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ABSTRACT

We investigate the defect structures forming around two nanoparticles in a Gay—Berne nematic
liquid crystal using molecular simulations. For small separations, disclinations entangle both
particles forming the figure of eight, the figure of omega and the figure of theta. These defect
structures are similar in shape and occur with a comparable frequency to micron-sized particles
studied in experiments. The simulations reveal fast transitions from one defect structure to
another suggesting that particles of nanometre size cannot be bound together effectively. We
identify the ‘three-ring’ structure observed in previous molecular simulations as a superposition
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of the different entangled and non-entangled states over time and conclude that it is not itself a

stable defect structure.

1. Introduction

Spherical particle inclusions in liquid crystals distort
the orientational order of the surrounding molecules
inducing topological defects. Defect regions are defined
by the absence of orientational order and a significant
biaxiality [1]. Such defects arise due to the competition
between liquid crystal molecules trying to align along
the average molecular direction, called the director,
and trying to fulfil the surface anchoring condition of
the nanoparticle. For small particles or particles con-
fined to a thin nematic cell, the defect region forms a
defect ring near the equator of the particle with respect

to the director, commonly referred to as a Saturn ring
[2]. Particles surrounded by a Saturn ring show quad-
rupolar interactions due to the symmetry of the direc-
tor field surrounding them; hence, such particles are
called quadrupoles. For two quadrupoles in close vici-
nity, entangled defects were found to spontaneously
arise when the surrounding nematic is distorted.
Using laser tweezers, which allow easy manipulation
with great precision, a range of reproducible entangled
objects has been found [3-9]. Here, ‘entangled’ means
that both particles are surrounded by a single defect
line, commonly referred to as a disclination line. The
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(a) (b)

(c)

Figure 1. (Colour online) Schematic of two nanoparticles (grey) in nematic host (not shown) entangled by a disclination line (dark
red) forming the (a) figure of eight oo, (b) the figure of omega Q and (c) the figure of theta ©.

three main structures comprise the figure of eight (o),
the figure of omega () and the figure of theta (O).
Schematics are shown in Figure 1. Micrographs of
these entangled defect structures observed in experi-
ments can be found in Figure 4 of Tkalec and Musevi¢
[10]. For the figure of eight defect, a single disclination
line winds around the particles in the manner shown in
Figure 1(a). The figure of omega consists of one dis-
clination line that surrounds both particles near the
equator, entering into the space between the particles
to describe a shape similar to the Greek letter 0. The
figure of theta consists of a disclination line surround-
ing both particles and an additional defect loop in the
plane in between the particles. Note the spontaneous
symmetry breaking for the first two of these structures
due to their chirality. The two states are degenerate and
hence left-handed and right-handed structures occur
with the same frequency.

These entangled defects were observed in experi-
ments and predicted numerically for micron-sized par-
ticles using phenomenological mean-field calculations
based on Landau-de Gennes free energy minimisation
[7,11]. At first glance, these entangled structures appear
to disobey the restriction that the net topological
charge within the liquid crystal must be zero; however,
Copar and Zumer [8] resolved this apparent contra-
diction with the introduction of a self-linking number.

A closer look at the different defect structures reveals
that entangled defects differ only within a tetrahedral
region. Theoretically, by rotating the tetrahedron, one
entangled state can be transformed into another [8]. In
practice, this is equivalent to cutting and reconnecting the
disclination lines, whereas in experiments, this rewiring is
achieved by locally applying laser tweezers to heat the
region around the tetrahedron.

Molecular simulations of two quadrupoles in close
vicinity have shown a three-ring structure for particle
inclusions of nanometre size [3,9,12]. This structure is
similar to the figure of ®; however, the inner loop con-
nects with the outer loop at two nodes. Two possible
explanations have been proposed as to why the structure
differs from the ones observed in experiments. Earlier
studies declared it a transient state [4]. It was later
proposed [13] that instead the size of the particles is

crucial and that the three-ring structure appears for
particles of nanometre scale, whereas micron-sized par-
ticles form only the three different entangled defects (oo,
©® and Q). In this paper, we propose an alternative
explanation for the three-ring structure.

