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ABSTRACT

Thin coatings based on liquid crystal networks (LCNs) modified with azobenzene moieties are
able to create dynamic surface topographies in the micrometre range by exposure with UV light.
The surface corrugations can be erased and restored by switching ‘off’ and ‘on’ the UV illumina-
tion. Various configurations were presented. The formation of the protrusions was proven to be
induced mainly by excessive volume formation when the order in the LCNs is reduced. It is
suggested that this extra volume formation can be further enhanced by stimulating the oscilla-
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tory dynamics of trans-cis and cis-trans isomerisation. Therefore, dual-wavelength exposure not
only exciting the trans state of azobenzene by 365 nm UV light but simultaneously also the cis

state by 455 nm blue light was shown to enhance the effect.
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Introduction

The ability to switch the coating surface between a flat
state to the predesigned corrugated state by an external
trigger might lead to many new applications or might
improve existing ones. For instance, in microfluidics
mixing is substantially enhanced by the existence of
microscopic topographic structures on the channel

surface. Active control over those topographies enables
switching between a mixing and a non-mixing state
[1]. Also tribology-related properties such as friction,
adhesion/release can be altered by topographic
changes. Tribological alterations are especially impor-
tant for applications in motion control and haptics, for
example, for robotic manipulation and as touch-input
devices [2-4]. Besides the mechanical properties, the
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Figure 1. (colour online) Schematic illustration of the principle of LC. (
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a) An example of the molecule with reactive end groups. (b)

Different types of alignment established at monomeric state. (c) Photo polymerisation process to fix the nematic phase. (d)
Anisotropic deformation of homeotropically aligned LCNs upon decreasing of the order.

optical properties of thin films and coatings are largely
affected by the transformations in surface structure and
shape. By controlling the surface topography, lens and
grating structures can be formed in a dynamic and
autonomous manner and their focusing depth might
adapt to an external stimulus such as the light source
itself and/or its directionality [5]. In relation to this,
also appearance-related properties like scattering, dif-
fraction or reflection can be modulated [6-8].
Furthermore, the wettability of the surface can be
tuned between hydrophobic and hydrophilic or
between hydrophilic and superhydrophobic states by
forming and erasing the (sub)-micro surface
reliefs [9,10].

Many studies are devoted to fabricate surface topo-
graphies by wrinkling, [11-14] lithography [15] or
embossing [16-19]. A number of groups [20-23] have
demonstrated the generation of surface relief gratings
in thin films by using azobenzene-containing polymers.
Gratings are fabricated by mass transport of polymer
chains by continuous isomerisation of the azobenzene
unit under a single beam of polarised light [24-26].
Most often, those structures are static after their for-
mation. In this review, we elaborate on the methods
and principles towards the creation of dynamic surface
topographies at a coating on a confined substrate.
These coatings can be switched between a flat state
(in the absence of light of specific actuating wave-
length) and a predesigned corrugated state through
light illumination. The protrusions height correlates
to the local volume increase verified by the density
measurement as will be explained in the next section.

The use of liquid crystal polymer networks (LCNs)
to induce the formation of surface topographies has
been demonstrated to be a valuable approach to realise
the above mentioned applications [27-30]. The princi-
ple of forming LCNs, and some examples of the mole-
cular order, are provided in Figure 1. Figure 1(a) is a
typical LC molecule that has an anisotropic shape with
a rod-like stiff central core. It has two polymerisable
end groups. In the monomeric state, various molecular
configurations can be established as shown in Figure 1
(b): (1) uniaxial, (2) cholesteric (chiral-nematic), (3)
vertically aligned or homeotropic and (4) splay-bend
director patterns. There are several techniques to estab-
lish monolithic molecular order in LCs. For example,
rubbed surfaces, surfactant treated surfaces, external
electric or magnetic fields or flow can be applied.
Occasionally, they are combined to create films of
even more complex molecular architectures [31]. In
fact, many LC alignment methods are developed for
the display industry which all can be adapted for LC
monomers. When the LC monomers are aligned in the
desired order, photopolymerisation is initiated and the
molecular orientation is in general preserved [32,33].
This results in a highly ordered LCN [34] as shown in
Figure 1(c). Soft actuators based on LCNs that exhibit
various morphing behaviour ranging from bending,
curling to the more complex origami types of folding
have been demonstrated by several groups [35-43]. In
2008, van Oosten and Warner have proposed the work-
ing mechanism of employing the glassy LCNs for
morphing based on linear geometric expansions
under the assumption of volume conservation. Upon
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changing the degree of molecular order, both in num-
ber (order parameter) and in direction (director) posi-
tion-dependent stresses are built up. These stresses lead
to an anisotropic dimensional change of the LCNs, for
example, with a contraction along the molecular orien-
tation and expansions perpendicular to it (Figure 1(d))
while the total volume is unchanged.

