
University of Kentucky
UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2008

A NOVEL CLASS OF
IMMUNOPROTEASOME CATALYTIC
SUBUNIT LMP2 INHIBITOR AND ITS
THERAPEUTIC POTENTIALS IN CANCER
Yik Khuan (Abby) Ho
University of Kentucky

Click here to let us know how access to this document benefits you.

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of
Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Recommended Citation
Ho, Yik Khuan (Abby), "A NOVEL CLASS OF IMMUNOPROTEASOME CATALYTIC SUBUNIT LMP2 INHIBITOR AND ITS
THERAPEUTIC POTENTIALS IN CANCER" (2008). University of Kentucky Doctoral Dissertations. 686.
https://uknowledge.uky.edu/gradschool_diss/686

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


ABSTRACT OF DISSERTATION 
 
 
 
 
 
 

Yik Khuan (Abby) Ho 
 
 
 
 
 
 

The Graduate School 
University of Kentucky  

2008 



A NOVEL CLASS OF IMMUNOPROTEASOME CATALYTIC SUBUNIT LMP2 
INHIBITOR AND ITS THERAPEUTIC POTENTIALS IN CANCER 

 
 
 
 
 

______________________________ 
 

ABSTRACT OF DISSERTATION 
______________________________ 

 
A dissertation submitted in partial fulfillment of the  

requirements for the degree of the Doctor of Philosophy in the  
College of Pharmacy  

at the University of Kentucky 
 
 

By 
 

Yik Khuan (Abby) Ho 
 

Lexington, Kentucky 
 

Director: Dr. Kyung-Bo Kim, Associate Professor of Pharmaceutical Sciences 
Lexington, Kentucky 

2008 
 

Copyright © Yik Khuan (Abby) Ho 2008 



ABSTRACT OF DISSERTATION 
 
 
 
 
 

A NOVEL CLASS OF IMMUNOPROTEASOME CATALYTIC SUBUNIT LMP2 
INHIBITOR AND ITS THERAPEUTIC POTENTIALS IN CANCER 

 
 The immunoproteasome, known to play an important role in MHC class I antigen 
processing and presentation, have been linked to neurodegenerative diseases and 
hematological cancers. However, the pathophysiological functions of the 
immunoproteasome in these diseases are still not very well established. This can be 
attributed mainly to the lack of appropriate molecular probes that selectively target the 
immunoproteasome catalytic subunits. Herein, we report the development of a small 
molecular inhibitor (AM) that selectively targets the major catalytic subunit, LMP2, of 
the immunoproteasome. We show that the compound covalently modifies the LMP2 
subunit with high specificity in human prostate cancer cell. AM was also shown to 
selectively inhibit the chymotrypsin-like activity of LMP2 subunit. More importantly, the 
anti-proliferative activity of AM is more pronounced in prostate cancer cells that highly 
express LMP2 without inducing toxicity in normal cells. These results implicate an 
important role of LMP2 in regulating cell growth of malignant tumors that highly express 
LMP2.  
 Subsequently, the modes of action of AM were investigated. Prostate cancer cells 
that highly express LMP were shown to induce G2/M cell cycle arrest and apoptosis via 
PARP cleavage when treated with the compound. Similar to epoxomicin, the treatment of 
AM induced the accumulation of poly-ubiquitination in prostate cancer cells, which 
indicates the inhibition of proteolysis. However, unlike epoxomicin, the treatment of AM 
did not appear to inhibit the activation of inflammation. In conclusion, these results 
suggest that the LMP2 inhibitor, AM, may induce cytotoxicity prostate cancer cells that 
highly express LMP2 catalytic subunit in similar modes of action as epoxomicin but it 
does not involve the inflammatory pathway.  
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CHAPTER ONE: BACKGROUND TO RESEARCH 

 

A. Ubiquitin Proteasome Pathway 

 

1. Introduction  

The ubiquitin proteasome pathway was discovered fairly recently by Hershko, 

Rose and Ciechanover, whom were awarded the 2004 Nobel Prize in Chemistry, 

signifying the importance of this pathway. These Nobel Laureates were the pioneers in 

deciphering the mechanism of the ubiquitin proteasome pathway, following the discovery 

of ubiquitins. The ubiquitin proteasome pathway is very unique because it is a highly 

regulated energy-dependent protein degradation system that uses polyubiquitin chains as 

smoke signals to communicate with the 26S proteasome. In other words, the pathway 

employs an enzyme system that marks proteins destined for degradation with a chain of 

ubiquitins. These multi-ubiquitin-tagged proteins will then be recognized by 26S 

proteasome, which unfolds and degrades the proteins into smaller peptides (Figure 1.1).  

Since the discovery of the ubiquitin proteasome pathway, there has been an 

exponential increase in the literature that demonstrates the importance of this pathway in 

a myriad of cellular functions such as cell cycle regulations, gene transcriptions, DNA 

repairs, apoptosis, signal transductions and immune responses. Consequently, the 

pathway has been widely recognized for its integral role in constitutive cellular 

functioning. Given the wide range of cellular processes that are regulated by the ubiquitin 

proteasome pathway, it is not surprising to find this pathway involved in the pathogenesis 

of a number of diseases. As a result, the ubiquitin proteasome pathway has become a 

valuable target for the development of therapeutic agents. The majority of the ubiquitin 

proteasome pathway inhibitors that are currently available directly target the proteolytic 

activity of the proteasome. Being the first Food and Drug Administration (FDA) 

approved proteasome inhibitor, bortezomib, also known as VelcadeTM, is the novel 

paradigm for therapeutic intervention. Not only has the number of proteasome inhibitors 

increased in recent years, but more sophisticated inhibitors such as catalytic subunit 

specific or non-catalytic subunit inhibitors have also been developed. In addition, 

inhibitors targeting non-proteolytic processes associated with the ubiquitin proteasome 
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pathway have also been reported. Consequently, the development of proteasome inhibitor 

for therapeutic purposes is gaining significant importance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.1 The ubiquitin proteasome pathway. 
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2. Ubiquitin and Ubiquitin Related Enzymes   

 

a. Ubiquitins and Ubiquitin-Like Proteins 

Ubiquitin is a 76 amino acid polypeptide that assumes a globular compact 

conformation with a very pronounced hydrophobic core, which confers it high thermal 

stability [3]. It has been shown to be evolutionary well conserved, which in turn 

underscores the biological importance of the ubiquitin proteasome pathway [4]. These 

remarkable polypeptides are usually present in the cell either as monomers or conjugated 

to protein substrates. Although ubiquitins lack intrinsic proteolytic activity, they have a 

few selective amino acid residues that serve as conjugating sites. These sites can be 

conjugated to another ubiquitins to form polyubiquitin chains as well as protein substrates 

for degradation. Specifically, glycine 76 (G76), located at the C terminus, forms 

conjugates with the ε-amino group of lysine 48 (K48) on the adjacent ubiquitin via an 

isopeptide bond to form polyubiquitin chain [5]. This C terminal G76 has been shown to 

be a crucial residue for the formation of covalent conjugates as its deletion renders 

ubiquitin inactive [6]. On the other hand, there are seven lysine residues within the 

ubiquitin where polyubiquitin chains of different topologies can form. The K48 linked 

polyubiquitin chain is typically associated with proteasomal degradation where as the 

other isopeptide linkages have been reported to participate in distinct biological processes, 

predominantly K6, K11, K29 and K63 linkages [5, 7]. For example, the K29 linkage can 

not only function as a proteolytic signal [8], but have also been shown to possibly 

mediate lysosomal degradation [9]. However, unlike K48 and K29, K63 linked 

polyubiquitin chains are believed to have non-proteolytic functions. Neurodegenerative 

diseases [10], DNA repair, stress response, endocytosis and translational regulations are a 

few among other functions that are associated to the K63 linked polyubiquitin chain [8].  

In addition to the 76 amino acid ubiquitin, there are other similar proteins known 

as the ubiquitin-like proteins (Ublp). They undergo conjugation processes, similar to 

ubiquitination, which form isopeptide bonds between the C-terminal glycine and an 

amino group within the protein substrate [11]. Post-translational modifications by Ublp 

are known to induce a myriad of non-proteolytic cellular functions. Only a handful of 

Ublps has been identified thus far and two well known examples are Nedd8 and Sumo. 
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Sumo conjugation, also known as sumoylation, is involved in cellular processes such as 

nuclear transport, signal transduction, stress response and cell cycle regulation [12], while 

Nedd8 targets the cullin family proteins, which is part of the SCF complex (Skp, Cullin, 

F-box containing complex) involved in the ubiquitin enzymatic cascade. Neddylation 

plays an important role in SCF-mediated ubiquitination and proteolysis [13].  

 

b. Ubiquitin Enzymatic Cascade 

The defining characteristic of the ubiquitin proteasome pathway is the 

employment of a universal proteolytic signal, which is the polyubiquitin chain, to target 

protein substrates for degradation. This in turn allows the recognition of a wide array of 

substrates for degradation as the proteasome only needs to recognize this proteolytic 

signal and not proteins directly [14]. A well-established mechanism provides the 

attachment of ubiquitins to targeted proteins through the adenosine triphosphate (ATP) 

dependent sequential actions of three enzymes: ubiquitin activating E1, ubiquitin 

conjugating E2, and ubiquitin ligating E3. Briefly, the carboxyl terminal of G76 within 

the ubiquitin is first activated by ATP to form an ubiquitin adenylate intermediate. This 

activated ubiquitin is then transferred to a conserved cysteine residue on E1 to form a 

thiol ester linkage, with the concomitant release of adenosine monophosphate (AMP). 

The ubiquitin is subsequently linked to a catalytic cysteine residue on E2 via a 

transesterification reaction [15]. Finally, with the cooperation of the catalytic properties 

of E3, ubiquitin is ligated to its protein substrate by forming an isopeptide bond between 

the G76 of ubiquitin and the ε-amino group of a lysine residue within the targeted protein 

(Figure 1.1) [5]. This ubiquitination process is believed to reiterate itself until a chain of 

at least four ubiquitins are attached to the protein for efficient proteasomal degradation 

[14].  

In addition to poly-ubiquitination, protein substrates can also be mono-

ubiquitinated. This is a non-proteolytic process in the proteasome pathway as mono-

ubiquitinated proteins are either activated to acquire a modulated cellular function or 

targeted to the lysosome for degradation. In recent years, mono-ubiquitinations have 

begun to emerge as regulators of the cellular distribution and activity of various proteins, 
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including endocytosis, histone regulation, virus budding, transcription regulation, cell 

signaling [16, 17], membrane trafficking [18, 19], and DNA repair [20].  

 

c. Ubiquitin Related Enzymes 

Ubiquitination is a highly selective process in large part due to the diversity of E2 

conjugating enzymes and E3 ligases. Each E2 enzyme is specific to a few E3 ligases, 

which in turn are specific to a few protein substrates. The combination of specific E2-E3 

complexes or E3 alone dictates the substrate specificity of proteasome. On the other hand, 

E1 activating enzymes are highly conserved. Ubiquitination of protein substrates are also 

negatively regulated by another class of enzymes referred to as deubiquitinating enzymes 

(DUB). These enzymes proofread and edit ubiquitinated proteins to prevent inappropriate 

degradation. This ubiquitinating enzyme hierarchy not only confers the ubiquitin 

proteasome pathway its high specificity but also allows it to tightly regulate the 

degradation of each protein in the cell. 

 

Ubiquitin Activating Enzymes (E1) 

Despite initial assumption that a single E1 ubiquitin activating enzyme (UBE1) is 

responsible for the activation of all ubiquitins, a novel E1 enzyme was very recently 

discovered by Jin et al. [21] and Pelzer et al. [22], independently. It remains to be 

determined whether this novel E1 enzyme is as vital as UBE1. Early proteasomal studies 

have shown that the deletion of the E1 enzyme in yeast is lethal [23] and subsequently, 

the mutation of its catalytic cysteine residue also renders it inactive in yeast [24]. In 

addition, a murine cell line which contained a thermolabile E1 gene failed to degrade 

otherwise short-lived proteins at non-permissive temperature [25, 26]. These results 

revealed the importance of ubiquitination in cell cycle progression and cell viability [27].  

 

Ubiquitin Conjugating Enzyme (E2)   

 Compared to the ubiquitin activating enzyme, there are a greater number of E2 

conjugating enzymes dedicated to ubiquitins. For example, the yeast genome encodes at 

least 13 ubiquitin conjugating enzymes (UBC1-13) [28] and more than 35 have been 

identified in the mammalian genome [29]. The reaction catalyzed by these E2 enzymes is 
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the first determining step of substrate specificity in the ubiquitination process. E2 

enzymes commonly contain a conserved catalytic core domain of approximately 150 

amino acids, known as the UBC domain [4]. Within this domain is a highly conserved 

catalytic cysteine residue that is essential for the formation of thiol ester conjugation with 

ubiquitin. Its deletion has been shown to abolish UBC activity [30]. In addition, a strictly 

conserved asparagine was recently demonstrated by Wu et al. to participate in the 

catalysis of isopeptide bond formation between ubiquitin and the protein substrate [31]. 

E2 enzymes can be categorized into two classes. The first class consists of smaller E2 

enzymes that only contain the UBC domain. These E2 enzymes lack the ability to 

transfer ubiquitin to the substrate directly; hence they may require its cognate E3 enzyme 

for substrate recognition. On the other hand, the second type of E2 enzymes is larger with 

an extended C-terminal or N-terminal tail or both. These extensions may help mediate 

substrate specificity, intrinsic E2 activity, E3 interaction, and intracellular localization 

[32, 33].  

 

Ubiquitin ligases E3 

In addition to ubiquitin conjugating enzymes, there are an even larger number of 

ubiquitin E3 ligases by which the substrate specificity of ubiquitination is determined. It 

is estimated that the mammalian genome consists of at least a few hundred E3 ligases. 

This enormous diversity, in conjunction with E2 enzymes, permits the ubiquitin 

proteasome pathway to regulate the degradation of a myriad of protein substrates. All 

known E3 ligases are comprised of two separate domains, one that interacts with its 

cognate E2 enzyme and the other with its substrates. In spite of the countless numbers of 

proteins that are present in cells, each of these E3 ligases is able to recognize its cognate 

substrates for ubiquitination. Several modes of recognitions have been characterized and 

they include N-end rule, post-translational modifications in protein substrates as well as 

activation of E3 ligases. The N-end rule is based on the in vivo finding by Varshavsky 

that the half life of a protein is dependent on the identity of the amino acid residue at the 

N-terminal [34]. Nevertheless, most protein substrates utilize degradation signals to 

communicate with E3 ligases. These signals include post-translational modifications such 

as phosphorylation, oxidation and acetylation. Finally, some E3 ligases are synthesized as 
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inactive precursors which undergo post-translational modification or require auxiliary 

proteins to yield the active form when conditions permit.  

Unlike E1 and E2 enzymes, E3 ligases are structurally more diverse. They can be 

divided into four major classes, which are characterized by their distinct domains. These 

domains have been identified as HECT (homologous to E6-AP carboxyl terminus), RING 

(really interesting new gene) finger, U-box and PHD (Plant Homeo-Domain) finger.  

E6-AP was the first mammalian E3 ubiquitin protein ligase to be identified and 

characterized. It was found to promote the ubiquitination of p53 for proteasomal 

degradation in the presence of the E6 oncoprotein produced by human papilloma virus 

(HPV) [35]. It was later discovered that other non E3 ligase protein also share substantial 

homology with E6-AP at the C-terminal. This conserved domain of approximately 350 

amino acids is now referred to as the HECT domain [36]. Within the HECT domain is a 

highly conserved cysteine residue that forms a thiol ester linkage between ubiquitin and 

the HECT E3 ligase. Mutation on this residue has been shown to completely abolish 

ubiquitination of its substrate [36]. HECT E3 ligases are truly unique because this is the 

only class of E3 ligase by which ubiquitin first forms a thiol ester intermediate with the 

conserved cysteine residue before being transferred to a lysine residue on the protein 

substrates. Substrate specificity is determined by the highly variable N-terminal 

extensions of HECT E3 ligases [37].  

The next class of E3 ligase is the RING finger ligases, which is the largest class of 

E3 ligases. RING fingers are characterized by eight highly conserved cysteine and 

histidine residues that coordinate with two zinc ions to form a unique ‘cross-braced’ 

arrangement [38]. The RING E3 ligases are different from HECT E3 ligases in that they 

do not form a thiol ester intermediate with ubiquitin but mediate ubiquitination of 

substrate indirectly. The RING E3 ligases serve as a bridge to bring substrate and E2 into 

close proximity and position them optimally. This allows ubiquitin to be directly 

transferred from the E2 to the protein substrate without docking on E3. Mutation in the 

RING finger has been shown to result in the inability of the E3 to facilitate ubiquitination 

of its protein substrate [39, 40]. While the substrate binding domains are more variable, 

the RING finger domain is solely responsible for the recognition and binding of E2 

conjugating enzymes.  
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The RING E3 ligases can be divided into two categories: the single subunit RING 

E3 ligase and the multi-subunit RING E3 ligase. The single subunit RING E3s are able to 

determine substrate specificity and recruit its cognate E2 enzyme without any ancillary 

proteins. One of the well studied examples is the oncogene Mdm2, which is responsible 

for ubiquitinating p53 [39, 41]. The other RING E3 ligases such as SCF and APC are 

more intricate as they consist of several protein subunits by which substrate specificity 

and E2 recruitment are individually carried out. All known multi-subunit RING E3 have 

a small RING finger protein and a member of the cullin protein family, among other 

protein subunits [42]. For example, in SCF E3 ligases, Rbx1/Roc1/Hrt1 functions as the 

RING finger component to which E2 enzyme binds [19]. The cullin protein family acts as 

the structural scaffold complex whereas F-box protein dictates substrate specificity. 

Lastly, Skp1 protein is the adaptor protein that links cullin to F-box protein. Within the F-

box protein is a peptide motif referred to as WD40, which is mainly responsible for 

recognizing substrates in a phorphorylation-dependent manner [33].   

The next two classes of E3 ligases, PHD and U-box proteins, are structurally 

similar to the RING E3 ligases as they do not form thiol ester intermediates with 

ubiquitin. The PHD E3 ligase is closely related to the RING finger in that it also has eight 

conserved zinc-ligating residues arranged in a cross-brace pattern [43]. An example of a 

PHD E3 ligase is the MEKK1, which has been shown to activate and ubiquitinate 

ERK1/2 [44]. U-box proteins do not contain the conserved zinc-chelating residues but are 

distantly related to RING E3 ligases in sequence [45]. The first U-box protein implicated 

in ubiquitination was UFD2, which was initially identified as a novel ubiquitination 

factor, E4 [46]. UFD2a, a mammalian homolog of yeast UFD2, has been implicated in 

the formation of polyubiquitin chain linkages that surprisingly do not participate in 

proteolysis [47]. Taken all together, the diversity of E3 ligases is truly astounding. Nature 

has provided us with such complexity and intricacies in order to establish extraordinary 

selectively in the ubiquitin proteasome pathway; hence demonstrating the importance of 

protein degradation.  
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Deubiquitinating Enzyme (DUB) 

Similar to phosphorylation, ubiquitination is reversible due to the action of 

deubiquitinating enzymes (DUBs). The DUBs belong to the family of cysteine proteases 

with the exception of metalloproteases. DUBs can be categorized into five classes based 

on their ubiquitin protease domains: ubiquitin C-terminal hydrolases (UCHs), ubiquitin-

specific proteases (USPs), ovarian tumor proteases (OTUs), Machado-Joseph disease 

proteases (MJDs), and JAMM motif proteases. In addition to structural differences, each 

of these classes of DUBs is unique in that they exhibit substrate specificity and 

consequently functional differences [48]. They are responsible for processing ubiquitin 

precursors, proofreading and editing ubiquitin conjugates. Furthermore, the 26S 

proteasome itself also contain several intrinsic DUBs for removing polyubiquitin chain 

from protein substrates. This is to prevent the polyubiquitin chain from interfering with 

the entering of substrate into the catalytic core for degradation as well as inappropriate 

degradation of polyubiquitin chains [48]. These unanchored polyubiquitin chains will 

also be disassembled by DUB because its accumulation will competitively inhibits the 

binding of ubiquitin conjugates to the proteasome; hence, inhibiting proteasomal 

degradation [49]. Consequently, the recycling of ubiquitins also helps maintain ubiquitin 

homeostasis in cells. Like poly-ubiquitination, deubiquitination is equally as important in 

the ubiquitin proteasome pathway.  
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3. Proteasomes  

The proteasome is a large multi-subunit multi-catalytic protein complex in cells 

that is responsible for ATP-dependent protein degradation, which is the final destination 

of poly-ubiquitinated protein substrates. The protein complex is structurally and 

functionally very well conserved in virtually all organisms from archaebacteria to 

eukaryotes. They share a similar structural framework of a hollow barrel-like shape 

within which the proteolytic activities are carried out. Specifically in eukaryotes, the 

proteasome is composed of a 20S catalytic core and a cap-shaped 19S regulatory 

complex, which can occupy both ends that can be assembled into 26S proteasome in an 

ATP-dependent manner [50]. Intriguingly, in higher eukaryotes, an alternative form of 

the proteasome, referred to as immunoproteasome, can also be found. It shares substantial 

structural and sequential homology with the 26S proteasome. Nevertheless, the 

immunoproteasome and 26S proteasome incorporate different catalytic subunits into their 

structure and therefore are distinct in the spectrum of peptides generated from proteolysis. 

As a result, they have been implicated in different biological processes as well as 

pathological diseases. 

 

a. 26S Proteasome 

The 20S catalytic core of 26S proteasome is made up of four stacked heptameric 

rings each of which is composed of distinct subunits. Specifically, the two inner rings are 

made up of β subunits, some of which harbor proteolytic activities, and the two outer 

rings are made up of α subunits that are catalytically inactive. These rings adopt a two-

fold symmetry with a α1-7β1-7β1-7α1-7 arrangement which allows for the sequestration of 

the catalytic active sites. The β subunits that possess protease activity are X (β5), Y (β1), 

and Z (β2); they have been shown to exhibit chymotrypsin-like (CT-L), caspase-like (C-

L) and trypsin-like (T-L) activities respectively. The two outer α rings that sandwich the 

β rings play a vital role in regulating substrate entry into the 20S core for proteolysis by 

reinforcing an auto-inhibition mechanism. Specifically, the N-terminal tails of these α 

subunits impose a topological closure on the 20S channel during its latent state [51]. In 

parallel with the sequestration of active sites, it represents the defense mechanism against 

uncontrolled protein degradation which would cause havoc in cells. The activation of the 
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20S core can only be achieved by binding to a 19S regulatory complex which will then 

displace the N-terminal tails and therefore opening up the channel for substrate entry [51].   

The 19S regulatory complex is also a multi-subunit complex protein comprised of 

a lid and a base that binds to the α subunits of the 20S core. Two subunits of the lid with 

poly-ubiquitin chain binding domain that are capable of recognizing and binding to poly-

ubiquitinated substrates have been identified thus far [52, 53]. The lid also contains 

subunits that display intrinsic deubiquitinating activity [54, 55]. The base of the 19S is 

composed of several subunits including six ATPases that are responsible for an array of 

ATP-dependent tasks. For example, one of the ATPases, Rpt2, was shown to promote the 

opening of the gated 20S channel [56]. The mechanism by which the 19S facilitates the 

conformational changes in the outer α rings was only reported very recently. Specifically, 

the ATPases were shown to dock its C-terminal into the pockets between neighboring α 

subunits [57]. This specific interaction induces α subunit rotation and subsequent opening 

of the gate for substrate entry by displacing the N-terminal tails of these subunits [58]. 

Furthermore, some of these ATPases exhibit chaperone-like activity which facilitates 

substrate unfolding and entry into the 20S catalytic core for proteolysis [59]. Alternative 

19S regulatory complexes such as 11S/PA28 and Blm10/PA200 have also been identified 

[60]. While these alternative regulatory complexes are able to bind to the 20S to form 

functional holoenzymes, they do not contain ATPases, suggesting the possibility of ATP 

and ubiquitin independent proteolytic functions. For example, the PA28 has been shown 

to be involved in major histocompatibility complex (MHC) class I antigen processing 

[61] and possibly plays a role in the regulation of apoptosis [62]. Since each 20S has two 

identical outer α rings, they are able to accept two different regulatory complexes on 

opposite ends. This allows for the possibility of generating a repertoire of hybrid 

proteasomes with diverse proteolytic properties that meets a variety of physiological 

demands [63]. 
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b. Catalytic Mechanism 

Unlike typical proteases, the 26S proteasome consists of multiple catalytic 

activities that are able to cleave after all amino acid residues, ensuring the complete 

degradation of its substrates. As mentioned earlier, the catalytic β subunits X (β5), Y (β1) 

and Z (β2) contain chymotrypsin-like, caspase-like and trypsin-like activities respectively. 

Briefly, the chymotrypsin-like activity cleaves peptide bonds after bulky hydrophobic 

residues, the caspase-like activity cleaves peptide bonds after acidic residues, and the 

trypsin-like activity cleaves peptide bonds after basic residues. These three major 

catalytic sites were shown to exhibit a hierarchy in terms of importance in which 

chymotrypsin-like activity seemed to be the rate determining step of proteolysis [64]. 

However, the exact mechanism by which each of this individual catalytic subunit come 

together to regulate proteolysis is still not known. In addition to these well characterized 

proteolytic activities, the 20S proteasome has also been reported to possess two other 

minor activities. They have been identified as branched-chain amino acid preferring 

(BrAAP) and small neutral amino acid preferring (SNAAP) activities [65]. Recent 

structural studies of the mammalian 20S proteasome were able to assign the active site of 

SNAAP activity to the β7 subunit [66]. However, the active site of BrAAP activity 

remains to be identified.     

The proteasome has been classified as a N-terminal nucleophilic (Ntn) hydrolase, 

which is a class of enzymes that uses their N-terminal residue as the nucleophile [67]. 

Further mechanistic insights into proteasome proteolysis were derived from structural and 

mutational studies of the 20S proteasome [68, 69]. These studies revealed that, in 

addition to Thr1, Asp/Glu12 and Lys33 are also key players in the catalytic mechanism 

of proteolysis. Other nearby residues such as Ser129, Asp166, and Ser169 have also been 

implicated in facilitating catalysis by providing structural integrity to the proteolytic 

center [70]. A series of well defined water molecules termed nucleophilic water 

molecules (NUKs) were also found in close proximity to Thr1, Ser129, and Gly47; 

NUKs may have an important role in proteolysis by serving as proton shuttles during 

substrate binding and cleavage [70, 71]. Consequently, Groll et al. proposed the 

following mechanism by which substrate hydrolysis is executed (Figure 1.2). Briefly, the 

nucleophilic attack on the peptide bonds of substrates is carried out by the hydroxyl 
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group of Thr1, while the amine group of the same Thr1 serves as a proton acceptor. This 

reaction is facilitated by the oxyanion hole created by the nearby amine group of Gly47 

which stabilizes the tetrahedral transition-state intermediate. It is then followed by the 

formation of an acyl-enzyme ester with the concomitant release of the N-terminal peptide 

fragment. The ester bond is eventually hydrolyzed, releasing the C-terminal peptide 

fragment [71, 72].  

