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ABSTRACT 

An engineered biological filtration (biofiltration) process treating a nutrient-enriched, low-

alkalinity, organic-laden surface water downstream of conventional coagulation-clarification and 

upstream of an ultrafiltration (UF) membrane process was assessed for its treatment effectiveness. 

The impact of biofiltration pretreatment on UF membrane performance was evaluated holistically 

by investigating the native source water chemistry and extending the analysis into the drinking 

water distribution system. The biofiltration process was also compared in treatment performance 

to two alternative pretreatment technologies, including magnetic ion exchange (MIEX®) and 

granular activated carbon (GAC) adsorption. 

The MIEX®, GAC adsorption, and biologically active carbon (BAC) filtration pretreatments were 

integrated with conventional pretreatment then compared at the pilot-scale. Comparisons were 

based on collecting data regarding operational requirements, dissolved organic carbon (DOC) 

reduction, regulated disinfection byproduct (DBP) formation, and improvement on the 

downstream UF membrane operating performance. UF performance, as measured by the 

temperature corrected specific flux or mass transfer coefficient (MTC), was determined by 

calculating the percent MTC improvement relative to the existing conventional-UF process that 

served as the control. The pretreatment alternatives were further evaluated based on cost and non-

cost considerations. 

Compared to the MIEX® and GAC pretreatment alternatives, which achieved effective DOC 

removal (40 and 40 percent, respectively) and MTC improvement (14 and 30 percent, 

respectively), the BAC pretreatment achieved the lowest overall DOC removal (5 percent) and 
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MTC improvement (4.5 percent). While MIEX® relies on anion exchange and GAC relies on 

adsorption to target DOC removal, biofiltration uses microorganisms attached on the filter media 

to remove biodegradable DOC. 

Two mathematical models that establish an empirical relationship between the MTC improvement 

and the dimensionless alkalinity to substrate (ALK/DOC) ratio were developed. By combining the 

biofiltration results from the present research with findings of previous studies, an empirical 

relationship between the MTC improvement versus the ALK/DOC ratio was modeled using non-

linear regression in Minitab®. For surface water sources, UF MTC improvement can be simulated 

as a quadratic or Gaussian distribution function of the gram C/gram C dimensionless ALK/DOC 

ratio. According to the newly developed empirical models, biofiltration performance is optimized 

when the alkalinity to substrate ratio is between 10 and 14. For the first time a model has thus been 

developed that allows for a predictive means to optimize the operation of biofiltration as a 

pretreatment prior to UF membrane processes treating surface water. 
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CHAPTER 1. INTRODUCTION 

In surface water treatment, low pressure ultrafiltration (UF) membranes are widely used because 

of their ability to remove pathogens and supply safe drinking water. Although UF membranes 

provide an effective barrier against pathogens, the efficiency of UF processes is limited by 

membrane fouling and poor disinfection byproduct (DBP) precursor removal (Alspach et al., 2005; 

2008). Improving the productivity of UF membranes can be accomplished by incorporating 

pretreatment processes. Of the identified pretreatment technologies, biological filtration 

(biofiltration) has attracted the most recent attention from researchers (Gao et al., 2011). 

Researchers have found that biofiltration pretreatment can enhance UF processes by producing 

biologically stable water (Wend et al., 2003; Basu & Huck, 2004; Halle et al., 2009; Huang et al., 

2011; Wei et al., 2011; Peldszus et al., 2012). While these bench and pilot scale research findings 

indicate that the use of biofiltration pretreatment for UF processes is effective, further investigation 

on the pilot-scale is necessary to: 

 Examine the biological filter (biofilter) performance for other types of surface waters, 

particularly low alkalinity sources, 

 Understand the impacts of integrating biofiltration within conventional pretreatment 

(coagulation, flocculation, and sedimentation) and UF membrane processes, and 

 Develop practical models that can predict biofilter performance. 

To contribute to the knowledge base with regards to biofiltration pretreatment, a biofiltration 

process treating low alkalinity, organic acid-laden surface water downstream of conventional 

pretreatment and upstream of a UF membrane process was assessed. The performance of 



2 

biofiltration pretreatment was compared to other advanced pretreatment technologies, including 

magnetic ion exchange (MIEX®) and granular activated carbon (GAC) adsorption. Furthermore, 

results from previous biofiltration studies were incorporated to develop an empirical model for 

predicting biofilter performance. 

Background and Objectives 

In August of 2012, the County of Maui Department of Water Supply (County) partnered with the 

Water Research Foundation (WRF) and the University of Central Florida (UCF) to investigate 

biological pretreatment of a low alkalinity, organic acid-laden surface water treated at the Olinda 

Water Treatment Plant (WTP) located in proximity of Makawao, Maui, HI. The Olinda WTP 

employs a conventional-UF process and faces treatment challenges related to elevated DBP 

formation and UF membrane fouling. The water quality and operational challenges are due in part 

to the difficulties of coagulating low alkalinity, acidic pH, organic-laden surface water. 

To address Olinda’s unique water treatment challenges, the County, WRF, and UCF entered into 

a tailored collaboration (TC) to evaluate advanced pretreatment technologies, including MIEX®, 

GAC adsorption, and biologically active carbon (BAC) filtration, ahead of a UF membrane 

process. These pretreatment options were selected for evaluation because of their ability to remove 

dissolved natural organic matter (NOM) that contribute to DBP formation and UF membrane 

fouling (Miltner et al., 1992; Boyer & Singer, 2005; Gao et al., 2011; Badawy et al., 2012). 

The pretreatment alternatives were assessed according to a holistic technical approach that 

examined the water quality from the watershed supply to the finished water distribution system. 
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The Olinda WTP’s coagulation and UF processes were investigated to serve as the research control 

for assessing the MIEX®, GAC, and BAC pretreatment options. In addition, results from the 

present BAC evaluation and from other biofiltration studies were assessed to develop a new 

mathematical model for predicting biofiltration performance. 

Overall, the research focused on four primary objectives: 

 Objective 1 – Examine Watershed Quality 

 Objective 2 – Confirm Existing Conventional-UF Process Operations 

 Objective 3 – Evaluate the UF Pretreatment Alternatives 

 Objective 4 – Investigate a New Model Approach for Predicting Biofiltration Performance 

The objectives were accomplished through the completion of several research tasks. Table 1-1 

presents the research implementation schedule for each of the following research tasks. 

 Task 1 – Surface Overland Flow Water Quality Analysis 

 Task 2 – Conventional-UF Process Water Quality and Operational Monitoring 

 Task 3 – Coagulation Jar Testing Evaluation 

 Task 4 – MIEX® Pretreatment Pilot Testing 

 Task 5 – GAC Pretreatment Pilot Testing 

 Task 6 – BAC Pretreatment Evaluation 

 Task 7 – MIEX®, GAC, and BAC Pretreatment Evaluation 

 Task 8 – Empirical Model Development for Biofiltration Performance 
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The findings of each task are presented and discussed herein. One or more of the identified 

pretreatment alternatives could provide the County with newer approaches that improve the quality 

and economics of water treatment. Furthermore, the research was conducted to provide the water 

community with additional information on the treatment effectiveness, method of implementation, 

and operational guidance of UF pretreatment alternatives not commonly used in existing UF 

treatment strategies, particularly biofiltration. 

Table 1–1 Research Task Implementation Schedule 

Task Date 

1 
November 15, 2012; January 31, 2013; April 30, 2013; August 6, 2013; 

 October 22, 2013; and May 12, 2014 

2 
September 4, 2012 through February 3, 2013; and 

April 27, 2013 through December 31, 2013 

3 
September 19, 2012; April 23, 2013; April 24, 2013; and 

May 17, 2014 through June 1, 2014 

4 September 4, 2012 through February 3, 2013 

5 April 27, 2013 through July 5, 2013 

6 August 10, 2013 through December 31, 2013 

7 January 1, 2014 through September 1, 2014 

8 October 1, 2014 through February 15, 2015 

 

The Upcountry Water Supply 

The County provides drinking water to the majority of Maui’s population from a combination of 

groundwater and surface water resources. The County’s Upcountry water system is one of the 

larger drinking water communities on the island, where treated surface water is distributed to 

Upcountry Maui customers through the Upper Kula, Lower Kula, and Makawao interconnected 
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water systems. The water distribution systems are configured to allow water transfers between the 

three networks during times of drought. The three distribution systems are segregated due to 

differences in system elevation, and each system contains within its service area its own water 

treatment plant (WTP): 

 The Olinda WTP is comprised of an integrated conventional-UF process that supplies 

the upper elevation properties via the Upper Kula distribution system; 

 The Pi’iholo WTP is a conventional direct filtration surface water treatment facility 

that provides water to customers through the Lower Kula distribution system; and, 

 The Kamole WTP is an integrated direct coagulation and UF process that, along with 

several groundwater wells, supplies the lower elevation customers through the 

Makawao distribution system. 

An overview schematic of the Upcountry water system is depicted in Figure 1-1. A summary 

description of the Upcountry water supply and treatment systems is presented in Table 1-2. The 

Upcountry surface water supply originates from the native rainforest located in the East Maui 

watershed and is generally characterized by relatively low hardness, low alkalinity, and acidic pH. 

The source water’s organic levels, measured as total organic carbon (TOC), vary from 1 to 20 

mg/L depending on the system elevation of each plant. 
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Figure 1–1 Upcountry Water System Schematic 
Source:  Adapted from Davis et al., 2008 

The Upcountry treatment plants employ similar multi-barrier treatment schemes, consisting of 

destabilization and removal of turbidity and NOM by coagulation and granular or membrane 

filtration, chemical disinfection, and corrosion control. Unlike the Kamole and Pi’iholo WTPs, the 

Olinda WTP treats the highest TOC source water for which conventional-UF treatment is 

insufficient to control DBP formation with free chlorine disinfection. In order to control regulated 

DBP levels in the Upper Kula system, the Olinda WTP relies on pre-formed chloramines for 

primary and secondary disinfection. Because the chloramine residual is incompatible with the free 

chlorine residual of the Lower Kula and Makawao systems, the Upper Kula system is intentionally 

kept isolated (Farley et al. 2012). 

  

Olinda WTP 

Upper Kula 

Pi’iholo WTP 

Lower Kula 

Kamole WTP 

Makawao 
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Table 1–2 Upcountry Water Supply and Treatment Systems Summary 

Parameter Makawao Lower Kula Upper Kula 

Water 
Source(s) 

Kaupakalua, 
Haiku, and 

Pookela 
Wells 

Hamakuapoko 
Well 

Wailoa Ditch Pi'iholo 
Reservoir 

Waikamoi and 
Kahakapao 
Reservoirs 

Type Ground Ground Surface Surface Surface 

Treatment 
Plant 

--- Kamole WTP Kamole WTP Pi'iholo WTP Olinda WTP 

Treatment 
Process 

--- GAC Coagulation-
Ultrafiltration, 

Low TOC 

Direct filtration, 
Moderate TOC 

Conventional-
Ultrafiltration, 

High TOC 

Primary 
Disinfection 

Chlorine Chlorine Chlorine Chlorine Chloramines 

Secondary 
Disinfection 

Chlorine Chlorine Chlorine Chlorine Chloramines 

Corrosion 
Control 

--- --- Soda Ash Soda Ash Lime 

 

Keeping the Upper Kula system isolated is challenging during times of drought because the higher 

elevation communities cannot be supplemented by the lower systems. Additionally, the County 

must issue mandatory water usage restrictions. To complicate matters, the Upper Kula system must 

implement a rigorous distribution system flushing schedule to prevent nitrification episodes, 

common to chloraminated systems (Zhang et al., 2009). Frequent flushing of the system leads to 

the loss of valuable treated water. In addition to the distribution management challenges, the 

County has been encountering operational limitations at Olinda WTP related to UF membrane 

fouling. The suspected high organic and possibly biological fouling nature of the Olinda WTP 

source water necessitates frequent UF membrane backwashes and chemical cleans in place (CIPs). 

Frequent backwashes and CIPs decrease water productivity and increase chemical waste streams. 

Upgrading the Olinda UF process to include additional pretreatment may serve the dual purpose 

of lowering UF membrane fouling and DBP precursors. Addressing Olinda’s membrane fouling 
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and DBP formation concerns would present the County with the options of increasing water 

production at the Olinda WTP and converting the Upper Kula disinfection residual to free chlorine. 

The conversion of the Upper Kula disinfection residual to free chlorine would permit unrestricted 

water transfers among the three Upcountry network distribution systems. 

The Olinda WTP Facility Layout 

The Olinda WTP treats water originating from the highest reaches (above 4,000 feet) of the 

Waikamoi rainforest in the East Maui watershed. The source water is collected by an overland 

flow capture method consisting of a 1.1 mile-long flume that conveys water to a dam-reservoir 

system for storage prior to transport to the Olinda plant site. Before April 2013, the rectangular 

flume consisted of redwood originally constructed in the 1930s and rebuilt in 1974. However, due 

to water losses of up to 40 percent, construction began in April 2013 for the replacement of the 

40-year-old redwood flume with a new aluminum flume of the same dimensions (14 by 27 inches) 

and flow capacity (1.1 MGD). 

The flume collects surface run-off water and stream water from the Haipua’ena and Puanokamoa 

streams through a series of intakes. The water collected in the flume is combined with Waikamoi 

stream water and conveyed to two 15 million gallon Waikamoi reservoirs. The water is then stored 

in two 50 million gallon Kahakapao reservoirs before traveling to the Olinda plant. The TOC of 

the raw water going into the plant ranges from 4 to 19 mg/L; however, a profile of the water quality 

as it travels to the plant has yet to be conducted. Understanding the water quality of the source 

water as it is conveyed through the watershed was believed to serve as a means to identify 

additional watershed management strategies for improving the downstream treatment processes. 
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The Olinda WTP operates as a coagulation, flocculation, sedimentation and UF surface water 

plant. A process schematic of the Olinda WTP is presented in Figure 1-2. Following pre-

sedimentation in the Kahakapao reservoirs, raw water is injected with aluminum chlorohydrate 

(ACH) coagulant, mixed, and flocculated in two slow mix basins. ACH, a prehydrolyzed metal 

salt coagulant, is manufactured to exert a low demand on the raw water alkalinity (Letterman & 

Yiacoumi, 2011). Therefore, the Olinda WTP uses ACH in place of more common metal salts, 

such aluminum sulfate, that are known to cause a significant drop in pH for low alkalinity waters 

(Budd et al., 2004).  

The coagulation and flocculation treatment steps serve to remove color and the suspended and 

colloidal solids that coalesce into larger particles and settle out in an 8.5 million gallon 

sedimentation basin. The clarified water is then pumped through a UF membrane process that 

removes most of the remaining fine particulates. Ammonia and chlorine are added to form 

chloramines that serve to disinfect the water. Food grade lime is added for pH adjustment and 

stabilization prior to storage in the clearwell. Finished water from the clearwell supplies the Upper 

Kula distribution system. UF backwash, containing diluted hypochlorite and citric acid chemicals, 

is directed to backwash lagoons to be recycled back into the treatment process. The average 

production rate of the Olinda WTP is approximately 2 MGD; and the peak processing capacity is 

about 2.7 MGD. 
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Figure 1–2 Olinda WTP Schematic 

Prior to 2007 the Olinda plant relied on microfiltration (MF) membranes with nominal pore size 

of 0.1 µm; however, in early 2007 the plant was upgraded to UF membranes having a nominal 

pore size of 0.01 µm (Alspach et al., 2008). The UF process utilizes pressurized outside to inside 

MEMCOR® L10V polyvinylidene fluoride (PVDF) hollow fiber membranes to achieve up to 6 

log removal of Giardia and Cryptosporidium. The UF membranes are operated at a targeted 

constant flux of about 23.6 gal/ft2-day. To prevent particulate and organic foulant materials from 

accumulating on the membrane surface, the membranes are backwashed via water and air scour 

every 20 minutes and cleaned with sodium hypochlorite daily. The citric acid CIP frequency was 

designed for about every 18 days based on a maximum transmembrane pressure (TMP) of 10 psi. 

However, due to the high fouling nature of the source water, the UF membranes are often cleaned 

with citric acid approximately every 72 hours. The relatively high cleaning frequency hampers 

treatment productivity and increases the production of citric acid and sodium hypochlorite 

chemical waste. 
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The Olinda WTP produces finished water with low alkalinity, turbidity, solids, total hardness 

(calcium and magnesium), and an average TOC of 2.3 mg/L (see Table 1-3). Although the average 

TOC concentration may be classified as moderate, the organic matter remaining in the Olinda 

filtered water is highly reactive and produces large amounts of regulated DBPs with free chlorine. 

Therefore, the plant uses monochloramine for disinfection to control the levels of regulated DBP 

formation. According to the United States Environmental Protection Agency’s (USEPA’s) 2008 

Optimization Study, the use of monochloramine disinfection at the Olinda plant is effective in 

achieving the County’s DBP goals (Davis et al., 2008). The County established treatment goals 

for maintaining annual average and peak DBP concentrations at or below 50 and 80 percent of the 

regulatory limit. USEPA’s 2006 Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR) 

sets maximum contaminant levels (MCLs) at 0.080 mg/L for total trihalomethanes (TTHMs) – 

chloroform, bromodichloromethane, dibromochloromethane, and bromoform; and 0.060 mg/L for 

haloacetic acids (HAA5) – chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic 

acid, and dibromoacetic acid (USEPA, 2006). 

Table 1–3 Olinda WTP Finished Water Quality 

Parameter Minimum Average Maximum 

pH Target 8.5 8.8 9.0 

TOC 0.5 2.3 4.6 

Alkalinity (mg/L as CaCO3) 2 5.4 26 

Turbidity (ntu) 0.01 0.07 0.85 

Total dissolved solids (mg/L) 12 24 41 

Calcium (mg/L) 1.1 2.5 5.6 

Magnesium (mg/L) 0.3 0.4 1.1 
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CHAPTER 2. LITERATURE REVIEW 

Overview of Ultrafiltration Membrane Processes 

In surface water treatment, UF membranes provide a physical barrier to protect consumers from 

exposure to microbial pathogens by achieving less than 0.1 ntu filtered water turbidity and greater 

than 4 log removal of Giardia lamblia and Cryptosporidium. Biological and particulate 

contaminants greater than the membrane pore size (typically ranging from 0.005 to 0.1 µm) are 

captured on the membrane surface by the pressure driven sieving process. While UF processes 

consistently remove particulate matter, UF membrane filtration alone does not remove dissolved 

contaminants, specifically NOM (Duranceau & Taylor, 2011). Dissolved NOM reacts with 

chemical oxidants during disinfection to form regulated DBPs (Reckhow & Singer, 2011). 

In addition to poor DBP precursor removal, UF membranes face operational challenges with 

membrane fouling caused by the accumulation of particulate, colloidal, organic, or biological 

matter. The buildup of these “foulants” on the membrane surface increases the operating TMP 

required to maintain constant water production (flux). Hence, to keep constant flux at low TMPs, 

foulants must be removed by performing membrane backwashes and chemical cleanings (Gao et 

al., 2011). Frequent backwashes and cleans increase the cost of treatment and limit the amount of 

water that can be supplied to consumers. Consequently, enhancing the UF process requires the 

removal of NOM and other foulants prior to UF membrane filtration (Duranceau & Taylor, 2011). 
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Ultrafiltration Membrane Concepts 

The UF membrane process is commonly configured as a hollow-fiber membrane module, through 

which flow passes from inside to outside or outside to inside of the hollow-fiber. The “straw-like” 

fibers are typically manufactured from polyvinylidene fluoride (PVDF), polyetherfulfone (PES), 

polysulfone, polypropylene, and cellulose triacetate. The UF membranes are designed as either 

dead-end or cross-flow filters. Like conventional filters, dead-end UF membranes filter the entire 

feed water stream. Cross-flow UF membranes treat a portion of the feed water stream, and the 

remaining unfiltered water is recycled back into the process (Duranceau & Taylor, 2011). 

The UF membrane process is operated at a constant flux rate (J), which is expressed in Equation 

2-1 as the filtered water (filtrate) flow rate (Q) per unit membrane area (A) (Alspach et al., 2005). 

The flux may be modeled according to the resistance in series in model (Equation 2-1), in which 

flux is directly proportional to the TMP (Equation 2-2) and inversely proportional to the water 

viscosity and the total membrane resistance. As the filtering resistance increases due to the 

accumulation of foulants, the TMP required to keep constant flux increases. The UF membrane 

performance is evaluated by normalizing the flux response to the TMP driving force using the 

specific flux (Equation 2-3). Since the specific flux is temperature dependent, Equation 2-4 is 

utilized to allow the comparison of specific fluxes at varying feed water temperatures by adjusting 

to a standard temperature. Together, the TMP and temperature corrected specific flux are used to 

monitor membrane performance, for which more pronounced TMP rise and specific flux decline 

signal membrane fouling (Alspach et al., 2005). 

J = QA = ∆Pμ(Rm+Rt) (2-1) 
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∆𝑃 = 𝑃𝐹𝑒𝑒𝑑 − 𝑃𝐹𝑖𝑙𝑡𝑟𝑎𝑡𝑒 (2-2) 

JSP = J∆P (2-3) 

JSP,20oC = JSP × 1.777−0.052T+6.25×10−4T2μT20oC  (2-4) 

Where: 

J = Membrane flux (L/m2-h or gal/ft2-d) 

ΔP = Transmembrane pressure (TMP; bar or psi) 

µ = Water absolute viscosity (kg/m-s or lb-s/ft2) 

Rm and Rt = Membrane and total fouling resistance coefficients (1/m or 1/ft) 

PFeed and PFiltrate = Feed and filtered water pressure (bar or psi) 

JSP = Specific flux (L/m2-h-bar or gal/ft2-d-psi) JSP,20oC = Specific flux at 20 oC 

T = Measured temperature (oC) μT20oC = Absolute viscosity at 20 oC (1.002 cP or 10-3 kg/m-s) 

Ultrafiltration Membrane Fouling 

In their review, Gao and colleagues (2011) attributed UF membrane fouling to four principal 

fouling agents:  particle, colloidal, organic, and microbial or biological matter. Particulate and 

colloidal fouling occurs when the membrane pore spaces are blocked. In organic fouling, organic 

matter deposits or adsorbs onto the membrane surface. Biological fouling results from the 

attachment and growth of bacteria on the membrane surface. Although particulate fouling is for 
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the most part understood, the specific interactions and mechanisms of organic and biological 

fouling remain unclear (Gao et al., 2011). In order to better identify and understand these fouling 

mechanisms, researchers have been developing and implementing innovative technology and 

methods, including size exclusion chromatography, liquid chromatography with organic carbon 

detection (LC-OCD), confocal laser scanning microscopy, scanning electron microscopy, 

fluorescence excitation-emission matrix spectroscopy (EEMs), and adenosine triphosphate (ATP) 

monitoring (Jiang et al., 2010; Peiris et al., 2010; Huber et al., 2011; Sun et al., 2011; Nguyen et 

al, 2012). 

Membrane fouling is controlled operationally by employing membrane backwashes and chemical 

cleans (Alspach et al., 2005). Membranes are backwashed for a short duration in 30 to 60 minute 

intervals with air and water streams. Foulants not removed by backwashing accumulate on the 

membrane surface and cause an increase in TMP during constant flux production. To maintain a 

stable operating flux at low TMPs, a clean in place (CIP) is performed using acid, caustic, or 

hypochlorite chemicals. The acid cleaning removes inorganic foulants by soaking membranes in 

citric acid. The high pH cleaning removes organic and biological matter by contacting the 

membrane fibers with sodium hydroxide or sodium hypochlorite, depending on the membrane 

material compatibility. Frequent membrane backwashes and CIPs interrupt water production and 

decrease the membrane recovery, which is the percentage ratio of the volume of treated water 

available for distribution to the total volume of water used for distribution, backwashing, and 

cleaning (Alspach et al., 2005). In addition, more frequent chemical cleans generates larger 

volumes of cleaning chemicals. The presence of citric acid in recycled membrane backwash water 

has been shown to hamper the coagulation efficiency (Boyd et al., 2012). Because of the limited 
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productivity and disruption of coagulation efficiency, advanced pretreatment is necessary to 

reduce membrane fouling. As a result, membrane researchers aim to evaluate membrane 

pretreatment alternatives that enhance UF membrane performance (Huang et al., 2009).  

Ultrafiltration Membrane Pretreatment 

Integrating pretreatment technologies ahead of membranes serve to remove the foulants and 

improve membrane performance. Some presently identified UF pretreatment options include 

coagulation-clarification (conventional), adsorption (GAC and PAC), MIEX®, pre-oxidation 

(ozone), and biofiltration (Huang et al., 2009; Gao et al., 2011). Of these technologies, biofiltration 

along with MIEX® and GAC require additional research to establish the effects on UF treatment 

and production efficiency, particularly under low alkalinity conditions and in conjunction with 

conventional treatment (Huang et al., 2009; Gao et al., 2011; Huck et al., 2011). 

Many whom have studied the integration of conventional pretreatment ahead of UF membrane 

filtration (Liang & Singer, 2003; Chen et al., 2007; Matilainen et al., 2010; Xiao et al., 2010) have 

shown this approach to be an effective strategy for reducing the DBP formation and membrane 

fouling of many surface water sources. However, for surface waters rich in DBP precursors, the 

chemical destabilization and removal of NOM by coagulation and clarification pretreatment may 

not be sufficient to control DBP formation with free chlorine disinfection (Lovins et al., 2003). 

Furthermore, coagulation and clarification pretreatment mainly remove the larger hydrophobic 

NOM fraction and allow for the passage of smaller and hydrophilic NOM that have been shown 

to contribute to membrane fouling (MWH, 2005; Lozier et al., 2008; Huang et al., 2009). To fill 

in the treatment gaps of conventional pretreatment, recent research efforts are focusing on the 
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investigation of advanced pretreatment technologies, including MIEX®, adsorption, and most 

recently biofiltration (Gao et al., 2011). 

MIEX® High Rate System 

MIEX® was developed by Orica Watercare, Inc. to remove dissolved NOM by exchanging with a 

chloride (or bicarbonate) ion on the magnetized resin surface. The magnetized iron oxide 

component allows the resin to be applied in a high rate (HR) fluidized bed process, in which water 

flows up through the contactor and is mixed with resin (Boyer & Singer, 2005; 2006; Singer et al., 

2009). The success of MIEX® as a NOM removal technology prompted researchers to investigate 

MIEX® as an alternative pretreatment for UF membranes (Boyer & Singer, 2005; Gao et al., 2011). 

