materials. The conductive nanofibers are models as both 2D and 3D network of finite 

sites that are randomly distributed. The percolation behavior of the network is studied using the 

Monte Carlo method, which leads to the determination of the percolation threshold. The effect of 

the nanofiber aspect ratio on the critical nanofiber volume rate is investigated in the current 

model, each of the nanofibers needs five independent geometrical parameters (i.e., three 

coordinates in space and two orientation angles) for its identification. There are three controlling 

parameters for each nanofiber, which includes the nanofiber length, the nanofiber diameter, and 

the nanofiber aspect ratio. The simulation results reveal a relationship between the fiber aspect 

ratio and the percolation threshold: the higher the aspect ratio, the lower the threshold. With the 

simulation results obtained from the Monte Carlo model, the effective electrical conductivity of 

the composite is then determined by assuming the conductivity is proportional to the ratio of the 

number of nanofibers forming the largest cluster to the total number of nanofibers. The 

numerical results indicate that as the volume rate reaches a critical value, the conductivity starts 

to rise sharply. These obtained simulation results agree fairly with experimental and numerical 

data published earlier by others. In addition, we investigate the convergence of the current 

percolation model. We also find the tunneling effect does not affect the critical volume rate 

greatly. We propose that the percolation model is not scalable as well. 
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CHAPTER 1  

INTRODUCTION AND OBJECTIVE 

 

 

1.1 Introduction 

 

A variety of conductive particles or fibers have been added to polymer matrices to form 

nanocomposites are finding important applications in aerospace and other industries. Carbon 

nanotubes and carbon nanofibers have been an area of intense research and play a significant role 

in current development of nanotechnology. They own unique characteristics and properties, 

which includes low density, high surface area, good chemical stability, high electrical and 

thermal conductivity, excellent mechanical properties and fire resistance. (Krishnan et al., 1998; 

Yu et al., 2000; Sandler et al.,1999 ; Geng et al.,2002 ; Beguin et al., 2002 ; Subramony et al., 

1998 ; Kashiwagi et al., 2002; Kashiwagi et al., 2005). For example, as the volume fraction 

increasing, there exists an insulator to conductor transition around a critical threshold ( Bigg, 

1979). That is, there is a sharp increase of the electrical conductivity at a critical fiber volume 

fraction. Polymer matrix composites reinforced by nickel nanostrands, which are pure nickel 

filaments with nanometer diameters and high aspect ratios, are very promising nanocomposites 

that can reduce lightning strike damage with minimum added weight (Hansen, 2005; Li et al, 

2008). 
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Carbon nanotubes consist of graphitic cylinders with diameter of 1-100 nm and high aspect ratio 

of a few micro lengths, leading to high Van der Waals force between adjacent tubes. The high 

Van der Waals force and high aspect ratios with a combination of high flexibilities make these 

nanotubes easily assemble into bundles or ropes. As a result, it becomes quite difficult to 

disperse carbon nanotubes in polymer matrix. In addition, their manufacturing and purification 

processes are still too complicated and expensive for mass production. All these factors limit 

their application in manufacturing high performance carbon nanotubes/polymer composite (Hill 

et al., 2005; Thess et al., 1996; Kokai et al., 1999). 

 

Compared to carbon nanotubes, carbon nanofibers have recently gained considerable attention in 

nanocomposite applications. Carbon nanofibers can be produced at lower cost by catalytic 

chemical vapor deposition of carbon containing gases (Toebes et al., 2004; Ros et al., 2002; 

Vieira et al., 2004; Dandekar et al., 1998; Durkic et al., 1997; Wang et al., 2003). They possess 

less order and more edge sites on the outer wall (Kim and Lee, 2004; Werner et al., 2005), which 

makes carbon nanofibers have better dispersion and wettability in polymer matrix. The higher 

proportion of edge plane defects also may lead to more facile electron transfer (Salimin et al., 

2004; Banks and Compton, 2005). In fact, carbon nanofibers can be prepared having grapheme 

sheets stacked either parallel (ribbon structure), perpendicular (platelet structure), or canted 

(herring-bone structure) relative to their long axis (Rodriguez et al., 1995; Carneiro et al., 2003). 

The exterior surface of carbon nanofibers possessing a herring-bone structure is composed of 

highly reactive carbon or partially hydrogenated carbon edge-sites. This structural characteristic 

provides a unique opportunity for covalent binding of linking molecules containing reactive 

pendant functional groups to the surfaces of carbons nanofibers. The reaction of such surface-
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bound pendant functional groups with polymers could make carbon nanofiber/polymer 

nanocomposites exhibit exceptional carbon fiber-polymer wettability due to the presence of 

covalent binding across the nanofiber-polymer interface (Zhong et al., 2004). Based on the as-

mentioned characteristics, an increasing number of carbon nanofiber/polymer nanocomposites 

have been researched. (Thostenson and Chou, 2006; Yang et al., 2005; Lau et al., 2005; Shi et al., 

2007 ; Hirai et al., 2007 ; Cho and Bahadur, 2007 ; Hasan et al., 2007 ; Kobayashi and Kawai, 

2007 ; Yang et al., 2007) 

 

Percolation theory has been widely used to describe the effective conductivity of a composite 

material (Kirkpatrick, 1973; Lebovka et al., 2006; Stauffer, 1979). Percolation theory, originally, 

was to study the problem involving liquid passing through the porous materials and answer the 

question that if the liquid can make it from hole to hole and reach the other side of the material. 

It was later developed into a pure mathematical problem that describes the behavior of connected 

clusters in a random graph. This model is perfect for our purpose that treats the nanofiber cluster 

as the paths of electronics and study conductivity due to those paths. 

 

In the “site percolation” and “bond percolation” model, the conductive fillers in a composite are 

models as 2D and 3D, and they are randomly and regularly located in a composite system. In the 

“bond percolation” model, a known fraction of bonds, distributed randomly, are missing from the 

lattice and the current can not form between them. In the “site percolation” model, the absence of 

a site means there is no current flow through any of the bonds which join the site to its neighbors. 

So if the possibility of allowing the current to go through is p between each two neighboring 

sites, then there is no connection between them with the possibility of1 p− . We have observed 
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the following phenomenon in the laboratory. In an insulated substrate, we add the conductive 

carbon nanofiber to form a composite.  When the volume ratio of the nanofiber is low, the 

conductivity of the composite is very low and even zero. As the increasing of the nanofibers, 

when the volume ratio reaches a critical value, the conductivity starts to rise sharply.  Therefore, 

there exists a threshold value
c

p , above which a continuous conductive path forms. The 

probability of carbon nanofibers forming a conductive path is very low when the volume rate is 

low. Accordingly, the conductivity of the composite is close to zero. After the volume rate 

reaches a critical value, the carbon nanofibers start to form at least one conductive path and the 

possibility of existing multiple conductive paths increases; therefore the conductivity of the 

composite increases sharply. Many researchers has studied the electrical conductivity of the 

composite system and investigated the percolation threshold in order to better understand the 

principle of the sharp change in conductivity near the critical transition point.  

 

Monte Carlo methods are a class of computational algorithms that rely on repeated random 

sampling to compute their results. Monte Carlo methods are often used when simulating physical 

and mathematical systems. Because of their reliance on repeated computation and random or 

pseudo-random numbers, Monte Carlo methods are most suited to calculation by computer. 

Monte Carlo methods tend to be used when it is infeasible or impossible to compute an exact 

result with a deterministic algorithm. 

 

Monte Carlo simulation methods are especially useful in studying systems with a large number 

of coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and 
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cellular structures. More broadly, Monte Carlo methods are useful for modeling phenomena with 

significant uncertainly inputs.  

 

The Monte Carlo simulation is a widely used numerical technique of modeling the effects of 

disorder resistor networks and can be applied to a wide range of situations. By using the method, 

the percolation behavior is appropriately simulated with advanced computational algorithms and 

the topological disorder of a random microstructure is directly constructed. In 1974, Pick and 

Seager (1974) carried out a 2D study on composites filled by straight sticks. They assumed that 

all the sticks have the equal length and no width. Their work was extended by Balberg and 

Binenbaum (1983), who account for the macroscopic anisotropy induced by sticks with preferred 

orientation and unequal length. Natsuki et al. (2005) considered the width of sticks in their 

Monte Carlo simulation of 2D networks, which also predict the relationship between the 

percolation threshold and the fiber aspect ratio and the orientation angle. 

 

The Monte Carlo simulation can also be used to study the 3D percolation behavior. Balberg et al. 

(1984) first conducted the 3D Monte Carlo study on percolation behavior of systems consisting 

of randomly oriented sticks, and they explored the effects of the stick aspect ratio and 

macroscopic anisotropy. By developing the study of Balberg et al and the effective medium 

method, Taya and Ueda (1987) used the Monte Carlo approach to study the electrical 

conductivity of a 3D composite reinforced by straight short fibers. Lee and Kim (1995) also 

performed the 3D Monte Carlo simulation for unidirectional short-fiber reinforced composites. 

In their research, the fiber orientation was predetermined and the fiber length distribution, fiber 

volume fraction and fiber aspect ratio are allowed to change. 
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Few attentions have been paid to the effects of the fiber waviness on the percolation behavior of 

fibrous composites. Ye et al. (2004) predicted that the increasing of the curliness of the fibers 

cause the greatly increasing of the percolation threshold. Li and Chou reported a general 

continuum percolation model for the composites with fibers of arbitrary shape in 2D scale. In 3D 

aspect, Dalmas et al (2006) developed the simulation of 3D entangled fibrous networks using 

spline-shaped fibers. They reported that the percolation threshold increased as the increase of the 

fiber tortuosity and the larger fiber aspect ratio can also bring the larger effect of the tortusity. 

However, they did not study the effect of the fiber width in the 3D simulations. Therefore, there 

still need to develop 3D Monte Carlo models to explore the effects of the fiber aspect ratio, fiber 

width, fiber length and fiber aspect ratio on the behavior of the composites system. 

 

1.2 Research Objectives 

 

This work has following research objectives: 

1. Development of a conductivity percolation model for the carbon nanofiber composite 

materials.  The model is based on the randomly generated cylinders, which model the nanofibers, 

forming clusters through the tunneling effect.  When a cluster spans the substrate from one side 

to the opposite side, percolation happens. 

 

2. Using Monte Carlo simulation method, study the convergence of current model and by 

statistical analysis, we get the density distribution of the critical volume rate. 
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3. Simulation results demonstrate the percolation phenomenon when the volume rate of the 

nanofibers in the composite exceeds a critical value. Fundamentally understanding the 

relationship between the nanofiber aspect ratio and the fiber volume rate.  

 

4. The research also studies the tunneling effect to the average volume rate, and proposes the 

percolation model is not a scalable system. The electrical conductivity also studied for both the 

2D and 3D models. 

 

5. The simulation model shows the qualitative characteristics of the nanocomposite percolation 

behavior. This study will lead to the better understanding of the influence of certain parameters 

to reduce the number trials and errors in the experiments. 
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CHAPTER 2 

PERCOLATION CONCEPTS AND APPROACHES 

 

 

2.1 Background 

 

Percolation theory was to study the problem involving liquid passing through the porous 

materials and answer the question that if the liquid can make it from hole to hole and reach the 

other side of the material. It was later developed into a pure mathematical problem that describes 

the behavior of connected clusters in a random graph. This model is perfect for our purpose that 

treats the nanofiber clusters as the paths of electronics and study conductivity due to those paths. 

The percolation models are composed of sites and of bonds between sites. 

 

2.2 Site percolation and bond percolation 

 

Broadbent and Hammersley (1957) proposed the first mathematical model of the classical 

threshold. They reported a simplified “lattice percolation” model for the flow of a fluid through a 

porous medium from one side to the other side and showed clearly their model possessed a 

percolation threshold. The model requires fluid to go through the “bonds” which connect to the 

nearest neighbors in a regular lattice of “sites”. In the “bond percolation”, some known fraction 

of bonds, which distributed randomly, is missing from the lattice. In the “site percolation”, a 
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known fraction of the sites are missing from the lattice causes no current can flow through any of 

the bonds which join that site to its neighbors, so no current can go through the sites.  

 

The research of the Kirkpatrick (1973) pointed that in the case of the site percolation on a lattice 

which includes sites, where the number is large. The parameters relevant to percolation are 

defined in the limit , and will depend on the concentration of connected sites 

N N

N →∞ x and the 

geometry of the lattice. When the concentration is low, for example
c

x x≤ , the allowed sites are 

single and in small separated clusters of adjacent allowed sites. As the increase of x , larger 

cluster formed and the mean size of a cluster increased accordingly. As x  approaches 
c

x from 

below, the larger clusters begin to merge and the mean cluster size diverges at 
c

x in the limit 

.  For the finite , this indicates that there is a completed path of neighboring allowed 

sites crossing the system, therefore the macroscopic flow through the system becomes possible. 

