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An interplay between molecular pairing, smectic layer spacing, dielectric
anisotropy and re-entrant phenomena in ω-alkenyloxy cyanobiphenyls
Richard J. Mandle and John W. Goodby

Department of Chemistry, University of York, York, UK

ABSTRACT
In this article, we report on the liquid-crystalline properties of the 4-ω-alkenyloxy-4′-cyanobiphe-
nyl series of compounds up to a total aliphatic chain length of eleven. When compared to the
analogous fully saturated compounds, we find that the smectic layer spacing is significantly larger
for the alkene-terminated materials; conversely the dielectric anisotropy in the nematic phase was
found to be significantly smaller. The ability to manipulate bulk properties of nematic and smectic
mesophases may have future relevance for display applications.
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Introduction

The elucidation of structure–property relationships for
mesogenic materials continues to be an important avenue
in applied liquid crystal research [1–3]. Knowing the
likely impact of the introduction of various functional
groups on both bulk properties and mesomorphism
underpins the success of engineering of soft materials
[3]. For example, the introduction of polar groups has
been used for decades to affect changes in the dielectric
anisotropy of the resulting liquid crystals [4–8]. Changes
in the molecular structure can also be used to entirely
alter the mesomorphism of a material, a point illustrated

by considering the behaviour of 8OCB (4-octyloxy-4′-
cyanobiphenyl) and its perfluoroalkoxy analogue (4-
(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooxtyloxy)-
4′-cyanobiphenyl; 8OCB exhibits a nematic and a smectic
AD mesophase, whereas the analogous perfluoroalkoxy
material exhibits only a smectic A phase [9]. In this
example, the lamellar SmAD phase is stabilised by nano-
segregation which results from the chemical immiscibility
of hydrocarbon and fluorocarbon subunits.

Recently, there has been renewed interest in electro-
optic devices using the smectic A phase, including dye
doped guest–host systems [10–26]. Smectic A devices
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have been stymied by the lack of good host materials
that can operate at low voltages, and this has stimulated
interest in finding structure–property relationships that
can be used to promote the smectic A phase. The
stabilisation of the smectic A phase by terminal halo-
gen atoms [27,28] has been reported, however, this
behaviour is not exhibited by halo-terminated alkoxy-
cyanobiphenyls [29]. A number of bulky terminal
groups such as siloxanes [15–17], carbosilanes [30–
32], phenoxy [33] and tert butyl [32,34] have been
reported in the context of materials for electrooptic
devices utilising the smectic A phase.

Perhaps due to their utility as chemical intermedi-
ates, the properties and mesomorphic behaviour of
materials bearing terminal alkenes is often overlooked,
or not reported. To our knowledge there has not been a
detailed and systematic study on the behaviour of the
4-alkenyloxy-4′-cyanobiphenyl materials, shown in
Figure 1, despite many of these compounds being
reported previously as chemical precursors to silane
and siloxane terminated materials [32].

Experimental

The liquid crystalline behaviour of the 4-(ω-alkeny-
loxy)-4′-cyanobiphenyls was studied using polarised
optical microscopy (POM), differential scanning calori-
metry (DSC), small angle X-ray scattering (SAXS) and
electrooptics, and we compare their results with those
of the analogous nOCB series (see Table 1).

The 4-ω-alkenyloxy-4-′-cyanobiphenyls were pre-
pared by the Williamson etherification of 4-hydroxy-
4-′-cyanobiphenyl with bromoalkenes with potassium
carbonate and sodium iodide in acetone. Full

experimental details, including synthetic procedures
and chemical characterisation, are provided in the
accompanying supplemental data to this article. Small
angle X-ray scattering was performed on a Bruker D8
Discover using copper K alpha radiation
(λ = 0.1506 nm) and a Bruker VANTEC 500 area
detector (2048x2048 pixels). The instrument was
equipped with a bored graphite rod furnace allowing
control of the sample temperature. Alignment was
achieved via a pair of 1 T magnets oriented perpendi-
cular to the incident beam, giving a field of approxi-
mately 0.6 T at the sample. An INSTEC ALCT
property tester was used to obtain values of capacitance
as a function of voltage for materials confined in 3 μm
cells with planar alignment and ITO electrodes (area
2.5 mm2). The resulting CV curve was used to deter-
mine dielectric anisotropy as described in the supple-
mental data. Geometry optimisations were performed
in Gaussian G09 revision E.01 at the levels of theory
described in the text [38].

