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We present an improved formalism for translationally invariant magnetohydrodynamic equilibria with
anisotropic pressure and currents with a field aligned component. The derivation of a Grad-Shafranov
type equation is given along with a constraint which links the shear field to the parallel pressure. The
difficulties of the formalism are discussed and various methods of circumventing these difficulties are
given. A simple example is then used to highlight the methods and difficulties involved.
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1. Introduction

Magnetohydrodynamic (MHD) equilibria are very useful as models of a large number of
space and astrophysical plasma systems or as starting points for investigations of plasma
activity processes such as waves or instabilities (see, e.g. Schindler 2006, Priest 2014). In
many cases the assumption of a scalar pressure is justified, but sometimes the inclusion of an
anisotropic pressure tensor is necessary. An anisotropic pressure tensor generally results if the
underlying particle distribution functions are gyrotropic, i.e. independent of the gyrophase at
a particle level. This can be the result of a difference in collisional timescales along and across
the magnetic field or of other microscopic processes maintaining gyrotropy if the plasma is
collisionless (for a detailed discussion see, e.g. Chust and Belmont 2006). In this case, fluid
descriptions of the plasma can often still be used.

Some examples of space plasma systems for which it has been suggested that pressure
anisotropy may play a role are the Jovian magnetosphere (e.g. Kivelson and Southwood 2005),
the Earth’s magnetosphere (e.g. Cowley 1978, Nötzel et al. 1985, Hesse and Birn 1992, Hau
1993, Sonnerup et al. 2006) and astrophysical winds and outflows (e.g. Asseo and Beaufils
1983, Tsikarishvili et al. 1995, Beskin and Kuznetsova 2000, Kuznetsova 2005). There are
also studies on general magnetosphere models with anisotropic pressure (e.g. Cheng 1992,
Krasheninnikov and Catto 2000, Zaharia and Cheng 2003, Wu et al. 2009) and several studies
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of a more general, theoretical nature (e.g. Heinemann 1990, Heinemann and Pontius 1991,
Hau 1996, Cheviakov and Bogoyavlenskij 2004, Cheviakov 2005).

The theory of MHD equilibria with anisotropic pressure seems to have also developed
relatively independently in the laboratory plasma community (e.g. Mercier and Cotsaftis 1961,
Taylor 1963, Grad 1967, Spies and Nelson 1974, Hall and McNamara 1975, Sestero and Taroni
1977, Nelson et al. 1978, Clemente 1993, 1994, Clemente et al. 1995, Clemente andViana 1999,
Zwingmann et al. 2001, Shi et al. 2006, Clemente and Sterzo 2009, Pustovitov 2010, Asahi
et al. 2011, Asahi et al. 2013, Lepikhin and Pustovitov 2013). Hence, a number of different
formulations of the MHD equilibrium theory with anisotropic pressure exist, which apart from
the specific application the authors had in mind, can depend on the symmetry assumptions
made, the inclusion of plasma flows or external forces, the use of particular equations of state,
the use of a relativistic formulation of MHD for certain astrophysical systems, or a combination
of several of these points. In this paper we will focus exclusively on MHD equilibria with
translational invariance, which in the isotropic pressure case would lead to a Grad-Shafranov
equation for the magnetic flux function. In the analogous anisotropic pressure case the partial
differential equation for the magnetic flux function can be written in a form which is very
similar to the Grad-Shafranov equation.

Often, further assumptions are made about the relationship between the shear component
of the magnetic field (also referred to as a guide field) and the anisotropy parameter (basically
the difference between the parallel and perpendicular pressure), leading to, for example,
the magnetic shear field component being constant on flux surfaces as in the isotropic case
(e.g Mercier and Cotsaftis 1961, Clemente 1993, Shi et al. 2006). While this simplifies the
equilibrium equation and makes it more similar to the isotropic Grad-Shafranov equation, it
also leads to a restriction in the functional forms allowed for the magnetic pressure tensor.
On the other hand, it is still possible to reduce the equilibrium equation to a form similar to
a Grad-Shafranov equation even if no simplifying assumptions are made (e.g. Lepikhin and
Pustovitov 2013), but this leads to an implicit coupling between the shear component of the
magnetic field and the parallel pressure which makes this equilibrium equation very difficult
to use in practice. We will discuss these points in more detail in section 2. It is the aim of
this paper to provide an alternative formulation of the anisotropic pressure MHD equilibrium
problem with translational invariance that does not make use of any simplifying assumptions,
but also leads to a Grad-Shafranov type equation which is free of the implicit coupling of
previous formulations.

