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ABSTRACT
Contaminated sediments, as a secondary pollution source in rivers and lakes, are of critical 
importance to water quality. More and more attention thus has been paid to understand the 
release mechanisms of nutrients from river sediments, especially in estuary and water transfer 
areas. In this work, flume experiments were conducted to measure the release characteristics of 
total dissolved phosphorus (TDP) and nitrogen (TDN) from sediments collected from a river bed 
near Lake Tai under various flow conditions. The release of TDP and TDN was the most dramatic 
in the initial 30 min, then slowed down from 30 to 60 min, and finally achieved equilibria. Total 
amount of TDP and TDN released and their equilibrium concentrations were all significantly 
increased with the increase of flow rate, but slow down after a critical velocity was reached, 
which could be described as a Logarithmic relationship. A process-based mathematical model 
was established to describe the distribution of nutrients in the water columns and model 
simulations matched experimental data well. The re-suspension of sediments induced by 
flow rate higher than the threshold, is the dominant process affecting nutrient release from 
sediments.

1.  Introduction

The mass transfer processes of particulates or dissolved 
substances like nutrients, heavy metals, and other 
potentially harmful substances between contaminated 
sediments and overlying water columns in rivers, lakes, 
reservoirs, and estuaries are of crucial importance to 
the water environment [1–3]. The fate and transport of 
nutrients/sediments in water columns are controlled by 
hydrodynamics, especially at the sediment-water inter-
face [4]. Nutrients are often rich in sediments and pore 
water, change of dynamic conditions thus has a signif-
icant impact on nutrient release from sediments into 
water column [5].

Because the dynamics release of nutrients from sed-
iments is still not well-understood, the effects of hydro-
dynamic conditions on nutrient release from sediments 
become a growing area of focus. Laboratory experiments 
with oscillating grid, annular tank, and open water chan-
nel have been used to study the contaminated sedi-
ments release regularity under different flow conditions 
[6–9]. The relationship between nutrient concentrations 
in water column and flow velocity was determined from 
the experimental data. With improved understanding of 
phosphorus in sediments, it is generally accepted that 
the interaction between the sediments and overlying 

water take place only within the thin top layer of sedi-
ments with a thickness of no more than 10 cm [10,11]. It 
is also recognized that release of phosphorus in dynamic 
condition is much higher than that in static condition 
[12]. The effect of flow velocity in the overlying water 
column on the transport across the sediment-water 
interface has been found to be significant because the 
thickness of the diffusive boundary layer is determined 
or at lease influenced by the mean velocity or velocity 
profile above the sediment bed [13–15]. The velocity pro-
file thus could influence the characteristics of nutrient 
release from sediments.

Several theoretical or empirical models have been 
developed to accurately quantify the exchange fluxes 
at the sediment-water interface. The majority of the 
models have been developed in terms of diffusive flux 
under quasi-steady state molecular diffusion process 
using Fick’s first law [16–19]. However, the quasi-steady 
conditions are not always applicable under many circum-
stances, particularly with the presence of several com-
bined transport mechanisms acting on both overlying 
water column and permeable sediment bed. Unlike the 
static release process controlled by molecular diffusion 
alone, the release process due to the re-suspension/set-
tling of the sediments is more dynamic and significant in 

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

KEYWORDS
Water quality; flow velocity; 
suspended sediments; 
desorption; diffusion; 
modeling

ARTICLE HISTORY
Received 2 March 2017 
Accepted 17 April 2017

CONTACT  Congrong Yu    cryu@hhu.edu.cn; Chuanhai Wang    wangchuanhai@vip.sina.com

 OPEN ACCESS

http://creativecommons.org/licenses/by/4.0/
mailto: cryu@hhu.edu.cn
mailto: wangchuanhai@vip.sina.com
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/09542299.2017.1320950&domain=pdf


CHEMICAL SPECIATION & BIOAVAILABILITY﻿    71

under the action of shear stress. The speeds of upper 
disc and lower disc are rationally allocated, so that the 
lateral secondary flow disappeared and the flow in the 
tank is basically uniform [23]. The volume of water tank 
is small so that the amount of sediments required for 
the experiment is low, about 5 cm thick. Flow velocity 
and water depth can be easily controlled, and change of 
hydrodynamic conditions can be easily achieved so that 
the results of the experiment can represent the actual 
situation in the river.