The system of two entangled particles can be
thought of as a building block for more complex sys-
tems. Recent work has shown one-dimensional [5] as
well as two-dimensional [14-16] aggregates, where the
disclination line winds around all the particles.
Entanglement has also been observed for microspheres
and microfibres [17]. When bringing many particles
into close vicinity, knotted structures can be created
[16,18,19]. By applying the laser tweezers in unknotted
regions, additional knots can be created and vice versa.
Wood et al. [20] showed that liquid crystals with a high
number of nanoparticle inclusions can be used to
synthesise a soft solid, which shows high rigidity due
to a network of entangled defect lines. These materials
have important features for potential use in biosen-
sors [21].

Entangled and knotted systems can be manipulated
not only by the use of laser tweezers but also by using
strong local electric fields, hydrodynamic flow, tem-
perature changes and the use of different boundary
conditions and confined geometries. This allows the
creation and modification of defects in liquid crystals
in a rather controllable way and hence a variety of
complex systems can be designed.

In this paper, we outline a model to efficiently
simulate entangled nanoparticles. Simulation details
are given in Section 2. In Section 3, we present how
the different defect types are automatically categorised.
The results, in particular the time scales and dynamics
of transitions from one entangled defect structure to
another, are discussed in Section 4. In addition, the
origin of the three-ring structure, the only structure
observed in previous molecular simulations, is identi-
fied. Conclusions are drawn in Section 5.

2. Model and simulation details

The entanglement was studied by simulating several
systems with nanoparticle inclusions of various sizes



and separations using the molecular dynamics package
LAMMPS [22]. The nematic host was simulated using
the well-known soft Gay-Berne potential (see
Appendix A), a coarse-grained single-site potential
that represents the interaction energies between two
elongated particles. We chose a length-to-width ratio
of ¥ = 3. The remaining Gay-Berne coefficients were
settoy =1, v =3 and ¥’ = 5 and a potential cut-off of
500 was applied. Note that reduced units were used
throughout by setting 09 = ¢9 =1 and the molecular
mass my =1 leading to a basic unit of time
79 = 09+/Mo/€y. The moment of inertia was set to [ =
0.5my0% assuming uniform mass distribution. The
initial director orientation was chosen to lie along the
z direction.

Spherical particle inclusions of radius Ryp were
placed in the box, interacting with the liquid crystal
molecules via a purely repulsive Lennard-Jones poten-
tial (see Appendix B). Their positions were fixed
throughout the simulation. The system was simulated
for particles separated along x with a surface-to-surface
separation of A. Five different systems of nematics with
nanoparticle inclusions of radii Ryp = 100y, 150y and
200, were studied. In all cases, box dimensions were
chosen to give a bulk density p~0.3, and the tempera-
ture was chosen to be T = 3.0, which, for this system,
gives a nematic liquid crystal phase. The presence of
the nanoparticles is expected to affect the local pressure
tensor only in the immediate vicinity of the particle
surfaces, not in the bulk nematic phase, and therefore,
we assume that the usual isotropic box scaling algo-
rithm is sufficient. Simulation details are given in the
following subsections.

2.1. Nanoparticles of radius Ryp = 100

Two spherical particle inclusions of radius Ryp =
100, were placed in the box, separated along x,
with A = 2.940, as well as A = 10.30. A cubic simu-
lation box of length ~1200, with periodic bound-
aries was used. The large simulation box is necessary
to avoid any interference between nanoparticles
through the boundaries. The system was equilibrated
over 1.6 x 10° time steps using an NpT ensemble,
followed by a production run, also in the NpT
ensemble, of 2.5 x 10° time steps with a time step
At =0.004. To simulate the state point described
above, the corresponding pressure was set to
8.226€00, .
were stored every 500 time steps. The total number
of Gay-Berne molecules was 512,000.

Molecular positions and orientations
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2.2. Nanoparticles of radius Ryp = 150

The simulation was repeated with particles of size
Rxp = 150y separated along x with A = 50, as well as
A =100y,. Most other simulation details were
unchanged. Two modifications were made to reduce
computational cost.

The first modification consists of the introduction of
flat walls at the z boundaries. A simple Lennard-Jones
12-6 function of the z coordinate, relative to the wall,
was utilised with ¢y = 09 = 1 and a potential cut-off of
2.50¢. This has the advantage that L, can be chosen to
be smaller than in the system described above, without
the danger of long-range interactions between images
of nanoparticles across the boundaries; this type of
boundary also stabilises the bulk director in the z
direction. L, must be sufficiently large to accommodate
the density and order parameter fluctuations near the
walls, ensuring bulk behaviour in the centre of the
simulation box. A system snapshot of Gay-Berne
molecules near a Lennard-Jones wall can be seen in
Figure 2(a). One can clearly see layering near the wall
that disappears quickly further away from the wall.