Ageneral framework for the formulation of the MHD equilibrium problem has recently been
provided by Schindler (2006) (Chapter 8), using Euler potentials (see, e.g. Stern 1970). This
includes, in principle, MHD equilibria with anisotropic pressure in two and in three dimensions
and this is one of the cases mentioned in the book. While the formulation using Euler potentials
has the advantage of being very general, possible disadvantages are that Euler potentials may
not always exist globally (for given magnetic fields), for example in toroidal geometry, and that
the equilibrium equations, which the Euler potentials have to satisfy, are generally of mixed
type. This, together with the intrinsic non-linearity of the Euler potential approach, makes the
application of numerical methods to the solution of the equilibrium problems more difficult.
Hence, despite the usefulness of the general theory developed by Schindler (2006), there is
still a need for a different formulation for symmetric systems similar to the Grad-Shafranov
theory in the case of isotropic pressure equilibria.

The structure of this paper is as follows. In section 2 we discuss the basic theory of static
anisotropic MHD equilibria with spatial symmetry. In section 3 we present our new formulation
of the anisotropic MHD equilibrium problem using Cartesian coordinates, followed by an
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illustrative example in section 4. We conclude the paper with a summary and discussion in
section 5, followed by an appendix outlining how the new formalism can be used in a spherical
geometry with rotational invariance.

2. Basic theory for anisotropic equilibria with translational symmetry

Essentially, one wants to solve the force balance equation and solenoidal constraint,

j × B = ∇·P − ρ∇Ψ, ∇·B = 0,

where Ψ is some potential, for instance a gravitational force. For now, we set Ψ = 0. We
assume that the pressure tensor P is of the general form

P = P⊥I + P‖ − P⊥
B2

B B. (1)

The theory for 2D equilibria with anisotropic pressure, but with vanishing shear field is
reasonably well understood. In the following we discuss the general theory using Cartesian
coordinates x , y, z, assuming translational symmetry in the y-direction (i.e. ∂/∂y = 0).

The solenoidal constraint is satisfied automatically by writing B in terms of a magnetic flux
function A(x, z):

B = ∇A × ey .

One can then show that using the form of the pressure tensor given in (1), the force balance
equation is equivalent to the anisotropic Grad-Shafranov equation

− ∇·
[(

1

μ0
− 1

B

∂ P‖
∂ B

)
∇A

]
= ∂ P‖

∂ A
, (2)

where P‖(A, B) is the pressure parallel to the magnetic field and B is the magnitude of the
magnetic field B. The perpendicular pressure does not appear in (2), and is given by

P⊥ = P‖ − B
∂ P‖
∂ B

. (3)

Equation (2) underpins the entire workings of 2D anisotropic equilibria. Once one chooses
the parallel pressure function P‖ as a function of A and B = |∇A|, one can go on to solve
the Grad-Shafranov equation by whatever means one prefers in order to find A which then
determines the magnetic field. Some work has already been done in this area by Cowley
(1978), Nötzel et al. (1985) and others. One can see from (3) that the isotropic pressure case
is recovered if P‖ depends only on A, but not on B.

An interesting problem arises if we add a non-vanishing shear field By , while keeping the
equations translationally invariant (we will call this the 2.5D case from now on). As before,
we use a vector potential, A(x, z), in order to satisfy the solenoidal constraint. The magnetic
field, B, is then given by

B = ∇A × ey + By ey, (4)

where A and By are functions of x and z only. The corresponding current density is given by

j = −∇2 A ey + ∇By × ey .

We therefore have a component of current in the direction of the magnetic field:

j ·B = ∇A·∇By − By∇2 A,

which is only present with a non-vanishing shear field.
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One recovers the same constraint on the pressure as before in (3)
(
although B now is equal

to
[
(∇A)2 + By

2
]1/2 ). After a considerable amount of algebra, we arrive at two equations.