Results and discussion

The transition temperatures of compounds 1–9 (pre-
sented in Table 2) were determined by a combination
of polarised optical microscopy (POM) and differential
scanning calorimetry (DSC), with associated enthalpies
and entropies of transition measured by DSC. The
assignment of smectic mesophases as being of the sub-
type smectic AD (i.e. intercalated) was assisted by small
angle X-ray scattering.

The transition temperatures for compounds 1–9 were
found to be in close agreement with literature values,

Figure 1. General chemical structure of the 4-(ω-Alkenyloxy)-
4′-cyanobiphenyls.

Table 1. The transition temperatures (°C) of the nOCB series of
materials. [35–37].

n = Cr SmAD N Iso

3OCB 3 ● 44.9 - - (● 40.0) ●

4OCB 4 ● 78.0 - - (● 75.5) ●

5OCB 5 ● 48.0 - - ● 68.0 ●

6OCB 6 ● 57.0 - - ● 75.5 ●

7OCB 7 ● 54.0 - - ● 74.0 ●

8OCB 8 ● 54.5 ● 67.2 ● 81.0 ●

9OCB 9 ● 61.3 ● 77.9 ● 80.0 ●

10OCB 10 ● 59.5 ● 83.9 - - ●

11OCB 11 ● 71.5 ● 87.5 - - ●

Table 2. Transition temperatures (°C) and associated enthalpies
of transition (kJ mol−1) for compounds 1–9.

No n Cr SmAD N Iso

1 1 ● 80.2
[30.6]

- - ● 80.7
[1.2]

●

2 2 ● 65.9
[25.7]

- - (● 36.3)
[0.3]

●

3 3 ● 88.5
[28.4]

- - (● 71.5)
[0.7]

●

4 4 ● 33.7
[15.6]

- - ● 52.6
[0.3]

●

5 5 ● 50.4
[30.5]

- - ● 70.6
[1.4]

●

6 6 ● 36.7
[25.6]

- - ● 63.8
[0.5]

●

7 7 ● 46.5
[37.6]

- - ● 73.9
[1.2]

●

8 8 ● 46.2
[32.7]

● 66.2
[0.2]

● 70.2
[0.7]

●

9 9 ● 57.5
[46.7]

● 71.4
[0.7]

● 76.0
[0.4]

●
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with marginally higher melting and clearing points in
several cases [39,40]. With the exception of compounds
1 and 3 the 4-ω-alkenyloxy-4′-cyanobiphenyls possess
both lower melting points and lower nematic to isotro-
pic transition temperatures than the analogous nOCB
materials (Table 1). Photomicrographs of the nematic
and smectic A phases exhibited by compounds 8 and 9
are given in Figure 2. The nematic phase exhibits a
classical schlieren texture, whereas the smectic A phase
exhibits both the focal-conic and parabolic defects

The enthalpies and entropies associated with the
nematic to isotropic transition, plotted in Figure 3,
appear to reach a maximum for compounds 5 and 7
before falling again with further increasing chain
length. Additionally there is a pronounced odd–even
effect, with the magnitude of the associated enthalpies
and entropies displaying a dependence on the parity of
the 4-ω-alkenyloxy chain.

The even parity homologues show a smooth
increase in the values of the enthalpies and entropies,

Figure 2. (colour online) Photomicrographs (x100) of the schlieren texture of the nematic phase of compound 9 at 70.0°C (a and b),
a focal-conic defect in the smectic A phase of compound 8 at 66.1°C (c) and numerous parabolic defects in the smectic A phase of
compound 9 at 74.8°C (d).

Figure 3. (colour online) Plots of associated enthalpies of transition (left, kJ mol−1) and associated dimensionless entropies of
transition (right, ΔS/R) for compounds 1–9.
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whereas the odd members tend to show more erratic
behaviour. This may be related to the orientation of
the double bond being closer to the long axes of
molecules for even parity, whereas for the odd parity
the double bond is oriented off-axis irrespective of the
ratio of the gauche to trans conformations of the
methylene chain. To probe this the dipole moment
of compounds 1–9 was calculated at the B3LYP/6-31G
(d) level of DFT on geometry optimised at the same
level of theory. There is an odd–even effect in the
dipole moments; however, as the alkene is much less
polar than the nitrile group the effect is subtle. The
dipole angle – defined here as the angle between the
dipole-vector and the mass inertia axis of the mole-
cule – also exhibits a dependence on the parity of the
methylene chain (Figure 4).

