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INVITED ARTICLE

Microscopic origin of ferroelectricity in chiral smectic C* liquid crystals and ordering of
‘ferroelectric fishes’ proposed by de Gennes

M.A. Osipova* and M.V. Gorkunovb

aDepartment of Mathematics, University of Strathclyde, Glasgow G1 1XH, UK; bInstitute of Crystallography, Russian Academy

of Sciences, 119333 Moscow, Russia

(Received 7 April 2009; final form 11 May 2009)

The qualitative microscopic mechanism of ferroelectric ordering in smectic C* liquid crystals originally proposed
by de Gennes and others is analysed in detail using the molecular-statistical approach. The general expression is
obtained for the spontaneous polarisation of the smectic C* phase composed of chiral and polar molecules of the C2

symmetry. The polarisation is shown to be determined by molecular chirality, molecular transverse dipole and the
non-polar biaxial order parameter which does not vanish in the non-chiral smectic C phase. A particular molecular
model is considered in which molecular chirality and molecular biaxiality are determined by the pair of off-centre
transverse molecular dipoles. In the context of this model the spontaneous polarisation is evaluated both analy-
tically and numerically.

Keywords: ferroelectric liquid crystals; chirality; intermolecular interactions

1. Introduction

Ferroelectricity in smectic liquid crystals continues to

attract significant attention because of the unusual

structure and properties of various ferroelectric,

antiferroelectric and ferrielectric phases, and because

of their applications in electro-optical devices (1).

Ferroelectric ordering in the chiral smectic C* (SmC*)
phase was predicted theoretically about three decades

ago by Meyer et al. (2), and the phenomenological

theory of ferroelectric ordering in tilted smectics is

well established (3, 4) Ferroelectric smectic liquid crys-

tals are unique in the sense that the spontaneous polar-

isation is determined by molecular chirality. It is well

known that in smectic phases the spontaneous polar-

isation is induced by the tilt and does not appear self-
consistently as in proper solid ferroelectric materials.

Thus the primary order parameter of the smectic A

(SmA)–smectic C (SmC) transition is the tilt pseudo-

vector which possesses a different symmetry compared

with the polarisation which is a polar vector. The

polarisation can then be induced by the tilt pseudovec-

tor only in a chiral medium. Thus, ferroelectricity

observed in conventional tilted smectics is very differ-
ent from that which has been found recently in a novel

class of smectic liquid crystal phases formed by achiral

bent-core molecules. In bent-core phases the sponta-

neous polarisation is not induced by the tilt and thus

appears also in orthogonal smectic phases (5).

A particular microscopic mechanism of ferroelec-

tric ordering in tilted smectics has been the issue of

debate during the past two decades. In particular, the

role of molecular chirality on the microscopic level

has not been clarified completely. On the one hand, it

is well known that spontaneous polarisation in tilted

smectics cannot exist without molecular chirality,
and thus at least a fraction of molecules must be

chiral. On the other hand, it is not immediately clear

whether some specific chiral intermolecular interactions

are required to induce the macroscopic polarisation in

tilted chiral phases. The spontaneous polarisation is

not the primary order parameter of the corresponding

tilting transition, and thus the polar ordering of chiral

molecules may, in principle, be induced by some non-
polar ordering of the same molecules which is not

necessarily dependent on molecular chirality.

It is interesting to note that possibly the first qua-

litative microscopic mechanism of this kind was pro-

posed by de Gennes (see his book (6)). Dipolar

ordering of chiral molecules in the SmC* phase is

qualitatively illustrated by de Gennes using the two

‘ferroelectric fishes’ presented schematically in Figure 1.
The ‘fishes’ possess electric dipoles which point

from one of their eyes in the direction perpendicular

to the plane of the ‘fish’. Thus, the ‘fishes’ possess a

symmetry plane if the dipole is removed. At the

same time, the presence of the transverse dipole

determines the chirality of the ‘fish’. The reversal

of the direction of the transverse dipole results in

the reversal of the handedness of the chiral ‘fish’,
i.e. the two enantiomers here possess the dipoles
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pointing out from the left eye and the right eye of