In a pilot study that examined MIEX® ahead of coagulation, settling, and UF membranes, Xu and 

researchers (2011) concluded that MIEX® reduced membrane pore blocking and cake resistance 

fouling by removing hydrophobic and hydrophilic NOM, mostly in the 3,000 to 100,000 dalton 

molecular weight (MW) range. In a similar bench-scale study, Liu and colleagues (2011) 

recognized the possibility for MIEX® to have wide application in UF pretreatment because MIEX® 

removed large MW organics, including polysaccharides and proteins that contribute to specific 

membrane flux decline. Other researchers attributed small to negligible improvements in 

membrane performance to moderate reductions in high MW hydrophilic and neutral organics or 

resin carry over (Humbert et al., 2007; Huang et al. 2012). Based on the conflicting findings, it is 

evident that additional research is needed to examine the effect of MIEX® on UF operation. 
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Activated Carbon Adsorption 

Adsorption via powdered activated carbon (PAC) and granular activated carbon (GAC) processes 

is used to remove target dissolved contaminants, including taste and odor compounds, synthetic 

organic chemicals, color forming organics, and DBP precursors. The adsorption process operates 

via chemical reactions or physical attractions on the carbon’s active surface sites. The extent of 

adsorption mainly depends upon the strength of the affinity of the activated carbon for the 

dissolved species. This relationship is quantified by adsorption isotherm models, which describe 

the amount of dissolved species (i.e. organics) that can be adsorbed onto the activated carbon at 

equilibrium. A commonly utilized isotherm model is the Freundlich isotherm, which is described 

by the mathematical expression presented in Equation 2-5 (MWH, 2005). 

q = KC1 n⁄  (2-5) 

Where: 

q = Loading (mg dissolved organics/g GAC) 

K = Freundlich adsorption capacity parameter (mg/g)(L/mg)1/n 

1/n = Freundlich adsorption intensity parameter (dimensionless) 

C = Concentration of dissolved organics (mg/L) 

The isotherm relationship is typically developed through laboratory experiments and is necessary 

for determining important design and operational parameters. The design parameters for GAC in 

the fixed-bed mode include the empty bed contact time (EBCT), carbon usage rate, and carbon 

bed life. These parameters, for which mathematical equations are presented in Equations 2-6 



19 

through 2-10, aid in determining the necessary mass of GAC, contactor size, and GAC replacement 

frequency (MWH, 2005). 

EBCT = VQ (2-6) 

CUR = CinfK(Cinf)1 n⁄  (2-7) 

MGAC = EBCT × Q × ρF (2-8) 

Vtreated = GACMassCUR  (2-9) 

Bed Life =  VtreatedQ  (2-10) 

Where: 

EBCT = Empty bed contact time (min) 

Q = Flow rate to GAC contactor (L/min) 

V = Volume of GAC in contactor (L) 

CUR = Carbon usage rate (g/L) 

Cinf = Influent concentration of dissolved organics (g/L) 

MGAC = Mass of GAC at selected EBCT (g) 

ρF = Density of GAC media (g/L) 

Vtreated = Volume of water treated (L) 

Depending on the GAC’s contactor size and replacement requirements, GAC applied in a fixed-

bed mode can be costly. PAC offers a lower cost method of application (MWH, 2005). Because 
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of the cost benefit, researchers have focused on investigating PAC adsorption as a UF enhancement 

option (Gao et al., 2011). However, recent studies reveal that PAC adsorption may have variable 

impacts on both DBP control and UF membrane fouling depending on the PAC and membrane 

specifications (Kristiana et al., 2011; Stoquart et al., 2012; Boyd, 2013). 

The uncertainly of PAC as an effective treatment alternative emphasizes the need to consider GAC 

as a viable option for improving the operation of UF processes. In a pilot-scale study, Tsujimo and 

associates (1998) determined that fixed-bed GAC pretreatment prevented irreversible fouling and 

allowed for stable UF process operation. The success of GAC pretreatment is most likely due to 

the removal of dissolved NOM as Huang and researchers (2007) have showed that NOM 

contributes directly to organic fouling. Although the results show promise for GAC as an effective 

pretreatment strategy, additional research is necessary to validate the impacts of water quality 

improvements on the production efficiency of UF membranes. 

Overview of Biofiltration 

Biofiltration provides a novel cost-effective treatment option for removing biodegradable NOM, 

ammonia, nitrate, iron, manganese, and taste and odor caused by geosmin and methylisoborneol 

(MIB) (Bouwer & Crowe, 1988; Urfer et al., 1997; Moll & Summers 1999; Brown & Lauderdale, 

2006; Simpson, 2008; Zhu et al., 2010; Summers et al., 2011; Tekerlekopoulou et al., 2013). 

Researchers have demonstrated that by removing biodegradable nutrients, biofilters can produce 

biologically stable water with lower DBP formation potential (Rittmann & Snoeyink, 1984; 

Bouwer & Crowe, 1988; Miltner et al., 1992; Miltner et al., 1995; Persson et al., 2006). Recently, 
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the application of biofiltration has expanded to include UF membrane pretreatment. A summary 

of the results from previous biofiltration research is presented in Table 2-1. 

Biofiltration Concepts 

Biofiltration applications consists of operating granular media filters to promote the attachment 

and growth of a biofilm. Biofilms can support a wide variety of microbial groups, but generally 

form in the same sequential manner:  deposition and adsorption of organic molecules to form a 

“conditioning film”, adsorption of microorganisms on the film, secretion of extracellular 

polymeric substances (EPS) to fortify the film, and growth of microorganisms. 

The microbial communities present within the biofilms serve to remove biodegradable 

contaminants from water by contaminant diffusion into the biofilm and biological degradation 

(Zhu et al., 2010). To enhance biological degradation of target contaminants within biofilters, 

many researchers have investigated the impacts of water characteristics and filter operations (Urfer 

et al., 1997; Niquette et al., 1998; Huck et al., 2000; Liu et al., 2001; Summers et al., 2011; 

Lauderdale et al., 2012; 2014). 
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Table 2–1 Literature Summary of Biofiltration Research in Water Treatment 

Filter Type Scale Water Source 

Raw Water Quality 
Performance  
% Removal Down-

stream 
Process 

Reference 
Source 

pH 
Temp. 

(oC) 

Alk. 
(mg/L 

CaCO3) 

Hardness 
(mg/L 

CaCO3) 

Nutrient 
Addition 
(Yes/No) 

Turb. Organics 

Mixed Media 
(Anthracite/ 

Sand/ 
Garnet) 

Pilot 
Surface water 

(reservoir) 
6.3-
7.6 

3.5-31 20.9-31 43.5-64.5 

N NA 
AOC: 75.3% 
TOC: 26% 

NS 

LeChevallier et 
al., 1992 Dual Media 

(GAC/Sand) 
N NA 

AOC: 86.4% 
TOC: 51% 

NS 

Mono-media 
(GAC) 

N NA 
AOC: 86% 
TOC: 56% 

NS 

Sand Bench 

Coagulated and 
ozonated surface 

water 
NA 22.5 33 (Adj.) NA Y NA 

TOC: 16-
33% 

NS 
Hozalski et al., 

1995 

Coagulated and 
ozonated 

groundwater 
8 22.5 260 NA Y NA 

TOC: 13-
18% 

Coagulated and 
ozonated synthetic 
water (with soluble 

extracellular 
materials) 

7.9 22.5 76 NA Y NA 
TOC: 30-

33% 

Sand Pilot Surface water 7.9 5-6 250 158 N 70% DOC: 7.7% UF 
Lipp et al., 

1998 

BAC (1st 
stage dual, 
2nd stage 

mono, and 
direct dual) 

Pilot/ 
full 

scale 
Surface water 5-8.2 1-25 NA NA N NA 

BDOC: 22-
50% 

NS 
Laurent et al., 

1999 
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Filter Type Scale Water Source 

Raw Water Quality 
Performance  
% Removal Down-

stream 
Process 

Reference 
Source 

pH 
Temp. 

(oC) 

Alk. 
(mg/L 

CaCO3) 

Hardness 
(mg/L 

CaCO3) 

Nutrient 
Addition 
(Yes/No) 

Turb. Organics 

GAC 

Pilot 
Ozonated 

groundwater 
8.2 22 165 NA N 

33-50% 
DOC: 21-

31% 

NS 
Rittmann et al., 

2002 
Anthracite 33-50% DOC: 3-28% 

Sand 33-50% DOC: 5-24% 

BAC 
Bench 

Dechlorinated Tap 
Water with the 

addition of 
humic/fulvic acids 

NA 22 NA NA 
Y 

NA TOC: 22.5% Mem-
brane 

process 

Wend et al., 
2003 Iron-oxide 

coated sand 
NA 22 NA NA NA TOC: 19% 

Dual Media 
(Anthracite/ 

Sand) 
Bench Synthetic feedwater NA NA 300-350 325-350 Y NA 

TOC: 24-
30% 

UF 
Basu & Huck, 

2004 

Dual Media 
(Anthracite/ 

Sand) 
Bench 

Synthetic feedwater 
(with TOC composed 

of 65% humic acid 
and 35% readily 
biodegradable 
components) 

NA NA 300-350 325-350 N NA TOC: 50% UF 
Basu & Huck, 

2005 

Activated 
Clay, 

Aeiolite 

Full-
scale 

Water reclamation 
effluent (pre-
chlorination) 

6-7 25-30 NA NA N NA 

DOC: 35-
45% 

AOC: 42-
48% 

CF/RO Hu et al., 2005 

GAC Bench 
Biologically Treated 

Sewage Effluent 
6.8-
7.5 

NA NA NA N NA DOC: 65% 
UF & 

NF 
Shon et al., 

2005 

GAC Pilot Groundwater NA NA NA NA N NA 
TOC: 65% 

BDOC: 93% 
NS 

Brown & 
Lauderdale, 

2006 
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Filter Type Scale Water Source 

Raw Water Quality 
Performance  
% Removal Down-

stream 
Process 

Reference 
Source 

pH 
Temp. 

(oC) 

Alk. 
(mg/L 

CaCO3) 

Hardness 
(mg/L 

CaCO3) 

Nutrient 
Addition 
(Yes/No) 

Turb. Organics 

Dual Media 
(Anthracite/ 

Sand) 
Bench 

Synthetic feed water 
(tap water spiked 
with humic acid, 

easily biodegradable 
organics, nitrogen, 
and phosphorus) 

NA NA NA 283 Y NA 
TOC: 48% 
DOC: 36% 

UF & 
NF 

Mosqueda-
Jimenez & 
Huck, 2006 

GAC 

Pilot Surface Water 
6.9-
7.3 

1.5-
20.2 

23-32 

NA N NA 
DOC: 12% 

BDOC: 34% 
AOC: 22% 

Mem-
brane 

process 

Persson et al., 
2006 

Expanded 
Clay (fine) 

NA N NA 
DOC: 5% 

BDOC: 30% 
AOC: 35% 

Expanded 
Clay (coarse) 

NA N NA 
DOC: 3% 

BDOC: 28% 
AOC: 41% 

Dual Media 
(Anthracite/ 

Sand) 
Bench 

Surface water 

impacted by WW 
effluent, urban, 
industrial, and 

agriculture runoff 

7.95 – 
8.40 

0-23 160 -250 200 - 350 N 
75 - 
80% 

DOC: 11% 
TOC: 22-

32% 
UF 

Halle et al., 
2009 

Dual Media 
(Anthracite/ 

Sand) 
Bench 

Synthetic tap water 
(dechlorinated with 
humic acid addition) 

7.2-
7.6 

20 300-350 325-350 Y NA 

DOC: 64-
95% 

TOC: 73-
96% 

NF 
Mosqueda-
Jimenez & 
Huck, 2009 

Sand Pilot 
Domestic wastewater 
(secondary effluent) 

7.2 19.3 NA NA N 76-86% 

DOC: 10-
13% 

UV254: 3-
5% 

UF 
Zheng et al., 

2009a 

Sand Bench 
Domestic wastewater 
(secondary effluent) 

6.9-
7.2 

NA NA NA N NA 
Biopolymers: 

62% 
UF 

Zheng et al., 
2009b 

PAC Bench 
Water Treatment 

Plant (Post-
Ozonated) 

6.67 10.3 31 NA N NA 
DOC: 5-16% 
BDOD: 30-

45% 
NS 

Markarian et 
al., 2010 
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Filter Type Scale Water Source 

Raw Water Quality 
Performance  
% Removal Down-

stream 
Process 

Reference 
Source 

pH 
Temp. 

(oC) 

Alk. 
(mg/L 

CaCO3) 

Hardness 
(mg/L 

CaCO3) 

Nutrient 
Addition 
(Yes/No) 

Turb. Organics 

Sand Bench 

Surface water 
affected by industrial, 

sewage, and 
agricultural pollution. 

6.7-
8.6 

5-27 NA NA N NA 

BDOC: 55-
73% 

UV254: 32-
46% 

NS 
Tang et al., 

2010 

Sand Pilot 
Domestic wastewater 
(secondary effluent) 

7.2 13-26 NA NA N 80% 
DOC: 10% 

Biopolymers: 
48% 

UF 
Zheng et al., 

2010 

BAF Bench River Water NA 20 NA NA N 77% 
TOC: 51% 

UV254: 37% 
UF 

Huang et al., 
2011 

Dual Media 
(Anthracite/ 

Sand) 
Pilot 

Surface water 
impacted by 
agricultural, 

industrial and 
municipal runoff 

7.95-
8.4 

0-23 160-250 200-350 N 72% NA UF 
Hucket al., 

2011 

GAC Pilot 
Ozonated surface 

water 
7.79 7.05 260 NA N NA DOC: 22% UF 

Velten et al., 
2011 

Aerated 
Pebble bed 

Pilot / 
Bench 

Synthetic feedwater 
(tapwater with 1:30 

domestic sewage and 
0.5 mg/L humic acid) 

8 20 NA NA Y >90% 

TOC: 83% 
DOC: 55% 

UV254: 44% 
AOC: 85% 

BDOC: 92% 

UF 
Wei et al., 

2011* 

BAC 
Bench / 

Pilot 

Ozonated surface 
water impacted by 
agricultural runoff 

6.95 22 NA NA N 50% 
DOC: 25% 

UV254: 10% 
UF 

Geismar et al., 
2012 

Dual Media 
(Anthracite/ 

Sand) 
Pilot Surface water 

7.6-
8.8 

0.7-
25.3 

147-289 178-355 N 55-96% 
DOC: <15% 
TOC: <20% 

UF 
Peldszus et al., 

2012 
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Filter Type Scale Water Source 

Raw Water Quality 
Performance  
% Removal Down-

stream 
Process 

Reference 
Source 

pH 
Temp. 

(oC) 

Alk. 
(mg/L 

CaCO3) 

Hardness 
(mg/L 

CaCO3) 

Nutrient 
Addition 
(Yes/No) 

Turb. Organics 

Sand Pilot 
Biologically active, 

aerated, surficial 
groundwater 

7.7 27.5 166 471 N 25% TOC: 15% UF 

Tharamapalan, 
2012; 

Duranceau & 
Tharamapalan, 

2013 

GAC 
(10.8 min 

EBCT) 

Bench Seawater 8.03 25 NA NA N 

60% 
DOC: 60% 
AOC: 98% 

RO 
Naidu et al., 

2013 

GAC 
(7.2 min 
EBCT) 

60% 
DOC: 65% 
AOC: 97% 

GAC 
(5.4 min 
EBCT) 

60% 
DOC: 58% 
AOC: 97% 

Dual Media 
(Sand/GAC) 

Pilot 

Pre-ozonated, 
coagulated, softened, 

and settled river 
water  

7.1 NA 112 136 Y 

99% DOC: 36% 
Disinfec
-tion and 

corro-
sion 

control 

Lauderdale et 
al., 2014 Dual Media 

(Sand/ 
Anthracite) 

99% DOC: 9.8% 

Dual Media 
(Sand/GAC) 

Pilot 
Coagulated, settled, 

and ozonated surface 
water 

7.5 NA 100 240 Y 

99% DOC: 21.5% 
Disinfec

-tion 
Lauderdale et 

al., 2014 Dual Media 
(Sand/ 

Anthracite) 
99% DOC: 5.6% 

GAC 
Full / 
Pilot 

Ozonated and non-
ozonated surface 

water 
7.61 7.9 89 NA N 59% 

TOC: 3% 
DOC: 3% 

UF Wang, 2014 

*Reference was published in Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on May 12, 2011; the Institute 
of Electrical and Electronics Engineers (IEEE) released a notice of retraction after the conclusion of the research presented herein (IEEE, 2015). 
NS = not specified; NA = not available; DOC = dissolved organic carbon; TOC = total organic carbon; BDOC = biodegradable dissolved organic 
carbon; AOC = assimilable organic carbon; BAF = biological aerated filter; GAC= granular activated carbon; PAC = powder activated carbon; BAC 
= biological activated carbon; BAF = biological aerated filter; CF = cartridge filter; RO = reverse osmosis; NF = nanofiltration 
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The major water quality parameters that have been shown to affect the performance of biofilters 

include temperature, pH, organic carbon, alkalinity, and nutrients – nitrogen and phosphorus 

(Huck et al., 2000; Chaudhary et al., 2003; Lauderdale et al., 2014). While difficult to control, 

colder water temperatures may have detrimental impacts on the overall removal of biodegradable 

contaminants, particularly NOM (Hozalski et al., 1999; Emelko et al., 2006). Additionally, 

microorganism generally thrive in near neutral pH (6.5 to 8) environments (Metcalf & Eddy, 

2003). The level of substrate, which can be represented by dissolved organic carbon (DOC), is 

known to directly impact biofiltration performance (Chaudhary et al., 2003; Huck & Sozanski, 

2008; Velten et al., 2011). Using a first-order empirical model, Huck and researchers (1992; 1994) 

demonstrated that the biodegradable organic matter (BOM) removal was directly proportional to 

the BOM concentration in the biofilter feed water. 

Although some researchers note the importance of alkalinity in biological processes, few studies 

have examined the effect of alkalinity on biofiltration performance (Hozalski et al., 1995; Metcalf 

& Eddy, 2003; Ren et al., 2010). Alkalinity is the measure of a water supply’s ability to neutralize 

acids (Sawyer et al., 2003). Hence, alkalinity directly influences the chemistry of the aquatic 

environment (Jensen, 2003). Waters rich in alkalinity also tend to be rich in total hardness, which 

is generally considered as the sum of calcium and magnesium hardness (Sawyer et al., 2003; Zhu 

et al., 2010). These major cations are known to play a vital role in the development and 

maintenance of biofilms by helping bind negatively charged EPS together to form the biofilm 

matrix (Lion et al., 1988; van Loosdrecht et al., 1989; Geesey et al., 1999; Lattner et al., 2003; 

Song & Leff, 2006). Novak and researchers (1998) have demonstrated the importance of calcium 

and magnesium for effective flocculation of activated sludge. Additionally, Ren and coworkers 
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(2010) have demonstrated the importance of quantifying the net alkalinity consumption in 

membrane bioreactor systems. However, little to no research has been conducted on the direct 

influence of alkalinity or inorganic carbon on the performance of biofilters, particularly as 

pretreatment to UF membranes. 

Instead, researchers have focused on altering the feed water characteristics through pH adjustment, 

nutrient addition with nitrogen or phosphorus source, and pre-oxidation with ozone or peroxide 

(Hozalski et al., 1995; Graham, 1999; Wend et al., 2003; Basu & Huck, 2004; Lauderdale et al., 

2011; 2012; 2014). Implementing these strategies to enhance the treatment and operating 

efficiency of biofilters is recently known as “engineered biofiltration” (Lauderdale et al., 2011; 

2012; 2014). 

Of the “engineered biofiltration” strategies, supplementing the nutrient availability in the feed 

water is generally the most common. When augmenting the nutrient availability, researchers 

typically make adjustments based on the carbon to nitrogen to phosphorus (C:N:P) molar ratio. 

According to LeChevallier and researchers (1991), a C:N:P ratio of 100:10:1 is sufficient to 

support microbiological activity. Based on the earlier work of LeChevallier et al. (1991), Huck, 

Lauderdale, and other researchers have targeted a C:N:P molar ratio of at least 100:10:1 to promote 

adequate bio-growth and removal of biodegradable contaminants (Basu & Huck, 2004; Mosqueda-

Jimenez & Huck, 2006; Lauderdale et al., 2014). 

In addition to supplementing nutrients, Lauderdale and researchers (2014) have implemented pH 

adjustment as a strategy to maintain a neutral pH range (6.5 to 8). The researchers also applied 

peroxide as a pre-oxidant to reduce the head loss across the biofilter (Lauderdale et al., 2014). 
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Other researchers have successfully applied ozone as a pre-oxidant (ozonation) to increase the 

fraction of biodegradable NOM and improve the overall DOC removal and corresponding DBP 

formation (Miltner et al., 1992; Hozalski et al., 1999; Moll & Summers, 1999; Velten et al., 2011). 

While pre-oxidation strategies offer additional benefits, pre-oxidation systems, particularly 

ozonation, represent an additional capital and operating cost for utilities. The added costs are a 

significant consideration for utilities that face high electrical rates, as for the County of Maui 

(Reiling et al., 2009; Lekven, 2011). 

The performance of biofiltration is also influenced by filter design and operating parameters, 

including the EBCT, hydraulic loading rate (HLR), backwashing protocol, and granular media 

type (Urfer et al., 1997; Niquette et al., 1998; Huck et al., 2000; Liu et al., 2001; Emelko et al., 

2006). Biofilters are typically designed and operated in a down-flow configuration. The EBCT, 

defined previously in Equation 2-6, is a chief operating parameter. In an earlier study, Hozalski 

and researchers (1992) showed that increasing the EBCT increased the organic carbon removal 

efficiency of biofiltration. While Huck and colleagues support these previous findings, their 

research demonstrated that increasing the EBCT beyond 15 minutes tends to produce diminishing 

returns on the level of DOC removal (Huck et al., 2000; Huck & Sozanski, 2008). 

Increasing the EBCT can be accomplished by increasing the filter depth and is related to the HLR 

according to Equation 2-11. The HLR describes the water filtration velocity across the depth of 

the biofilter. Traditionally, biofilters have been operated at slow filtration rates (HLR = 0.5 to 2 

gpm/ft2) (Reckhow & Singer, 2011). Recently, research efforts have focused on operating filters 

at more rapid filtration rates (2 to 6 gpm/ft2) to reduce footprint requirements while maintaining 

DOC removals (Huck & Sozanski, 2008; Halle et al., 2009; Peldszus et al., 2012; Velten et al., 



 

30 

2011; Geismar et al., 2012; Naidu et al., 2013). Although applying more rapid filtration rates 

reduces the biofilter contactor size, slower filtration rates are known to effectively promote the 

attachment and growth of the biofilm on the media (Huck et al., 2000; Shon et al., 2005; Zheng et 

al., 2009a; Mosqueda-Jimenez & Huck, 2009; Zheng et al., 2010). 

HLR = QA = 𝐷𝐸𝐵𝐶𝑇 (2-11) 

Where: 

Q = Flow rate (gpm) 

A = Filter area (ft2) 

D = Filter depth (ft) 

While the purpose of biofiltration is to achieve good biofilm development on the media, 

backwashing is necessary to avoid high pressure drops caused by deposited particles and excess 

bio-growth (biofouling) (Simpson, 2008; Zhu et al., 2010). Backwashing strategies include bed 

fluidization, collapse pulsing, and air scour with negligible to 50% bed expansions (Rittmann & 

Snoeyink, 1984; Niquette et al., 1998; Huck et al., 2000; Persson et al., 2006; Peldszus et al., 2012). 

Researchers have demonstrated that backwashing with or without air scour is not detrimental to 

maintaining the necessary biofilm on the media (Amirtharajah et al., 1991; Huck et al., 2000; 

Chaudhary et al., 2003; Huck & Sozanski, 2008). Additionally, chlorine in the backwash water 

does not appear to impair full-scale systems, but may be detrimental to bench or pilot scale systems 

which have not established a robust biofilm community (Miltner et al., 1995; Liu et al., 2001; Huck 

& Sozanski, 2008). To reduce the usage of treated water for backwashing and increase the water 

recovery, it is desirable to extend the filtration time between backwashes also known as filter run 
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time. In an earlier study, Goldgrabe and colleagues (1993) reported biofilter run times between 92 

to 224 hours. A more recent study conducted by Lauderdale and colleagues (2014) operated the 

biofilters at about 24-hour filter run times. 

Biofilters typically employ sand, anthracite, or GAC media. While some researchers have 

demonstrated that sand and anthracite biofilters achieve similar biodegradable DOC removal rates 

as BAC filters, BAC tends to achieve more favorable DOC removals under colder or less favorable 

conditions (Huck et al., 2000; Liu, et al., 2001; Emelko et al., 2006). In GAC filtration, the DOC 

removal mechanism goes through three major stages:  adsorption, adsorption/biodegradation, and 

biodegradation. In the first stage, DOC is primarily removed by adsorption onto the active carbon 

sites. In the second stage, the active carbon sites are nearly spent and biofilms begin develop. In 

the final stage, the active carbon sites are exhausted and DOC removal is primarily attributed to 

biodegradation. As the treatment mechanism shifts from adsorption to biological, DOC removal 

has been observed to be highest during adsorption and decrease to a lower steady-state removal 

during biodegradation (Simpson, 2008; Zhang et al., 2010). Nevertheless, the biodegradation 

mechanism serves to biologically stabilize the feed water and has been shown to provide effective 

pretreatment to UF membrane processes (Halle et al., 2009; Peldszus et al., 2012). 
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Biofiltration as Pretreatment to Ultrafiltration Membrane Processes 

Because of the recognized benefits of biofiltration, its application in drinking water treatment has 

recently expanded to include pretreatment for UF membrane processes. The study conducted by 

Wend and colleagues (2003) on the direct biofiltration of a synthetic organic acid surface water 

before low pressure membranes helped fuel the interest in applying biofiltration pretreatment for 

UF membrane processes in drinking water. Wend et al.’s (2003) research demonstrated that 

biofiltration reduced membrane fouling by reducing the feed water’s bacterial cell count. 