The second modification consists of the reduction of
the simulation box length L, to 2Rxp + A (so Ly =
350 for A =509 and L, = 400y for A = 100,) and
the  placement of one  nanoparticle  at
(£ (1/2)Ly,0,0), illustrated in Figure 2(b). With per-
iodic boundary conditions along x, this represents an
infinite chain of nanoparticles along the x direction (L,
remains large enough to avoid periodic self-interac-
tion). This allows the reduction of the total number
of Gay-Berne molecules by over 50%; choosing L, =
L,~1360( in both cases, with N = 182,000 for A =
500 and N = 210,000 for A = 100y, gave a bulk den-
sity p~0.3. The system was equilibrated over 7.5 x 10
time steps (At = 0.004) using an NVT ensemble, fol-
lowed by a production run (NVT ensemble) of 4 x 10°
time steps. Molecular positions and orientations were
stored every 500 time steps.

2.3. Nanoparticles of radius Ryp = 200

In this simulation, the nanoparticle radius was increased
to Rnp = 200y. Other system parameters were chosen as
for the system with Ryp = 150y. No wall potential was
applied and instead periodic boundaries were used across
z. The total number of Gay-Berne molecules was N =
214,000 with a moment of inertia of I = 2.5mq0;. The
box dimensions were chosen to be L, = 5007 and
L, = L,~1200; hence, the separation between neigh-
bouring nanoparticles was A = 100y. The system was
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(b)

Figure 2. Schematic of simulation box. (a) Typical snapshot of Gay-Berne molecules near a Lennard-Jones wall applied near the z
boundaries indicated in grey. Gay—Berne molecules were colour coded according to their orientation with respect to the director. (b)
Two-dimensional view of the simulation box (grey dashed region) in the x-z plane. The black box indicates the area used to
simulate an infinitely long one-dimensional chain of nanoparticles (blue). The box length along y was unchanged. Molecular
snapshot shows a slice of the new simulation box with the nanoparticles at its centre.

equilibrated over 8 x 10° time steps (At = 0.004) using
an NVT ensemble, followed by a production run (NVE
ensemble) of 6.5 x 10° time steps. Molecular positions
and orientations were stored every 500 time steps.

3. Automated characterisation of defect types

To identify defect regions for the system snapshots
stored, a weighted order tensor was calculated follow-
ing the approach suggested by Callan-Jones et al. [23].
This quasi-continuous tensor is given by

1 o
Dy (r) = WZW(M —r|)u,,u,,, (1)

i€V,

where N(V) is the number of molecules in the spherical
sampling volume V with radius ry centred at r, r; is the
position vector of particle i and u' is the component of
its orientation vector with m, m’ = x,y,z. w(|r; —r|) is
a weighting function with the constraint

ZW(|1'1—1'|> =1 (2)

i€V

We choose a cubic b-spline, which is a piecewise
continuous cubic polynomial approximation to a
Gaussian function [24]:

L@ —6r2+4) 0<|n,| <1

L2 —nl)’ 1<|r|<2 )
0 else,

w(ry) =

where r,, = 2|r; — r|/r. w is zero if |r; —r| is greater
than the radius rr. r, was chosen to be 7.30(, which
corresponds to having roughly 30 Gay-Berne molecules
inside the sampling volume V;. A scaling was imposed
afterwards on w such that Equation (2) was obeyed. The

eigenvalues of D are labelled A; > A, > A3. The uniaxial
order of a grid point is defined as its alignment to the
local nematic director field and is given by the Westin
metric ¢; = A; — A,, which is zero in the isotropic region
and unity in perfectly ordered regions. Similarly, a
Westin metric ¢, = 2(A; — A3) can be defined, which
is directly proportional to the biaxiality of the local
director field. Within the bulk, ¢; and ¢, undergo small
variations, whereas significant changes indicate defect
regions. We identified ¢;<0.05 as an appropriate thresh-
old to determine defect core regions. By choosing a
suitable threshold for c,, we were able to identify almost
identical defect regions. For convenience, we choose to
focus on ¢; from here onwards.