Firstly, we obtain

By

(
1 − μ0

B

∂ P‖
∂ B

)
= F(A), (5a)

where F(A) is some arbitrary function of the magnetic flux (Mercier and Cotsaftis 1961).
Secondly, we recover a Grad-Shafranov type equation analogous to (2):

− ∇·
[(

1 − μ0

B

∂ P‖
∂ B

)
∇A

]
= μ0

[
∂ P‖
∂ A

+ By
∂

∂ A

(
By

(
1

μ0
− 1

B

∂ P‖
∂ B

))]
. (5b)

These two equations have been found before (see, e.g. Lepikhin and Pustovitov 2013, for the
rotationally symmetric case) and are a concise formulation of the problem. As for the 2D case,
they also reduce to the isotropic pressure case if P‖ does not depend on B. However, on closer
inspection, one finds that (5a,b) are implicitly coupled. One must know By in order to calculate
B and vice versa. In fact, within this formulation of the equilibrium problem it is difficult to
decouple By and B. Hence, in order to make progress, one requires a formulation that does
not have this implicit coupling. We provide such a formulation in the next section.

3. An alternative formulation

We now consider a formulation that uses the flux function A and the modulus of its gradient
(Bp = |∇A|, the magnitude of the magnetic field in the x–z-plane) instead of A and B
as in previous papers (e.g. Mercier and Cotsaftis 1961). Throughout this paper we will be
using Cartesian coordinates with invariant direction y, i.e. ∂/∂y = 0 for all quantities (the
axisymmetric case is outlined in the appendix A). We allow, however, for a non-vanishing By

component of the magnetic field. For the time being we will also ignore any external forces.
Then the force balance equation is

j × B = ∇·P. (6)

Taking the scalar product of (6) with B we obtain

∇A ×
(

∇P‖ − P‖ − P⊥
B

∇B

)
= 0, (7)

which implies that the bracketed quantity must be in the same direction as ∇A. If we make
the assumption that ∇A × ∇Bp �= 0 almost everywhere, the vector fields ∇A and ∇Bp are
linearly independent and it is possible to construct any other gradient out of multiples of these
vectors.

Applying this idea to the bracketed expression in (7) and using the fact that the ∇Bp

components must cancel, we find that

∂ P‖
∂ Bp

− P‖ − P⊥
B

(
∂ B

∂ Bp
+ ∂ B

∂ By

∂ By

∂ Bp

)
= 0. (8)

Using

B2 = By
2 + Bp

2, (9)
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we find that
∂ P‖
∂ Bp

− My
P‖ − P⊥

B2
= 0, where My = Bp + By

∂ By

∂ Bp
. (10a,b)

We solve (10a) for P⊥:

P⊥ = P‖ − B2

My

∂ P‖
∂ Bp

. (11)

One can easily see the similarities between (11) and the equivalent (3) in the case without shear
field; in fact upon substitution of By = 0 into (11) we recover (3), remembering that in the
limit By → 0 we have Bp → B.

To proceed we look at the different components of the expression

B × ( j × B) = B × ∇·P.

After some algebra, we obtain the two relations

− ∇·
[(

1

μ0
− 1

My

∂ P‖
∂ Bp

)
∇A

]
= ∂

∂ A

[
P‖ + By

2

μ0

(
1

2
− μ0

My

∂ P‖
∂ Bp

)]
, (12a)

By

(
1 − μ0

My

∂ P‖
∂ Bp

)
= F(A), (12b)

in which My is given by (10b).
To simplify further, we introduce an “effective parallel pressure”

P‖� = P‖ + By
2

μ0

(
1

2
− μ0

My

∂ P‖
∂ Bp

)
. (13)

Then (12a) can be rewritten as

− ∇·
[(

1

μ0
− 1

Bp

∂ P‖�

∂ Bp

)
∇A

]
= ∂ P‖�

∂ A
, (14)

which is completely analogous to the 2-D case given in (2). This is similar to the isotropic case
where one can combine the pressure and the shear field into a new quantity, the total pressure.
The isotropic problem then becomes equivalent to the problem with no shear field present.

Equation (12b) can also be simplified using P‖� to obtain

By

(
1 − μ0

Bp

∂ P‖�

∂ Bp

)
= F(A). (15)

We also note that (15) can be used to rewrite (13) as

P‖ = P‖� − By
2

μ0

(
1

2
− μ0

Bp

∂ P‖�

∂ Bp

)
. (16)

With this formalism we have reduced the problem from a coupled set of equations with a
difficult entanglement problem, (5a,b), to a single equation which can be solved for the flux
function, (14), and secondary equations from which we can recover the shear field and pressure,
(15) and (16).