Both 8OCB and 9OCB exhibit nematic and smectic
AD phases, whereas the corresponding 4-ω-alkenyloxy-
4′-cyanobiphenyls 6 and 7 only exhibit a nematic
mesophase. The assignment of the smectic A phase
exhibited by compounds 8 and 9 as the subtype AD

was made based on SAXS data (representative

examples are given in Figure 5); the smectic layer
spacing for 8 and 9, as well as the analogous 10OCB
and 11OCB, was found to be between 1 and 2 mole-
cular lengths (determined from geometry optimised at
the B3LYP/6-31G(d) level of DFT) and thus confirm-
ing the SmA phase as this subtype rather than a mono-
layer (SmA1) or bilayer (SmA2) phase. The higher
homologues of the 4-ω-alkenyloxy-4′-cyanobiphenyls
studied in this work (8 and 9) were found to exhibit
both nematic and smectic AD mesophases, however,
the analogous nOCB compounds (10OCB and
11OCB) both exhibit direct isotropic to smectic AD

phase transitions with the thermal stability of the smec-
tic AD phase being significantly higher for the nOCB
materials than for their alkene counterparts. We can
therefore state that the incorporation of an alkene at
the terminal position of the alkoxy chain of the nOCB
materials confers a reduction in clearing points (rela-
tive to the saturated parent material), however, the
liquid-crystalline state is not entirely suppressed.

Small angle X-ray scattering (SAXS) was used to
measure the smectic layer spacing of compounds 8
and 9 along with their saturated analogues (10OCB
and 11OCB) as a function of reduced temperature.
The molecular lengths of 8, 9, 10OCB and 11OCB
were determined from geometry optimised at the
B3LYP/6-31G(d) level of theory; using these values in
conjunction with measured layer spacing afforded the
d/l ratios plotted in Figure 6.

For 10OCB and 11OCB the smectic layer spacing
was found to increase marginally with reduced tem-
perature, however, for compounds 8 and 9 the opposite
is true, with the layer spacing (and thus the d/l ratio)
decreasing with reduced temperature. However, for all
four compounds the deviation from the mean value
was small. Tabulated maxima, minima and mean
values of the d/l ratios along with values at selected
reduced temperatures (T[SmA-N] – T = 5, 10, 15, 20 and
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Figure 4. (colour online) Plot of molecular dipole moments
(calculated at the B3LYP/6-31G(d) level of DFT) and the angle
made between the dipole vector and the long-axis of the
mesogenic unit.

Figure 5. (colour online) Two dimensional small angle X-ray scattering patterns obtained for compound 8 in the nematic phase at
69°C (a) and in the smectic AD phase at 46°C (b).
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25) are given in Table 3. It is interesting to note that
although the smectic layer spacings do not exhibit a
temperature dependence to the same extent as reported
for the 4-undecyloxy-4′-cyanobiphenyls substituted
with ‘bulky’ terminal groups [32], the layer spacing
for the alkene terminated materials 8 and 9 is signifi-
cantly different to that of the analogous saturated
nOCB materials. We must add that the pronounced
difference in layer spacing between 8/9 and 10OCB/
11OCB may be a consequence of differences in the
orientational order parameter. Compounds 8 and 9
provide further examples of the ability of terminal
groups, in this case alkenes, to manipulate the smectic
A layer spacing [30–32].

Initially we assumed that strength of the dipole–
dipole interactions between adjacent cyanobiphenyl
molecules that lead to antiparallel correlated species is
unaffected by the presence or absence of an alkenyl
moiety at the terminus of the aliphatic chain; in this
scenario the nitrile-to-nitrile distance for adjacent
molecules within the smectic layers is unchanged, yet
the distance between nitrile groups in adjacent layers
must be larger. In this scenario the layer expansion is
caused by the alkenes being ‘squeezed’ out into the
layer interface in a manner similar to that reported
for bulky end groups. We cannot at this stage rule

out that the alkene alters the degree antiparallel asso-
ciations that exist between the cyanobiphenyl group, so
as an alternative we speculate that the terminal alkene,
through some presently unknown mechanism, leads to
an increase the ‘aspect ratio’ of the antiparallel corre-
lated cyanobiphenyl pair, i.e. the nitrile-to-nitrile dis-
tance within the smectic layers grows larger, leading to
an increase in the smectic layer spacing.