2.3.  Experimental procedures

Experiments were conducted in the hydrodynamic labo-
ratory in Nanjing Institute of Geography and Limnology, 
Chinese academy of Science. The air temperature was 
25 °C. Sediments was laid evenly in the bottom of the 
tank, and gently pressed to make it in a relatively flat 
state. The thickness of sediments layer was 0.05 m. Tap 
water was then slowly poured in till the depth of water 
was 0.25 m. Then the water column and sediments sys-
tem was let sit for 24 h before experiment started. By 
adjusting the speed of the device, the flow velocity was 
set to 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 m/s, respec-
tively. The flow rate of the experiment started from zero, 
and accelerated to the required flow rate for 3 h. Samples 
were collected at 0.25, 0.12, and 0.01 m above from the 
surface of sediments with three cross sections uniformly 
distributed in the annular flume. Water samples were 
taken at 0, 10, 20, 30, 40, 60, 90, 120, and 180  min at 
every flow velocity using 50 mL plastic bottles.

2.4.  Analytical methods

The water samples were all filtered through 0.45  μm 
filter before testing. Total dissolved phosphorus (TDP) 
and total dissolved nitrogen (TDN) were analyzed by 
flow injection apparatus (Skalar San++). Sediments 

rivers, shallow lakes and estuarine environments [20,21]. 
Dynamic release from the disturbed sediments to the 
overlying water is often time dependent and to a great 
extent controlled by the frequent suspension/settling 
of sediments [22]. The flow velocity profile above the 
sediments could impact the suspension/settling pro-
cess remarkedly. This study investigated the release and 
transport of nutrients from sediments under different 
dynamic conditions. Laboratory experiments and model 
simulations were applied to determine the release char-
acteristics of nutrients from sediments into water column 
under different flow rate conditions.

2.  Materials and methods

2.1.  Sediment sampling

Sediment samples were collected with the Petersen 
sampler from a river bed behind Yubu bridge in Jiaxing 
City (N 30°43′48.74″, E 120°52′7.51″) near Lake Tai in June 
2014. Soil within 15  cm bellow the sediments surface 
was collected and saved in ice box and then sent back to 
laboratory. After removal of weeds or other impurities in 
sampled sediments, all samples were saved in a freezer 
at 4 °C.

2.2.  Experimental device

The experiment was carried out in a circular flume (Figure 
1) in the hydrodynamic laboratory in Nanjing Institute of 
Geography and Limnology, Chinese academy of Science. 
The circular flume is composed of upper/lower disc, var-
iable speed drive system and controller, and measure-
ment system. The lower disk is a plexi – glass circular 
groove with inner diameter 100 cm and outer diameter 
120 cm. The upper disc is a ring covering the groove. The 
upper and lower disc can move in an opposite way driven 
by speed regulating motor automatically controlled by 
computer. During the experiment, flow was generated 

Figure 1. Schematic diagram of the experimental device.
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diameter were analyzed by Laser particle size analyzer 
(Saturn DigiSizer II). Other properties of sediments were 
analyzed in Laboratory of Nanjing Institute of Geography 
and Limnology.