Following Wend et al.’s (2003) research efforts, Huck and colleagues conducted bench and pilot 

scale studies on the direct biofiltration of synthetic and natural surface waters ahead of UF 

membranes. Huck’s research group found that biofiltration reduced the membranes’ operating 

TMP rise by significantly removing turbidity, organics, and biopolymers from the feed water (Basu 

& Huck, 2004; 2005; Mosqueda-Jimenez & Huck, 2006; 2009; Halle et al., 2009; Huck et al., 

2011; Peldszus et al., 2012; Wang, 2014). 

Similar studies performed by Persson et al. (2006), Huang et al. (2011), and Velten et al. (2011) 

support the ability of biofilters to alleviate UF membrane fouling by reducing the feed water’s 

turbidity, organics, and biological activity levels. However, the researchers did not present a 

comparison of the improvement in UF operating parameters – TMP or specific flux (Persson et 

al., 2006; Huang et al., 2011; Velten et al., 2011). Biofiltration pretreatment has also been shown 

to be effective for other water sources, including surficial groundwater (impacted by surface water) 

and biologically treated wastewater (Shon et al., 2005; Zheng et al., 2009a; 2009b; 2010; 

Duranceau & Tharamapalan, 2013). Although previous research shows promise for the successful 
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implementation of biofiltration pretreatment, limited research has been conducted on low 

alkalinity, organic acid-laden surface water supplies. 

The research matrix, illustrated in Figure 2-1, organizes the research that has been conducted on 

biofiltration pretreatment for low pressure membranes with respect to low, moderate, and high 

alkalinity and dissolved organic carbon (DOC) ranges. It is clear from the research matrix that the 

majority of the research has focused on high alkalinity water supplies. Little to no research is 

available regarding biofiltration of low alkalinity water sources. 

In addition, few studies have investigated the integration of biofiltration within a conventional-UF 

process. The research conducted by Lipp and colleagues (1998) suggested that integrating 

coagulation, sand filtration, and UF enhances the overall turbidity removal. Wei and researchers 

(2011) reported favorable results when integrating biofiltration ahead of a coagulation and UF 

process, but the research was conducted for only a six-day period. Therefore, clear insights into 

pretreatment impacts of biofiltration within conventional-UF processes remains lacking. Since 

conventional processes are common to surface water treatment, water professionals and utilities 

would benefit from a better understanding of the role of biofiltration within conventional-UF 

systems. 
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Figure 2–1 Biofiltration Pretreatment Literature Summary Matrix 

(1) Alkalinity assumed to be approximately 200 mg/L as CaCO3 based on typical characteristics 

of domestic wastewater (Metcalf & Eddy, 2003) 

(2) Alkalinity range retrieved from previous study conducted by Cai et al., 2003 

(3) Alkalinity range retrieved from the City of Bozeman’s WTP Water Quality Report (2009) 
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Modeling Biofiltration Performance 

According to Huck and Sozanski (2008), modeling methods fall under three major categories:  

operation, design, and research. Each approach offers varying degrees of complexity and 

comprehensiveness. Operation-geared models are more simple and easily understood, while 

research models are generally more complex and comprehensive. Design models typically fall in 

the middle range between operation and research models (Huck & Sozanski, 2008). Of the models 

applied to biofiltration performance, the majority are research-type models that offer little use for 

practical application by water purveyors and professionals. 

The steady-state biofilm model developed by Rittmann and McCarty (1980) is considered to be 

the most accepted and is often utilized as a model framework for other models (Urfer et al., 1997; 

Chaudhary et al., 2003; Metcalf & Eddy, 2003; Huck & Sozanski, 2008). The model incorporates 

Monod kinetics and Fick’s second law to develop equations that relate the substrate concentration 

(target contaminant) to kinetic constants, diffusivity constants, and biofilm properties. The model 

framework is described by three major equations, included in Equations 2-12 through 2-14 in 

dimensionless units (Rittmann & McCarty, 1980). 

𝑆𝑏∗ = 𝑆𝑠∗ + 𝐽∗ 𝐿∗ 𝐷∗⁄  (2-12) 

𝑆𝑚𝑖𝑛∗ = 𝑏 (𝑌𝑘 − 𝑏)⁄  (2-13) 

𝐿𝑓∗ = 1+𝑆𝑚𝑖𝑛∗ 𝐽∗𝑆𝑚𝑖𝑛∗ = 𝐽∗𝑘 𝑌 𝑏⁄  (2-14) 

Where: 
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𝑆𝑏∗ = 𝑆𝑏 𝐾𝑠⁄  (2-15) 

𝑆𝑠∗ = 𝑆𝑠 𝐾𝑠⁄  (2-16) 

𝑆𝑚𝑖𝑛∗ = 𝑆𝑚𝑖𝑛 𝐾𝑠⁄  (2-17) 

𝐽∗ = 𝐽𝜏 𝐾𝑠𝐷𝑓⁄  (2-18) 

𝐿𝑓∗ = 𝐿𝑓 𝜏⁄  (2-19) 

𝐿∗ = 𝐿 𝜏⁄  (2-20) 

𝐷∗ = 𝐷 𝐷𝑓⁄  (2-21) 

𝜏 = [𝐾𝑠𝐷𝑓 𝑘𝑋𝑓⁄ ]1 2⁄
 (2-22) 

Sb = Bulk liquid substrate concentration (mass of substrate/volume) 

Ss = Substrate concentration at interface (mass of substrate/volume) 

Smin = Minimum substrate concentration that supports biofilm (mass of substrate/volume) 

D = Free liquid diffusivity (area/time) 

Df = Biofilm diffusivity (area/time) 

Ks = Half rate constant from Monod equation (mass of substrate/volume) 

k = Maximum specific rate of substrate utilization (1/time) 

Y = Yield coefficient (biomass/mass of substrate) 

b = Overall biofilm decay coefficient (1/time) 

Xf = Biofilm density (biomass/volume) 
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Lf = Biofilm thickness (length) 

L = Effective diffusion layer thickness (length) 

Following the establishment of the model framework, Saez and Rittmann (1988; 1992) and 

Rittman and McCarty (2001) developed “pseudo-analytical solutions” based on fitting algebraic 

equations to numerical solutions of the steady-state biofilm model equations. An analytical 

solution was developed by Zhang and Huck (1996), who assumed a plug flow reactor (biofilter) 

configuration to solve for the depth of the filter (X), which is presented in Equation 2-23. 

𝑋 = 𝑣𝜏𝛼𝐷𝑓 ∫ 𝑑𝑆𝑠∗𝐽∗𝑆𝑠𝑜∗𝑆𝑠𝑥∗ + 𝑣𝐿𝛼𝐷 𝑙𝑛 𝐽𝑜∗𝐽𝑥∗ (2-23) 

Where: 

𝑆𝑠𝑜∗ = 𝑆𝑠𝑜 𝐾𝑠⁄  (2-24) 

𝑆𝑠𝑥∗ = 𝑆𝑥𝑜 𝐾𝑠⁄  (2-25) 

v = Hydraulic loading rate (length/time) 

α = Specific surface area (biofilm surface area/volume of bioreactor, 1/length) 

x = Longitudinal distance along column (length) 

Jo = Flux of substrate into biofilm at inlet of column (mass of substrate/area-time) 

Jx = Flux of substrate at outlet of column (mass of substrate/area-time) 

Sso = Substrate concentration on biofilm at inlet of column (mass of substrate/volume) 

Ssx = Substrate concentration on biofilm outlet of column (mass of substrate/volume) 
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Huck and his research team built upon their analytical solution (Equation 2-23) and developed the 

concept of dimensionless contact time or X*. In their model, presented in Equation 2-26, the 

dimensionless EBCT is related to the actual EBCT, reactor specific surface area, biodegradable 

organic matter (BOM) diffusivity in the biofilm, biofilm density, and biodegradation kinetic 

parameters (Zhang & Huck, 1996; Huck & Sozanski, 2008). 

𝑋∗ = 𝜗 𝛼𝐷𝑓𝜏 ∫ 𝑑𝑆𝑠∗𝐽∗𝑆𝑠𝑜∗𝑆𝑠𝑥∗ + 𝐿∗𝐷∗ 𝑙𝑛 𝐽𝑜∗𝐽𝑋∗  (2-26) 

Where: 

𝜗 = 𝑋 𝑣⁄ = 𝐸𝐵𝐶𝑇 (2-27) 

The dimensionless contact time model, which is further simplified in Equation 2-28, has been 

shown to effectively describe the percent removal of substrate by biofilters under varying 

conditions (Huck & Sozanski, 2008). 

𝑋∗ = 𝜗𝛼𝐷𝑓1 2⁄ (𝑘𝑋𝑓 𝐾𝑠⁄ )1 2⁄
 (2-28) 

While the concept of dimensionless contact time provides a predictive tool for estimating the 

substrate removal of biofilters, Huck and Sozanski (2008) recognize that further model 

development is needed to apply the X* concept to biofiltration as pretreatment to UF membranes. 

Furthermore, the dimensionless contact time approach still requires the quantification of kinetic 

constants and biofilm density, which entails controlled experimental and laboratory conditions. 

Therefore, there remains a need for the development of a simple, practically-oriented model for 

predicting the performance of biofiltration pretreatment ahead of UF membrane processes. 
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CHAPTER 3. METHODS AND MATERIALS 

The research project approach embraced a holistic methodology, where water quality was 

examined from source to distribution system. The Waikamoi watershed quality was profiled to 

understand the chemistry of the water as it travels to the Olinda WTP. The need for additional 

pretreatment was then confirmed by monitoring the operation and water quality of the existing 

treatment process and verifying coagulation operations with jar testing experiments. Pilot-scale 

evaluations of MIEX®, GAC, and BAC as UF pretreatment alternatives were also conducted by 

utilizing the existing conventional and UF pilot system as the control. The control UF pilot was 

compared to the full-scale UF process to illustrate that the pilot was representative of the full-scale. 

Furthermore, the pretreatment options were assessed based on improvements to the quality and 

production efficiency of the finished water that is supplied to consumers. A graphical 

representation of the research project structure is provided in Figure 3-1. 

 

Figure 3–1 Research Project Structure 
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Surface Overland Flow Water Quality Analysis 

The native watershed was characterized by investigating the native source water chemistry and 

extending the analysis from the flume into the drinking water distribution system. This complex 

transport is believed to impact the water chemistry; hence, characterizing the watershed quality is 

expected to aid the County in making watershed management decisions that enhance the 

downstream UF treatment processes. Furthermore, understanding the source water variability can 

better equip treatment plant operators to make process adjustments, such as coagulant dosing, as a 

response to changes in the raw water quality. 

To account for seasonal variability and weather impacts, six watershed sampling and testing events 

were conducted on November 15, 2012, January 31, 2013, April 30, 2013, August 6, 2013, October 

22, 2013, and May 12, 2014. Samples were collected at various flume intakes and outlet structures, 

the Waikamoi reservoirs, two caisson pipelines that feed the Kahakapao reservoirs, and the 

Kahakapao reservoirs. Specific sampling locations varied depending on the physical accessibility 

and water availability during the sampling event. The sampling locations with approximate GPS 

coordinates are listed in Table 3-1. Pictures of the sampling locations are illustrated in Figures D-

1 through D-8 of Appendix D. 
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Table 3–1:  Waikamoi Watershed Sampling Locations 

Location GPS Coordinate Description Date Sampled 

Kahakakapao 
Reservoir 1 & 2 

200 48’ 15” N 

1560 15’ 54” W 

50 million storage (MG) 
reservoirs 

Nov ‘12 
Jan ‘13 
Apr ‘13  

Aug ‘13 
Oct ‘13 
May ‘14 

1st Caisson 
Pipeline 

200 48’ 32” N 

1560 15’ 5” W 

Conveys water to 
Kahakapao reservoirs 

Nov ‘12 
Jan ‘13 
Apr ‘13  

Aug ‘13 
Oct ‘13 
May ‘14 

2nd Caisson 
Pipeline 

200 48’ 38” N 

1560 14’ 42” W 

Conveys water to 
Kahakapao reservoirs 

Nov ‘12 
Jan ‘13 
Apr ‘13  

Aug ‘13 
Oct ‘13 
May ‘14 

Waikamoi 
Reservoirs 

200 48’ 38” N 

1560 13’ 58” W 

15 MG storage reservoirs 
when Kahakapao 
reservoirs are full 

Nov ‘12 
Jan ‘13 
Apr ‘13  

Aug ‘13 
Oct ‘13 
May ‘14 

Flume Outlet(1) 200 48’ 34” N 

1560 13’ 50” W 

Collects water from 
surface run off and streams 

Nov ‘12 
Jan ‘13 
Aug ‘13 

Oct ‘13 
May ‘14 

Blue Pipeline 200 48’ 34” N 

1560 13’ 50” W 

Conveys water from 
highest elevation and 
combines with flume outlet 

Nov ‘12 
Jan ‘13 
Aug ‘13 

Oct ‘13 
May ‘14 

White Pipeline 200 48’ 34” N 

1560 13’ 50” W 

Additional pipe intake that 
runs parallel to flume and 
combines with flume outlet 

Apr ‘13 
May ‘14 

 

Flume Intake 2 200 48’ 36” N 

1560 13’ 20.5” W 

Middle of flume intake Nov ‘12 
Jan ‘13 

Apr ‘13 
May ‘14 

Flume Intake 1 200 48’ 37.8” N 

1560 12’ 51.5” W 

Beginning of flume intake Nov ‘12 
Jan ‘13 

Apr ‘13 

Combined Flume 
Outlet 

200 48’ 34” N 

1560 13’ 50” W 

Concrete outfall structure 
at flume end 

Apr ‘13 
Aug ‘13 

Oct ‘13 
May ‘14 

(1) Flume outlet was original wooden structure during Nov 2012, Jan 2013, and April 2013 
sampling; temporary PVC pipeline structure during Aug 2013 sampling; and new aluminum 
structure during Oct 2013 and May 2014 sampling. 
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For each sampling location, the inorganic, organic, and biological water quality was determined 

according to the Standard Methods (APHA, AWWA & WEF, 2005). The inorganic parameters 

included pH, temperature, turbidity, alkalinity, dissolved oxygen (DO), total suspended solids 

(TSS), total dissolved solids (TDS), iron (Fe), manganese (Mn), calcium (Ca), magnesium (Mg), 

silica (Si), aluminum (Al), chloride (Cl-), sulfate (SO4
2-), and bromide (Br-). The organic water 

quality was assessed by measuring the color, ultraviolet absorbance at 254 nanometer (nm) 

wavelength (UV 254), dissolved organic carbon (DOC), and specific UV absorbance (SUVA). 

SUVA is the ratio of UV 254 to DOC [(UV254×100)/DOC] and was utilized to define the 

hydrophobicity of NOM. Generally, higher SUVA values (greater than 4) correspond to 

hydrophobic NOM and lower SUVA values signal hydrophilic NOM (Lozier et al., 2008). 

Preliminary raw water TOC and DOC results demonstrated that the TOC was mainly composed 

of DOC (see Table D-1 and Figure D-9 of Appendix D). Therefore, water quality testing included 

DOC measurements rather than TOC to effectively allocate project resources. 

Biological water quality is typically measured by culture-based heterotrophic plate counts (HPCs). 

The standard HPC methods require a laboratory equipped with an autoclave and microbiological 

fume hood, and incubation times ranging from 48 to 168 hours. To allow for more expedient 

biological detection in a remote island location, an alternative method was used to determine the 

biological activity. The microbial content was determined by measuring the relative adenosine tri-

phosphate (ATP) content of the water with a 3MTM Clean-TraceTM NG Luminometer (St. Paul, 

MN). Although ATP measurements are commonly used in the medical and food industries to 

monitor contamination and maintain quality control, ATP is not typically implemented in drinking 

water monitoring. However, because ATP is an activated energy carrier present in microorganism, 
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drinking water researchers and purveyors have recently recognized the beneficial use of ATP as a 

tool to monitor biological activity (Hammes et al., 2010; Evans et al., 2013). In addition to the 

ATP found within viable cells, Hammes and researchers (2010) have shown that significant 

amounts of extracellular ATP may also be present in natural waters. Therefore, both free 

(extracellular) ATP and total (extracellular plus viable cells) ATP were measured according to 

manufacturer instructions using 3M Clean-TraceTM Water-Free ATP and Water-Plus Total ATP 

testing kits (see Table D-2 of Appendix D). 

The water quality sampling and testing protocol is summarized in Table 3-2. The average water 

quality data was organized by sampling location and seasonal or weather condition. The compiled 

results were evaluated to detect water quality trends or patterns that may be useful in identifying 

alternative source water management strategies. 

Table 3–2:  Waikamoi Watershed Sampling and Testing Protocol 

Water Quality Parameters(1) Sampling and Testing Protocol 

pH, Temperature, Turbidity, DO, Free 
and Total ATP(2) 

Duplicate water samples were collected in 500 
milliliter (mL) high density polyethylene (HDPE) 
bottles and analyzed at time of collection. 

Alkalinity, Color(3), UV 254, DOC, 
SUVA 

Samples were collected in one L opaque HDPE 
bottles (duplicated about 1 every 5) and analyzed at 
the Olinda WTP laboratory. 

TSS, TDS, Fe, Mn, Ca, Mg, Si, Al,  
Cl-, SO4

2-, Br- 
Samples were collected in one L opaque HDPE 
bottles (duplicated about 1 every 5) and shipped on 
ice to UCF laboratories for analysis. 

(1) Water quality was analyzed according to standard methods (Table A-1 of Appendix A). 
(2) The ATP was measured by following manufacturer instructions (Table D-2 of Appendix D). 
(3) The true color was measured for samples filtered through a 0.45 µm membrane filter. 
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Free and Total Adenosine Triphosphate Analysis 

In the 3M method, ATP (either freely available or extracted from bacterial cells) reacts with a 

luciferin-luciferase reagent, derived from fireflies. The reaction between ATP and the reagent 

complex produces a light emission that is measured using the luminometer and recorded as relative 

light units (RLUs). The RLU measurements were converted to ATP concentrations (10-12 g/mL or 

pg/mL) by developing free and total ATP calibration curves. Calibration curves were constructed 

by measuring the free and total RLUs of duplicate samples with known ATP concentrations 

(pg/mL) and plotting the average RLU measurements versus known ATP concentrations. The ATP 

standards, summarized in Table 3-3, were prepared by diluting a 100 mM standard solution of 

adenosine 5’-triphosphate (specifications provided in Table C-1 of Appendix C) in NERLTM high 

purity water. The free and total calibration curve data in Table 3-3 was used to establish the 

mathematical relationship between RLUs and ATP concentration (pg/mL). The free and total ATP 

calibration curves and laboratory quality control analysis are presented in Appendix B. 

Table 3–3:  Free and Total ATP Calibration Curve Data 

Std. 
Standard Concentration 

(pg ATP/mL) 

Average Standard Concentration (RLUs) 

Free ATP Total ATP 

0 0 20 20 

1 0.5 16 15 

3 10 82 82 

4 50 343 315 

5 100 693 627 

6 300 2123 1811 

7 500 2218 2941 

8 1000 4910 5749 

9 2500 15155 14305 

10 5000 31434 31434 
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Confirm Existing Conventional-UF Process Operations 

The existing conventional-UF process served as the treatment baseline for evaluating the 

pretreatment alternatives. To compare the impact of pretreatment on the pilot-scale, the full-sale 

UF process was simulated using a UF pilot skid that filtered plant-settled water as in the full-scale 

process. A conceptual schematic of the unit operations for the full-scale system and simulated 

control-UF pilot is presented in Figure 3-2. The control-UF pilot skid was operated throughout the 

study to assess the effect of pretreatment on UF operating and water quality performance. Water 

quality and operational parameters for the full and pilot scale processes along with jar testing 

experiments were evaluated to: 

 Assess the coagulation operation effectiveness 

 Confirm the need for additional pretreatment 

 Illustrate the representativeness of the pilot-scale to the full-scale system 

 

Figure 3–2 Full and Pilot Scale UF Process Schematic 

Evaluation of Coagulation Process Performance 

Particulate and organic removal efficiencies of the full-scale coagulation process were evaluated 

by performing jar testing experiments. A jar testing machine, shown in Figure 3-3, was used to 

coagulate, flocculate, and settle Olinda raw water at varying ACH coagulant doses and pH ranges. 

Plant Raw
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Full-Scale UF 
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Process
Plant-UF Filtrate
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Membrane Skid

Control-UF 
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The ACH coagulant information is summarized in Table C-1 of Appendix C. Other coagulation 

optimization strategies include using an alternative coagulant or employing coagulant aids. 

Alternative metal salt coagulants, including alum and ferric chloride, were not evaluated because 

these traditional coagulants consume significant amounts of alkalinity. Hence, switching to either 

aluminum or ferric chloride would require the addition of carbonate or hydroxide alkalinity and 

increase the cost of water production (Budd et al., 2004). The additional chemical cost is not 

expected to be offset by improved coagulation performance as Yan and colleagues (2007; 2008) 

have demonstrated that prehydrolyzed metal salt coagulants, such as ACH, achieve similar DOC 

removals compared to traditional metal salt coagulants. The addition of coagulant aids, such as 

cationic polymers, has been shown to enhance DOC removal; however, polymer coagulants can 

aggravate fouling of low pressure membranes (Wang et al., 2011). Thus, the evaluation of cationic 

polymer aids was not included in the jar testing experiments. 

 

Figure 3–3 Jar Testing Machine 
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The experimental protocol for the jar testing is presented in Table 3-4. The jar tester’s operating 

sequence was determined by performing preliminary jar tests. The preliminary jar tests were 

accomplished by varying the ACH coagulant dose, mixing speeds, and detention times to 

approximate possible full-scale regimes. Based on the preliminary results, the jar testing sequence 

was set to three cycles:  300 rpm for 15 seconds (short duration rapid mix), 15 rpm for 25 minutes 

(slow mix), and 0 rpm for 45 minutes (sedimentation). Additional jar tests were performed to 

examine the effect of ACH coagulant dose and pH on settled water turbidity, color, UV 254, DOC, 

and SUVA. Turbidity and organic removals were calculated and plotted on contour plots as 

functions of ACH dose and pH using Minitab® 17 software (Minitab, 2010). The contour plots 

were utilized to determine whether the full-scale plant was operating within optimal coagulation 

operating ranges. 

Table 3–4 Jar Testing Protocol 

Jar Test Sequence Operation Water Quality(1) 

Preliminary Run 1 
(September 19, 2012) 

200 rpm, 15 sec 
10 rpm, 10 min 
0 rpm, 1 hr 25 min 

14 to 24 ppmv ACH 
No pH Adjustment 

Turbidity 

Preliminary Run 2 
(April 23, 2013) 

160 rpm, 45 sec 
35 rpm, 10 min 
25 rpm, 10 min 
0 rpm, 30 min 

14 to 18 ppmv ACH 
No pH Adjustment 

pH, Temperature, 
Alkalinity, Turbidity, 
Color, UV 254, DOC, 
and SUVA 

Preliminary Run 3 
(April 24, 2013) 

200 rpm, 10 sec 
160 rpm, 35 sec 
25 rpm, 20 min 
0 rpm, 60 min 

14 to 18 ppmv ACH 
No pH Adjustment 

pH, Temperature, 
Alkalinity, Turbidity, 
Color, and UV 254 

Experimental Runs 1 - 8 
(May 17, 2014 through 
June 1, 2014) 

300 rpm, 15 sec 
15 rpm, 25 min 
0 rpm, 45 min 

11 to 30 ppmv ACH 
5.4 to 8.7 pH units 

Turbidity, Color, UV 
254, DOC, and SUVA 

(1) Water quality was analyzed according to standard methods (Table A-1 of Appendix A) 
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Water Quality Monitoring 

Water quality was monitored throughout the Olinda WTP and control-UF pilot from September 

2012 to February 2013 (MIEX® testing) and from April 2013 to December 2013 (GAC and BAC 

testing). The sampling duration allowed for the observation of seasonal impacts on water quality. 

Water quality was measured for raw water (raw), plant coagulated-flocculated-settled water (plant-

ACH), plant UF filtrate (plant-UF), and control-UF pilot filtrate (control-UF). Temperature, pH, 

turbidity, alkalinity, color, UV 254, and DOC parameters were measured daily. Solids, hardness, 

metals, and anions concentrations were measured approximately twice per month. A summary of 

the water sampling and testing evaluation is presented in Table 3-5. 

Table 3–5 Existing Conventional-UF System Water Quality Monitoring 

Water Sampling 
Location 

Water Quality 
Parameter(1) 

Target Testing 
Frequency 

Analyst Statistical 
Analysis 

Raw 
Plant-ACH 
Plant-UF 
Control-UF 

Temperature Daily County Descriptive 
statistics 
(average, 
standard 
deviation & 
confidence 
interval); 
Hypothesis 
testing 
 

pH Daily County 
Turbidity Daily County 
Alkalinity Daily County 
Color Daily County 
UV 254 Daily County 
DOC Daily County 
SUVA Daily County 
TSS Bi-weekly UCF 
TDS Bi-weekly UCF 
Hardness (Ca, Mg) Bi-weekly UCF 
Metals (Si, Mn, Fe, Al) Bi-weekly UCF 
Anions (Cl-, SO4

2-, Br-) Bi-weekly UCF 

Raw 
Plant-ACH 

EEMs One data set UCF 
 

Plant-UF 
Control-UF 

DBP formation potential: 
Cl2 and TTHMs after 6, 
24, 48, 96, and 168 hours 
HAA5 after 96 hours 

Twice quarterly UCF 

Hypothesis 
testing; 
Comparison 
to MCLs 

(1) Water quality was analyzed according to standard methods (Table A-1 of Appendix A) 
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In addition to utilizing UV 254, DOC, and SUVA to determine the quantity and expected 

hydrophobicity of the dissolved organic matter (DOM) in the Olinda water, the DOM was further 

characterized by performing excitation-emission matrix fluorescence spectroscopy (EEMs) 

analysis. For the EEMs analysis, a jar testing machine at the 300, 15, and 0 rpm set-points and 

plant-applied ACH dose was utilized to coagulate, flocculate, and settle a portion of Olinda raw 

water collected on July 11, 2014. The Olinda settled and remaining raw water samples were filtered 

through a 0.45 µm membrane filter to exclude particulate and large colloidal matter from the 

samples. For each filtered sample, a quartz fluorescence cuvette and RF-1501 Shimadzu 

spectrofluorophotometer were used to expose the sample to an excitation light and measure the 

resultant fluorescence emitted from the sample (Shimadzu Corporation, 1994). Excitation 

wavelength inputs were varied every 5 nanometers (nm) from 220 to 400 nm. At each excitation 

wavelength, the fluorescence emission output was manually recorded from 300 to 570 nm in 5 nm 

increments. The three-dimensional data was plotted as an excitation-emission matrix (EEM) 

contour plot in Minitab®. 