If is large enough, there will be only one large cluster remains in the system, along with many 

small ones. As 

N →∞

N

N

x  increases above 
c

x , the infinite cluster grows rapidly and absorbs small 

clusters. Accordingly, the site percolation probability rises greatly from zero just above 

threshold, and the isolated clusters become rare. near threshold can be demonstrated by a 

simple power law, 

( ) ( )s
P x

( )x
( )s

P

( ) ( ) ( )s s

cP x x x∝ −  (1) 

Where s is approximately the same for all three lattices. 

0.3 0.4s≤ ≤ . 

Thresholds of this type can be applied to all the lattices and are not restricted to nearest neighbor 

percolation on regular lattices. 

  9



 

2.3 Effective Medium Theory 

 

The effective medium theory, which was originally formulated to describe the conductivity of 

binary mixture, has been developed to treat disordered networks. Moreover, some attempts to 

generalize the theory to anisotropic random network were made to verify some general aspects of 

conduction in anisotropic materials. During the evolution of such theories many methods have 

been used to obtain statistical information about the heterogeneous systems [50].  

 

The distribution of potential in a random resistor network to which a voltage has been applied 

along one axis may be regarded as due to both an “external field” which increases the voltages 

by a constant amount per row of nodes, and a fluctuating “local field,” whose average over any 

sufficiently large region will be zero [51]. We use an effective medium, in which the total 

medium inside is equal to the external field, to represent the average effects of the random 

resistors by an effective medium. Such a medium should be homogenous. To simplify the model, 

we consider it to be made up of a set of equal conductance, , connecting the nearest neighbors 

on the cubic mesh. The criterion to fix  is the extra voltages induced the local fields, when 

individual conductance  replaces , in this medium, should average to zero. 

m
g

m
g

ij
g

m
g

 

Consider one conductance oriented along the external field, surrounded by the effective medium, 

and having the value . The solution of the network equation  0AB
g = g
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( )
ij i jj

g V V− =∑ 0   (2) 

 

 

Figure 1: Constructions used in calculating the voltage induced across one conductance, , 

surrounded by a uniform medium [51]. 

0g

 

In the presence of  is constructed by superposition. To the uniform field solution, in which 

the voltages increase by a constant amount, , per row, we add the effects of a fictitious current, 

, introduced at A and extracted at B. Since the uniform solution fails to satisfy current 

conservation at A and B, the magnitude of  is chosen to correct for this: 

AB
g

m
V

0i

0i

0( )
m m

V g g i− = 0   (3) 

The extra voltage, ,induced between A and B, can be calculated if we know the conductance 

 of the network between points A and B when is absent.  

0V

'

ABG ABg

'

0 0 0/( )
AB

V i g G= +   (4) 

To calculate ,  we first obtain the conductance between A and B in the uniform effective 

medium, since . A symmetry argument is useful: Express the current distribution 

'

AB
G

AB
G

'

AB AB mG G g= +
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with  as the sum of two contributions, a current , introduced at A and extracted at a 

very large distance in all directions, and an equal current, introduced at infinity and extracted at 

B. In each case, the current flowing through each of the z equivalent bonds at the point where the 

current enters is , so that a total current of  flows through the AB bond. This 

determines the voltage developed across AB, and from that follows the result, , or 

. Using Eqs.(3) and (4), we obtain: 

0 m
g g=

( / 2G z=

m m
V V g= −

0i

z0 /i z

g

/[g

g

02 /i

( / 2)
AB m

G z g=

( )

' 1)AB m−

0 0( )g 0 ( / 2 1)
m

z g+ − ]  (5) 

valid in both 2D and 3D. 

f gIf the value of a bond, , is distributed according to a probability distribution 
ij

 (which may 

be either continuous or discrete), the requirement that the average of vanish gives a condition 

determining : 

0V

m

)dgf g∫

1f g

g

( )(g g

( ) (p g

/[m g− +

) (1

( / 2 1) ] 0z g− =m  (6) 

For a binary distribution, we have 

) ( )p gδ δ α− −   (7) = − +

As is appropriate to the percolation network models, Eq. (6) reduces to a quadratic equation for 

: 
m

g

{ }22 1)z g− +

( / 2)g z

( / (

1
m

p

/ 2)z

[ / 2

1 [ / 2(1 ) 1] ]
m m

p z p gα α− + − − 0− =

1p

  (8) 

The relevant root of Eq.(8) 

{ } { }2 1(1 ) 1] /( 2) ( ( / 2) / 2(1 ) 1]z p z z z pα 1/ 22( 2) ( 2)z zα[ α −= − + − − − + + − − −   − + −

 (9) 
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Has a simple limiting form when 0α → : 

( 0) 1 (1 ) /(1 2 / )
m

g p zα = = − − −   (10) 

A straight line in which  goes to zero when 
m

g 2 /p z= .  

 

It was shown in Kirkpatrick (1971), the effective medium theory is accurate to within a few 

percent at all concentrations whenever 0.1α ≥  for the bond percolation model. However, for the 

site percolation model, it gives the wrong slope at high concentration (small concentrations of 

missing sites).  

 

2.4 Excluded Volume Method 

 

There are several methods capable of predicting the critical concentration in percolating systems. 

The excluded volume approach is effective in treating the problem of percolating systems in 

which the objectives possess a large aspect ratio [53]. The excluded volume and excluded area in 

two dimensions of an object is defined as the volume or area around an object into which the 

center of another similar object is not allowed to enter if overlapping of the two objects is to be 

avoided. The excluded volume for an elongated volume can be obtained by multiplying this 

volume by , which is the critical number density of objects in the system. If 
c

N V defines an 

average excluded volume, the total excluded volume exV is given by 

ex c
V V= N

 (11) 

Similarly, the total excluded area is 
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ex c
A A= N   (12) 

  

Remember that V and A of an object is very different, and its value can be calculated 

according to the shapes such as cylindrical rods in three-dimensions (3D) and line segments and 

narrow strips in two-dimensions (2D). 

 

 

Figure 2: Two sticks of length L and width D, the angle between which is θ . The excluded area 

is obtained by following the center o as stick j travels around stick while touching it at least at 

one point [54]. 

i

 

Two sticks (rectangles), the angle between which is
i j

θ θ θ= −  [54]. The excluded area can be 

obtained simply by moving one stick around the other and registering the center of the moving 

stick. Fig.2 shows a result of such a procedure. The shaded area represents the stationary stick 

and the curve is the path of the center of the other sick as it is moved around the first stick. The 

area within the curve is the excluded area.  
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This excluded area is given by 

2 2( sin cos )( sin cos ) ( )sin cosL D D L D L L Dθ θ θ θ θ+ + + + − + θ  (13) 

For the uniform distribution of angles we must consider all possible angles 
i

θ  and 
j

θ and their 

corresponding uniform probability 

( ) 1/ 2
i

P μθ θ=  (14) 

in the interval 2 μθ . Hence the averaged excluded area is  

/ 2 / 2
2

/ 2 / 2
sin ( ) ( )

i j i j i
A L P P d d

π π

π π j
θ θ θ θ θ θ

− −
= −∫ ∫ ×   (15) 

Substituting the distribution (14) and (15) yields the average excluded area 

( )2 2 2 22 [1 1/ 2 (1 cos 2 )] ( )(4 2sin 2 ) /(4 )A DL L Wμ μ μ μ μθ θ θ θ= + − + + − θ   (16) 

The average excluded volume V for a CNT, modeled as a cylinder of length L and diameter D, 

is given by [54]: 

3 2 24
2 2 sin

3
V D D L DL

μ
π π θ= + +   (17) 

Where sin
μ

θ is the average value of sinθ , and θ  is an angle between two CNTs. 

 

The term sin
μ

θ describes the degree of CNT alignment. The calculation of sin
μ

θ is complex. 

However, it is easy to obtain sin 0
μ

θ =  when the CNTs are perfectly aligned. In the case of 

random distribution, the value of sin
μ

θ is calculated to be / 4π . 
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Another two-dimensional finite-width stick is the “capped” rectangular stick. The derivation of 

the excluded area of this object indicates how to handle the three-dimensional problem. We 

assume now a rectangle of length , width , and the caps of radius  at its ends. Fig.3. 

shows the capped rectangle and the excluded area which is formed around it. One can readily 

find that the excluded area for these two sticks, which have an angle 

L D / 2D

θ  between them, is 

2 24 sDL D L inπ θ+ +   (18) 

  

The average excluded area in the uniform and randomly orientated system is given as 

2

24 [4 2
2

L
A DL D μ

μ

sin(2 )]μπ θ
θ

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
θ   (19) 

Where W is the width of fibers and μθ is the orientation angle. 

 

Figure 3: .The sticks are capped rectangles. The length of the sticks is , their width is  and 

the radius of the cap is [54]. 

L D

/ 2D
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The critical volume faction of CNT is associated with total excluded volume
ex

V . In the 3D 

system, the critical volume fraction can be estimated by 

1 exp( )ex
c

V

V

νφ = − −   (20) 

Where ν is the volume of CNTs capped at each end with a hemisphere. 

 

Substituting Equation (13) into Equation (15), we have: 

2 3

3 2 2

[( / 4) ( / 6) ]
1 exp( )

(4 / 3) 2 2 sin

ex

c

V D L D

D D L DL
μ

π πφ
π π
< > +

= − −
+ + θ

  (21) 

Similarly, we obtain the critical area fraction in 2D system: 

( )
2

22

[ ( / 4) ]
1 exp( )

4 / 2 [4 2sin(

ex
c

A WL W

WL W L μ μ μ

πφ
π θ θ

< > +
= − −

+ + − 2 )]θ
  (22) 

The analytical percolation model, the excluded volume theory, also assumes that the percolation 

threshold is inversely proportional to the object excluded volume [54, 55] 
ex

V

1
c

ex
V

φ ∝  (23) 

Bug et al.[42] have shown that for very thin rods ( ), the proportionality in Eq. (23) 

becomes an equality. Nevertheless, when the fibers are curved, the percolation threshold is 

underestimated by this excluded volume theory. A tortuous high aspect ratio fiber can be 

considered as a filler with an effective aspect ratio lower than that of the same straight fiber, 

leading to a lower excluded volume and a higher percolation threshold. 

/R L → 0
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CHAPTER 3 

NUMERICAL MODEL 

 

 

In this chapter, we present two steps involving in developing the Monte Carlo model. First of all, 

the fibers with randomly location and random orientation are generated. Since the main goal of 

this research is to determine the conductive filler volume rate at the onset of high electrical 

conductivity, a non-dimensionalized unit cube will be used. In the second step, a percolation 

criterion is applied to check the connectivity between each pair of fibers in the composite system. 

The details of these two steps are described as follows. 

 

3.1 Model generation 

 

The following phenomena have been observed in the laboratory.  Conductive carbon nanofiber is 

added into an insulated substrate to form a composite.  When the volume ratio of the nanofiber is 

low, the conductivity of the composite is zero or very low.  If we continue to add more 

nanofibers into the composite, as the volume ratio reaches a critical value, the conductivity starts 

to rise sharply.  This phenomenon is theorized as follows.  When the volume ratio is low, the 

probability of carbon nanofibers forming a conductive path is very low.  Therefore, the 

conductivity of the composite is close to zero.  As the volume ratio reaches a critical value, the 

carbon nanofibers start to form at least one conductive path.  As the increase of volume ratio, the 
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probability of forming multiple conductive paths increases; therefore the conductivity of the 

composite increases sharply [56]. 

 

A numerical model of a nanofiber composite is built as the follows.  A set of nanofibers, 

modeled as cylinders, are generated within the domain of the substrate with their positions, 

orientations, lengths, and radius following certain types of random distributions. All the fibers in 

the system are identical, for example, they have the same length, diameter and orientation angles. 

But they are randomly distributed and oriented. To generate numbers with sufficient randomness, 

we adopt the most common computer technique for producing random sequences, the 

multiplicative congruential generator.  

 

3.2 Connection criterion 

 

Percolation problem is to find the critical length by which an infinite cluster of connected sites 

are formed. Let us consider a sample which is a unit-size square. In the square, we plant 

randomly distributed sites

c
L

s
N , defined as a stick density. The next stage is to attach a stick of 

length to each site according to a certain fiber orientation. A critical length of the percolation 

threshold depends on the stick density in the sample. We can give the average lattice constant 

normalized by [39] 

L

1/
s S

r π= N   (24) 
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Percolation threshold is reached if and only if a continuous pathway of overlapping sticks exists 

between connecting opposing edges. The critical length can be normalized by 2
c

L
s

r given by Eq. 

