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ABSTRACT
To understand the effects of ionic strength and pH on the transport of natural soil nanoparticles 
(NS) in saturated porous media, aeolian sandy soil nanoparticles (AS), cultivated loessial soil 
nano particles (CS), manural loessial soil nanoparticles (MS) and red soil nanoparticles (RS) were 
leached with solutions of varying pH and ionic strength. The recovery rate of soil nanoparticles 
decreased in the order AS > RS > MS > CS. Transport of soil nanoparticles was enhanced with 
increasing pH and decreasing ionic strength and was attributable to changes in the Zeta 
potential of NS. Deposition of NS was also affected by the composition of soil nanoparticles and 
the surface charge. Column experiments showed that the interaction between soil nanoparticles 
and saturated quartz sand was mainly due to the physical and chemical properties of soil 
nanoparticles. The Derjaguin–Landau–Verwey–Overbeek interaction energies between NS and 
sand were affected by pHs and ionic strengths. Soil nanoparticles transport through saturated 
porous media could be accurately simulated by the one-dimensional advection-dispersion-
reaction equation.

1. Introduction

Soil colloids generally have a diameter less than 10 μm 
and nanoparticles less than 100 nm [1]. Mobile soil col-
loids have a strong ability to adsorb contaminants and 
can migrate in porous media at a rate similar to the aque-
ous phase [2]. Due to the natural presence of nanomate-
rials in the environment [3] and the potential risks to the 
ecosystem and public health, pollutant transport of nan-
oparticles [4], colloids [5], and their associated contami-
nants [6] in saturated porous media has attracted more 
attention in the past decade. Advection, convection, pre-
cipitation and adsorption are a few of the physical and 
chemical process that occur when colloids migrate in the 
porous media [7,8]. The adsorption of colloids in trans-
port processes involves adhesion, deposition and release 
[9]. Fundamentally, the transport of colloid particles in 
porous media depend on the colloidal size, shape and 
colloidal characteristics [10–12]. The smaller the size of 
the particles the easier it is for them to migrate through 
a porous media [13,14]. The transport of soil colloids in 
saturated porous media is also influenced by solution 
pH [15] and ionic strength [16]. In natural environments, 
both soil pH and ionic strength will change with vari-
ations in rainfall and irrigation [17]. The release of the 
colloids due to changes in pH and ionic strength can 

enhance the transport of environmental contaminants 
adsorbed to the colloidal surface [18]. Therefore a large 
number of studies the effects of pH and ionic strength on 
the transport of colloids in porous media are investigated 
[6,19] and used a single medium, quartz sand, to simulate 
soil medium [6,20].

In recent years, nanomaterials have been widely used 
and the transport of nanoparticles in the underground 
environment has become a worrying issue. They will 
enter in groundwater because of their tiny size, then 
they can adsorb contaminants due to their high specific 
surface area and carry these contaminants to move far 
apart [21,22]. The nanoparticles are usually better than 
or equal to the migration of the solute, the larger NPs are 
carried at a higher rate and are not close to the medium 
due to their size [23]. These factors explain why nanopar-
ticles pose a significant risk to the subsurface environ-
ment. To date, most studies have focused on the fate and 
transport of artificial nanoparticles in the environment, 
such as titanium dioxide [24], graphene oxide [25] etc. 
A great deal of research has been done on the transport 
and retention of artificial nanoparticles under environ-
mental conditions. For example, the effects of different 
physical and chemical conditions such as size, concen-
tration, fluid velocity and solution chemistry (i.e. ionic 
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using 0.5 M solutions of NaOH or HCl. The ionic strengths 
(0.1, 0.01, 0.001 M) were regulated by 0.1 M KCl.

2.2. Characterization of soil nanoparticles

The particle size of the soil nanoparticles was measured 
using an Atomic Force Microscope (AFM) (Multimode-8, 
Bruker, Billerica, MA, USA) and the size distribution of 
soil nanoparticle suspension was determined by a Laser 
Particle Sizer (LS-230, Beckman Coulter, Inc., USA). For 
AFM, the suspensions of NS were diluted to identical 
concentrations and applied it evenly on the mica sheet. 
Particles morphology was scanned using an AFM at room 
temperature in atmospheric conditions.