The EEM diagrams for the Olinda raw and coagulated-settled water were compared against 

theoretical EEM characterization templates to determine the major DOM fractions. Researchers in 

the area of EEMs have generalized the interpretation of EEM diagrams by delineating regions, 

where fluoresce intensity peaks specify different fractions of DOM (Chen et al., 2003; Hudson et 

al., 2007; Bridgeman et al., 2011). As shown in the EEM example template (Figure 3-4), the major 

DOM fractions include hydrophobic fulvic and humic acids (regions III and IV) originating from 

plant matter, and aromatic proteins that may originate from free (region I and II) or biologically-

bound (mainly region II) amino acids (Bridgeman et al., 2011). 
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.  

Figure 3–4 Template for EEM Characterization of DOM 
Source:  Adapted from Chen et al., 2003. 

The EEMs analysis was performed after the conclusion of the pretreatment pilot testing because 

the spectrofluorophotometer equipment was not available prior to 2014. However, characterizing 

the DOM of the raw and settled waters will provide a qualitative understanding of the nature of 

the organics that contribute to DBP formation and UF membrane fouling at the Olinda WTP. 

Plant-UF and control-UF filtrate DBP formation potential was determined to simulate the level of 

chlorinated DBPs anticipated to form within the distribution system. DBP formation was simulated 

by pH adjusting the filtrate samples to 8.8 pH units using food grade lime, then dosing with 

sufficient sodium hypochlorite (2.5 to 4 mg/L) to maintain a 0.2 mg/L chlorine residual after seven 

days of contact time. The specifications for the lime and sodium hypochlorite dosing solutions are 

provided in Table C-1 of Appendix C. The dosed samples were incubated at ambient temperatures 

200

220

240

260

280

300

320

340

360

380

400

280 300 320 340 360 380 400 420 440 460 480 500 520 540

E
xc

it
a

ti
o

n
 W

a
ve

le
n

gt
h

 (
n

m
)

Emission Wavelength (nm)

V

Humic Acid

I

Aromatic

Protein

II

Aromatic

Protein

IV

Fulvic Acid



 

51 

(12 to 25 oC) in borosilicate glass amber bottles with TFE lined caps. Chlorine residual and TTHM 

content were measured after 6, 24, 48, 96, and 168 hours of incubation. Although the standard 

method (2005) defines ultimate DBP formation as seven days of incubation time, the longest 

detention time in the Upper Kula system is about four days. Therefore, the HAA5 concentration 

was measured after a 96 hour contact time. From September 2012 to April 2013, HAA5 

concentrations were analyzed according to Standard Method 6251B. Starting May 2013, HAA5 

concentrations were measured using both Standard Method 6251B and EPA Method 552.3. On 

average, the EPA 552.3 method yielded higher percent recoveries for a known concentration of 

HAA5. Therefore, EPA 552.3 HAA5 results were used in the DBP formation potential evaluations. 

Pilot and full scale water quality data was organized into time-series graphs to reveal seasonal 

trends and irregularities. In addition to identifying seasonal impacts, particulate and organic 

removal efficiencies were evaluated to establish the treatment benchmark. Finished water DBP 

formation potential results were compared to regulatory MCLs to demonstrate the need for 

additional DBP precursor removal treatment. Furthermore, UF feed water quality, specifically 

turbidity, iron, manganese, aluminum, UV 254, DOC, and SUVA, was evaluated to identify 

possible UF membrane foulants that may be removed by alternative pretreatments. 

Hypothesis tests, including paired t-tests and analysis of variance (ANOVA), were employed to 

determine whether the pilot and full scale filtrate water quality averages were significantly 

different. In the paired t-tests, the average of paired differences (i.e. average of pH1 minus pH2) 

was compared to the null hypothesis, which assumed that the average of differences was zero. If 

the calculated t-statistic was less than the t-critical at 95 percent confidence, then it was confirmed 

that there was no significant difference between the averages. In the ANOVA testing, the variation 
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between treatments was compared to the variation within treatments. If the calculated F-statistic 

was less than the F-critical at 95 percent confidence, then the variation between and within 

treatments was similar and the averages were considered to be the same (Mac Berthouex & Brown, 

2002). Demonstrating likeness between the pilot and full scale UF process with respect to water 

quality was necessary to prove that the control-UF pilot effectively simulated the full-scale UF 

membrane process. 

Ultrafiltration Process Confirmation 

Evoqua Water Technologies (San Diego, CA) provided two MEMCOR® SM 1 AUTO membrane 

pilot skids, shown in Figure 3-5. The UF pilot skid was used to simulate the Olinda UF membrane 

process. The technical specifications of the UF pilot as compared to the full-scale UF system are 

summarized in Table 3-6. The UF pilot was operated within the confines of its technical 

specifications and was limited to an average operating flux of 19.2 gal/ft2-day. Because the average 

UF pilot flux was lower than the full-scale UF operating flux of 23.6 gal/ft2-day, it was not possible 

to directly establish similitude between the full-scale and pilot scale membrane TMP and specific 

flux. However, both the full and pilot scale UF membranes were manufactured by Evoqua with 

the same PVDF membrane material characteristics and operating schemes. Between September 

2012 and December 2013, full and pilot scale UF operational data (feed water temperature and 

flow rate, TMP, and backwashing and CIP frequencies) was collected. The operational monitoring 

matrix is outlined in Table 3-7. Pilot and full scale membrane TMP, temperature corrected specific 

flux, cleaning frequency, and percent recovery were compiled and assessed. 
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Table 3–6 Olinda Full and Pilot Scale Technical Specifications 

Item Olinda WTF’s UF Membrane Evoqua UF Membrane Pilot  

UF Membrane module details 
MEMCOR® L10V; Polyvinylidene fluoride (PVDF) 
hollow fiber; 0.04 µm Nominal pore size; 6 Log 
removal of Giardia and Cryptosporidium 

MEMCOR® S10V; Polyvinylidene fluoride 
(PVDF) hollow fiber; 0.04 µm Nominal pore size  

Membrane age Greater than 5 years Virgin 

Membrane area per module 252 ft2; 9600 membranes per module 300.3 ft2 

Membrane modules per rack 112 1 

Number of racks 3 1 

Total membrane area 84,672 ft2 300.3 ft2 

“Filter” mode operation Pressurized outside to inside filtration Pressurized outside to inside filtration 

Average design production capacity 2 MGD 5760 gpd (4 gpm) 

Peak design production capacity 2.7 MGD 6087 gpd (4.23 gpm) 

D.O.H. max approved flow and flux rate 5.08 MGD; 60 gal/ft2-day - 

Target water flux rate 

Average Design (2 MGD):  23.6 gal/ft2-day; 4.41 gpm 
per module 
Peak Design (2.7 MGD):  31.9 gal/ft2-day; 5.95 gpm 
per module 

Average Design:  19.2 gal/ft2-day 
Peak Design:  20.3 gal/ft2-day 

Backwash mode 
Water/Air backwashing. Backwashing is based on run 
time, volume produced, or rise in TMP 

Automatically initiated and controlled, using low 
pressure air scour and feed flush 

Backwash frequency Approximately every 20 minutes Approximately every 20 minutes 

Chemically enhanced backwash 
(CEB)/maintenance frequency 

No chemical backwash practiced No chemical backwash 

Backwashing chemical types and concentrations N/A N/A 

Clean in place (CIP) operation and frequency 

Based on TMP rise and resistance 
TMP pre-CIP:  >10; TMP post-CIP: 2.10 
Resistance pre and post CIP:  1.10 and 1.00 
Approximately 72 hours (Note: The design CIP 
frequency was 18 days) 

Based on TMP rise 
TMP pre-CIP:  29 psi; TMP post-CIP:  10-20 psi 

Clean in place chemical types and 
concentrations 

Citric acid and 15% sodium hypochlorite 
Citric acid (about 300 g) and 15% sodium 
hypochlorite (about 100-150 mL) 

Membrane integrity monitoring Online turbidity meters Turbidity measurements 

Residuals handling 
Backwash water and CIP wastewater is discharged to 
the settling lagoons, which is decanted back to the 
WTP raw water supply 

Backwash water and CIP wastewater is 
discharged to waste 

D.O.H.  = Department of Health (State of Hawaii) 
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Figure 3–5 MEMCOR® SM 1 AUTO Pilot Skid 

Table 3–7 UF Process Operational Monitoring Matrix 

Process Parameter Protocol(1) 

Pilot-Scale  Water temperature 
(oC); flow rate 
(gpm); feed 
pressure (psi); and 
filtrate pressure 
(psi) 

 Backwashing 
frequency (20 
minute default) 

 CIP frequency 

 Water temperature was measured and recorded at 
least three times daily. 

 Flow rate, feed pressure, and filtrate pressure 
readings were manually recorded from online flow 
meters and pressure gages at least three times daily. 

 The membrane pilot employed automatic 
backwashes at programmable time intervals. 

 Sodium hypochlorite followed by citric acid CIPs 
were performed when TMP exceeded 22 psi (three 
quarters of the maximum housing pressure) 

Olinda  
Full-Scale  

 Water temperature 
(oC); flow rate 
(gpm); TMP (psi) 

 Backwashing 
frequency 

 CIP frequency 

 Water temperature, flow rate, and TMP data was 
compiled for each full-scale skid (CMF 1, 2, and 3). 

 Process employed automatic backwashes every 20 
minutes. 

 Sodium hypochlorite and citric acid CIP 
maintenance activities were recorded. 

(1) The specifications for the CIP chemicals are included in Table C-1 of Appendix C. 
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Ultrafiltration Pretreatment Assessment 

Pilot testing was conducted to determine whether integrating MIEX®, GAC adsorption, or BAC 

filtration within a conventional-UF process would enhance the treatment and production efficiency 

of the UF membrane filtration. Since one of the UF pilot skids served as the dedicated research 

control, MIEX®, GAC, and BAC pretreatment alternatives were sequentially pilot tested. From 

September 2012 to February 2013, MIEX® pretreatment was evaluated by collecting and analyzing 

pilot-scale water quality and operational data. At the end of the MIEX® phase, the control-UF and 

pretreatment-UF membrane modules were sent to Evoqua for autopsy analysis. Replacement 

membranes (supplied by Evoqua) were inserted into the UF pilot skids for the subsequent GAC 

and BAC evaluation phase. Between April 2013 and December 2013, the impact of GAC media 

filtration in the adsorption, transition, and biological (BAC) mode was assessed by monitoring and 

comparing water quality and operational parameters. At the conclusion of the BAC evaluation 

phase, the control-UF and pretreatment-UF membrane modules were shipped to Avista 

Technologies (San Marcos, CA) for autopsy analysis. 

The effect of MIEX®, GAC adsorption, and BAC filtration pretreatment on UF performance was 

evaluated by comparing the operational requirement, organic removal, DBP formation potential, 

and UF membrane TMP, specific flux, percent recovery, and autopsy results to the research 

control. The pretreatment alternatives were further evaluated with respect to relative advantages 

and disadvantages, economic non-cost considerations, and conceptual opinions of probable 

construction and operating costs. Additionally, the BAC pretreatment pilot results along with 

findings from similar biofiltration pretreatment studies were evaluated to develop a predictive 

mathematical model using the method of curve fitting with non-linear regression in Minitab®. 
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MIEX® Pretreatment Pilot Testing 

The MIEX® system was evaluated as a pretreatment alternative ahead of the coagulation-

clarification and UF membrane processes. This arrangement, shown in Figure 3-6, was selected 

because applying the MIEX® system before coagulation has been shown to reduce coagulant 

dosage requirements and enhance the turbidity and organic removal of a downstream coagulation 

process. Although alternatively placing the MIEX® system after coagulation could possibly reduce 

the MIEX® treatment capacity, researchers suggest that MIEX® pretreatment prior to coagulation 

provides effective cost and treatment benefits (Singer & Bilyk, 2002; Boyer & Singer, 2006; Xu 

et al., 2013). 

 

Figure 3–6 MIEX® Pretreatment Process Schematic 

Pilot Equipment 

The MIEX®, coagulation-clarification, and UF membrane treatments were simulated using 

piloting equipment, shown in Figure 3-7. Orica Watercare Inc. (Englewood, CO) supplied the 10 

gallon per minute (gpm) MIEX® high rate pilot system (Figure 3-7a). The general MIEX® design 

specifications are summarized in Table 3-8. The MIEX® system treated raw water by contacting 

the water and resin in the up-flow fluidized bed contactor to promote the exchange of negatively 

charged DOC with chloride ions on the resin surface. Tube settlers within the contactor were used 

to promote adequate separation of the water and resin as the water moved up through the contactor. 

Pre-
sedimentation

MIEX® System
Coagulation-
Flocculation-

Sedimentation
UF Membrane
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Figure 3–7 MIEX® High Rate (a) and Coagulation-Clarification (b) Pilots 

Table 3–8 MIEX® Technical Design Summary 

Parameter Value 

Maximum flow capacity 10 gpm 
Resin contactor concentration 200 - 250 mL/L 

Resin use 2.0 L/MG 
Contact time 4 - 8 minutes 

Resin regeneration rate 1 gal/1000 gal treated 
Regenerant Sodium Chloride (350 lb/MG) 

Salt brine residual production 400 gal/MG 

 

To inhibit biological growth on the resin and tube settlers, a small dose of sodium hypochlorite 

(less than 0.5 mg/L Cl2) was added to the raw inlet. Additionally, spent resin was recycled back 

into the process through an automated regeneration sequence. The MIEX® system’s regeneration 

sequence comprised of five fill and drain cycles that served to re-substitute chloride ions on the 

resin exchange sites (Ostrowski, 2011). The substitution process generated a concentrated brine 

stream, rich in salt and organics (Singer et al., 2009). The brine stream is typically disposed directly 

to the sanitary sewer and treated at the wastewater treatment facility (City of St Cloud, 2011; Palm 
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Beach County, 2014). However, since the Olinda WTP does not have access to a wastewater 

collection system, the brine solution was trucked to the wastewater treatment facility for disposal. 

Following MIEX® treatment, the water was conveyed by a two-inch diameter PVC pipeline and 

injected with ACH coagulant. The ACH coagulant was flash mixed inside the pipe as it traveled 

about 18 inches before flowing into three 250 gallon (42 × 36 × 38 inch) carboys arranged in series. 

The three carboys in series functioned as the flocculation and sedimentation basins. The basins 

were connected by four-inch PVC pipe segments with 90 degree elbows to prevent short-

circuiting. The settled water from the third carboy supplied the feed water to the MEMCOR® UF 

pilot module. 

The County with the assistance of Orica staff constructed the coagulation-clarification pilot, which 

is displayed in Figure 3-7b. A comparison of the full-scale to pilot-scale coagulation is presented 

in Table 3-9. The pilot ACH dose was lower than the full-scale plant as a result of the expected 

reduction in coagulant demand by MIEX® pretreatment. The average full and pilot scale 

flocculation detention times were comparable; however, the full-scale settling rate was an order of 

magnitude lower than the pilot-scale. Reproducing the full-scale loading rate would have required 

installation of 17 carboys, which was not possible given site space constraints. Therefore, the pilot 

settling rate was more representative of typical industry standards (0.5 gpm/ft2) (MWH, 2005). 
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Table 3–9 Coagulation, Flocculation, and Sedimentation Operating Conditions 

Parameter Olinda WTP Full-Scale Pilot-Scale 

Process Flow 2 MGD 8 gpm 6 gpm 

Coagulation 
ACH is flash mixed in a 8 
inch cement-lined ductile 

iron pipe 
ACH flash mixing in a 2 inch PVC pipe 

ACH dose 
Varies seasonally 

15 to 35 mg/L 
11.8 to 39 mg/L 5.9 and 11.8 mg/L 

Flocculation 
Detention Time 

25 minutes 25.8 minutes 38.7 minutes 

Loading Rate 0.035 gpm/ft2 0.43 gpm/ft2 0.29 gpm/ft2 

 

Pilot Operation 

The MIEX® pretreatment process and control-UF pilots were operated intermittently from 

September 4, 2012 to February 3, 2013. To determine the pretreatment operational requirements 

and impacts on UF operation, operational parameters for the MIEX® system, coagulation-

clarification, MIEX®-UF, and control-UF pilots were collected and recorded. The MIEX® 

operational parameters included flow rate, contactor top and bottom resin concentration, and 

regeneration maintenance set-points. The operating parameters recorded for the coagulation pilot 

were flow rate and ACH dose. As outlined in Table 3-7, The MIEX®-UF and control-UF pilot 

operation was monitored by recording feed water temperature, flow rate, TMP, and backwash and 

CIP frequencies. Furthermore, pilot process observations and maintenance activities were recorded 

in operator logs. Throughout the MIEX® piloting phase, process changes to the MIEX®, 

coagulation, and UF pilots were implemented in an effort to maintain adequate treatment across 

the unit operations. A summary of the target operational conditions and specifications 

implemented throughout the MIEX® pretreatment evaluation is presented in Table 3-10. 
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Table 3–10 MIEX® Pilot Testing Operational Conditions 

Testing Period MIEX® & Coagulation Operation(1) UF Pilot Operation(1) 

September 4, 2012 to 
October 13, 2012 

 Flow capacity:  8 gpm 
 Contact time:  4-8 minutes 
 Top and bottom resin 

concentration:  0 and 20-35% 
 Regeneration tank resin 

concentration:  50% 
 Resin volume regenerated:  25% 
 Regeneration resin dosed:  2.1% 
 Brine conductivity:  150 mS/cm 
 Bags of salt added:  1.5/wk 
 LMI pump ACH dose:  0.3-1 

mL/min 

 Target feed flow:  4 gpm 
 Max feed flow:  4.23 gpm 
 Water flux:  19.2 to 20.3 

gal/ft2-day 
 Filtrate pressure:  6-8 psi 
 Backwash frequency:  20 

min 

October 14, 2012 to 
October 26, 2012 

 Same as previous  Water flux:  19.2 to 20.3 
gal/ft2-day 

 Filtrate pressure:  6-8 psi 
 Backwash frequency:  10 

min 

October 27, 2012 to 
November 5, 2012 

 Flow capacity:  6 gpm  Water flux:  19.2 to 20.3 
gal/ft2-day 

 Filtrate pressure:  6-8 psi 
 Backwash frequency:  10 

min 

November 6, 2012 to 
November 21, 2012 

 Flow capacity:  6 gpm 

 

 Water flux:  19.2 to 20.3 
gal/ft2-day 

 Filtrate pressure:  0 psi 
 Backwash frequency:  10 

min 

November 22, 2012 to 
February 3, 2013 

 Flow capacity:  6 gpm 
 Cole Parmer Masterflex Digital 

pump ACH dose:  0.1-0.2 mL/min 

 Water flux:  19.2 to 20.3 
gal/ft2-day 

 Filtrate pressure:  0 psi 
 Backwash frequency:  10 

min 

(1) If operational parameter is not specified, parameter is the same as in previous testing period. 
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At pilot start-up, the MIEX® pilot plant treated an average 8 gpm flow rate, which was then dosed 

with ACH coagulant at a rate of 0.3 to 1.0 mL/min using a positive displacement LMI pump prior 

to UF membrane filtration. Like the full-scale UF process, the UF pilots were automatically 

backwash every 20 minutes with air scour and water rinse. In addition, the UF pilots were operated 

with about 6 to 8 psi of back pressure to simulate the pressure head in the full-scale filtrate holding 

tank. 

On October 14, 2012, ten minute backwash frequencies were implemented for the MIEX®-UF and 

control-UF pilots to increase the membrane filter runs between CIPs. Although a ten minute 

backwashing frequency is below the industry standard (Alspach et al., 2005), it was necessary to 

increase the frequency to avoid the build-up of coagulation flocs that were carried over from the 

coagulation pilot. To promote adequate settling of the flocs, the flow rate of the MIEX® pilot was 

reduced to 6 gpm (lowest operating range) on October 27, 2012. In addition, the UF filtrate back 

pressure was reduced to atmospheric on November 6, 2012 to lower the feed pressure required to 

operate the UF pilot at the constant flux rate of 19.2 gal/ft2-day. 

Floc carry-over continued to be observed from the coagulation pilot onto the UF membrane despite 

efforts to improve coagulation settling. It was determined that the floc carry over was caused in 

part by pin floc formation, which indicated that the LMI pump was oversized for ACH dosing of 

MIEX® treated water. Therefore, on November 22, 2012, the LMI pump was replaced with a Cole 

Parmer Masterflex Digital peristaltic pump (Vernon Hills, IL) that was capable of feeding ACH at 

a rate between 0.1 and 0.2 mL/min. Larger, more discrete flocs were observed after the pump 

change-out occurred. Although complete settling of the floc was not achieved, an improvement in 

UF operation was documented. At the conclusion of the MIEX® testing, the control-UF and 
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MIEX®-UF membrane modules were sent to Evoqua for autopsy analysis. In the autopsy analysis, 

Evoqua physically inspected the exterior and interior of the membrane modules and performed 

scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) analyses to 

identify foulants present on the membrane fiber surfaces. 

Additional Limitations 

Several operational challenges impacted the treatment and operating efficiency of the MIEX®, 

coagulation, and UF pilots that required modification to the methods used in support of the 

research. It was determined that the MIEX® manufacturer Orica Watercare, Inc. used paint-lined 

drums to store and transport the MIEX® resin to the Olinda WTP project site. Paint chips 

fragmented from the inner lining of the containers mixed with the resin that was used to operate 

the MIEX® pilot. The presence of paint chips in the resin clogged the contactor and regeneration 

equipment, disrupted the resin regeneration cycle, and caused resin loss. In order to resolve the 

complications initiated by the paint chips, the paint chips were manually strained from the resin. 

Additionally, several MIEX® alarms were triggered by irregularities with the software control 

settings related to the regeneration cycles. Other issues included:  malfunction of regeneration 

conductivity probes; loss of internal air pressure with accompanying pump failure; and power 

outages. 

In addition to shutdowns caused by technical difficulties, the pilot units operated intermittently 

from November 7, 2012 to the beginning of February 2013 in order to accommodate drought 

conditions and full-scale membrane repair and replacement activities at the Olinda WTP. The 

intermittent pilot shutdowns made it difficult to maintain steady-state operation of the pretreatment 
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and control pilot plants. However, from November 22, 2012 to December 14, 2012, the unit 

operations were operated in unison to establish the pretreatment impact on UF performance. 

Water Quality 

To examine the impact of MIEX® pretreatment on water quality, organic and inorganic water 

quality parameters were measured across the pilot unit processes:  MIEX®, coagulation-

clarification (MIEX®-ACH), MIEX®-UF, and control-UF pilots. A summary of water quality 

monitoring locations, parameters, and frequencies are provided in Table 3-11. 

Table 3–11 MIEX® Testing Phase Water Quality Monitoring 

Water Sampling 
Location 

Water Quality 
Parameter(1) 

Target Testing 
Frequency 

Analyst Statistical 
Analysis 

Raw 
MIEX® 
MIEX®-ACH 
MIEX®-UF 
Plant-ACH 
Control-UF 

Temperature Daily County Descriptive 
statistics 
(average, 
standard 
deviation & 
confidence 
interval); 
Hypothesis 
testing 

pH Daily County 
Turbidity Daily County 
Alkalinity Daily County 
Color Daily County 
UV 254 Daily County 
DOC Daily County 
SUVA Daily County 
TSS Bi-weekly UCF 
TDS Bi-weekly UCF 
Hardness (Ca, Mg) Bi-weekly UCF 
Metals (Si, Mn, Fe, Al) Bi-weekly UCF 
Anions (Cl-, SO4

2-, Br-) Bi-weekly UCF 

MIEX®-UF 
Control-UF  
 

DBP formation potential: 
Cl2 and TTHMs after 6, 
24, 48, 96, and 168 hours 
HAA5 after 96 hours 

Two 
experimental sets 
in Dec. 2012 & 
Jan. 2013 

UCF 

Comparison 
to MCLs 

(1)  Water quality was analyzed according to standard methods (Table A-1 of Appendix A) 
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To determine whether MIEX® pretreatment effectively improved the quality of finished water 

distributed to customers, MIEX®-UF and control-UF filtrate DBP formation potential was 

evaluated on December 7, 2012 and January 28, 2013. For each DBP experiment, full-scale post 

treatment was simulated by pH adjusting the control-UF and MIEX®-UF filtrates close to 8.8 pH 

units with food grade lime prior to chlorine disinfection with 4 mg/L of sodium hypochlorite. After 

disinfection, DBP samples were incubated at the on-site ambient temperature, which was subject 

to diurnal variation. After approximately 6, 24, 48, 96, and 168 hours of contact time, the chlorine 

residual and TTHM concentration were measured. Of the selected contact times, the 96 hour (or 

four day) sample represented the estimated longest detention time in the distribution system. 

Consequently, the HAA5 formation potential was measured at the four day contact time. The water 

quality and DBP formation potential results were analyzed using descriptive statistics and 

hypothesis testing (paired t-test and ANOVA). 

Adsorption and Biological GAC Pretreatment Pilot Testing 

To compare the performance of GAC media in the adsorption and biological modes, the impact of 

integrating GAC after coagulation-clarification and before UF membrane filtration was evaluated. 

The sequence of the unit operations, displayed in Figure 3-8, was selected to reduce turbidity 

loading and high MW organic compounds loading to the GAC filtration system. Reducing the 

turbidity and high MW organic loading serves to extend the GAC filtration runs between 

backwashes and promote the adsorption and biodegradation of medium to low MW organics 

(MWH, 2005; Basu & Huck, 2004; Huck & Sozanski, 2008; Velten et al., 2011). 
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Figure 3–8 GAC and BAC Pretreatment Process Schematic 

Pilot Equipment 

GAC media filtration was pilot tested in the adsorption, transition, and biological operating modes, 

as pretreatment after coagulation-clarification, and ahead of UF membrane filtration. Ka’anapali 

Coffee Farms (Lahaina, HI) supplied a down-flow Stark fiberglass filtration vessel for the GAC 

adsorption and BAC filtration pilot testing. The pilot equipment was set up with a dedicated pump 

and piping system to convey plant settled water to the MEMCOR® control-UF pilot and Stark 

filtration vessel. The dedicated pump and piping system allowed for the continuous operation of 

the control-UF and pretreatment-UF pilots during times of full-scale plant shut-downs. In 

anticipation of full-scale plant shut-downs, the County operations staff produced excess settled 

water to continuously supply the GAC/BAC and UF pilots. 