(24). The value is dependent on the orientation angle and aspect ratio.  / 2
c

L r
s

 

Bonding criterions for two sticks with a finite-width can be analyzed by the schematic diagram 

shown in Fig. (4) and (5). Sites are planted by generating random coordinates ( ,k k
x y ), 

. Each stick of length is centered on a site and has an assigned orientation 

angle

1,2,...,
S

k =

k

N
k

L

θ .  Fig. 4 illustrates the relationship between two different coordinate systems that are 

fixed on fibers. The axes '
y and ''

y indicate the orientation angles of 
i

θ  and 
j

θ , respectively. The 

relationship between the Cartesian coordinates shown in Fig.4 can be expressed as 

0 '

0

cos sin

sin cos

i i i

i ii

x

'

x x

y y y

θ θ
θ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎧ ⎫ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− ⎪ ⎪⎩ ⎭ ⎪ ⎪ ⎣ ⎦ ⎩ ⎭⎩ ⎭
,  (25) 

0 ''

0

cos sin

sin cos

j j j

j jj

x

''

x x

y y y

θ θ

θ θ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎪ ⎪ ⎪ ⎪= + ⎢⎨ ⎬ ⎨ ⎬ ⎨ ⎬− ⎪ ⎪⎢ ⎥⎩ ⎭ ⎪ ⎪ ⎩ ⎭⎣ ⎦⎩ ⎭
⎥ , (26) 

Eliminating x  and y from the above equations, we obtain 

' '

'
( cos sin ) cos( )

sin( )

j j i j

j i

'
x y x

y
θ θ θ θ

θ θ
Δ −Δ + − −

=
−

x
  (27) 

' ''

''
( cos sin ) cos( )

sin( )

i i i

j i

x y x x
y

jθ θ θ
θ θ

Δ −Δ + − −
=

−

θ
   (28) 

Where  

0 0

0 0

i j

i j

x xx

y y y

⎧ ⎫−Δ⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬Δ −⎩ ⎭ ⎪ ⎪⎩ ⎭
      (29) 
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Let us consider the case of a finite-width stick, as shown in Fig.4. Since bonding occurs when 

two sticks overlap, the bonding criterions are satisfied by the following both conditions: 

' ''

' ''

/ 2, / 2,

/ 2, / 2,

x D x D

y L y L

≤ ≤

≤ ≤
 (30) 

Where and are the stick width and length, respectively. When two sticks have the same 

orientation angle (Fig. 5), the bonding criterions are given by 

D L

sin( )
2

i

ij ij i ij

L L
A d θ γ

+
= + ≤ j

,  (31) 

and  

cos( )ij ij i ijB d Dθ γ= + ≤ ,  (32) 

Where 

2( ) (ij i j i jd x x y y= − + − 2)  (33) 

1tan
i j

ij

i j

y y

x x
γ −

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

      (34) 

For widthless sticks ( ), we can obtain the bonding criterions from Eqs.(27), (28) and 

(30) as follows: 

' '' 0x x= =

( )cos sin

sin( ) 2

j j

j i

x y Lθ θ

θ θ

Δ −Δ
≤

−
,  (35) 

( )cos sin

sin( ) 2

i i

j i

x y Lθ θ
θ θ

Δ −Δ
≤

−
.  (36) 

If the points of stick intersection are outside the unit square sample, the two sticks are not 

considered intersection. 
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Figure 4: Diagram of the relationship between orientated fibers in different coordinate systems 

[41]. 
 

 

Figure 5 : Diagram of determining bonding criterion of fibers with the identical orientation angle 

[41]. 
 

For small aspect ratio, the geometry of fiber ends strongly affects the percolation threshold 

because of the intersection between boundaries. Fig.6 shows there are three patterns of 

overlapping between fibers: body-to- body, end-to-body, and body –to-end. 
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Figure 6: Three patterns of fiber connection [63]. 
 

For the end-to-end and end-to-body connection patterns, two fibers do not satisfy the above 

bonding criterions but are still connected. The end-to-end and end –to- body connecting patterns 

are more time consuming to model than the body-to-body connection in the Monte-Carlo 

simulations. However, after examined the fraction of the number of these two types of 

connections to the number of total connections among all fibers in the system, we found that this 

fraction drastically decrease with the increase of the fiber aspect ratio. The difference in the 

critical fiber volume fraction between these two sets of simulation results is found to be 

negligibly small when the fibers have an aspect ratio larger than 24. Therefore, some previous 

research has neglected the end-to-end and end-to-body connections for the sake of computational 

efficiency.  

 

3.3 Calculate the shortest distance between two fibers in space 
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Percolation occurs in the composite system if a continuous conducting pathway along any one or 

all of the three coordinate axes can be identified. To evaluate the status of the system generated 

above, each fiber in the system is checked against another to see whether they intersect. In the 

current study, the connectivity between the i th and j th fibers is determined by comparing the 

shortest distance between the critical threshold. 

 

Fig. 7 is the simplified diagram which is used to explain the calculation procedure with vector. 

 

Figure 7: Two-dimension reduction of the shortest distance between two fibers 
 

We assume the following conditions: 

The plane H is constructed parallel to PQ
uuur

. 

PQDC is a rectangle. 

2 2 2

XZ XY YZ= +
uuur uuuv uuv

, with ( , ) ( ,YZ dist PQ plane H dist PQ CD= =
uuv uuuv uuuv uuuv

)   (37) 
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Therefore, with 

{ }3 min : ,d XZ X AB Z= ∈
uuuv uuuv uuuv

PQ∈  

{ }2 min : ,d XY X AB Y= ∈
uuuv uuuv uuuv

CD∈

2

1

 

1 ( , ), tand dist PQ planeH a cons t=
uuuuv

 

it follows 

2 2

3 2d d d= +   (38) 

And there is a one-to-one correspondence between solutions of the two minimization problems. 

 

Proof 

{ }2

min : ,XZ X AB Z PQ∈ ∈
uuuv uuuv uuuv

 

{ }{ }
{ }{ }
{ }{ }

{ }{ }

2

2 2

2
2

1

2
2

1

min min : :

min min : :

min min : :

min min : :

XZ Z PQ X AB

XY YZ Y CD X AB

XY d Y CD X AB

d XY Y CD X

= ∈ ∈

= + ∈

= + ∈ ∈

= + ∈ ∈

uuuv uuuv uuuv

uuuv uuv uuuv uuuv

uuuv uuuv uuuv

uuuv uuuv uuuv
AB

∈
       (39) 

 

3.4 Computational implementation 

 

The shortest distance between each pair of nanofibers is calculated.  If this distance is below a 

certain threshold, the two nanofibers are assigned to the same cluster.  After all nanofibers are 
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assigned, each cluster is checked to see if it spans the substrate, i.e., providing a connection path 

from one side to the opposite side.  Once percolation happens, the conductivity is calculated 

based on the cluster or clusters that constitute the connection paths.  The process is repeated with 

different distributions of the nanofiber sets to obtain statistical data. 

 

Each fiber is assigned a fiber number and a cluster number, when the generation procedure is 

completed. The fiber number and the cluster number are equal and range from 1 through N , 

where is the total number of fibers in the system, Then, each fiber is checked for connection 

with other fibers whose fiber numbers are larger than its fiber number. For example, the i th fiber 

will be checked against the th through the N th fiber. If two fibers satisfy the connection 

criterion, they will be assigned a common cluster number which is the smaller one of the two 

fiber number. As a result, all fibers within the same cluster have the same cluster number, and 

two clusters are given the same cluster number if they have a common fiber. 

N

1i +

 

If any two fibers in opposite boundary regions have the same fiber cluster number, then it can be 

concluded that the system is percolated in the direction perpendicular to the two opposing 

bounding surfaces. When the first percolating cluster is found, the system is said to be in the 

critical state where the fiber critical volume fraction has been reached. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

 

In the percolation model developed in the preceding chapter, there are three controlling 

parameters for a given system: the fiber length , the fiber diameter and the fiber aspect ratio L D

α , which are all predetermined. The percolation threshold depends on these specified 

parameters. 

 

For a given set of the values of the three controlling parameters, the number of fibers in the 

system will be increased in small increments (with the random number generator reset for 

each increment) until the first cluster connecting the two opposite boundaries of the system is 

identified, which corresponds to one critical value of the fiber volume fraction. 

N

 

4.1 Simulation Results 

  

The following are examples of the two dimensional cases for easy demonstration.  There are no 

major differences when the model is extended to the three-dimensional cases.  The substrate is a 

1 by 1 square (normalized dimension).  The lengths of the nanofibers are between 0.10 and 0.12, 

evenly distributed.  The aspect ratio, L/D, of the nanofibers is 200; therefore, the radius of the 
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nanofiber is between 0.00025 and 0.00030, also evenly distributed.  The threshold of the 

tunneling effect is 0.0005. 

 

Figure 8 shows the result of a set of nanofibers with 2.42% volume rate.  The nanofibers in black 

(darker) color are the largest cluster, which is of the size of about 25% of the total nanofibers.  

The rest of the nanofibers, in the lighter color, are grouped into a number of smaller size clusters.  

There is apparently no percolation and the conductivity is zero.   

 

 

Figure 8: A set of nanofibers with 2.42% volume rate 
 

Figure 9 shows the result of the set of nanofibers increased to a volume rate of 2.87%.  The 

additional nanofibers have made the size of the largest cluster grow to 47% of the total 

nanofibers. From the figure, we can see there is still no percolation and the conductivity is zero.  

However, with a few additional nanofibers, the percolation may happen. 
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Figure 9: A set of nanofibers with 2.87% volume rate  

 

 

Figure 10: shows the result of the same set of nanofibers with the volume rate increased to 2.90%.  

Percolation starts to happen.  The largest cluster grows to about 72% of the total nanofibers 
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Figures 11, 12, and 13 show the results of volume rates increased to 3.03%, 3.63%, and 4.84%, 

respectively.  The largest clusters are of 76.6%, 98.2%, and 99.8%, respectively, of the total 

nanofibers. 

 

 

 

 

Figure 11: A set of nanofibers with 3.03% volume rate 
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Figure 12:A set of nanofibers with 3.63% volume rate  
 

 

 

Figure 13: A set of  nanofibers with 4.84% volume rate 
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4.2 Convergence 

 

Monte Carlo simulation capable of predicting the percolation threshold of cylindrical nanotubes 

embedded in a polymer matrix has been developed and applied to microscale particles. The 

applicability of this approach to nanoscale systems is described in this section. The nanotubes are 

modeled as capped cylinders of diameter D and length L with the randomly distributed orientation 

angles. Numerical simulations have also been performed to determine the critical volume ratio 

under the different aspect ratio and the convergence of the system. As above, the simulation 

volume size and nanotube dimensions were rescaled to give a unit volume. Simulations were 

carried out by starting with an empty polymermatrix and adding nanotubes until a percolating 

cluster was formed. Percolation was defined as the point which two opposite walls of the cubic 

simulation volume were connected by a continuous cluster of nanotubes. Statistics were 

collected by performing 1000 independent runs.  

 

Figs 14-17 are the results of the three dimensional cases with the aspect ratio is 10, 20, 50 and 

100, respectively. We assume the same volume size and the tunneling distance equals to zero. 

From the results we can find the average critical volume rate converges when running the 

simulation no more than 400 times. 
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Figure 14: Average critical volume rate VS number of runs when L/D=10, Te=0 
 

 

Figure 15: Average critical volume rate VS number of runs when L/D=20, Te=0 
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Figure 16: Average critical volume rate VS number of runs when L/D=50 and Te=0 
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Figure 17: critical volume rate VS number of runs when L/D=100 and Te=0 

 

Next, let us further discuss the convergence of Monte Carlo simulation. We use the same Monte 

Carlo method as mentioned above and take the following case as an example. In this case, the 

size of the cubic nanocomposite is 0.25X Y Z= = = , the aspect ratio , and the volume 

rate is 1.3%. The result shows the percolation percentage changes as the 1000 times independent 

runs. 

/ 5L D = 0
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Figure 18: Percolation percentage changes as the 1000 times independent runs 

 

From Fig.18, we found that after 350 runs, the Monte Carlo simulation converges. However, for 

200 runs, the percolation percentage is 61.5% while the percentage is 57.7% for 1000 runs.  The 

error is about 6%.   

 

The picture below compares the volume rates under 200 runs and 1000 runs. Under the same 

condition, when the percolation percentage arrives to 100%, the volume rate is 1.46% for 200 

runs and 1.5% for 100 runs. The error is 2.7%, which is acceptable. Therefore, in order to save 

simulation time, 200 runs can be used in the simulations. 
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Figure 19: Comparison the percolation results under 200 and 1000 times run 

 

4.3 Fiber aspect ratio effect 

  

The aspect ratio has a very important effect on the percolation threshold. It was predicted in the 

2D Monte Carlo study of Natsuki et al.[41] that the percolation threshold has a linear dependence 

on the fiber aspect ratio in a log-log plot when the aspect ratio is above 40. Bigg[8] showed in 

the experimental study for the 3D composites reinforced by straight short fibers the critical fiber 

volume rate is strongly dependent on the aspect ratio. 