The simplest way to proceed is to specify the effective parallel pressure as a function of A
and Bp and then deduce the pressures and shear field a posteriori. We show an example of
this in the next section. However, occasionally one will wish to specify either the shear field
or the pressure functions instead and then work from there. We show how one would proceed
in these cases for completeness.
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Suppose we want to specify the shear field, By . When By = 0, (12b) is satisfied automatically
allowing any choice of pressure function without contradiction. When By �= 0, however, only
specific pressures are allowed without leading to contradictions. Let By be known as a function
of A and Bp and non-zero. Then by a rearrangement of (12b) we obtain

∂ P‖
∂ Bp

= 1

μ0

[(
Bp + By

∂ By

∂ Bp

)
−
(

∂ By

∂ Bp
+ Bp

By

)]
F(A) ,

which can be integrated with respect to Bp giving a general expression for the parallel pressure
and thus the effective parallel pressure:

P‖ = Bp
2 + By

2

2μ0
−
(

By +
∫

Bp

By
dBp

)
F(A)

μ0
+ G(A), (17a)

P‖� = Bp
2

2μ0
− F(A)

μ0

∫
Bp

By
dBp + G(A), (17b)

where G(A) is an arbitrary function of A introduced after integrating and we have used (16) to
simplify P‖�. In principle, if we know By we can find the allowed forms of the pressure from
(17a). The only real difficulty lies in finding the integral of the function Bp/By , which is only
straightforward for specific choices of By .

Now suppose we wish to specify the parallel pressure. When P‖ is a function of A alone, the
derivative ∂ P‖/∂ Bp in (12b) becomes zero implying that any choice of By must be simply a
function of A (see, e.g. Schindler 2006). When the pressure function depends on Bp, however,
only specific forms of By are allowed in order to satisfy (12b). Assume P‖ is a known function
of A and Bp. Then (12b) determines

1

μ0
By

(
Bp + By

∂ By

∂ Bp

)
− By

∂ P‖
∂ Bp

= F(A)

μ0

(
Bp + By

∂ By

∂ Bp

)
,

which can be rewritten somewhat clearer as a differential equation of the form(
By − F

μ0

)
∂
(
By

2
)

∂ Bp
+ 2By

(
Bp

μ0
− ∂ P‖

∂ Bp

)
= 2

Bp F(A)

μ0
. (18)

We can only make analytic progress with this nonlinear partial differential equation for By in
specific cases; in general a numerical approach is required.

Once we have found By and P‖ from the methods outlined above, we can deduce P⊥ from
(11) and (17a). This yields

P⊥ = − Bp
2 + By

2

2μ0
+
(

Bp
2

By
−
∫

Bp

By
dBp

)
F(A)

μ0
+ G(A). (19)

Finally, we must ensure that both pressures remain positive. This acts as a constraint on the
arbitrary functions F(A) and G(A) introduced earlier, as we will see in our example in the
next section.

As an example for an astrophysical/space plasma application of the formalism developed
above, we mention that one could model the near-earth magnetotail in the style of Nötzel
et al. (1985), but now with an added magnetic shear field component. One could specify the
effective parallel pressure in the same way as they specify the actual parallel pressure, based on
a bi-maxwellian distribution function, P‖� = exp (−2A)Bp/

(
Bp + k

)
, for some anisotropy

parameter k, and then follow the procedure described above.
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4. An illustrative example

We now illustrate the theoretical framework given above using a simple example of an
equilibrium with anisotropic pressure and currents with a field aligned component. We will use
the first approach outlined in section 3 where we specify the effective pressure and then deduce
the shear field and pressure profiles a posteriori. All quantities used have been normalised (e.g.
B̂p = Bp/B0, where B0 is a typical magnetic field strength). In the following the hat symbols
have been removed for simplicity.

We take the effective parallel pressure to be

P‖� = 1 + λe−Bp ,

where λ is some positive scalar that describes the anisotropy. Then, from (15), we have

By

(
1 + λ

e−Bp

Bp

)
= F(A),

which can be solved for By . We also take F(A) = e−A2
in order to introduce a dependence on

the flux function and ensure positivity of the pressures. Then we obtain

By = Bp e−A2

Bp + λe−Bp
.