The mineral composition of soil nanoparticles was 
analyzed by X-ray diffraction (D/RAPID II, Rigaku, Japan). 
The soil nanoparticle suspension was dried to make a 
powder sample. The sample was spread on a slide and 
smooth with a glass slide, so that the particles were 
evenly distributed with a smooth surface.

Organic matter content of soil nanoparticles was 
measured via Walkley-black titrations [30].The zeta 
potential of soil nanoparticles suspension under dif-
ferent IS and pH were determined using a Zeta-Plus 
(Zetasizer nano ZS90, Malvern Instruments, UK). The 
Smoluchowski’s formula was used to convert electric 
mobility of the quartz sand into a zeta potential [31]. 
The properties of soil nanoparticles were shown in 
Tables 1–3.

strength, pH) [24,26,27] on the transport and retention 
of nanoparticles have been determined. These studies 
only focus on artificial nanomaterials, which really ignore 
the natural nanoparticles. Soil contains large amounts of 
nanoparticles, which is an important source of natural 
nanoparticles. However, there is no study of the fate and 
migration of soil nanoparticles.

There are significant differences in soil composition 
and soil composition, structural properties and organic 
matter content in different soil types in China. Soil types 
not only determine the migration of soil particles in the 
natural environment, but also affect the ability of heavy 
metals to transport in the soil [28]. Hence, unlike many 
studies on the transport of artificial nanoparticle or soil 
colloids in the porous media compacted with quartz 
sand, we studied the transport behaviors of natural soil 
nanoparticles (NS) by extraction method from four natu-
ral soil in China, aeolian sandy soil nanoparticles (AS), cul-
tivated loessial soil nano particles (CS), manural loessial 
soil nanoparticles (MS) and red soil nanoparticles (RS). 
To better understand the transport of NS in a saturated 
porous media was examined and column leaching exper-
iments were conducted at different with suspensions of 
NS. In addition, Derjaguin–Landau–Verwey–Overbeek 
(DLVO) theory was used to explain the behavior of NS 
transport in porous media under different pH and ionic 
strengths.

2. Materials and methods

2.1. Natural soil nanoparticles suspensions

Four different soil nanoparticles, aeolian soil nanopar-
ticles (AS), cultivated loessial soil nanoparticles (CS), 
manural loessial soil nanoparticles (MS) and red soil nan-
oparticles (RS), were extracted from four different soils 
sampled from the agricultural fields at Shenmu Shaanxi, 
Ansai Ecological Experimental Station Shaanxi, Yanling 
Shaanxi and Panzhihua Sichuan, respectively.

Nanoparticle suspensions were derived from the par-
ent soil following an aqueous extraction. Oven dried soil 
sample (20 g) was weighed into a beaker and distilled 
water (400 mL) was added. The sample was shaken at 
170 rpm for 0.5 h in a constant temperature incubator 
shaker (HZQ-F100, Donglian Electron Technology Ltd., 
Harbin, China), followed by 30  min of ultrasonic dis-
persion in an ultrasonic cleaner (KQ-500DE, Kunshan 
Ultrasonic Instrument Company, China). The soil suspen-
sion was transferred to a measuring cylinder and allowed 
to settle for 24  h after which the soil suspension was 
extracted into a new flask using a siphon method [29].

The concentration of the soil nanoparticles stocks 
was obtained at 243 nm by UV-visible spectrophotom-
etry. The stock nanoparticles suspension was diluted to 
100 ppm after ultrasonication in column experiments. 
The pH of the soil nanoparticles suspension and distilled 
water (DI) used for leaching was adjusted to 4, 6, and 8 

Table 1.  variation of concentration and physicochemical 
properties soil nanoparticle suspension with soil type in ph 6, 
iS = 0.01 m.