 

In the current study, the effects of the fiber aspect ratio are investigated both in 2D and 3D cases. 

In 2D case, the result for straight fibers with aspect ratio increasing from 50 to 200 is illustrated 

in Fig.20. 
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Critical Volume Rate, L = 0.10 ~ 0.12
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Figure 20: Critical volume rate versus aspect ratio in 2D case   
  

Figure 20 shows the higher the aspect ratios, the lower the critical volume rates.  From analyzing 

the data, if the length remains the same, lower aspect ratios represent larger diameters.  It takes 

fewer nanofibers to reach percolation.  However, the volume rate increase is proportional to the 

square of the increase of the nanofiber diameter.  Therefore, the critical volume rates increase 

with the decrease of the aspect ratios. 

 

Table 1 and Figs. 21 and 22 show the results of the volume rate under the different aspect ratios 

in 3D cases. The average volume rate and the standard deviation of the critical value for aspect 

ratio with 10, 20, 50, 100, respectively are obtained. From the following results, we found that 

the critical volume rate decreases as the increase of the aspect ratio.  
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Table 1: Aspect ratio vs critical value of fiber volume rate (3D) 

 

L/D Average  volume  rate Stdev 

10 6.6445 0.4126 

20 3.3694 0.1293 

50 1.3157 0.0443 

100 0.6171 0.0352 
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Figure 21: Aspect ratio vs critical value of fiber volume rate 
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In the following case, we run the Monte Carlo simulation by adding the nanotubes into the 

polymermatrix gradually, each time we calculate the volume rate and percolation probability 

percentage based on the current amount of the nanotubes. We assume all the 3D cases with the 

same volume size and tunneling distance is zero. From Fig.22, we can compare the percolation 

percentage changing with the different volume rate under the four aspect ratios, 10, 20, 50 and 

100, respectively. Fig.23 shows at the threshold, where the percolation percentage just arrives to 

100%, the volume rates change as the different aspect ratio, which is also called the critical 

volume rate.  We found the same conclusion, the higher the aspect ratio, the lower the critical 

volume rate and the percolation networks are more easily to form. 

 

Figure 22: Percolation percentage vs volume rate with the aspect ratio 10, 20, 50 and 100. 
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Figure 23: Volume rate under the different aspect ratio at 100% percolation probability 
  

4.4 Electrical conductivity 

 

According to the percolation theory [36,44], the effective electrical conductivity of a composite, 

( t

e f c
)σ σ φ φ= − , where 

f
σ is the electrical conductivity of the conductive phase, φ is the volume 

fraction of the conductive phase, 
c
φ is the critical volume fraction, and t  is the conductivity 

exponent. It is proposed that in this theory t  depends only on the space dimensionality. A 

universal value of t was showed for 2D materials, and 1.3= 1.7 ~ 2.0t = was suggested for 3D 

materials.  

 

The simplest model to predict the conductivity of the composite after percolation happens is to 

assume the conductivity is proportional to the ratio of the number of nanofibers forming the 
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largest cluster to the total number of nanofibers.  Figure 24 shows the results of a single 

simulation run, in which nanofibers are added to the substrate to increase the volume rate 

gradually.  Before the volume rate reaches the critical volume rate of 2.63%, the conductivity is 

zero.  After that the conductivity jumps to a certain value, which increases with the increasing 

volume rates.  After the volume rate reaches 4.84%, almost all nanofibers are connected into one 

large cluster.  The conductivity is a normalized value of 1. 
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Figure 24: Conductivity vs volume rate in 2D case 
 

The effective electrical conductivity of the composite varying with the fiber volume fraction is 

shown in Fig. 25 and table 2. The results show that there is a sharp increase of the conductivity 

near the threshold.  
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Figure 25: Nanofibers in the largest cluster/total nanofibers versus volume rate 

 

Table 2: Nanofibers in the largest cluster/total nanofibers versus volume rate 

 

Volume Rate  Nanofibers in the largest 

cluster/total nanofibers  

Volume Rate  Nanofibers in the largest 

cluster/total nanofibers  

1.1  0.379  9.111  74.700  

2.119  0.393  10.053  82.577  

3.142  0.540  11.153  88.002  

4.084  0.727  12.095  91.123  

5.027  1.325  13.038  93.284  

6.126  3.555  14.137  95.107  

7.069  18.958  15.08  96.268  

8.011  57.685  15.865  96.985  
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4.5 Density distribution with various aspect ratios 

 

We run the Monte Carlo simulation under 1000 different random seeds and the following figure 

shows the critical percolation volume rate of each case.  
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Figure 26: Critical volume rates under 1000 random seeds 

 

Fig. 27 shows the histogram of the random data in 100 bins. 
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Figure 27: Histogram of the random data in 100 bins 
 

And then we use the statistics method and get the probability density estimate of the random data, 

which evaluates the density estimate at 100 points covering the range of the data. 
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Figure 28: Probability density estimate of the random data 
 

By using the same method, we got the probability density of critical percolation volume rate with 

different aspect ratio of the nanotubes. 
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Figure 29: Probability density distribution with various aspect ratios 
 

4.6 Tunneling Effect 

 

In quantum mechanics, quantum tunneling (or the tunnel effect) is a nanoscope  phenomenon in 

which a particle violates the principles of classical mechanics by penetrating a potential barrier 

or impedance higher than the kinetic energy of the particle [57]. Balberg [58] and later on Rubin 

et al.[59] proposed a model based on interparticle tunneling conduction. This model implies a 

diverging resistance distribution between spherical particles governed by a Hertz law depending 

on the mean interparticle distance (which decreases with the particle content). Scarisbrickz [60] 

has argued that in composites containing a large fraction of inclusions, the V-I relationship is 
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linear due to the actual touching of inclusions. Electron tunneling was proposed to be the 

probable mechanism of electrical conduction in such composites. However, Reboul [61] 

observed a linear V-I relationship in composites containing a low volume fraction of fibers, 

which exhibited high resistivities and where fiber-fiber contacts were improbable. In general, the 

tunneling distance between fibers is a parameter relative to a matrix and has a quite small value 

(a few nanometers) [62]. The diameter of traditional carbon fibers is very larger in comparison 

with the tunneling distance. The limit of tunneling distances depends on matrix used in 

composite system but its determination for an actually given system is quite difficult. 

 

 Therefore, in our research, we used the Monte Carlo simulation to investigate the tunneling 

effect on the critical volume rate of the nanofibers. Using the same simulation model and 

approach as we descried before, we set the tunneling distance to be zero, 0.1R, 0.3R and 0.5R, 

where R is the radius of the capped cylinders of the nanotube model. We plot the critical volume 

rate distribution with the different tunneling distance under the 1000 times independent runs. As 

Fig. 30 shows, the tunneling effect does not affect the critical volume rate too much. As the 

tunneling distance changing from zero to 0.5R, the critical volume rates are almost the same.  
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Figure 30: Tunneling effect to the critical volume rate 
 

4.7 Non-scalability of the percolation model 

 

In this section, we intend to apply the percolation model to analyze and address percolation is not 

a scalable mechanism. First, we define a typical percolation model. Imagine a two dimensional 

lattice of dots, which are usually think as sites. The bonds, are the lines drawn between 

neighboring sites. Each bond can be open with the probability p , or closed with the 

probability (1 )p− . A cluster is formed when a group of sites connected by open bonds. We say a 

cluster percolates the lattice if it extends from one side of the lattice to the opposite side. From 
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this example, we can easily found the average volume rate depends on the possibility p and the 

size of the lattice. Even p remains the same, the bigger the size of the lattice is, the larger the 

average volume rate will be. For example, for each unit grid, since there is a site occupied, we 

can say it percolates. However, for the whole lattice, it does not percolate due to some bonds are 

missing between the neighboring grid. Our Monte Carlo simulation results also show the non-

scalability of the percolation model. 

 

Figure 31: Percolation and lattice [64]. 

 

From the following results, we can find as we increase the dimensions of the matrix, under the 

same L, R and L/D, the average critical volume rate will change accordingly. The conclusion is 

the bigger the size of the matrix, the harder the percolation paths can form. 

 

Table 3: Volume rates under different dimensions with L = 0.01, R = 0.0005, L/D = 10 

 

x = y = z x/L Vol. rate for average critical percolation 100% percolation

0.125 12.5 6.98% 7.55% 

0.100 10 6.96% 7.78% 

0.075 7.5 6.91% 7.96% 

  50



0.050 5 6.85% 8.69% 

 

 

 

Figure 32: Volume rates under different dimensions with L = 0.01, R = 0.0005, L/D = 10 
 

Table 4: Volume rates under different dimensions with L = 0.02, R = 0.0005, L/D = 20 
 

x = y = 

z 

x/L Vol. rate for average critical 

percolation 

100% 

percolation 

0.200 10 3.48% 3.80% 

0.125 6.25 3.43% 3.92% 

0.100 5 3.42% 4.05% 

0.075 3.75 3.36% 4.27% 
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Figure 33: Volume rates under different dimensions with L = 0.02, R = 0.0005, L/D = 20 

 

Table 5: Volume rates under different dimensions with L = 0.05, R = 0.0005, L/D = 50 

 

x = y = 

z 

x/L Vol. rate for average critical 

percolation 

100% 

percolation 

0.250 5 1.27% 1.46% 

0.125 2.5 1.18% 1.71% 

0.100 2 1.105% 1.78% 
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Figure 34: Volume rates under different dimensions with L = 0.05, R = 0.0005, L/D = 50 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

 

This research work has performed the computational study of the qualitative characteristics of 

the nanocomposite percolation behavior. The results of the research have enhanced our 

understanding of the percolation theory and showed the model has the potential to be used in the 

predition of the influence of certain parameters.  It can help in reducing the number trials and 

errors in the experiments. 

 

5.1 Conclusions 

 

A Monte Carlo model for predicting the percoaltion threshold and electrical conductivity of the 

nanocomposite material is presented. The model accounts for the nanofiber aspect ratio effect by 

using the randomly distributed and oriented nanofibers, which have three adjustable parameters 

(i.e., the nanofiber length, the nanofiber diameter, and the nanofiber aspect ratio.)  

 

The use of the Monte Carlo method leads to the determination of the percolation threshold, and 

by assuming the conductivity is proportional to the ratio of the number of nanofibers forming the 

largest cluster to the total number of nanofibers results in the prediction of the effective electrical 
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conductivity of the nanocomposite. We also explore the tunneling effect on the percolation 

volume rate and propose the percolation model is not a scalable system. 

 

The numerical results obtained using the developed model show a relationship between the 

percolation threshold and the aspect ratio: the higher the nanofiber aspect ratio, the lower the 

threshold. These predicted trends of the percolation threshold and composite conductivity are in 

good agreement with existing experimental and simulation results. 

 

5.2 Future Work 

 

In our research, we assume the conductivity is proportional to the ratio of the number of 

nanofibers forming the largest cluster to the total number of nanofibers. Based on that, we get the 

estimate results to predict the conductivity of the percolation system. As we put more nanofibers 

in the system, all the nanofibers will form one biggest cluster which occupied the whole system, 

so the trend of the conductivity closes and normalizes to be one eventually. However, from the 

physics, we know, we can not add the nanofibers into the composite without any limit. On the 

other hand, even we say the ratio of the number of nanofibers forming the largest cluster to the 

total number of nanofibers is 100%, every time when we add nanofibers, the conductivity will 

change due to form the different electrical paths. 
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Therefore, in the future research, we will further study the area when the percolation percentage 

reaches 100% and try to find out how the conductivity changes with the increase of the number 

of nanofibers. 
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APPENDIX: MONTE CARLO SIMULATION CODE 
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function 

[percolation_flag,percolation_cluster_size]=main_all(n_tube,random_seed,xyz,length,radius,Te_

ratio) 

 

%clear ; 

%clc ; 

 

global max_cluster idebug ; 

global P5 P6 PO N U V ;      %  for routine dist_3D_2_segments() 

 

%time_start=cputime; 

%n_tube      = 100 ; 

%max_pair    = n_tube*(n_tube-1)/2 ; 

max_cluster = n_tube ; 

% --------------------------------------- nano tubes ------------------- 

%  int    i, j, k, k1, i1, j1, i2, j2, k2, itmp, record_per_line, data_dim ; 

%  double xlo, xhi, ylo, yhi, zlo, zhi, hlo, hhi, rlo, rhi, 

%         filo, fihi, theta_lo, theta_hi ; 

%  int    n_pair, n_cluster, chaining ; 

%  double dist, cluster_threshold ; 

%  double **sc ; 

%  int    *pair_lst_i, *pair_lst_j, *cluster_ID ; 

%  double *pair_dist ; 

% 

%  int    *x_sort_lst ;    --- pre-processing : sort by x-coordinates --- 

%  double *P1, *P2, *P3, *P4, *A, *B ; 

%  FILE   *fp_out_pair_dist, *fp_out_tube_cluster, *fp_out_pair_cluster ; 