3.  Theory

3.1.  Model description

The movement of water and sediments across the sed-
iment-water interface can transport and redistribute 
chemicals in sediments and water column lying on sed-
iments. Chemicals in sediment-water system typically 
exist in two phases: (1) dissolved phase in water and (2) 
particle-associated phase. The process that affect chem-
ical movements and interactions in the environment 
depending on the phase in which the chemicals were 
present. The main processes controlling chemical fate 
and transport include: (1) advection-diffusion; (2) chem-
ical partitioning and phase distribution; (3) erosion; (4) 
deposition; and (5) transformation processes [24]. For the 
nutrients transport process in water column in this study, 
transformation processes were neglected. To model the 
nutrient release from sediments, it was assumed: (1) 
chemicals were well mixed in lateral directions, i.e., ver-
tical transport was only considered; (2) chemical concen-
trations in the sediments layer were constant; and (3) no 
flow velocity in vertical direction so that advection pro-
cess in vertical direction was neglected. Chemical fluxes 
involved in each process could be calculated as follows:
 

 

where: Jn = The net nutrient flux across sediment water 
interface (g/(m2s)); C = Average nutrient concentrations 
in water column (g/m3); z = The height of the water col-
umn (m); Jd = The dispersive and diffusive flux (g/(m2s)); 
Jr = The nutrient flux caused by erosion (re-suspension) 
sediments (g/(m2s)); and Jw = The nutrient flux caused 
by deposited sediments (g/(m2s)). Each part can be 
described as follows:

3.1.1.  Dispersion/diffusion
 

where: Jd = Chemical diffusion flux in vertical direction 
(g/(m2s)); D = Comprehensive diffusion coefficient (m2/s); 
C = Average nutrient concentrations in water column (g/
m3); C1 = Nutrient concentrations in bottom boundary of 
column (g/m3); z = Thickness of water column (m).

3.1.2.  Re-suspension (erosion)
Re-suspension was the entrainment of sediments from 
a bottom boundary into a flow by the action of water 

(1)Jn = Jd + Jr + Jw

(2)�C

�t
=

Jn

z

(3)Jd = −D
C − C

1

z∕2

[25]. Many chemicals were hydrophobic, readily partition 
between dissolved and particle-associated (particulate) 
phases. Partitioning was a function of the equilibrium 
rate at which chemicals sorb (move out of the dissolved 
phase) and desorb (move back into the dissolved 
phase) [26,27]. Nutrients adsorbed on particulate mat-
ter suspended in the water column can release to water. 
Processes can be described as follow:

 

 

where: Js  =  Sediments re-suspension flux (g/(m3s)); 
Jr = Nutrient flux caused by sediments re-suspension (g/
(m3s)); vr = Sediments re-suspension (erosion) velocity 
(m/s); Cs = Concentrations of sediments at the bottom 
boundary (in the bed) (g/m3); Csv  =  Concentrations of 
nutrient in sediments at the bottom boundary (g/g); 
k1 = Kinetic coefficients of particle release (dimensionless).

Method to get entrainment rates including site-spe-
cific erosion rate studies or, from the difference between 
sediments transport capacity and advective fluxes:

 

where: vr  =  Re-suspension (erosion) velocity (m/s); 
Jc  =  Sediments transport capacity areal flux (g/(m2s)); 
va  =  Flow velocity (in the x- or y- direction) (m/s); 
Cs = Concentrations of sediments entrained in the flow 
(g/m3); ρb = Bulk density of bed sediments (g/m3).

Summaries of numerous total load transport relation-
ships were provided by Yang (1996) and Julien (1998) 
[28,29]. A reasonable method to estimate total sediments 
load was provided by Engelund and Hansen (1967) rela-
tionship [30]:

 

 

where: Cw  =  Concentrations of entrained sediment 
particles by weight at the transport capacity (dimen-
sionless); G  =  Particle specific gravity (dimensionless); 
va  =  Advective (flow) velocity (in the down-gradient 
direction)(m/s); Sf  =  Friction slope (dimensionless); 
Rh = Hydraulic radius of flow (m); g = Gravitation accel-
eration (m/s); dp = Particle diameter (m); Ac = Cross sec-
tional area of flow (m2); Ct = Concentrations of entrained 
sediment particles at the transport capacity = 106GCw / 
[G + (1−G)Cw] (g/m3)