Volume increase

The theory explaining anisotropic linear expansion/con-
traction resulting in morphing of free-standing films
could assist in explaining the phenomena observed dur-
ing actuation of LCN coatings adhering to a solid sub-
strate. However, a paradox was found when a uniform
homeotropic film is confined on a rigid substrate. In the
homeotropic configuration the mesogenic units are
aligned perpendicularly to the substrate surface. In the
presence of a copolymerised azobenzene molecule this
LCN coating was mask exposed to UV light [44]. The
isomerisation of azobenzene decreases the order of
aligned LC molecules. Following the classical linear geo-
metrical arguments, the coating should contract at the
exposed places thus forming indents as could be derived
from Figure 1(d). However, unlike predicted by the
linear expansion theory, the exposed area does not form
valleys; instead, protrusions are formed as shown in
Figure 2. Given the fact that we are dealing with
polymer networks, material mass transport to exposed
area are unlikely to take place. The formation of the
protrusions strongly suggests a density decrease and cor-
responding volume increase in the surface-constrained
film and the linear expansion or contraction depending
on the director direction does not, or to a far lesser extent,
play a role. So it is postulated that the reduction of

0 200 400 600 800 1000 1200 1400
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Figure 2. (colour online) Surface topographies of an azoben-
zene-modified homeotropic LCN coating during exposure
through a line mask with a periodic pitch of 450 um and an
opening of 100 um. The surface of the coating is analysed by
interference microscope and displayed in 3D view and in cross-
sectional view.

molecular order is accompanied with the density decrease
(and corresponding volume increase), which is indepen-
dent from the molecular alignment configurations [28].
Free volume formation in azobenzene side-chain polymers
by photoactuation have been published earlier [45,46].
Barrett and co-workers reported even a volume increase
of 17% at room temperature, measurements that were
supported by neutron reflectometry. Here, the azobenzene
content was much lower; 2% of the acrylate monomers
units contain an azobenzene moiety versus 100% in the
Barrett paper. Moreover, our experiments are at cross-
linked polymer networks rather than with linear polymers.
Free volume effects in free-standing bending films made of
liquid crystal polymer networks were reported by the Ikeda
and co-workers [47].

The foregoing experiment where the protrusions are
formed in the homeotropically aligned LCNs indicates
that the order parameter-related density decrease is
more dominant than the arguments on order para-
meter-related linear geometrical change of dimensions.
We verified this density decrease further. For this den-
sity, measurements were performed at free-standing
films of the same composition in the exposed and in
the non-exposed state. Prior to exposure, a density of
1.217 g/cm’ at RT was measured by means of a density
column. In a particular experiment the film was
immersed in salt brine of the density of 1.202 g/cm’
which makes the film sink, as demonstrated in
Figure 3. Upon exposure with UV light the film starts
floating, shown in Figure 3(b), indicating a density
decrease. After switching off the light illumination the
film sinks again (Figure 3(c-e)). Repeating this experi-
ment by immersing this film in salt brine of different
densities, but lower than that of the film, one could
derive the density difference between exposed and
non-exposed states.