The Stark vessel was installed with an underdrain, holding tank, and pumping system to supply 

the GAC media filtered water to the second MEMCOR® UF pilot. The GAC/BAC and UF pilot 

layout is illustrated in Figure 3-9. The interior of the filter vessel was filled with 16 inches of 

Evoqua’s UltraCarb® 1240 GAC over 3 inches of pea gravel that served to cover the lateral 

underdrain system and provide support for GAC media (see Figure 3-10). The underdrain system 

consisted of six perforated lateral PVC pipes (about 1.5 inches in diameter) that served to collect 

the GAC filtered water. The filtered water was combined in a perpendicular center pipe 

(approximately 3 inches in diameter) and pumped to the downstream UF process. The Stark 

Pre-
sedimentation

Coagulation-
Flocculation-

Sedimentation

GAC or BAC 
Filtration

UF Membrane
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filtration vessel was operated with about six to eight inches of water headspace to allow for 

fluidized bed backwash of the GAC media. The media filtration design parameters are outlined in 

Table 3-12. 

.  

Figure 3–9 Stark Fiberglass Filtration Vessel and MEMCOR® UF Pilots 

  

Figure 3–10 Stark Filtration Vessel Interior and Design Schematic  

GAC/BAC Contactor 

UF Module 

Feed Tank 

(pump behind unit) 

Filtered Water 
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Table 3–12 Granular Activated Carbon Filter Design Specifications 

Design Specification Value 

Media Identification UltraCarb® 1240 

Carbon Type Bituminous Coal 

Media Mesh Size 12 x 40 US mesh 

Media Effective Size 0.65 mm 

Media Uniformity Coefficient 1.9 

Media Apparent density 495 g/L 

Filter Diameter 48 in 

Filter Cross Sectional Area 12.57 ft2 

Pea gravel depth About 3 in 

Media Depth 16 in 

Media Volume 16.76 ft3 

 

Pilot Operation 

From April 27, 2013 to December 31, 2013, the operational performance of the GAC media 

filtration pretreatment was monitored as it progressed from adsorption to biological mode (GAC 

and BAC mode, respectively). The technical summary of the operational conditions for the GAC 

and BAC pilot testing is listed in Table 3-13. The media filter was operated in down-flow filtration 

mode at a target EBCT between 10 and 15 minutes, which was selected to balance the trade-off 

between providing sufficient contact time for organic adsorption or biodegradation and capital 

construction costs. Based on the pilot filter dimensions, a 15 minute EBCT corresponded to a flow 

rate of about 8.5 gpm and HLR of 0.7 gpm/ft2. Although the design HLR fell below the rapid 

filtration range (2 to 6 gpm/ft2) employed in similar biofiltration studies (Halle et al., 2009; 

Peldszus et al., 2012), slower filtration rates promote the attachment and growth of biomass on the 

media (Huck et al., 2000). 



 

68 

Table 3–13 GAC and BAC Pilot Testing Operational Conditions 

Testing Period GAC-BAC Pilot Operation(1) UF Pilot Operation(1) 

GAC Adsorption 

(April 27, 2013 to July 
20, 2013) 

 Carbon mode:  Adsorption 
 Target flow rate:  12.5 gpm 
 EBCT:  10 minutes 
 HLR:  1.0 gpm/ft2 
 Backwash mode:  Fluidized bed 
 Backwash flow:  25 gpm 
 Backwash duration:  30 minutes 

 Target flow rate:  4 gpm 
 Target water flux:  19.2 

gal/ft2-day 
 Filtrate pressure:  0 psi 
 Backwash frequency:  20 

min 

BAC Transition 

(July 21, 2013 to 
August 9, 2013) 

 Carbon mode:  Transition (GAC 
adsorption capacity exhausted) 

 C:N:P Ratio:  100:12:0.2 

 Same as previous 

BAC Filtration 

(August 10, 2013 to 
November 2, 2013) 

 Carbon mode:  Biological 
 Initiated mono-potassium 

phosphate (KH2PO4) addition 
(0.5 mg/L as PO4

3-) 
 C:N:P Ratio:  100:10:1.7 

 Same as previous 

BAC Filtration 

(November 3, 2013 to 
December 31, 2013) 

 Carbon mode:  Biological 
 Initiated pH adjustment with 

sodium hydroxide (between 6 
and 8 pH units) 

 C:N:P Ratio:  100:9:1.9 

 Same as previous 

(1) If operational parameter is not specified, parameter is the same as in previous testing period. 

To prevent the excess accumulation of particulate matter and biomass, fluidized bed backwashes 

were performed at 25 gpm for 30 minutes. During the GAC adsorption evaluation phase, 

backwashes were performed when the pressure drop across the filter exceeded approximately 5 

psi. The 5 psi pressure drop was selected because of the ability to operate the GAC at relatively 

long filter runs that were greater than 220 hours. As the GAC developed a biofilm and entered into 

the BAC mode, the backwashes were performed when the pressure drop exceeded about 10 psi, 

which corresponded to filter run times between 24 and 380 hours. 
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Additional operational parameters that were monitored daily included the media filter pilot 

throughput (total gallons treated), feed and outlet pressure (psi), and backwashing frequency. To 

assess the impact of GAC and BAC pretreatment on UF performance, the pretreatment-UF and 

control-UF pilot skids were operated at a target flux rate of 20.3 gal/ft2-day, no back pressure, and 

20 minute backwash frequency. The feed temperature, flow rate, TMP, and CIP maintenance 

activities were documented for the UF pilot skids as described in Table 3-7. Furthermore, shut-

downs and maintenance activities for the GAC/BAC pretreatment and UF membrane pilots were 

documented in operator logs. At the conclusion of the GAC and BAC pilot testing, the 

pretreatment-UF and control-UF membrane modules were shipped to Avista technologies for a 

third-party membrane autopsy analysis. Upon receipt by Avista, the modules were physically 

inspected prior to a visual stereoscope analysis of the fibers and foulant analysis using loss on 

ignition. Additional testing included a test for the presence of carbonates, presence of 

microbiological organisms, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-

ray (EDX), SEM, and chromatic elemental imaging (CEI) testing. CEI allows the identification of 

individual elements in the foulant by analyzing the X-ray patterns emitted when an electron beam 

is passed across the surface (Avista, 2015). 

Media Filtration Modes 

At pilot start-up, the GAC media was operated in adsorption mode allowing for the removal of 

dissolved organics onto the active carbon sites. After about 12 weeks of operation, the active GAC 

adsorption sites were exhausted and the GAC media entered into the transition stage. In the 

transition mode, bacteria began to colonize and form biofilms on the GAC media surface. During 
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the transition phase, the C:N:P ratio was about 100:12:0.2, which signaled a phosphorus 

deficiency. In an effort to overcome the phosphorus limitation and enhance biological activity, an 

engineered biofiltration strategy was employed, where the feed water was supplemented with 

orthophosphate. About 0.5 mg/L of orthophosphate nutrient was added to the BAC feed water 

starting August 10, 2013, which marked the beginning of engineered biofiltration operation mode. 

The chemical specifications for the orthophosphate solution is provided in Table C-1 of Appendix 

C. With the orthophosphate supplementation, the C:N:P ratio was adjusted to 100:10:1.7 which 

satisfies the 100:10:1 minimum ratio recommended by Lauderdale and colleagues (2014). 

Due to drought conditions experienced from September 7, 2013 to December 4, 2013, the full-

scale plant was operationally limited to two to five hours a day. During this intermittent full-scale 

operation, the UF-control, BAC, and pretreatment-UF pilot plants were operated continuously by 

feeding excess settled water produced by the full-scale plant. In October 2013, a drop in the BAC 

feed water pH to below 5 units was observed. Acidic pH values may inhibit bacterial activity. 

Therefore, beginning November 3, 2013, pH adjustment with sodium hydroxide was implemented 

to raise the pH of the BAC feed water to a near neutral range (between 6 and 8 pH units). The 

BAC pilot was operated with orthophosphate addition and pH adjustment until the end of pilot 

testing on December 31, 2013. 
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Water Quality 

Water quality was measured across the pretreatment and control unit operations to quantify the 

impact of GAC media filtration (adsorption, transition, and biological) on UF membrane 

performance with respect to operation and finished water quality. A summary of the water quality 

monitoring locations, parameters, and frequencies is included in Table 3-14. 

Table 3–14 GAC/BAC Testing Water Quality Monitoring 

Water Sampling 
Location 

Water Quality 
Parameter(1) 

Target Testing 
Frequency 

Analyst Statistical 
Analysis 

Raw 
Plant-ACH 
GAC/BAC 
Pretreatment-UF 
Control-UF 

Temperature Daily County Descriptive 
statistics 
(average, 
standard 
deviation & 
confidence 
interval); 
Hypothesis 
testing 

pH Daily County 
Turbidity Daily County 
Alkalinity Daily County 
Color Daily County 
UV 254 Daily County 
DOC Daily County 
SUVA Daily County 
TSS Bi-weekly UCF 
TDS Bi-weekly UCF 
Hardness (Ca, Mg) Bi-weekly UCF 
Metals (Si, Mn, Fe, Al) Bi-weekly UCF 
Anions (Cl-, SO4

2-, Br-) Bi-weekly UCF 

Plant-ACH 
GAC/BAC 
 

Free and Total ATP Bi-weekly County Descriptive 
statistics; 
Hypothesis 
testing 

HPC Bi-weekly County 
Dissolved Oxygen Daily County 
Phosphate Bi-weekly County/UCF 
Nitrate Bi-weekly UCF 

Pretreatment-UF 
Control-UF  
 

DBP formation potential: 
Cl2 and TTHMs after 6, 
24, 48, 96, and 168 hours 
HAA5 after 96 hours(2) 

Four 
experimental 
sets in April, 
Aug., Oct. & 
Dec. 2013 

UCF 

Comparison 
to MCLs 

(1) Water quality was analyzed according to standard methods (Table A-1 of Appendix A). 
(2) HAA5s were measured according to EPA Method 552.3. 
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As in the MIEX® phase, inorganic and organic water quality was characterized according to pH, 

temperature, turbidity, alkalinity, solids, hardness, anions, metals, color, UV 254, DOC, and 

SUVA. In addition, the biological activity of the plant-ACH feed water and activated carbon 

filtered water was examined using biological monitoring tools, including nutrient availability 

(phosphate and nitrate), signs of bacterial respiration (dissolved oxygen), free  ATP (extracellular), 

cellular ATP (total minus free), and HPC. The free and total ATP measurements were compared 

to traditional HPC (CFUs/mL) values to determine whether a relationship could be discerned. The 

proportion of extracellular ATP to total ATP (free/total ATP) was used as a surrogate for the 

fraction of inert ATP, such as biopolymers, that may contribute to membrane fouling. Also, the 

relative amount of viable cells was determined by subtracting the free ATP from the total ATP. 

The ATP activity on the GAC media was not examined because collecting GAC samples would 

have required the shut-down of the biofilter pilot. Velten and colleagues (2011) agree that in many 

cases sampling biomass from biofilters may not be feasible. Additionally, the researchers asserted 

that analyzing the DOC and suspended microbial activity across biofilters serves as adequate 

monitoring tools for assessing biofilter performance (Velten et al., 2011). 

To investigate the effect of GAC media filtration on finished water quality, the DBP formation 

potential was determined during the each phase of GAC filtration:  adsorption mode at pilot start-

up (April 28, 2013); the transition mode (August 5, 2013); biological mode with orthophosphate 

addition (October 21, 2013), and biological mode with orthophosphate addition and pH adjustment 

(December 9, 2013). The water quality results were analyzed using descriptive statistics and 

hypothesis testing. 
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CHAPTER 4. RESULTS AND DISCUSSION 

Surface Overland Flow Water Quality Analysis 

The Waikamoi watershed serves as the Olinda WTP’s water supply and is intermittently 

unavailable for use during drought. The headwaters of Waikamoi stream originate in the Haleakala 

National Park where vegetation is predominately native shrub lands with sparse alien grasses. In 

the intermediate slopes of the hydrologic unit, the Waikamoi stream flows through native 

communities of Ohia forests and Uluhe shrub lands that lie within the Waikamoi Preserve and 

Koolau Forest Reserve. Historical water quality records as provided by the State of Hawaii (2009) 

for the Waikamoi watershed are limited to temperature, turbidity, dissolved oxygen, total dissolved 

solids and nutrients; however, these data (when collected) are obtained downstream along the 

Waikamoi ditch at lower elevations than the supply that feeds the Olinda WTP. 

In an effort to obtain a more complete characterization of the Waikamoi watershed, inorganic, 

organic, and biological water quality parameters were collected throughout the native watershed 

as the water flows from the flume to the Olinda WTP. The Waikamoi watershed sampling and 

testing events were conducted on November 15, 2012, January 31, 2013, April 30, 2013, August 

6, 2013, October 22, 2013, and May 12, 2014. Of the sampling events, dry weather was observed 

in April 30, 2013, August 6, 2013, and October 22, 2013, while rainy weather was observed on 

November 15, 2012, January 31, 2013, and May 12, 2014. The sampling locations with 

corresponding GPS coordinates are depicted on a Google satellite map in Figure 4-1. 
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Figure 4–1 Waikamoi Watershed Sampling Locations 

Water samples were collected at several locations: 

1. Kahakapao 50 MG reservoirs 1 and 2 

2. Waikamoi 15 MG reservoirs 

3. First (1st) and second (2nd) caisson pipelines 

4. Combined flume outlet 

5. White pipeline 

6. Flume outlet 

7. Flume intakes 1 and 2 

8. Blue pipeline 

The blue pipeline intake collects water from the highest elevation reaches of the Waikamoi stream. 

The flume intakes 1 and 2 represent sampling locations at the end (Haipua’ena stream) and middle 
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(combined overland runoff) of the rectangular flume. The flume outlet represents the combined 

flow of captured runoff, Haipua’ena stream, and Puanokamoa stream waters. The white pipeline, 

which runs parallel to the rectangular flume, collects water from the Puanokamoa stream. The 

water collected in the blue pipeline, white pipeline, and flume is mixed at the combined flume 

outlet structure. The combined flume water and additional Waikamoi stream water is diverted to 

the Waikamoi reservoirs. Downstream of the Waikamoi reservoirs, the 1st and 2nd caisson pipelines 

transport collected water to the Kahakapao reservoirs, which store and pre-settle the source water 

prior to treatment at the Olinda WTP. The impact of watershed elevation and weather condition 

on pH, turbidity, DOC, extracellular (free) ATP, cellular (total minus free) ATP, and free/total 

ATP fraction is illustrated by the dry versus rainy column graphs, shown in Figures 4-2 through 

4-7. The dry versus rainy column graphs for the temperature, DO, alkalinity, color, UV 254, 

SUVA, and metals are presented in Figures D-10 through D-21 of Appendix D. 

 

Figure 4–2 Dry vs Rainy pH 
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Figure 4–3 Dry vs Rainy Turbidity 

 

Figure 4–4 Dry vs Rainy DOC 
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Figure 4–5 Dry vs Rainy Cellular ATP 

 

Figure 4–6 Dry vs Rainy Extracellular ATP 
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Figure 4–7 Dry vs Rainy F/T ATP Fraction 

Overall, the major water quality trends indicate that the highest watershed locations contained 

elevated DOC levels of up to about 12.3 mg/L and low pH of 4 units, and the reservoirs contained 

the higher biological ATP levels reaching about 900 pg/mL. According to the dry versus rainy 

turbidity averages, the turbidity levels increased during rainy weather conditions by up to 4 ntu at 

the headwaters; however, pre-settling in the Kahakapao reservoirs attenuated the turbidity spikes. 

Similar to the turbidity, the organic content as measured by DOC, color, and UV 254 was higher 

during rainy conditions. The Kahakapao reservoirs attenuated a portion of the organic loading to 

the Olinda WTP; however, the rainy average DOC levels remained about 10 percent higher than 

the dry average DOC. Utilizing the DOC and UV 254 measurements, the character of the organic 

carbon was determined by calculating the SUVA values throughout the watershed. For the 

watershed sampling locations, the relatively high SUVA values ranging from about 3 to 6 L/mg-
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m indicate that the Waikamoi surface water is rich in hydrophobic humic and fulvic organic acids 

originating from the native rainforest vegetation (Lozier et al., 2008). 

As shown in Figures 4-5 and 4-6, the extracellular and cellular ATP levels were higher during the 

rainy conditions for the flowing sampling locations, but lower during the dry conditions for the 

reservoirs. The higher ATP counts during the rainy conditions in the overland flow capture 

locations are likely due to the higher water flows uptaking more inert and viable ATPs. The higher 

ATP counts during the dry conditions in the reservoirs is attributed to lower water levels, which 

allows for more interaction between the water and the expected biologically active sediment layer 

within the reservoirs. When evaluating the free/total ATP fraction (see Figure 4-7), it is apparent 

that lower fractions were present in the Waikamoi reservoirs. The lower free/total ATP fraction 

signals a higher quantity of viable cells relative to the total ATP. The higher biological activity in 

the Waikamoi reservoirs likely resulted from the relatively deep sediment layer within the 

reservoirs during sampling. The higher ATP provided the County sufficient evidence to fund the 

cleanout and rehabilitation of both Waikamoi reservoirs, scheduled for implementation prior to 

this body of work being completed. The relining and rehabilitation of the two Waikamoi reservoirs 

was completed at the time of this document being published. 

In addition to the observed increase in the biological activity of the water supply, the concentration 

of metals, including iron, manganese, aluminum, and calcium, were found to increase across the 

reservoir storage (see Figures D-16 through D-19 of Appendix D). It is expected that iron, 

manganese, and aluminum originated from the metals naturally present in the volcanic soil 

(Garrett, 2000). However, it is likely that the additional calcium originated from the reservoir’s 

concrete material. The increase in calcium with corresponding increase in alkalinity (Figure D-12) 
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across the Waikamoi and Kahakapao reservoirs implies that the organic acid source water is 

dissolving the calcium from the concrete structures (Zivica & Bajza, 2000).  

Based on the water quality observations, the following watershed management strategies were 

identified. 

 The County should consider placing high elevation source intakes temporarily offline 

during the elevated DOC seasons (rainy conditions) to help dampen the organic load to 

the Olinda WTP. 

 The treatment operating staff can anticipate the use of higher ACH coagulant doses during 

and after rain events due to higher organic and turbidity levels in the source water. 

 The biological activity and leaching of metals may be reduced by implementing a sediment 

cleaning schedule for the Waikamoi and Kahakapao reservoirs. 

 The County should consider providing a protective coating or lining for the Kahakapao 

reservoirs to prevent leaching of the concrete, which could lead to structural failure. 

 The County should continue to monitor water quality within and throughout the Waikamoi 

watershed conveyance system that provides raw water to the Olinda WTP. 

Confirm Existing Conventional-UF Process Operations 

The purpose of confirming the existing conventional-UF process operations was to:  (1) validate 

the full-scale coagulation efficiency, (2) demonstrate the need for additional pretreatment, and (3) 

show representativeness between the full and pilot scale UF processes. The research objectives 
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were accomplished by conducting jar testing experiments, and monitoring the water quality and 

operational performance of the full-scale Olinda WTP and pilot control-UF processes. 

Evaluation of Coagulation Process Performance 

Jar testing experiments were conducted on the Olinda raw water at varying ACH coagulant doses 

and pH ranges to confirm current performance of the Olinda WTP’s coagulation operation. The 

coagulation performance was evaluated according to particulate and organic removal efficiencies 

as measured by turbidity, color, UV 254, DOC, and SUVA. The experimental data for the 

preliminary and experimental jar tests are compiled in Table E-1 of Appendix E. The three-

dimensional contour plots of turbidity, color, UV 254, DOC, and SUVA removals versus ACH 

coagulant dose and pH are shown in Figures 4-8 through 4-12. 

 

Figure 4–8 Turbidity Removal 
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Figure 4–9 Color Removal 

 

Figure 4–10 UV 254 Reduction 
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Figure 4–11 DOC Removal 

 

Figure 4–12 SUVA Reduction 
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The full-scale coagulation operated at ACH coagulant doses between 20 and 33.5 mg/L and pH 

levels between 5.5 and 6.5 units. Under these conditions, the turbidity, color, UV 254, DOC, and 

SUVA removals were greater than 20, 92, 82, 50, and 65 percent. The lower turbidity removals 

were mainly observed in the lower pH range, which fell below the pH (6.7 units) of minimum 

solubility for ACH (Pernitsky & Edzwald, 2003). Below the pH of minimum solubility the 

coagulant hydrolysis products promote more charge neutralization rather than the sweep floc 

enmeshment. The sweep floc mode of operation was observed at higher coagulant dose and pH 

ranges and achieved more effective turbidity removal. 

Although turbidity removal was depressed at a lower pH range, the DOC removal reached 70 

percent. The efficient removal of DOC at lower pH results from charge neutralization and organic-

complex formation mechanisms (Budd et al., 2004; MWH, 2005; Yan et al., 2007; Yu et al., 2007). 

The trade-off between organic and turbidity removal under depressed versus elevated pH ranges 

has been demonstrated in the work of other researchers (Budd et al., 2004; Matilainen et al., 2010). 

However, review of the turbidity and DOC contour plots reveals that a balance was achieved 

around 6 pH units. A pH of 6 coincides with the average pH of the raw water. At the average raw 

water pH level, turbidity removal was greater than 70 percent and DOC removal was greater than 

50 percent. 

Achieving a DOC removal greater than 50 percent agrees with the findings of other coagulation 

studies that investigated the optimization of DOC removal for high SUVA (greater than 4) water 

sources (Archer & Singer, 2006; Matilainen et al., 2010). Furthermore, the jar testing results 

revealed that coagulation achieved a higher UV 254 removal (82 percent) as compared to the DOC 

removal (50 percent). The greater reduction in UV 254 measurements implies that as expected the 
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coagulation process removed a higher percentage of the aromatic carbon fraction. The effective 

removal of aromatic, hydrophobic-type organic carbon is further supported by the decrease in the 

SUVA values from greater than 4 L/mg-m before coagulation to less than 2.3 L/mg-m after 

coagulation. After coagulation, the change in SUVA values suggests that the organic fraction 

shifted from large hydrophobic compounds to more neutral or hydrophilic organics (Archer & 

Singer, 2006; Matilainen et al., 2010). 

The jar testing results, specifically turbidity and organic removal, were further analyzed by 

determining the average removals at optimum ACH coagulant doses. The optimum coagulant dose 

was selected based on the dose that achieved the highest organic and turbidity removals at the 

lowest chemical usage rate. In cases where the highest organic and turbidity removals were not 

aligned, optimizing organic removal took precedence. An example of dose selection is illustrated 

in Figure 4-13. The turbidity and organic removals from the optimum coagulant doses were 

averaged and compared to the full-scale coagulation removals to determine whether the Olinda 

WTP is achieving efficient treatment. The Olinda full-scale turbidity and organic water quality 

results are summarized in Table E-2 of Appendix E. The treatment efficiency comparison between 

the bench-scale jar tests and full-scale coagulation is presented in Figure 4-14. As compared to the 

full-scale system, the turbidity and organic removals from the jar testing experiments differed by 

at most 20 percent. Thus, the Olinda WTP’s coagulation process was determined to be operating 

within the optimum particulate and organic removal ranges for the jar testing conditions tested. 
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Figure 4–13 Selection of Optimum ACH Coagulant Dose 
Note: Experimental jar test was conducted on May 17, 2014. 

 

Figure 4–14 Bench to Full Scale Comparison of Particulate and Organic Removal 
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In an effort to identify coagulation optimization strategies, the jar testing experiments included 

varying the coagulant dose and adjusting the raw water pH. The use of alternative coagulants or 

cationic polymer aids were not investigated. Alternative coagulants (alum and ferric chloride) were 

not tested because these traditional coagulants consume significant levels of alkalinity during 

coagulation (Budd et al., 2004). Additionally, cationic polymers may worsen membrane fouling 

(Wang et al., 2011). Considering these limitations, the County can opt to target the identified 

optimum DOC removal range between 50 and 70 percent by varying the ACH dose and adding 

caustic or lime to raise the pH near 6 pH units. Even with DOC removals between 50 and 70 

percent, it is expected that additional organic removal treatment is necessary to achieve DOC 

removals greater than 70 percent for efficient DBP control with free chlorine disinfection. 