 

% ----------------------- first executible statement ---------------- 

% ----------------------- first executible statement ---------------- 

xlo      = 0.0     ; 

ylo      = 0.0     ; 

zlo      = 0.0     ; 

xhi      = xyz ; 

yhi      = xyz    ; 

zhi      = xyz   ; 

hlo      = length   ; %  nano tubes are cylinders with random heights 

hhi      = length   ; %  nano tubes are cylinders with random heights 

rlo      = radius ; %  nano tubes are cylinders with random radii 

rhi      = radius ; %  nano tubes are cylinders with random radii 

filo     = -pi/2   ; %   -pi/2 the low  value in range of  latitude angle 

fihi     =  pi/2   ; %    pi/2 the high value in range of  latitude angle 

theta_lo =  0.0    ; %     0.0 the low  value in range of longitute angle 

theta_hi = 2*pi    ; %    pi*2 the high value in range of longitute angle 

Te       = Te_ratio*radius; %  Tunnel Effect gap 
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%Average_Volume_ratio=n_tube*pi*[(rlo+rhi)/2]^2*(hlo+hhi)/2/((xhi-xlo)*(yhi-ylo)*(zhi-zlo)) 

%pause 

%  ---------------------------------------- for cluster algorithm -------- 

%  cluster_threshold = tiny, will includes all pairs as previous version 

 

%cluster_threshold = 2*( rlo + rhi )/2 + Te;  % --- for cluster algorithm --- 

wall_threshold = ( rlo + rhi )/2 + Te;  % --- for pecolation --- 

% If the "distance_sq_between_centers" > "distance_sq_between_centers_threshold" 

% dist = inf and no need to calculate the distance 

distance_sq_between_centers_threshold = ((hlo+hhi)/2 + ( rlo + rhi ) + Te)^2; 

 

data_dim=3; 

idebug=0; 

 

%  /* ----------------- data structure of (line) segment centers --------- */ 

%  /* ------------------------------------------------------------ 

%            sc(i,1) : x-coordinate of center of tube i 

%            sc(i,2) : y-coordinate of center of tube i 

%            sc(i,3) : z-coordinate of center of tube i 

%            sc(i,4) : height                 of tube i 

%            sc(i,5) : radius                 of tube i 

%            sc(i,6) : phi  , latitude angle  of tube i     new version 

%            sc(i,7) : theta, the ? angle     of tube i 

%     -------------------------------------------------------------------- */ 

%pair_dist  = zeros ( 1, max_pair    ) ; 

%pair_lst_i = zeros ( 1, max_pair    ) ; 

%pair_lst_j = zeros ( 1, max_pair    ) ; 

cluster_ID = zeros ( 1, max_cluster ) ; 

 

sc = zeros ( n_tube, 7 ) ; 

P1 = zeros ( 3, 1 ) ;                                % column vector, 3D 

P2 = zeros ( 3, 1 ) ;                                % column vector, 3D 

P3 = zeros ( 3, 1 ) ;                                % column vector, 3D 

P4 = zeros ( 3, 1 ) ;                                % column vector, 3D 

A  = zeros ( 3, 1 ) ;                                % column vector, 3D 

B  = zeros ( 3, 1 ) ;                                % column vector, 3D 

%  /* --------------------- global for dist_3D_2_segments ------------------ */ 

%  /* --------------------- global for dist_3D_2_segments ------------------ */ 

PO = zeros (3,1) ; %* -------------- mid-point of P1, P2 -------------- */ 

U  = zeros (3,1) ; %* orthogonal basis { U, V, N } for plane through P0 */ 

V  = zeros (3,1) ; %* orthogonal basis { U, V, N } for plane through P0 */ 

N  = zeros (3,1) ; %* orthogonal basis { U, V, N } for plane through P0 */ 

P5 = zeros (3,1) ; %* orthogonal projection of P3,P4 onto plane thru P0 */ 

P6 = zeros (3,1) ; %* orthogonal projection of P3,P4 onto plane thru P0 */ 
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%  /* ---------------------- Ch 1 : begin with random data --------------- */ 

%  /* ---------------------- Ch 1 : begin with random data --------------- */ 

sc = set_tube ( idebug, data_dim,                                    ... 

    n_tube, xlo,xhi,ylo,yhi,zlo,zhi,hlo,hhi,rlo,rhi,     ... 

    filo,fihi, theta_lo, theta_hi, random_seed ) ; 

 

%  /* ------- Ch 2 : pre-processing : sort in x, link next 3 in y,z ------- */ 

%  /* ------- Ch 2 : pre-processing : sort in x, link next 3 in y,z ------- */ 

 

%x_sort_lst = zeros ( 1, n_tube ) ; 

%  /* ------------------------------------------------------------------------- 

%     current version : linear sort 

%     usage : x_sort_lst( sorted_by_x_in_increasing_order ) = original_index 

%     ---------------------------------------------------------------------- */ 

x_sort_lst = linear_sort ( idebug, n_tube, sc ) ; 

 

%fprintf('\n Calculate dist of EACH pair ... \n') ; 

 

n_pair = 0 ; 

%dist_matrix=NaN(n_tube); 

connect_matrix=[]; 

%  /* -------------------------------------------------------------------- */ 

for i1 = 1 : n_tube-1 

    %     /* ----------------------------------------------------- 

    %        i1, j1 : increasing_order in x 

    %        i , j  : original indices 

    %        ---------------------------------------------------- */ 

    i = x_sort_lst(i1) ; 

 

    for j1 = i1+1 : n_tube 

 

        j = x_sort_lst(j1) ; 

 

        %        /* ------------ very good that having sorted by x-coordinate --- */ 

        %        /* ------------ very good that having sorted by x-coordinate --- */ 

 

        if ( j1 > i1 ) 

 

            % Calculate the distance of the center of i1 and j1 

            distance_sq_between_centers = (sc(i,1)-sc(j,1))^2+(sc(i,2)-sc(j,2))^2+(sc(i,3)-sc(j,3))^2; 

            if distance_sq_between_centers > distance_sq_between_centers_threshold 

                dist = inf; 

                cluster_threshold = 0; 

            else 
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                %          /* --- always true that angle phi is from -pi/2 to pi/2 --- */ 

                %          /* ------------------------------------- line segment 1 --- */ 

                %          /* --- P1, P2 : bottom and top disc centers on  tube  i --- */ 

                cosi6=cos(sc(i,6)); 

                cosi7=cos(sc(i,7)); 

                sini6=sin(sc(i,6)); 

                sini7=sin(sc(i,7)); 

                nix=cosi6*cosi7; % x-component of unit vector of i tube 

                niy=cosi6*sini7; % y-component of unit vector of i tube 

                niz=sini6;  % z-component of unit vector of i tube 

                half_l_i=sc(i,4)/2; % Half length of tube i 

                P2(1) = sc(i,1) + half_l_i*nix ; 

                P2(2) = sc(i,2) + half_l_i*niy ; 

                P2(3) = sc(i,3) + half_l_i*niz ; 

                P1(1) = sc(i,1)*2 - P2(1) ; 

                P1(2) = sc(i,2)*2 - P2(2) ; 

                P1(3) = sc(i,3)*2 - P2(3) ; 

                %          /* ------------------------------------- line segment 2 --- */ 

                %          /* --- P3, P4 : bottom and top disc centers on  tube  j --- */ 

                cosj6=cos(sc(j,6)); 

                cosj7=cos(sc(j,7)); 

                sinj6=sin(sc(j,6)); 

                sinj7=sin(sc(j,7)); 

                njx=cosj6*cosj7; % x-component of unit vector of i tube 

                njy=cosj6*sinj7; % y-component of unit vector of i tube 

                njz=sinj6;  % z-component of unit vector of i tube 

                half_l_j=sc(i,4)/2; % Half length of tube i 

                P4(1) = sc(j,1) + half_l_j*njx ; 

                P4(2) = sc(j,2) + half_l_j*njy ; 

                P4(3) = sc(j,3) + half_l_j*njz ; 

                P3(1) = sc(j,1)*2 - P4(1) ; 

                P3(2) = sc(j,2)*2 - P4(2) ; 

                P3(3) = sc(j,3)*2 - P4(3) ; 

 

                %          /* ------------------------------------------------------------- */ 

                dist = dist_3D_2_segments ( idebug, P1,P2,P3,P4,A,B ); 

                %            dist_matrix(i1,j1)=dist; 

                cos_theta_ij=nix*njx+niy*njy+niz*njz; 

                cluster_threshold=sc(i,5) + sc(j,5) + Te; 

                % 

            end 

            if dist < cluster_threshold 

                connect_matrix=[connect_matrix;[i1,j1]]; 

            end 
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        end 

        %        /* ---------------------- done for tube pair (i,j) ----------- */ 

    end %/* --- inner loop over tube j1 --- */ 

end % /* --- outer loop over tube i1 --- */ 

% Kurt Lin's code starts here 

%[connect_1,connect_2]=find(dist_matrix < cluster_threshold); 

%dist_matrix(79,107) 

%dist_matrix(107,134) 

%connect_matrix=[connect_1,connect_2]; 

connect_1=connect_matrix(:,1); 

connect_2=connect_matrix(:,2); 

n_connect_pairs=size(connect_1,1); 

tube_cluster=(-1)*ones(n_tube,1); 

cluster=[]; 

cluster_label=0; 

while ~isempty(connect_matrix) 

    cluster_set=connect_matrix(1,:); 

    connect_matrix(1,:)=[]; 

    continue_flag=1; 

    while continue_flag ~= 0 

        size(cluster_set,2); 

        %cluster_set=cluster_set 

        %pause 

        n_cluster_set=size(cluster_set,2); 

        cluster_set_new=[]; 

        for i=1:n_cluster_set 

            %Leftover=connect_matrix(1:3,:) 

            index_col_1=find(connect_matrix(:,1)==cluster_set(i)); 

 

            if ~isempty(index_col_1) 

                for j=1:size(index_col_1,1) 

                    if isempty(find(cluster_set==connect_matrix(index_col_1(j),2))) 

                        cluster_set_new=[cluster_set_new,connect_matrix(index_col_1(j),2)]; 

                    end 

                end 

 

                connect_matrix(index_col_1,:)=[]; 

 

                continue_1(i)=1; 

            else 

                continue_1(i)=0; 

            end 

            %Leftover=connect_matrix(1:3,:) 

            index_col_2=find(connect_matrix(:,2)==cluster_set(i)); 

            %if ~isempty(index_col_2) 
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            %    whatifound=connect_matrix(index_col_2,2) 

            %end 

            if ~isempty(index_col_2) 

                for j=1:size(index_col_2,1) 

                    %Leftover=connect_matrix(1:index_col_2(j),:)' 

                    if isempty(find(cluster_set==connect_matrix(index_col_2(j),1))) 

                        cluster_set_new=[cluster_set_new,connect_matrix(index_col_2(j),1)]; 

                    end 

                end 

 

                connect_matrix(index_col_2,:)=[]; 

 

                continue_2(i)=1; 

            else 

                continue_2(i)=0; 

            end 

        end 

        cluster_set=[cluster_set,cluster_set_new]; 

        %Leftover=connect_matrix(1:20,:)' 

        continue_flag_1=sum(continue_1); 

        continue_flag_2=sum(continue_2); 

        continue_flag=continue_flag_1+continue_flag_2; 

        %pause 

        if continue_flag==0 

            %n_cluster_set=size(cluster_set,2); 

            cluster_label=cluster_label+1; 

            %cluster=[cluster;n_cluster_set]; 

            %if n_cluster_set==69 

            %    cluster_set=cluster_set 

            %    cluster_label=cluster_label 

            %end 

            for k=1:n_cluster_set 

                tube_cluster(cluster_set(k))=cluster_label; 

            end 

        end 

    end 

    %pause 

end 

 

% Put the size of each cluster in an array 

number_of_cluster=cluster_label; 

for i=1:number_of_cluster 

    cluster=[cluster;size(find(tube_cluster==i),1)]; 

end 

% Find largest cluster 
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[largest_cluster,n_max_cluster]=max(cluster); 

% Check percolation (3-D) 

x_largest_cluster_min=xhi; 

x_largest_cluster_max=xlo; 

y_largest_cluster_min=yhi; 

y_largest_cluster_max=ylo; 

z_largest_cluster_min=zhi; 

z_largest_cluster_max=zlo; 

for i=1:n_tube 

    i_sorted=x_sort_lst(i); 

    if tube_cluster(i)==n_max_cluster 

        x1=sc(i_sorted,1) - 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*cos(sc(i_sorted,7)); 

        if x1 < x_largest_cluster_min 

            x_largest_cluster_min=x1; 

        end 

        if x1 > x_largest_cluster_max 

            x_largest_cluster_max=x1; 

        end 

        x2=sc(i_sorted,1) + 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*cos(sc(i_sorted,7)); 

        if x2 < x_largest_cluster_min 

            x_largest_cluster_min=x2; 

        end 

        if x2 > x_largest_cluster_max 

            x_largest_cluster_max=x2; 

        end 

        %output=[i_sorted,x1,x2,x_largest_cluster_max] 