The discovery of the density decrease has led to a new
design of coatings in which order parameter-related
anisotropic deformations and the excessive free volume
effect can work together in concert. Guided by this
philosophy, diverse surface topographic structures in
thin coatings on rigid substrates were created [27-29].
Some examples are given in Figure 4. Figure 4(a) is a
patterned film containing planar chiral-nematic areas
next to homeotropic areas. Bringing two types of mole-
cular order in one coating is realised by the use of
patterned indium tin oxide (ITO) electrodes. The initi-
ally planar helicoidal molecular alignment can be locally
unwound by the electric field. These two molecular
alignments have opposite photomechanical response.
In the planar chiral-nematic area, the reduction of the
order parameter results in a positive expansion normal
to the plane while the expansion in the homeotropic
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Figure 3. Density change in an azobenzene containing LC film. (a) Before UV exposure, the film is at the bottom of flask, (b)
snapshot of films during exposure showing the film starts to float, and (c-e) after removing of UV light, the film sinks and reaches

its initial position at the bottom.
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Figure 4. LCN coatings change their surface topology by UV actuation. (a) Coating with alternating stripes of chiral-nematic order
LCN (LCN*) and molecules aligned perpendicular to the substrate (homeotropic). Left: a polarisation microscope picture and
schematic representation of the deformations upon actuation. Centre: interference microscopic images before and during
deformation. Right: artistic impression of the deformation process. (b) When LCN* helical axis are oriented parallel to the surface
a fingerprint pattern is formed. Left: schematic representation of fingerprints deformation upon light actuation. Right: confocal
microscopic measurement before and during actuation. (c) Dynamic surfaces formed at polydomain LCNs. Left: schematic
representation of the deformations upon actuation. Right: interference microscopic measurement before and during actuation.

plane is close to zero or even negative. In the home-
otropic area the opposite occurs when the molecular
order is reduced it will undergo expansion within the
plane of the film and contraction perpendicular to the
film surface. This means that for patterned surfaces of
sufficiently small dimensions the volume expansion is

assisted by the order parameter geometric effects. This
combination of the two gives large deformations. The
modulations depth, defined as ¢ = (g—: x 100%, where
Z; is the height difference (depth) from peak to the
valley of the adjacent profile, Z, is the initial coating

thickness, could reach values close to 20%.
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In the foregoing experiment the helix axes in the
planar area are normal to the substrate. Alternatively,
the helix axes can be rotated 90 degrees as shown in
Figure 4(b). This forms worm-like fingerprint textures
which for some applications might provide several
advantages. They are formed by a self-assembling pro-
cess without involving lithographic procedures, unlike
the method presented in Figure 4(a). Also the self-
assembling process enables practical fabrication. But
more importantly we could minimise the lateral pro-
trusion dimensions from tens of micrometre to micro-
metres or smaller simply by adjusting the
concentration of chiral monomeric molecules. Also,
here the monomeric segments in the helices parallel
to the surface tend to expand whereas the segments
perpendicular to the surface tend to shrink. This leads
to modulation depth between an ‘on’” and an ‘off’ state
reaching the record value of 24% of the film thickness.

Although in the fingerprints method we can elim-
inate the lithographic patterning and the additional
electric field to align the molecules, some efforts need
to be devoted to balance the two distinct forces
between the chiral force that rotates molecules along
the helix axis and the anchoring force from substrate
that tends to unwind the helix to a homeotropic align-
ment. To control this, the coating thickness must be of
the order of half the periodicity of the molecular helix
to form stable fingerprint textures. In order to make
the dynamic surface topographies, a step forward to the
potential applications a simple coating procedure was
developed based on polydomain LCs. In polydomain
LCs, molecules are aligned in discrete domain regions
instead of over the entire coating area. Throughout the
coating, domains are randomly distributed with var-
ious alignments ranging from uniaxial with different
orientation direction in the plane of the layer, tilted
with various tilt angles to domains with a (close to)
homeotropic orientation. In each domain, molecules
align differently without any preference for a specific
orientation. Also, the domain sizes are varied along the
coating if there are no additional forces involved.
When the coating is exposed with light, each domain
deforms differently. The planar regions form hills while
the homeotropic areas expand less or can even deform
into valleys when they can expand in the x-y plane
when they are next to a planar region. Indeed when
the homeotropic domain is next to a uniaxial domain,
the highest tops are formed as they benefit from the
lateral forces exerted by the homeotropic region. Due
to the constraints from the substrate, and the interac-
tions between domains with different LC alignments
jagged surface topographies are formed as seen in
Figure 4(c).