3.1.3.  Deposition
Nutrients could be deposited with particles from water 
column to bed. The deposition flux may be expressed 
as follow:

(4)Js = vrCsCsv

(5)Jr = k
1
Js

(6)vr =

{

Jc−vaCs

𝜌b
Jc > vaCs

0 Jc ≤ vaCs

(7)Cw = 0.05

(

G

G − 1

) vaSf

[(G − 1)gdp]
0.5

[

RhSf

(G − 1)dp

]0.5

(8)Jc = vaCt
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4.  Results and discussion

4.1.  Release of TDP and TDN from sediments at 
different flow velocities

Samples were taken from water column at 1, 12, 25 cm 
from sediments layer. There were 3 samples in each layer, 
average concentrations in those 3 samples represented 
TDP and TDN concentrations in each layer. Average con-
centrations in water column were represented by mean 
average concentrations in water layer 1, 12 and 25 cm 
respectively (mg/L).

Experiments were conducted in five velocities: 0.05, 
0.10, 0.15, 0.20, 0.25 and 0.30 m/s, which are commonly 
found in the rivers around Taihu Lake in estuary and water 
transfer areas. At the flow rate of 0.05 m/s, almost all the 
sediments stayed in river bed, contents of TDP in over-
lying water were low and increased little when achieved 
equilibrium concentrations (Figure 2). Compared with 
other flow velocities, the equilibrium concentrations of 
TDN at flow rate of 0.05 m/s was relatively low (Figure 2), 
since nutrients in sediments and pore water were trans-
ported into overlying water mainly through dispersion 
and diffusion processes. When flow rate increased to 
0.10, 0.15 and 0.20 m/s, TDP concentrations in overlying 
water increased from around 0.03 to about 0.08 mg/L 
within 30  min, then slowly achieved equilibrium after 
60 min (Figure 2). For TDN, in the early 30 min, the slope 
of the concentrations at the velocities between 0.10 and 
0.20 m/s was larger and the equilibrium concentrations 
significantly increased compared with that at the veloc-
ities of 0.05  m/s (Figure 3). It might be due to distur-
bance (re-suspension) of sediment particles in the bed 
at relatively high flow velocity, which caused nutrients in 
pore water to mixing with overlying water. In addition, 
TDN and TDP on re-suspended sediment particles would 
also be released into the water column, which lead to 
increased nutrients concentrations in overlying water. 
The release curves of TDP and TDN at 0.25 and 0.30 m/s 

 

where: Jw  =  Nutrient deposition flux (g/(m2s)); 
vd  =  Effective settling (deposition) velocity (m/s); 
Cw  =  Concentrations of nutrient in the flow (g/m3); 
Cs = Concentrations of nutrient in particles (g/m3); k

2
=

Cs

Cw

 
distribution coefficient between particles and water 
phase (dimensionless).

In flowing water, effective settling velocity of a par-
ticle could be described as a reduction in the quiescent 
settling velocity by the probability of deposition [31,32]. 
For non-cohesive particles, the probability of deposition 
had been described as a function of bottom shear stress 
[33–35]. For coarse particles, the critical shear stress for 
deposition could be computed from a force balance as 
summarized by QEA (1999), with the particle diameter 
equal to the mean diameter for a range of particle size 
in a class (i.e. dp = d50) [36]. For cohesive particles, the 
probability of deposition had also been described as a 
function of bottom shear stress [37]. The hydrodynamic 
condition of the flow had impact on the deposition pro-
cess through the shear stress.

3.2.  Deterministic coefficients

Deterministic coefficients of the model were calculated 
by Equation (10),

 

where: C(t) =  Simulated nutrient concentrations in the 
overlying water (g/m3); Cw(i) = Measured nutrient con-
centrations in the overlying water (g/m3); C̄w(t)  = The 
average of measured nutrient concentrations in the 
overlying water (g/m3).