        %pause 

        y1=sc(i_sorted,2) - 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*sin(sc(i_sorted,7)); 

        if y1 < y_largest_cluster_min 

            y_largest_cluster_min=y1; 

        end 

        if y1 > y_largest_cluster_max 

            y_largest_cluster_max=y1; 

        end 

        y2=sc(i_sorted,2) + 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*sin(sc(i_sorted,7)); 

        if y2 < y_largest_cluster_min 

            y_largest_cluster_min=y2; 

        end 

        if y2 > y_largest_cluster_max 

            y_largest_cluster_max=y2; 

        end 

        z1=sc(i_sorted,3) - 0.5*sc(i_sorted,4)*sin(sc(i_sorted,6)); 

        if z1 < z_largest_cluster_min 

            z_largest_cluster_min=z1; 

        end 
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        if z1 > z_largest_cluster_max 

            z_largest_cluster_max=z1; 

        end 

        z2=sc(i_sorted,3) + 0.5*sc(i_sorted,4)*sin(sc(i_sorted,6)); 

        if z2 < z_largest_cluster_min 

            z_largest_cluster_min=z2; 

        end 

        if z2 > z_largest_cluster_max 

            z_largest_cluster_max=z2; 

        end 

    end 

end 

x_percolation=0; 

if (x_largest_cluster_max > (xhi-wall_threshold))&(x_largest_cluster_min < 

(xlo+wall_threshold)) 

    x_percolation=1; 

end 

y_percolation=0; 

if (y_largest_cluster_max > (yhi-wall_threshold))&(y_largest_cluster_min < 

(ylo+wall_threshold)) 

    y_percolation=1; 

end 

z_percolation=0; 

if (z_largest_cluster_max > (zhi-wall_threshold))&(z_largest_cluster_min < 

(zlo+wall_threshold)) 

    z_percolation=1; 

end 

 

percolation_flag=zeros(1,3); 

percolation_cluster_size=zeros(1,3); 

percolation_cluster_size(1)=largest_cluster; 

if x_percolation==1|y_percolation==1|z_percolation==1 

    %if x_percolation==1|y_percolation==1 %(For thin plate, only x and y are considered) 

    percolation_flag(1)=1; 

    %    percolation_cluster_size(1)=largest_cluster; 

end 

% Find 2nd lagest cluster 

cluster_takeaway_max=cluster; 

cluster_takeaway_max(n_max_cluster)=0; 

[second_largest_cluster,n_second_max_cluster]=max(cluster_takeaway_max); 

% Check percolation 

x_2nd_largest_cluster_min=xhi; 

x_2nd_largest_cluster_max=xlo; 

y_2nd_largest_cluster_min=yhi; 

y_2nd_largest_cluster_max=ylo; 
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z_2nd_largest_cluster_min=zhi; 

z_2nd_largest_cluster_max=zlo; 

for i=1:n_tube 

    i_sorted=x_sort_lst(i); 

    if tube_cluster(i)==n_second_max_cluster 

        x1=sc(i_sorted,1) - 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*cos(sc(i_sorted,7)); 

        if x1 < x_2nd_largest_cluster_min 

            x_2nd_largest_cluster_min=x1; 

        end 

        if x1 > x_2nd_largest_cluster_max 

            x_2nd_largest_cluster_max=x1; 

        end 

        x2=sc(i_sorted,1) + 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*cos(sc(i_sorted,7)); 

        if x2 < x_2nd_largest_cluster_min 

            x_2nd_largest_cluster_min=x2; 

        end 

        if x2 > x_2nd_largest_cluster_max 

            x_2nd_largest_cluster_max=x2; 

        end 

        %output=[i_sorted,x1,x2,x_2nd_largest_cluster_max] 

        %pause 

        y1=sc(i_sorted,2) - 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*sin(sc(i_sorted,7)); 

        if y1 < y_2nd_largest_cluster_min 

            y_2nd_largest_cluster_min=y1; 

        end 

        if y1 > y_2nd_largest_cluster_max 

            y_2nd_largest_cluster_max=y1; 

        end 

        y2=sc(i_sorted,2) + 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*sin(sc(i_sorted,7)); 

        if y2 < y_2nd_largest_cluster_min 

            y_2nd_largest_cluster_min=y2; 

        end 

        if y2 > y_2nd_largest_cluster_max 

            y_2nd_largest_cluster_max=y2; 

        end 

        z1=sc(i_sorted,3) - 0.5*sc(i_sorted,4)*sin(sc(i_sorted,6)); 

        if z1 < z_2nd_largest_cluster_min 

            z_2nd_largest_cluster_min=z1; 

        end 

        if z1 > z_2nd_largest_cluster_max 

            z_2nd_largest_cluster_max=z1; 

        end 

        z2=sc(i_sorted,3) + 0.5*sc(i_sorted,4)*sin(sc(i_sorted,6)); 

        if z2 < z_2nd_largest_cluster_min 

            z_2nd_largest_cluster_min=z2; 
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        end 

        if z2 > z_2nd_largest_cluster_max 

            z_2nd_largest_cluster_max=z2; 

        end 

    end 

end 

x_percolation=0; 

if (x_2nd_largest_cluster_max > (xhi-wall_threshold))&(x_2nd_largest_cluster_min < 

(xlo+wall_threshold)) 

    x_percolation=1; 

end 

y_percolation=0; 

if (y_2nd_largest_cluster_max > (yhi-wall_threshold))&(y_2nd_largest_cluster_min < 

(ylo+wall_threshold)) 

    y_percolation=1; 

end 

z_percolation=0; 

if (z_2nd_largest_cluster_max > (zhi-wall_threshold))&(z_2nd_largest_cluster_min < 

(zlo+wall_threshold)) 

    z_percolation=1; 

end 

% 

percolation_cluster_size(2)=second_largest_cluster; 

if x_percolation==1|y_percolation==1|z_percolation==1 

    %if x_percolation==1|y_percolation==1 %(For thin plate, only x and y are considered) 

    percolation_flag(2)=1; 

    %    percolation_cluster_size(2)=second_largest_cluster; 

end 

% Find 3rd lagest cluster 

cluster_takeaway_max(n_second_max_cluster)=0; 

[third_largest_cluster,n_third_max_cluster]=max(cluster_takeaway_max); 

% Check percolation 

x_3rd_largest_cluster_min=xhi; 

x_3rd_largest_cluster_max=xlo; 

y_3rd_largest_cluster_min=yhi; 

y_3rd_largest_cluster_max=ylo; 

z_3rd_largest_cluster_min=zhi; 

z_3rd_largest_cluster_max=zlo; 

for i=1:n_tube 

    i_sorted=x_sort_lst(i); 

    if tube_cluster(i)==n_third_max_cluster 

        x1=sc(i_sorted,1) - 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*cos(sc(i_sorted,7)); 

        if x1 < x_3rd_largest_cluster_min 

            x_3rd_largest_cluster_min=x1; 

        end 
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        if x1 > x_3rd_largest_cluster_max 

            x_3rd_largest_cluster_max=x1; 

        end 

        x2=sc(i_sorted,1) + 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*cos(sc(i_sorted,7)); 

        if x2 < x_3rd_largest_cluster_min 

            x_3rd_largest_cluster_min=x2; 

        end 

        if x2 > x_3rd_largest_cluster_max 

            x_3rd_largest_cluster_max=x2; 

        end 

        %output=[i_sorted,x1,x2,x_3rd_largest_cluster_max] 

        %pause 

        y1=sc(i_sorted,2) - 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*sin(sc(i_sorted,7)); 

        if y1 < y_3rd_largest_cluster_min 

            y_3rd_largest_cluster_min=y1; 

        end 

        if y1 > y_3rd_largest_cluster_max 

            y_3rd_largest_cluster_max=y1; 

        end 

        y2=sc(i_sorted,2) + 0.5*sc(i_sorted,4)*cos(sc(i_sorted,6))*sin(sc(i_sorted,7)); 

        if y2 < y_3rd_largest_cluster_min 

            y_3rd_largest_cluster_min=y2; 

        end 

        if y2 > y_3rd_largest_cluster_max 

            y_3rd_largest_cluster_max=y2; 

        end 

        z1=sc(i_sorted,3) - 0.5*sc(i_sorted,4)*sin(sc(i_sorted,6)); 

        if z1 < z_3rd_largest_cluster_min 

            z_3rd_largest_cluster_min=z1; 

        end 

        if z1 > z_3rd_largest_cluster_max 

            z_3rd_largest_cluster_max=z1; 

        end 

        z2=sc(i_sorted,3) + 0.5*sc(i_sorted,4)*sin(sc(i_sorted,6)); 

        if z2 < z_3rd_largest_cluster_min 

            z_3rd_largest_cluster_min=z2; 

        end 

        if z2 > z_3rd_largest_cluster_max 

            z_3rd_largest_cluster_max=z2; 

        end 

    end 

end 

x_percolation=0; 

if (x_3rd_largest_cluster_max > (xhi-wall_threshold))&(x_3rd_largest_cluster_min < 

(xlo+wall_threshold)) 
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    x_percolation=1; 

end 

y_percolation=0; 

if (y_3rd_largest_cluster_max > (yhi-wall_threshold))&(y_3rd_largest_cluster_min < 

(ylo+wall_threshold)) 

    y_percolation=1; 

end 

z_percolation=0; 

if (z_3rd_largest_cluster_max > (zhi-wall_threshold))&(z_3rd_largest_cluster_min < 

(zlo+wall_threshold)) 

    z_percolation=1; 

end 

% 

percolation_cluster_size(3)=third_largest_cluster; 

if x_percolation==1|y_percolation==1|z_percolation==1 

    %if x_percolation==1|y_percolation==1 %(For thin plate, only x and y are considered) 

    percolation_flag(3)=1; 

    %    percolation_cluster_size(3)=third_largest_cluster; 

end 

fid=fopen('main_all_output.txt','a'); 

%random_seed=random_seed 

%n_tube=n_tube 

%percolation_flag=percolation_flag 

%percolation_cluster_size=percolation_cluster_size 

%fprintf(fid,'n_tube = %6d random_seed = %6d\n',n_tube,random_seed); 

fprintf(fid,'%6d %6d %6d %6d %6d %6d\n',n_tube,random_seed,percolation_flag,percolation_cl

uster_size(1)); 

fclose(fid); 

return ; 

 

function sc = set_tube ( idebug, data_dim, n_tube,                           ... 

    xlo, xhi, ylo, yhi, zlo, zhi,                       ... 

    hlo, hhi, rlo, rhi, filo, fihi, theta_lo, theta_hi, random_seed ) 

 

%  float  ran4(long *idum) ; 

%  long   idum ; 

%  FILE   *fp_out_tube ; 

 

%   fprintf('\n To check_and_remove tubes extending out in six directions\n\n'); 

%   fprintf('    1 : yes, Else ( nonzero ) not, \n\n') ; 

%   fprintf('\t Answer in condensed way, as follows : \n') ; 

%   fprintf(' 111111 : yes, in all six directions : \n') ; 

%   fprintf(' 222222 : No,  in none of the six directions : \n') ; 

%   fprintf(' 121212 : make sure   0 < x      0 < y      0 < z     \n') ; 

%   fprintf(' 212121 : make sure       x < 1      y < 1      z < 1 \n') ; 
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%   fprintf(' 112222 : make sure   0 < x < 1                       \n') ; 

%   chk = input('\n Enter a six-digit number to check some, check all, check none : \n'); 

chk=222222; 

 

 

% ------------------------------------------------------------------- 

%       sc ( 1:n_tube, 1 )   are   x-coordinate of the center 

%       sc ( 1:n_tube, 2 )   are   y-coordinate of the center 

%       sc ( 1:n_tube, 3 )   are   z-coordinate of the center 

%       sc ( 1:n_tube, 4 )   are   height of the tube 

%       sc ( 1:n_tube, 5 )   are   radius of the two tube faces 

%       sc ( 1:n_tube, 6 )   are    latitude angle, assume 0 to pi/2 

%       sc ( 1:n_tube, 7 )   are   longitude angle, assume 0 to pi*2 

% -------------------------------------------------------------------- 

rand('twister',random_seed); % Set random seed 

sc = zeros( n_tube, 7 ) ; 

 

%  --------------------------------- examine the random data ---------- 

for i = 1 : n_tube 

 

    i_random = 0 ; 

    chk_valid = 0 ; 

 

    sc(i,:) = rand(1,7); 

 

    while ( chk_valid ~= 1 ) 

 

        i_random = i_random + 1 ; 