Property AS CS MS RS
Concentration (mg l−1) 524 468 358 465
particle size (nm) 102 97 54 65
organic matter (mg g−1) 2.3 1.0 13.5 8.2

Table 2. variation in the particle size of soil nanoparticle sus-
pensions with ph 6, iS changing and iS = 0.01 m, ph changing 
(unit: nm).

Factors AS CS MS RS
ph 4 110 104 77 80
ph 6 102 97 54 65
ph 8 90 78 50 57
iS = 0.001 95 79 48 63
iS = 0.01 109 93 59 68
iS = 0.1 213 167 176 149

Table 3. variation in the zeta potential of soil nanoparticle sus-
pensions with ph 6, iS changing and iS = 0.01 m, ph changing 
(unit: mv).

Factors AS CS MS RS Sand
ph 4 −16.2 −12.1 −37.7 −18.2 −13.8
ph 6 −38.1 −26.3 −40.6 −40.9 −24.7
ph 8 −43.9 −18.3 −35.4 −47.5 −29.1
iS = 0.001 −41.1 −30.5 −26.2 −44.1 −27.8
iS = 0.01 −31.2 −25.5 −30.9 −34.2 −23.3
iS = 0.1 −26.3 −20.6 −21.3 −23.1 −15.1
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2.3. Porous media

Quartz sand (Zhouzhi County Quartz Sand Ltd, China) 
was sieved to between 0.4–0.5 mm using a stainless steel 
mesh. Prior to conducting any experiments, the sand was 
thoroughly cleaned by soaking in a 0.1 M NaOH solution 
for 12 h, and then with a 0.1 M HCl solution for 12 h to 
remove any surface metallic ions, and then rinsed with 
DI water until effluent was clear. The quartz sand was 
subsequently dried at 105 °C for 24 h.

2.4. Column experiments

NS transport experiments were conducted in columns 
uniformly packed with quartz sand. The columns dimen-
sions were 15 cm length × 3 cm inner diameter. Quartz 
sand was wet-packed using deionized (DI) water with 
stirring to minimize any layering and to remove air 
entrapment in the column [32]. The porosity of the col-
umn was 0.47 and the pore volume (PV) was 50 ml.

The column was initially flushed with DI water for 
2  h until the effluent was free of visible impurities. 
Subsequently, a column experiment was conducted by 
first injecting 4 pore volumes (PVs) background solu-
tions with different pH (4, 6, 8) and ionic strengths (0.1, 
0.01, 0.001 M), respectively. Thereafter the column was 
leached with 1.2 PVs of soil nanoparticles suspension 
in the same background electrolyte, followed by flush-
ing with 2 (PVs) of background solution. The pH and IS 
were kept constant throughout the whole experiment. 
Column experiments were controlled at a specific veloc-
ity of 0.3125 cm min−1. Effluent fractions from each col-
umn (20 × 10 mL) were continuously collected in test 
tubes using an automatic fraction collector (BS-16A-LCD, 
Shanghai Huxi Analysis Instrument Factory Co., Ltd., 
China). The effluent soil nanoparticles concentrations 
was analyzed at 243 nm by UV-visible spectrophotom-
etry (UV-2800, Unico, USA) [33]. A tracer element (Cl−, 
0.01 M) was used to determine the dispersion coefficient 
of the hydraulic properties of the columns and the dif-
fusion coefficient could be fitted by software Stanmod. 
The experimental procedure for the tracer was consistent 
with the NS. Effluent Cl− concentration was determined 
by AgNO3 titration [34]. All column experiments were 
performed in duplicate.

2.5. Mathematical model

The interaction energy between NSs and quartz sand is 
determined by the DLVO theory [35]. The total interac-
tion energy (Etot) is the sum of van der Waals attraction 
energy (Evdw) and electric double layer repulsion energy 
(Eedl). 