Protein substrates are degraded by the proteasome in a highly processive manner, 

which is distinct from the conventional proteases. The 20S proteasome hydrolyzes a 

single substrate into smaller peptide fragments before attacking the next available 

substrate [73]. This inherent property of the proteasome prevents the accumulation of 

partially digested substrates that may have detrimental effects. Nevertheless, the final 

products of proteolysis have an average length of 3-22 amino acid residues [74]. The 

majority of these short peptides are further degraded by various downstream 

aminopeptidases into free amino acids, which are recycled via the cellular metabolism 

[74]. However, a very small percentage of the short peptides managed to escape further 

degradation. These peptides, usually 8-10 amino acids long, are transported through the 

endoplasmic reticulum (ER) to be presented by MHC class I molecules to the immune 

system [75]. Interestingly, it was demonstrated that the 26S proteasome and the 20S 

catalytic core exhibit overlapping but yet substantially different cleavage patterns, which 

suggested the possible involvement of the 19S regulatory complex in influencing the 

specificity of proteolysis [76].  

Despite numerous detailed structural and mutational studies, there is still much to 

be learned about the exact mechanisms by which the 26S proteasome executes its 

proteolysis. Some of the questions that remained unanswered are how do the catalytic 

subunits communicate with one another and how does the 26S proteasome determine its 

cleavage pattern and specificity.  
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Figure 1.2 The Groll’s proposed proteolytic mechanism of the catalytic subunit of the 
proteasome.  
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c. Biological Processes and Substrates Mediated by Proteasome 

The substrates of the 26S proteasome are virtually limitless. They range from 

short-lived to abnormal to long-lived proteins. One of the first protein families discovered 

to be degraded via the ATP dependent ubiquitin proteasome pathway were the cell cycle 

regulators. Specifically, the expression levels of cyclins were found to oscillate in parallel 

with the cell cycle, which were found later to be mediated by the ubiquitin proteasome 

pathway. To date, some of the best characterized mammalian cell cycle regulators 

mediated by the proteasome include cyclins A, B, D, E, Cdk inhibitors, p21, p27, tumor 

suppressor p53, and transcription factors E2F and Rb [33]. Consequently, this 

degradation pathway has emerged as a major regulatory mechanism for cell division. 

Similarly, the ubiquitin proteasome pathway is also involved in the regulation of many 

other non-cell cycle related transcription factors. These proteins can become lethal if their 

expression levels are left unchecked. Some of the well-studied examples are β-catenin, c-

myc, HIF-1α, and nuclear hormone receptors [77]. Furthermore, proteins that induce 

apoptosis or inhibit apoptosis are all strictly controlled by the ubiquitin proteasome 

pathway as well. These include mdm2, IκBα, Bax, Bad, all caspases, and the IAP family 

of proteins [78]. Due to the depth with which the ubiquitin proteasome pathway is 

involved in cellular processes, its dysfunction has been implicated in a variety of diseases. 

As a result, the inhibition of the proteasome has become a very attractive strategy for 

developing new therapeutics.  

One of the most fascinating aspects of proteasomal degradation is the limited 

proteolysis involved in the processing of NFκB. NFκB is a dimeric protein that consists 

of members of the Rel family of transcription factors. They have been shown to be 

responsible for a variety of cellular processes such as immune responses, inflammation, 

apoptosis, and cell proliferation [79]. One of these proteins, namely p105, is synthesized 

as an inactive precursor in which its C-terminus contains a PEST sequence that acts as a 

degradation signal [80]. Unlike conventional proteolysis by which a protein is completely 

degraded by the proteasomes, p105 is partially processed activation to produce the active 

form p50 [81]. During processing, the C-terminus of p105 is degraded by the proteasome 

while the N-terminus of NFκB (p50) is left intact. The inactive precursor of NFκB 

appears to have a processing signal identified as the glycine rich region (GRR) hidden 
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within its sequence that enables the proteasome to recognize the region as a termination 

factor [82]. Moreover, the proteasome was also shown to possess endoproteolytic activity, 

which offers an alternative molecular mechanism by which inactive precursors are 

released after processing by the proteasome [83]. In addition to NFκB processing, the 

ubiquitin proteasome pathway is also responsible for the regulation of IκBα degradation 

upon NFκB activation.  

In contrast to the orthodox ubiquitin proteasome pathway, there are substrates that 

are degraded by the proteasome in an ubiquitin independent manner. Primitive organisms 

such as archaea and certain bacteria have simpler proteasomes that degrade proteins in a 

ubiquitin independent manner, which indicate that proteasomes are capable of degrading 

substrates without ubiquitination [84]. In addition, it was reported that the localization of 

substrates to the proteasome alone is sufficient for proteasomal degradation [85]. 

Nevertheless, protein best characterized as undergoing such non-canonical proteasomal 

degradation is ornithine decarboxylase (ODC). It is a key enzyme that is involved in 

polyamine biosynthesis and it uses antizyme instead of ubiquitin as a recognition signal 

for the 26S proteasome [86].  

Besides degrading unwanted proteins, the ubiquitin proteasome pathway is also 

involved in the regulation of the immune system. Specifically, the proteasome is required 

for antigen processing and presentation. This is an important aspect of our immune 

system because not only is it a means for immune cells to distinguish self from non-self, 

it also enables the immune system to identify cells that have been invaded by foreign 

pathogens and thus mark these cells for destruction. Surprisingly, the 20S and 26S 

proteasomes were found to be responsible for the generation of antigenic peptides for 

presentation on MHC class I molecules. Inhibition of the proteasome was also shown to 

effectively reduce antigen presentation [87]. However, only a very small fraction of the 

peptides generated by the proteasome are transported through the ER to be loaded onto 

MHC class I molecules. Interestingly, cytokines such as interferon gamma (IFN-γ) were 

found to stimulate antigen processing and presentation due to an altered proteolytic 

activity that is favorable to the generation of antigenic peptides. This variation can be 

attributed to the induction of alternative catalytic subunits, which are LMP2 (low-

molecular mass polypeptide 2), LMP7 (low-molecular mass polypeptide 7) and MECL-1 
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(multicatalytic endopeptidase complex 1) [88]. Hence, this alternative proteasome has 

been referred to as the immunoproteasome.   

 

d.  Immunoproteasome 

While the 26S proteasome is constitutively expressed in the majority of the cells 

in our body, the expression of the immunoproteasome is limited. Immune tissues such as 

the spleen constitutively express high levels of immunoproteasome. Even though 

immunoproteasomes are also expressed at much lower levels in other cell types, they can 

be induced when cells are stimulated by cytokines such as interferon-γ (IFN-γ) and tumor 

necrosis factor-α (TNF-α). After exposure to these cytokines during the stress response or 

infection, the synthesis of the alternative catalytic subunits LMP2 (β1i), LMP7 (β5i), and 

MECL1 (β2i) are induced and subsequently incorporated into the immunoproteasome 

(Figure 1.3). These alternative catalytic subunits were found to possess a biased cleavage 

pattern that enhances the generation of peptides bearing hydrophobic and basic side 

chains, but not acidic side chains at their C-termini. This altered repertoire of peptides 

generated has an increased affinity for most MHC class I molecules [89]. Similarly, an 

alternative regulatory complex known as 11S regulatory complex (PA28) is also induced 

upon stimulation with IFN-γ, suggesting its involvement in antigen processing. However, 

like the constitutive proteasome, the immunoproteasome is capable of binding to either 

19S or 11S regulatory complexes [90]. In addition, contradicting results have been 

reported regarding the vital role of 11S in the processing of antigens [91, 92]. These 

results simply indicate that the 11S is not an obligatory prerequisite for antigen process in 

general but may subtlety affect substrate degradation to enhance the production of MHC 

class I antigens.    

Due to its biased cleavage pattern, the primary function of the immunoproteasome 

was initially thought to be the generation of MHC class I antigens. It was later 

demonstrated that even though LMP2 and LMP7 knockout mice have a diminished or 

altered presentation of certain MHC class I antigens, the processing and presentation of 

the majority of the antigenic peptides was unaffected [93, 94]. While MECL1 knockout 

mice did not display any significant changes in their antigen processing and presentation, 

an altered T cell repertoire was observed after viral infection [95]. In addition, all three 
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strains of knockout mice were viable, showed no visible abnormalities, and lived to at 

least one year of age, indicating that these genes are dispensable [93-95]. These results 

strongly suggest that the 26S proteasome alone is capable of generating most of the 

necessary antigenic peptides. Therefore, there is a significant probability that the 

immunoproteasome might have functional purposes other than the optimization of 

antigenic peptides. Indeed, the immunoproteasome has been implicated in biological 

functions such as positive and negative selection of T cells in the thymus [96], T cells 

proliferation [97], and processing of NFκB [98]. However, it is still unclear why 

evolution dictated the development of immunoproteasomes but investigation in this area 

is currently ongoing.  

Even though the immunoproteasome and 26S proteasome share high structural 

homology, the detailed structure of the immunoproteasome still remains to be determined. 

Sequence alignment studies of the immunoproteasome and 26S proteasome catalytic 

subunits have determined that the immunoproteasome is also a member of the Ntn 

hydrolase family as all its catalytic subunits were found to have N-terminal threonine 

residues [99]. Nevertheless, the structure of the immunoproteasome was predicted via 

computational modeling from the crystal structural studies of the 20S mammalian 

proteasome. Specifically, the S1 pockets created by the immunoproteasome’s catalytic 

subunits were observed to be more apolar than that of 26S proteasome, suggesting that 

there is an increase in the 

chymotrypsin-like activity but a 

decreased in the caspase-like 

activity [66]. This observation is in 

support of the previously reported 

results by which the 

immunoproteasome have a biased 

cleavage pattern that favors the 

generation of MHC class I antigens.    

 

 

 

 
 
Figure 1.3 The formation of 
immunoproteasome is stimulated by cytokines 
such as IFN-γ. 
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e. Proteasome Assembly 

The biogenesis of the proteasome is a highly orchestrated multi-step assembly 

process that requires the assistance of several regulatory proteins. Given that the 

proteasome catalytic subunits have such broad proteolytic activities, extreme caution is 

needed for the assembly of the proteasome to prevent premature proteolysis. Specifically, 

the catalytic β subunits are synthesized as inactive precursors containing propeptides at 

their N-termini, which are only removed at the end of the proteasome assembly process 

via an autocatalysis mechanism [100, 101]. Nevertheless, the assembly of the eukaryote 

proteasome is believed to begin with the formation of the α ring. The β subunits 

containing inactive precursors are then recruited onto the α ring forming a half 

proteasome intermediate (16S). Finally, the dimerization of the half proteasomes along 

with the cleavage of the β propeptides produces the final active 20S proteasome (Figure 

1.4) [102].  

The earliest stage of the 20S proteasome formation is facilitated by multiple 

proteasome assembly chaperone proteins termed PAC1, PAC2, PAC3 [103, 104] and a 

recently identified but uncharacterized PAC4 [105], which is the mammalian counterpart 

of the yeast Pba1-4 [106] or Poc1-4 [105]. PAC1 and PAC2 form a heterodimer that has 

been demonstrated to interact directly with α5 and α7 subunits, and subsequently 

functions as a scaffold to promote the complete assembly of the α ring. Furthermore, the 

PAC1/2 complex is crucial in ensuring the formation of a productive and competent α 

ring for the subsequent formation of the half proteasome. It was also demonstrated that 

the PAC1/2 complex remains associated with the proteasome precursor until assembly is 

complete and eventually it is degraded by the newly formed 20S proteasome [103]. PAC3 

also directly interacts with α subunits to facilitate the assembly of the α ring but has been 

shown to carry out its function via a separate mechanism. Unlike the PAC1/2 complex, it 

is released before the formation of the half proteasome is completed. The release of 

PAC3 also occurs in tandem with the recruitment of POMP (proteassemblin or hUmp1, 

homolog of yeast Ump1), which is a proteasome maturation factor [104]. Nevertheless, 

the mode of action of PAC3 is still not well understood.  

The next step in the assembly process is the recruitment of the β subunits. POMP 

is known to be responsible for facilitating the recruitment of the β subunits onto the α 
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ring [107]. The identification of two distinct 13S and 16S proteasome assembly 

intermediates [108] suggests that the β subunits are incorporated stepwise into the nascent 

proteasome. Specifically, proβ2, proβ6, β3 and β4 are believed to be the first subunits 

recruited onto the α ring by POMP, composing the mammalian 13S complex. Shortly 

thereafter, the 13S becomes the 16S upon the addition of proβ1, proβ5 and proβ7 

subunits, hence completing the assembly of the β ring [109]. POMP was shown to 

physically interact with both X (β5) and LMP7 (β5i) subunits [110]. However, the 

immunoproteasome subunit LMP7 (β5i) seemed to be preferentially incorporated by 

POMP into the 16S complex in place of the regular subunit X (β5) [110]. Indeed, it has 

been demonstrated by Griffin and colleagues that proteasome assembly favors the 

formation of immunoproteasomes when both types of catalytic subunits are present, 

which are attributed to the propeptides located at the N-terminus of these β subunits [110-

113]. In other words, the cooperative proteasome assembly is strongly influenced by the 

catalytic β subunit propeptides of both the immunoproteasome and regular proteasome. It 

was elegantly demonstrated by Griffin and colleagues that the replacement of LMP7 (β5i) 

and MECL1 (β2i) propeptides with that of X (β5) and Z (β2) respectively enabled the 

immuno subunits to be incorporated into the otherwise regular proteasome and vice versa 

[112, 113]. Furthermore, the propeptides of these catalytic subunits were shown to play 

an important role in determining the order in which they are incorporated. Specifically, 

MECL1 (β2i) requires LMP2 (β1i) to be incorporated into the β ring efficiently but when 

the propeptide of MECL1 is replaced by that of Z (β2), it enables MECL1 to be 

incorporated without LMP2 [112]. De at al. was also able to demonstrate that 

proteasomes with mixed catalytic subunits from both the regular proteasome and 

immunoproteasome is a possible occurrence [112]. 

The final step of 20S proteasome biogenesis involves the dimerization of the half 

proteasomes and the activation of the catalytic β subunits. In addition to recruiting β 

subunits, POMP is also believed to be involved in facilitating the dimerization of half 

proteasome, since a significant reduction in 20S proteasome but normal α rings and half 

proteasomes were observed in POMP knockdown cells [103]. The propeptides of the 

catalytic β subunits are removed via an autocatalysis mechanism and the cleavage of the 

propeptides of the other non-catalytic β subunits are then carried out by their active 
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neighbors [64]. Similar to PAC1/2, POMP is eventually degraded by the newly formed 

20S proteasome as well [110]. Interestingly, Heink et al. showed that IFN-γ treatment not 

only induces the synthesis of immunoproteasome catalytic subunits but also increases 

POMP mRNA [110]. On the other hand, a rapid decrease in POMP protein levels was 

observed. In addition, the immunoproteasomes were also found to assemble four times 

faster than regular proteasomes as well as possess a shorter half life than that of regular 

proteasomes when treated with IFN-γ. These results suggest that the immunoproteasome 

is intrinsically less stable and its induction by IFN-γ is an accelerated and transient 

response [110].  

 

 

 

 

 

 

 
 
Figure 1.4  The assembly of the 20S proteasome is achieved via the dimerization of 
two hemi-proteasome intermediates (16S) and facilitated by PAC1/2, PAC3 and Pomp 
proteins.  
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4. Physiological Disorders Implicated in the Ubiquitin Proteasome Pathway 

As the ubiquitin proteasome pathway is involved the regulation of a multitude of 

cellular processes, it is not unexpected to find that defects in the components of the 

ubiquitin proteasome pathway were found to result in a range of physiological disorders. 

In order to decipher the molecular mechanisms of pathogenesis, these components were 

studied extensively, which has significantly benefited the biological understanding of the 

ubiquitin proteasome pathway. Consequently, the pathway has emerged as a very 

attractive therapeutic target. A few examples of genetic disorders and acquired diseases 

caused by the aberrations in the ubiquitin proteasome pathway are described below.  

 

a. Genetic Disorders 

A well known genetic disorder associated with the ubiquitin proteasome pathway 

is the Angelman’s Syndrome, which is a neurological disorder [114]. Genetic studies 

have revealed that the mutations in UBE3A genes to be the primary underlying cause of 

this disorder. The UBE3A gene encodes an ubiquitin HECT E3 ligase termed E6-AP, 

which has been shown to promote the ubiquitination of p53 for proteasomal degradation 

in the presence of the E6 oncoprotein produced by human papillomavirus [35]. However, 

the target protein(s) of E6-AP in Angelman’s Syndrome has not yet been identified. 

Recent studies have shown that, in addition to functioning as an E3 ligase, E6-AP acts as 

a transcriptional coactivator as well. As a result, the deficiency of E6-AP resulted in 

abnormal dendritic spine morphology, which may be due to its regulation of synaptic 

plasticity [115]. Nevertheless, it is still unclear how the loss of E6-AP resulted in 

Angelman’s Syndrome.  

Von Hippel-Lindau (VHL) Syndrome is a rare genetic disorder that is caused by 

mutations of the gene that encodes the VHL tumor suppressor. The VHL protein is a 

component of the ubiquitin RING E3 ligase complex that targets members of the 

hypoxia-inducible transcription factor family (HIF) for degradation under normoxic 

condition. The α and β subunits of the heterodimeric HIF regulate physiological 

responses to hypoxia by stimulating cellular processes such as angiogenesis. In the 

presence of oxygen, a conserved proline residue in the HIF-α is hydroxylated, which 

serves as a proteasomal degradation signal specifically recognized by the VHL ubiquitin 
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ligase complex [116]. Therefore, mutations in the VHL gene result in the constitutive 

stabilization and activation of the HIF protein, which causes the overproduction of its 

gene products such as vascular endothelial growth factor (VEGF) [117]. Subsequently, 

the mutation is translated into an inherited susceptibility to various forms of cancer 

including pancreatic and renal cell carcinomas [118]. 

  

b. Acquired  Disorders 

In addition to the inherited predisposition to cancer, the ubiquitin proteasome 

pathway is also implicated in the etiology of many other malignant cancers. In general, 

cancers can result from either constitutive activation of oncogenes or deactivation of 

tumor suppressor genes [119]. The aberration in the regulation of both oncoproteins and 

tumor suppressor proteins can often be attributed to the exploitation of the ubiquitin 

proteasome pathway by the disease state as a means to manipulate the expression levels 

of these proteins to their liking.  

Cancer is essentially an abnormal growth of cells caused by uncontrolled cell 

division; hence, it is not unexpected to frequently find disrupted cell cycle regulation in 

cancer. Some of the well known cell cycle regulators frequently found mutated in cancer 

includes tumor suppressors p27 and p53 as well as oncoprotein cyclin E. Both p27 and 

p53 are capable of inducing cell cycle arrest following anti-mitogenic signals or DNA 

damage to ensure everything is in order before the cell cycle is proceed to completion. In 

addition, cellular levels of these proteins are tightly regulated by the ubiquitin proteasome 

pathway. However, in addition to mutations within the p27 and p53 genes, aberrant 

downregulation of p27 and p53 proteins, observed in some cases of cancer, result from 

overactivation of the ubiquitin proteasome pathway [120, 121]. Specifically, low levels of 

p53 and p27 can be caused by overexpression of their cognate E3 ligases, Mdm2 and 

SCFSkp2, respectively [120, 122]. Furthermore, low levels of these proteins have been 

associated with tumor progression and poor prognosis in various cancers such as 

sarcomas, colon, breast, prostate, ovarian and brain cancer [120, 123].  

On the other hand, oncoproteins such as cyclin E were found to be aberrantly 

upregulated in several types of human cancer, which is often used as a prognosis 

indicator [124]. Proper cell cycle progression is highly dependent on the timely 
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accumulation of the four well known cyclins A, B, D, E and their interaction with their 

cyclin-dependent kinases (Cdks). Specifically, the accumulation of the cyclin E-Cdk2 

complex initiates the transition of the cell cycle from G1 phase to S phase. Cyclin E is 

then phosphorylated and subsequently recognized by the SCFFbw7 E3 ligase for 

proteasomal degradation [125]. However, defective SCFFbw7 has been observed in some 

cancers in which the failure of the ubiquitin proteasome pathway to degrade cyclin E 

resulted in the overexpression of cyclin E [4]. On a different note, recent studies by Ho et 

al. reported that some cancers have differential expression levels of immunoproteasome 

catalytic subunits which can be correlated with the malignancy of cancer [126]. This 

sheds an interestingly new light on the possible role of immunoproteasomes in the 

malignancy mechanism of cancer. 

Some well studied cancers that are known to have defective ubiquitin proteasome 

pathways include cervical and colorectal cancers. The cervical carcinoma tumors that 

were caused by a high risk HPV strain have very low expression levels of tumor 

suppressor gene p53. The E6 protein encoded by the HPV was found to bind to E6-AP 

ubiquitin ligase and subsequently p53. This ternary complex was shown to eventually 

promote ubiquitination and proteasomal degradation of p53 [35]. Similarly, mutations in 

another tumor suppressor gene, adenomatous polyposis coli (APC), were found in a 

significant fraction of non-hereditary colorectal cancers [127]. The APC gene product is 

known to associate with the oncogene β-catenin [128]. This interaction enables the APC 

gene product to regulate the cellular levels of β-catenin via the ubiquitin proteasome 

pathway [129, 130]. Therefore, mutations in the APC gene disrupt this complex 

formation preventing the proteasomal degradation of β-catenin, which results in the 

constitutive activation of its downstream effectors.  

In addition to cancers, the ubiquitin proteasome pathway has also been implicated 

in the pathogenesis of various progressive neurodegenerative diseases such as 

Alzheimer’s disease (AD) and Huntington’s disease (HD). These diseases are 

characterized by the accumulation of abnormal protein aggregates or inclusion bodies in 

the brain. The aggregates were also found to contain ubiquitins and interestingly, they 

were shown to directly inhibit the proteolytic activity of the ubiquitin proteasome 

pathway [131]. Recent studies have demonstrated that the ubiquitin proteasome pathway 
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helps regulates proteolysis in synaptic plasticity, which is thought to be responsible for 

learning and memory [132]. Interestingly, it was recently shown that the brains of AD 

patients express higher levels of immunoproteasome catalytic subunits than those of the 

non-demented elderly whereas it is negligible in younger brains [133]. A similar increase 

in immunoproteasome catalytic subunits was also observed in brains affected by HD 

[134]. These intriguing results have drawn considerable attention because the brain is 

historically thought to be an immunologically privileged organ with almost no expression 

of the immunoproteasome. In spite of numerous speculations, the functional relevance of 

the upregulation of immunoproteasomes in these diseases remains to be determined. 

Last but not least, autoimmune diseases are also one of the many physiological 

disorders believed to arise from defective ubiquitin proteasome pathway. This class of 

diseases is characterized by the inability of the immune system to recognize self proteins, 

which results in an immune response against the body itself. In addition to MHC class I 

antigen processing, the ubiquitin proteasome pathway was also found to play a significant 

role in regulating T cell receptors (TCR) and CD28 costimulatory receptors, which are 

required for optimal T cell activation [135]. Consequently, any defect within the ubiquitin 

proteasome pathway that would result in a faulty immune response would trigger the 

development of autoimmune diseases such as rheumatoid arthritis, type I diabetes, and 

Sjögren’s Syndrome. Even though these diseases have some abnormalities in their 

ubiquitin proteasome pathway or exhibit elevated levels of the immunoproteasome [136-

138], the exact mechanism by which the ubiquitin proteasome pathway is involved in 

their pathogenesis is still unclear. The immune system is an extremely complex network 

about which there is still much to be learned; hence, in order to decipher the pathological 

mechanism of the ubiquitin proteasome pathway in disease, we need to first better 

understand how the immune system works. 
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B. Proteasome Inhibitors  

Given that the dysregulation of proteasome-mediated protein degradation is 

observed in such a wide array of disease states, it is not unexpected that proteasome 

inhibitors have been pursued as therapeutic agents. Initially, inhibitors of other members 

of the protease family, such as cysteine or serine proteases, were used as proteasome 

inhibitors. Alternatively, nature has provided potent proteasome inhibitors with unique 

pharmacophores. Thus far, many synthetic proteasome inhibitors with different 

pharmacophores have been developed for therapeutic purposes. Specifically, a boronic 

acid pharmacophore-based synthetic inhibitor (bortezomib) was the first FDA approved 

proteasome inhibitor, indicated for the treatment of relapsed multiple myeloma [139]. 

This has not only validated the ubiquitin proteasome pathway as a target for therapeutic 

intervention, but it has also set a precedent for the approval of other proteasome 

inhibitors for clinical applications.        

Proteasome inhibitors can be broadly divided into two categories: active site-

directed and non-active site directed inhibitors. In addition, more specialized proteasome 

inhibitors, such as subunit-specific or immunoproteasome-specific inhibitors, have been 

pursued to improve efficacy. In particular, the observation that the levels of the 

immunoproteasome catalytic subunits are elevated in a number of disease states has 

prompted the initiation of an immunoproteasome-specific inhibitor development program.    

                  

1. Active Site Directed Proteasome Inhibitors 

The proteasome is an Ntn hydrolase, which uses its N-terminus threonine as a 

nucleophile to catalyze hydrolysis reactions. Consequently, these catalytic threonines 

within active sites have become the primary targets for the development of proteasome 

inhibitors. Because the catalytic activities of the 20S proteasome closely resemble that of 

cellular proteases, it is not surprising to find one of the first proteasome inhibitors 

originated from a protease inhibitor [140]. For instance, leupeptin (Figure 1.5a), a 

conventional serine and cysteine protease inhibitor, was shown to inhibit the proteasome 

with a selectivity towards T-L activity [141]. In addition, calpain inhibitors I and II 

(Figure 1.5a) were shown to selectively target CT-L activity of the 20S proteasome [142]. 

Similar to these peptide aldehyde inhibitors, the majority of active site-directed 
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proteasome inhibitors developed to date are composed of a peptide or peptide-like 

backbone. Despite the fact that these inhibitors commonly target the catalytic threonines, 

they are composed of a wide variety of pharmacophores [140]. While many of these 

inhibitors are relatively more selective towards the proteasomes than proteases, they are 

not particularly specific to the constitutive or immunoproteasomes. Furthermore, several 

inhibitors developed thus far have also been shown to display specificity towards the 

individual catalytic activities of both constitutive and immunoproteasomes. Accordingly, 

these inhibitors can be classified as either broad spectrum or catalytic subunit specific 

proteasome inhibitors.    