To test these two differing hypotheses experimen-
tally we opted to measure the dielectric anisotropy of
compounds 4 and 6, as well as their saturated analo-
gues 6OCB and 8OCB. These materials were chosen
because of their wide nematic phase ranges and con-
venient operating temperatures. In the Maier–Meier
equations the effective dipole moment (μeff) is the
molecular dipole moment attenuated by the
Kirkwood ‘g’ factor (μeff

2 ¼ gμmol
2) which describes

the degree of parallel/antiparallel correlation between
molecules in a liquid crystal. By using calculated mole-
cular dipole moments and polarisabilities the
Kirkwood factor was varied so the calculated dielectric
anisotropy from the Maier–Meier equation (see
Equations 1–3 below and the ESI for a more detailed
discussion) matches the experimental value, giving an
empirical value for the degree of antiparallel (or
indeed, parallel) molecular correlations that exist in
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Figure 6. (colour online) Plot of the d/l ratio (see text) vs reduced temperature (T[SmA-N] – T) for compounds 8 and 9, with data for
10OCB and 11OCB for comparison.

Table 3. Maximum, minimum and mean values of the d/l ratio along with standard deviation from mean (SD), values at reduced
temperatures of 5, 10, 15, 20 and 25. Values of the d/l ratios were obtained using SmAD layer spacings measured by SAXS and
molecule lengths obtained at the B3LYP/6-31G(d) level of DFT for compounds 8, 9 10OCB and 11OCB.
No. Max d/l Min d/l Mean d/l SD d/l (TR = 5) d/l (TR = 10) d/l (TR = 15) d/l (TR = 20) d/l (TR = 25)

8 1.545 1.520 1.527 0.0055 1.533 1.528 1.526 1.524 1.523
9 1.516 1.512 1.514 0.0013 1.515 1.515 1.514 1.513 1.512
10OCB 1.470 1.462 1.464 0.0023 1.463 1.462 1.462 1.463 1.464
11OCB 1.471 1.455 1.462 0.0044 1.459 1.460 1.461 1.464 1.465
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the bulk liquid crystal phase [41–47], and thereby
allowing us to test our two hypotheses.

εk ¼ 1þNFh
ε0

�α� 2
3
ΔαSþ Fμeff

2

3kBT
1� 1� 3cos2β

� �
S

� �( )

(1)

ε?¼1þNFh
ε0

�α�1
3
ΔαSþFμeff

2

3kBT
1þ1

2
1�3cos2β
� �

S

� �( )

(2)

Δε ¼ εk � ε? ¼ NFh
ε0

Δα� Fμeff
2

2kBT
ð1� 3cos2β

� �( )
S

(3)

Thus, plots of capacitance as a function of voltage
(triangular waveform, 1 kHz) were used to obtain the
dielectric anisotropy as described in the ESI, with a
representative plot of capacitance as a function of vol-
tage shown in Figure 7. Values for the dielectric aniso-
tropy were collected as a function of reduced
temperature, with values approaching saturation at

8.2 and 7.8 respectively at a reduced temperature of
25°C for both compounds 4 and 6; these values are
significantly lower than those obtained for 6OCB and
8OCB by us previously (Δε = 10.9 for both) [29,47].
Qualitatively, this result is indicative of the Kirkwood
factor being smaller for alkene terminated materials
than their saturated analogues, i.e. there is a greater
degree of antiparallel pairing. Using dipole and polari-
sability data (B3LYP/6-31G(d) level of theory) solu-
tions to the Maier–Meier equations were found for a
reasonable range of order parameters (S = 0.4, 0.5 and
0.6) yielding the Kirkwood factor for each case
(Table 4). As noted by Kaszynski et. al., systematic
errors that result from quantum chemical calculations
are included in the empirical Kirkwood factor, and
thus comparisons of results obtained for closely related
compounds or materials examined in the same med-
ium are still valid, provided calculations are performed
at the same level of theory [46].