The van der Waals interaction is calculated using the 
equation [36,37]:

(1)E
tot

= E
vdw

+ E
edl

 

where A is the Hamaker constant for soil nanoparticles 
(1.0 × 10−20 J in quartz sand) [38], r is the radius of soil 
nanoparticles, h is the separation distance between soil 
nanoparticles and quartz surface, and λ is the character-
istic wavelength of interaction and was set as 100 nm.

The electrical double layer interaction energy (Eedl) 
as a function of separation distance between an infinite 
plane and a sphere immersed in water is given by equa-
tion [39,40]:

 

where ε0 is the vacuum permittivity (8.85 × 10−12 C2/Jm), 
εr is the relative dielectric permittivity of water (78.5), �1 
and �2 are the surface potentials of soil nanoparticles and 
quartz sand, respectively, κ is the Debye reciprocal length 
and can be calculated as:

 

where NA is the Avogadro number (6.02 × 1023 mol−1), 
e is the electron charge (−1.602 × 10−19 C), I is the ionic 
strength of the background electrolyte, K is Boltzmann 
constant (1.38 × 1023 J/K), and T is Kelvin temperature 
(298 K).

The one-dimensional advection-dispersion equa-
tion coupled with reaction terms was used to simulate 
the transport of soil colloids in the water saturated 
quartz sand column. It was assumed that the interac-
tion between the soil colloids and the sand grains in the 
column were affected by irreversible-kinetic reactions 
due to the reversible reaction was almost impossible to 
observe. The governing equation can be written as [25]:

 

 

where Cw is the soil colloid concentration in pore water 
(mg  L−1); which reflects the magnitude of equilibrium 
reaction in the quartz sand column; D is the dispersion 
coefficient (cm2 min−1); v is the flow rate (cm min−1); ρ is 
the medium bulk density (g cm−3); θ is the porosity; and 
k is first-order kinetic retention constant (min−1). In this 
equation, the release of colloids is neglected, because 
the release of colloids was shown to too slow during the 
timeframe of this experiment [41].
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<100 nm varied with the parent soil, being 68.4, 99.9, 
95.3 and 99.7% for AS, RS, CS and MS samples, respec-
tively. The transport of soil colloids in porous medium 
would be directly affected by the soil nanoparticles size, 
since larger soil colloids were blocked by porous medium 
resulting in adsorption and deposition [22]; soil colloidal 
transport behavior was closely related to particle size 
distribution [45].

3.2. Electrokinetic properties of NS under different 
pH and ionic strength

The overall stability of colloids was typically character-
ized by the suspension zeta potential [46], which was 
influenced by the suspension pH and ionic strength. 
Here zeta potential of soil nanoparticle suspension under 
acidic condition was larger than that of neutral and alka-
line condition (Table 3). The zeta potential was previously 
shown to be affected by the introduction of OH- into 
the colloidal double layer [47] where higher negative 
charge resulted in higher repulsive forces which conse-
quently enhanced colloidal stability. The Zeta potential 
changed significantly with the change of pH, but was 
far less prominent for MS when compared to other soil 
nanoparticles. This difference in behavior of the soil 
nanoparticles may be due to differences in soil nano-
particles mineral composition. Figure 3, XRD pattern of 
NS, which showed typical spectra of mineral materials 

As the migration of soil nanoparticles in porous media 
is still consistent with colloid filtration theory [42], one 
dimensional advection-dispersion equation was applied 
to simulate the experimental breakthrough curves, 
meanwhile the parameter k in the equation can be fitted 
with the transport fitting software Stanmod [43].

3. Results and discussion

3.1. Effect of NS size

AFM clearly showed the size and shape of the different 
soil nanoparticles (Figure 1). AS had a relatively larger 
particle diameter compared with the other soil nanopar-
ticles because the composition of the aeolian sandy soil 
was mainly quartz, which did not favor the formation of 
smaller particles [44]. The average particle diameters of 
NS were 102 ± 8, 97 ± 8, 54 ± 5 and 65 ± 7 nm for AS, CS, 
MS and RS, respectively.