 

a. Broad Spectrum Proteasome Inhibitors 

The rediscovery of protease inhibitors as proteasome inhibitors has prompted the 

development of more potent and selective proteasome inhibitors. For example, Rock et al. 

developed potent tripeptide aldehyde inhibitors, MG132 and MG115 (Figure 1.5b), 

which have been two of the most widely used molecular probe of proteasome biology 

[87]. Wilk et al. have also developed another peptide aldehyde inhibitor known as PSI 

(Figure 1.5b), which displayed a particularly high potency and selectivity towards CT-L 

activity [143]. Proteasomal inhibition by these peptide aldehyde inhibitors was 

subsequently shown to occur via the formation of a reversible hemiacetal linkage 

between the aldehyde pharmacophore and the hydroxyl side chain of the N-terminus 

threonine (Thr1Oγ) of the catalytic β subunits (Figure 1.5c) [69, 70]. Nevertheless, the 

peptide aldehyde inhibitors have cross-reactivity with other cellular proteases, which has 

limited their potential as therapeutic agents.  
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The vinyl sulfone is another unique pharmacophore that was first utilized by 

Bogyo et al. for the development of a novel class of proteasome inhibitors (Figure 1.6a) 

[144]. The vinyl sulfones were first introduced by Palmer and colleagues as a 

mechanism-based cysteine protease inhibitor that acts as a Michael acceptor solely at its 

active site [145, 146]. Similarly, the peptide vinyl sulfone proteasome inhibitor also 

serves as a Michael acceptor by forming a covalent bond with the hydroxyl group at the 

proteasome’s catalytic sites (Figure 1.6b). Shortly thereafter, Kessler et al. developed a 

more potent peptide vinyl sulfone with an extended hydrocarbon chain that does not 

appear to discriminate against any of the catalytic activities [147]. Nevertheless, like the 

peptide aldehyde inhibitors, this class of proteasome inhibitors also lacks specificity due 

to off-targets issues. 

 

 
 
Figure 1.5 (a) Serine/cysteine protease inhibitors rediscovered as proteasome 
inhibitors. (b) Proteasome inhibitors containing the aldehyde pharmacophore. (c) The 
proposed mechanism by which the aldehyde pharmacophore inhibits the proteasome. 
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The first FDA approved proteasome inhibitor contains a distinct pharmacophore 

known as boronic acid. The peptide boronates was first developed to target serine 

proteases such as thrombin [148]. The inhibitory mechanism was thought to occur via the 

formation of a stable pseudo-tetrahedral complex between the boron and the hydroxyl 

group of threonine, conferring it a high selectivity towards serine proteases. Specifically, 

the empty p-orbital of the boron atom is positioned to accept the oxygen lone pair from 

the serine residue located in the catalytic site (Figure 1.7a) [148]. Using this unique 

pharmacophore, Adams et al. developed a library of potent and selective di- and 

tripeptidyl inhibitors (Figure 1.7b) [149]. Among this library was bortezomib, a highly 

selective dipeptidyl boronic acid proteasome inhibitor (Figure 1.7b), which eventually 

became the first in its class to be approved by the FDA for clinical application [150]. 

Bortezomib was initially approved for the treatment of relapsed multiple myeloma but 

due to its remarkable potency, multiple clinical trials in other haematological cancers as 

well as solid tumors are currently ongoing [151]. Nevertheless, severe drug associated 

side effects [152, 153] as well as drug resistance [154] have also been reported, which 

could restrict the widespread application of bortezomib. Just like wild fire, the effort in 

 
 
Figure 1.6  (a) Proteasome inhibitors containing the vinyl sulfone pharmacophore. (b) 
The proposed mechanism by which the vinyl sulfone pharmacophore inhibits the 
proteasome. 
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proteasome inhibitor development for therapeutic purposes has increased significantly 

since the approval of bortezomib for clinical application. For examples, another boronic 

acid proteasome inhibitor, CEP-18770 was recently discovered to be as a potential 

therapeutic agent for cancer [155, 156]. However, additional preclinical studies will be 

required to determine its potency and selectivity. 

 

 

In addition to synthetic approaches, nature has also provided us with some of the 

most selective and potent proteasome inhibitors to date. One such natural product is 

lactacystin, a proteasome inhibitor with a β-lactone pharmacophore (Figure 1.8a) [157]. 

Lactacystin was initially discovered as a Streptomyces lactacystinaeus metabolite shown 

to induce neutrite outgrowth in the murine neuroblastoma cell line. It was later revealed 

that lactacystin requires aqueous condition for activation by which structural 

rearrangement will yield its active form clasto-lactacystin-β-lactone (Figure 1.8a) [158, 

159]. Subsequently, Fenteany et al. demonstrated that lactacystin targets the proteasome 

via the covalent modification of the Thr1Oγ of catalytic β subunits (Figure 1.8b) [160]. 

Despite initial assumptions, lactacystin was later found to target other cellular proteases 

 
 
Figure 1.7  (a) The proposed mechanism by which the boronic acid pharmacophore 
inhibits the proteasome. (b) Proteasome inhibitors containing the boronic acid 
pharmacophore. 
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as well [161, 162]. Another elegant example of β-lactone containing proteasome inhibitor 

created by nature is Salinosporamide A (NPI-0052) (Figure 1.8c) [163]. It is a novel 

marine-derived proteasome inhibitor that is distinct from bortezomib in terms of its 

irreversibility and inhibitory potency of the catalytic sites [164]. Recent structural studies 

revealed that NPI-0052 is covalently bound to all six catalytic sites via an ester linkage 

between the Thr1Oγ of the catalytic β subunits and the β-lactone carbonyl of the inhibitor 

[71]. Due to its high potency, NPI-0052 has also been shown to be effective against 

bortezomib-resistant multiple myeloma [154]. Interestingly, recent studies have shown 

that combinatorial treatment with bortezomib and NPI-0052 induces a synergistic 

cytotoxicity in multiple myeloma [165]. With such promising preclinical trial results, 

NPI-0052 has entered Phase I clinical trial for relapsed multiple myeloma. 

 

 
 
Figure 1.8 (a) The natural product proteasome inhibitor that contains the β-Lactone 
pharmacophore and its active conformation in aqueous condition. (b) The proposed 
mechanism by which the β-Lactone pharmacophore inhibits the proteasome. (c) 
Another example of the β-Lactone pharmacophore containing proteasome inhibitor.  
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Another class of broad spectrum natural product proteasome inhibitor is the 

family of linear peptide epoxyketones. The first peptide epoxyketones discovered were 

epoxomicin and eponomycin (Figure 1.9a), isolated from an unidentified strain of 

Actinomycete (Q996-17) and Streptomyces hygroscopicus (P247-271) respectively. They 

were initially shown to be anti-angiogenic and cytotoxic against B16 melanoma [166, 

167]. Subsequently, Crews and colleagues revealed that these peptide epoxyketones 

exhibit exceptionally high selectivity towards the 20S proteasome [168, 169]. Their 

selectivity was later demonstrated by structural studies, to be attributed to the unusual 

formation of a six-membered morpholino ring between with the Thr1Oγ of the catalytic β 

subunits and the α’β’-epoxyketone pharmacophore of epoxomicin (Figure 1.9b) [170]. In 

addition to epoxomicin, eponemycin and other peptide epoxyketone proteasome 

inhibitors that have been isolated from natural resources [171], synthetic approaches 

based on the epoxyketone peptide skeleton have also yielded several valuable proteasome 

inhibitors. One of the most recent developments is carfilzomib, also known as PR171, an 

epoxomicin derivative (Figure 1.9a) [172]. Needless to say, carfilzomib is also a potent 

proteasome inhibitor but with a greater selectivity for CT-L activity, which will be 

discussed further in the sections below.  

 
 
Figure 1.9  (a) Proteasome inhibitors containing the epoxyketone pharmacophore. (b) 
The proposed mechanism by which the epoxyketone pharmacophore inhibits the 
proteasome. 



 

33 
 

Given the success of lactacystin and epoxomicin as highly selective proteasome 

inhibitors, systematic screening approaches of natural products were carried out to 

identify proteasome inhibitors with greater efficacy. Some of the novel natural product 

proteasome inhibitors identified include a series of unusual macrocyclic molecules 

isolated from the fermentation broth of Apiospora montagnei Sacc. (TC1093) such as 

TMC-95 (Figure 1.10) [173, 174]. Despite their unusual structural features, these 

compounds are potent and highly selective proteasome inhibitors with a preference for 

CT-L activity. Even so, no evidence of off-target activities has been published. Structural 

studies showed that the cyclic peptides bind to proteasome non-covalently with high 

affinity via the formation of multiple hydrogen-bond networks [175]. The discovery of 

these cyclic peptides as potent proteasome inhibitors has subsequently sparked the 

synthetic effort to optimize the catalytic site specificity of TMC-95 analogs [176]. In 

addition to TMC-95, cyclic hexapeptide phepropeptins were identified by Sekizawa et al. 

as proteasome inhibitors but with a weaker inhibition activity (Figure 1.10) [177]. One 

noteworthy advantage to utilizing such peculiar peptide skeletons as proteasome 

inhibitors is their high resistance to cellular proteases. Nevertheless, it remains to be 

determined whether this class of natural products will be developed into therapeutic 

agents. 

 

 

 

 
 
Figure 1.10  Macrocyclic natural product proteasome inhibitors. 
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Traditional remedies have long been used to treat illnesses in many parts of the 

world. While many of these medicines have been proven to be effective, their modes of 

action are often not clearly understood. In recent years, some traditional medicines have 

been shown to inhibit proteasomal activity. For example, green tea is known to be a 

potent cancer preventive dietary agent and one of its main constituents, epigallocatechin-

3-gallate (EGCG) (Figure 1.11a) was shown to inhibit the CT-L activity of the 20S 

proteasome [178, 179]. It was suggested by Nam et al. that the ester linkage located 

between the two aromatic residues of EGCG is a vital element to the inhibition of 20S 

proteasome (Figure 1.11b) [179]. Furthermore, a number of other plants- and fruits- 

derived chemopreventive dietary agents have also been shown to inhibit proteasomal 

activities [180-183]. Specifically, flavonoids and triterpenoids are two of the most 

commonly found classes of chemopreventive dietary agents. While some of these natural 

products have been suggested by computational studies to directly interact with the 

catalytic β subunits [180], the detailed mechanisms by which these molecules achieve 

their chemopreventive effects remains to be determined.  

 

 
 
Figure 1.11  (a) A major ingredient found in green tea, epigallacatechin-3-gallate 
(EGCG). (b) The proposed mechanism by which EGCG inhibits the proteasome. 
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b. Subunit-Specific Proteasome Inhibitors 

While most proteasome inhibitors were shown to primarily target the CT-L 

activity of the 20S proteasome, they still partially inhibit other catalytic activities. 

Therefore, these proteasome inhibitors were referred to as broad spectrum proteasome 

inhibitors. However, the ability of these inhibitors to target all three catalytic activities 

simultaneously has complicated efforts to study the functions of the individual catalytic 

subunits. It is known that the CT-L activity of the proteasome is the rate determining step 

of proteolysis [64]; hence, most synthetic efforts have been focused on the development 

of CT-L activity specific proteasome inhibitors with the assumption that such molecule 

will enhance efficacy. As a result, the lack of T-L-specific or C-L-specific inhibitors has 

resulted in poor understanding of the cellular functions of the T-L and C-L activities. 

Therefore, there have been considerable recent efforts to develop more refined 

proteasome inhibitors, such as T-L or C-L activity specific proteasome inhibitors.  

In an effort to aid the functional studies of the other two catalytic activities, a 

number of T-L or C-L activity specific proteasome inhibitors have been developed thus 

far. Examples include the bi-functional and bi-valent peptide aldehyde inhibitors (Figure 

1.12a), which selectively target T-L activity [184, 185]. The rationale behind the design 

of these T-L activity specific molecules was based on the unique topography of the T-L 

responsible catalytic subunits in the 20S proteasome. The incorporation of a basic amino 

acid residue such as arginine into these inhibitors was found to be crucial in directing 

their selectivity towards T-L activity. Meanwhile, Bogyo and colleagues have also 

successfully developed T-L activity specific proteasome inhibitors using the vinyl sulfone 

pharmacophore (Figure 1.12b) [186]. Other T-L specific proteasome inhibitors are the 

peptide based vinyl esters (Figure 1.12c) [187, 188]. These T-L specific inhibitors were 

shown to be non-toxic and do not affect cell proliferation but they were found to modify 

the processing of MHC class I antigens [188], which could the first indication of the 

functional role of the catalytic subunit bearing T-L activity.  

Crews and colleagues developed C-L activity specific proteasome inhibitors by 

the derivatization of epoxomicin (Figure 1.12d) [189]. The inhibition of C-L activity by 

these peptide epoxyketone inhibitors was shown to be insufficient to render total 

inhibition of protein degradation in cells. Recently, Kisselev and colleagues have 
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developed a peptide vinyl sulfone proteasome inhibitor selective for the C-L activity that 

could be used as an activity-based probe as well (Figure 1.12b) [190]. Specifically, it was 

shown to target both the β1 and β1i subunit. However, the azide-tagged compound 

revealed that the inhibitor preferentially targets the β1i subunit of the immunoproteasome 

[190]. This provides a valuable tool for further research on the functional role of the C-L 

subunit in both the regular proteasome and immunoproteasome. Despite recent 

developments of catalytic subunit specific proteasome inhibitors, the functional roles of 

these individual catalytic subunits remain to be determined.  

 

 
 
Figure 1.12 Subunit specific proteasome inhibitors developed from different 
pharmacophores. (a) Aldehyde proteasome inhibitors that selectively target the T-L 
activity. (b) Vinyl sulfone proteasome inhibitors that selectively target the T-L and C-
L activities. (c) Vinyl ester proteasome inhibitors that selectively target the T-L 
activity. (d) Epoxyketone proteasome inhibitors that selectively target the C-L 
activity. 
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2. Non-Active Sites Directed Proteasome Inhibitors 

Due to the cross activity of the majority of the active site-directed proteasome 

inhibitors with other proteases, alternative approaches to indirectly inhibit proteolytic 

activity are beginning to emerge. Specifically, the new generation of proteasome 

inhibitors is focused on the non-catalytic components of the ubiquitin proteasome 

pathway, which includes the regulatory complex, ubiquitin and its enzymatic cascade. 

One noteworthy advantage to this approach is that the possibility of these proteasome 

inhibitors cross-reacting with other cellular proteases is significantly reduced.  

Recently, the first regulatory complex inhibitor has been identified from a “one 

bead one compound” peptoid library screening, which was called RIP-1 (Regulatory 

Particle Inhibitor Peptoid-1) (Figure 1.13) [191]. The peptoid inhibitor was shown to 

block proteasomal activity in living cells by interfering with the protein unfolding activity 

of the Rpt proteins [191]. It was later demonstrated that RIP-1 specifically target one of 

the six ATPases in the 19S complex, Rpt4 [192]. The inhibitor was then optimized, 

which generated an analog with a smaller mass that exhibited better cellular activity 

[193]. This RIP-1 analog is currently undergoing further optimization to produce a 

derivative with an increased potency. Another synthetic gatekeeper molecule that inhibits 

substrate entry into the 20S catalytic core was recently reported [194]. The molecule, 

TetrakisNTA (Figure 1.13), was shown to selectively bind to the His-tagged N-termini of 

α subunits in the 20S proteasome, which blocked the unfolded proteins from accessing 

the catalytic β subunits in a gatekeeper manner [194]. This inhibitor provides an 

unprecedented investigative tool that would allow the precise control and manipulation of 

the proteasome. Chloroquine, an anti-malaria drug, was very recently shown to inhibit 

proteasome by targeting the α-β subunit interface of the 20S proteasome [195]. This 

unique interaction was suggested to either interfere with substrate translocation or induce 

allosteric changes that render the neighboring proteolytic sites inactive. The discovery of 

a new targeting site on the proteasome is important for further drug development [195].  

Another class of proteasome inhibitors that targets the non-catalytic component of 

the ubiquitin proteasome pathway is ubistatins (Figure 1.13), which is a synthetic 

proteasome inhibitor obtained from a chemical genetic screen in Xenopus extracts [196]. 

This class of inhibitors was found to block the proteolysis of cyclin B and Sic1, which 
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resulted in cell cycle arrest. Verma et al. have also elegantly demonstrated that ubistatins 

target an ubiquitin-ubiquitin interface that is essential for the recognition of 

polyubiquitinated substrates [196], disrupting a vital step in the early stages of the 

ubiquitin proteasome pathway, which results in the inhibition of proteasomal proteolysis.  

 
 
Figure 1.13 Non-active site proteasome inhibitors that target ubiquitin, 19S 
regulatory complex and α subunits of proteasome. 
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Not surprisingly, the enzymatic cascade that dictates substrate specificity was also 

targeted. Particularly, the E3 ligase Mdm2, which is specific to the tumor suppressor p53 

and is commonly mutated in cancers. Therefore, an increasing effort was put into 

developing Mdm2 inhibitors as a potential therapeutic strategy for the treatment of 

malignant cancers. Two Mdm2 inhibitors have been reported thus far and they are known 

as nutlin [197, 198] and MI-219 (Figure 1.14) [199]. Both of these inhibitors were shown 

to bind to Mdm2, which disrupts the Mdm2-p53 interaction resulting in the activation of 

the p53 pathway in cancer cell lines. Inhibition of Mdm2 and subsequent p53 activation 

was shown to result in cell cycle arrest and eventually apoptosis in cancer cell lines [198, 

199]. These results further validate the targeting of Mdm2 as a potential drug candidate 

for cancer therapy. The first ubiquitin activating enzyme E1 inhibitor was recently 

reported and it was referred to as PYR-41 (Figure 1.14) [200]. Theoretically, such an 

inhibitor should block all ubiquitinations, but it was shown to preferentially induce 

apoptosis in transformed cells with wild type p53. Specifically, PYR-41 was shown to 

inhibit NFκB activation as well as increase levels of p53 and its downstream effectors 

[200]. This suggests that this new class of inhibitor may be useful as a potential cancer 

therapeutic agent as well as a valuable research tool for the biological studies of 

ubiquitination. Even though these non-proteasome targeting inhibitors cannot yet replace 

the proteasome active site-directed inhibitors, preliminary studies have been promising.  

 

 

 
Figure 1.14 Non active site proteasome inhibitors that target the ubiquitin enzymatic 
cascade. 
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3. Immunoproteasome Inhibitors 

The immunoproteasome is an alternative form of the proteasome that has a biased 

proteolytic cleavage pattern towards the generation of MHC class I antigens. Furthermore, 

its elevated expression level has been implicated in the pathogenesis of numerous 

physiological disorders. However, the advancement of immunoproteasome biology has 

been greatly hindered, due in large part to the lack of appropriate molecular probes such 

as immunoproteasome specific inhibitors. Consequently, much interest has been aroused 

due to the need for an immunoproteasome specific inhibitor, which would benefit 

immunoproteasome biology while also providing potential therapeutic interventions. 

Despite all the available proteasome inhibitors, there are still no known inhibitors that are 

selective for the immunoproteasome. Most inhibitors were demonstrated to target both 

the regular proteasome and immunoproteasome. This is due in large part to the high 

structural homology between the regular proteasome and immunoproteasome catalytic 

subunits, which has made the rational design of immunoproteasome inhibitors very 

challenging.  

Nevertheless, recent effort has been focused on the optimization of available 

proteasome inhibitors that also target immunoproteasomes. For example, Orlowski et al. 

developed an aldehyde based immunoproteasome inhibitor that was shown to display 

greater than 100-fold preference for the CT-L and BrAAP activities of 

immunoproteasomes (Figure 1.15a). Even though it was shown to induce apoptosis in 

hematological cancers that constitutively express the immunoproteasome, its modes of 

actions are still unclear [201]. In addition, a novel class of inhibitor that was shown to 

specifically target the immunoproteasome catalytic subunit LMP2 was very recently 

developed by Ho et al. (Figure 1.15b) [126]. It was observed that the aggressive and 

metastatic prostate cancer cell line PC3 expresses higher levels of LMP2 compared to the 

benign prostate cancer cell line LNCaP. This differential expression level of LMP2 was 

also demonstrated to correlate with an increased susceptibility of these cancer cells to the 

LMP2 specific inhibitor UK-101 [126]. Preliminary data revealed that UK-101 does not 

inhibit the usual NFκB activation pathway even though it was shown to induce apoptosis 

and cell cycle arrest in PC3 cells (unpublished data by Ho et al.). Nonetheless, these 

results suggest that cancer therapy using immunoproteasome inhibitors may be applied 
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not only to hematological cancers but also to solid tumors. One noteworthy advantage of 

this immunoproteasome targeting approach is that the immunoproteasome inhibitor will 

not target the essential regular proteasome that is present in all eukaryotic cells giving it 

lower toxicity. Finally, this type of therapeutic agent will help usher medicine into the era 

of personalized chemotherapeutics.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.15  (a) Aldehyde pharmacophore based immunoproteasome inhibitor that 
selectively targets CT-L and BrAAP activities of immunoproteasome. (b) 
Epoxyketone pharmacophore based immunoproteasome inhibitor that selectively 
targets the immunoproteasome catalytic subunit LMP2.  
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4. Activity-based Proteasome Probes 

While the development of proteasome inhibitors for therapeutic purposes is a 

recent phenomenon, proteasome inhibitors have traditionally been used as molecular 

probes for the functional studies of the proteasome itself. Even though we have gained a 

great deal of understanding in the last two decades since the discovery of the proteasome, 

there are still many questions that remained to be answered. In the past, fluorogenic 

substrates were used to measure proteasomal activity. However, a new generation of 

activity-based proteasome probes is beginning to emerge, which will be of tremendous 

help in the functional dissection of the proteasome. Specifically, these activity-based 

proteasome probes would allow for the real-time measurement of proteasomal activity in 

living cells while retaining the integrity of the 26S proteasome, which may provide 

crucial information on protein homeostasis and possibly disease progression.  

In general, this field of activity-based proteomics utilizes small-molecule 

inhibitors as activity-based probes that specifically interact with the catalytic sites of an 

enzyme by forming a stable covalent modification. Subsequently, the activity-based 

probes require a tag to provide a means to measure enzymatic activity. There are, 

however, many different tagging methods such as isotope, fluorescent, tandem, and 

affinity tags [202]. One of the first active site directed molecular probes that targets the 

proteasome is the tritiated lactacystin that was developed by Fenteany et al [160]. Using 

this tritium labeled lactacystin, Fenteany et al. was able to show that lactacystin 

selectively targets the proteasome via the covalent modification of the N-terminus 

threonine of the catalytic β5 subunits. On the other hand, Kisselev and colleague 

developed an activity-based probe for the proteasomal C-L activity that is labeled with an 

azide moiety at its N-terminal (Figure 1.16a) [190]. This labeling enables the direct 

visualization of C-L activity, which may be very useful during the further investigation of 

the biological functions of C-L activity and its associated catalytic subunits. Another 

class of activity-based proteasome probes is the fluorescent- tagged proteasome inhibitors 

[203-206]. For example, MV151 (Bodipy TMR-Ahx3L3VS) (Figure 1.16b) developed by 

Verdoes et al. was shown to label all catalytic subunits of the proteasome both in vitro 

and in vivo [204]. The applications of this broad spectrum probe include clinical profiling 

of proteasome activity, biochemical analysis of subunit specificity of inhibitors, and 
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biological analysis of the proteasome function and dynamics in living cells [204]. Also, 

epoxomicin was modified into an activity-based probe by Verdoes et al. using the Bodipy 

dye (Figure 1.16c), which can be employed for the direct assessment of the catalytic 

activity of the proteasome in living cells [205].  

 The recently reported LMP2 specific inhibitor by Ho et al. is also an excellent 

candidate for the development of an activity-based probe for the immunoproteasome. 

Further research will be needed to determine a tagging method that would not affect its 

inhibitory activity. Importantly, the success of an activity-based immunoproteasome 

probe will provide an additional tool to elucidate the biological functions of the 

immunoproteasome.   

 

 

 

 

 

 

 

 

 
 
 
Figure 1.16  Proteasome inhibitors tagged with fluorescent probes. 
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5. Conclusions 

Based on this preponderance of evidence, it is now widely accepted that the 

proteasome is a validated target for the development of therapeutic agents, particularly in 

cancer therapy. This is bolstered especially by the first FDA approved proteasome 

inhibitor bortezomib. Even though bortezomib has shown significant therapeutic success 

both as a single agent and as a combinatorial agent, drug-associated side effects still 

remain a major concern because it indiscriminately targets all proteasomes in the body. 

Consequently, considerable efforts have been put forth to develop low toxicity 

proteasome inhibitors. One such attempt is evidenced by the recent developments of 

proteasome inhibitors that target the non-catalytic sites such as the upstream components 

of the ubiquitin proteasome pathway and the non-catalytic subunits of the 26S 

proteasome. These indirect strategies have proven to be successful in vitro but they have 

yet to be tested for therapeutic intervention.  

Another approach to circumvent the drug-associated side effects of broad 

spectrum proteasome inhibitors is the selective inhibition of proteasome in disease states. 

Despite the initial assumption that the primary function of immunoproteasome is the 

generation of MHC class I antigens, recent evidence suggests otherwise. The 

immunoproteasome has been implicated in the pathogenesis of some diseases as well as 

the maintenance of normal immune system function. Specifically, overexpression of 

immunoproteasome catalytic subunits has been observed in diseases such as 

neurodegenerative diseases, autoimmune diseases, and cancer. Therefore, the 

immunoproteasome has drawn considerable attention as a potential therapeutic target. 

Currently, the lack of an immunoproteasome specific inhibitor is hindering not only the 

advancement of immunoproteasome biology but also the validation of 

immunoproteasome as a drug discovery target. Hence, it is at this point that I began my 

research work in the development of immunoproteasome specific inhibitors and its 

potential application in cancer. 
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C. Hypothesis and Specific Aims   

 

HYPOTHESIS 

 

The hypothesis set forth in this work is that a selective immunoproteasome inhibitor will 

target cancers that predominantly express the immunoproteasome, while sparing normal 

cells, alleviating toxicity. This research project will focus on the development of an 

immunoproteasome catalytic subunit (LMP2) inhibitor using dihydroeponemycin as a 

reference molecule. The selected lead compound will then be tested in commercially 

available prostate cancer cell lines for its therapeutic potential.    

 

 

SPECIFIC AIMS 

 

Specific Aim 1. Synthesize a small library of novel analogs of dihydroeponemycin 

with selectivity for the immunoproteasome catalytic subunit LMP2. This study will 

require the synthesis of a small library of novel dihydroeponemycin analogs, with the 

goal of achieving significant selectivity for the immunoproteasome catalytic subunit 

LMP2. Earlier work has shown that dihydroeponemycin targets both regular and 

immunoproteasome catalytic subunits. Furthermore, the linear hydrocarbon chain of 

dihydroeponemycin was shown to direct its subunit binding preference towards that of 

the immunoproteasome. These synthetic experiments will produce a small library of 

dihydroeponemycin analogs with amino acid residue substitutions at the P2 region and 

modification of the P1’ region with various commercially available protective groups.   