For each system snapshot, the weighted order tensor
D was calculated on a regular 3D grid with a spacing of
0.250; and defect regions were evaluated, which
allowed the subsequent determination of the defect
structure. Due to the high number of snapshots, this
process was automated (https://github.com/sausages/
sausages) and the defects classified as follows.

All grid points of the defect core, corresponding to
¢<0.05, were identified and stored in a set Sj,,; all
points with values above the threshold were discarded.
We did not further distinguish between different
values of ¢.

To separate the points of Sy, into disclination lines,
a queue-based flood-fill algorithm was used, a pseudo-
code representation of which is given in Algorithm 1.
To begin, an arbitrary starting point is removed from
Siow and added to an empty queue. The algorithm then
consists of moving the first point p from the queue to a
list L; and moving any neighbours of p from Sjo, to the
end of the queue, in any order. This step is repeated
until the queue is empty, at which point, the list L;
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corresponds to a discrete contiguous volume of points,
which we identify as a disclination line. A new arbi-
trary starting point is then moved from S,y to the
newly empty queue to form the seed of a new list L;,
and the process continues until S,y is empty and so all
points have been assigned to a disclination line.

Algorithm 1 Flood-fill based algorithm to separate points into
disclination lines

Setito1
while S0, is not empty do
Choose a point Pseed € Siow at random
Remove pgeed fromSiow
Add pseed to queue Q
while Q is not empty do
Remove the first point p; from Q
Add p; to set L;
for each neighbour p, € Siow of p; do
Remove p,, from Sioy
Append p, to Q
end for
Increment J
end while

Note that since only defect regions were stored, a
point may not have neighbours in all six directions. To
efficiently implement the flood-fill algorithm for such
an irregular array, a linked-list connectivity graph was
constructed such that each point stores references to its
neighbours. Since disclination lines can only exist in
the form of closed loops (or lines across periodic
boundaries), each defect line was checked for this cri-
terion. For coarser grids, noise artefacts in the data
sometimes caused hairline breaks in the disclination
lines, causing them to have ‘endpoints’. These end-
points could be identified by examining the neigh-
bour-to-neighbour distance between points, estimated
using the all-pairs shortest-path Floyd-Warshall algo-
rithm [25] to find the two points separated by the
longest path. Two endpoints in close proximity, and
with no other endpoint nearby, could be automatically
joined and their lists merged.

While the Floyd-Warshall algorithm gives a deter-
ministic measure of distance along the disclination line,
it scales with the cube of the number of points P and
would be too slow for larger systems. The sparsity of
the point-connectivity graph would make a per-point
Dijkstra approach more promising in these cases, with
O(P?log P) scaling [25]. Coarse graining could also be
used to reduce the effective P.

The length of a disclination line is of particular
interest because it is proportional to its associated
energy. Most of our disclination lines were well
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behaved, allowing the use of a ballistic ‘sphere-tracking’
approach which is much faster than connectivity-based
approaches. An arbitrary starting point is chosen, and a
second is chosen nearby. We define the unit vector
connecting these two points as our (arbitrary) initial
direction of travel and move a short distance along it.
The average position of the defect line near the desti-
nation was calculated by averaging the positions of the
10 nearest points, which was enough to encapsulate the
cross section of the line for our grid size. The new
direction of travel is set to be the vector connecting
the previous position and this new average, and this
direction is followed from the most recent average to
arrive at the new destination. The process continues
until the initial starting point is reached. The length
was estimated by summing the distances between
neighbouring averaged positions. This method proved
to be accurate and reliable. In Figure 3, the red points
indicated the average positions calculated using this
method for an example snapshot.

To accurately distinguish between the different
defect types, the connections between the red regions
in Figure 4 were evaluated using the flood-fill algo-
rithm. Here, the boundaries were treated as fixed. The
connections in conjunction with the number of discli-
nations and their respective lengths allow us to deter-
mine the defect structure. For the figure of eight, we
further distinguished the direction of the twist, depend-
ing on which path crosses over the other. In over 99.9%
of the snapshots, this automated analysis was conclu-
sive; inconclusive exceptions were inspected visually.