the ‘fish’, respectively.
The shape of the ‘fishes’ of de Gennes is polar also

along the ‘long axis’ of the fish. It is also important

that the ‘fishes’ are biaxial even without the transverse

dipoles. The direction of the first short ‘molecular axis’

is then naturally determined by the dorsal fin of the

‘fish’. The second short axis is then in the direction of

the transverse electric dipole. The qualitative mechan-

ism of dipolar ordering of such chiral ‘fishes’ in the
tilted plane, illustrated in Figure 1, is related to the

biaxial ordering of short ‘molecular’ axes (i.e. the

ordering of the fins). If, for some reason, the fins

have a tendency to point towards the nearest region

between the smectic layers, the fins of the two tilted

‘fishes’ in Figure 1 point in the opposite directions

while the transverse dipoles appear to be parallel, and

thus the whole system is polar in the direction perpen-
dicular to the tilt plane. The two orientations of the

same fish are statistically equivalent, and the corre-

sponding pair of ‘fishes’ possesses the C2 symmetry

axis along the total dipole which corresponds to the

only point symmetry element of the ferroelectric

SmC* phase. At the same time the pair of ‘fishes’ does

not possess any polar order in the tilt plane even if a

single fish possesses additional electric dipoles along the
long axes and the fin. This is consistent with the absence

of the macroscopic polar order in the tilt plane deter-

mined by the C2 symmetry of the SmC* phase.

The qualitative mechanism of ferroelectric order-

ing proposed by de Gennes has been independently

employed by several authors who have proposed more

detailed molecular models (7, 8, 10–14). It has been

recognised that it is possible to use models of indivi-
dual molecules which possess higher symmetry than

the ‘ferroelectric fish’ in Figure 1. The two main mole-

cular models of this kind, used in the Boulder model

(7, 8) and in the Goossens theory (12, 13), are presented

in Figure 2. One can readily see that both molecules in

Figure 2 possess a transverse dipole in the direction of

the ‘molecular plane’. This dipole makes the molecules

chiral, and without it both molecules are characterised

by the C2v symmetry, i.e. they possess one symmetry

plane and the C2 symmetry axis perpendicular to the

plane. In the case of the zigzag molecule (Figure 2(a))

this symmetry is determined by the molecular shape
while in the molecule with permanent dipoles (Figure

2(b)) it is determined by the two antiparallel dipoles of

same magnitude. These molecules have the same sym-

metry as the pair of ‘fishes’ in Figure 1.

The general qualitative mechanism of the polar

ordering of the molecules of the C2v symmetry in the

tilted smectic phase is illustrated in Figure 3. Here a

chiral biaxial molecule is schematically represented as
a rigid rod with two ‘lateral groups’ and a permanent

dipole perpendicular to the molecular plane. In this

model also the lateral groups make the molecule biax-

ial while the chirality is determined by the transverse

dipole. Without this dipole, the molecule possesses a

mirror plane. Now let us assume that the lateral

groups have a tendency to point in the direction of

the region between two adjacent smectic layers (simi-
lar to the fins of the ‘fishes’ in Figure 1). One can

readily see that in the SmA phase (i.e. without any

tilt) the two orientations of such a molecule, which

correspond to opposite directions of the transverse

dipole m, are energetically equivalent. Thus, the

macroscopic polarisation in the untilted smectic

phase should vanish. In contrast, in the tilted phase

the balance between two opposite directions of the
transverse molecular dipole is violated because the

molecular orientation A, say, is more favourable

than the orientation B (see Figure 3(b)). As a result,

the average molecular dipole does not vanish, and a

macroscopic polarisation appears in the direction per-

pendicular to the tilt plane.