 

Specific Aim 2. Evaluate the synthesized library for its ability to selectively target 

the immunoproteasome catalytic subunit LMP2. In this study, the synthesized analogs 

of dihydroeponemycin will be screened for their ability to selectively target LMP2 using 

a previously established competition assay. The murine lymphoma (EL4) cells will be 

treated concurrently with dihydroeponemycin analog and a competing agent to determine 

the immunoproteasome catalytic subunit LMP2 binding specificity of the analogs. Biotin-
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tagged dihydroeponemycin and epoxomicin will be used in these experiments as 

competing agents as well as labeling probes for visualization.   

 

Specific Aim 3. Investigate and characterize the immunoproteasome subunit 

binding specificity of the selected lead compound in human cancer cell lines. As a 

novel compound, the immunoproteasome catalytic subunit binding specificity of the 

selected lead compound will be determined and characterized in commercially available 

human cancer cell lines. A similar competition assay will be performed to reconfirm the 

LMP2 specificity of the selected lead compound in prostate cancer cell lines. The binding 

of the lead compound to LMP2 will also be further characterized in prostate cancer cells 

for its dose and time dependent properties as well as binding activity. 

 

Specific Aim 4. Determine whether the selected lead compound is cytotoxic to 

normal endothelial cells that do not express immunoproteasomes. A 3D endothelial 

cell sprouting assay will be used to determine the cytotoxicity of the selected lead 

compound in normal endothelial cells. These cells do not express immunoproteasomes, 

which will enable the investigation of whether the selected compound will target the 

constitutive proteasomes. The results obtained could be translated into potential systemic 

cytotoxicity of the selected lead compound.  

 

Specific Aim 5. Investigate the modes of action of the selected lead compound in 

commercially available prostate cancer cell lines. Using commercially available 

prostate cancer cell lines, the correlation between LMP2 inhibition and cell survival will 

be investigated using the MTT cell proliferation assay. Subsequently, the biological 

effects of the selected lead compound in apoptosis, cell cycle, proteolysis, and 

inflammation will be analyzed in the effort to help determine the mode of action of the 

selected lead compound. The results obtained will facilitate better understanding of not 

only the mode of action of the lead compound but also the biological functions of LMP2.  

 

 

Copyright © Yik Khuan (Abby) Ho 2008 
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CHAPTER TWO: SYNTHESIS AND EVALUATION OF 

DIHYDROEPONEMYCIN ANALOGS  

 

A. Introduction 

The primary goal of this study is to synthesize and evaluate dihydroeponemycin 

analogs in order to discover a selective immunoproteasome catalytic subunit LMP2 

inhibitor. Among the broad spectrum proteasome inhibitors that target both the regular 

proteasome and immunoproteasome, the epoxyketone dihydroeponemycin was selected 

for derivatization purposes, as it was previously reported to target only the LMP2, LMP7 

and X catalytic subunits [207]. Dihydroeponemycin is composed of four different 

moieties, labeled as P3, P2, P1 and P1’ (Figure 2.1a). The P3 moiety is an isooctanoic 

acid whose linear hydrocarbon skeleton was demonstrated to be responsible for targeting 

the immunoproteasome catalytic subunits [208]. While the P2 moiety is a serine amino 

acid residue, the P1 moiety contains the vital α’,β’-epoxyketone pharmacophore that was 

shown to selectively target the catalytic subunits of proteasome via covalent modification 

[170]. Finally, the P1’ moiety is a free hydroxyl group believed to be involved in 

determining immunoproteasome subunit binding specificity [209].   

 

 

 

 

 
 

 
 
 
Figure 2.1 (a) Dihydroeponemycin (b) Structural scaffold design of 
dihydroeponemycin analog 
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 Based on this structural information, an isooctanoic-based dihydroeponemycin 

analog may provide an opportunity for the development of immunoproteasome specific 

inhibitors. As shown in Figure 2.1b, a dihydroeponemycin-based scaffold design will be 

used as a reference for the synthesis of the first generation of dihydroeponemycin analogs. 

Specifically, the P3 and P1 moieties will be fixed while the P2 and P1’ moieties will be 

replaced with a variety of amino acid residue and a plethora of commercially available 

hydroxyl protective groups, respectively. Nevertheless, synthetic challenges presented 

themselves and were resolved by the development of an alternative and improved 

synthetic strategy for dihydroeponemycin. This strategy allowed for the modification of 

the two moieties and combinations of the individual modification to generate numerous 

dihydroeponemycin analogs. The small library was then screened for its 

immunoproteasome catalytic subunit specificity using a competition assay. In order to 

successfully carry out the competition assay, biotin-tagged dihydroeponemycin and 

epoxomicin were synthesized to serve as competing agents as well as labeling probes. 
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B. Development of an Improved Synthetic Strategy  

Even though several synthetic routes have been reported over the years, the 

efficient synthesis of dihydroeponemycin has remained a challenge due in large part to 

the lack of an efficient synthetic approach for the hydroxymethyl-substituted enone 

intermediate (Scheme 2.1). This particular intermediate is the precursor to the right hand 

fragment of dihydroeponemycin, which contains the P1 and P1’ moieties. Such a 

bottleneck has undoubtedly hindered the large scale preparation of P1’ 

dihydroeponemycin derivatives. Therefore, an improved synthetic strategy for the 

hydroxymethyl-substituted enone intermediate was developed to overcome this particular 

obstacle [210]. 

 
 
Scheme 2.1  Conventional synthetic scheme of dihydroeponemycin. 
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 Briefly, the starting material Boc-Leu-OMe (1) was prepared from the reaction of 

Boc-Leu-OH with iodomethane in dimethylformamide (DMF). The following reaction of 

Boc-Leu-OMe (1) with dimethyl methylphosphonate treated with n-butyllithium (BuLi) 

yielded compound 2. Finally, the combination of Wittig-Horner and Baylis-Hillman type 

one-pot reactions produced the hydroxymethyl-substituted enone 3 in high yield (Scheme 

2.2). This reaction may be mechanistically rationalized as shown in Scheme 2.3. In the 

following steps of Scheme 2.2, the derivatization of the P1’ moiety occurs. The resulting 

enone 3 could be modified with a variety of commercially available hydroxyl protective 

group. For example, enone 3 was treated with tert-butyl dimethylchlorosilane 

(TBDMSCl) to yield compound 4. Next, the epoxidation of 4 with hydrogen peroxide 

afforded two epoxyketone isomers 5a and 5b in a 1:1.5 mixture that were readily 

separated by flash column chromatography using an elution system (hexanes-ethyl 

acetate = 10:1, v/v). The isomer 2-(R)-epoxide 5b, which migrated faster than 2-(S)-

epoxide 5a isomer in thin-layer chromatography (TLC), was found to have the same 

configuration as that of eponemycin. Although epoxidation could occur at a higher 

stereo-selectivity, it is of great interest to employ both isomers for biological study 

purposes [210]. While the S configuration of the epoxide in the 5a isomer has been 

shown to be inactive in epoxomicin and dihydroeponemycin, it is essential to utilize the 

dihydroeponemycin analog containing the inactive epoxide as negative control (For more 

details, please refer to [210]). This novel synthetic strategy has an improved yield as well 

as a simpler methodology, which has greatly facilitated the synthesis and derivatization 

of dihydroeponemycin analogs.  
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Scheme 2.2  Reagents and conditions: (a) i. CH3PO(OCH3)2, BuLi, THF, -78oC, 2h; 
ii. 1, THF, -78oC, 3h; (b) CH2O, K2CO3, H2O, rt, 3h; (c) TBDMSCl, Imidazole, 
CH2Cl2, rt, 24h; (d) Benzonitrile, H2O2, i-Pr2EtN, MeOH, 0oC, 3h 
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Scheme 2.3  Mechanistic rationale for the sequential Wittig-Horner and Baylis-
Hillman type one pot reaction. 
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C. Synthesis of Dihydroeponemycin Analogs 

In the course of this study, three major synthetic routes were carried out in order 

to obtain a small library of dihydroeponemycin analogs. Generally, the P2 moiety is 

replaced with an alternative amino acid residue and the P1’ moiety is modified using a 

variety of commercially available hydroxyl protective groups. The three general 

procedures utilized in this study are referred to as General Reactions 1-3. General 

Reaction 1 involves an amide linkage formation between heptanoic acid and an amino 

acid residue, which gives the left hand fragment containing the P3 and P2 moieties. 

General Reaction 2 involves the derivatization of the free hydroxyl group in the 

hydroxymethyl-substituted enone (3), which was described in the previous section. 

Finally, General Reaction 3 is the final coupling reaction between the right hand and left 

hand fragments. These reactions are further illustrated below: 
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General Reaction 1: 

 In order to determine whether the serine residue in the P2 moiety plays a role in 

proteasomal inhibition, alternative amino acid residues such as alanine was used in place 

of serine. Equimolar amounts of heptanoic acid and amino acid residue with protected 

carboxyl group were added to the peptide coupling reagents O-Benzotriazole-N,N,N’,N’-

tetramethyluronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole (HoBt) 

hydrate in methylene chloride (CH2Cl2). The coupling reagent HoBt was used 

particularly to help reduce the formation of stereoisomers at the R position. Finally, N,N-

diisopropylethylamine (DIPEA) was added last to the reaction solution as a base to 

accelerate the reaction. The resulting product mixture is easily purified via silica gel 

column chromatography. Finally, the benzyl protective group is cleaved via 

hydrogenation in methanol (MeOH) and ethyl acetate (EtOAc) giving a free hydroxyl 

group for the next coupling reaction (See Scheme 2.4).  

 

 

 

 

 

 

 

 

 

 

 
 
 
Scheme 2.4  Synthesis of the left hand fragment of dihydroeponemycin analogs. 
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General Reaction 2:  

Derivatization of the P1’ moiety is achieved via modifying the free hydroxyl 

group of the hydroxymethyl-substituted enone (3) with commercially available hydroxyl 

protective groups such as tert-butyldiphenylsilyl (TBDPS), TBDMS, methoxy methyl 

(MOM), methoxyethoxy methyl (MEM), and tetrahydropyran (THP). Briefly, 

hydroxymethyl-substituted enone (3) obtained from the reactions described in the 

previous section was subjected to numerous derivatizations before epoxidation. This 

particular succession of reactions has been determined experimentally to give a higher 

yield compared to when epoxidation occurs before derivatization. The discrepancy may 

be explained by the steric hindrance of the epoxide, which could prevent the coupling of 

the protective groups to the hydroxyl group. The epoxidation reaction also yielded two 

diastereomers at the C-2 stereocenter, which gave a mixture of epoxide epimers. The 

mixtures were readily separated by column chromatography and the stereochemistry of 

these epoxide rings has been previously determined [169]. Specifically, Sin et al. 

reported that the epoxide ring with an R configuration is the active form of epoxide found 

in epoxomicin [169]. Finally, the Boc protecting group is cleaved with excess 

trifluoroacetic acid (TFA) in CH2Cl2 (See Scheme 2.5). Upon completion of the reaction, 

TFA is thoroughly removed by drying under vacuum overnight.  
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Scheme 2.5  Modification of the intermediate 3 with commercially available hydroxyl 
protective groups such as TBDPS, MOM, MEM, DHP, and TBDMS to generate a 
series of right hand fragment analogs.  
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General Reaction 3: 

 The final coupling reaction to obtain the dihydroeponemycin analogs containing 

the active epoxide was achieved by adding equimolar amounts of active right hand and 

left hand fragments to a solution of HBTU and HoBt hydrate in methylene chloride. 

Similarly, DIPEA was added last to the reaction mixture (See Scheme 2.6). The resulting 

product mixture was purified via silica gel column chromatography. The 

dihydroeponemycin analogs were then structurally confirmed using nuclear magnetic 

resonance (NMR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Scheme 2.6  Final coupling reaction of dihydroeponemycin analog containing the 
active epoxide.  
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Based on these general reactions, a total of 12 compounds were successfully 

synthesized as the first small library of dihydroeponemycin analogs (Figure 2.2). Among 

these derivatives is Epn (Figure 2.2). Even though its P3 moiety is a heptanoic acid 

instead of an isooctanoic acid, it has been shown to exhibit very similar binding pattern 

and biological activity as dihydroeponemycin (data not shown). Therefore, Epn would be 

used in the following experiments in place of dihydroeponemycin. Furthermore, these 

analogs can also be divided into two categories: those with a serine residue and those 

with an alanine residue at the P2 site. As mentioned earlier, dihydroeponemycin contains 

two stereocenters, which are at the C-2 and C’-2 positions. While the active 

configurations at these stereocenters have been previously determined [169, 207], the 

library of dihydroeponemycin analogs has included two compounds containing the 

inactive configurations for confirmation purposes. As shown in figure 2.2, SMEM-2 

contains the inactive R configuration at C’-2 position and AM-2 contains the inactive S 

configuration at C-2 position. The alternative configurations of SMEM-2 and AM-2 

were determined by comparison of NMR data between the inactive and active 

configurations found in the other analogs. Subsequently, these analogs underwent a 

screening process using a competition assay in order to select a lead compound that 

specifically targets the immunoproteasome catalytic subunits.  
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Figure 2.2 The first small library of dihydroeponemycin analogs 
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D. Synthesis of Biotin Probes 

In order to successfully carry out the competition assay, biotin-tagged 

dihydroeponemycin and epoxomicin were needed to serve as competing agents as well as 

labeling probes for visualization purposes. The syntheses of biotin-tagged 

dihydroeponemycin and epoxomicin have been previously reported by Sin et al. [169, 

207]. However, the previously described synthetic strategy of hydroxymethyl-substituted 

enone (3) was incorporated along with some minor changes, resulting in the improved 

synthetic schemes of biotin-tagged dihydroeponemycin and epoxomicin which are shown 

in Schemes 2.7 and 2.8. These molecules were structurally verified using NMR and mass 

spectrometry.  

 

 

 

 

 

 

 
 
Scheme 2.7  The synthetic scheme of biotin-tagged dihydroeponemycin. 
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Scheme 2.8  The synthetic scheme of biotin-tagged epoxomicin.  
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E. Screening of Dihydroeponemycin Analogs 

In order to screen for an immunoproteasome catalytic subunit specific compound, 

the competition assay by which a dihydroeponemycin analog competes with biotin-

tagged dihydroeponemycin for the immunoproteasome catalytic subunit LMP2 was 

developed. Briefly, the murine lymphoma EL4 cells were treated with increasing 

concentrations of the dihydroeponemycin analog 30 minutes prior to the addition of 

biotin-tagged dihydroeponemycin or epoxomicin and then incubated for an additional 

hour. Western blotting was subsequently carried out using a streptavidin-horseradish 

peroxidase (HRP) antibody that specifically labels biotin. The visualization of 

biotinylated proteins indicates the presence covalent protein adduct formation [169]. The 

EL4 cell system was used in this screening assay because these cells express high levels 

of both the constitutive and immunoproteasome catalytic subunits. It was expected that 

pre-incubation of a LMP2-specific inhibitor in EL4 cells will result in the covalent 

modification of the threonine catalytic residue of the LMP2 subunit. The occupied LMP2 

subunit will then prevent further modification by the biotin-tagged assay probes. Without 

the probes, the LMP2 catalytic subunit will not be visualized on western blot. On the 

other hand, catalytic subunits that are not targeted by the LMP2 inhibitor will be 

covalently labeled by the assay probe and visualized on western blot. 

Analogs Epn and Epn-A were first tested to determine whether the hydroxyl 

group on the serine residue that is commonly present in both epoxomicin and 

dihydroeponemycin plays an important role in the preferential targeting of 

immunoproteasome catalytic subunits. As shown in Figure 2.3, a major 23 kDa and a 

minor 25 kDa proteins were observed in cells that were treated with only biotin-tagged 

dihydroeponemycin. These two bands have been previously identified as LMP7/X and 

LMP2 [168, 208]. As expected, these protein bands were efficiently competed away by 

excess Epn, which is structurally and biologically very similar to dihydroeponemycin. In 

addition, the bands were also efficiently competed away by Epn-A (Figure 2.3). Both 

analogs were observed to compete with biotin-dihydroeponemycin at a comparable rate. 

This result suggested that the serine residue of dihydroeponemycin is not crucial for its 

immunoproteasome catalytic subunit binding [210].   
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Next, we tested the remaining dihydroeponemycin analogs in a similar 

competition assay. As shown in Figure 2.2, the heptanoic acid moiety was retained while 

the P2 and P1’ sites were modified. First, the commonly available short linear MOM 

hydroxyl protective group was used to prepare analogs AMOM and SMOM. These 

substitutions induced a significant loss in the potency and specificity compared to Epn 

(Figure 2.4). Similarly, analogs with a bulky TBDPS protective group (AP and SP) or 

THP protective group (ATHP) also resulted in the loss of subunit-binding activity against 

immunoproteasomes.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.3 Competition assay was performed to analyze the importance of the 
serine residue at the P2 position of dihydroeponemycin. The LMP7/X and LMP2 
bands labeled by biotin-dihydroeponemycin are shown to be competed away by 
Epn or Epn-A on western blot. EL4 cells were pre-treated with Epn or Epn-A 30 
minutes prior to the addition of biotin-dihydroeponemycin for visualization of the 
catalytic subunits. After 1 hour incubation, cells were lysed and analyzed by 
western blot using streptavidin-HRP and ECL.  
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 Surprisingly, when the MOM protective group was replaced with a longer linear 

MEM protective group (SMEM-1), a relatively higher specificity towards LMP2 was 

observed (Figure 2.4). However, analog SMEM-2, with alternative chirality at its P2 site, 

lost its LMP2 selectivity shown in analog SMEM-1. This discrepancy confirms that the S 

configuration of P2 moieties is the active configuration. Furthermore, when a TBDMS 

protective group was attached at the C-terminal hydroxyl group with an alanine residue at 

its P2 site (AM), an even higher specificity towards the LMP2 subunit was observed 

(Figure 2.4). Pre-incubation of EL4 cells with 1 µM of the analog AM was sufficient to 

covalently modify all of the LMP2 subunit in EL4 cells, therefore preventing further 

modification of the LMP2 subunit by biotin-tagged dihydroeponemycin. This resulted in 

the selective attenuation of the LMP2 protein band as shown on the western blot (Figure 

2.4). However, when the alanine residue of AM was substituted with a serine residue, 

which produced analog SM, the LMP2 specificity was dramatically reduced (Figure 2.4). 

In addition, when the inactive configuration of the epoxide moiety was used (AM-2), the 

LMP2 selectivity of AM was completely abolished, as expected (Figure 2.4).  

 
Figure 2.4 Two dihydroeponemycin analogs were found to bind selectively to the 
immunoproteasome catalytic subunit LMP2. EL4 cells were pre-incubated with the 
analogs prior to the addition of biotin probe for the visualization of the subunits. 
Analogs that target the proteasome subunits will not be labeled by the biotin-probe. 
Western blot results show that AM and SMEM-1 selectively targets LMP2.    
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On the other hand, a similar competition experiment was carried out using an 

alternative assay probe (biotin-epoxomicin), which was previously shown to covalently 

label proteasome subunits LMP7, X, MECL-1, and Z [169]. Western blot results clearly 

showed that analogs AM and SMEM-1 do not compete with biotin-epoxomicin (Figure 

2.5). This negative result further supported the conclusion that both analogs AM and 

SMEM-1 selectively target the LMP2 subunit but not other proteasome subunits [126]. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.5  Competition assay using a different biotin probe (biotin-epoxomicin) was 
performed to confirm that AM and SMEM-1 do not target other catalytic subunits 
(LMP7, X, Z and MECL-1) that are labeled by biotin-epoxomicin.  
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F. Conclusions 

This study was undertaken to develop and evaluate dihydroeponemycin analogs 

as inhibitors for the immunoproteasome catalytic subunit LMP2. The development of the 

first immunoproteasome inhibitor would contribute tremendously to the advancement of 

immunoproteasome biology as well as the investigation into the pathogenesis of many 

diseases. The design and synthesis of the first generation of dihydroeponemycin analogs 

yielded a small library of 12 molecules, which was focused on the modification of the P1’ 

site utilizing a variety of hydroxyl protective groups. These analogs were then screened 

for LMP2 selectivity via competition assay. The results obtained from the screening 

assay produced a promising lead compound AM, which was shown to exhibit the highest 

selectivity for the LMP2 subunit (Figure 2.4 and 2.5). These results also revealed that 

when the P1’ site of dihydroeponemycin analogs were modified with a linear, cyclic, or 

large bulky protective group, not only did they not show selectivity towards any of the 

immunoproteasome catalytic subunits, their ability to bind to the proteasome was 

completely abolished as well (Figure 2.4). In addition, the P2 moiety might play a role in 

determining subunit specificity because a noticeable difference in the LMP2 selectivity 

between the analogs SM and AM were observed on western blot (Figure 2.4). Therefore, 

the lead compound will undergo further optimization by modifying the P2 site with 

various amino acid residues while the rest of the molecular structure is retained.      
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G. Methods and Materials 

The following includes the experimental protocols and structural characterization 

of the dihydroeponemycin analogs and biotin-tagged probes. In addition, the 

experimental procedure of the competition assay is further elaborated. 

 

General Remarks: Unless otherwise stated, all reactions were carried out under 

Nitrogen with dry freshly distilled solvents, over-dried glassware, and magnetic stirring. 

All solvents were reagent grade. Tetrahydrofuran (THF) was distilled from 

sodium/benzophenone. CH2Cl2 was distilled from calcium hydride. Diethyl ether 

anhydrous was purchased from EMD Chemicals and used without further purification. 

All other reagents were purchased from Sigma-Aldrich and used without further 

purification. All reactions were monitored by TLC using E. Merk 60F254 pre-coated silica 

gel plates. Flash column chromatography was performed using E. Merk silica gel 60 

(particle size 0.040-0.063mm) and with the indicated solvents. 1H and 13C NMR spectra 

were recorded in deuterated chloroform (CDCl3) using a Varian 300MHz spectrometer at 

ambient temperature using an internal deuterium lock unless stated otherwise. Chemical 

shift are referenced to residual chloroform (δ = 7.27ppm for 1H and δ = 77.0 ppm for 

13C). High and low resolution mass spectra were carried out by the University of 

Kentucky Mass Spectrometry Facility. 

 

(4S)-3-(tert-butoxycarbonyl)amino-5-methylhexa-2-one-1-dimethylphosphonate (2). 

To a solution of dimethyl methylphosphonate (9mL, 82.3mmol) in THF (50mL) at –78oC, 

t-BuLi (2.5M in hexane, 33mL, 82.3mmol) was added drop wise. The solution was 

stirred at –78oC for 2h. A solution of Boc–Leu–OCH3 (12) (5.05g, 20.6mmol) in THF 

(30mL), was then added to the mixture at –78oC. After stirring for 3h, the resulting 

mixture was poured into water (100mL) and extracted with diethyl ether (3 × 80mL). The 

organic layers were combined, washed with brine, dried with Na2SO4, filtered and 

concentrated under reduced pressure. The product was then subjected to flash column 

chromatography (hexane:EtOAc, 1:1) to give a soft white solid 2 (11.5g, 93%): 1H 

NMR: δ = 5.22 (d, 1 H, NH), 4.34 (m, 1 H, 3-H), 3.81 (d, 3 H, 3JH-P = 3.3Hz, 

CH3O(PO)OCH3), 3.77 (d, 3 H, 3JH-P = 3.3Hz, CH3O(PO)OCH3), 3.22 (dd, 1 H, 2JH-P = 
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94.8Hz, 2JH-H = 13.8Hz, 1-Ha), 3.22 (dd, 1 H, 2JH-P = 50.1Hz, 1-Hb), 1.67 (m, 2 H, 6-H, 5-

Ha), 1.45 (s, 9 H, HBoc), 1.38 (m, 1 H, 5-Hb), 0.96 (d, 3J = 3.6Hz, 3 H, CH3CHCH3), 0.94 

(d, 3 H, 3J = 3.6Hz, 3 H, CH3CHCH3) ppm. 13C NMR: δ = 202.41 (C-2), 155.62 (COBoc), 

76.80 (Boc), 59.09 (C-1), 53.40 (C-3), 40.14 (C-4), 39.15 (CH3O(PO)OCH3), 37.43 

(CH3O(PO)OCH3), 28.62 (Boc), 25.14 (C-5), 23.59 (C-5)CH3, 21.85 (C-6) ppm. HRMS 

(EI): m/z = 338.1709, calcd. for C14H27DNO6P: m/z = 338.1712. Synthetic procedures 

were performed as previously described [210]. 

 

(4S)-4-(tert-butoxycarbonyl)amino-2-hydroxy-methyl-6-methylhept-1-en-3-one (3). 

K2CO3 solution (1.51g, 10.2mmol, in 33.3mL H2O) was added drop wise using a 

dropping funnel over a period of 15 min to a vigorously stirring solution of 2 in 

formaldehyde (10mL, 360mmol). The solution was then stirred vigorously at room 

temperature for 4h. The resulting mixture was poured into water (80mL) and the crude 

product was extracted with diethyl ether (3 × 50mL). The combined organic layers were 

washed with brine, dried with Na2SO4, filtered and concentrated under reduced pressure. 

Flash column chromatography (hexane:EtOAc, 3:1) afforded 3 as a yellowish oil (5.15g, 

55.6%). 1H NMR: δ = 6.24 (s, 1 H, 1-Ha), 6.12 (s, 1 H, 1-Hb), 5.13 (br, 1 H, NH), 5.03 

(m, 1 H, 4-H), 4.34 (dd, 2 H, 2J = 15.3Hz, 2J = 15.6Hz, (C-2)CH2), 2.38 (br, 1 H, OH), 

1.74 (m, 1 H, 6-H), 1.50 (m, 1 H, 5-Ha), 1.43 (s, 9 H, HBoc), 1.38 (m, 1 H, 5-Hb), 1.01 (d, 
3J = 6.6Hz, 3 H, CH3CHCH3), 0.92 (d, 3 H, 3J = 6.6Hz, 3 H, CH3CHCH3) ppm. 13C 

NMR: δ = 201.86 (C-3), 155.69 (COBoc), 145.01 (C-2), 126.44 (C-1), 76.84 (Boc), 62.66 

(C-2)CH2, 53.31 (C-4), 43.06 (C-5), 28.70 (Boc), 25.37 (C-6), 23.74 (C-7), 22.08 (C-

6)CH3 ppm. HRMS (EI): m/z = 272.1844, calcd. for C14H24DNO4: m/z = 272.1846. 

Synthetic procedures were performed as previously described [210]. 

 

(4S)-4-(tert-butoxycarbonyl)amino-2-tert-butyldimethylsiloxymethyl-6-methylhept-

1-en-3-one (4). To a solution of 3 (137mg, 0.50mmol) in CH2Cl2 (5mL), imidazole 

(100mg, 1.46mmol) and tert-butyldimethylsilyl chloride (228mg, 1.51mmol) was added. 