In this case the shear grows from zero towards an eventual limit at F(A) (see figure 2 for a
surface plot of By(A, Bp) at λ = 1.5).

We then find P‖ from (16). It is possible to write out P‖ explicitly, however the resulting
expression does not give much more insight into the problem. We find that the pressure is
positive for all values of A and allowed values of Bp and λ. A surface plot of P‖ in terms of
A and Bp at λ = 1.5 is shown in figure 1.

The perpendicular pressure is given by (19). Again, we omit expressing the exact form in
favour of simply noting some qualities of P⊥. The perpendicular pressure is also positive for
all allowed values of Bp, λ and A (see the surface plot in figure 1 which shows P⊥(A, Bp) at
λ = 1.5).

Figure 1. Plots of P‖ (a) and P⊥ (b) at λ = 1.5.
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Figure 2. Plot of the shear field, By (a) and the anisotropy, α = P‖/P⊥ (b) at λ = 1.5.

Since we know both pressures, we can determine the anisotropy, α = P‖/P⊥, as a function
of A and Bp. In figure 2 we see that the pressures are initially isotropic, then decreasing with
Bp until a minimum is reached. The anisotropy then increases again and tends towards isotropy
as Bp tends to infinity. This behaviour is typical for all allowed values of A and λ. We then
substitute P‖� into (14). The Grad-Shafranov equation becomes

− ∇·
[(

1 + λ
e−Bp

Bp

)
∇A

]
= 0. (20)

The equivalent isotropic problem has a constant total pressure, P� = 1. The actual pressure
is

P = 1 −
(

e−A2
)2

2
,

and the shear field is

By = e−A2
.

The corresponding Grad-Shafranov equation for the isotropic case is then simply the Laplace
equation

−∇2 A = 0.

We solve the above equations with the boundary condition A = x2 + y2 on the unit square
using a numeric continuation code based on Keller’s method (see Keller 1977). It has been
used previously with a great deal of success to solve various problems in different fields (e.g.
Zwingmann 1983, 1987, Neukirch and Hesse 1993, Neukirch 1993a,b, Platt and Neukirch
1994, Schröer et al. 1994, Becker et al. 1996, 2001, Romeou and Neukirch 1999, 2001,
2002a,b, Kiessling and Neukirch 2003, Neukirch and Romeou 2010). The code uses a finite
element discretisation which allows for a flexible grid structure. For more information about
the method used here see Neukirch (1993a; 1993b).
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Figure 3. Contour plot of A in the isotropic (a) and anisotropic (b) cases.

Figure 4. Contour plot of the difference between the isotropic and anisotropic flux functions.

The flux functions for the isotropic and anisotropic cases are shown in figure 3. It is difficult
to spot any apparent difference between the two cases. The differences become more apparent
in figure 4, which is a contour plot of the difference between the flux function at λ = 1.5 and
λ = 0. We now see that small differences present themselves, with a maximum difference of
∼ 0.025 at the bottom left of the domain.

Indeed, it is more instructive to consider contours of Bp, shown in figure 5 for both the
isotropic and anisotropic cases. The structure in the centre has changed somewhat and the
contours are slightly more compressed, especially near the origin.

The contours of Bp in figure 5 can be used to map contours of the shear field, By , which
are shown in figure 6. This is where the most dramatic changes can be seen. We are allowed
far more variation in the value of the shear field in the anisotropic case than in the isotropic
case where we are restricted to a function of A. This shows that, whilst contours of A can look
extremely similar when we introduce anisotropy in 2.5D, the differences are significant when
we consider the shear field profile.

We also show the current density in the x-z plane, jp (see figure 7, where the contours are
omitted for clarity). Recall that the current density in the plane is given by the modulus of the
gradient of the shear field. We see a large difference in jp between the two cases. There is a
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Figure 5. Contour plot of Bp in the isotropic (a) and anisotropic (b) cases.

Figure 6. Contour plot of the shear field, By , in the isotropic (a) and anisotropic (b) cases.