(9)Jw = vdk2Cw

(10)DC = 1 −

n
∑

i=1

�

C(t) − Cw(t)
�2

n
∑

i=1

�

Cw(i) − C̄w(t)
�2

(A) (B) (C)

Figure 2. TDP concentration variation with time under different flow velocity. (A) flow velocities of 0.05 and 0.1 m/s; (B) flow velocities 
of 0.15 and 02 m/s; (C) flow velocities of 0.25 and 0.3 m/s.
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velocity (Figure 5). For both cases, the curves followed a 
Logarithmic relationship.

4.2.  Model simulation

As described above, nutrients concentrations in water 
column can be described by following mass conserva-
tion equation:
 

After simplification:

(11)
�C

�t
= −D

2(C(t) − C
1
)

z2
+
Jr

z
+

k
2
VdC(t)

z

were similar to that at 0.10 to 0.20 m/s, but with higher 
equilibrium concentrations (Figure 3).

Based on the results in Figures 2 and 3, nutrient 
release from the sediments was divided into 3 steps: (1) 
quickly release stage, (2) mildly release, and (3) equilib-
rium. From 0.041 to 0.131 mg/L, TDP equilibrium concen-
trations under flow rate of 0.25 m/s were 6 times of that 
of 0.05 m/s (Figure 2), which were similar to the findings 
of Zhang et al. (2012). In general, the total amount of 
TDP and TDN released into the water column increased 
with the flow velocity (Figure 4). Further, the TDP and 
TDN equilibrium concentrations also increased with flow 

(A) (B) (C)

Figure 3. TDN concentration variation with time under different flow velocity. (A) flow velocities of 0.05 and 0.1 m/s; (B) flow velocities 
of 0.15 and 02 m/s; (C) flow velocities of 0.25 and 0.3 m/s.
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of k1 for TDN were much less than those for TDP. It was 
probably due to TDN concentrations in overlying water 
were much higher than TDP. Comprehensive diffusion 
coefficients (D) were increased remarkably with flow 
rates (Table 1), which showed the static nutrients releas-
ing process was enhanced by increasing flow velocity. 
Another important process was sediment re-suspen-
sion. Both re-suspension (erosion) velocity (vr) and con-
centrations of sediments at the bottom boundary (in 
the bed) (Cs) increased significantly with the increased 
of flow velocity. With flow rate of 0.05  m/s, no much 
sediments was suspended in the water column, and 
vr was 1.08 × 10−4  m/s and Cs was 10  g/m3. While flow 
rate increased to 0.30 m/s, vr was 3.9 × 10−3 m/s, which 
was nearly 30 times larger than that with flow velocity 
of 0.05 m/s; while Cs was 130 g/m3, 13 times larger than 
that with flow rate of 0.05 m/s. Sediments re-suspension 
process was also remarkably impacted by the flow veloc-
ity, It could be explained by the growing shear stresses 
with increased velocity. For the deposition process, since 
values of particles deposition velocity (vd) and distribu-
tion coefficient between particles and water (k2) changed 
very little with flow velocity, suggesting that the effect of 
deposition process on nutrients in the overlying water 
was ignorable. The re-suspended process was the dom-
inant nutrients releasing process here.

As showed in Table 4, value of DC all exceed 0.7 for 
all the simulations. Suggesting that simulated data were 
well matched with the measured value.