 

        for j = 1 : 7 

            if ( sc(i,j) < 0.0) 

                fprintf(' sc(%d,%d) = %e ?\n',i,j,sc(i,j));pause 

            end 

            if ( sc(i,j) > 1.0) 

                fprintf(' sc(%d,%d) = %e ?\n',i,j,sc(i,j));pause 

            end 

        end 

 

        sc(i,1) = xlo      + ( xhi      - xlo     )*sc(i,1) ; 

        sc(i,2) = ylo      + ( yhi      - ylo     )*sc(i,2) ; 

        sc(i,3) = zlo      + ( zhi      - zlo     )*sc(i,3) ; 

        sc(i,4) = hlo      + ( hhi      - hlo     )*sc(i,4) ; 

        sc(i,5) = rlo      + ( rhi      - rlo     )*sc(i,5) ; 

        sc(i,6) = filo     + ( fihi     - filo    )*sc(i,6) ; %  latitude angle 

        sc(i,7) = theta_lo + ( theta_hi - theta_lo)*sc(i,7) ; % longitude angle 
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        if ( data_dim == 2 ) 

            sc(i,3) = zlo ; 

            %  old    sc(i,6) = pi/2 ; 

            sc(i,6) = 0.0 ;                                     %  latitude angle 

        end 

 

        % ------------------------ must pause to check --------------------- 

        % ------------------------ must pause to check --------------------- 

        chk_valid = 1 ; 

 

        if ( chk_valid < 1 ) 

            sc(i,1:7) = rand(1,7) ; 

        end 

    end % --- end while --- 

 

end % --- end while --- 

 

 

return ; 

 

% ------------------- current version : linear sort --- 

 

function x_sort_lst = linear_sort ( idebug, n_tube, sc ) 

 

i_select = 0 ; 

mark_lst = zeros ( 1, n_tube ) ; 

 

%fprintf('\n --- Start sorting by x-coordinates ... \n') ; 

 

for i_least = 1 : n_tube 

    % -------- assign an initial candicate, then comapre and update --- 

    for k = 1 : n_tube 

        if ( mark_lst(k) == 0 ) 

            i_select = k ; 

            break ; 

        end 

    end 

    for j = 1 : n_tube 

        if ( mark_lst(j) == 0 ) 

            if ( sc(j,1) < sc(i_select,1) ) 

                i_select = j ; 

            end 

        end 

    end 
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    x_sort_lst(i_least  ) = i_select ; 

    mark_lst  (i_select) = 1 ; 

end 

 

return ; 

 

%* -------------------------------------------------------------------- 

% Input : 

%       Four points in space 

%                            P1(x1,y1,z1), 

%                            P2(x2,y2,z2), 

%                            P3(x3,y3,z3), 

%                            P4(x4,y4,z4), 

% Output : the distance bewteen two line segments P1_P2, P3_P4, 

%  -------------------------------------------------------------------- */ 

 

function dist_3 =  dist_3D_2_segments ( idebug, P1, P2, P3, P4, A , B ) 

 

%  int    i, k, itmp, ierr ; 

%  double p, q, r, s, ax, ay, bx, by, dist_2, l_half, dist_common, t3,t4, tmp ; 

%  double ratio_1, ratio_2 ; 

 

%  extern double *P5, *P6, *PO, *N, *U, *V ; 

%  /* ------------------------------------------------------------------------ 

%     PO : mid-point of segment P1_P2 

%     H  : the plane passing through PO with normal N[] 

%     P5 : orthogonal projection of P3 onto H, with relative coordinate (p,q) 

%     P6 : orthogonal projection of P4 onto H, with relative coordinate (r,s) 

%     U  : orthogonal basis { U, V, N } for plane through P0 

%     V  : orthogonal basis { U, V, N } for plane through P0 

%     N  : orthogonal basis { U, V, N } for plane through P0 

%     ---------------------------------------------------------------------- */ 

 

%  /* ---------- global allocated in main() ------- */ 

%  /* ---------- global allocated in main() ------- */ 

 

%  /* ---------------------------------------------- mid-point of P1, P2 --- */ 

PO = ( P1 + P2 ) /2 ; 

 

P1     = P1 - PO         ;  % local coordinate : shift origin to P0 

P2     = P2 - PO         ;  % local coordinate : shift origin to P0 

P3     = P3 - PO         ;  % local coordinate : shift origin to P0 

P4     = P4 - PO         ;  % local coordinate : shift origin to P0 

U      = P2              ;  % U = (P2-P1)/2 

tmp    = sqrt ( (U')*U ) ; 
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U      = U /tmp          ;  % now a unit vector, done 

l_half = tmp             ;  % half length of P1_P2 

V      = P4 - P3         ; 

tmp    = sqrt ( (V')*V ) ; 

V      = V /tmp          ;  % now a unit vector, done 

 

N = tensor_3D(U,V) ;        % N = P2_P1 x P3_P4 as normal to plane through P1 

tmp = sqrt ( (N')*N ) ; 

if ( tmp > 1.0e-12 ) 

    N = N /tmp ;            % now a unit vector, done 

end 

 

V = tensor_3D ( N, U ) ;     % (re)generate V 

tmp = sqrt ( (V')*V ) ; 

V = V /tmp ;                 % now a unit vector, done 

 

% ---------------------------- always check ------- 

 

t3 = (N')*P3 ; 

t4 = (N')*P4 ; 

% ------------------------------------------ always check ------------ 

 

t3 = 0.5*( t3 + t4 ) ; 

t4 = t3 ; 

dist_common = abs(t3) ; 

 

P5 = P3 - t3*N ;                                % P5-PO = P3-PO - t*N 

P6 = P4 - t4*N ;                                % P6-PO = P4-PO - t*N 

 

% ------------------------------------------- always check ------------ 

 

p = P5'*U ;                         %  p = < P5-PO,U > 

q = P5'*V ;                         %  q = < P5-PO,U > 

r = P6'*U ;                         %  r = < P6-PO,V > 

s = P6'*V ;                         %  s = < P6-PO,V > 

 

 

[ax ay bx by dist_2] = dist_2D_2_segments ( idebug, l_half, p, q, r, s ) ; 

 

dist_3 = sqrt ( dist_2*dist_2 + dist_common*dist_common ) ; 

 

%  --------------------------------------------------------- bug here --- 

B = PO + bx*U + by*V + t3*N ; 

A = PO + ax*U + ay*V        ; 

%  ------------------------------------------------ missing was below --- 
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P1 = P1 + PO ; 

P2 = P2 + PO ; 

P3 = P3 + PO ; 

P4 = P4 + PO ; 

 

%  ------------------------------- always check -------------- 

%  ------------------------------- always check -------------- 

 

return ; 

 

 

%  --------------------------------------------------------------------- 

%  ------------------------------ 2D configuration --------------------- 

%  --------------------------------------------------------------------- 

%  Input     : two line segments P1_P2 and P5_P6, with 

% 

%                                    P1 = ( -l_half, 0 )        default 

%                                    P2 = (  l_half, 0 )        default 

%                                    P5 = (  p     , q )         input 

%                                    P6 = (  r     , s )         input 

% 

%              with q <= s, by construction of u,v in main 

%  Output    : 

%              *dist_2   = shortest distance between  P1_P2  and  P5_P6 

%              A = (ax,ay)  on line segment P1_P2 

%              B = (bx,by)  on line segment P5_P6 

%              where the shortest dist occurs at A,B 

% 

%  Algorithm : re-scale to P1=(-1,0), P2=(1,0), ...  for code efficiency 

%  --------------------------------------------------------------------- 

 

function [ax ay bx by dist_2] = dist_2D_2_segments ( idebug, l_half, p,q,r,s ) 

 

%  /* ---------------------------------------------------------------------- 

%     Reduction : P1 = ( -1      , 0        ), P2 = ( 1       , 0        ), 

%                 P5 = ( p/l_half, q/l_half ), P6 = ( r/l_half, s/l_half ) 

%     ---------------------------------------------------------------------- */ 

p_sav = p ; 

q_sav = q ; 

r_sav = r ; 

s_sav = s ; 

 

p = p /l_half ;                          %  OK for C, passed by value 

q = q /l_half ;                          %  OK for C, passed by value 

r = r /l_half ;                          %  OK for C, passed by value 
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s = s /l_half ;                          %  OK for C, passed by value 

 

if     ( ( p        >=  1.0 ) && (  r       >=  1.0     ) ) 

    subcase= 10; 

elseif ( ( p        <= -1.0 ) && (  r       <= -1.0     ) ) 

    subcase= 20; 

elseif ( ( abs(p)   <=  1.0 ) && (  abs(r)  <=  1.0     ) ) 

    subcase= 30; 

elseif ( ( min(p,r) <   1.0 ) && (  1.0     <  max(p,r) ) ) 

    subcase= 40; 

elseif ( ( min(p,r) <  -1.0 ) && ( -1.0     <  max(p,r) ) ) 

    subcase= 50; 

else 

    subcase = -1 ; 

    pause 

end 

 

switch ( subcase ) 

 

    case 10   % --- P5, P6 are both to the right of line x= 1 --- 

        % ----- A = P2 */ 

        ax = 1.0 ; 

        ay = 0.0 ; 

        [bx by dist_2] = dist_2D_pt_to_segment ( 1.0, 0.0, p, q, r, s ) ; 

 

    case 20   % --- P5, P6 are both to the left  of line x=-1 --- 

        % ----- A = P1 */ 

        ax = -1.0 ; 

        ay =  0.0 ; 

        [bx by dist_2] = dist_2D_pt_to_segment (-1.0, 0.0, p, q, r, s ) ; 

 

    case 30   % --- P5, P6 are both between lines  x=1,  x=-1 --- 

        % --- recall q < s, always --- */ 

        if        ( 0.0 <  q  ) 

            % --- (p,q)=P5 is closest to segment P1_P2, on plane H --- 

            % --- A = (p,0), B = P5 = (p,q) --- */ 

            ax     =  p   ; 

            ay     =  0.0 ; 

            bx     =  p ; 

            by     =  q ; 

            dist_2 =  q ; 

 

        elseif (  s  < 0.0 ) 

            % --- (r,s)=P6 is closest to segment P1_P2, on plane H --- 

            % --- A = (r,0), B = P6 = (r,s) --- */ 
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            ax     =  r ; 

            ay     =  0.0 ; 

            bx     =  r ; 

            by     =  s ; 

            dist_2 = -s ; 

 

        else 

            % --- q < 0.0 < s , segments P1_P2  and  P5_P6  intersect --- 

            ay     = 0.0 ;                          %  A is on P1_P2 

            ax     = ( p*s-q*r ) / ( s - q ) ;      %     some math 

            bx     = (ax) ;                         %  B = A 

            by     = 0.0 ;                          %  B = A 

            dist_2 = 0.0 ; 

        end 

 

    case 40   % --- segment P5_P6 intersects with line x=1, and also x=-1 ? 

 

        [ax ay bx by dist_2] = dist_2D_case_40 ( p,q, r,s ); 

 

    case 50   % --- segment P5_P6 intersects with line x=-1, and also x=1 ? 