The primary example of the detailed model based

on this general mechanism is the classical Boulder

Figure 1. Schematic representation of the dipolar ordering
of the two chiral and polar ‘fishes’ in the tilted SmC* phase
as originally proposed by de Gennes. If the fins of both
‘fishes’ point in the direction of the neighbouring layer
boundary, the transverse dipoles of the ‘fishes’ are parallel
and point in the direction perpendicular to the tilt plane.

a) b)

Figure 2. Simple models for chiral biaxial molecules of the
C2h symmetry with transverse molecular dipoles.
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model (see, for example, (7–9)). In the Boulder model

the molecules of the zigzag shape (see Figure 4), which
possess the C2v symmetry, are ordering in the so-called

binding sites which have the same point symmetry as

that of the zigzag molecules, and which also represents

the point symmetry of non-chiral SmC phase itself. In

this model the transverse molecular dipoles are

ordered in the particular direction perpendicular to

the tilt plane simply because the zigzag molecule fits

into the binding site of the same shape only for a

particular direction of the transverse dipole. The

Boulder model has been successfully used to describe

and predict the value and sign of the spontaneous

polarisation for a significant number of chiral smectic

materials. One notes that the interaction between the

molecule and the binding site, which is responsible for

the polar order, is non-chiral in nature because the

binding site itself is non-chiral. The earlier version of
the Boulder model emphasises the steric mechanisms

of the ordering, while in the recent paper (9) the order-

ing of a molecule in the binding site has been inter-

preted as an ordering in the effective mean-field

potential.

Terzis, Photinos and Samulski et al. have developed

a similar model (10,11) which is based on a mean-field-

like one-particle orientational potential for each mole-
cular segment. Using this model Terzis et al. have

obtained good quantitative results for a number of ferro-

electric SmC* phases (see (11)). Very recently the general

molecular-statistical theory of ferroelectric ordering

based on the general mechanism described above has

been developed by the present authors (15, 16).

One notes that the mechanism of ferroelectric

ordering proposed by de Gennes and other authors
implies some non-polar ordering of short molecular

axes (i.e. ordering of fins in Figure 1, for example) in

the tilt plane. This ordering in itself is not related to

molecular chirality and should also exist in the non-

chiral SmC phase. If the molecules are chiral, this in-

plane non-polar biaxial ordering also causes the align-

ment of transverse molecular dipoles (which makes the

molecules chiral within this model) in the direction
perpendicular to the tilt plane. In this paper we con-

sider in detail the relationship between the sponta-

neous polarisation and the non-chiral biaxial order

parameters of the SmC* phase and present a consis-

tent description of the microscopic mechanism of the

ferroelectric ordering using the molecular-statistical

approach.

2. Relationship between spontaneous polarisation and
non-polar biaxial ordering in the SmC* phase

It is well known that from the phenomenological point

of view the ferroelectric ordering in tilted smectics is

determined by the linear coupling between the polar-

isation and the tilt in a chiral medium. The sponta-

neous polarisation can then be expressed in the
following general form (see, for example, (3)):

Ps ¼ cpw ¼ cpðn � kÞðk� nÞ; ð1Þ

where w ¼ ðn � kÞðk� nÞ is the so-called pseudovector

tilt order parameter of the SmC phase, n is the director

and k is the smectic layer normal as shown in Figure 5.

Figure 3. (a) In the SmA phase the molecular orientations
A and B, which correspond to the opposite directions of the
molecular transverse dipole, are equivalent and there is no
macroscopic polarisation. (b) In the SmC* phase, molecular
orientation A, say, is more energetically favourable than the
orientation B, and there is a non-zero average dipole in the
direction normal to the tilt plane.

Figure 4. Orientation of the biaxial molecule of the zigzag
shape (C2v molecular symmetry) in the binding site of the
same symmetry as assumed in the Boulder model.
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One notes that the polarisation is a polar vector

while the tilt order parameter w is a pseudovector and

thus the linear relationship between polarisation and

the tilt is only possible if the coupling constant cp is
a pseudoscalar determined by molecular chirality.

Accordingly, the polarisation vanishes if the molecules

are non-chiral and changes sign when all chiral mole-

cules reverse their handedness.

At the same time, the pseudovector order para-

meter w is also non-zero in the non-chiral SmC

phase. Indeed, w is invariant under all symmetry trans-

formations of the SmC phase including the reflection
with respect to the tilt plane because both vectors

n and k are in the tilt plane and thus are not affected

by the reflection. In contrast, the spontaneous polar-

isation Ps, of course, changes sign under a reflection

with respect to the tilt plane. One notes that this does

not violate the linear relationship (2) because the pseu-

doscalar parameter cp also changes sign under the

reflection. In a non-chiral SmC phase the coupling
constant cp vanishes identically.