One limitation of AFM was that was applied only to 
dry samples. Figure 1 showed that the dispersion of soil 
nanoparticles was not very homogeneous, it was pos-
sible that the soil particles were aggregated during the 
drying process, which might make the measured aver-
age dimeter greater than the hydrodynamic size. The size 
distribution of soil nanoparticles was also determined 
using a Laser Particle Sizer shown in Figure 2. While most 
particles were <100  nm, the percentage of particles 

(a) (b)

(c) (d)

Figure 1. the aFm images of different nS: (a) aS, (b) mS, (c) CS, (d) RS.
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be due to the high levels of organic matter in MS. It had 
been studied that only when the ionic strength of agri-
cultural soil colloid was less than 0.1 M, the high content 
of organic matter in agricultural soil colloid would lead 
to the stability enhanced with increasing ionic strength 
[50].

3.3. DLVO theory

DLVO theory was used to calculate the interaction 
between soil colloid and quartz sand to predict the 
behavior of soil colloid transport and retention in porous 
media [51]. The DLVO interaction energy profiles at the 
range of pH and ionic strengths were shown in Figure 
4. The results showed that the energy barrier increased 
with the increase of pH value and the decrease of ionic 
strength. The variation ranges of different NS were 
15–220 kT (AS), 10–130 kT (CS), 15–90 kT (MS), 13–150 kT 
(RS), respectively, indicating that the NS transport readily 
increased with increasing pH and with decreasing ionic 
strength. At pH 4.0, the energy barrier between soil nan-
oparticles and quartz sand is smallest compared to other 
pH, so the soil nanoparticle is more easily irreversibly 
deposited to the energy barrier. However, four kinds of 
NSs showed significant differences at pH 8. AS and RS 
were difficult to deposit to the energy barrier, which was 
due to a high energy barrier. MS and CS is easier contrary. 
And their energy barriers at pH 8 were 220 kT (AS), 67 kT 
(CS), 98 kT (MS) and 150 kT (RS), respectively. With the 
decrease of ionic strength, the trend of energy barrier 
of soil nanoparticles was also the same, but the maxi-
mum value of energy barrier was less than pH. The soil 
nanoparticles were retained in the column under ionic 
strength occurred in the minimum secondary energy, 
because they were easily captured at the minimum 
secondary energy [52]. Figure 4 showed that the 0.1 M 
ionic strength had a lower primary energy barrier and 
a deeper secondary energy minimum than other ionic 
strength. This means that the NS with high ionic strength 
was easier to deposit in porous media comparison with 
the lower ionic strength.

3.4. Effect of pH on NS transport

Retention of NS in saturated sand column was evalu-
ated through analysis of experimental effluent break-
through concentration. The breakthrough curves of NS 
in Figures 5–6 were constructed as plots of the ratio of 
effluent concentration to the injection concentration (C/
C0). The breakthrough curves of NS transport at pH 4, 
6 and 8 were shown in Figure 5. The first-order kinetic 
retention rate constant (k) and the recovery rate were 
shown in Table 4. The result demonstrated that recov-
ery rate of AS and RS increased with increasing pH. The 
parameter k decreased with the increase of pH, it con-
firmed the experimental results of transport of AS and 
RS. However, the recovery rate of RS was lower than AS. 

having main and secondary peaks at 2θ = 30° and 8°, 
respectively. It could be seen from the XRD pattern that 
the main mineral composition of NS was quartz and cal-
cite, which also contained a small amount of kaolinite, 
montmorillonite and muscovite. For the MS, the content 
of montmorillonite was higher than other NSs. Hence, a 
change in pH would have a much lesser effect on MS that 
contained montmorillonite clays because here charge 
was generated by lattice substitution and was not pH 
dependent [48].