Water Quality Analysis 

Water quality was monitored across the full and pilot scale UF processes to identify seasonal water 

quality trends, compare full-scale and pilot-scale UF treatment performance, and confirm the need 

for additional pretreatment. Minimum, maximum, and average water quality results for the raw, 

plant-ACH, plant-UF, and control-UF water samples are presented in Table E-2 of Appendix E. A 

summary of the average pH, temperature, turbidity, color, UV 254, DOC, SUVA, iron, and 

aluminum is included in Table 4-1. The accompanying time-series graphs are illustrated in Figures 

E-1 through E-8 of Appendix E. The raw water temperature gradually increased from about 15 oC 

in the winter to 22 oC in the summer. The average raw water pH was 5.9 pH and ranged from 4.6 

to 7.3 units. Coagulation slightly decreased the pH of the water to 5.7 pH units. Because of the low 

filtrate water pH of 5.7, the County adds food-grade lime for pH stabilization and corrosion control. 
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Table 4–1 Olinda WTP Average Water Quality 

Water Quality Raw Plant-ACH Plant-UF Control-UF 

pH 5.9 5.7 5.7 5.6 

Temp. (oC) 18.7 19.1 19.3 19.4 

Turb. (ntu) 3.2 0.74 0.06 0.05 

Fe (mg/L) 0.612 0.053 0.012 0.010 

Al (mg/L) 0.256 0.042 0.008 0.007 

Color (CU) 70 3 2 2 

UV254 (1/cm) 0.309 0.047 0.043 0.043 

DOC (mg/L) 6.8 2.7 2.3 2.3 

SUVA (L/g-m) 4.6 1.7 1.9 1.9 

 

During continuous operation of the Olinda WTP, coagulation of the relatively low-turbidity, low-

alkalinity, organic-laden raw water reduced the turbidity, color, and DOC to typically less than 0.5 

ntu, 5 CU, and 3.5 mg/L C. From November 2012 to February 2013 and September to December 

2013, the Olinda plant was operated intermittently due to full-scale maintenance activities and 

seasonal drought conditions. During the intermittent operation, the raw and settled water turbidities 

experienced spike levels of up to 12 and 2.8 ntu, respectively. The spike in raw water turbidity 

likely resulted from the accumulation and re-suspension of solids in the raw water intake during 

subsequent plant shut-downs and start-ups. The elevated settled water turbidity levels signals that 

the unsteady-state operation of the coagulation process caused a destabilization and suspension of 

the settling basin’s flocculant sludge layer. In turn, the carry-over of small or pin floc aggregates 

was observed in the plant settled water. The carry-over of suspended matter directly contributes to 

UF fouling. Therefore, poor control over the settled water turbidity is expected to negatively 

impact UF operation, particularly during drought periods when water scarcity necessitates 

intermittent plant shut-downs (Howe & Clark, 2002). Additionally, the intermittent plant operation 
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was found to contribute to elevated iron (1 mg/L), aluminum (0.5 mg/L), and organic matter (3.8 

mg/L DOC) concentrations in the settled water. 

The organic matter, as measured by color, UV 254, and DOC, tended to be higher in the summer 

and early fall months and lower in the winter and spring months. The raw water color and DOC 

averages were 70 CU and 6.8 mg/L, respectively. Based on the relatively high UV 254 (0.31 1/cm) 

and SUVA (4.6 L/mg-m) values, the DOC was mainly comprised of hydrophobic, aromatic 

organic compounds. The hydrophobic character of the raw water DOC was further illustrated by 

fluorescence EEM results. The fluorescence intensity of the raw water was plotted in a three-

dimensional contour plot (shown in Figure 4-15) as a function of excitation and emission 

wavelengths. 

 

Figure 4–15 Raw Water EEM Diagram 
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In the EEM diagram, the peaks associated with specific DOM fractions were identified by 

comparing the experimental EEM to the general EEM template of Figure 3-6, which was 

developed in previous studies (Chen et al., 2003; Hudson et al., 2007; Bridgeman et al., 2011). 

The Rayleigh-Tyndall lines result from cuvette wall effects; and the Raman line results from the 

scattering properties of water’s O-H covalent bonds. Based on the EEM diagram, the DOM of the 

raw water is mainly hydrophobic fulvic and humic organic acids. The slight fluoresce peak at 

excitation-emission wavelengths of 220 and 300 nm reveal that the DOC also contains a smaller 

fraction of hydrophobic neutral proteins (Tyrosine-like). The tyrosine-like proteins are amino acids 

with aromatic ring structures. However, debate remains among researchers whether tyrosine-like 

proteins originate from freely available amino acids or from viable cellular matter (Hudson et al., 

2007). 

Because of the hydrophobic nature of the raw water DOM, the coagulation process removed a 

significant portion of the organic acids as demonstrated by the reduction in color and DOC to 3 

CU and 2.7 mg/L. The color and DOC reduction was accompanied by a reduction in the UV 254 

and SUVA to 0.047 1/cm and 1.7 mg/L. The change in the organic character of the settled water 

DOC confirms that the hydrophilic organic fraction remains in the settled water after coagulation. 

The character of the DOM after coagulation was further defined using the fluorescence EEM 

diagram, displayed in Figure 4-16. 
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Figure 4–16 Settled Water EEM Diagram 

The EEM for the coagulated-settled water is similar to the raw water EEM; however, the settled 

water EEM has lower fluorescence intensities due to the reduction in DOM concentration. 

Furthermore, the hydrophobic and hydrophilic protein peaks are more pronounced in the settled 

water EEM diagram. The fluoresce peak at excitation-emission wavelengths of 230 and 350 nm is 

characteristic of more tryptophan-like proteins. The presence of tryptophan-type proteins has been 

related to biological activity (Hudson et al., 2007). Consequently, the detection of the tyrosine and 

tryptophan protein-like DOM in the EMM uncovers the possibility of organic and biological 

fouling of the downstream UF membranes (Lozier et al., 2008; Nguyen et al., 2012). 

After coagulation, the UF process effectively removed the remaining fine particulates, as 

demonstrated by the low (0.06 ntu) turbidity of the UF filtrate. In addition, UF membrane filtration 

further reduced the settled water iron and aluminum concentrations. The iron and aluminum 

species were likely bound or enmeshed in the settled water floc aggregates and precipitates (MWH, 

Emission Wavelength (nm)

E
x
c
it

a
ti

o
n

 W
a

v
e

le
n

g
th

 (
n

m
)

570540510480450420390360330300

400

380

360

340

320

300

280

260

240

220

>  

–  
–  
–  
–  
–  
–  
–  
–  
–  
<  

160 180

180

0

0 20

20 40

40 60

60 80

80 100

100 120

120 140

140 160

Intensity

Fluorescence

Contour Plot of Fluorescence vs Excitation, Emission

Rayleigh-Tyndall Effect 

Humic 

Fulvic Protein 



 

92 

2005). The organic concentration and character also changed across the UF membrane. The DOC 

decreased by about 15 percent to 1.7 mg/L and the SUVA value increased by about 12 percent to 

1.9 L/mg-m. The decrease in DOC and increase in SUVA suggest that the UF membrane retains a 

portion of the larger hydrophilic DOC fraction. The larger hydrophilic DOC fraction has been 

shown to contribute to membrane specific flux decline (Huang et al., 2007). Based on the changes 

in water quality across the UF process, membrane fouling of the full-scale plant is most likely due 

to the deposition and accumulation of particulate matter (flocs), iron, aluminum, organic, and 

possibly biological matter. Hence, additional pretreatment is expected to reduce these foulants, 

especially the DOM that may contribute directly to organic fouling or indirectly to biological 

fouling (Nguyen et al., 2012). 

To summarize the full-scale water treatment performance and compare the full to pilot scale UF 

processes, the average turbidity and DOC concentrations across the existing system are presented 

in column graphs (Figures 4-17 and 4-18). Additional water quality comparisons for color, UV 

254, SUVA, iron, and aluminum are included in Figures E-9 through E-13 of Appendix E. The 

column graphs show average concentration, 95 percent confidence interval error bars, the percent 

removals, and hypothesis testing results for the full versus pilot scale UF comparison. On average, 

the conventional-UF process removes 98 percent of the raw turbidity, 96 percent of color, 66 

percent of DOC, 98 percent of iron, and 97 percent of aluminum. The hypothesis testing for the 

pilot and full scale UF filtrate water quality revealed that the results were not statistically different. 

Therefore, the control-UF pilot provided an effective means of demonstrating the effect of 

additional pretreatment on water quality. 
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Figure 4–17 Olinda WTP Average Turbidity 

 

Figure 4–18 Olinda WTP Average DOC 
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In addition to monitoring the water quality across the existing Olinda WTP, the TTHM and HAA5 

formation potential was determined for the full and pilot scale UF finished waters. For the full 

versus pilot scale DBP analysis, the summaries of the four-day TTHM and HAA5 formation 

concentrations are shown in Figures 4-19 and 4-20. Based on the TTHM results ranging from 120 

to 250 µg/L, the TTHM formation potential with free chlorine disinfection exceeds the MCL of 

80 µg/L. Similarly, the experimental HAA5 levels (45 to 110 µg/L) revealed the possibility for 

exceedance of the 60 µg/L MCL with free chlorine disinfection. In December 2012, January 2013, 

and April 2013, the Standard Method 6251 B was used to measure the HAA5 concentrations. Both 

the Standard Method 6251 B and EPA 552.3 Method were used to measure the HAA5 levels in 

August, October, and December 2013. The results from the EPA 552.3 Method are reported herein 

because it produced more conservative results based on higher recoveries of spiked samples. 

The high DBP formation potential results demonstrate that the DOM remaining after coagulation 

(combination of residual fulvic acids and proteins) is highly reactive with chlorine to form 

quantities of THMs and HAAs that exceed regulatory limits (Chowdhury et al., 2009). Therefore, 

additional organic removal pretreatment is needed to allow the conversion of the disinfectant from 

monochloramine to free chlorine. The hypothesis testing results show that the plant-UF and 

control-UF filtrates formed similar levels of DBPs. The similar DBP concentrations further 

confirms the adequacy of using the control-UF pilot unit as a means of evaluating pretreatment 

performance. 
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Figure 4–19 Four-Day TTHM Formation Potential of Full versus Pilot Scale UF 
Note:  Experimental parameters and speciation are included in Appendices E, F, and G. 

 

Figure 4–20 Four-Day HAA5 Formation Potential of Full versus Pilot Scale UF 
Note:  Experimental parameters and speciation are included in Appendices E, F, and G. 
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Ultrafiltration Process Confirmation 

From September 2012 to December 2013, operational parameters were monitored for the full-scale 

and pilot-scale UF processes. The full to pilot scale UF performance comparison excluded periods 

of intermittent plant or pilot operation, including September 2012 through February 2013 (MIEX® 

testing phase) and September through December 2013 (portion of BAC testing phase). The UF 

operating data from the third full-scale train (CMF3) was selected for the UF comparison because 

the membranes were cleaned with sodium hypochlorite and citric acid near the start-up date of the 

control-UF pilot. Hence, both the CMF3 and control-UF operating performance analysis 

commenced with clean UF membranes. 

The average membrane percent recovery and operational parameters for the full-scale (plant-UF) 

and pilot-scale (control-UF) membranes are listed in Table 4-2. For the selected operating time 

frame, the full and pilot scale UF processes achieved similar membrane percent recoveries of 90 

and 89 percent, respectfully. The percent recoveries were calculated from the total filtrate volume 

produced, and the filtrate volume used for backwashing and CIPs. Both the full and pilot UF 

membranes were backwashed every 20 minutes with water and air scour. The full-scale 

membranes were cleaned daily with sodium hypochlorite and cleaned 9 times with citric acid, 

while the pilot-scale membrane was cleaned on three occasions with sodium hypochlorite followed 

by citric acid. The volume of filtrate used during backwashing and CIPs were estimated from the 

membrane technical specifications. 
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Table 4–2 Full-Scale versus Pilot-Scale UF Membrane Performance Comparison 

Operational Parameter Plant-UF Control-UF 

Selected Time Frame  Apr 28, 2013 through Sep 4, 2013 

Membrane Recovery 

Backwash Frequency (minutes) 20 20 

Backwash Volume (gal/module) 7.1 10.6 

Number of Sodium Hypochlorite CIPs 125 (Daily) 3 

Number of Citric Acid CIPs 9 3 

CIP Volume (gal/module) 27 40 

Percent Recovery 90 89 

Average Membrane Process Data 

Flow per Module (gpm) 3.9 4.0 

Membrane Area (ft2) 252 300.3 

Flux Rate (gal/ft2-d) 22.1 19.1 

TCTMP @ 20 oC (psi)  3.7 13.9 

Specific Flux @ 20 oC (gal/ft2-d-psi)  6.7 1.4 

 

As emphasized in Table 4-2, the average temperature corrected TMP (TCTMP) and temperature 

corrected specific flux values of the full and pilot UF processes are not of similar magnitudes. The 

variation in TCTMPs and specific fluxes is likely due to the differences in membrane surface area, 

membrane age, and housing vessel configuration. Although the magnitudes of the TCTMP and 

specific flux cannot be directly compared, the pilot and full scale membrane fouling trends for 

temperature corrected TMP and specific flux provide a relative means of comparison. 

In Figures 4-21 and 4-22 the TCTMP and specific flux time series trends are depicted for the full 

and pilot scale UF processes from late April 2013 to early September 2013. The plant citric acid 

CIPs and control-UF CIPs were designated by vertical lines. Since the sodium hypochlorite CIPs 

for the full-scale UF were performed daily, designation lines were not included in the time series 

graphs. 
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Figure 4–21 Full-Scale versus Pilot-Scale TCTMP Time-Series Trend 

 

Figure 4–22 Full-Scale versus Pilot-Scale Specific Flux Time-Series Trend 
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Evaluation of the TCTMP and specific flux time series graphs reveals that the plant-UF and 

control-UF membrane fouling trends (TMP rise and specific flux decline) follow similar slopes. 

The comparable fouling trends are most evident during the first 20 days of operation, for which 

both the full and pilot scale TCTMP rise was about 0.5 TMP/day. After the 20 days of operation, 

both the plant-UF and pilot-UF membranes were chemically cleaned with sodium hypochlorite 

and citric acid to recover the TMP rise across the membranes. Additionally, the subsequent pilot 

CIPs coincided with plant citric acid CIPs. 

The full-scale UF membranes were cleaned with sodium hypochlorite daily, and cleaned with citric 

acid when the TMP reached 10 psi. The pilot-scale UF membranes were cleaned with sodium 

hypochlorite followed by citric acid when the TMP reached three quarters of the maximum 

housing pressure (22 psi). The pilot was chemically cleaned less frequently to minimize chemical 

usage and observe longer fouling trends between cleanings. The minimal impact of the difference 

in the sodium hypochlorite CIP frequency is likely due in part to the lower operating flux rate of 

the pilot. The lower pilot flux rate, which in turn lowers the rate of foulant accumulation on the 

membrane, was necessitated by the confines of the piloting equipment (Huang et al., 2007). As 

supported by the feed water quality results, the gradual fouling trends of the full and pilot UF 

processes may be attributed to the daily accumulation of rejected organic and particulate matter 

not removed during the water and air scour backwashing (Howe & Clark, 2002; Huang et al., 

2007). The occurrences of sharper specific flux decline and TMP rise, which coincided with full 

and pilot scale CIPs, was related to turbidity spikes in the settled water. The settled water turbidity 

spikes greater than 0.6 ntu occurred in early May 2013 and middle of July 2013. 
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Additional pretreatment that reduces both the inorganic particulate and organic loading to the UF 

membranes would be expected to reduce the specific flux decline and TMP rise. The reduction in 

operating specific flux would in turn reduce the use of CIP chemicals and decrease the operational 

economics of water production. Besides differences in full to pilot scale UF membrane operation, 

both UF processes achieved similar membrane productivities (recoveries) and demonstrated 

similar specific flux and TMP fouling trends. Therefore, the control-UF pilot skid provided an 

acceptable control condition for evaluating the impact of pretreatment on UF operating 

performance. 

MIEX® Pretreatment Performance Assessment 

MIEX® was evaluated as a UF pretreatment alternative ahead of coagulation and UF membrane 

processes. The impact of MIEX® pretreatment on the overall water treatment and production 

efficiency of the UF membrane process was assessed by determining and comparing the 

operational, water quality, and UF operation (specific flux, TMP, and membrane autopsy) 

considerations for the MIEX® pretreatment and control pilots. 

MIEX® Operational and Water Quality Performance 

Operational Analysis 

The operation of the MIEX® system required daily monitoring and trouble shooting of 

malfunctioning alarms. The alarms were related to paint chips in the resin, irregularities with the 

software settings, interruption of the regeneration cycle, malfunctioning of conductivity probes, 

pump failure, and power outages. The operation of the MIEX® system was further complicated by 
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the need to accommodate full-scale UF membrane replacement activities and severe drought 

conditions. The combination of MIEX® alarms, maintenance activities, and drought conditions 

resulted in the intermittent operation of the MIEX®-UF and control-UF pilots. In an effort to offset 

the negative impacts of intermittent pilot operation, several process adjustments were 

implemented. The process adjustments included manually removing the paint chips from the resin, 

decreasing the MIEX® flow from 8 to about 6 gpm on October 27, 2012, and replacing the ACH 

feed pump to a low-dose digital peristaltic pump on November 22, 2012 (see Table 3-10). 

The average MIEX® operational parameters (flow, resin concentration, and contact time) and ACH 

coagulant dose for each of the major MIEX® testing conditions (initially with an 8 gpm flow set-

point, 6 gpm flow set-point, and ACH feed pump replacement, respectively) are shown in Figure 

4-23. In the figure, the error bars represent confidence intervals at the 95 percent level. 

 

Figure 4–23 MIEX® Operational Performance Summary 
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The MIEX® resin concentration was the lowest during the initial 8-gpm set point because the paint 

chips interrupted the regeneration of the resin and caused resin loss from the system. Once the 

paint chips were removed, an improvement in the resin concentration was observed during the 

succeeding testing phases. 

After MIEX® treatment, the pilot coagulation dosed ACH to destabilize particulate and remaining 

organic matter prior to removal by settling and UF membrane filtration. At pilot start-up, a positive 

displacement LMI pump injected the ACH at the lowest allowable rate (0.5 to 1 mL/min). At the 

lowest ACH feed rate, the coagulant dose ranged from 19 to 45 mg/L. The pilot-scale ACH dose 

range was greater than full-scale ACH dose range (20 to 33 mg/L). Therefore, it was deducted that 

the pilot coagulation process was overdosing the ACH coagulant. 

The overdosing of the ACH coagulant was accompanied by the observation of pin floc formation. 

To improve the settling characteristics of the floc aggregates, the LMI pump was changed to a 

low-dose digital peristaltic pump. After the ACH pump was replaced, the pilot-scale ACH dose 

ranged between 5 and 17 mg/L. The lower ACH dose was necessary because the MIEX® 

pretreatment decreased the organic loading and in turn reduced the raw water coagulant demand. 

On average, the MIEX® pretreatment reduced the ACH dose by 57 percent. The 57 percent 

reduction in coagulant dose agrees with the findings of other researchers, who observed 50 to 70 

percent reductions in coagulant dose (Boyer & Singer, 2006; Jarvis et al., 2008). 
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Water Quality Analysis 

Water quality was measured for raw, MIEX®, MIEX®-ACH, MIEX®-UF, plant-ACH and control-

UF water samples. The average water quality results were separated by major testing period (8 

gpm flow set-point, 6 gpm flow set-point, and ACH pump replacement) and are summarized in 

Tables F-1 through F-3 of Appendix F. The pH, temperature, turbidity, color, UV 254, DOC, 

SUVA, iron, and aluminum time-series graphs are included in Figures F-1 through F-8 of 

Appendix F. The impact of operation on water quality treatment performance was assessed by 

determining the particulate and organic removals across the MIEX®, coagulation, and UF 

membrane processes. Turbidity, color, UV 254, and DOC removals for each MIEX® testing period 

are displayed in Figures 4-24 through 4-27. The column graphs present averages with 95 percent 

confidence interval error bars. 

During pilot start-up, the MIEX® system increased turbidity by 29 percent and decreased the color, 

UV 254, and DOC by 28, 35, and 35 percent. After decreasing the MIEX® flow and replacing the 

ACH feed pump, the MIEX® process increased the turbidity by 17 percent, and decreased the 

color, UV 254, and DOC by 51, 57, and 46 percent. Although the MIEX® system is designed to 

have a negligible impact on turbidity, other researchers have noted an increase in turbidity through 

the carry-over of resin particles (Xu et al., 2013). Therefore, removing the paint chips from the 

resin reduced resin carry-over, as measured by the smaller increase in turbidity. In addition, 

retention of the resin in the contactor enhanced color, UV 254, and DOC removal efficiencies. The 

positive relationship between resin dose and organic removal was also demonstrated by Boyer and 

Singer (2005), who found that increasing the MIEX® resin dose resulted in a corresponding 

improvement in the DOC and UV 254 removal efficiencies. 
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Figure 4–24 MIEX® Phase Turbidity Removal 

 

Figure 4–25 MIEX® Phase Color Removal 
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Figure 4–26 MIEX® Phase UV 254 Removal 

 

Figure 4–27 MIEX® Phase DOC Removal 
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The process improvements of the MIEX® system were also reflected in the turbidity and organic 

removals across the coagulation pilot. At pilot start-up, the pilot coagulation increased the raw 

water turbidity by 50 percent and decreased the color, UV 254, and DOC by 87, 79, and 60 percent. 

After the ACH pump replacement, the increase in turbidity was reduced to 9 percent and the color, 

UV 254, and DOC percent removals were increased to 98, 94, and 72 percent. Although the 

coagulation pilot did not achieve complete settling of the coagulated flocs, replacing the ACH feed 

pump allowed for more effective coagulant dosing. The adequate coagulant dosing resulted in 

improved formation of discrete flocs and higher removal of DOM. 

Based on the turbidity and organic removal results, the most effective MIEX® pilot operation was 

achieved after the ACH feed pump replacement. After the pump replacement, UV 254 and DOC 

removal efficiencies (57 and 46 percent) for the MIEX® system were comparable to the results 

obtained by other researchers (Jarvis et al., 2008). In their study, Jarvis and colleagues (2008) 

found that the MIEX® system removed 49 and 47 percent of the UV 254 and DOC for a raw water 

source of similar DOC, UV 254, and turbidity levels (7.3 mg/L, 0.404 1/cm and 1.7 ntu). Therefore, 

additional water quality and DBP formation potential assessments were conducted for the time 

period after the ACH pump replacement (November 22, 2012 through February 3, 2013). 

MIEX® Water Quality Performance after ACH Feed Pump Replacement 

For the operating period after the ACH feed pump replacement, the impact of MIEX® pretreatment 

on the on turbidity, color, UV 254, DOC, and SUVA levels is demonstrated in the column graphs 

of Figures 4-28 through 4-32. In the column graphs, the average water quality of the MIEX® 

pretreatment unit operations (raw, MIEX®, MIEX®-ACH, and MIEX®-UF) is compared to the 
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control treatment train (plant-ACH and control-UF). For each water quality average, the error bars 

represent the confidence intervals at the 95 percent level. 

Compared to the full-scale coagulation process, the pilot-scale MIEX®-coagulation produced 

settled water with a higher average turbidity of 2.7 ntu. The elevated settled water turbidity resulted 

from the carry-over of coagulated floc aggregates. The presence of un-settled flocs in the MIEX®-

coagulated water is confirmed by the higher aluminum and iron concentrations of 1.1 and 0.26 

mg/L as compared to the aluminum and iron levels of 0.07 and 0.06 mg/L for the full-scale 

coagulated and settled water. Due to minimum MIEX® flow and site-space constraints, the 

coagulation pilot was not able to reproduce the low settling rate (0.035 gpm/ft2) of the full-scale 

coagulation process. Consequently, the pilot coagulation operated as a direct coagulation 

pretreatment to UF membrane filtration. 

 

Figure 4–28 MIEX® Phase Average Turbidity 
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Figure 4–29 MIEX® Phase Average Color 

 

Figure 4–30 MIEX® Phase Average UV 254 
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Figure 4–31 MIEX® Phase Average DOC 

 

Figure 4–32 MIEX® Phase Average SUVA 
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Although both the control and MIEX® pretreatment scenarios reduced the color to less than 1 CU, 

the additional MIEX® pretreatment lowered the raw water color from 76 to 37 CU. The reduction 

in color prior to coagulation supports the lower ACH coagulant dose requirements for the MIEX®-

coagulation operation as compared to the existing coagulation process. The full-scale coagulation 

reduced the UV 254 and DOC levels by 89 and 64 percent, respectively. These UV 254 and DOC 

removals were improved to 94 and 72 percent by the MIEX®-coagulation pretreatment. 

After the coagulation step, additional UV 254 and DOC reductions were observed across the 

control-UF and MIEX®-UF membranes. The control-UF membrane removed 6 and 29 percent of 

the plant settled water UV 254 and DOC levels; and the MIEX®-UF membrane removed 22 and 

48 percent of the pilot coagulated UV 254 and DOC concentrations. The organic removal results 

imply that organic matter was retained directly on the UF-control membrane and contributed to 

irreversible fouling. However, direct coagulation prior to the MIEX®-UF process provided a 

protective cake layer on the membrane that helped absorb organic matter and prevent direct 

deposition of organic foulants on the membrane surface (Dong et al., 2007; Wang et al., 2008). 

Overall, the UV 254 and DOC levels of the MIEX®-UF filtrate were 59 and 45 percent lower than 

the control-UF filtrate. The improvement in organic removal was also demonstrated by Jarvis and 

colleagues (2008), who found that MIEX® with coagulation reduced the DOC to 0.9 mg/L, while 

coagulation alone reduced the DOC to 1.2 mg/L. 

The character of the organic matter throughout the pretreatment-UF and control-UF process trains 

changed from mainly hydrophobic organic acids to more hydrophilic organic acids and proteins 

as implied by the SUVA values of Figure 4-32. After MIEX® treatment the average SUVA value 

decreased from 4.2 L/mg-m to 3.3 L/mg-m. Since the average SUVA value of 3.3 L/mg-m 
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remained indicative of mostly hydrophobic organics, the corresponding 46 percent reduction in 

DOC suggest that the MIEX® system removed both hydrophobic and hydrophilic organic 

fractions. The ability of MIEX® to remove hydrophobic and hydrophilic organics has also been 

recognized by other researchers (Boyer & Singer, 2005; Zhang et al., 2006; Jarvis et al., 2008; 

Dixon et al., 2010; Xu et al., 2011; Xu et al., 2013). Through the interpretation of EEM data, Xu 

and colleagues (2013) found that MIEX® removed fulvic and humic organic acids along with 

aromatic proteins. By partly removing fulvic, humic, and aromatic protein-like DOM, the MIEX® 

system provided an advantage over coagulation alone, which partly removed the larger 

hydrophobic organic acids. The effective removal of organic acids via coagulation is emphasized 

by the decrease in SUVA to 1.2 and 1.0 L/mg-m for the coagulated plant-ACH and MIEX®-ACH 

samples. The low SUVA values confirm that mainly the hydrophilic organic fractions remained 

after coagulation. 

Following coagulation, UF membrane filtration of the coagulated raw and MIEX® pretreated 

waters increased the SUVA values to 1.6 and 1.2 L/mg-m. The higher SUVA values indicate that 

the control-UF and to a lesser extent the pretreatment-UF processes removed more of the non-UV 

absorbing organic fraction. The non-UV absorbing organics are typically categorized as 

hydrophilic protein-like organic compounds and have been shown to contribute to membrane flux 

decline (Huang et al., 2007; Lozier et al., 2008). By achieving a greater reduction in hydrophilic 

and hydrophobic DOM, the MIEX®-coagulation pretreatment enhanced the UF feed water quality 

with respect to membrane foulants. 
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DBP Formation Potential 

The impact of MIEX® pretreatment on finished water quality was evaluated by determining the 

TTHM and HAA5 formation potentials for the control-UF and MIEX®-UF filtrates. Two sets of 

DBP formation potential experiments were conducted on December 7, 2012 and January 28, 2013. 