4. Results and discussion

In Figure 5, the different defect structures over time are
shown for all five systems. In total, five different struc-
tures were observed: separated Saturn rings, figure of

Figure 3. (Colour online) Disclination lines around two nano-
particles (grey). Blue small dots correspond to data points with
¢; below the threshold and red large points correspond to
points calculated using the ‘sphere-tracking’ (see description
in text).
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X

Figure 4. (Colour online) Schematic of two nanoparticles (grey) and the surrounding disclination lines (black) in the x-y plane. Red
regions show the starting areas for the flood fill to distinguish different defect structures. Depending on which red regions are

connected the defect type was determined.

eight, figure of omega, figure of theta as well as an
intermediate structure, where the two distant parts of
the disclination are linked. With the exception of the
intermediate defect structure, all these defect structures
were also observed in experiments and using Landau-
de Gennes minimisation for micron-sized particles
[26]. For each of these structures, a typical example is
shown in Figure 6.

The only non-entangled structure found was two
nanoparticles surrounded by a Saturn ring each
shown in Figure 6(a). The Saturn rings are strongly
bent away from each other to minimise the distortion
of the director field, which minimises free energy. The
bending effect was also observed for Landau-de
Gennes free energy minimisations [26]. Figure 6(b-d)
shows typical snapshots of the figure of eight, the figure
of omega and the figure of theta from two different
angles. The shape of the defect line is in good agree-
ment with the observations for micron-sized particles

(b) R=1000 A=10.300

L+ e e me e e w eres e

in experiments. Figure 6(e) shows an intermediate
structure, where two distant segments of the disclina-
tion line are linked. For all five structures, thermal
fluctuations of the disclinations are visible, since time
averaging was avoided.

For nanoparticles with radius Ryp = 100y, the
defect structure transitions frequently between differ-
ent structures and no structure persists for longer
than ~2507;. When comparing the results for the
two different separations, one can see that transitions
are more frequent for the smaller separation, suggest-
ing a smaller barrier to interconversion. It appears, at
least for the time simulated, that two separate Saturn
rings are the most frequent structure. The figure of
eight can be seen occasionally, whereas the figures of
theta and omega are very rare. The exact frequencies
are given in Table 1 for all five simulations. The
intermediate linked structure was observed fre-
quently. This is interesting as this structure is not

(c) R=1500 A=500

|
(a) R=1000 A=2.9400 o 2:;: e
Linkedp e o o s+ s o S - o
foll | o — SR —{
232- 0 1000 0 1000 i
Sfightt <« oo e .
oeftl. . .. o (d) R=1500 A=1000 (e) R=2000 A=1000
. Time 10 1000 L broo
o Q
o e
wopl .
b 0| =4
0 1000 0 1000 2000

Figure 5. Different defect structures shown over time for all five simulations. Particle radius and surface-to-surface separation are
given by R and A, respectively. The defect types are labelled as following: intermediate defect structure (linked), figure of omega
(Q), figure of theta (©), two separate Saturn rings (2 SR) and figure of eight (c0). Subscripts indicate right- and left-handed twist.
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Figure 6. (Colour online) Defect structures (red) observed for two nanoparticles (grey) of radius Ryp = 100 in close proximity
(A = 2.940,). Some are shown from two angles for clarity. (a) Two separate Saturn rings (2 SR), (b) figure of eight (c0), (c) figure of
omega (), (d) figure of theta (©) and (e) intermediate defect structure (Linked).

observed in experiments, suggesting that it is
unstable, which in turn suggests that the particle
size does indeed have a significant impact on the
energy barriers of the entanglement.

For particles with radius Ryp = 150y and a surface-
to-surface separation of A = 50y, entangled defect
structures formed, and the frequency of transitions is
very similar to that for the smaller particles. With the
separation increased to A = 100y, no transitions were
observed throughout the production run and the only
structure seen was the two separate Saturn rings. For
particles with radius Ryp = 200, and a surface-to-sur-
face separation of A = 100y, two Saturn rings were
observed most frequently. For a short period, ~1507,
the figure of eight with a right-hand twist formed.

To summarise, it appears that two separate Saturn
rings are the most stable structure for the nanoparticle
sizes studied here. When the particles are sufficiently
close, entangled and intermediate structures were
observed with frequent transitions between them. The
figure of eight was observed to be more stable than the

Table 1. Frequency of observations of different entangled
defect structures for a different particle radii and separations
given in %.

Defect structure frequency (in %)

A(Uo) 2 SR OQeft OQright [©] (0} Linked
RNp = 100’0

2.94 317 5.9 16.8 1.0 2.0 42.6

10.30 719 3.6 134 0.0 0.0 1.2
RNP = 1500

5.0 24.3 22.2 9.0 0.0 5.2 39.2

10.0 99.88 0.0 0.0 0.0 0.0 0.12
RNp = 200’0

10.0 94.5 3.6 0.0 0.0 0.0 1.8

Rne and A are the particle radii and their surface-to-surface separation,
respectively. Notation for different defect structures as introduced in
Figure 6.

figure of omega and the figure of theta was the least
stable.