The zeta potential of nanoparticles generally 
increased with increasing ionic strength except MS (Table 
3) which was attributed to changes in the thickness of 
the diffusion electric double layer. The diffusion electric 
double layer of the colloid was known to be thicker at 
lower ionic strengths, and the repulsion force between 
the colloid particles was thus larger, which was bene-
ficial for enhanced colloid stability. In agreement with 
the results observed here the thickness of the soil nan-
oparticle diffusion electric double layer reduces as ionic 
strength increased, resulting in a decrease in repulsive 
force between soil nanoparticle resulting in decreased 
soil nanoparticle stability and easier flocculation and pre-
cipitation [49]. The Zeta potential of MS was the lowest 
at 0.01 M compared to 0.1 M and 0.001 M. This might 
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mineral component of AS was quartz and was similar 
to the composition of the porous medium used in this 

This was attributed to differences in mineral composition 
of the different soil nanoparticles (Figure 3). The main 
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(Figure 3). Since calcite that was a metal oxide mineral 
and kaolinite had a small amount of positive charge 
compared to others mineral. RS could be more easily 

study. Hence, AS were not easily adsorbed to the surface 
of quartz sand. In contrast, the mineral composition of 
RS was complex, containing calcite, kaolinite and quartz 
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Figure 5. the effect of ph on the transport of nS ((a) aS, (b) RS, (c) CS, (d) mS) in saturated porous media.
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The recoveries rate of CS and MS was pH6 > pH4 > pH8, 
which was different from the change trend of AS and 
RS. Our experimental results were not consistent with 

deposited onto the surface of quartz sand. Changes in 
colloidal solution pH were also known to be influenced 
by surface properties and chemical composition [1,9].
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Figure 6. the effect of ionic strength on the transport of nS ((a) aS, (b) RS, (c) CS, (d) mS) in saturated porous media.
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ionic strength (Table 5). However, the MS results did 
not follow this general trend. For MS, the k value of the 
soil nanoparticles initially decreased as IS increased 
from 0.001 to 0.01 before increasing with increasing 
ionic strength (Table 5). According to colloidal theory, 
the diffusion layer of the quartz sand was thicker at 
lower ionic strengths and the electrolyte ion shielding 
effect on particle surface charge was weak resulting in 
stronger mutual repulsion between quartz sand and the 
soil nanoparticles. When the ionic strength was gradu-
ally increased, the surface diffusion layer of the quartz 
sand and the soil nanoparticles were compressed, and 
the electrostatic repulsion force reduces, resulting in 
deposition of particles on the surface of quartz sand 
[14]. Furthermore, with the increase in concentration of 
the electrolyte solution, the complexation between the 
electrolyte and the surface functional groups of the soil 
nanoparticle were enhanced, and the negative charge 
on the soil nanoparticle surface would be reduced [49] 
so that electrostatic repulsion between the particles and 
the medium was weakened, which resulted in the depo-
sition of soil nanoparticles.

When the ionic strength was 0.001 M, the recovery 
of AS was greater than that of CS and RS, but was other-
wise similar at higher ionic strengths. At the lower ionic 
strength the differences in the colloidal diffusion layers 
were mainly due to the differences in the composition 
of the soil nanoparticles. However, the diameter of soil 
nanoparticle increased sharply when the ionic strength 
of the suspension was higher than the critical ionic 
strength [59], which led to the recovery of the three NSs 
were low at high ionic strength. With the increase of the 
ionic strength of the suspension, the double layer thick-
ness of the surface of the soil nanoparticle decreased 
sharply and the electrostatic repulsion between the par-
ticles decreased, and van der Waals force was enhanced 
by shortening the distance between soil nanoparticle 
[60]. This promoted the aggregation of particles and the 
recovery rate was reduced [61].

However, the MS results did not follow this general 
trend. Compared with the other three soil nanoparticles 
the changes in recovery and k for MS were different from 
all other soil nanoparticles, the k value of the soil nan-
oparticles initially decreased as IS increased from 0.001 
to 0.01 before increasing with increasing ionic strength 
(Table 5). It was also not consistent with the predictions 
of the DLVO theory. Based on the previous analysis of the 
Zeta potential of MS, we proposed that MS contained a 
higher organic content and elevated organic contents 
were known to increase the dispersion of particles and 
affect the stability and transport of the soil nanoparticles 
at relatively low ionic strengths [62].