After stirring at room temperature for 24h, the resulting mixture was concentrated under 

reduced pressure and was subjected to flash column chromatography (hexane:EtOAc, 

10:1) giving 4  (158mg, 81%) as a yellowish oil. 1H NMR: δ = 6.20 (d, 2J = 10.2Hz, 2 H, 
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1-H), 5.07 (m, 2 H, NH, 4-H), 4.36 (dd, 2J = 30.90Hz, 2J = 14.70Hz, 2 H, (C-2)CH2), 

1.72 (m, 1 H, 6-H), 1.48 (m, 1 H, 5-Ha), 1.42 (s, 9 H, HBoc), 1.31 (m, 1 H, 5-Hb), 1.01 (d, 
3J = 6.6Hz, 3 H, CH3CHCH3), 0.91 (s, 9 H, (C-2)tBu-H), 0.90 (d, 3 H, 3J = 6.4Hz, 3 H, 

CH3CHCH3), 0.07 (d, 4J = 5.6Hz, 6 H, (C-2)CH3SiCH3) ppm. Synthetic procedures were 

performed as previously described [210]. 

 

(2RS,4S)-4-(tert-butoxycarbonyl)amino-2-tert-butyldimethylsiloxymethyl-6-methyl-

1,2-oxiranyl-heptane (5a, 5b). To a solution of 4 (158mg, 0.40mmol) in MeOH (5mL) 

at 0oC was added benzonitrile (0.3mL, 3.0mmol), H2O2 (0.45mL, 50% solution in H20, 

7.8mmol), and diisopropylethylamine (0.5mL, 3.0mmol). The reaction was stirred at 0oC 

for 3h. The resulting mixture was concentrated under reduced pressure and subjected to 

flash column chromatography to yield 5a and 5b with a ratio of 1:1.5 (107mg, 65%). 5b 

1H NMR: δ = 4.80 (br, 1 H, NH), 4.43 (d, 2J = 11.7Hz, 1 H, (C-2)CHa
2), 4.34 (m, 1 H, 4-

H), 3.57 (d, 2J = 11.4Hz, 1 H, (C-2)CHb
2), 3.18 (d, 2J = 4.3Hz, 1 H, 1-Ha), 3.01 (d, 2J = 

4.3Hz, 1 H, 1-Hb), 1.74 (m, 1 H, 6-H), 1.62 (m, 1 H, 5-Ha), 1.41 (s, 9 H, HBoc), 1.07 (m, 1 

H, 5-Hb), 0.99 (d, 3J = 6.3Hz, 3 H, CH3CHCH3), 0.94 (d, 3 H, 3J = 6.3Hz, 3 H, 

CH3CHCH3), 0.87 (s, 9 H, (C-2)tBu-H), 0.06 (d, 4J = 5.2Hz, 6 H, (C-2)CH3SiCH3) ppm. 

MS (ESI): m/z = 526, calcd. for C30H42DNO5Si: m/z = 526. Synthetic procedures were 

performed as previously described [210]. 

 

(2R,4S)-2-Hydroxymethyl-4-[(S)-N-heptanoyl-serylamino]-6-methyl-1,2-

oxiranylheptane (Epn). HBTU (142mg, 0.374mmol), HoBt (57mg, 0.372mmol), and 

lastly, DIPEA (0.22mL, 1.26mmol) were added to a solution of (2R,4S)-4-amino-2-tert-

butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane (75mg, 0.248mmol) and (S)-O-

tert-butyldiphenylsiloxymethyl-N-heptanoyl-serine (108mg, 0.237mmol) in CH2Cl2 

(5mL). The reaction solution was stirred at room temperature overnight. The resulting 

mixture was concentrated under reduced pressure and subject to flash column 

chromatography (Hex:EtOAc, 5:1) which yielded the TBDMS-TBDPS-protected Epn as 

a white solid (40mg, 23%). 1H NMR: δ = 7.71 (d, J = 7.8Hz, 2 H, Ar-H), 7.63 (dd, J = 

16.9Hz, J = 6.7Hz, 2 H, Ar-H), 7.41 (m, 6 H, Ar-H), 7.02 [d, J = 8.4Hz, 1 H, NH(C-4)], 

6.18 [d, J = 6.6 Hz, 1 H, NH(C-4)], 4.63 (m, 2 H, 2’,4-H), 4.45 [dd, J = 19 Hz,  J = 11.6 
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Hz, 1 H, (C-2)CHa
2], 4.02 (m, 1 H, 3’-Ha), 3.71 (m, 1 H, 3’-Hb), 3.55 [dd, J = 11.4 Hz,  J 

= 8.8 Hz, 1 H, (C-2)CHb
2], 3.17 (d, J = 5.1 Hz, 1 H, 1-Ha), 3.01 (d, J = 4.8 Hz, 1 H,  1-

Hb), 2.13 (t, J = 7.5 Hz, 2 H, 2’’-H), 1.63 (m, 4 H, 3’’-Ha, 5-Ha, 6-H and 6’’-H), 1.27 (m, 

4 H, 4’’-H, 5-Hb, 3’’-Hb), 1.16 (m, 2 H, 5’’-H), 1.06 [s, 9 H, (C-3’’)tBu-H], 0.96 (d, J = 

6.2Hz, 3 H, CH3CHCH3), 0.93 (d, 3 H, J = 6.1Hz, 3 H, CH3CHCH3), 0.87 [s, 9 H, (C-

2)tBu-H], 0.06 [d, 4J = 5.6Hz, 6 H, (C-2)CH3SiCH3] ppm. 

 

To a solution of TBDMS-TBDPS-protected Epn (40mg, 0.0541mmol) in tetrahydrofuran 

(THF) (0.5mL), tetrabutylammonium fluoride (TBAF) (1.0M in THF, 20μL, 0.069mmol) 

was added. The reaction solution was stirred at room temperature for 10 minutes. The 

resulting mixture was then concentrated under reduced pressure and subjected to flash 

column chromatography (Hex:EtOAc, 1:4) to give the final product Epn as a yellowish 

oil (3.5mg, 16.7%). 1H NMR: δ = 7.13 [d, J = 7.1Hz, 1 H, NH(C-4)], 6.50 [d, J = 7.1Hz, 

1 H, NH(C-2’)], 4.49 (m, 2 H, 2’, 4-H), 4.19 [d, J = 12.6Hz, 1H, (C-2)CHa
2], 4.00 (dd, J 

= 11.4Hz, J = 3.4Hz, 1 H, 3’-Ha), 3.70 [d, J = 12.6Hz, 1 H, (C-2)CHb
2], 3.55 (dd, J = 

11.4Hz, J = 5.8Hz, 1 H, 3’-Hb), 3.29 (d, J = 4.9Hz, 1 H, 1-Ha), 3.07 (d, J = 4.9Hz, 1 H, 1-

Hb), 2.20 (s and t, J = 7.6Hz, 3 H,  2’’- H and OH), 1.62 (s, 1H, OH), 1.57 (m, 4 H, 3’’-Ha, 

5-Ha, 6-H and 6’’-H), 1.27 (m, 4 H, 4’’-H, 5-Hb, 3’’-Hb), 1.16 (m, 2 H, 5’’-H), 0.92 (d, J 

= 6.2Hz, 3 H, CH3CHCH3), 0.91 (d, 3 H, J = 6.1Hz, 3 H, CH3CHCH3) ppm. 13C NMR: δ 

= 208.64 (C-3), 174.65 (C-1’’), 172.12 (C-1’), 63.43 (C-3’), 62.99 (C-2), 62.23 (C-9), 

54.13 (C-2’), 25.22 (C-4), 50.08 (C-1), 39.25 (C-5 and C-5’’), 37.19 (C-2’’), 28.46 (C-

6’’), 27.68 (C-4’’), 26.53 (C-3’’), 25.96 (C-6), 23.97 (C-8), 23.24 (C-7’’ and C-8’’), 

21.74 (C-7) ppm.  

 

(2R,4S)-2-Hydroxymethyl-4-[(S)-N-heptanoyl-alanylamino]-6-methyl-1,2-

oxiranylheptane (Epn-A). To a solution of AP (48mg, 0.0788mmol) in THF (0.5mL), 

TBAF (1.0M in THF, 0.20mL, 0.69mmol) was added. The reaction solution was stirred 

at room temperature for 30 minutes. The resulting mixture was then concentrated under 

reduced pressure and subjected to flash column chromatography (Hex:EtOAc, 1:1) to 

give the final product Epn-A as a yellowish oil (20mg, 68%). 1H NMR: δ = 6.80 (d, J = 

7.8 Hz, 1H, 4-NH), 6.96 (d, J = 6.6 Hz, 1H, 2’-NH), 4.53 (m, 2H, 4-H, 2’-H), 4.18 (d, J = 
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12 Hz, 1H, 2-CHa
2), 3.74 (d, J = 12 Hz, 1H, 2-CHb

2), 3.34 (d, J = 5.4 Hz, 1H, 1-Ha), 3.08 

(d, J = 4.2 Hz, 1H, 1-Hb), 2.17 (t, J = 7.5 Hz, 2H, 2’’-H), 1.62 (m, 4H, 6-H, 5-Ha, HHep), 

1.34 (d, J = 6.6 Hz, 3H, 3’-CH3), 1.25 (m, 6H, HHep), 0.94 (t, J = 5.7 Hz, 6H, 

CH3CHCH3), 0.85 (m, 3H, 7’’- CH3) ppm. 

 

(2R,4S)-2-tert-Butyldiphenylsiloxymethyl-4-[(S)-N-heptanoyl-serylamino]-6-methyl-

1,2-oxiranylheptane (SP). HBTU (32mg, 0.0843mmol), HoBt (13mg, 0.0848mmol) and 

lastly DIPEA (50µL, 0.287mmol) were added to a solution of (2R,4S)-4-amino-2-tert-

butyldiphenylsiloxymethyl-6-methyl-1,2-oxiranylheptane (77mg, 0.18mmol) and (S)-N-

heptanoyl-serine (12mg, 0.0552mmol) in CH2Cl2 (3mL). The reaction solution was 

stirred at room temperature for 3h. The resulting mixture was concentrated under reduced 

pressure and subject to flash column chromatography (Hex:EtOAc, 3:1) which yielded 

the SP as a colorless oil (8mg, 23%). 1H NMR: δ = 7.67 (m, 4H, Ar-H), 7.40 (m, 6H, Ar-

H), 7.01 (d, J = 7.2 Hz, 1H, 4-NH), 6.53 (d, J = 6.9 Hz, 1H, 2’-NH), 4.54 (m, 3H, 4-H, 

2’-H, 2-CHa
2), 4.09 (d, 1H, 3’-Ha), 3.60 (m, 1H, 3’-Hb), 3.47 (m, 1H, 2-CHb

2), 3.2 (d, J = 

4.8 Hz, 1H, 1-Ha), 2.99 (d, J = 4.5 Hz, 1H, 1-Hb), 2.25 (m, 2H, 2’’-H), 1.69 (m, 4H, 6-H, 

5-Ha, HHep), 1.27 (m, 6H, HHep), 1.01 [s, 12H, (C-2)tBu-H, 7’’-CH3], 0.97 (m, 6H, 

CH3CHCH3), 0.87 (m, 3H, 7’’- CH3) ppm. 

 

(2R,4S)-2-methoxymethoxymethyl-4-[(S)-N-heptanoyl-serylamino]-6-methyl-1,2-

oxiranylheptane (SMOM). HBTU (66mg, 0.174mmol), HoBt (27mg, 0.176mmol) and 

lastly DIPEA (0.10mL, 0.574mmol) were added to a solution of (2R,4S)-4-amino-2-

methoxymethoxymethyl-6-methyl-1,2-oxiranylheptane (27mg, 0.116mmol) and (S)-O-

tert-butyldiphenylsiloxymethyl-N-heptanoyl-serine (53mg, 0.116mmol) in CH2Cl2 (3mL). 

The reaction solution was stirred at room temperature overnight. The resulting mixture 

was concentrated under reduced pressure and subject to flash column chromatography 

(Hex:EtOAc, 3:1) which yielded the TBDPS-protected SMOM as a colorless oil (14.8mg, 

19%). 1H NMR: δ = 7.71 (m, 4H, Ar-H), 7.42 (m, 6H, Ar-H), 7.00 (d, J = 8.1 Hz, 1H, 4-

NH), 6.16 (d, J = 6.6 Hz, 1H, 2’-NH), 4.62 (s, 2H, 2-OCH2O), 4.59 (m, 2H, 4-H, 2’-H), 

4.38 (d, J = 11.4 Hz, 1H, 2-CHa
2), 4.02 (m, 1H, 3’-Ha), 3.70 (m, 3H, 3’-CHb

2), 3.47 (d, J 

= 11.4 Hz, 1H, 2-CHb
2), 3.34 (s, 3H, 2-OCH3), 3.28 (d, J = 5.1 Hz, 1H, 1-Ha), 3.04 (d, J = 
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5.1 Hz, 1H, 1-Hb), 2.12 (m, 2H, 2’’-H), 1.60 (m, 4H, 6-H, 5-Ha, HHep), 1.25 (m, 6H, HHep), 

1.06 (s, 9H, 3’-tBu), 0.96 (d, J = 6.0 Hz, 3H, CH3CHCH3), 0.90 (d, J = 6.3 Hz, 3H, 

CH3CHCH3), 0.85 (m, 3H, 7’’- CH3) ppm. 

 

To a solution of TBDPS-protected SMOM (14.8mg, 0.0221mmol) in THF (0.5mL), 

TBAF (1.0M in THF, 20μL, 0.069mmol) was added. The reaction solution was stirred at 

room temperature for 15 minutes. The resulting mixture was then concentrated under 

reduced pressure and subjected to flash column chromatography (Hex:EtOAc, 1:2) to 

give the final product SMOM as a colorless oil (3.5mg, 16.7%). 1H NMR: δ = 6.95 (d, J 

= 6.9 Hz, 1H, 4-NH), 6.46 (d, J = 7.2 Hz, 1H, 2’-NH), 4.61 (s, 2H, 2-OCH2O), 4.50 (m, 

2H, 4-H, 2’-H), 4.37 (d, J = 11.4 Hz, 1H, 2-CHa
2), 4.02 (m, 1H, 3’-Ha), 3.70 (m, 3H, 3’-

CHb
2), 3.44 (d, J = 11.4 Hz, 1H, 2-CHb

2), 3.34 (s, 3H, 2-OCH3), 3.27 (d, J = 4.8 Hz, 1H, 

1-Ha), 3.05 (d, J = 4.8 Hz, 1H, 1-Hb), 2.21 (m, 2H, 2’’-H), 1.64 (m, 4H, 6-H, 5-Ha, HHep), 

1.28 (m, 6H, HHep), 0.95 (m, 6H, CH3CHCH3), 0.87 (m, 3H, 7’’- CH3) ppm. 

 

(2R,4S)-2-methoxyethoxymethoxymethyl-4-[(SR)-N-heptanoyl-serylamino]-6-

methyl-1,2-oxiranylheptane (SMEM-1, SMEM-2). HBTU (68mg, 0.179mmol), HoBt 

(27mg, 0.176mmol), and lastly, DIPEA (0.10mL, 0.574mmol) were added to a solution 

of (2R,4S)-4-amino-2-methoxyethoxymethoxymethyl-6-methyl-1,2-oxiranylheptane 

(33mg, 0.119mmol) and (S)-O-tert-butyldiphenylsiloxymethyl-N-heptanoyl-serine (65mg, 

0.142mmol) in CH2Cl2 (5mL). The reaction solution was stirred at room temperature for 

3h. The resulting mixture was concentrated under reduced pressure and subject to flash 

column chromatography (Hex:EtOAc, 3:1) which yielded the TBDPS-protected SMEM-

1 and SMEM-2 as colorless oils (59mg, 67%). TBDPS-protected SMEM-1: 1H NMR: δ 

= 7.71 (m, 4H, Ar-H), 7.44 (m, 6H, Ar-H), 7.02 (d, J = 8.4 Hz, 1H, 4-NH), 6.17 (d, J = 

6.6 Hz, 1H, 2’-NH), 4.72 (s, 2H, 2-OCH2O), 4.60 (m, 2H, 4-H, 2’-H), 4.42 (d, J = 11.4 

Hz, 1H, 2-CHa
2), 4.03 (m, 1H, 3’-Ha), 3.70 (m, 3H, 3’-CHb

2, 2-OCH2CH2O), 3.55 (m, 2H, 

2-OCH2CH2O), 3.52 (d, J = 11.4 Hz, 1H, 2-CHb
2), 3.40 (s, 3H, 2-OCH3), 3.29 (d, J = 5.4 

Hz, 1H, 1-Ha), 3.04 (d, J = 4.8 Hz, 1H, 1-Hb), 2.13 (t, J = 7.6 Hz, 2H, 2’’-H), 1.63 (m, 4H, 

6-H, 5-Ha, HHep), 1.26 (m, 6H, HHep), 1.07 (s, 9H, 3’-tBu), 0.96 (d, J = 6.3 Hz, 3H, 

CH3CHCH3), 0.91 (d, J = 6.3 Hz, 3H, CH3CHCH3), 0.86 (t, J = 7.6 Hz, 3H, 7’’- CH3) 
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ppm. TBDPS-protected SMEM-2: 1H NMR: δ = 7.71 (m, 4H, Ar-H), 7.44 (m, 6H, Ar-H), 

7.02 (d, J = 8.4 Hz, 1H, 4-NH), 6.17 (d, J = 6.6 Hz, 1H, 2’-NH), 4.72 (s, 2H, 2-OCH2O), 

4.66 (m, 1H, 2’-H), 4.55 (m, 1H, 4-H), 2’-H), 4.42 (d, J = 11.4 Hz, 1H, 2-CHa
2), 4.03 (m, 

1H, 3’-Ha), 3.70 (m, 3H, 3’-CHb
2, 2-OCH2CH2O), 3.55 (m, 2H, 2-OCH2CH2O), 3.52 (d, 

J = 11.4 Hz, 1H, 2-CHb
2), 3.40 (s, 3H, 2-OCH3), 3.29 (d, J = 5.4 Hz, 1H, 1-Ha), 3.04 (d, J 

= 4.8 Hz, 1H, 1-Hb), 2.13 (t, J = 7.6 Hz, 2H, 2’’-H), 1.63 (m, 4H, 6-H, 5-Ha, HHep), 1.26 

(m, 6H, HHep), 1.07 (s, 9H, 3’-tBu), 0.96 (d, J = 6.3 Hz, 3H, CH3CHCH3), 0.91 (d, J = 6.3 

Hz, 3H, CH3CHCH3), 0.86 (t, J = 7.6 Hz, 3H, 7’’- CH3) ppm. 

 

To a solution of TBDPS-protected SMEM-1 (30mg, 0.0280mmol) in THF (1mL), TBAF 

(1.0M in THF, 50μL, 0.173mmol) was added. The reaction solution was stirred at room 

temperature for 30 minutes. The resulting mixture was then concentrated under reduced 

pressure and subjected to flash column chromatography (Hex:EtOAc, 1:2) to give the 

final product SMEM-1 as a yellowish oil (16mg, 80%). 1H NMR: δ = 6.83 (d, J = 7.5 Hz, 

1H, 4-NH), 6.44 (d, J = 7.5 Hz, 1H, 2’-NH), 4.71 (s, 2H, 2-OCH2O), 4.50 (m, 2H, 4-H, 

2’-H), 4.41 (d, J = 11.7 Hz, 1H, 2-CHa
2), 4.08 (m, 1H, 3’-Ha

2), 3.68 (m, 2H, 2-

OCH2CH2O), 3.55 (m, 3H, 2-OCH2CH2O, 3’-Hb
2), 3.46 (d, J = 11.7 Hz, 1H, 2-CHb

2), 

3.40 (s, 3H, 2-OCH3), 3.27 (d, J = 5.1 Hz, 1H, 1-Ha), 3.05 (d, J = 4.8 Hz, 1H, 1-Hb), 2.22 

(m, 2H, 2’’-H), 1.60 (m, 4H, 6-H, 5-Ha, HHep), 1.28 (m, 6H, HHep), 0.96 (d, J = 3.9 Hz, 

3H, CH3CHCH3), 0.94 (d, J = 3.9 Hz, 3H, CH3CHCH3), 0.88 (t, J = 6.7 Hz, 3H, 7’’- 

CH3) ppm. MS (ESI): m/z = 475, calcd. for C23H42N2O8: m/z = 474.59. 

 

To a solution of TBDPS-protected SMEM-2 (23mg, 0.0322mmol) in THF (1mL), TBAF 

(1.0M in THF, 33μL, 0.114mmol) was added. The reaction solution was stirred at room 

temperature for 30 minutes. The resulting mixture was then concentrated under reduced 

pressure and subjected to flash column chromatography (Hex:EtOAc, 1:2) to give the 

final product SMEM-2 as a yellowish oil (9mg, 58%). 1H NMR: δ = 6.83 (d, J = 7.5 Hz, 

1H, 4-NH), 6.44 (d, J = 7.5 Hz, 1H, 2’-NH), 4.71 (s, 2H, 2-OCH2O), 4.50 (m, 2H, 4-H, 

2’-H), 4.41 (d, J = 11.4 Hz, 1H, 2-CHa
2), 4.08 (m, 1H, 3’-Ha

2), 3.68 (m, 2H, 2-

OCH2CH2O), 3.62 (m, 1H, 3’-Hb
2), 3.55 (m, 2H, 2-OCH2CH2O), 3.46 (d, J = 11.7 Hz, 

1H, 2-CHb
2), 3.40 (s, 3H, 2-OCH3), 3.27 (d, J = 5.1 Hz, 1H, 1-Ha), 3.05 (d, J = 4.8 Hz, 
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1H, 1-Hb), 2.22 (m, 2H, 2’’-H), 1.60 (m, 4H, 6-H, 5-Ha, HHep), 1.28 (m, 6H, HHep), 0.96 

(d, J = 3.9 Hz, 3H, CH3CHCH3), 0.94 (d, J = 3.9 Hz, 3H, CH3CHCH3), 0.88 (t, J = 6.7 

Hz, 3H, 7’’- CH3) ppm. MS (ESI): m/z = 475, calcd. for C23H42N2O8: m/z = 474.59. 

  

(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-serylamino]-6-methyl-

1,2-oxiranylheptane (SM). HBTU (32mg, 0.0843mmol), HoBt (13mg, 0.0848mmol), 

and lastly, DIPEA (50µL, 0.287mmol) were added to a solution of (2R,4S)-4-amino-2-

tert-butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane (24mg, 0.0796mmol) and 

(S)-N-heptanoyl-serine (29mg, 0.0632mmol) in CH2Cl2 (3mL). The reaction solution was 

stirred at room temperature for 3h. The resulting mixture was concentrated under reduced 

pressure and subject to flash column chromatography (Hex:EtOAc, 3:1) which yielded 

SM as a colorless oil (10mg, 31%). 1H NMR: δ = 6.87 (d, J = 7.2 Hz, 1H, 4-NH), 6.47 (d, 

J = 6.9 Hz, 1H, 2’-NH), 4.52 (m, 2H, 4-H, 2’-H), 4.43 (m, 1H, 2-CHa
2), 4.08 (m, 1H, 3’-

Ha
2), 3.56 (m, 2H, 2-CHb

2, 3’-Ha
2), 3.18 (d, J = 5.1 Hz, 1H, 1-Ha), 3.01 (d, J = 5.1 Hz, 1H, 

1-Hb), 2.24 (m, 2H, 2’’-H), 1.62 (m, 4H, 6-H, 5-Ha, HHep), 1.27 (m, 6H, HHep), 0.95 (m, 

6H, CH3CHCH3), 0.87 [s, 12H, (C-2)tBu-H, 7’’-CH3], 0.05 [d, J = 4.5Hz, 6 H, (C-

2)CH3SiCH3] ppm. 

 

(2R,4S)-2-tert-Butyldiphenylsiloxymethyl-4-[(S)-N-heptanoyl-alanylamino]-6-

methyl-1,2-oxiranylheptane (AP). HBTU (130mg, 0.342mmol), HoBt (52mg, 

0.339mmol), and lastly, DIPEA (0.2mL, 1.148mmol) were added to a solution of 

(2R,4S)-4-amino-2-tert-butyldiphenylsiloxymethyl-6-methyl-1,2-oxiranylheptane (97mg, 

0.227mmol) and (S)-N-heptanoyl-alanine (46mg, 0.228mmol) in CH2Cl2 (3mL). The 

reaction solution was stirred at room temperature for 3h. The resulting mixture was 

concentrated under reduced pressure and subject to flash column chromatography 

(Hex:EtOAc, 3:1) which yielded AP as a colorless oil (53.8mg, 38%). 1H NMR: δ = 7.66 

(m, 5H, Ar-H), 7.40 (m, 5H, Ar-H), 6.37 (d, J = 6.6 Hz, 1H, 4-NH), 5.90 (d, J = 6.6 Hz, 

1H, 2’-NH), 4.55 (m, 3H, 4-H, 2’-H, 2-CHa
2), 3.47 (d, J = 10.8 Hz, 1H, 2-CHb

2), 3.19 (d, 

J = 4.5 Hz, 1H, 1-Ha), 2.98 (d, J = 4.5 Hz, 1H, 1-Hb), 2.18 (m, 2H, 2’’-H), 1.65 (m, 4H, 

6-H, 5-Ha, HHep), 1.34 (d, J = 6.6 Hz, 3H, 3’-CH3), 1.27 (m, 6H, HHep), 1.00 [s, 9H, (C-

2)tBu-H], 0.95 (m, 6H, CH3CHCH3), 0.87 (m, 3H, 7’’-CH3) ppm. 
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(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-alanylamino]-6-

methyl-1,2-oxiranylheptane (AM). HBTU (92mg, 0.242mmol), HoBt (37mg, 

0.241mmol), and lastly, DIPEA (0.14mL, 0.803mmol) were added to a solution of 

(2R,4S)-4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane (49mg, 

0.16mmol) and (S)-N-heptanoyl-alanine (33mg, 0.163mmol) in CH2Cl2 (3mL). The 

reaction solution was stirred at room temperature for 3h. The resulting mixture was 

concentrated under reduced pressure and subject to flash column chromatography 

(Hex:EtOAc, 3:1) which yielded AM as a colorless oil (21.5mg, 27%). 1H NMR: δ = 

6.34 (d, J = 7.8 Hz, 1H, 4-NH), 5.91 (d, J = 7.5 Hz, 1H, 2’-NH), 4.55 (m, 2H, 4-H, 2’-H), 

4.43 (d, J = 11.1 Hz, 1H, 2-CHa
2), 3.55 (d, J = 11.1 Hz, 1H, 2-CHb

2), 3.19 (d, J = 4.2 Hz, 

1H, 1-Ha), 3.01 (d, J = 5.4 Hz, 1H, 1-Hb), 2.18 (t, J = 7.0 Hz, 2H, 2’’-H), 1.63 (m, 4H, 6-

H, 5-Ha, HHep), 1.34 (d, J = 6.6 Hz, 3H, 3’-CH3), 1.26 (m, 6H, HHep), 0.94 (m, 6H, 

CH3CHCH3), 0.87 [s, 12H, (C-2)tBu-H, 7’’-CH3], 0.06 [d, J = 3.0Hz, 6 H, (C-

2)CH3SiCH3] ppm. 