Enhancement of volume increase

In the foregoing discussion, the photomechanical
effect is induced by addressing the azobenzene with
light of a wavelength that corresponds to the absorp-
tion band of its trans state. Recently, we discovered
that free volume generation is enhanced by the oscil-
lating dynamics of the trans-to-cis conversion of azo-
benzene [48]. This is stimulated even more by dual
wavelength exposure promoting both excitation of
trans and the cis isomer of azobenzene rather than
populating cis isomer solely. This dynamics was pro-
posed to be responsible for the lateral transport of
azobenzene-modified side-chain polymers under the
exposure with an interference pattern of a laser source
[49]. Here, we anticipate its importance in our densely
cross-linked networks where the dynamics in the azo-
benzene isomerisation enhances the formation of
molecular voids in the polymer matrix resulting in a
large volume increase on the macroscopic level.
Figure 5 shows this result. When a film is mask
exposed to UV (365 nm) light at 300 mW c¢cm ™ a
local volume increase of just above 3% is obtained.
Subsequently, when an additional LED lamp emitting
at 455 nm light is directed to the same area a signifi-
cant increase of the volume can be found which at
optimised ratios reach values of almost 12%.
Maximum density decreases are found when the
455 nm intensities is around 2.5%, 5% and 10% of
the 365 nm intensities at 100, 200 and 300 mW - cm ™2,
respectively. At higher 365 nm intensity, a higher
455 nm intensity is needed to generate the maximum
results. At higher 455 nm intensity the effect drops
remarkably fast. It is also noteworthy that the effect at
the higher 365 nm intensity of 300 mW - cm™” is
disproportional larger than measured at the lower
365 nm intensity experiments. From here we conclude
that the conversion of the trans azobenzene to its
photostationary cis state is not the main factor that
generate large free volume. Instead, the activation of
the back reaction from cis to trans plays a dominant
role. To verify this theory further, a small amount of
fluorescence dye was added that absorbs 365 nm light
and emits blue light into the coating. In this case, just
a single wavelength exposure at 365 nm light is suffi-
cient. The results show a much larger volume forma-
tion than without dye.

Because free volume is thermodynamically highly
unfavourable, this out of equilibrium effect leads to a
fast relaxation of the surface as soon as UV trigger stops
within tens of seconds. It is in fact much faster than pre-
described by chemical relaxation of the photochemical
azobenzene compound that is several hours [50].
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Figure 5. (colour online) Density decrease of LCN* under the different illumination conditions. 365 nm LED light with various

intensities: 100 mW - cm™2 (red line), 200 mW - cm ™ (blue line), and
line). Inset shows interference microscopy measurements of surface

300 mW - cm~2 (black line) is mixed with 455 nm LED light (red
topographies when exposure to single 365 nm light (3D image

and the corresponding surface profile), and exposure to dual 365 and 455 nm light (3D image and its surface profile).

Conclusions

In this review, several methods towards the creation of
dynamic surface topographies in liquid crystal polymer
thin coatings are described. Integrated with azobenzene
molecules, these glassy coatings can be switched
between a flat state (in dark) and a predesigned corru-
gated state through light illumination. The driving
force for the formation of the surface topographies is
a density decrease/volume increase upon the order
parameter reduction. Unlike when being studied in an
LC elastomer, the azobenzene, though present in a very
small amount of less than 5 w%, is able to create free
volume by which the density of the polymer decreases
up to 10%. Furthermore, it is found that to amplify this
process the molecular dynamics of the trans-to-cis iso-
merisation reaction overrules the actual conversion to
the cis state contradicting with the current theories of
photo-actuation. The photoresponsive effect can be
largely enhanced by simultaneously light triggering
both the trans and the cis state of the molecule. This
can be realised by either focusing two light beams with
365 nm and 455 nm wavelength or adding a small
concentration of fluorescent dye absorbs 365 nm light
while emitting 455 nm light.

Dynamic surface topographies give an entrance to
new applications of these materials ranging from self-

cleaning, friction control, opto-photonics to haptics,
touch sensation and micro-robotics, just because of
the sizable surface effects.
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