At this point, it has to be clarified that results pre-
sented in Table 1 are indicators only. Much longer
simulation run times would be necessary to give accu-
rate numbers. For instance, the linked defect structure
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depends on the resolution grid size chosen when cal-
culating the weighted order tensor, i.e. a structure may
appear to be linked for low resolution but could be
classified otherwise if a higher resolution was used. We
chose a resolution of 0.250, expecting this to be smal-
ler than the size of the defect core and hence giving
reasonably accurate results. Furthermore, Table 1
shows that the frequencies of the figure of eight defect
with left-handed and right-handed twist are dissimilar.
This underlines that the simulation run times used
were insufficient to obtain accurate results. Further
investigation, for examples of the free energies asso-
ciated with the different entangled structures, would
have to take this into account; however, it is beyond the
scope of this paper.

These concerns aside, our simulations clearly indi-
cate that two separate Saturn rings are more stable
than entangled structures and that the figure of eight
is more stable than the figure of omega, which in
turn is more stable than the figure of theta. This is in
quantitative agreement with experimental results for
micron-sized particles in strong confinement [5]: two
separate quadrupoles are the only stable structure,
observed in 48% of all laser tweezers manipulations.
For entangled structures, the figure of eight was
found most frequently (36%), followed by the figure
of omega (13%). The figure of theta was observed
rarely (3%). However, the binding energies seem to
be much smaller for nanoparticles, indicated by the
frequent transitions. By contrast, micron-sized parti-
cles’ binding energies were calculated to be an order
of magnitude stronger than the unbound pair and
several thousand times stronger than particles dis-
persed in water [5].

We tried to analyse the relation between the
length of the disclination line, the occurrence of a
transition and the state the defect structure is in.
However, we found no significant relation. This is
partially due to the high fluctuations in length, where

the line stretched or shrank by a few oy within 500
time steps and also due to the inaccuracy of the
‘sphere-tracking’ measurement that only provides
estimates within = 50¢. Nonetheless, it would be an
interesting feature to study for more stable entangled
defects.

Finally, we address the three-ring structure that was
observed in previous molecular simulations [3,9,12]. In
Figure 7, the isosurface corresponding to an order
parameter S$<0.4 is plotted for the time-averaged
results for the entire production run for Ryp = 100y
and A = 2.940y. The time-averaged disclination line
forms the three-ring structure with two nodes pre-
viously observed. It appears that it is a product of the
frequent transitions and not a stable defect structure
itself. We do not observe such a structure in any
instantaneous snapshot. It appears that the visualisa-
tion technique here is important: the common
approach using small bins is inadequate to capture
the fast fluctuations. Using a weighted order tensor
including several neighbouring molecules on a fine
grid has proven itself as a very accurate method to
locate defect regions.

Our results are in good agreement with calculations
by Araki et al. [4,15], who observed the figure of eight
for nanoparticles using numerical methods based on
nematodynamics. In addition, we have observed the
figure of omega and figure of theta for the first time
in molecular simulations.

The results suggest that the entanglement for nano-
particles of sizes studied here is too weak to observe
stable entangled defects, given that the defects fre-
quently transition between different states and often
form intermediate structures which we expect to be
highly unstable. Future work should address larger
particle inclusions to generate more stable defect struc-
tures; this could be achieved using the techniques
described in Section 2. Whether a molecular simulation
could access the longer length scales necessary to

Figure 7. (Colour online) Disclination line (red) corresponding to 5<0.4 time-averaged over entire production run for Ryp = 100,

and A = 2.940,.



observe transitions between stable entangled defects
remains to be seen.