As expected for the two closely related molecular
structures the dipole moments and polarisabilities of
8OCB and 6 are almost identical (tabulated data is
presented in ESI), hence, the large difference in the
dielectric anisotropy of these two materials is surpris-
ing. By adjusting both the Kirkwood factor (g) and
order parameter (S) used when obtaining solutions to
the Maier–Meier equation it is possible to match the
calculated values of dielectric anisotropy with those
measured experimentally. As the order parameter is
not known, a range of reasonable values were used
(0.4, 0.5 and 0.6), with back-calculation giving the
Kirkwood factors shown in Table 4. Determination of
the order parameter from dielectric permittivities (see
ESI for details) yielded values of 0.44, 0.41 and 0.48 for
4, 6 and 6OCB respectively at reduced temperatures of
25°C, whereas for 8OCB a value of 0.45 was obtained
prior to the N-SmA phase transition (reduced tempera-
ture of approximately 13°C). The difference in experi-
mentally measured Δε between both pairs (i.e. 4/6OCB
and 6/8OCB) means that, for a given value of the order
parameter, the resulting Kirkwood factor for the
alkene-terminated material is smaller than that of the
analogous nOCB. In other words, there is a greater

Figure 7. (colour online) Plot of capacitance (pF) as a function
of RMS voltage (V) obtained for compound 6 using a triangular
waveform at a temperature of 35°C, with an inset showing a
plot of capacitance as a function of 1/V with a linear fit used to
determine C|| and thus ε||. Blue circles correspond to experi-
mental data, whereas the dashed red lines correspond to fits
used to obtain C||and Vthreshold.

Table 4. Transition temperatures (°C), associated enthalpies of transition [kJ mol−1], dielectric anisotropies (Δε) and calculated
Kirkwood factors (gS at order parameters [S] 0.4, 0.5 and 0.6 respectively) for 6OCB, 8OCB [29,47] compounds 4 and 6 (this work).

R = No. Cr SmA N Iso Δε g0.4 g0.5 g0.6
H3 C–CH2– 6OCB ● 57.0 - - ● 75.5 ● 10.9 0.266 0.215 0.178
H2 C = CH– 4 ● 33.7 - - ● 52.6 ● 8.2 0.221 0.177 0.147
H3 C–CH2– 8OCB ● 54.5 ● 67.2 ● 81.0 ● 10.9 0.301 0.242 0.202
H2 C = CH– 6 ● 36.7 - - ● 63.8 ● 7.8 0.242 0.191 0.159
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degree of antiparallel pairing associated with the incor-
poration of a terminal alkene. A weak interaction
between a nitrile and alkene has been reported [48],
and this may be the origin of the reduced Kirkwood
factor (and thereby the reduction in dielectric aniso-
tropy) in alkene-terminated nOCB compounds.

Reentrant behaviour in liquid crystals, where a ‘less’
ordered mesophase is obtained on cooling a ‘more’
ordered mesophase – although more correctly a phase
of higher symmetry is obtained on cooling a phase of
lower symmetry – is a well-established phenomenon
[49,50], and exists in analogy to similar reentrant beha-
viour observed in other systems [51], Binary mixtures
of 6OCB in 8OCB exhibit the phase sequence N-SmA-
NRE (where NRE is a reentrant nematic phase) when the
concentration of 6OCB is in the range of 20–30 wt%.
As described by Cladis, the reentrant polymorphism in
the 6OCB/8OCB system is a consequence of the for-
mation of antiparallel correlated pairs, the population
(relative to unpaired molecules) and lifetime for which
increases with decreasing temperature. As the tempera-
ture decreases (and the relative population of paired
molecules increases) the dipolar forces that stabilise the
layered structure break down, leading the material to
revert to the nematic phase. The difference in length
between an unbound single molecule and a dimer pair
is significant; this incommensurability of length scales
has been postulated to be the origin of multiple re-
entrancies (for example the multiple nematic phases of
DB9ONO2) [52,53]. We opted to explore the phase
diagram between compounds 6 and 8 on the basis
that if, as suggested from dielectric measurements, the
presence of a terminal alkene leads to an increase in the
degree of antiparallel correlated pairs then such a phase
diagram should be expected to exhibit the N-SmA-NRE