4. Conclusion

The behavior of NS transport in the saturated porous 
media was demonstrated by column experiments and 

the predictions of the DLVO theory. It was reasonable to 
assume that difference of composition in NS produced 
this result. As shown in Figure 3 that the mineral compo-
sition of CS included muscovite, illite more than any of 
the other NS. Illite minerals had tend to flocculate due to 
hydration [53], and both flocculation and the presence of 
mineral oxides resulted in increased colloid adsorption 
[54]. For MS, MS had a higher organic matter content 
compared to other NS (Table 1). Soil organic matter was 
mainly composed of humic acids, where the morphol-
ogy of humic acids in aqueous solution was strongly 
influenced by pH [55]. Humic acids typically had a linear 
structure occupying the largest volume under neutral 
and alkaline conditions, which decreased significantly 
under acidic conditions, so that the transport of particles 
in porous media could be related to the morphology of 
the particles [56]. Previous studies had mentioned that 
humic acids tended to stable under alkaline conditions 
and could also combine with soil clay particles [57,58], 
and thus MS were more likely to be deposited compared 
to AS and RS. In addition, the recovery of MS was higher 
than CS, which was due to the zeta potential of CS (Table 
3) was more influenced by pH than MS, meanwhile the 
suspension zeta potential of MS was lower than that of 
CS under acidic and alkaline conditions.

3.5. Effect of ionic strength on NS transport

The peak for soil nanoparticles breakthrough curves gen-
erally decreased with increasing ionic strength (Figure 6) 
and the k value generally increased with increasing in 

Table 4. Best-fit parameter values and recovery rate calculation 
for soil nanoparticles with varied ph in iS 0.01 mol l−1.

NS pH k(s−1) R2 Recovery rate (%)
aS 4 8.12 × 10−3 0.96 69.75

6 5.51 × 10−3 0.98 79.86
8 2.81 × 10−3 0.97 91.02

RS 4 1.63 × 10−2 0.94 46.45
6 1.09 × 10−2 0.98 70.46
8 8.02 × 10−3 0.97 36.62

CS 4 2.21 × 10−2 0.97 38.62
6 1.40 × 10−2 0.94 53.82
8 2.04 × 10−2 0.91 36.67

mS 4 1.48 × 10−2 0.84 51.99
6 1.04 × 10−2 0.97 62.88
8 1.60 × 10−2 0.96 48.73

Table 5. Best-fit parameter values and recovery rate calculation 
for soil nanoparticles with varied iS in ph 6.

NS IS (mol L−1) k(s−1) R2 Recovery rate (%)
aS 0.001 2.46 × 10−3 0.99 90.26

0.01 2.60 × 10−2 0.93 29.73
0.1 6.65 × 10−2 0.45 6.05

RS 0.001 1.28 × 10−2 0.87 54.36
0.01 3.18 × 10−2 0.68 24.3
0.1 5.11 × 10−2 0.78 11.29

CS 0.001 1.46 × 10−2 0.95 52.72
0.01 1.63 × 10−2 0.63 18.52
0.1 6.69 × 10−2 0.54 6.08

mS 0.001 1.51 × 10−2 0.96 51.04
0.01 4.76 × 10−3 0.96 79.22
0.1 2.32 × 10−2 0.53 36.24
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was consistent with the predictions of the DLVO the-
ory. NS transport through quartz sand varied with the 
origin of the NS and transport decreased in the order 
AS  >  RS  >  MS  >  CS. NS transport was enhanced with 
increasing pH and decreasing ionic strength. With some 
exceptions, attributable to differing chemical composi-
tion of the soil nanoparticles, the recoveries of NS gen-
erally decreased with increasing ionic strength. It was 
implied that NS may be released to the groundwater 
environment during a change in pH and ionic strength 
of the soil suspension.
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