4.3.  Nutrients transport processes influenced by 
flow condition

As indicated, nutrients in overlying water were governed 
by several processes including: dispersive and diffusion 
processes, release from re-suspension (erosion) and dep-
osition processes. When flow condition changed, all pro-
cesses mentioned above were influenced. Dispersion/
diffusion flux were stronger in high flow velocity than 
low flow velocity or quiescent conditions. As this process 
driven by the concentration gradient, so that dispersion/
diffusion flux decreased as nutrients concentrations in 
overlying water increased. However, sediments re-sus-
pension release flux was several orders of magnitude 
larger than diffusive fluxes under high flow velocity 
conditions. From the modelling results, nutrient release 
from re-suspension (erosion) particles was the main 
factor that accounted for nutrients concentrations 

 

The solution of the equation is:
 

TDP variation under different flow velocity were simu-
lated by equation (13). In this studies, Jr got by equation 
listed in Section 3.1.2, vr were calculated by Equation (6), 
Cs and Csv were measured during experiment. k1 and k2 
were fitting parameters in the modelling process. Values 
of parameters for TDN and TDP were listed in Table 1. 
Value of parameter k1 under different flow velocity and 
time for TDN and TDP were showed in Tables 2 and 3. It 
was notable that k1 is a variable of both flow velocity and 
time. Simulation results were in Figures 2 and 3. Values 

(12)
�C

�t
=

(

k
2
Vd

z
−

2D

z2

)

C(t) +
Jr

z
+
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z2

(13)C(t) = ae

(

k
2
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z
−

2D

z
2

)

t
−

Jrz + 2DC
1

k
2
vdz − 2D

Table 1. Parameters of the model.

v (m/s) D (10−9 m2/s) Ct (g/m3) Cs (g/m3) vr (10−4 m/s) vd (10−4 m/s) k2

0.05 1 2818.7 10 1.08 −0.01 1.2
0.1 2.2 5641.0 23 4.33 −0.001 1.2
0.15 4.3 8467.1 38 9.74 −0.001 1.2
0.2 5.7 11296.8 90 17.33 −0.001 1.2
0.25 7.4 14130.2 120 27.10 −0.001 1.2
0.3 10 16967.3 130 38.80 −0.001 1.2

Table 2. Value of parameter k1 under different flow velocity and 
time (TDP).

Time

v (m/s)

0.05 0.1 0.15 0.2 0.25 0.30
10 0.2 0.9 0.4 0.1 0.08 0.05
20 0.6 0.6 0.08 0.05 0.01 0.006
30 0.5 0.03 0.002 0.0005 0.005 0.004
40 0.2 0.1 0.01 0.001 0.001 0.002
60 0.3 0.1 0.01 0.001 0.001 0.002
90 0.01 0.05 0.005 0.005 0.001 0.002
120 0.02 0.1 0.01 0.005 0.001 0.001
180 0.16 0.01 0.001 0.0001 0.001 0.0005

Table 3. Value of parameter k1 under different flow velocity and 
time (TDN).

Time

v (m/s)

0.05 0.1 0.15 0.2 0.25 0.3
10 0.008 0.005 0.001 0.0005 0.0002 0.0002
20 0.001 0.003 0.0001 0.0001 0.00001 0.00004
30 0.01 0.002 0.0006 0.0001 0.00001 0.00001
40 0.01 0.002 0.0001 0.00001 0.00001 0.000002
60 0.004 0.001 0.0001 0.00001 0.00001 0.000002
90 0.002 0.0002 0.0001 0.00001 0.00001 0.000005
120 0.002 0.0002 0.00006 0.00003 0.000001 0.000005
180 0.002 0.0002 0.00001 0.00001 0.000001 0.000005

Table 4. Deterministic coefficient of the modeling result.

V (m/s) 0.05 0.1 0.15 0.2 0.25 0.30
DC(TDP) 0.76 0.91 0.94 0.94 0.94 0.71
DC(TDN) 0.81 0.96 0.74 0.86 0.90 0.86
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reaching the critical velocity. Mathematic Model were 
used to describe the transport of nutrients in water col-
umn under different flow rate conditions. The modeling 
results indicated that nutrient release from re-suspen-
sion particles was the main factor controlling nutrient 
release under different flow velocity conditions.
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