phase sequence.
As shown in Figure 8, the smectic A phase persists

over almost the entire concentration range to as low as
1.1 wt% of compound 8. The clearing point varies
almost linearly with concentration; however, the
SmA-N transition decays exponentially. A transition
from the smectic A phase to a reentrant nematic was
observed at low temperature for mixtures with <5 wt%
of compound 8; at the next highest concentration of 8
(7 wt%) the smectic A phase crystalises at around 0°C,
whereas for pure 6 the material crystalises at around
25°C from the nematic phase. For the smectic A phase,
the schlieren texture re-appeared, with the sample
becoming noticeably less viscous, despite the tempera-
ture of this phase transition being around −15°C. The
nematic and smectic A phases were identified by
polarised optical microscopy based on their

characteristic defect textures as described earlier in
the text. In the case of the reentrant nematic phase,
the optical textures are identical to those of the
nematic; homeotropically oriented regions in the smec-
tic A phase retain this alignment in the reentrant
nematic phase, whereas the focal-conic defects yield a
classical schlieren texture confirming that the lower
temperature phase is not smectic C. At present, experi-
mental limitations prevent the measurement of the
smectic layer spacing below ambient temperature
(~ 20°C) by SAXS, however, this would potentially
afford quantitative information about the degree of
pairing; for example in the 6OCB/8OCB system it is
known that the degree of pairing is inversely propor-
tional to temperature and as the level of pairing satu-
rates the transition to the reentrant nematic phase
occurs. As the reentrant nematic occurs at around
50°C lower for the 6/8 phase diagram (TSmA-Nre ~
−15°C) than for 6OCB/8OCB (TSmA-Nre ~ 35°C) this
indicates that, qualitatively, the degree of pairing for
the alkene-terminated materials does not saturate until
a much lower temperature than for the 4-alkoxy-4′-
cyanobiphenyls. This is not to say that the degree of
pairing is actually less in the alkene terminated materi-
als, but rather it may simply saturate at some higher
value. If the reentrant nematic phase observed for
binary mixtures of both 6OCB/8OCB and 6/8 is con-
sidered to be a product of the incommensurability
between the length of free molecule and the ‘dimer’
type species, then the increased degree of pairing in the
alkene-terminated materials would be expected to lead
to a more stable smectic A phase through the reduction
in the number of free molecules which destabilise the
smectic A phase and lead to the nematic.

Figure 8. (colour online) Gibbs phase diagram for binary mix-
tures (wt %) of compounds 6 and 8. Melting points are omitted
for clarity. Dashed lines correspond to linear fit of and a double
exponential fit of SmA-N as a function of composition.
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Conclusions

Despite the similarity of their chemical structures, the
properties of the condensed phases exhibited by the
alkenyloxy- and alkoxy-cyanobiphenyls differ signifi-
cantly. In the smectic A phase, the d/l ratio (the layer
spacing divided by the molecular length obtained at the
DFT(B3LYP)/6-31G(d) level) was found to be signifi-
cantly larger for alkene terminated materials than the
analogous nOCB compounds. The d/l ratio measured
for 10OCB and 11OCB are approximately equivalent at
a given reduced temperature, those for the analogous
alkene terminated materials (compounds 8 and 9)
exhibit significant differences. This result gives impor-
tant fundamental information for the underpinning of
the design of the molecular architectures of materials
for applications in nematic and smectic flat panel
displays.

Two main hypotheses were formulated, either the
alkenes are expelled to the layer interface in an analo-
gous fashion to that claimed for bulky groups [32], or
the alkenes somehow change the nature of the antipar-
allel associations that exists between adjacent cyanobi-
phenyl units. To test this, we measured dielectric
anisotropy, if this had remained the same then the
second hypothesis was null, however, in the nematic
phases we observed a sharp reduction in dielectric
anisotropy. The fall in Δε is, we believe, attributable
to increase antiparallel pairing of the molecules, i.e. the
Kirkwood factor is smaller. This is a counterintuitive
result – the alkene is not conjugated to the core and
would not be expected to confer any change in dielec-
tric properties. The ability to fine tune the degree of
antiparallel correlation that occurs in polar calamitic
liquid crystals has the potential to be an important
design feature in the synthesis of materials with very
large values of dielectric anisotropy, i.e. Δε > 50, where
aggregation effects can become significant [44]. Low
concentration binary mixtures of compound 8
(<5 wt%) with compound 6 yield the reentrant phase
sequence N-SmA-Nre.
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