5. Conclusions

Molecular simulations were successfully used to
simulate defects around two spherical nanoparticles
in close vicinity in a nematic host. In our exploratory
simulations, we studied three different radii and sev-
eral different surface-to-surface separations. Five dif-
ferent defect structures formed: well-separated Saturn
rings, the figure of eight, the figure of omega, the
figure of theta and an intermediate structure. To our
knowledge, this is the first observation of the figure
of omega and figure of theta for nanoparticles. The
observation of intermediate structures was due to the
small size of the particle inclusions as well as simula-
tions allowing access to much smaller time scales
than experiments. All defect structures observed
were qualitatively similar to observations made for
micron-sized particles; however, for the particle sizes
studied here, the transitions were very fast and none
of the entangled structures persisted for more than a
few hundred time steps. This suggests that very small
particles cannot be effectively bound together by
entangled lines and that thermal energies are higher
than the energy barriers between different entangled
defect structures. Our analysis reveals that the three-
ring structure observed in previous molecular simu-
lations is solely an artefact of time-averaged super-
positions of the different entangled states and not a
stable defect structure itself.

To further explore the phenomenon of entangled
nanoparticles in molecular simulations, we suggest a
significant increase in particle size. We expect that the
transitions will occur less frequently for larger particles
and hence the dynamics of the system could be studied.
However, one has to keep in mind that this would
require much longer simulation times to study transi-
tions. At this point, we have to stress that our simula-
tions were pushing the current limits of computing
resources available. Therefore, it is likely that rare
event simulation methods (see e.g. Refs. [27,28]) will
have to be applied in larger simulations to explore all
types of entanglement.
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Appendix A. The Gay-Berne potential

The potential originally suggested by Gay and Berne [29] is
widely used to simulate liquid crystals. It can be regarded as a
shifted, anisotropic Lennard-Jones potential, i.e. it depends on
the relative orientation of the particles as well as their separa-
tion. For identical uniaxial particles, it can be written as [30,31]:

U(ﬁi,ﬁj,rij) = 4€(ﬁ,7ﬁ],f‘,]) [p712 — p76], (Al)

where

rij — O‘(ﬁ,‘, ﬁj, f',]) + 0o (AZ)

p(8;, 0y, 1) = o
4; and 1 are unit vectors along the principal axes of the two
particles i and j, while r;; = r; — r; is the vector connecting
their centres of mass r; = ’r,-j‘ and t; = r;;/r;. 0¢ is a para-
meter representing the width of the particle. o(t;, &}, ;) is
the orientation-dependent range parameter

~1/2
1
0 = Oy |:1 — EX(S+ =+ S_):|

where

(i - 0 £ & - 0;)°
Si = A ~
1+ xu - u.

Here, y is given by y = (¥* — 1)(x* + 1), where « is the
length-to-width ratio of the particle. The strength anisotropy
function &(ty, @, ;;)used in Equation (A1) is given by

S(ﬁ,‘, ﬁj, f'l]) =& 8‘1/ (ﬁ,‘, ﬁj)fg (ﬁ,‘, ﬁj, f',]) (A3)
& is the well-depth parameter determining the overall
strength of the potential, while v and y are two adjustable

exponents which allow considerable flexibility in defining a
family of Gay-Berne potentials. ¢; and ¢, are given by

B

1
&2 =1-X(Sy +35)

where
. 2
g (£ - 0; £ £ - @)
* 1+ xa; - a;
Here,
K1
/ J—
X 7Kll/u+l’ (A4)

where k' = &g /¢ is the ratio of well depths for the side-to-
side configuration, &5, and the end-to-end configuration, eg,
of two molecules.
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Appendix B. Homeotropic surface anchoring

Instead of using a specific anchoring potential, a simple
variation of the standard Lennard-Jones (L]) 12-6 potential
is used. Here, the anchoring is entirely induced by the pack-
ing effects of the liquid crystal particles near the surface of
the nanoparticle. For the homeotropic surface anchoring, the
Gay-Berne (GB) molecules are allowed to penetrate the sur-
face of the nanoparticle. To prevent GB molecules from
entirely entering the particle, a shifted purely repulsive LJ
interaction potential Upomeo
12 _ 6 i 6
Uhomeo(r) = {380(p P ) e Z;S(Z = (Bl)
is used. g is an energy parameter chosen to be unity and p is
given by
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[r| — o + 0o
Op ’

(B2)

Here, r;; is the vector connecting the positions of the nano-
particle and the GB molecule and £y is the corresponding
unit vector. oy is a size parameter and defined as the smallest
diameter of the GB molecule; in this system, oy = 1. o, is the
distance of closest approach between the GB molecule and
the nanoparticle, set to

_ Ryp+0p

7 (B3)

c

where Ryp is the radius of the spherical nanoparticle. For
this interaction potential, the potential cut-off is chosen to be
Rxp + 1.
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