 

(2S,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-alanylamino]-6-

methyl-1,2-oxiranylheptane (AM-2). HBTU (31mg, 0.0817mmol), HoBt (12.5mg, 

0.0816mmol), and lastly, DIPEA (50µL, 0.287mmol) were added to a solution of 

(2S,4S)-4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane 

(16.5mg, 0.0547mmol) and (S)-N-heptanoyl-alanine (11mg, 0.0546mmol) in CH2Cl2 

(3mL). The reaction solution was stirred at room temperature for 3h. The resulting 

mixture was concentrated under reduced pressure and subject to flash column 

chromatography (Hex:EtOAc, 3:1) which yielded AM-2 as a colorless oil (6.4mg, 24%). 
1H NMR: δ = 6.58 (d, J = 8.1 Hz, 1H, 4-NH), 6.07 (d, J = 6.9 Hz, 1H, 2’-NH), 4.82 (m, 

1H, 2’-H), 4.49 (m, 1H, 4-H), 4.26 (m, 1H, 2-CHa
2), 3.80 (m, 1H, 2-CHb

2), 3.02 (m, 1H, 

1-Ha), 2.92 (m, 1H, 1-Hb), 2.19 (m, 2H, 2’’-H), 1.60 (m, 4H, 6-H, 5-Ha, HHep), 1.35 (d, J 

= 6.9 Hz, 3H, 3’-CH3), 1.28 (m, 6H, HHep), 0.93 (m, 6H, CH3CHCH3), 0.87 [s, 12H, (C-

2)tBu-H, 7’’-CH3], 0.06 [d, J = 3.3Hz, 6 H, (C-2)CH3SiCH3] ppm. 

 

(2R,4S)-2-methoxymethoxymethyl-4-[(S)-N-heptanoyl-alanylamino]-6-methyl-1,2-

oxiranylheptane (AMOM). HBTU (32mg, 0.0843mmol), HoBt (13mg, 0.0848mmol), 
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and lastly, DIPEA (50µL, 0.287mmol) were added to a solution of (2R,4S)-4-amino-2-

methoxymethoxymethyl-6-methyl-1,2-oxiranylheptane (13mg, 0.0562mmol) and (S)-N-

heptanoyl-alanine (13.5mg, 0.067mmol) in CH2Cl2 (3mL). The reaction solution was 

stirred at room temperature for 3h. The resulting mixture was concentrated under reduced 

pressure and subject to flash column chromatography (Hex:EtOAc, 1:1) which yielded 

AMOM as a colorless oil (10.5mg, 45%). 1H NMR: δ = 6.67 (d, J = 7.5 Hz, 1H, 4-NH), 

6.04 (d, J = 7.2 Hz, 1H, 2’-NH), 4.61(s, 2H, 2-OCH2O), 4.54 (m, 2H, 4-H, 2’-H), 4.34 (d, 

J = 11.1 Hz, 1H, 2-CHa
2), 3.45 (d, J = 11.1 Hz, 1H, 2-CHb

2), 3.34 (s, 3H, 2-OCH3), 3.30 

(d, J = 5.1 Hz, 1H, 1-Ha), 3.04 (d, J = 4.8 Hz, 1H, 1-Hb), 2.17 (t, J = 7.8 Hz, 2H, 2’’-H), 

1.63 (m, 4H, 6-H, 5-Ha, HHep), 1.33 (d, J = 6.9 Hz, 3H, 3’-CH3), 1.28 (m, 6H, HHep), 0.94 

(m, 6H, CH3CHCH3), 0.87 (m, 3H, 7’’- CH3] ppm. 

 

(2R,4S)-2-tetrahydropyranyloxymethyl-4-[(S)-N-heptanoyl-alanylamino]-6-methyl-

1,2-oxiranylheptane (ATHP). HBTU (42mg, 0.11mmol), HoBt (17mg, 0.111mmol), 

and lastly, DIPEA (70µL, 0.401mmol) were added to a solution of (2R,4S)-4-amino-2-

tetrahydropyranyloxymethyl-6-methyl-1,2-oxiranylheptane (20mg, 0.073mmol) and (S)-

N-heptanoyl-alanine (15mg, 0.074mmol) in CH2Cl2 (3mL). The reaction solution was 

stirred at room temperature for 3h. The resulting mixture was concentrated under reduced 

pressure and subject to flash column chromatography (Hex:EtOAc, 1:1) which yielded 

ATHP as a colorless oil (9mg, 26%). 1H NMR: δ = 6.6 (d, J = 7.2 Hz, 1H, 4-NH), 6.04 

(d, J = 7.5 Hz, 1H, 2’-NH), 4.56 (m, 2H, 4-H, 2’-H), 4.22 (m, 1H, 2-CHa
2), 3.84 (m, 2H, 

2-OTHP), 3.66 (m, 1H, 2-CHb
2), 3.51 (m, 1H, 2-OTHP), 3.25 (m, 1H, 1-Ha), 3.06 (m, 1H, 

1-Hb), 2.19 (m, 2H, 2’’-H), 1.63 (m, 4H, 6-H, 5-Ha, HHep), 1.34 (d, J = 7.2 Hz, 3H, 3’-

CH3), 1.28 (m, 6H, HHep), 0.95 (m, 6H, CH3CHCH3), 0.87 (m, 3H, 7’’- CH3) ppm. 

 

Biotin-Dihydroeponemycin. To a solution of TBDMS- and TBDPS-protected biotin-

dihydroeponemycin (51mg, 0.043mmol) in THF was added TBAF (1.0M in THF, 20μL, 

0.069mmol). After stirring at room temperature for 10 minutes, the resulting mixture was 

then concentrated under reduced pressure. The crude product was subjected to flash 

column chromatography (CH2Cl2:MeOH, 98:2) to give the final product Epn as a 

yellowish oil (9mg, 0.01mmol, 23%). 1H NMR: δ =  7.12 (br, 1H), 4.36 (m, 1H), 4.30 (t, 
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J = 5.9, 1H), 4.20 (t, J = 5.7 Hz, 1H), 3.72 (m, 1H), 3.49 (t, J = 10.9 Hz, 1H), 3.26 (d, J = 

12.0 Hz, 1H), 3.09 (m, 2H), 2.95 (d, J = 4.8 Hz, 1H), 2.81 (dd, J = 13.0, 4.8 Hz, 1H), 

2.62 (d, J = 12.4 Hz, 1H), 2.16 (m,1H), 2.06 (t, J = 6.1 Hz, 1H), 1.51 (m, 6H), 1.31 (m, 

4H), 1.15 (m, 4H), 0.83 (d, J = 5.9 Hz, 3H), 0.75 (d, J = 6.9 Hz, 3H) ppm. MS (ESI): m/z 

= 840, calcd. for C40H69N7O10S: m/z = 840.08. Synthetic procedures were performed as 

previously described [207]. 

 

Biotin-Epoxomicin. Synthetic procedures were performed as previously described [169]. 

 

Cell Culture and Competition Assay. Murine lymphoma EL4 cells were purchased 

from ATCC and grown in RPMI Medium (Gibco), 10% Fetal Bovine Serum, and 1% of 

penicillin and streptomycin at 37oC in a 5% CO2 incubator. Cells were pretreated with 

increasing concentrations of dihydroeponemycin analogs 30 minutes prior to the addition 

of 1µM biotin-dihydroeponemycin or biotin-epoxomicin. Cells lysates were analyzed 

with 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred to a polyvinylidene fluoride (PVDF) membrane. Biotinylated proteins were 

visualized by enhanced chemiluminescence (ECL) using streptavidin-conjugated HRP 

and Biomax X-ray film (Kodak). 
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CHAPTER THREE: LEAD OPTIMIZATION AND SCREENING 

 

A. Introduction 

The first small library of dihydroeponemycin analogs yielded analog AM as the 

lead compound due to its high specificity towards the LMP2 subunit. While modification 

of P1’ site was previously suggested to play a role in determining proteasome catalytic 

subunit specificity, the preliminary screening results of the dihydroeponemycin analogs 

also suggested that the P2 site is involved in conferring the analogs’ catalytic subunit 

selectivity. While the analogs Epn and Epn-A were first shown to exhibit almost no 

difference in the binding of immunoproteasome catalytic subunits (Figures 2.2 and 2.3), 

analogs AM and SM were found to display a definite difference in their respective LMP2 

binding specificity (Figure 2.4). Specifically, the replacement of the serine residue (SM) 

with alanine (AM) appeared to direct the specificity of the molecule towards LMP2 

catalytic subunit. The discrepancy between the two pairs of analogs piqued an interest in 

further investigating the structure-activity relationship at the P2 site. Therefore, the lead 

compound AM was further optimized by replacing the alanine residue at the P2 site with 

a variety of amino acid residues. These optimized dihydroeponemycin analogs will then 

undergo a similar screening assay to determine the most selective LMP2 inhibitor. 
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B. Optimization of the Lead Compound 

The general synthetic procedures used to prepare the second generation of 

dihydroeponemycin analogs are as described previously in General Reactions 1-3. 

Specifically, heptanoic acid and the TBDMS protective group were retained at the P3 and 

P1’ sites, respectively, while the P2 site was substituted with a glycine, aminobutyric acid, 

valine, isoleucine, phenylalanine, norvaline, or methionine amino acid residue. 

Consequently, a total of 7 compounds were successfully synthesized as the second 

generation optimized small library of dihydroeponemycin analogs (Figure 3.1).  

 

 

 

 

 

 

 

 
 
Figure 3.1 The second generation of dihydroeponemycin analogs. 
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C. Screening of the Second Generation of Dihydroeponemycin Analogs 

Similarly, each of these analogs was screened for its ability to selectively target 

the LMP2 catalytic subunit via the competition assay that was previously described in 

Chapter 2-E. Briefly, EL4 cells were treated with increasing concentrations of the 

optimized dihydroeponemycin analog 30 minutes prior to the addition of biotin-tagged 

dihydroeponemycin and incubated for an additional hour. Surprisingly, all of the seven 

second generation analogs did not display similar LMP2 specificity as that of AM 

(Figure 3.2). The results obtained clearly showed that the alanine residue at the P2 site is 

vital to determining the catalytic subunit specificity of these analogs. Therefore, analog 

AM remains the most selective LMP2 inhibitor.   

 

 

In order to confirm the results obtained from the competition assay, the mobility 

shift of the analog-LMP2 adduct was investigated in EL4 cells. The epoxyketone 

pharmacophore containing proteasome inhibitors were previously shown to covalently 

modify proteasome catalytic subunits [170]; hence, analogs that covalently modify the 

subunits will induce a mobility shift on western blot due to the increase in molecular 

weight. Specifically, EL4 cells were incubated with dihydroeponemycin analogs and 

 
 
Figure 3.2 A similar screening method using competition assay was performed on the 
second generation dihydroeponemycin analogs. EL4 cells were pre-incubated with 
the analogs prior to the addition of biotin probe for the visualization of the subunits. 
Western blot results show that the second generation library did not yield a more 
selective LMP2 inhibitor than AM.    



 

81 
 

broad spectrum proteasome inhibitors for 1.5 hours at 37oC. Whole cell lysates were then 

analyzed by western blot with anti-LMP2, -LMP7 and -X antibodies. Broad spectrum 

proteasome inhibitors, epoxomicin (Epx) and dihydroeponemycin substitute (Epn) were 

used as mobility shift controls because they have been shown to induce mobility shift via 

covalent modification of proteasome catalytic subunits [168, 211].  

 As expected, when cells were treated with the broad spectrum proteasome 

inhibitors, all three catalytic subunits were shown to display a slower mobility shifts due 

to increased molecular weight by approximately 0.5 kDa (554.7 for Epx and 386.5 for 

Epn) when compared to their respective unbound subunits (lanes 1-4, Figure 3-3). On the 

other hand, while analog AM was able to induce a mobility shift in the LMP2 catalytic 

subunit (484.74 for AM), mobility shifts in the LMP7 and X subunits were not observed 

(lane 7, Figure 3-3). These results indicate that analog AM selectively targets the LMP2 

subunit with high efficiency. Even though analog SM also displayed some selectivity 

towards LMP2, two distinct bands can be observed, which indicates the presence of free 

LMP2 (lower band) and modified LMP2 (upper band). On the other hand, only a single 

upper band was observed for cells treated with AM, which clearly showed that the LMP2 

subunit was completely modified because no free LMP2 was observed. Based on these 

collective results, the analog AM was selected as the lead compound and will be 

subjected to further biological studies described in the next chapters. 

 
 
Figure 3.3 Mobility shift assay was performed to confirm the screening results 
obtained from the competition assay. EL4 cells were treated with 1μM of the indicated 
compounds for 1.5 hours. Cells were lysed and analyzed via western blot using anti-
LMP2, -LMP7 and –X antibodies as well as ECL. Western blot results show that AM 
is the most selective LMP2 inhibitor (lane 7). 
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D. Conclusions 

A small library of seven dihydroeponemycin analogs were designed and 

synthesized following the first generation in the pursuit of a selective immunoproteasome 

catalytic subunit LMP2 inhibitor.  A screening assay and mobility shift assay were also 

performed to determine the ability of these analogs to selectively target the LMP2 

catalytic subunit. Preliminary studies have suggested that the P2 moiety might play a role 

in determining subunit specificity. Therefore, the optimization of the lead compound AM 

was focused on the derivatization of P2 site using a variety of amino acid residues. These 

analogs were also subjected to a similar screening assay as the one used for the first 

library. Surprisingly, the results indicated that AM is still the most selective LMP2 

inhibitor in the library. The alanine residue is crucial in directing the LMP2 subunit 

specificity because when the P2 site was replaced with glycine, which is one carbon less, 

or aminobutyric acid, which is one carbon more, the LMP2 specificity was dramatically 

reduced. In addition, a mobility shift assay was carried out to confirm the results obtained 

from the competition assay. As shown in Figure 3.3, analog AM covalently modifies the 

LMP2 catalytic subunit with the highest efficiency compared to the other 

dihydroeponemycin analogs.  

In conclusion, the P1’ and P2 sites of the dihydroeponemycin analogs were 

critical in determining the immunoproteasome catalytic subunit specificity. Specifically, 

a dihydroeponemycin analog AM with a small bulky protective group and alanine residue 

at the P1’ and P2 sites, respectively, yielded a highly selective LMP2 inhibitor. This 

analog will be subjected to further biological studies in order to characterize its 

immunoproteasome subunit binding specificity in prostate cancer cell lines as well as to 

determine its biological functions and modes of action.  

 For future optimization and derivatization of AM, an alternative linkage that is 

not easily hydrolyzed may be necessary to replace the amide bonds found in AM. This 

derivatization may help improve stability, solubility as well as selectivity of the 

compound. The pharmacophore epoxide ketone of AM may also be replaced with 

epoxide amide. The epoxide is a chemical group that has often been shown to have 

alkylating activity and DNA binding properties; hence, by having an amide group instead 

of a ketone next to the epoxide ring may help render the ring less reactive and possibly 
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reducing the toxicity of the compound. While structure-based drug design would be more 

beneficial to this synthetic work, the crystal structure of immunoproteasome is yet to be 

completed. However, serendipity alone for such synthetic work to be successful is 

insufficient; a well thought out and rationalized drug design is the key.  
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E. Methods and Materials  

The following includes the experimental protocols and structural characterization 

of the second generation dihydroeponemycin analogs. In addition, the experimental 

procedure of the mobility shift assay is further elaborated. 

 

General Remarks: Unless otherwise stated, all reactions were carried out under 

Nitrogen with dry freshly distilled solvents, over-dried glassware, and magnetic stirring. 

All solvents were reagent graded. THF was distilled from sodium/benzophenone. CH2Cl2 

was distilled from calcium hydride. Diethyl ether anhydrous was purchased from EMD 

Chemicals and used without further purification. All reagents were purchased from 

Sigma-Aldrich and used without further purification. All reactions were monitored by 

TLC using E. Merk 60F254 pre-coated silica gel plates. Flash column chromatography was 

performed using E. Merk silica gel 60 (particle size 0.040-0.063mm) and with the 

indicated solvents. 1H and 13C NMR spectra were recorded in CDCl3 using a Varian 

300MHz spectrometer at ambient temperature using an internal deuterium lock unless 

stated otherwise. Chemical shift are referenced to residual chloroform (δ = 7.27ppm for 

1H and δ = 77.0 ppm for 13C). Mass spectra were performed by the University of 

Kentucky Mass Spectrometry Facility. 

 

(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-glycylamino]-6-

methyl-1,2-oxiranylheptane (GM). O-(7-Azabenzotriazole-1-yl)-N, N,N’N’-

tetramethyluronium hexafluorophosphate (HATU) (81mg, 0.213mmol), 1-Hydroxy-7-

Azabenzotriazole (HoAt) (23mg, 0.168mmol), and lastly, DIPEA (0.12mL, 0. 712mmol) 

were added to a solution of (2R,4S)-4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-

1,2-oxiranylheptane (35mg, 0.116mmol) and (S)-N-heptanoyl-glycine (27mg, 

0.144mmol) in CH2Cl2 (3mL). The reaction solution was stirred at room temperature for 

3h. The resulting mixture was concentrated under reduced pressure and subject to flash 

column chromatography (Hex:EtOAc, 3:1) which yielded GM as a colorless oil (29mg, 

59%). 1H NMR: δ = 6.7 (d, J = 7.8 Hz, 1H, 4-NH), 6.30 (d, J = 7.8 Hz, 1H, 2’-NH), 4.61 

(m, 1H, 4-H), 4.41 (d, J = 11.1 Hz, 1H, 2-CHa
2), 3.96 (m, 2H, 2’-CH2), 3.54 (d, J = 12 Hz, 

1H, 2-CHb
2), 3.17 (d, J = 4.5 Hz, 1H, 1-Ha), 3.01 (d, J = 4.5 Hz, 1H, 1-Hb), 2.21 (t, J = 
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7.5 Hz, 2H, 2’’-H), 1.63 (m, 4H, 6-H, 5-Ha, HHep), 1.26 (m, 6H, HHep), 0.92 (m, 6H, 

CH3CHCH3), 0.86 [s, 12H, (C-2)tBu-H, 7’’-CH3], 0.04 [d, J = 4.5Hz, 6 H, (C-

2)CH3SiCH3] ppm. 

 

(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-aminobutylamino]-6-

methyl-1,2-oxiranylheptane (ABM). HATU (62mg, 0.163mmol), HoAt (17mg, 

0.124mmol), and lastly, DIPEA (95µL, 0. 545mmol) were added to a solution of (2R,4S)-

4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane (33mg, 

0.109mmol) and (S)-N-heptanoyl-aminobutyric acid (15mg, 0.069mmol) in CH2Cl2 

(3mL). The reaction solution was stirred at room temperature for 3h. The resulting 

mixture was concentrated under reduced pressure and subject to flash column 

chromatography (Hex:EtOAc, 3:1) which yielded ABM as a colorless oil (21mg, 60%). 
1H NMR: δ = 6.47 (d, J = 7.8 Hz, 1H, 4-NH), 6.04 (m, 1H, 2’-NH), 4.58 (m, 1H, 4-H), 

4.42 (m, 2H, 2’-H, 2-CHa
2), 3.54 (d, J = 12.3 Hz, 1H, 2-CHb

2), 3.20 (d, J = 5.4 Hz, 1H, 1-

Ha), 3.01 (d, J = 5.7 Hz, 1H, 1-Hb), 2.19 (m, 2H, 2’’-H), 1.83 (m, 2H, 2’-CH2), 1.64 (m, 

4H, 6-H, 5-Ha, HHep), 1.28 (m, 6H, HHep), 0.94 (m, 6H, CH3CHCH3), 0.87 [s, 12H, (C-

2)tBu-H, 7’’-CH3], 0.05 [d, J = 3.3Hz, 6 H, (C-2)CH3SiCH3] ppm. 

 

(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-valylamino]-6-methyl-

1,2-oxiranylheptane (VM). HATU (85mg, 0.223mmol), HoAt (24mg, 0.176mmol), and 

lastly, DIPEA (0.13mL, 0. 746mmol) were added to a solution of (2R,4S)-4-amino-2-tert-

butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane (45mg, 0.149mmol) and (S)-N-

heptanoyl-valine (36mg, 0.156mmol) in CH2Cl2 (3mL). The reaction solution was stirred 

at room temperature for 3h. The resulting mixture was concentrated under reduced 

pressure and subject to flash column chromatography (Hex:EtOAc, 3:1) which yielded 

VM as a colorless oil (25mg, 32%). 1H NMR: δ = 6.39 (m, 1H, 4-NH), 6.05 (m, 1H, 2’-

NH), 4.59 (m, 1H, 4-H), 4.41 (m, 1H, 2’-H), 4.31 (m, 1H, 2-CHa
2), 3.55 (d, J = 11.1 Hz, 

1H, 2-CHb
2), 3.19 (d, J = 4.5 Hz, 1H, 1-Ha), 3.01 (m, 1H, 1-Hb), 2.20 (m, 2H, 2’’-H), 

2.06 (m, 1H, 3’-H), 1.65 (m, 4H, 6-H, 5-Ha, HHep), 1.28 (m, 6H, HHep), 0.93 (m, 6H, 

CH3CHCH3), 0.86 [s, 12H, (C-2)tBu-H, 7’’-CH3], 0.05 [d, J = 4.5Hz, 6 H, (C-

2)CH3SiCH3] ppm. 
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(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-isoleucylamino]-6-

methyl-1,2-oxiranylheptane (IM). HATU (47mg, 0.123mmol), HoAt (13.4mg, 

0.0984mmol), and lastly, DIPEA (71µL, 0. 407mmol) were added to a solution of 

(2R,4S)-4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane 

(24.8mg, 0.0822mmol) and (S)-N-heptanoyl-valine (40mg, 0.164mmol) in CH2Cl2 (3mL). 

The reaction solution was stirred at room temperature for 3h. The resulting mixture was 

concentrated under reduced pressure and subject to flash column chromatography 

(Hex:EtOAc, 3:1) which yielded IM as a colorless oil (24mg, 54%). 1H NMR: δ = 6.17 

(d, J = 7.8 Hz, 1H, 4-NH), 6.01 (d, J = 8.7 Hz, 1H, 2’-NH), 4.60 (m, 1H, 4-H), 4.42 (d, J 

= 12 Hz, 1H, 2-CHa
2), 4.29 (m, 1H, 2’-H), 3.55 (d, J = 11.1 Hz, 1H, 2-CHb

2), 3.19 (d, J = 

4.5 Hz, 1H, 1-Ha), 3.02 (d, J = 4.5 Hz, 1H, 1-Hb), 2.19 (t, J = 7.0 Hz, 2H, 2’’-H), 1.79 (m, 

1H, 3’-H), 1.64 (m, 4H, 6-H, 5-Ha, HHep), 1.44 (m, 2H, 3’-CH2), 1.28 (m, 6H, HHep), 0.92 

(m, 6H, CH3CHCH3), 0.87 [s, 18H, (C-2)tBu-H, 7’’-CH3, 3’-CH3, 4’-CH3] 0.05 [d, J = 

4.5Hz, 6 H, (C-2)CH3SiCH3] ppm. 

 

(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-phenylalanylamino]-6-

methyl-1,2-oxiranylheptane (PM). 1-Ethyl-3-(3-dimethyllaminopropyl)carbodiimide 

(EDC) hydrochloride (21.5mg, 0.112mmol), and lastly, DIPEA (65µL, 0.373mmol) were 

added to a solution of (2R,4S)-4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-1,2-

oxiranylheptane (22.5mg, 0.0746mmol) and (S)-N-heptanoyl-phenylalanine (28mg, 

0.100mmol) in CH2Cl2 (3mL). The reaction solution was stirred at room temperature for 

3h. The resulting mixture was concentrated under reduced pressure and subject to flash 

column chromatography (Hex:EtOAc, 5:1) which yielded PM as a colorless oil (9mg, 

21%). 1H NMR: δ = 7.24 (m, 5H, Ar), 6.01 (m, 2H, 4-NH, 2’-NH), 4.67 (m, 1H, 4-H), 

4.51 (m, 1H, 2’-H), 4.39 (m, 1H, 2-CHa
2), 3.54 (m, 1H, 2-CHb

2), 3.06 (m, 4H, 1-H2, 2’-

CH2), 2.14 (m, 2H, 2’’-H), 1.54 (m, 4H, 6-H, 5-Ha, HHep), 1.24 (m, 6H, HHep), 1.00 (m, 

6H, CH3CHCH3), 0.87 [s, 12H, (C-2)tBu-H, 7’’-CH3] 0.09 [m, 6 H, (C-2)CH3SiCH3] 

ppm. 
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(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-norvalylamino]-6-

methyl-1,2-oxiranylheptane (nVM). HATU (22mg, 0.0578mmol), HoAt (6.4mg, 

0.0470mmol), and lastly, DIPEA (34µL, 0. 195mmol) were added to a solution of 

(2R,4S)-4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane 

(14.6mg, 0.0484mmol) and (S)-N-heptanoyl-norvaline (9mg, 0.0392mmol) in CH2Cl2 

(3mL). The reaction solution was stirred at room temperature for 3h. The resulting 

mixture was concentrated under reduced pressure and subject to flash column 

chromatography (Hex:EtOAc, 3:1) which yielded nVM as a colorless oil (7.6mg, 37%). 
1H NMR: δ = 6.29 (d, J = 7.8 Hz, 1H, 4-NH), 5.92 (d, J = 7.8 Hz, 1H, 2’-NH), 4.58 (m, 

1H, 4-H), 4.43 (m, 2H, 2’-H, 2-CHa
2), 3.55 (d, 1H, J = 12 Hz, 2-CHb

2), 3.19 (d, J = 4.2 

Hz, 1H, 1-Ha), 3.01 (d, J = 5.4 Hz, 1H, 1-Hb), 2.17 (m, 2H, 2’’-H), 1.65 (m, 6H, 3’-H2, 6-

H, 5-Ha, HHep), 1.25 (m, 8H, 4’-H2, HHep), 0.93 (m, 6H, CH3CHCH3), 0.87 [s, 12H, (C-

2)tBu-H, 7’’-CH3], 0.05 [d, J = 3.3 Hz, 6H, (C-2)CH3SiCH3] ppm. 