 

        % --- apply reflection wrt x=0 and appeal to case 40 --- 

        [ax ay bx by dist_2] = dist_2D_case_40 (-p,q,-r,s ); 

 

        ax = -ax ; 

        bx = -bx ; 

end 

 

%  --------------------------------- re-scale ---------------- 

ax = ax*l_half ; 

ay = ay*l_half ; 

bx = bx*l_half ; 

by = by*l_half ; 

dist_2 = dist_2*l_half ; 

 

%  /* --------------------------------------------------------- 

%     -------------- prefer the next block, for accuracy 

%  p *= l_half ; 

%  q *= l_half ; 

%  r *= l_half ; 

%  s *= l_half ; 

%  ------------------------------------------------------------ 

p = p_sav ; 

q = q_sav ; 

r = r_sav ; 
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s = s_sav ; 

 

%  /* --------------------------------------------- always check ----- 

 

 

 

return ; 

 

function N = tensor_3D ( U, V ) 

 

N(3,1) = U(1,1)*V(2,1) - U(2,1)*V(1,1) ; 

N(1,1) = U(2,1)*V(3,1) - U(3,1)*V(2,1) ; 

N(2,1) = U(3,1)*V(1,1) - U(1,1)*V(3,1) ; 

 

return ; 

 

%  ------------------------------------------------------------------- 

%  ---------------------------- 2D configuration --------------------- 

%  ------------------------------------------------------------------- 

%  Input     : point P and line segment A_B, with 

%                        P = ( px, py ) 

%                        A = ( ax, ay ) 

%                        B = ( bx, by ) 

%  Output    : distance from  P  to  A_B 

 

%  Algorithm : transform to case P=(0,0), ...  for code efficiency 

 

%  Reduction : P = (0,0), A = (ax-px,ay-py), B = (bx-px,by-py) 

 

%  Projection of P(0,0) to line A_B with A(ax,ay) B(bx,by) is Q(qx,qy), by 

 

%  choosing       n = (nx,ny), a unit normal to line A_B 

%  then 

%                 dist = | nx*ax+ny*ay |  or  | nx*bx+ny*by | 

%  and 

%                 qx = nx/(nx*nx+ny*ny)*(nx*ax+ny*ay) ; 

%                 qy = ny/(nx*nx+ny*ny)*(nx*ax+ny*ay) ; 

%  transform back 

%                 ( qx, qy ) += ( px, py ) 

%  ---------------------------------------------------------------------- 

 

function [qx qy dist] = dist_2D_pt_to_segment ( px, py, ax, ay, bx, by ) 

 

global idebug ; 

%  int    i, itmp, numerical_chk, local_debug, ierr ; 
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%  double nx, ny, ab_x, ab_y, tmp1, tmp2, x_chk, y_chk ; 

 

%  --------------------------------------------------------------------- 

local_debug = 0 ; 

 

ab_x = bx - ax ; 

ab_y = by - ay ; 

 

ax   = ax - px ;                             % OK for C, passed by value 

ay   = ay - py ;                             % OK for C, passed by value 

bx   = bx - px ;                             % OK for C, passed by value 

by   = by - py ;                             % OK for C, passed by value 

 

%  ---------------------------------------------------------------------- 

dist = sqrt ( ab_x*ab_x + ab_y*ab_y ) ;  % temporary usage 

nx    = -ab_y/dist ; 

ny    =  ab_x/dist ; 

 

tmp1  = ax*ab_x + ay*ab_y ;              % < A-P, B-A > 

 

 

%  ------ bug was below --- 

%  ------ bug was below --- 

if ( tmp1 >= ( 0.0 - 1.0e-10 ) ) 

    %  --- exterior angle(A-P,B-A) <= 90, interior >= 90, then Q = A --- 

    dist = sqrt ( ax*ax + ay*ay ) ; 

    qx = ax + px ; 

    qy = ay + py ; 

else  %  ----------- angle(A-P,B-A) <= 90 --- 

    tmp2 = bx*ab_x + by*ab_y ;               %  < B-P, B-A > 

    if ( tmp2 <= ( 0.0 + 1.0e-10 ) ) 

        %  --- angle(B-P,B-A) >= 90_degree, then Q = B --- 

        dist = sqrt ( bx*bx + by*by ) ; 

        qx = bx + px ; 

        qy = by + py ; 

    else 

        %  --- triangle PAB is acute 

        %  ------------------------------- case : Q is bewteen A, B --- 

        dist = nx*ax + ny*ay ;         %  temporary usage for < n, a > 

 

        qx   = nx*(dist) + px ; 

        qy   = ny*(dist) + py ; 

 

        dist = abs(dist) ; 
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    end 

end 

 

%  -------------------------------------- check ------------------ 

 

 

%  ----------------------- numerical verification ------ 

 

return ; 

 

%  ------------------------------------------------------------------------- 

%  Background : P1 = ( -1, 0 ), P2 = ( 1, 0 ), on plane 

 

%  Input      : P5 = (  p, q ), P6 = ( r, s ) 

 

%  Output     : dist ( P1_P2, P5_P6 ) 

%               A (ax,ay)  on P1_P2 

%               B (bx,by)  on P5_P6 

%               such that 

%                                    dist ( A, B ) = dist ( P1_P2, P5_P6 ) 

% ------------------------------------------------------------------------- 

 

function [ax ay bx by dist_2] = dist_2D_case_40 ( p, q, r, s ) 

 

global idebug ; 

%  int    i, j, subcase=-1, itmp, numerical_chk, ierr_1=0, ierr_2=0 ; 

%  double b_star, n1, n2, x1_chk, y1_chk, x2_chk, y2_chk, tmp ; 

 

if ( ( r < 1.0 ) && ( 1.0 < p ) && ( 0.0 < q ) ) 

    %* --- case 4a ------- segment P5_P6 intersects with line x=1 --- 

    %* ----------------------------------------------------------------- 

    %      dist ( P1_P2, P5_P6 ) = dist ( P1_P2, P5_Bstar ) 

    %                            = dist (    P2, P5_Bstar ) 

    %  ----------------------------------------------------------------- 

    subcase = 41 ; 

 

    %  bug b_star = ( (p-1)*s - (1-r)*q ) / (p-r) ; 

    b_star = ( (p-1)*s + (1-r)*q ) / (p-r) ; 

    ax = 1.0 ;                                   %  i.e., A = P2 

    ay = 0.0 ; 

    [bx by dist_2] = dist_2D_pt_to_segment (1.0,0.0,p,q,1.0,b_star) ; 

 

elseif ( ( p < 1.0 ) && ( 1.0 < r ) && ( s < 0.0 ) ) 

    % --- recall q < s, always --- 

    % --- case 4h ------- segment P5_P6 intersects with line x=1 --- 
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    % ----------------------------------------------------------------- 

    %      dist ( P1_P2, P5_P6 ) = dist ( P1_P2, Bstar_P6 ) 

    %                            = dist (    P2, Bstar_P6 ) 

    % ----------------------------------------------------------------- 

    subcase = 42 ; 

    %  bug b_star = ( (1-p)*s - (r-1)*q ) / (r-p) ; 

    b_star = ( (1-p)*s + (r-1)*q ) / (r-p) ; 

    ax = 1.0 ;                                   %  i.e., A = P2 

    ay = 0.0 ; 

    [bx by dist_2] = dist_2D_pt_to_segment (1.0,0.0,1.0,b_star,r,s) ; 

 

elseif ( ( p < 1.0 ) && ( 1.0 < r ) && ( 0.0 < q ) ) 

    % --- case 4b ------- segment P5_P6 intersects with line x=  1 --- 

    % -------------------------------------------------------------------- 

    %         dist ( P1_P2, Bstar_P6 ) = dist (    P2, Bstar_P6    ) 

    %  s.t.   dist ( P1_P2,    P5_P6 ) = dist ( P1_P2,    P5_Bstar ) OK 

    %                                  = dist ( P1_P2,    P5       ) wrong 

    %  i.e.,                           = dist (   A  ,    B        ) wrong 

    %                                    with     A=(p,0) B=P5       wrong 

    % ------------------------------------------------------------------- 

    % ------------------- was bug -------- 

    if ( p >= -1.0 ) 

        subcase = 43 ; 

        % --------------- A=(p,0) B=P5 --- 

        bx = p ; 

        by = q ; 

        ax = bx  ; 

        ay = 0.0      ; 

        dist_2 = by  ; 

    else 

        subcase = 44 ; 

        % --------------- A=P1, B=? --- 

        ax = -1.0 ; 

        ay =  0.0 ; 

        b_star  = q + ( s - q ) / ( r - p ) * ( -1.0 - p ) ; 

        [bx by dist_2] = dist_2D_pt_to_segment(-1.0,0.0,p,q,-1.0,b_star); 

    end 

 

elseif ( ( p > 1.0 ) && ( 1.0 > r ) && ( s < 0.0 ) ) 

    % --- case 4g ------- segment P5_P6 intersects with line x=  1 --- 

    % ---------------------------------------------------------------- 

    %  dist( P1_P2, P5_P6 ) = dist( P1_P2, Bstar_P6 )  OK 

    %                       = dist( P1_P2, P6 )        wrong 

    %                         with  B = P6,  A = (r,0) wrong 

    % ---------------------------------------------------------------- 
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    %* ------------------- was bug --------- 

    if ( r >= -1.0 ) 

        subcase = 45 ; 

        bx = r ; 

        by = s ; 

        ax = bx  ; 

        ay = 0.0     ; 

        dist_2 = -by ; 

    else 

        subcase = 46 ; 

        ax = -1.0 ; 

        ay =  0.0 ; 

        b_star  = q + ( s - q ) / ( r - p ) * ( -1.0 - p ) ; 

        [bx by dist_2] = dist_2D_pt_to_segment(-1.0,0.0,-1.0,b_star,r,s); 

    end 

 

elseif ( ( r < 1.0 ) && ( 1.0 < p ) && ( q < 0.0 ) && ( 0.0 < s ) ) 

 

    % ---------------- bug was here ----- 

    % solve for the intersect (*,0) of the line (p,q)_(r,s) and line y=0 

    ax = p - q*(r-p)/(s-q) ;         %* may be of temporary storage 

 

    if ( ax > 1.0 ) 

        % ------------------------------------------------------------------ 

        %  case 4c : P5_P6 intersects with both lines x=1, y=0, but not P1_P2 

        %            dist( P1_P2, P5_P6 ) = dist( P2, p5_P6 ), with 

        %            A = P2,  and B in interior of P5_P6, in quadrant I 

        % -------------------------------------------------------------- 

        subcase = 47 ; 

        ax = 1.0 ; 

        ay = 0.0 ; 

        n1     = (q-s)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        n2     = (r-p)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        dist_2 = n1*(p-1.0)+n2*(q-0.0) ; 

        bx = ax + dist_2*n1 ; 

        by = ay + dist_2*n2 ; 

        dist_2 = abs(dist_2) ; 

 

    elseif ( ( -1.0 <= ax ) && ( ax <= 1.0 ) ) 

        % ---------------------------------------------------------------- 

        % case 4e : P5_P6 intersects with both lines x=1, y=0, also P1_P2 

        %           dist( P1_P2, P5_P6 ) = dist( A, B ) = 0,  since A = B 

        % -------------------------------------------------------------- 

        subcase = 48 ; 

        dist_2 = 0.0     ; 
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        ay = 0.0     ; 

        bx = ax ; 

        by = 0.0     ; 

 

    elseif ( ax < -1.0 ) 

        % ------------------------------------------------------------------ 

        % case 4+ : P5_P6 intersects with both lines x=1, y=0, but not P1_P2 

        %           dist( P1_P2, P5_P6 ) = dist( P1, p5_P6 ), with 

        %           A = P1,  and B in interior of P5_P6, in quadrant III 

        % -------------------------------------------------------------- 

        subcase = 49 ; 

        ax = -1.0 ; 

        ay =  0.0 ; 

        n1     = (q-s)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        n2     = (r-p)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        dist_2 = n1*(p-(-1.0))+n2*(q-0.0) ; 

        bx = ax + dist_2*n1 ; 

        by = ay + dist_2*n2 ; 

        dist_2 = abs(dist_2) ; 

 

    end 

 

elseif ( ( p < 1.0 ) && ( 1.0 < r ) && ( q < 0.0 ) && ( 0.0 < s ) ) 

 

    % ------------------------------------ bug was here ---------------- 

    % solve for the intersect (*,0) of the line (p,q)_(r,s) and line y=0 

    ax = p - q*(r-p)/(s-q) ;          % may be of temporary storage 

 

    if ( ax > 1.0 ) 

        % ------------------------------------------------------------------ 

        % case 4f : P5_P6 intersects with both lines x=1, y=0, but not P1_P2 

        %           dist( P1_P2, P5_P6 ) = dist( P2, p5_P6 ), with 

        %           A = P2,  and B in interior of P5_P6, in quadrant IV 

        % -------------------------------------------------------------- 

        subcase = 50 ; 

        ax = 1.0 ; 

        ay = 0.0 ; 

        n1     = (q-s)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        n2     = (r-p)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        dist_2 = n1*(p-1.0)+n2*(q-0.0) ; 

        bx = ax + dist_2*n1 ; 

        by = ay + dist_2*n2 ; 

        dist_2 = abs(dist_2) ; 

 

    elseif ( ( -1.0 <= ax ) && ( ax <= 1.0 ) ) 
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        % ---------------------------------------------------------------- 

        % case 4d : P5_P6 intersects with both lines x=1, y=0, also 

        %                                 the segment P1_P2 

        %           such that 

        %                     dist( P1_P2, P5_P6 ) = dist( A, B ) 

        %           with (A,B) in segment P1_P2, 

        % -------------------------------------------------------------- 

        subcase = 51 ; 

        dist_2 = 0.0     ; 

        ay = 0.0     ; 

        bx = ax ; 

        by = 0.0     ; 

 

    elseif ( ax < -1.0 ) 

        % ------------------------------------------------------------------ 

        % case 4+ : P5_P6 intersects with both lines x=1, y=0, but not P1_P2 

        %           dist( P1_P2, P5_P6 ) = dist( P1, p5_P6 ), with 

        %           A = P1,  and B in interior of P5_P6, in quadrant II 

        % -------------------------------------------------------------- 

        subcase = 52 ; 

        ax = -1.0 ; 

        ay =  0.0 ; 

        n1     = (q-s)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        n2     = (r-p)/sqrt((r-p)*(r-p)+(s-q)*(s-q)) ; 

        dist_2 = n1*(p-(-1.0))+n2*(q-0.0) ; 

        bx = ax + dist_2*n1 ; 

        by = ay + dist_2*n2 ; 

        dist_2 = abs(dist_2) ; 

    end 

end 

%/ 

return ; 
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