Figure 7. Contour plot of the planar current density, jp , in the isotropic (a) and anisotropic (b) cases. Note the
different scales in each plot.
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strip near the origin where the planar current density is extremely large in the anisotropic case
compared to the isotropic case. Slightly further out from the origin there is another strip where
jp is much less in the anisotropic case than the isotropic case. This test case tells us that even
small anisotropies can introduce extremely large currents. The large current density comes
from the high gradients of the planar magnetic field, Bp. They are not seen in the isotropic
case since they are multiplied by the derivative of the shear field with respect to Bp, which is
zero when we have isotropy. As soon as we leave the isotropic regime, the high gradients in
Bp are no longer suppressed by the shear field derivatives and we get the large currents that
we see in figure 7.

5. Summary and discussion

We have presented an improved formalism for computing translationally invariant MHD
equilibria with anisotropic pressure and currents with a field aligned component. This builds
on previous works which were limited to 2D fields or significant simplifications in the form
of restrictions on either the pressure or shear field. We also show that, by using an effective
pressure function, all 2.5D Grad-Shafranov equations can be reduced to an equivalent 2D Grad-
Shafranov equation. The formalism outlines a constraint that is not seen in the 2D case: there
are restrictions that link the choice of shear field to the choice of pressure. This constraint is
satisfied automatically in the 2D case and therefore never appears in the theory. This constraint
is more problematic in the current 2.5D formalism since one runs into problems trying to
disentangle the shear field from the modulus of the magnetic field. In our formalism this
problem is bypassed by considering functions in terms of the modulus of the gradient of the
flux function. We no longer need to restrict ourselves on the forms of the pressure or shear
field as was required before. Three approaches by which one can now make further progress
are discussed. One of these approaches, where we specify the effective parallel pressure, has
significant merits: a tractable Grad-Shafranov equation where the pressures and shear field can
be easily derived from the effective pressure. An illustrative example is shown which uses this
method to solve the 2.5D problem for a shear field that does not simply depend on the flux
function alone. The example also shows that anisotropic pressures and isotropic pressures can
give similar flux functions but with major differences only showing themselves in the value
of the shear field and planar current density. The most important aspect of the new formalism
is that it allows the problem of finding MHD equilibria with anisotropic pressure and non-
vanishing shear field to be tackled using standard numerical methods due to removing the
implicit coupling between the shear field and the magnetic field strength present in current
formulations.
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Appendix A. Rotational invariance

In thisAppendix we show that the same formalism as above can be used in cases with rotational
symmetry, however with the same limitations that also apply to the isotropic pressure case
with rotational symmetry as discussed later. Specifically we go through the derivation of the
formalism in spherical coordinates. This coordinate system would, for example, be the most
appropriate for modelling rotating magnetospheres.
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Let the magnetic field be given by

B = ∇A × ∇φ + Bφeφ.

We proceed to solve the force balance equation (6) in the same way as previous authors, by
considering quantities as functions of A and B = |B|, and so arrive at the analogous equations
to (5a,b), namely

− ∇·
[(

1

μ0
− 1

B

∂ P‖
∂ B

) ∇A

r2 sin2 θ

]
= ∂ P‖

∂ A
+ Bφ

μ0r sin θ

dF

d A
, (A.1a)

Bφr sin θ

(
1 − μ0

B

∂ P‖
∂ B

)
= F(A). (A.1b)

Again we see the same implicit coupling between Bφ and B that we saw with Cartesian
coordinates in section 2. We now apply our new formalism where we consider quantities as
functions of A and Bp where

Bp = |∇A|
r sin θ

.

After some algebra, (A.1a,b) are transformed to

− ∇·
[(

1

μ0
− 1

Mφ

∂ P‖
∂ Bp

) ∇A

r2 sin2 θ

]
= ∂ P‖

∂ A
− Bφ

Mφ

∂ P‖
∂ Bp

∂ Bφ

∂ A
+ Bφ

μ0r sin θ

dF

d A
, (A.2a)

Bφr sin θ

(
1 − μ0

Mφ

∂ P‖
∂ Bp

)
= F(A), (A.2b)

where

Mφ = Bp + Bφ

∂ Bφ

∂ Bp
. (A.2c)

This is the spherical equivalent of the formalism given in (12a,b). It is, however, impossible
to combine terms into an effective pressure as we did in the Cartesian case due to the presence
of the scale factors. This is completely analogous to the isotropic case where the scale factors
prevent the combination of terms into a single total pressure term. To make progress, one must
then specify either P‖ or Bφ as functions of A and Bp.
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