Let us now describe the appearance of the sponta-

neous polarisation from the molecular point of view.

Orientation of any rigid biaxial molecule can be spe-

cified by the unit vectors a and b in the direction of

short and long molecular axis, respectively. The biax-

ial molecules of high symmetry (similar to the biaxial

ellipsoid or a brick) are invariant under simultaneous
inversion of both axes a and b. In contrast, the mole-

cules of the C2 symmetry presented in Figure 2 are not

invariant under the sign inversion of the axes a or b

individually. At the same time, these molecules are

invariant under simultaneous inversion of both axis a

and b. This symmetry enables one to introduce the

transverse molecular pseudovector ða� bÞ. One

notes that the existence of this transverse pseudovec-
tor does not violate the mirror symmetry of the mole-

cule because the pseudovector ða� bÞ is invariant

under a reflection with respect to the molecular mirror

plane which is parallel to a and b.

Now the transverse molecular dipole can be

expressed explicitly in terms of this molecular pseudo-

vector. Indeed, for molecules in Figure 2 the transverse

molecular dipole is parallel to the short molecular axis

c?b?a, i.e. m ¼ �?c. Now the unit vector c can be

expressed in terms of the unit vectors a and b in the

following way

c ¼ �ða� bÞ; ð2Þ

where � ¼ ðða� bÞ � cÞ is the molecular unit pseudos-

calar which specifies the handedness of the molecule.
Note that c is the conventional polar vector which is

expressed as a product of the pseudovector ða� bÞ and

the pseudoscalar �. Finally, the transverse dipole can

be expressed as

m ¼ �?c ¼ �?�ða� bÞ: ð3Þ

Then the macroscopic polarisation in the SmC* phase

can be written in the form which contains the statisti-

cal average of the molecular pseudoscalar ha� bi:

Ps ¼ ��?hci
¼ ��?�ha� bi ¼ ���ha� bi; ð4Þ

where � is the molecular number density.
Now it can readily be shown that the average

ha� bi is non-zero only in a tilted smectic phase and

is parallel to the C2 symmetry axis of the smectic C

phase. Indeed let us express the unit vectors a and b

using the orthogonal basis composed of the unit vector

k in the direction of the smectic layer normal, the unit

vector h in the direction of the C2 symmetry axis which

is normal to the tilt plane and the unit vector t which is
normal to k and is parallel to the tilt plane:

a ¼ k cos � þ t sin � cos’þ h sin � sin’;

b ¼ �k sin � cos þ tðcos � cos’ cos � sin’ sin Þ
þ hðcos � sin’ cos þ cos’ sin Þ; ð5Þ

where �; ’ and  are the Euler angles.
Substituting these equations into the equation for

the average molecular pseudoscalar one obtains

ha� bi ¼ �ðk� tÞ þ Aðk� hÞ þ Bðh� tÞ; ð6Þ

where

� ¼ hcos’ cos � cos � sin’ sin i;

A ¼ hðcos �ðcos � sin’ cos þ cos’ sin Þ
þ sin � sin’ sin � cos i;

Figure 5. Spontaneous polarisation Ps and the pseudovec-
tor tilt order parameter w in the SmC* phase.
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B ¼ hsin � sin’ðcos � cos’ cos � sin’ sin Þ
� sin � cos’ðcos � sin’ cos þ cos’ sin Þi:

All macroscopic quantities in both chiral and

non-chiral SmC phase must be invariant under a

corresponding rotation about the C2 symmetry axis.

In Equation (6) the first term is parallel to the C2

axis and thus it is invariant. At the same time the

second and the third terms in Equation (6) are nor-

mal to the C2 axis and are not invariant under the

corresponding rotation. Thus, one concludes that the

averages A and B must vanish identically in the SmC

phase. As a result the average molecular pseudosca-

lar ha� bi ¼ �ðk� tÞ, and the spontaneous polarisa-

tion can finally be expressed as

Ps ¼ ����ðk� tÞ: ð7Þ

Equation (7) is the general exact expression for the

spontaneous polarisation in the SmC* phase com-

posed of molecules of the C2v symmetry with a trans-

verse dipole perpendicular to the ‘molecular plane’.