 

(2R,4S)-2-tert-Butyldimethylsiloxymethyl-4-[(S)-N-heptanoyl-methionylamino]-6-

methyl-1,2-oxiranylheptane (MM). HATU (92mg, 0.241mmol), HoAt (26mg, 

0.191mmol), and lastly, DIPEA (0.14mL, 0. 804mmol) were added to a solution of 

(2R,4S)-4-amino-2-tert-butyldimethylsiloxymethyl-6-methyl-1,2-oxiranylheptane (35mg, 

0.116mmol) and (S)-N-heptanoyl-valine (42mg, 0.160mmol) in CH2Cl2 (3mL). The 

reaction solution was stirred at room temperature for 3h. The resulting mixture was 

concentrated under reduced pressure and subject to flash column chromatography 

(Hex:EtOAc, 5:1) which yielded MM as a colorless oil (36mg, 42%). 1H NMR: δ = 6.69 

(d, J = 7.5 Hz, 1H, 4-NH), 6.26 (d, J = 7.8 Hz, 1H, 2’-NH), 4.65 (m, 1H, 4-H), 4.55 (m, 

2H, 2’-H), 4.42 (d, 1H, J = 10.8 Hz, 2-CHa
2), 3.54 (d, 1H, J = 10.8 Hz, 2-CHb

2), 3.19 (d, 

J = 4.5 Hz, 1H, 1-Ha), 3.01 (d, J = 5.4 Hz, 1H, 1-Hb), 2.17 (m, 2H, 2’’-H), 2.13 (s, 3H, S-

CH3), 1.98 (m, 2H, 3’-H2), 1.63 (m, 4H, 6-H, 5-Ha, HHep), 1.27 (m, 8H, 4’-H2, HHep), 0.94 

(m, 6H, CH3CHCH3), 0.86 [s, 12H, (C-2)tBu-H, 7’’-CH3], 0.04 [d, J = 4.5 Hz, 6H, (C-

2)CH3SiCH3] ppm. 

 

Cell Culture and Competition Assay. Experiments were performed as previously 

described in Chapter Two (see p.73). 
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Mobility Shift Assay. Murine lymphoma EL4 cells were treated with the indicated 

concentration of controls and dihydroeponemycin analogs for 1.5 hours, which were then 

harvested and lysed. Cells lysates were analyzed with 12% SDS-PAGE, transferred to a 

PVDF membranes and probed with anti-LMP2, -LMP7, and –X antibodies. The 

membranes were subsequently visualized by ECL and Biomax X-ray film (Kodak). 
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CHAPTER FOUR: BIOLOGICAL STUDIES OF THE AM ANALOG IN HUMAN 

CANCER CELLS 

 

A. Introduction 

Given that the ubiquitin proteasome pathway has emerged as a key player in the 

regulation of numerous short-lived and regulatory proteins in cells, it has become a very 

attractive target for cancer therapeutics. The first proteasome inhibitor found to possess 

anti-tumor properties was lactacystin, which was shown to induce DNA fragmentation 

and apoptosis [212]. More recently, the approval of bortezomib as the first proteasome 

inhibitor for the treatment of relapsed multiple myeloma by FDA also helped cement the 

status of the ubiquitin proteasome pathway as a valid chemotherapeutic target. However, 

broad spectrum proteasome inhibitors are not exceedingly specific as they 

indiscriminately target all proteasomes in the body, which can lead to severe toxicity. As 

a result, the development of immunoproteasome specific inhibitors has begun to gain 

considerable attention. One of the few immunoproteasome inhibitors developed thus far 

was the analog AM, which was described in the previous chapters. Also known as UK-

101, AM is the first reported immunoproteasome inhibitor that specifically targets the 

LMP2 catalytic subunit [126, 213].  

This promising compound will be a valuable tool for the pathological studies of 

diseases, especially cancer. Specifically, some cancers, such as multiple myeloma, are 

known to highly express immunoproteasomes. This form of the proteasome is generally 

not constitutively expressed in non-immune related tissues and cells, such as the spleen 

and white blood cells. This evidence has prompted interest in the investigation of 

differential expression levels of immunoproteasome catalytic subunits in human cancers. 

Therefore, the subunit binding specificity of AM will be investigated in cancers that 

highly express immunoproteasomes. The cytotoxicity of the analog in cancers will also 

be examined as well as its possible mode of actions. These biological studies will provide 

the proof of concept necessary to move AM towards in vivo studies. These series of 

experiments will show that the LMP2 subunit is a valid target for chemotherapeutics.  

 

 



 

90 
 

B. LMP2/LMP7 Subunit Profiling in Human Cancers 

Given that one of the goals of this project is to explore the pathophysiological 

functions of LMP2 in diseases, it would be of great interest to determine whether the 

LMP2 inhibitor developed has any impact on normal biological processes of cancer cells 

that show increased expression of the LMP2 catalytic subunit. Consequently, a total of 11 

human cancer cell lines were investigated for the differential expression levels of the 

immunoproteasome catalytic subunits LMP2 and LMP7. They include prostate cancer 

(PC3, LN3, LNCaP and DU145), breast cancer (MCF7, MDA-MB-231 and Hs578T), 

multiple myeloma (RPMI 8226 and U266), cervical cancer (HeLa), colon cancer (HT-29), 

and normal lung fibroblast (WI-38) cell lines. These cells were lysed and analyzed via 

western blot. Subsequently, they were visualized using anti-LMP2 and –LMP7 antibodies. 

These cancer cell lines were shown to display various expression levels of LMP2 and 

LMP7 subunits regardless of their tissues of origin (Figure 4.1). In addition, the non-

cancerous lung fibroblast cells WI-38 express relatively insignificant levels of 

immunoproteasome catalytic subunits.  

These exciting results indicate that cancer cell lines that were derived from the 

same tissue of origin do not necessary possess similar proteasome catalytic subunit 

composition. For example, the androgen-independent PC3 prostate cancer cells displayed 

higher LMP2 and LMP7 catalytic subunit expression levels compared to the androgen-

dependent LNCaP prostate cancer cells. Also, the estrogen receptor (ER) negative MDA-

MB-231 breast cancer cell line is shown to express significantly higher levels of LMP2 

and LM7 than the ER positive MCF7 breast cancer cell line. While these results may 

seem random, the expression levels of immunoproteasome catalytic subunits may be in 

correlation with the metastasis of the cancer cell lines. The PC3 and MDA-MB-231 cell 

lines are known to possess a higher metastatic ability than the LNCaP and MCF7 cell 

lines. In fact, the analysis of prostate cancer tissue array revealed that samples with 

higher tumor grades were found to express higher levels of LMP2 catalytic subunit (data 

not shown). However, it remains to be determined whether the increased expression level 

of LMP2 is a causative factor or a secondary effect of the cancer metastasis.  

These results also suggest the possibility of personalized cancer therapy in which 

treatments are specialized for patients based on their cancer’s genetic makeup. In addition, 
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most of the normal cells in the body express minimal levels of the immunoproteasome 

except for the immune-related tissues and cells; hence, this allows the targeting of 

immunoproteasome subunits in cancer cells without affecting normal cells, which will 

help lower the incidence of severe side effects. Therefore, the development of a LMP2 

specific immunoproteasome inhibitor will be of tremendous advantage to the cancer 

chemotherapy. 

 

 

 

 

 

 

 
 
Figure 4.1 The differential expression levels of LMP2 and LMP7 catalytic subunit in 
human cancer cell lines. (a) Prostate cancer cell lines. (b) Multiple myeloma, cervical 
cancer (HeLa) and lung fibroblast (WI-38) cell lines. (c) Breast cancer, lung 
fibroblast, colon cancer (HT-29) and multiple myeloma cell lines. 
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C. Characterization of Subunit Binding Specificity of AM in Human Prostate 

Cancer Cells 

The immunoproteasome subunit binding specificity of the analog AM was 

previously determined in a murine lymphoma cell line (EL4). In order to begin 

investigating the immunoproteasome subunit binding specificity of AM in human cancer, 

an ideal human cancer cell model would be needed. This model would include human 

cancer cell lines that possess an identical tissue of origin with differential expression 

levels of LMP2 and LMP7 subunits. Cell lines that express high levels of LMP2 would 

be expected to be sensitive towards AM and vice versa. This model would allow for a 

more accurate assessment of the correlation between LMP2 expression levels and the 

efficacy of AM.   

Prostate cancer cell lines were subsequently selected because they fit the criteria 

for our ideal cancer cell model (Figure 4.1). The comparison between cancer cell lines of 

different tissues of origins is also possible but it is not desirable due to their inherent 

differences in many aspects of cellular functions. Although breast cancer cell lines were 

also considered due to their differential expression levels of LMP2/LMP7 as well as 

identical tissue of origin, the cell line that expresses lower LMP2 subunit, MCF7, was 

previously reported to be inherently resistant to proteasome inhibition due to elevated 

levels of proteasome activity [214]. Therefore, without a creditable LMP2 negative cell 

line, the breast cancer cell lines would not be an ideal model for the purpose of this 

project.  

The PC3 cell line will be the major focus in this project, as it highly expresses 

both the LMP2 and LMP7 catalytic subunits as shown in Figure 4.1. Even though the 

DU145 cell line also expresses high levels of the LMP2 subunit, it appears that it did not 

express an equal amount of the LMP7 subunit, which may adversely affect the proper 

assembly of the immunoproteasome structure [111]. A whole immunoproteasome is 

preferable for a more accurate assessment of the effect of LMP2 subunit inhibition in 

cancers utilizing the analog AM. On the other hand, LN3 cell line was a less attractive 

choice compared to LNCaP cell line for negative control because LN3 is originally 

derived from the LNCaP cell line and it is the highly metastatic variant of LNCaP. As a 

result, LN3 was not even an established cell line at the American Type Culture Collection 
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(ATCC). Therefore, the LNCaP cell line is believed to be a more suitable cell line to 

serve as negative control.  

 Similar to the previously described EL4 cell experiments, the competition and 

mobility shift assays were repeated in PC3 cells to determine the immunoproteasome 

subunit binding specificity of AM. As shown in Figure 4.2a, the observation that the 

LMP2 subunit band was attenuated on western blot indicates a high specificity towards 

the LMP2 subunit by the compound AM when competing with the probe, biotin-tagged 

dihydroeponemycin. Furthermore, the mobility shift assay performed in PC3 cells clearly 

showed that AM covalently modifies the LMP2 subunit, but not the other proteasome 

catalytic subunits (Figure 4.2b). The AM-LMP2 conjugate was observed at a 

concentration as low as 1µM (lane 4) whereas the probe-LMP2 conjugates were not 

observed at 1µM (lane 2-3). On the other hand, the LMP7, X, and Y catalytic subunits 

did not display any mobility shift even at concentration as high as 10µM of AM (lane 6). 

These results indicate that AM selectively modifies the LMP2 catalytic subunit that is 

highly expressed in PC3 prostate cancer cells.  

The western blot results also revealed that AM is a more potent LMP2 inhibitor 

than the biotin-tagged probes, biotin-epoxomicin and biotin-dihydroeponemycin. While 

the biotin-tagged probes were shown to label LMP2 at 1 µM (Figure 4.2a), a LMP2 

mobility shift was not observed from either biotin-tagged probe at 1 µM (Figure 4.2b). 

On the other hand, AM was able to induce a mobility shift in the LMP2 band starting at 1 

µM (Figure 4.2b); however, the LMP2 band on the competition assay western blot 

(Figure 4.2a) can still be clearly observed at 1 µM. These contradicting results could be 

explained by the exceedingly stronger western blot signal inherent to the streptavidin-

biotin interaction compared to the anti-LMP2 antibody. While AM may have bound to 

the majority of the LMP2 subunit at 1 µM during the competition assay, it may not be 

sufficient to attenuate the streptavidin signal derived from the minor interaction between 

the biotin-tagged probe and the remaining LMP2 subunits; hence, the LMP2 band on the 

competition assay western blot was still clearly visible at 1µM.  
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Figure 4.2  Selective modification of LMP2 in PC3 cell line. (a) Competition assay. 
PC3 cells were pre-treated with AM before the addition of biotin-tagged 
dihydroeponemycin to visualize the catalytic subunits that were not targeted by AM. 
(b) Mobility shift assay. PC3 cells were treated with the indicated concentrations of 
AM, biotin-epoxomicin (B-Epx) and biotin-dihydroeponemycin (B-Epn) for 1.5 
hours. The mobility shift of the catalytic subunits were then analyzed by western blot 
using anti-LMP2, -LMP7, -X and –Y antibodies. 
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 Furthermore, the covalent binding properties of AM to the proteasome catalytic 

subunits were also investigated in prostate cancer cells. Specifically, PC3 cells were 

treated with increasing concentrations of AM for 1.5 hours as indicated in Figure 4.3a. 

Similar to the mobility shift assay, they were then analyzed by western blot using anti-

LMP2, -LMP7 and -X antibodies to determine the dose dependent covalent modification 

of these catalytic subunits by AM. Results showed that AM was able to covalently 

modifiy the LMP2 subunit starting at a concentration as low as 0.5µM whereas LMP7 

and X subunits were not modified even with 1µM AM (Figure 4.3a). Not only does this 

experiment reconfirm that AM selectively targets LMP2 subunits, but it also indicates 

that 1µM is a selective concentration for AM treatments in future experiments.  

Subsequently, the stability of the compound AM in prostate cancer cells was 

determined. PC3 cells were treated with or without AM for up to 48 hours as shown in 

Figure 4.3b. Western blot results indicate that AM was able to maintain a consistent 

covalent modification of LMP2 for up to 48 hours as no free LMP2 band was observed in 

the treated cells (Figure 4.3b). On the other hand, AM did not modify the LMP7 subunit 

even after 48 hours incubation. This suggests that the compound is biologically active in 

prostate cancer cells for at least 48 hours and that the LMP7 subunit is not affected by the 

48 hour treatment.   

Finally, the binding activity of AM was investigated. PC3 cells were treated with 

1μM AM for 1.5 hours. Subsequently, the media was replaced with fresh untreated media, 

removing the compound from the solution. Cells were then harvested at the indicated 

time points. As shown in Figure 4.3c, LMP2 is still covalently modified 48 hours after 

AM was removed from the media. This suggests that the interaction between AM and 

LMP2 is irreversible. While a strong interaction between a compound and its target is 

desirable, covalent binding that lasts more than 48 hours may have adverse consequences. 

These consequences are often associated with the systemic toxicity of the compound, 

which will be further investigated in the near future. Considering that no unmodified 

LMP2 subunit was observed in PC3 cells during the 48 hour time period after the AM 

was removed (figure 4.3c), the turnover rate of the immunoproteasome catalytic subunit 

LMP2 could be more than 48 hours. However, it is uncertain whether the intrinsic 

turnover rate of LMP2 in PC3 cells is more than 48 hours or the pre-treatment of AM has 



 

96 
 

delayed the turnover rate of LMP2; hence, additional experiments to elucidate the 

mechanism in which the LMP2 protein levels is regulated will be needed. In conclusion, 

1µM AM binds to LMP2 in PC3 cells irreversibly and the turnover rate of LMP2 may be 

more than 48 hours.  

 

 

 
 
 
Figure 4.3  Characterization of the AM-LMP2 binding properties. (a) PC3 cells were 
treated with increasing concentration of AM for 1.5 hours before being analyzed by 
western blot. Results show that AM covalently modifies LMP2 starting at 0.5μM but 
not LMP7 and X. (b) PC3 cells were treated with or without 1.0μM AM for the 
indicated time points. Western blot results show that 1.0μM AM is able to covalently 
modify LMP2 for up 48 hours and not LMP7. (c) PC3 cells were treated with 1.0μM 
AM for 1.5 hours before being removed. Cells were further incubated in regular 
media for up to 48 hours. Western blot results show that LMP2 is still covalently 
modified 48 hours after AM was removed.  
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 In order to the further investigate the stability of AM in media, the compound 

AM was dissolved in isopropanol and diluted in media to a final concentration of 1mM. 

AM was then incubated at 37oC in the media for 1.5 hours and subsequently freeze dried 

to remove water. The precipitates obtained were then dissolved in methanol and thin 

layer chromatography (TLC) using an elution system of hexane : ethyl acetate = 1:1 was 

performed to determine whether AM is still present in the mixture. For control purposes, 

TLC was first performed to determine the Rf value of pure AM and extracted media on 

TLC for comparison purposes (Figure 4.4, lane 1-3). When TLC was performed with 

pure AM and the sample that was extracted from the treated media, a spot displaying a 

very close Rf value to pure AM was observed with the AM treated media sample (Figure 

4.4, lane 4-6). This data suggests that the compound AM is stable when incubated in 

media for 1.5 hours, which is the amount of time needed for AM to covalently modify the 

LMP2 subunit. Nevertheless, the TLC is only able to determine the stability of AM 

qualitatively. High technology instrument system such as the high performance liquid 

chromatography mass spectrometry (HPLC/MS), however, will not only be able to 

determine the stability of AM in a quantitative manner, but also can be used to help 

 
 
Figure 4.4  Thin layer chromatography (TLC) was used to determine the stability of 
AM. Media was incubated with AM at 37oC for 1.5 hours and subsequently freeze 
dried to remove water. It was eventually reconstituted with methanol and samples 
were taken for TLC analysis using hexane : ethyl acetate = 1:1 elution system. AM 
and extracted media only without AM was used as a reference on TLC. Analysis 
shows that AM remains stable in media for 1.5 hours. 
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determine the fragments of AM if it were to metabolize. Even though the compound AM 

is not expected to metabolize in an in vivo setting, the metabolites of the compound could 

result from the hydrolysis of the two amide bonds, therefore generating three metabolites. 

In conclusion, while this preliminary data implies that AM is stable in media, the true 

half life and stability of AM can only be accurately determined in an in vivo experimental 

setting. Specifically, future animal studies will be required to obtain the complete 

pharmacokinetic profile of AM.   
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D. Selective Inhibition of Proteolytic Activity and Cytotoxicity of Compound AM 

While LMP7 and MECL-1 catalytic subunits of the immunoproteasome have 

been shown to exhibit CT-L and T-L activity respectively [209, 215], the proteolytic 

activity of the LMP2 subunit has not been clearly established. It has been previously 

suggested that LMP2 preferably cleaves after hydrophobic amino acid residues to 

generate short peptides favoring MHC class I presentation, but the supporting 

experimental data was lacking [216]. Therefore, there is an interest in determining 

whether LMP2 is responsible for CT-L activity. In order to carry out this investigation, 

the natural product lactacystin was used, which primarily binds to the LMP7 and, to a 

lesser extent, MECL1 subunits [217] and subsequently inhibits their respective catalytic 

activities. This would facilitate the proteolytic activity assignment of the LMP2 subunit 

as well as determining the inhibitory activity of compound AM.  

Specifically, purified 20S human immunoproteasomes from Biomol were used in 

these experiments for a more accurate assessment of immunoproteasome catalytic subunit 

activity. The immunoproteasomes were preincubated with lactacystin at a concentration 

with which a significant amount of the CT-L activity is inhibited in the constitutive 

proteasome. Kinetic studies showed that approximately 20% of the CT-L activity of the 

immunoproteasomes was inhibited by lactacystin compared to control (Figure 4.5a). 

Similarly, when the immunoproteasomes were preincubated with AM at a concentration 

that only covalently modifies LMP2, approximately 20% of the CT-L activity of the 

immunoproteasome was inhibited compared to control (Figure 4-5a). However, when 

immunoproteasomes were preincubated with both lactacystin and AM, approximately 

45% of the CT-L activity of the immunoproteasome was inhibited compared to control 

(Figure 4.5a). The combination of AM and lactacystin produced an inhibitory effect 

comparable to the sum of the inhibitory effects produced by the compounds individually. 

Therefore, these results suggest that the inhibitors have an additive inhibitory activity on 

the CT-L activity of the immunoproteasome. Collectively, they also suggest that the 

LMP2 catalytic subunit is, at least in part, responsible for the CT-L activity of the 

immunoproteasome [126].  
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Figure 4.5 (a) AM was shown to inhibit the chymotrypsin-like activity of the 
immunoproteasome via proteasome kinetic studies. The studies were performed using 
purified human immunoproteasome that were pre-incubated with lactacystin, AM or 
concurrently for 30 minutes prior to the addition of CT-L flurogenic substrate (Suc-
Leu-Leu-Val-Try-AMC) and analyzed by microplate reader. (b) AM does not inhibit 
constitutive proteasome as shown by the 3D-ECSA. Human endothelial cell 
spheroids were seeded in collagen I gel and stimulated with VEGF (20ng/mL) to 
induce angiogenic sprouting.  VEGF-treated spheroids were co-treated with AM, 
Epn, and epoxomicin (Epx). Images were then taken 24 hours after sprouting was 
observed in the control spheroid that was treated with VEGF alone.*  
 
*The experiment was performed in collaboration with Dr. Royce Mohan at the 
Department of Opthamology, University of Kentucky.
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Despite the finding that AM selectively modifies the LMP2 subunit as well as 

inhibits its CT-L activity, it is still unclear whether the inhibitor also targets the CT-L 

activity of the constitutive proteasome. Therefore, AM was further assessed for its ability 

to disrupt cellular events that are regulated by the constitutive proteasome, specifically 

angiogenesis. It has been previously reported that broad spectrum proteasome inhibitors 

are particularly effective in inhibiting the angiogenic growth of blood vessels, which 

suggests that the constitutive proteasome is important in angiogenesis [218]. Furthermore, 

the endothelial cells involved in the angiogenesis process do not generally express 

immunoproteasomes. Therefore, the application of a LMP2-specific inhibitor to 

angiogenic endothelial cells would help determine whether the inhibitor targets 

constitutive proteasome by looking at how it affects angiogenesis. The compound AM is 

not expected to inhibit the angiogenic sprouting process.  

The three-dimensional endothelial cell sprouting assay (3D-ECSA) was believed 

to be a suitable in vitro angiogenesis model because it closely mimics the in vivo 

angiogenesis processes. The differentiation of endothelial cells into sprouting structures 

was stimulated by vascular endothelial growth factor (VEGF) and observed within a 3D 

matrix of fibrin or collagen I [219]. This was then followed by the treatments of AM or 

broad spectrum proteasome inhibitors. As expected, the sprouting of endothelial cells was 

completely inhibited when the cells were treated with epoxomicin (Epx) and 

dihydroeponemycin substitute (Epn), as shown in Figure 4.5b. On the other hand, the 

LMP2-specific inhibitor, AM, was not shown to inhibit the endothelial cell sprouting at 1 

µM concentration (Figure 4.5b). Furthermore, a 10 fold increase in the concentration of 

AM only marginally disrupted sprouting (data not shown), which strongly suggest that 

the LMP2 inhibitor does not target constitutive proteasome. These results indicate that 

the LMP2 inhibitor does not disrupt the angiogenesis process mediated by the 

constitutive proteasome in living cells. Also, the results help confirm previous results that 

AM selectively targets the immunoproteasome catalytic subunit LMP2 [126].  
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In addition to determining the selective inhibition of the proteolytic activity of the 

immunoproteasome, the cytotoxic effects of AM in prostate cancer was also investigated. 

Given that LMP2 is a major catalytic subunit of the immunoproteasome and that 

proteasomes play a vital role in the cell cycle as well as cell growth, it is anticipated that 

cancers that express high level of immunoproteasomes will be more sensitive towards 

LMP2 inhibition than cancers that express minimal levels of immunoproteasomes. In 

contrast, broad spectrum proteasome inhibitors, such as epoxomicin and Epn, will not 

have differential cytotoxicity towards cancers regardless of their immunoproteasome 

expression profile. Specifically, the IC50 of AM, epoxomicin, and Epn was determined in 

prostate cancer cell lines by the MTS assay. Remarkably, prostate cancer cells that 

express a higher level of LMP2 (PC3) are approximately 7-fold more sensitive to the 

LMP2-specific inhibitor, AM, compared to prostate cancer cells that express a lower 

level of LMP2 (LNCaP). These results suggest that there is a possible correlation 

between LMP2 expression level and the sensitivity of cancer cells to AM. On the 

contrary, both PC3 and LNCaP cells were equally sensitive to the broad spectrum 

proteasome inhibitors epoxomicin and Epn. Similarly, both cell lines were also equally 

Table 1. MTS assays were performed after 48 h incubation with AM or broad 
spectrum proteasome inhibitors, Epn and epoxomicin. 
 

 IC50 (µM) a Relative Sensitivity b 

Cell Lines PC3 LNCaP - 

LMP2 Level High Low - 

Epoxomicin 0.020 0.022 1 

Epn 0.43 0.59 1 

AM 4.18 28.27 7 

Bortezomib 0.02 c 0.007 d 0.35 
 

a Experiments were repeated at least 3-times or more. 
b Relative sensitivity of PC3 cells to inhibitors compared to the LNCaP cell line = 
IC50

LNCaP/IC50
PC3. 

c,d Results were previously reported [1, 2]. 
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sensitive to bortezomib, based on previously reported IC50 values as shown in Table 1. In 

fact, LNCaP cells were observed to be 3-fold more sensitive to the treatment of 

bortezomib than PC3 cells, which represents the opposite effect of AM treatment. These 

results indicate that the broad spectrum proteasome inhibitors do not discriminate among 

cancer cells that do and do not express high level of LMP2 but the LMP2-specific 

inhibitor does.  

While these MTS results are insufficient to come to a definite conclusion, they 

strongly suggest that a line of prostate cancer cells that highly express the LMP2 catalytic 

subunit (PC3) are more sensitive to the compound AM than a line of prostate cancer cells 

that express lower levels of the LMP2 subunit (LNCaP). On the other hand, bortezomib 

as well as epoxomicin and dihydroeponemycin substitute (Epn) inhibit the proliferation 

of both prostate cancer cell lines with similar IC50 values regardless of their LMP2 

subunit expression profile. Even though these inhibitors have a much lower IC50 value 

than AM, they were unable to selectively target the cancer cell line that express high 

levels of LMP2. In other words, bortezomib, epoxomicin and Epn are more potent 

proteasome inhibitors but display poor selectivity towards immunoproteasome catalytic 

subunit. While the compound AM has undeniably lost its potency when compared to the 

other non-specific proteasome inhibitors, the LMP2 selectivity of AM was shown to be 

much greater; hence, it is believed that this selectivity will help alleviate the general 

toxicity that can be caused by the non-specific proteasome inhibitors.  
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E. Modes of Action of AM 

While it has been determined that the proliferation of cancer cells that express 

high levels of the LMP2 subunit is more sensitive to AM than cancer cells that express 

lower levels of LMP2, it is essential to establish the mode of action of AM on a cellular 

and molecular level. In addition, it remains to be determined whether AM exhibits modes 

of action similar to the other broad spectrum proteasome inhibitors. Therefore, all 

subsequent experiments will be performed in parallel with the treatments of epoxomicin 

and the dihydroeponemycin substitute (Epn) for comparison purposes.  

Since AM was shown to be cytotoxic to PC3 cells, cell cycle and apoptosis assays 

were performed to determine whether AM induces cell cycle arrest and/or apoptosis in 

cancer cells that express high levels of LMP2. PC3 cells were incubated with increasing 

concentrations of AM (2, 8, and 16 µM), Epn (0.2, 0.8, and 1.6 µM), and epoxomicin 

(10, 40 and 80 nM) for 24 or 48 hours. The dosages used among these three compounds 

are values from the same area of the IC50 curve for relative comparison purposes. While 

the IC50 values are different for all three compounds, they are shown to exhibit similar 

efficacy. These dosages allow for a significant amount of cells to undergo the process of 

cell death without being dead, which will facilitate the better understanding of the 

cytotoxicity of AM on a cellular level.  