The water quality and operational parameters for the DBP formation potential experiments are 

summarized in Table 4-3. The TTHM and HAA5 speciation and corresponding chlorine residual 

results are included Tables F-4 through F-7 of Appendix F. 

The comparisons between the control-UF and MIEX®-UF four-day DBP formation potential are 

presented in the column graphs of Figures 4-33 and 4-34. The MIEX® pretreatment lowered the 

four-day TTHM and HAA5 levels by 56 and 34 percent in December 2012 and by 51 and 33 

percent in January 2013. The reduction in DBPs corresponded to UV 254 and DOC reductions of 

50 and 35 percent in December 2012 and of 76 and 55 percent in January 2013 (see Figures F-9 

and F-12 of Appendix F). In both experiments, the MIEX® pretreatment also decreased the SUVA 

values by about 0.4 to 0.9 L/mg-m. Based on the organic and four-day DBP comparisons, MIEX® 

pretreatment effectively removed DBP precursors and lowered TTHM and HAA5 concentrations 

below the 80 and 60 µg/L MCLs with free chlorine disinfection. 

Table 4–3 MIEX® Phase DBP Formation Potential Experimental Parameters 

Experimental Parameters 
12/7/2012 1/28/2013 

Control-UF MIEX®-UF Control-UF MIEX®-UF 

pH 8.81 8.76 8.81 8.77 
UV 254 0.046 0.023 0.034 0.008 

DOC (mg/L) 2.37 1.54 1.76 0.787 
SUVA (L/mg-m) 1.9 1.5 1.9 1.0 

Chlorine Dose (mg/L Cl2) 4 4 4 4 
Incubation Temperature (oC) 15-22 15-22 12-21 12-21 
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Figure 4–33 MIEX® Phase Four-Day TTHM Formation Potential 

 

Figure 4–34 MIEX® Phase Four-Day HAA5 Formation Potential 
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The corresponding TTHM formation potential and chlorine decay curves for the December 2012 

and January 2013 experiments are included in Figures F-10, F-11, F-13, and F-14 of Appendix F. 

In the TTHM formation potential graphs, the increase in TTHM concentration with contact time 

followed a typical logarithmic shape (Reckhow & Singer, 2011). Initially, chlorine reacted rapidly 

with DOM to form DBPs, then the reaction kinetics slowed after about 24 hours of contact time. 

Similar reaction rates were observed in the chlorine decay curves, in which a greater consumption 

in demand occurred during the first 6 to 24 hours. After 24 hours, the chlorine consumption was 

more gradual. As shown in the TTHM formation and chlorine decay curves, the MIEX® 

pretreatment reduced the TTHM formation potential and chlorine demand of the finished water by 

an average of 75 µg/L and 0.3 mg/L. The lower reduction in the chlorine demand by the MIEX® 

pretreatment during the January 2013 experiment likely resulted from under-dosing the sodium 

hypochlorite. Nevertheless, the TTHM formation and chlorine decay results confirm the 

effectiveness of the MIEX® pretreatment in controlling disinfection byproducts. 

MIEX® Pretreatment Impacts on UF Membrane Performance 

The effect of MIEX® pretreatment on UF membrane operating performance was assessed by 

comparing the feed water quality, temperature corrected TMP and specific flux, fouling trends, 

membrane percent recovery, and membrane autopsy results for the MIEX®-UF and control-UF. 

The temperature corrected TMP and specific flux time-series graphs for the control-UF and 

MIEX®-UF are illustrated in Figures F-15 through F-18 of Appendix F. In the graphs, feed 

temperature, flow, TMP, and specific flux are plotted as functions of filtration run time. The 

process adjustments are designated by varying dashed lines, and CIPs are designated by solid lines.  
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Prior to the ACH feed pump replacement, the MIEX®-UF pilot experienced sharp specific flux 

decline, which required frequent CIPs to maintain a constant water production. The intermittent 

operation of the MIEX® pilot increased the settled water turbidity as compared to the control. 

Consequently, the pronounced fouling of the MIEX®-UF membrane as compared to the control-

UF likely resulted from the carry-over of pin flocs. After the ACH feed pump replacement, more 

effective coagulant dosing produced larger discrete floc aggregates and a corresponding decrease 

in the MIEX®-UF fouling rate was observed. While additional shut-downs were encountered 

starting December 16, 2012, the MIEX®, coagulation, and UF membrane filtration pilot plants 

were operated continuously from November 22, 2012 to December 9, 2012. Therefore, the 

MIEX®-UF operation results from November 22nd to December 9th 2012 were analyzed to assess 

the pretreatment impacts on UF membrane performance. 

The average operational parameters for the MIEX®-UF and control-UF membrane pilots are 

outlined in Table 4-4. The UF membrane performance was analyzed at the beginning of the filter 

run, following a hypochlorite and citric acid CIP. Because of the difference in CIP frequencies 

between the MIEX®-UF and control-UF pilots, the clean membrane filter run for the control-UF 

commenced earlier on October 20, 2012 and the MIEX®-UF filter run started on November 22, 

2012. For the selected filter run times, the UF membranes were backwashed every 10 minutes to 

effectively remove the flocculant cake layer deposited from MIEX® with direct coagulation 

pretreatment. The increase in backwashing frequency reduced the membrane recovery from 89 (20 

minute backwash frequency) to 82 percent, which falls below the typical target range 85 to 95 

percent (Alspach et al., 2005). 
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Table 4–4 MIEX®-UF versus Control-UF Operational Parameter Summary 

Operational Parameter Control-UF MIEX®-UF 

Start of Filter Run 
Oct 20, 2012 

(Clean Membrane)  
Nov 22, 2012 

(Clean Membrane) 

Filtration Run Time (days) 12 13 

Membrane Recovery 

Backwash Frequency (min) 10 10 

Backwash Volume (gal/module) 10.6 10.6 

Number of Hypochlorite CIPs 1 2 

Number of Citric Acid CIPs 1 2 

CIP Volume (gal/module) 40 40 

Percent Recovery 82 82 

Average Membrane Process Data 

Flow (gpm) 4.2 4.2 

Flux Rate (gal/ft2-day) 20.2 20.3 

TCTMP @ 20 oC (psi) 14 12 

Specific Flux @ 20 oC  
(gal/ft2-d-psi) 

1.5 1.7 

 

For full-scale application of MIEX® pretreatment ahead of coagulation and UF membrane 

processes, adequate settling of the coagulated flocs prior to UF membrane filtration could possibly 

achieve more effective membrane recovery. Nevertheless, adjusting the backwash frequency of 

both UF pilots allowed for the side by side comparison of the MIEX®-UF and control-UF 

membrane operational results. For the operational conditions tested, the MIEX®-UF process 

operated at a higher average specific flux of 1.7 gal/ft2-d-psi and lower average TMP of 12 psi as 

compared to the control-UF process, which operated at 1.5 gal/ft2-d-psi and 14 psi. The statistical 

spread of the TMP and specific flux results is shown in the box-and-whisker plots of Figures 4-35 

and 4-36. Since the MIEX®-UF process had a smaller inner quartile range as compared to the 

control-UF, the MIEX®-UF operation was more stable and experienced fewer swings from 

minimum to maximum values. 
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Figure 4–35 MIEX® Phase TCTMP Box-and-Whisker Plot 

 

Figure 4–36 MIEX® Phase Specific Flux Box-and-Whisker Plot 
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The improvement in MIEX®-UF membrane performance is further emphasized by the TMP and 

specific flux time-series trends for the MIEX®-UF and control UF processes (shown in Figures 4-

37 and 4-38). As compared to the control-UF, the additional MIEX® pretreatment improved the 

membrane productivity, as indicated by the higher specific flux and lower TMP values. The 

independent t-tests and ANOVAs confirm that changes in specific flux and TMP between the 

MIEX®-UF and control-UF treatments were statistically significant at 95 percent confidence. 

Therefore, the additional MIEX® pretreatment enhanced the membrane TMP and specific flux by 

12 and 14 percent, respectively. The improvement in the downstream UF operating performance 

is supported by the work conducted by other researchers. Xu, Liu and other researchers have shown 

that MIEX® pretreatment reduced the membrane’s operating TMP (Zhang et la., 2006; Dixon et 

al., 2010; Liu et al., 2011 Xu et al., 2011). 

 

Figure 4–37 MIEX® Phase TMP Time-Series Trend 
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Figure 4–38 MIEX® Phase Specific Flux Time-Series Trend 
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Figure 4–39 Scatterplot of Specific Flux versus Feed Water Turbidity and DOC 

To confirm the impact of MIEX® pretreatment on the UF membrane performance, the comparison 

of turbidity, DOC, and specific flux differences before and after replacement of the ACH feed 
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Figure 4–40 Feed Water Quality Before and After ACH Pump Replacement 

After replacement of the ACH feed pump, the MIEX® pretreatment turbidity levels remained 

elevated, but the DOC concentration was lower and the corresponding membrane specific flux was 
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2008). The increase in floc resistance to shear stress possibly allowed for the formation of a more 
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In addition to improved floc characteristics, the lower DOC concentration in the feed water 

reduced the organic loading onto the MIEX®-UF membrane. In similar MIEX® pretreatment 

investigations, the researchers related the improvement in membrane performance to the removal 

of hydrophobic and hydrophilic organic fractions by the MIEX® treatment (Xu et al., 2011; Zhang 

et al., 2006; Liu et al., 2011; Dixon et al., 2010). Therefore, based on the improvement in coagulant 

dosing and corresponding DOC removal, the observed 14 percent increase in membrane specific 

flux derived from a combination of the reduction in DOM (34 percent of DOC) and formation of 

more discrete, permeable flocs that were more easily removed during backwashing. 

MIEX® Phase Membrane Autopsy Analysis 

At the conclusion of the MIEX® pilot testing, Evoqua performed membrane autopsies on the 

control-UF and MIEX®-UF membranes. Membrane CIPs were not performed prior to autopsy 

analysis. The autopsy analysis included physical examination of the membrane modules, scanning 

electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Evoqua performed the 

SEM and EDS analysis on 3 membrane fibers from the top-outside, middle-outside, middle-inside, 

and bottom-outside of both membrane modules. In addition, Evoqua collected SEM and EDS data 

from four foulant layer samples extracted from the MIEX®-UF membrane. 

The physical inspection results and comments are summarized in Table 4-5.The membrane weight 

increased for the control-UF and MIEX®-UF membranes by 2 and 3.5 pounds. The weight increase 

for the control-UF was attributed to solids accumulation; and for the MIEX®-UF was attributed to 

the accumulation of solids and MIEX® resin carried over into the membrane module. 
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Table 4–5 Physical Inspection of MIEX® Phase Membrane Modules by Evoqua 

Consideration MIEX®-UF Control-UF 

Module Weight (lbs) 18 16.5 

Virgin Module Weight 14.5 14.5 

Inspector Comments  MIEX® resin suspected to 
have carried through into 
the membrane module 

 No CIP performed prior 
to pulling module from 
membrane housing 

 CIP likely would not have 
recovered to normal 
module weight  

 Slight accumulation of 
solids (based on weight) 

 No CIP performed prior 
to pulling module from 
membrane housing 

 CIP likely would have 
recovered the module 
weight 

Source:  Information provided by Evoqua Water Technologies 

Although the control-UF module was expected to return to the normal weight after the CIP, the 

presence of MIEX® particles would prevent the MIEX®-UF membrane from returning to the 

normal weight after cleaning. The increased MIEX®-UF weight was also likely caused by the 

higher turbidity loading that resulted from the direct coagulation operation. 

The summary of the SEM and EDS results for one of the membrane fibers at each membrane 

location (top-outside, middle-outside, middle-inside, and bottom-outside) is presented in the 

Figures within Tables 4-6 through 4-9). The SEM and EDS results for the second and third 

membrane fibers and MIEX® foulant samples are included in Tables F-8 through F-16 of Appendix 

F. In the summary tables, the SEM images at 100 and 1000 times magnification are compared 

between the MIEX®-UF and control-UF membrane fibers located in the top-outside, middle-

outside, middle-inside, and bottom-outside of the membrane fiber. The SEM images reveal that 

the MIEX®-UF had a larger visible amount of foulant accumulated on the fiber surfaces than the 

control-UF. The thicker foulant layer on the MIEX®-UF fibers resulted from the direct carry-over 
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of floc aggregates. Although direct coagulation may promote the development of a cake that acts 

as a protective layer against pin floc and other DOM foulants, the lack of continuous monitoring 

and control over the optimum coagulant dose may hinder UF membrane performance (Dong et al., 

2007; Wang et al., 2008). 

Because of the pilot shut-downs experienced after December 16, 2012, unstable operation and 

insufficient control over coagulant dose contributed to the accumulation of an irreversible cake 

layer. Furthermore, Evoqua found evidence of the carry-over of MIEX® resin fines that may have 

also contributed to membrane fouling. The fouling of bench-scale UF membrane downstream of a 

MIEX® process was also observed by Huang and colleagues (2012). The researchers identified the 

deposition of MIEX® resin as the major cause of the downstream membrane fouling (Huang et al., 

2012). Comparing the different membrane fiber locations within the module reveals that the top 

and bottom fibers were more heavily fouled than the middle fibers in both the MIEX® pretreatment 

and control cases. The difference in foulant density throughout the membrane module is due to the 

module configuration, in which the feed water entered near the top of the pilot unit and filtrate 

exited near the bottom of the housing vessels. 

In addition to the SEM images, EDS analyses were performed on the fouled fibers to uncover the 

elemental breakdown of the foulant material. The EDS results show the elemental peaks at varying 

x-ray emission spectrums. The height of the elemental peaks provides qualitative information on 

the relative quantities of each detected element. Comparing the heavily and lightly fouled fibers 

allows for the distinction between the elemental peaks associated with the membrane material and 

the peaks associated with the foulant material. 
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In the EDS results for the lightly fouled fibers, the dominant carbon and fluorine peaks are 

indicative of the PVDF membrane material. On the other hand, the EDS results for the heavily 

fouled fibers reveal the major presence of carbon, oxygen, aluminum, and iron. Since fluorine was 

not detected the elemental analysis of the heavily fouled fibers, the source of the carbon detected 

on the heavily fouled fibers is most likely the foulant material. Therefore, the EDS results confirm 

that the foulant material for both the MIEX®-UF and control-UF membranes consisted mainly of 

organic, aluminum, and iron compounds in the form of complexes or enmeshed in metal 

precipitates – Al(OH)3 and Fe(OH)3 (MWH, 2005). The accumulation of the foulant material on 

the membranes resulted from the presence of un-settled aluminum hydrolysis products and 

medium to large DOM in the feed water. Although MIEX® with direct coagulation pretreatment 

was shown to improve downstream membrane performance, the autopsy results show that 

including the clarification step would likely further enhance the UF membrane performance by 

minimizing particulate and organic loading to the membrane. 
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Table 4–6 Top-Outside Fiber 1 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 Times Magnification 

  

SEM at 1000 Times Magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table 4–7 Middle-Outside Fiber 1 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 Times Magnification 

  

SEM at 1000 Times Magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table 4–8 Middle-Inside Fiber 1 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 Times Magnification 

  

SEM at 1000 Times Magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table 4–9 Bottom-Outside Fiber 1 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 Times Magnification 

  

SEM at 1000 Times Magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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GAC and BAC Pretreatment Performance Evaluation 

The performance of GAC adsorption and BAC filtration as pretreatments to UF membrane 

processes was assessed according to pilot-scale determinations of operational parameters, water 

quality, and UF membrane TMP, specific flux, recovery, and autopsy results. To examine the 

effects of different GAC treatment mechanisms, the results were organized with respect to the 

sequential phases of GAC filtration:  adsorption, transition, biological with orthophosphate 

adjustment, and biological with orthophosphate and pH adjustment. 

GAC and BAC Operational and Water Quality Performance 

Operation Analysis 

As compared to MIEX® pretreatment, GAC filtration required fewer maintenance activities. 

Maintenance activities consisted of performing fluidized bed backwashes once the pressure drop 

across the filter exceeded either 5 psi during the initial adsorption mode or 10 psi during the 

subsequent biological mode. Major operational parameters included flow rate, EBCT, HLR, and 

filter run time. The minimum, average, and maximum operational parameters for each of the GAC 

testing phases (GAC adsorption, BAC transition, BAC with orthophosphate adjustment, and BAC 

with orthophosphate and pH adjustment) are listed in Table 4-10. During the adsorption period, 

the average flow was 9.3 gpm which corresponded to an EBCT of 14 minutes and HLR of 0.74 

gpm/ft2. In addition, the GAC filter experienced filter runs ranging from 216 to 744 hours of 

filtration. The longer filter runs indicate that the pressure drop across the filter increased gradually 

due to the lack of particulate and biological accumulation on the filter media. 
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Table 4–10 GAC and BAC Operational Parameter Summary 

Testing Period 
Flow (gpm) EBCT (min) HLR (gpm/ft2) 

Filter Run Time 
(hours) 

Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

GAC Adsorption 7.1 9.3 11.5 11 14 18 0.56 0.74 0.92 216 480 744 

BAC Transition 7.7 10.5 12.9 10 12 16 0.61 0.84 1.0 72 168 288 

BAC (Ortho-P 
Adjustment) 

7.8 10.5 13.6 9 12 16 0.62 0.83 1.1 24 120 384 

BAC (Ortho-P & 
pH Adjustment) 

6.6 10.9 13.7 9 12 19 0.53 0.86 1.1 168 192 264 

 

In the subsequent BAC evaluation phases, the BAC contactor was operated at a lower EBCT of 

12 minutes to improve the economics of construction and GAC replacement. Furthermore, the 12 

minute experimental EBCT fell within the 5 to 15 minute range employed in similar biological 

pretreatment studies (Halle et al., 2009; Peldszus et al., 2012). For the 12 minute EBCT, the 

corresponding average flow rate was about 10.5 gpm and the hydraulic loading rate was about 0.83 

gpm/ft2, which remained gradual to promote the growth of the biofilm. Evidence of the 

development of the biofilm was provided by shorter filter run times ranging from 24 to 384 hours 

of filtration. The increased frequency of backwashing signaled that particulate and bio-growth 

accumulation attributed to an increase in the pressure drop. Increased pressure drop as a result of 

increased bio-growth on the media has also been observed by Huck and colleagues (2000) in bench 

and pilot scale biofiltration studies. The observed filter run times between 24 and 384 hours are 

similar to filter run times reported in the literature, ranging from 24 to 224 hours (Goldgrabe et al., 

1993; Lauderdale et al., 2014). 
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Water Quality Analysis 

Water quality was monitored for raw, plant-ACH, GAC or BAC, pretreatment-UF, and control-

UF water samples. The water quality averages were compiled for each of the activated carbon 

testing periods (adsorption, transition, BAC with orthophosphate adjustment, and BAC with 

orthophosphate and pH adjustment) and are recorded in Tables G-1 through G-5 of Appendix G. 

The accompanying time-series graphs for pH, temperature, turbidity, aluminum, iron, manganese, 

UV 254, DOC, SUVA, orthophosphate, free ATP, viable ATP, and HPC are illustrated in Figures 

G-1 through G-12 of Appendix G. 

The performance of the activated carbon pretreatment was evaluated according to the reduction in 

the level of particulate matter, organic matter, and metals. In Figure 4-41, average turbidity, UV 

254, and DOC removals with 95 percent confidence interval error bars are specified for each 

testing period. Similarly, average of differences between outlet and inlet aluminum, iron, and 

manganese concentrations is presented in Figure 4-42. Optimum pretreatment performance was 

achieved during the GAC adsorption phase. GAC adsorption removed on average 39 percent of 

turbidity, 48 percent of UV 254, 35 percent of DOC, and had a negligible impact on metals 

concentrations. The effectiveness of GAC in removing turbidity is attributed to the relatively low 

feed (plant-settled) water turbidity of 0.3 ntu. Additionally, the effective organic removal likely 

resulted from the strong affinity between the GAC active sites and dissolved organics (MWH, 

2005). The GAC results are supported by a previous pilot-scale study, in which Yang and 

researchers (2010) showed that GAC treatment removed the majority of the inlet turbidity and 

reduced the UV 254 by nearly 60 percent. 
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Figure 4–41 GAC/BAC Phase Average Particulate and Organic Removal 

 

Figure 4–42 GAC/BAC Phase Average Difference in Aluminum, Iron, and Manganese 
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As the active carbon sites became saturated with DOC, GAC filtration operation entered the BAC 

transition mode, where remaining active sites were exhausted and bacteria began colonizing the 

media. Evidence of the start of biological activity was offered by a 16 pg/mL increase in total ATP 

across the biofilter. Due to the unsteady-state or acclimation nature of the transition mode, BAC 

in transition had negligible impacts on turbidity, DOC, and metals, but removed about 11 percent 

of UV absorbing constituents. The reduction in UV absorbing constituents likely resulted from 

adsorption to remaining active carbon sites. 

Once orthophosphate addition began, the BAC transition was converted to BAC mode. BAC 

filtration removed on average about 11 percent of both turbidity and UV 254, and 8 percent of 

DOC. BAC filtration had no significant impact on the aluminum and iron levels, but reduced the 

manganese by about 20 percent. For BAC treatment, the 11 percent removal in turbidity was less 

than the 33 to 65 percent range reported by other researchers (Rittmann et al., 2002; Naidu et al., 

2013; Wang, 2014). Similarly, manganese removal was lower than the 70 percent removal reported 

by Granger and colleagues (2014) in their biofiltration study that assessed direct biofiltration of 

surface water. The 11 percent UV 254 removal was comparable to the 10 percent UV 254 removal 

reported in a previous research study that investigated BAC treatment of ozonated surface water 

(Geismar et al., 2012). On the other hand, the observed 8 percent reduction in DOC falls within 

the low range of DOC removal results (3 to 65 percent) reported in other BAC evaluation studies 

(Shon et al., 2005; Brown and Lauderdale, 2006; Naidu et al., 2013; Wang, 2014). 

A further decline in the BAC performance was observed during the subsequent orthophosphate 

and pH adjustment phase. While the reduction in manganese was maintained at 30 percent, BAC 

pretreatment failed to reduce the turbidity, UV 254, and DOC levels in the feed water. The lack of 
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particulate and organic removal was accompanied by an increase in the aluminum and iron levels 

across the BAC filter. The maintenance in the manganese removal suggest that the treatment 

conditions favored the proliferation of manganese oxidizing bacteria over iron oxidizing bacteria 

(Tekerlekopoulou et al., 2013). Therefore, biofilm detachment may have caused the breakthrough 

of metal precipitates and organic matter. The breakthrough of metals and organics from the BAC 

filter is suggested by the occurrence of BAC turbidity spikes reaching 3.5 ntu. In a published 

literature review on BAC treatment, Simpson supports that excess bio-growth can lead to the 

breakthrough of target contaminants, including turbidity and organics (2008). 

In an effort to identify additional causes for the loss in BAC treatment efficiency, the BAC inlet 

and outlet water quality averages were analyzed and compared. A summary of the water quality 

averages are presented in Figures G-13 through G-20 of Appendix G. The time-series graph of the 

inlet turbidity with corresponding DOC concentrations across the BAC is displayed in Figure 4-

43. Over time, the GAC adsorption capacity for DOC was exhausted and the GAC transitioned 

into biological degradation mode. While in biological mode, Figure 4-43 shows that feed water 

turbidity increased from 1 ntu to upwards of 3 ntu. The increase in feed water turbidity was likely 

caused by intermittent operation of the full-scale coagulation and sedimentation basin that began 

on September 7, 2013. Unsteady-state operation of the coagulation process lead to the observed 

formation of pin-floc that was carried over to the BAC pilot. Pin floc carry-over was accompanied 

by a loss in the DOC removal efficiency. 
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Figure 4–43 GAC/BAC Phase DOC and Feed Turbidity Time-Series Graph 

Niquette et al. (1998) and Lauderdale et al. (2014) have observed similar detrimental impacts of 
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and variable feed water quality likely contributed in part to diminishing DOC removal, an 
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The low alkalinity nature of the BAC feed water may have lacked sufficient cations to support a 

robust biofilm on the filter media. Instead the biofilm was susceptible to sloughing and detachment 

of the generated biomass. Susceptibility of the biofilm to detachment is supported by the biological 

monitoring results. While direct ATP measurements were not conducted on the filter media, an 

increase in the free and viable ATP levels across the BAC filter was observed and is shown in 

Figures 4-44 and 4-45. Increases in free and viable ATP were accompanied by increases in HPC 

across the BAC. The BAC filtration increased HPC levels by more than 1000 CFU/mL as 

emphasized in Figure 4-46. The scatterplot for the natural logarithm (ln) of HPC versus the natural 

logarithm of viable ATP (shown in Figure 4-47) reveals a weak but apparent positive exponential 

relationship between HPCs and viable ATP results. Additionally, the increase in biological activity 

across the BAC filter was accompanied by turbidity spikes in the BAC effluent. Although these 

pilot-scale results are insufficient to prove specific mechanisms, the ATP, HPC, and turbidity 

results offer motivation for future studies to uncover the mechanisms behind the effect of alkalinity 

on the biodegradable DOC removal by biofiltration. 