According to Equation (7) the magnitude of the spon-
taneous polarisation is essentially the product of the

two important factors: the pseudoscalar parameter

�� which represents molecular chirality and which

vanishes if the molecules are non-chiral, and the non-

polar biaxial order parameter � which can also be

written in the concise form:

� ¼ hða � kÞðb � tÞ � ða � tÞðb � kÞi: ð8Þ

It is important to note that the biaxial order parameter

� is not related to molecular chirality and does not

vanish in the non-chiral SmC* phase. The order para-

meter � has been calculated numerically (17) using a

molecular model of the non-chiral SmC phase com-

posed of non-chiral molecules. This indicates that the

order parameter � may predominantly be determined
by non-chiral intermolecular interactions also in the

chiral SmC* phase.

3. Molecular model of the ferroelectric SmC* phase

based on dipole–dipole interactions

Let us consider the dipolar model of a chiral molecule

shown in Figure 6. In this model, the molecule is

represented by a rigid rod and a pair of off-centre

transverse dipoles which do not belong to the same

plane. One can readily see that the molecule presented

in Figure 6 is chiral because it does not have any
symmetry planes. Moreover, in this model molecular

biaxiality, chirality and polarity is determined by the

pair of non-parallel dipoles. Real molecules with simi-

lar structure (i.e. with a pair of almost orthogonal

transverse dipoles) have recently been synthesised by
Lemieux et al. (18–21) and used as chiral dopants to

induce polarisation in an achiral SmC host.

Introducing the orthogonal transverse unit vectors

e� one obtains

m� ¼ �ðe� sin�� a cos�Þ: ð9Þ

The total dipole moment of the molecule is transverse

m? ¼ ðmþ þ m�Þ and is in the direction of the short

molecular axis c ¼ ðeþ þ e�Þ=
ffiffiffi
2
p

. The second short

molecular axis is b ¼ ðeþ � e�Þ=
ffiffiffi
2
p

.

An interaction potential for a pair of molecules

presented in Figure 6 can be written as a sum of the

effective interaction potentials between rigid uniaxial
cores and the electrostatic dipole–dipole interactions

between all molecular dipoles:

Uð1; 2Þ ¼ Uuniða1; r; a2Þ þUddð1; 2Þ; ð10Þ

where the uniaxial interaction potential Uuni depends

on the molecular long axes a1, a2) and the intermole-

cular vector r, and Uddð1; 2Þ is the sum of all dipole–

dipole interaction potentials:

U�ð1; 2Þ ¼mþ1 �DðRþþ12 � mþ2 þ m�1 �D��12 � m�2
þ mþ1 �Dþ�12 � m�2 þ m�1 �D�þ12 � mþ2 :

ð11Þ

Here D(R) is the dipole–dipole tensor

Dijða1; a2;RÞ ¼
1

r5
R2�ij � 3RiRj

� �
; ð12Þ

where R is the distance between the two interaction
dipoles which depends both on the intermolecular

vector r and the molecular long axes. In Equation

(11), Rþþ12 ¼ rþ �a2 � �a1, R��12 ¼ r� �a2 þ �a1,

Figure 6. A model of biaxial and chiral molecule with two
non-parallel transverse dipoles.
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Rþ�12 ¼ rþ �a2 þ �a1 and R�þ12 ¼ r� �a2 � �a1. We

assume that the tilting of the director in the SmC

phase is determined by the uniaxial interaction poten-

tial Uunið1; 2Þ while the biaxial ordering and the spon-

taneous polarisation are determined by the dipole–

dipole interaction.