The cells were subsequently harvested and stained accordingly for cell cycle and 

apoptosis analyses utilizing flow cytometry. In the cell cycle analysis, the DNA 

histogram raw data showed that the cells were arrested at G2/M phase after 48 hours 

treatment of AM as well as epoxomicin and Epn. The induction of G2/M phase arrest is 

known to be indicative of apoptosis (Figure 4.6). Subsequently, the cells were also 

analyzed for apoptosis via Annexin and Propidium Iodide (PI) staining. The results 

obtained from flow cytometry analysis showed that there was an increased in both 

Annexin positive as well as Annexin and PI double positive cells after 48 hours treatment 

of AM, epoxomicin and Epn. Cells that were Annexin positive represents early apoptosis 

and cells that were Annexin and PI double positive represents late apoptosis (Figure 4.7). 

These results suggest that AM may induce apoptosis in a similar manner as epoxomicin 

and Epn.  
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Figure 4.6  Cell cycle analysis. PC3 cells were treated with increasing concentration 
of AM (2, 8, and 16 µM), Epn (0.2, 0.8, and 1.6 µM), or Epx (10, 40 and 80 nM) for 
up to 48 hours and analyzed by flow cytometry for cell cycle. DNA histogram was 
converted into bar graphs and data shows that cells were arrested at G2/M phase after 
48 hours treatment of AM, Epn and Epx. 
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Figure 4.7  Apoptosis Analysis. PC3 cells were treated with increasing concentration 
of AM (2, 8, and 16 µM), Epn (0.2, 0.8, and 1.6 µM), or Epx (10, 40 and 80 nM) for 
up to 48 hours and analyzed by flow cytometry for apoptosis. Raw data was converted 
into bar graphs and results show that an increased in Annexin positive (early 
apoptosis) and Annexin/PI double positive (late apoptosis) cells were observed 48 
hours after the treatments of AM, Epn, or Epx. 
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Apoptosis plays an essential role in development, immunological competence, 

and homeostasis [220]. It is not only characterized by morphological changes that can be 

recognized by flow cytometry but also by many cellular events such as the cleavage of 

poly (ADP-ribose) polymerase (PARP). PARP is an enzyme involved in DNA repair and 

it is also one of the main substrates of caspase 3, which is actively involved in the 

execution of apoptosis. Specifically, caspase 3 is responsible for the cleavage of PARP 

during the onset of apoptosis. Therefore, PARP cleavage was also determined in addition 

to the flow cytometry apoptosis assay in order to investigate apoptosis on a molecular 

level. PC3 cells were treated with increasing concentration AM (2, 8, and 16 µM), 

epoxomicin (10, 40 and 80 nM), and Epn (0.2, 0.8, and 1.6 µM) for 24 or 48 hours. Cells 

were then lysed and analyzed with western blot using an antibody that targets both full 

length and cleaved PARP. Western blot results clearly show that AM induces apoptosis 

in PC3 cells in a dose and time dependent manner, similar to the results seen with 

epoxomicin and Epn (Figure 4.8).  

 

 

 

 

 
Figure 4.8  Apoptosis analysis on a molecular level. PC3 cells were treated with 
increasing concentrations of AM (2, 8, and 16 µM), Epn (0.2, 0.8, and 1.6 µM), or 
Epx (10, 40 and 80 nM) for 48 hours or incubated for increasing time points. Cell 
lysates were then analyzed for PARP cleavage on western blot. Results show that AM 
induced PARP cleavage in a dose and time dependent manner similar to Epx and Epn. 
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Given that the epoxomicin was previously shown to inhibit proteolysis as well as 

exhibit anti-inflammatory activity [211], it is of great interest to investigate the effects of 

AM on proteolysis and inflammation in cells. The inhibition of proteolysis is generally 

characterized by the accumulation of poly-ubiquitinated proteins, because the proteasome 

is unable to process and degrade ubiquitinated proteins. On the other hand, it is well 

known that the inflammation pathway is mediated by the ubiquitin proteasome pathway. 

Therefore, it is not unexpected that proteasome inhibitors exhibit anti-inflammatory 

activity. The inhibition of inflammation is largely characterized by the accumulation of 

phosphorylated IκB because again, the inhibited proteasome is unable to degrade the 

inhibitory protein of NFκB for the activation of inflammation to commence. NFκB is a 

transcription factor that is involved in a myriad of cellular signaling pathways. Some of 

the well known pathways mediated by NFκB include inflammation, apoptosis, stress and 

immune responses. In addition, the malfunctioning of NFκB has also been linked to 

cancer. In fact, one of the major pathways reported to be inhibited by bortezomib is the 

NFκB pathway [221]. 

As shown in Figure 4.9a, PC3 cells were treated with 25µM AM or 1µM 

epoxomicin (Epx) for increasing time points as indicated. This resulted in the 

accumulation of poly-ubiquitinated proteins compared to controls. On the other hand, 

when PC3 cells were treated with increasing concentrations of AM or epoxomicin (Epx) 

for 24 hours, an accumulation of poly-ubiquitinated proteins was observed as well 

(Figure 4.9b). These results indicate that the compound AM inhibits proteolysis in a time 

and dose dependent manner, similar to epoxomicin.  
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Figure 4.9  Inhibition of polyubiquitination. (a) PC3 cells were treated with 25μM 
AM or 1μM Epx and incubated for increasing time points. Cell lysates were then 
analyzed for polyubiquitination on western blot. Results show that AM and Epx 
inhibit polyubiquitination in a time dependent manner. (b) PC3 cells were treated with 
increasing concentrations of AM or Epx for 24 hours and analyzed with western blot 
for polyubiquitination. Results show that AM and Epx inhibit polyubiquitination in a 
dose dependent manner.   
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In order to begin exploring the effects of AM on inflammatory activity in cells, 

artificial activation of NFκB by TNF-α was performed to serve as a control (Figure 

4.10a). PC3 cells were treated with 20ng/mL of TNF-α for up to 30 minutes and 

harvested at different time points as indicated. Cell lysates were analyzed and visualized 

using a phosphorylated IκB antibody as well as an IκB antibody. Western blot results 

indicate that the treatment TNF-α induced the phosphorylation of IκB by 3 minutes and 

reached its peak at 5 minutes. The IκB protein remained phosphorylated until 12 minutes, 

when it was degraded by the proteasome. On the other hand, IκB was only observed on 

the western blot at zero minutes and 3 minutes. The protein was then no longer observed 

because it was completely phosphorylated and subsequently degraded by the proteasome. 

In other words, NFκB was activated within 15 minutes following treatment with TNF-α.  

 Subsequently, the cells were treated with 1μM epoxomicin for 2 hours prior to the 

treatment of TNF-α as indicated in Figure 4.10b. Results showed that the treatment of 

epoxomicin prevented the degradation of phosphorylated IκB. This indicates that the 

proteasome inhibitor epoxomicin was able to block the activation of NFκB. On the other 

hand, when cells were pre-treated with 50µM AM for 2 hours prior to the treatment of 

TNF-α, accumulation of phosphorylated IκB was not observed (Figure 4.10c). This result 

indicates that the LMP2 inhibitor AM did not block the activation of NFκB because, 

unlike the epoxomicin pre-treatment, the phosphorylated IκB was degraded after 15 

minutes of TNF-α treatment. Therefore, it can be concluded that, while epoxomicin 

inhibits both proteolysis and the activation of NFκB, AM was shown to only inhibit 

proteolysis but not the activation of NFκB in PC3 cells.  

The activation of NFκB has been thought to be mediated by constitutive 

proteasomes, not immunoproteasomes. Controversial evidence supporting a role for the 

immunoproteasome in this process has been reported recently [222]. Nevertheless, the 

results presented here strongly support the common belief that the activation of 

inflammation is mediated by constitutive proteasomes. While the LMP2 inhibitor AM 

was shown to inhibit proteolysis, it did not exhibit anti-inflammatory activity in PC3 cells. 

These results strongly suggest that the immunoproteasome catalytic subunit LMP2 is not 

responsible for the degradation of IκB and subsequently the activation of NFκB in PC3 

cells. Furthermore, it also indicates that AM may have a different mode of actions than 
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the broad spectrum proteasome inhibitor epoxomicin. However, these results alone are 

insufficient to conclude with confidence that the compound AM is an anti-inflammatory 

agent. As mentioned earlier, all cancer cell lines are inherently different regardless of 

their tissue of origin; hence, it is inaccurate to make a generalized conclusion from 

experiments performed in a single cancer cell line. Supplementary experiments to make 

these findings more conclusive are needed. For example, immune cells may be used to 

investigate the claimed anti-inflammatory activity of AM because it could closely mimics 

the in vivo inflammatory responses. As immunoproteasome has been associated with 

immune responses, the effect of AM on the immune system can also be investigated by 

using immune cells in the experiments.  
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Figure 4.10 The effect of AM on NFκB activation. (a) PC3 cells were treated with 
TNF-α (20ng/mL) for up to 30 minutes and harvested at the indicated time points. Cell 
lysates were analyzed for phosphorylated IκB and IκB on western blot. Results 
indicated that the treatment of TNF-α induced the phosphorylation of IκB in less than 
5 minutes and peaked at approximately 10 minutes. The protein is then rapidly 
degraded by 15 minutes and returned to basal level by 25 minutes. This serves as a 
control for the following experiments. (b,c) PC3 cells were treated with 1μM Epx or 
50μM AM 2 hours prior to the treatment of TNF-α similar to (a). Western blot results 
indicate that epoxomicin was able to inhibit the phosphorylation of IκB as shown by 
the accumulation of phosphorylated IκB up to 30 minutes. However, AM did not 
appear to effectively inhibit IκB phosphorylation as the degradation of phosphorylated 
IκB can still be observed starting at 20 minutes of the TNF-α treatment.  
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F. Conclusions 

The investigation of the modes of action of AM was essential because not only 

does it facilitate a better understanding of the biological function of the LMP2 catalytic 

subunit, but it also help pave the way for validating the potential therapeutic properties of 

AM in the treatment of cancer. The finding that cancers express differential levels of 

LMP2 and LMP7 catalytic subunits regardless of their tissue of origin was unprecedented 

(Figure 4.1). It allows for the possibility of developing a personalized cancer treatment 

utilizing a LMP2-specific inhibitor. Furthermore, this phenomenon and the availability of 

a LMP2 specific inhibitor can be exploited for the further biological studies of the 

immunoproteasome. 

The compound AM was found to selectively target LMP2 not only in the murine 

lymphoma cell line EL4 (Figure 2.4) but also in the prostate cancer cell line PC3 (Figure 

4.2a). AM was shown to maintain its LMP2 selectivity in PC3 cells even at 

concentrations as high as 25µM. This high selectivity was further confirmed by the 

mobility shift assay that also demonstrated the potency of AM (Figure 4.2b). In other 

words, the results suggest that AM is not only selective towards the LMP2 subunit but 

also a more potent LMP2 inhibitor than the biotin-tagged probes in PC3 cells. 

Furthermore, characterization of the binding properties of AM with LMP2 revealed that a 

dose as low as 0.5µM AM was sufficient to covalently modify all LMP2 subunits (Figure 

4.3a) and the covalent modification of LMP2 by AM was maintained for at least 48 hours 

(Figure 4.3b). It was later demonstrated that the interaction between AM and LMP2 is 

irreversible in PC3 cells, which also revealed that the turnover rate of LMP2 could be 

more than 48 hours after treatment with AM. Finally, the compound AM was also shown 

to be stable in cell culture media, which provided preliminary evidence for the in vitro 

stability of AM (Figure 4.4).  

While western blot data have clearly demonstrated that the compound AM 

covalently binds to LMP2 irreversibly for up to 48 hours, it is of great interest to 

determine whether AM inhibits the catalytic activity of LMP2 as well. Proteasome 

kinetic studies was able to verify that the compound AM indeed possesses inhibitory 

activity against the CT-L activity of the LMP2 subunit (Figure 4.5a). Furthermore, the 

results obtained from the 3D-ECSA confirms that AM selectively inhibits the CT-L 
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activity of the immunoproteasome and not that of the constitutive proteasome. While it is 

tempting to conclude that AM is not cytotoxic to normal cells because it does not target 

constitutive proteasome, more definitive experiments to directly measure systemic 

cytotoxicity will be needed. As mentioned earlier, the proteasome inhibitor bortezomib 

causes severe system cytotoxicity, mainly peripheral neuropathy. For an in vitro studies 

approach, a motor neuronal cell line could be used to evaluate the cytotoxic effects of 

AM treatment on these cells. Some possible experiments to measure in vivo systemic 

cytotoxicity include animal studies by which body weight of mice treated with AM is 

monitored as well as histopathological and genotoxic analysis of multiple organs 

removed from the animals.   

Conversely, AM was shown to be exhibit a higher anti-proliferative activity in 

prostate cancer cell lines that highly express the LMP2 subunit (PC3) than prostate 

cancer cell lines with lower expression levels of LMP2 (LNCaP) (Table 1.). This finding 

may suggest that AM has potential therapeutic properties in prostate cancer cells, but 

more experiments to render these findings more definitive will be needed. Additional 

prostate cancer cell lines can be screened for LMP2 expression levels and subjected to 

similar MTS assays to determine their relative sensitivity towards the anti-proliferative 

activity of AM. Normal non-cancerous prostate cancer cell lines can also be used as 

another source of LMP2 negative prostate cell lines. The utilization of multiple cell lines 

will definitely render the results statistically more significant. The correlation between 

LMP2 levels and the anti-proliferative activity of AM can also be investigated using 

artificial systems. For example, the LMP2 subunit can be artificially knocked down in 

PC3 cells using siRNAs or induced in LNCaP cells by IFN-γ. These systems may allow 

for the assessment of the cytotoxicity of AM in a different aspect as they eliminate the 

external influences that can potentially arise from using multiple cancer cell lines. These 

experiments will definitely faciliate the target validation of the compound AM.   

In the modes of action studies, the compound AM was found to induce G2/M cell 

cycle arrest after 48 hours in a dose dependent manner (Figure 4.6); it also caused 

apoptosis in a time and dose dependent manner (Figure 4.7). Similarly, AM was also 

observed to induce apoptosis on a molecular level, causing PARP cleavage in a time and 

dose dependent manner (Figure 4.8). These results were in agreement with those of the 



 

115 
 

broad spectrum proteasome inhibitors epoxomicin and Epn. Epoxomicin has also been 

shown previously to inhibit proteolysis and inflammation, but the LMP2 inhibitor AM 

was found to only inhibit proteolysis (Figure 4.9) and not inflammation (Figure 4.10) in 

PC3 cells. These results indicate that while AM inhibits general proteolysis, it does not 

inhibit the proteolysis that is involved in the activation of NFκB in PC3 cells. In 

conclusion, the modes of action studies imply that the immunoproteasome may possess 

many similar properties as the constitutive proteasome but it may not be involved in the 

regulation of the NFκB activation pathway in PC3 cells.  

Being the only proteasome inhibitor on the market for chemotherapy, bortezomib 

is very potent and effective. After five years since it was first approved by FDA for the 

treatment of relapsed multiple myeloma, it was finally approved as a first line of 

treatment for multiple myeloma in June 2008. Nevertheless, systemic toxicities remain an 

issue. While the LMP2 inhibitor has greatly lost its potency compared to bortezomib, it 

has gained tremendous selectivity towards the LMP2 subunit. The essence of this 

research project was to develop an immunoproteasome inhibitor that could target cancer 

that highly express immunoproteasome, resulting in lower toxicities in normal tissues. 

Nevertheless, the immunoproteasome is still a baffling area in the field of biology. The 

availability of a LMP2 inhibitor would also help fuel biological studies of the 

immunoproteasome by serving as a molecular probe. Diseases that were previously 

shown to over-express immunoproteasomes will benefit as well because AM could 

function as a tool for pathological studies. While it is overreaching to state that AM has 

potential therapeutic properties based on current results, it is definitely a possibility to 

consider. This novel class of immunoproteasome catalytic subunit inhibitor has been 

proven to be of significant importance and it is undoubtedly worth exploring further.  
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G. Future Directions 

Given the promising preliminary data obtained thus far, the further development 

of the LMP2 inhibitor AM is inevitable. In fact, in vivo studies using prostate cancer 

mouse models are currently ongoing to determine the tumor growth inhibition as well as 

toxicities towards normal tissues of AM treatment. Preliminary results obtained from the 

in vivo studies suggested that AM reduces tumor volume and weight without severe 

systemic cytotoxicity. This promising data opens up the possibility of allowing the LMP2 

inhibitor to be considered as a potential chemotherapeutic agent. Another ongoing project 

includes the investigation of the immunoproteasome catalytic subunit selectivity of AM. 

Given that the crystal structure of immunoproteasome has yet to be completed, 3D 

computational molecular modeling was used to examining the selective interaction 

between LMP2 subunit and AM. Preliminary results strongly indicated that the molecular 

structure of LMP2 favors the binding of AM and it is not favorable to the binding of 

epoxomicin and dihydroeponemycin. In other words, the LMP2 selectivity of AM is 

further substantiated. 

Another important future direction of this project is the further target validation of 

AM. While AM has been shown to covalently modify LMP2 with high selectivity in 

comparison to the other proteasome catalytic subunits, its effect on other cellular proteins 

remains to be determined. Therefore, in order to attempt to establish a causal relationship 

between AM treatment and LMP2 inhibition, multiple orthogonal tools will be utilized to 

modify the expression level as well as the activity of LMP2 in cancer cells. Specifically, 

by using LMP2 overexpression and knockdown systems, the relative sensitivity to AM 

can be determined in various cancer cell lines that either expresses high or low levels of 

LMP2 subunit. Similarly, chemical proteomic approach will be considered as well for the 

investigation of the downstream effects of LMP2 inhibition by AM. Biotinylated AM 

will be synthesized to determine the possible interaction of AM with proteins other than 

LMP2. In addition, chemical proteomic approach such as two dimensional gels will also 

facilitate the investigation of the effects of AM treatment on cellular proteins and their 

pathways. The accomplishment of these goals will provide substantial confidence in the 

employment of AM in the future investigations that utilize LMP2 inhibition.  
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H. Methods and Materials  

 

Cell Culture. The human prostate cancer cells, PC3, DU145, and LNCaP; human breast 

cancer cells, MCF7, MDA-MD-231, and Hs578T; human multiple myeloma cancer cells, 

RPMI8226 and U266; human non small cell lung cancer cells, H358, H460, and A549; 

human colon cancer cells, HT29; human cervical cancer cells, HeLa; normal human lung 

fibroblast, WI-38; and murine lymphoma cells, EL4; were purchased from American 

Type Culture Collection (Rockville, MD). PC3, MCF7, MDA-MB-231, Hs578T, 

RPMI8226, U266, H358, H460, A549, HeLa and EL4 cells were cultured in RPMI 

Media 1640 (Gibco BRL, USA). DU145 was cultured in Dulbecco's Modified Eagle 

Media (Gibco BRL, USA). HT29 was cultured in McCoy’s 5a Media (Gibco BRL, USA). 

WI-38 was cultured in Minimum Essential Media (Gibco BRL, USA). All media 

contained 10% heat inactivated fetal bovine serum, 100 U/ml penicillin and 100 mg/ml 

streptomycin (Gibco BRL, USA) except for U266 cells in which media contained 15% 

heat inactivated fetal bovine serum. LNCaP was cultured in RPMI Media 1640 

containing 10% non heat inactivated fetal bovine serum (ATCC, Manassa, VA) and no 

antibiotics. All cells were maintained at 37oC in a humidified atmosphere containing 5% 

CO2. Inhibitors were dissolved in dimethyl sulfoxide (DMSO) and made into a stock 

solution of 10mM concentration. 

 

Western Blotting. Whole cell lysates were prepared by incubating cells in non-

denaturing lysis buffer (50nM Tris-Cl, 150mM NaCl, 1% NP40, 1% Triton X-100, and 

1% protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO)) on ice for 1 hour. Cells 

were then centrifuged at 14,000 rpm for 10 min at 4oC (Sorvall Biofuge Primo R, Kendro 

Laboratory Products, Newtown, CT). Supernatants were collected and subjected to 

protein assay via method of Bradford using Protein Assay Dye Reagent Concentrate 

(Bio-Rad, Hercules, CA). Protein concentrations were determined by a GENESYS 10 

spectrophotometer, Thermo Spectronic (VWR, Arlington Heights, IL). The supernatants 

were then added 2x Laemmli Sample Buffer (Sigma-Aldrich) and heated in boiling water 

for 10 min. Subsequently, the denatured whole cell lysates were resolved by 8%-12% 

SDS-PAGE and transferred to PVDF membranes (Bio-Rad). Membranes were blocked 
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with 5% skim milk (Bio-Rad) or BSA (Sigma-Aldrich) for 1 hour at room temperature on 

the rotator. Appropriate primary and secondary antibodies were used to incubate the 

membranes for 1 hour at room temperature on the rotator or overnight at 4oC. Finally, 

Amersham ECL Western Blotting Detection Reagents (GE Healthcare Life Sciences, 

Pittsburgh, PA) were used to visualize protein of interests on Kodak BioMax XAR Films 

(Sigma-Aldrich).   

 

Enzyme Kinetic Assay. kassociation values were determined as follows. Inhibitors were mixed 

with a fluorogenic peptide substrate and assay buffer (20 mM Tris (pH 8.0), 0.5 mM 

EDTA, and 0.035% SDS) in a 96-well plate. The chymotrypsin-like activity was assayed 

using the fluorogenic peptide substrates Suc-Leu-Leu-Val-Tyr-AMC (Sigma-Aldrich). 

Hydrolysis was initiated by the addition of bovine 20S proteasomes or 

immunoproteasomes (Biomol International, Plymouth Meeting, PA), and the reaction was 

followed by fluorescence detection (360-nm excitation/460-nm detection) using a 

Microplate Fluorescence Reader (FL600; Bio-Tek Instruments, Inc., Winnoski, VT) 

employing the software KC4 v.2.5 (Bio-Tek Instruments, Inc., Winooski, VT). Reactions 

were allowed to proceed for 60 - 90 min, and fluorescence data was collected every 

minute. Fluorescence was quantified as arbitrary units and progression curves were 

plotted for each reaction as a function of time. kobserved/[I] values were obtained using 

PRISM software by nonlinear least squares fit of the data to the following equation: 

fluorescence = vst + [(v0 – vs)/kobserved][1 – exp(-kobserved t)], where v0 and vs are the initial 

and final velocities, respectively, and kobserved is the reaction rate constant [189]. The 

range of inhibitor concentrations tested was chosen so that several half-lives could be 

observed during the course of the measurement. Reactions were performed using inhibitor 

concentrations that were <100-fold than that of the proteasome assayed. 

 

3D Endothelial Cell Sprouting Assay. Endothelial cell spheroids were generated from 

human umbilical vein endothelial cells (HUVECs; Cascade Biologicals, Portland, OR) as 

described [223]. The spheroids (4-6/well) were distributed in 96-well plates in collagen I 

matrix for the 3D-ECSA. Cell culture medium was added to each well along with 20 

ng/ml VEGF in the presence and absence of the individual inhibitor. The 3D cultures 
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were incubated in tissue culture chambers at 37oC in 5% CO2 for 24 h. Photographic 

images of spheroids were obtained at 10X objective using a Nikon TE2000 microscope. 

Sprouting was quantified from digital images according to our previously published 

method [218]. 

 

MTS Assay. Cells were seeded on 96-well plates and incubated at 37°C with 5% CO2 

until 70% confluent. The indicated inhibitors were added in increasing concentration and 

cells were treated for 48 hours. The percentage of cell survival was determined using the 

MTS reagent, CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, 

Madison, WI) following the manufacturer’s protocol. Briefly, 20µL of MTS reagent were 

added to cell samples in 100µl of culture media and incubated for 1 hour at 37°C. 

Absorbance was recorded at 490nm wavelength on a microplate reader (FL600; Bio-Tek 

Instruments, Inc., Winnoski, VT) using the software KC4 v.2.5 (Bio-Tek Instruments, 

Inc., Winooski, VT).  Cell proliferation was determined as a percentage relative to 

vehicle treated cells. IC50 values were calculated from sigmoid dose response curves by 

the method of nonlinear regression to a logarithmic function using PRISM. These data 

represent the average of three or more experiments. 

 

Flow Cytometry. In order to assess the induction of apoptosis, the Annexin V-FITC 

Apoptosis Detection Kit (Sigma-Aldrich) was used following the manufacturer’s protocol. 

Briefly, cells were treated with the indicated concentrations of the inhibitors for 24-48 

hours. Floating cells were first collected and then combined with adhered cells that were 

trypsinized and pelleted by centrifuging at 600 g-1 for 10 minutes at 4oC. The cell pellets 

were washed twice with cold phosphate buffered saline (PBS) and resuspended in 1X 

Binding Buffer at a concentration of 1 x 106 cells/mL. 500µL of the cell suspension of 

each sample was transferred into a 12 x 75 mm test tube and 5µL of Annexin V-FITC 

and 10µL propidium iodide (PI) was added. The cells were then incubated at room 

temperature for 10 minutes, protected from light, before analysis by flow cytometry 

(Becton-Dickinson FACScalibur). A minimum of 2x104 cells were analyzed per sample 

for Annexin V and Propidium Iodide. Viable cells were defined as Annexin-V and PI 

double negative, while Annexin-V positive and PI negative was defined as apoptotic cells. 
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Necrotic or late apoptotic cells were defined Annexin-V and PI double positive. These 

data represent the average of three or more experiments.  

 

Cell cycle analysis was also determined using flow cytometry. Samples were prepared 

following the protocol in Current Protocols in Cytometry [224]. Briefly, cells were 

treated with the indicated concentrations of the inhibitor for 24-48 hours. Fixatives were 

prepared by keeping 12 X 75 mm test tubes that contained 4.5 mL of 70% ethanol on ice. 

Floating cells were first collected and then combined with adhered cells that were 

trypsinized and pelleted by centrifuging at 200 g-1 for 6 minutes at 4oC. Cells were 

washed with 1mL cold PBS before resuspending in 0.5 mL cold PBS. The single cell 

suspensions were transferred into the cold 70% ethanol fixatives and incubated for at 

least 2 hours. Cell suspensions can also be stored in -20oC until ready to be stained. 

Ethanol suspended cells were centrifuged at 200 g-1 for 5 minutes at 4oC and the 

supernatant was decanted carefully. Cell pellets were resuspended in 1mL cold PBS and 

centrifuged at 200 g-1 for 5 minutes at 4oC a minute later. The final cell pellets were 

resuspended in 1mL PI/Triton X-100 staining solution with RNAse A (2mg DNAse-free 

RNAse A (Sigma-Aldrich) and 200µL of 1mg/mL PI in 100mL of 0.1% (v/v) Triton X-

100 in PBS). The cells were incubated at room temperature for 30 minutes before being 

analyzed by flow cytometry. A minimum of 1 x 104 cells were analyzed per sample and 

the DNA histogram was further analyzed using integration software (ModFit LT V2.0, 

Topsham, MN, USA) for cell cycle analysis. 
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