The spontaneous polarisation in the SmC* phase
composed of such molecules is given by the general

Equation (7) where the biaxial order parameter � can

be expressed in the following way using the mean-field

approximation (16,17):

� ¼
Z
ðða � kÞðb � tÞ � ða � tÞðb � kÞÞf1ða; bÞdadb: ð13Þ

Here the orientational distribution function f1ða; bÞ
can be written in the mean-field form:

f1ða; bÞ ¼
1

Z
exp �UMFða; bÞ

kBT

� �
; ð14Þ

where Z is the normalisation constant, and UMF is the

mean-field potential which has the following general

form:

UMFða; bÞ ¼ �
Z

f1ða2; b2ÞUð1; 2Þd2R da2 db2: ð15Þ

A model interaction potential between uniaxial mole-

cules has been discussed in detail in (22), and here we

can use the following simple expression for the uni-

axial part of the total mean-field potential derived

in (22):

Uuni
MFðaÞ ¼ w1P2ðcos �Þ þ w2SkP2ðcos �Þ

þ w3Pk sin2 � cos 2’þ w4V sin 2� cos’;

ð16Þ

where w1 � w4 are the coupling constants which can be

calculated numerically for a given pair of interaction

potentials (22), and the orientational order parameters
Sk;Pk and V are expressed explicitly as statistical

averages

Sk ¼ hP2ðcos �Þi; ð17Þ

Pk ¼ hsin2 � cos 2’i ð18Þ

V ¼ hsin 2� cos’i: ð19Þ

The order parameters Sk and Pk characterise the uni-

axial and biaxial orientational order of the long mole-

cular axes with respect to the layer normal and V is the

tilt order parameter, which vanishes in the SmA phase.

At small director tilt angles � in the SmC phase the tilt

order parameter V is approximately proportional to �
and can generally be expressed as (22)

V ¼ tanð2�ÞðSk � 0:5PkÞ: ð20Þ

The dipole–dipole interaction between the molecules

presented in Figure 6 has been considered in detail

in (16). It has been shown that the uniaxial part of

the dipole–dipole interaction potential typically
makes only a small contribution to the total uniax-

ial potential while the biaxial part of the dipole–

dipole contribution to the mean-field potential can

approximately be written in the following simple

form:

�Udd
MF ða; bÞ ¼ w5½cot�Vða � kÞðb � tÞ

þ 1

2
cot�ðV� þ �Þ sin 2� cos’

þ
ffiffiffi
2
p

2
ðV� þ �Þða � kÞðb � tÞ�; ð21Þ

where V� ¼ hða � kÞðb � tÞ þ ða � tÞðb � kÞi is the biaxial

tilt order parameter (17) which is also proportional to

tan 2� similarly to V.

Many ferroelectric liquid crystal materials possess
relatively low spontaneous polarisation, i.e. the aver-

age dipole per molecule is one or even two orders of

magnitude smaller than the permanent transverse

molecular dipole. This means that the biaxial ordering

of the short molecular axis is sufficiently weak and the

biaxial order parameter � is small. In this case the

orientational distribution function may be expanded

in powers of w5 keeping the first term:

f1ða; bÞ � Z�1 expð�Uuni
MF=kTÞ 1þ�Udd

MF=kT
� �

: ð22Þ

Substituting Equations (19) and (16) into Equation

(13) one obtains

� � w5

2kT
S cot�V þ

ffiffiffi
2
p

2
ðV� þ �Þ

" #
cos2 �; ð23Þ

and, hence,

� � � w5

2kT
S cot�V þ

ffiffiffi
2
p

2
V�

" #
cos2 �; ð24Þ

where � ¼ ð1� ð
ffiffiffi
2
p

w5S cos2 �Þ=ð4kTÞÞ�1
. Finally, the

spontaneous polarisation can be expressed approxi-
mately as
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Ps � ����
w5

2kT
S cot�V þ

ffiffiffi
2
p

2
V�

" #
cos2 �ðk� tÞ:

ð25Þ
According to Equation (23) the spontaneous polarisa-
tion in the context of this model is expressed as a sum

of two terms which are proportional to the uniaxial

and biaxial tilt order parameters, respectively. The

uniaxial tilt order parameter V is proportional to

tan 2� where � is the director tilt angle. At the same

time the biaxial tilt order parameter V� is related to the

tilt of the biaxial ordering tensor which is generally

different from that of the director (17) and only coin-
cides with it close to the SmA–SmC transition point.

Thus, for relatively large tilt, Equation (23) does not

suggest any simple relationship between the sponta-

neous polarisation and the tilt of the director, and thus

they may have a completely different temperature

dependence.

In the case of relatively strong biaxial ordering one

cannot expand the orientational distribution function
and the approximate Equation (23) is no longer valid.

In this case the polarisation and all order parameters

can be calculated numerically by direct minimisation

of the mean-field free energy which can be written in

the form (16):

F=V ¼ 1

2
�½w2S2

k þ w3P2
k þ w4V2

þ w5ð2 cot�V�þ
ffiffiffi
2
p

�2Þ� � �kBT ln Z;

ð26Þ

where

Z ¼
Z

exp �UMF ða; bÞ
kBT

� �
dadb; ð27Þ

and where the total mean-field potential UMFða; bÞ is
the sum of the uniaxial and biaxial contributions given

by Equation (16) and (19), respectively.

Typical temperature dependencies of the sponta-

neous polarisation Ps, primary director tilt angle �,

the uniaxial tilt order parameter V and the biaxial

tilt order parameter V� are presented in Figure 7.

The mean-field model parameters are � ¼ 	=3,

w1 ¼ �0:05, w2 ¼ �1, w3 ¼ �0:9, w4 ¼ �0:8 and
w5 ¼ �0:1. One can readily see that the temperature

variation of the uniaxial tilt order parameter V is

similar to that of the tilt angle �. At the same time,

the temperature variation of the polarisation qualita-

tive follows that of the biaxial tilt order parameter V�

rather than �.

4. Conclusions

In this paper we have used the molecular-statistical

theory of SmC liquid crystals to analyse the qualitative

microscopic mechanism of ferroelectric ordering pro-

posed by de Gennes and others including the authors

of the well-known Boulder model. It has been shown

in this paper that this mechanism implies the non-
polar biaxial ordering of short molecular axes in the

tilt plane of the SmC phase, which is specific for mole-

cules of the C2 symmetry or lower. This biaxial order-

ing exists already in the non-chiral SmC phase, and is

determined predominantly by non-chiral intermolecu-

lar interactions.

If the molecules are chiral and polar, the non-polar

biaxial ordering in the tilt plane also causes the align-
ment of transverse molecular dipoles, which are par-

allel to the C2 axes of the molecules, in the direction

perpendicular to the tilt plane thus resulting in the

macroscopic polarisation.

The formally exact general expression for the

spontaneous polarisation in the SmC* phase com-

posed of such molecules is obtained. The polarisation

appears to be a product of the pseudoscalar quantity
which accounts for molecular chirality, and the biaxial

order parameter which is also defined in the non-chiral

SmC phase.

In this paper we have also used a particular model

of a biaxial chiral molecule composed of the uniaxial

rigid core and two non-parallel off-centre dipoles. In

this model the pair of dipoles is responsible for mole-

cular chirality, biaxiality and polarity, and the spon-
taneous polarisation is determined by the electrostatic

interactions between the chiral pairs of dipoles. In the

case of weak biaxial ordering the approximate explicit

Figure 7. Temperature variation of the dimensionless
spontaneous polarisation Ps=���, tilt angle �, uniaxial tilt
order parameter V and the biaxial tilt order parameter V� in
the SmC* phase calculated numerically by minimisation of
the mean-field free energy.
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expression for the spontaneous polarisation has been

obtained which establishes a relationship with the uni-

axial and biaxial tilt order parameters.

Close to the SmA–SmC phase transition the tilt is

small, and both tilt order parameters are approximately

proportional to the same tilt angle of the primary direc-

tor. In contrast, far from the transition the tilt order
parameters are proportional to generally different tilt

angles, which correspond to uniaxial and biaxial order-

ing tensors. Thus, in a relatively broad temperature

range the temperature variation of the spontaneous

polarisation may differ significantly from that of the

primary director tilt angle. This is supported by numer-

ous experimental data (see, for example, (23)).

Finally, the spontaneous polarisation, primary tilt
angle and the tilt order parameters have been calcu-

lated numerically as functions of temperature using

the same molecular model. The results demonstrate

that, at least in the context of this model, the tempera-

ture variation of the polarisation follows that of the

biaxial tilt order parameter rather than the primary

director tilt angle.
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