The average UV 254, DOC, and SUVA levels for the control-UF and pretreatment-UF processes 

are presented in Figures 4-48 through 4-50. GAC adsorption pretreatment reduced UV 254, DOC, 

and SUVA levels by 49, 42, and 13 percent. During the subsequent BAC evaluation with 

orthophosphate addition, BAC filtration reduced the UV 254, DOC, and SUVA by 12, 10, and 3 

percent. In the BAC with pH adjustment phase, the organic reduction fell to 4 and 5 percent of the 

UV 254 and DOC with a negligible impact on SUVA. Based on the organic removal results, the 

highest DOC removals were achieved during the adsorptive phase and reached a steady-state DOC 

removal of 10 percent during the BAC phase. 
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Figure 4–44 GAC/BAC Phase Average Free ATP 

 

Figure 4–45 GAC/BAC Phase Average Viable ATP 
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Figure 4–46 BAC Phase Average HPC 

 

Figure 4–47 ln[HPC] versus ln[Viable ATP] 
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Figure 4–48 GAC/BAC Phase UF Average UV 254 

 

Figure 4–49 GAC/BAC Phase UF Average DOC 
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Figure 4–50 GAC/BAC Phase UF Average SUVA 
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Table 4–11 GAC/BAC Phase DBP Formation Potential Experimental Parameters 

Testing 
Parameters 

GAC Adsorption BAC Transition BAC Ortho-P BAC Ortho-P & pH 

Control-
UF 

GAC-
UF 

Control-
UF 

BAC-
UF 

Control-
UF 

BAC-
UF 

Control-
UF 

BAC-
UF 

pH 8.80 8.85 8.79 8.75 8.76 8.83 8.79 8.8 

UV 254(1) 
(1/cm) 

0.03 0.003 0.05 0.042 0.054 0.051 0.056 0.053 

TOC(1) 
(mg/L) 

1.47 0.18 2.37 2.19 2.85 2.72 2.61 2.31 

SUVA(1) 
(L/mg-m) 

2.04 1.64 2.11 1.92 1.89 1.88 2.15 2.29 

Chlorine 
Dose 

(mg/L Cl2) 
2.5 2 4 4 4 4 3.5 3.5 

Incubation 
Temp. (oC) 

12-22 12-22 18-25 18-25 16-25 16-25 20-25 20-25 

(1) Water quality comparison graphs are included in Figures G-21, G-24, G-27, and G-30 of 
Appendix G. 

The comparisons between the control-UF and pretreatment-UF four-day chlorine demand and 

DBP formation potential are presented in the column graphs of Figures 4-51 through 4-53. At 

GAC pilot start-up, the GAC adsorption lowered the chlorine demand to less than 0.2 mg/L and 

reduced the TTHM and HAA5 levels by 95 and 42 percent. The low DBP formation potential 

results indicate that GAC adsorption is effective in removing DBP precursors. Based on the DOC 

time-series trend, GAC adsorption is expected to maintain effective DBP precursor removal up to 

approximately 45 days of filtration time. The GAC pilot-breakthrough calculations are presented 

in Appendix I. After about 45 days of filtration time the DOC reduction would likely not be 

sufficient to control regulated DBP formation. 

During the transition mode, the activated carbon filtration reduced the chlorine demand by 0.2 

mg/L and both the TTHM and HAA5 formation potential by 13 percent. The reduction in chlorine 
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demand and DBP formation potential was likely due to the combination of adsorption and 

biodegradation mechanisms. In the subsequent BAC with orthophosphate phase, BAC filtration 

reduced the chlorine demand by 0.5 mg/L and the TTHM formation potential by 8 percent, but did 

not reduce the HAA5 formation potential. During the BAC pH adjustment phase, the BAC filter 

achieved a 0.3 mg/L reduction in chlorine demand that corresponded to 5 and 19 percent reductions 

in TTHM and HAA5 formation potential. Although BAC filtration reduced chlorine demand and 

regulated DBP formation potential, biological pretreatment was not sufficient to lower TTHM and 

HAA5 levels below the MCLs of 80 and 60 µg/L. 

 

Figure 4–51 GAC/BAC Phase Four-Day Chlorine Demand 
Note: Chlorine decay curves are illustrated in Figures G-22, G-25, G-28, and G-31. 
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Figure 4–52 GAC/BAC Phase Four-day TTHM Formation Potential 
Note:  Formation potential curves are illustrated in Figures G-23, G-26, G-29, and G-32. 

 

Figure 4–53 GAC/BAC Phase Four-Day HAA5 Formation Potential 
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GAC and BAC Pretreatment Impacts on UF Membrane Performance 

The effect of GAC and BAC pretreatments on UF operating performance was assessed by 

comparing the UF membrane feed water quality, operational parameters, and autopsy results for 

the control-UF and pretreatment-UF pilot plants. The pilot plants were operated continuously 

throughout the pilot testing. However, the intermittent operation of the full-scale plant between 

September 7 and December 4, 2013 altered the water quality of the excess settled water that was 

continuously supplied to the BAC filter and control-UF pilots. Consequently, UF operation was 

compiled into five periods:  GAC adsorption (initial run), BAC transition, BAC with 

orthophosphate (continuous full-scale), BAC with orthophosphate (intermittent full-scale), and 

BAC with orthophosphate and pH adjustment. The continuous versus intermittent terminology 

refers to the full-scale plant operation not the BAC and UF pilot operation. 

For each evaluation period, the average membrane recovery and process data is summarized in 

Table 4-12. Throughout the UF pilot testing, the membrane percent recovery remained around 89 

percent for a backwashing frequency of 20 minutes. Overall, the pretreatment reduced the number 

of hypochlorite and citric acid CIPs by about half. GAC adsorption increased the average specific 

flux by 30 percent. Additionally, the BAC with orthophosphate (intermittent full-scale) increased 

the specific flux by 9 percent. Negligible impacts on specific flux were observed during the other 

BAC operating periods. To observe the effect of pretreatment on the statistical spread of the UF 

process data, TMP and specific flux box-and-whisker plots for the control-UF and pretreatment 

UF are compared in Figures 4-54 through 4-58. As indicated by the narrower quartile and whisker 

ranges, the pretreatment-UF exhibited more stable operation with fewer swings between extreme 

values. 
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Table 4–12 GAC/BAC Phase Pretreatment-UF versus Control-UF Operation 

Operational 
Parameter 

GAC Adsorption BAC Transition 
BAC with Ortho-P 

(Continuous Full-Scale 
Operation) 

BAC with Ortho-P 
(Intermittent Full-Scale 

Operation) 

BAC with Ortho-
P & pH 

Control GAC Control BAC Control BAC Control BAC Control BAC 

Selected Time 
Frame 

4/27/13 to 5/16/13 7/26/2013 to 8/9/13 8/10/13 to 9/6/13 9/7/13 to 11/2/13 
11/3/13 to 
12/31/13 

Membrane Recovery 

Number of 
Hypochlorite 

CIPs 
1 0 1 1 0 0 2 0 1 1 

Number of 
Citric Acid 

CIPs 
1 0 1 1 0 0 2 0 1 1 

PERCENT 
RECOVERY 

89 89 89 89 89 89 89 89 89 89 

Average Membrane Process Data(1) 

Flow (gpm) 4 4 4 4 4 4 4 4 4 4 

Flux Rate 
(gal/ft2-day) 

19.0 19.4 19.2 19.2 19.1 19.2 19.2 19.2 19.2 19.2 

TCTMP @ 20 
oC (psi) 

17 13 12 13 12 13 15 14 15 16 

Specific Flux 
@ 20 oC 

(gal/ft2-d-psi) 
1.2 1.5 1.6 1.5 1.6 1.5 1.3 1.4 1.3 1.2 

(1) TMP and specific flux time-series graphs throughout the pilot testing are included in Figures G-33 and G-34 of Appendix G. 
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Figure 4–54 GAC Specific Flux 

 

Figure 4–55 Transition Specific Flux 
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Figure 4–56 BAC with Orthophosphate (Continuous Full-Scale) Specific Flux 

 

Figure 4–57 BAC with Orthophosphate (Intermittent Full-Scale) Specific Flux 
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Figure 4–58 BAC with Orthophosphate and pH Adjustment Specific Flux 
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Figure 4–59 GAC Specific Flux Time-Series Graph 

 

Figure 4–60 Transition Specific Flux Time-Series Graph 
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Figure 4–61 BAC with Orthophosphate (Continuous Full-Scale) Specific Flux Graph 

 

Figure 4–62 BAC with Orthophosphate (Intermittent Full-Scale) Specific Flux Graph 
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Figure 4–63 BAC with Orthophosphate and pH Adjustment Specific Flux Time-Series Graph 

Deviation between the control-UF and pretreatment-UF specific-flux trends was observed 

following the start of the intermittent full-scale operation as emphasized in Figure 4-62. During 

the BAC (intermittent full-scale) evaluation, the BAC pretreatment attenuated the rapid rate of 

specific flux decline experienced by the control-UF membrane. The control-UF membrane 

required two CIPs with hypochlorite followed by citric acid to recover the specific flux to levels 

approaching the pretreatment-UF specific flux. After the start of the pH adjustment phase, the 

control-UF and pretreatment-UF membranes followed similar specific flux trends until the end of 

the intermittent full-scale operation. The change in full-scale operation appeared to cause a lag in 

the control-UF fouling trend, which corresponded with more frequent CIPs as compared to the 

pretreatment-UF membrane. 
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The specific flux fouling trends revealed that the impact of pretreatment on UF membrane 

performance varied throughout the sequential GAC operating phases. During the GAC adsorption 

and BAC (intermittent full-scale) testing phases, the pretreatment enhanced UF membrane 

performance by increasing the average specific flux and reducing the fouling rate and CIP 

frequency. On the other hand, BAC pretreatment failed to improve UF membrane performance 

during the transition, BAC (continuous full-scale), and BAC with pH adjustment phases. To 

identify reasons for the variation in UF membrane performance, the difference in specific flux 

(control-UF minus pretreatment-UF) was plotted against the difference in feed water turbidity and 

DOC (BAC inlet minus outlet). The specific flux versus turbidity and DOC scatterplots are 

presented in Figures 4-64 and 4-65. 

 

Figure 4–64 Scatterplot of Specific Flux versus Feed DOC 
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Figure 4–65 Scatterplot of Specific Flux versus Feed Turbidity 

As also demonstrated in the MIEX® evaluation phase, the DOC and turbidity scatterplot results 

indicate that the specific flux improved with greater reduction in feed water DOC and turbidity. 

The influence of UF feed turbidity is also demonstrated by the time-series plot of specific flux 

along with feed turbidity, included in Figure G-34. Throughout UF pilot operation, the CIP events 

typically coincided with increases or spikes in the feed water turbidity to the membranes. 

In addition to water quality scatter-plots, average of paired differences in UF specific flux and feed 

water turbidity, DOC, free ATP, and viable ATP were determined and compared. The average of 

paired differences throughout the GAC and BAC operational phases is illustrated in Figures 4-66 

and 4-67. The comparison of the average of paired differences in specific flux and feed water 

turbidity and DOC supports the positive correlation between specific flux improvement and lower 

feed turbidity and DOC. 
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Figure 4–66 Average Difference in Specific Flux and Feed Water Turbidity and DOC 

 

Figure 4–67 Average Difference in Specific Flux and Feed Water Free and Viable ATP 
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The GAC adsorption phase achieved the highest levels of DOC and turbidity removal, which 

coincided with the greatest improvement in UF specific flux. Of the BAC pretreatment modes, the 

BAC (intermittent full-scale) evaluation phase achieved the largest differences in feed water DOC 

and turbidity, and showed the most improvement in the membrane specific flux. Furthermore, the 

comparison of the differences in free and viable ATP between the UF feed waters reveals that the 

largest increase in biological activity occurred during the BAC (intermittent full-scale) evaluation 

phase. 

The UF membrane operation results reveal that GAC adsorption pretreatment was effective in 

improving the water production efficiency of the UF membrane by increasing the specific flux and 

reducing the fouling rate and CIP frequency. The GAC results support the findings from Tsujimo 

and associates (1998), who demonstrated that GAC pretreatment allowed for the stable operation 

of the downstream membrane process. On the other hand, when applying BAC filtration 

downstream of sedimentation and ahead of UF membrane filtration, coagulation operation and 

control of settled water turbidity appeared to exert a stronger influence on the downstream UF 

membrane performance. Consequently, the benefits of BAC pretreatment, mainly the slight 

increase in the specific flux and decrease in the CIP frequency, would not outweigh the associated 

construction of operating costs of the additional pretreatment. 

The relatively poor performance of BAC pretreatment for UF membrane processes contradicts the 

research findings presented by Huck, Wei, Duranceau and other researchers (Wend et al., 2003; 

Basu & Huck, 2004; Halle et al., 2009; Peldszus et al., 2012; Wei et al., 2011; Mosqueda-Jimenez 

& Huck, 2006; Dureanceau & Tharamapalan, 2013). A possible explanation for the poor BAC 

performance includes the unsteady feed water turbidity, organic, and biological composition. 
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However, LeChevallier and coworkers (1992) have demonstrated that a pre-ozonated BAC 

process, influenced by poor turbidity removal of the upstream pilot-scale coagulation, still 

achieved a 56 reduction in the TOC. Additionally, experiments conducted without pre-ozonation 

showed that BAC filtration without pre-ozonation produced similar effluent AOC levels (92 µg/L) 

as with pre-ozonation (100 µg/L) (LeChevallier et al., 1992). One major difference between the 

present study and previous research studies is the level of feed water alkalinity. Raw water 

alkalinity levels in previous studies have been greater than 30 mg/L CaCO3 (see Table 2-1); 

however, the average alkalinity of Olinda raw water is about 2 mg/L as CaCO3. Thus, the deficient 

BAC performance observed in the present study suggests that low alkalinity or “alkalinity limited” 

water supplies do not effectively support attached biological processes. The impact of alkalinity 

on biofilter performance relative to UF membrane processes was examined through the 

development of a new model framework. 

GAC and BAC Phase Membrane Autopsy 

At the conclusion of the BAC pilot testing, Avista performed membrane autopsies on the control-

UF (also referred to as “UF A”) and pretreatment-UF (also referred to as “UF B”) membranes. 

Membrane CIPs were not performed prior to autopsy analysis. The autopsy analysis included 

physical examination of the membrane modules and stereoscope imaging of the fibers. A foulant 

analysis was also conducted which included the following tests: loss on ignition, acid testing, 

microscope analysis of foulant material, fourier transform infrared (FTIR) analysis, energy 

dispersive x-ray (EDX) analysis, scanning electron microscope (SEM), chromatic elemental 

imaging (CEI). 
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Physical Inspection and Stereoscope imaging 

The physical inspection and stereoscope imaging results are summarized in Tables 4-13 and 4-14. 

In general, the BAC-UF visually appeared more discolored and fouled than the Control-UF. The 

orange colored foulant was observed to be denser and darker on the BAC-UF. Furthermore, 

comparing the different membrane fiber locations within the module for both the Control-UF and 

BAC-UF membranes reveals that the top and bottom fibers were more heavily fouled than the 

middle fibers. The difference in foulant density throughout the membrane module is due to the 

module configuration, in which the feed water entered near the top of the pilot unit and filtrate 

exited near the bottom of the housing vessels. 

Table 4–13 Photographs of Physical Inspection of BAC Phase Membrane Modules by Avista 

Module Image of Module 
Image of  

“product end” 

Control-
UF 

 

 

BAC-UF 
 

 
Source:  Courtesy of Avista Technologies 
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Table 4–14 Description of Physical Condition of BAC Phase Membrane Modules by Avista 

Consideration Control-UF BAC-UF 

cage wrap Good condition and free of 
foulant material  

Good mechanical condition, 
but was coated with red-brown 
colored foulant material. 

plastic cover Good condition and free of 
foulant material 

No obvious signs of plugging; 
however, the epoxy was 
orange in some areas and 
foulant debris was detected on 
the outer radius. 

internal inspection The fibers closest to the cage 
wrap in the center of the 
module were virtually free of 
foulant debris 

The fibers closest to the outer 
cage wrap displayed a distinct 
pattern of fouling consistent 
with the cage wrap material. 

Stereoscope imaging foulant material varied in 
thickness and was unevenly 
distributed 

foulant material varied in 
thickness and was unevenly 
distributed 

Source:  Information provided by Avista Technologies 

Organic Content Analysis through Loss on Ignition Test 

The “Loss on Ignition” test provided an estimate of the ratio of organic to inorganic material in 

the foulant. The percent organic content as detected by the loss on ignition testing is shown in 

Figure 4-68. The organic portion did not significantly differ between the control and the BAC 

foulant material and was roughly 60% organic and 40% inorganic. 

Acid Testing for Carbonate Presence 

Acid testing was conducted to detect the presence of carbonates in the foulant. Carbonate was not 

detected in the foulant collected from both the control-UF and BAC-UF. 
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Figure 4–68 Comparison of BAC Phase Membrane Module Loss on Ignition (%) 
Source:  Data provided by Avista Technologies 

Microscopic Evaluations 

Microscopic evaluations were then conducted to test for the presence of microbiological organisms 

in the foulant material. Images from the foulant microscopic inspection (at 1000 times 

magnification) with stained microbiological organisms for the control and pretreatment 

membranes are shown in Table 4-15. In the microscopic tests, the results appeared similar for the 

both samples of foulant. Inorganic material, colloids, algae and Gram negative bacteria were 

detected for foulant collected from both the control-UF and BAC-UF. 

  

58.30%

41.70%

UF-Control

Organic Portion Inorganic Portion

61.00%

39.00%

UF-BAC

Organic Portion Inorganic Portion
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Table 4–15 Comparison of Microscope Images for BAC Pretreatment Evaluation  

Control-UF BAC-UF 

  
Source:  Courtesy of Avista Technologies 

Fourier Transform Infrared Spectroscopy 

Fourier Transform Infrared Spectroscopy (FTIR) analysis detects the presence of functional groups 

of organic and inorganic foulant constituents. The results of the FTIR analysis revealed several 

differences between functional groups detected in the foulant collected from the heavily fouled 

fibers from the control-UF and the BAC-UF fibers. The comparison is shown below in Table 4-

16. Only aldehyde and the C-H organic functional group was detected in the BAC-UF and was 

previously undetected in the foulant collected from the control-UF. Conversely, C-N, N-H, C-C, 

and C=C were detected in the control-UF foulant but was not present in the BAC-UF foulant. 

Additionally, the peak for N-C-O was stronger in the control-UF foulant. The results of the FTIR 

analysis indicate that the foulant collected from the BAC-UF contained fewer organic and 

inorganic functional groups. 
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Table 4–16 Comparison of FTIR Analysis Results for BAC Evaluation Phase 

Functional Group Control-UF BAC-UF 

C-H Weak Yes 

C-N Yes No 

N-H Yes No 

C-C Yes No 

C=C Yes No 

H-C-OH Weak Weak 

N-H-C=O Weak Weak 

N-C-O Yes Weak 

C-O-C Weak Weak 

PVDF Weak Weak 

Aldehyde Not Reported Yes 

Source:  Information provided by Avista Technologies 

Energy Dispersive X-ray (EDX or EDS) Analysis 

EDX analysis was conducted to identify inorganic foulant constituents. The results of this test are 

shown in Figure 4-69 and 4-70. Most notably, the iron content appeared to increase significantly 

in the foulant for the BAC-UF. Manganese content also increased but was a relatively small 

percentage of the foulant material. The manganese content was also detectable in the CEI results. 

Additional imagery was taken including SEM and CEI images, for which figures are presented in 

Table G-10 of Appendix G. The following observations were noted: 

 The SEM images reveal that the BAC-UF had a larger visible amount of foulant 

accumulated on the fiber surfaces than the control-UF. 

 CEI images revealed the presence of manganese on the BAC-UF membrane which was 

not present on the control-UF. 
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Figure 4–69 Comparison of EDX Analysis results from the control-UF and BAC-UF 
Source:  Data provided by Avista Technologies 

 

Figure 4–70 Select results of EDX analysis from the control-UF and BAC-UF 
Source:  Data provided by Avista Technologies 
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An Approach for Modeling Biofiltration Performance 

In an effort to provide the water industry a simple yet practical model for predicting the 

performance of biofiltration pretreatment ahead of UF membrane processes, an innovative 

modeling approach for predicting biofiltration performance was developed. The modeling concept 

is based on the empirical relationship between the ratio of inorganic carbon (alkalinity) to organic 

carbon or substrate (DOC) and the corresponding improvement to the UF membrane’s specific 

flux or mass transfer coefficient (MTC). Converting the alkalinity units from mg/L as CaCO3 to 

mg/L as C, as shown in Equation 4-1, allowed for the development of a dimensionless alkalinity 

to substrate (ALK/DOC) ratio, which is calculated according to Equation 4-2. For the alkalinity 

unit conversion equation, it was assumed that the equivalent weights of carbon and calcium 

carbonate were 6 and 50 mg/mequivalent, respectively. The improvement to the UF membrane’s 

MTC is calculated using the temperature corrected specific flux, previously defined in Equation 

2-4, for the membrane with and without biofiltration pretreatment (see Equation 4-3). 

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 (𝑚𝑔𝐿 𝐶) = 𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 (𝑚𝑔𝐿 𝐶𝑎𝐶𝑂3) × 𝐸𝑊𝐶𝐸𝑊𝐶𝑎𝐶𝑂3 (4-1) 

𝐴𝐿𝐾𝐷𝑂𝐶 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) = 𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦(𝑚𝑔 𝐶 𝐿⁄ )𝐷𝑂𝐶(𝑚𝑔 𝐶 𝐿⁄ )  (4-2) 

𝑀𝑇𝐶 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡(%) = 𝑀𝑇𝐶𝑏𝑖𝑜𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛−𝑀𝑇𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑀𝑇𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙 × 100 (4-3) 

Where: 

𝐸𝑊𝐶(𝑚𝑔 𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡⁄ ) = 𝑀𝑊𝐶(𝑚𝑔/𝑚𝑚𝑜𝑙)2(𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑚𝑚𝑜𝑙⁄ ) 
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𝐸𝑊𝐶𝑎𝐶𝑂3(𝑚𝑔 𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡⁄ ) = 𝑀𝑊𝐶𝑎𝐶𝑂3(𝑚𝑔/𝑚𝑚𝑜𝑙)2(𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑚𝑚𝑜𝑙⁄ ) 

MWC = Molecular weight of carbon (12 mg/mmol) 

MWCaCO3 = Molecular weight of calcium carbonate (100 mg/mmol) 

DOC = Dissolved organic carbon concentration in the biofilter feed water (mg/L) 

MTCbiofiltration = Specific flux at 20 oC of UF with biofiltration pretreatment (gal/ft2-day-psi at 20oC) 

MTCcontrol = Specific flux at 20 oC of UF without biofiltration pretreatment (gal/ft2-day-psi at 20oC) 

The empirical model was developed using experimental data retrieved from previous research 

studies and BAC pilot testing results from the present research. The ALK/DOC ratio of the BAC 

feed water and corresponding MTC improvement values for the Olinda pilot testing were averaged 

across the BAC evaluation phase (August 10, 2013 to December 31, 2013). Table 4-17 presents 

the alkalinity to substrate (ALK/DOC) ratio and MTC improvement data that was used to 

investigate the relationship between the ALK/DOC ratio and MTC improvement. 

The relationship was examined by plotting MTC improvement versus ALK/DOC ratio. The 

scatter-plot analysis of the biofiltration data is illustrated in Figure 4-71. Figure 4-71 reveals that 

the relationship between MTC improvement and ALK/DOC ratio exhibits a parabolic shape. Thus, 

the biofiltration data may be fitted to a quadratic equation as defined in Equation 4-4 and displayed 

in Figure 4-72. For a quadratic model, boundary conditions would be defined by the range of input 

data, which includes ALK/DOC ratios between zero and approximately 24. Beyond an ALK/DOC 

ratio of 24, MTC improvement would approach a parabolic negative infinity. 
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Table 4–17 Biofiltration Data from Literature for Model Development 

Reference(1) 
Water 
Source 

Feed Water Quality 
ALK/DOC 

Ratio 

MTC (gal/ft2-day-psi) 
MTC 

Improvement 
Alkalinity 

(mg/L CaCO3) 
Alkalinity 
(mg/L C) 

DOC 
(mg/L) 

Control Biofiltration 

Cumming, 2015 Natural SW 3.68 0.44 3.14 0.14 - - 4.5(2) 

Wend et al., 2003 
Synthetic 

SW 
100(3) 12 4.0 3.0 0.54 0.59 8.7 

Peldszus et al., 2012 Natural SW 213 26 5.8 4.4 7.6 10.4 36 

Wang 2014 Natural SW 89 11 2.0 5.3 7.5 10.6 40 

Duranceau & 
Tharamapalan, 2013 

Surficial 
GW 

166 20 2.0 10 13 20 54 

Mosqueda-Jimenez & 
Huck, 2006 

Synthetic 
SW 

272(4) 33 2.1 16 58(5) 88(5) 52 

Wei et al., 2011 
Synthetic 

SW 
200(6) 24 1.3 19 2.7 3.8 39 

Basu & Huck, 2004 
Synthetic 

SW 
325 39 2.0 20 18 23 25 

Lipp et al., 1998 Natural SW 250 30 1.3 23 5.2 5.7 10 

(1) The data excludes studies that used water sources not directly impacted by surface water, used higher pressure NF or RO membranes, or lacked reported data 

to calculate either the ALK/DOC ratio or MTC improvement. 

(2) The MTC improvement was calculated from the average of paired control and biofiltration MTC values not overall averages. 

(3) Alkalinity level was retrieved form City of Bozeman WTP’s Water Quality Report (City of Bozeman, 2014). 

(4) Alkalinity level was estimated using the reported hardness concentration (283 mg/L as CaCO3) and alkalinity to hardness fraction of 0.96, which was retrieved 

from similar bench-scale studies performed by Basu & Huck, 2006 and Mosqueda-Jimenez & Huck, 2009. 

(5) The MTC units are relative specific flux (%) as reported in research paper (Mosqueda-Jimenez & Huck, 2006). 

(6) The researchers added domestic wastewater to the synthetic surface water source; therefore, the alkalinity was assumed to be approximately 200 mg/L as 

CaCO3, which is the typical average alkalinity for domestic wastewater (Metcalf & Eddy, 2003). 
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Alternatively, it may be assumed that for ALK/DOC values greater than 24, the MTC improvement 

approaches a boundary level. This assumption may be modeled using a normal or Gaussian 

distribution. An example of a Gaussian distribution curve and mathematical equation is presented 

in Figure 4-73 and Equation 4-5. 

 

Figure 4–71 MTC Improvement versus ALK/DOC Ratio Scatter-Plot Analysis 
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Figure 4–72 Example of Quadratic Equation 𝑀𝑇𝐶 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡(%) = 𝑎 (𝐴𝐿𝐾𝐷𝑂𝐶 + 𝑏)2 + 𝑐 = 𝑐1 + 𝑐2 (𝐴𝐿𝐾𝐷𝑂𝐶) + 𝑐3 (𝐴𝐿𝐾𝐷𝑂𝐶)2
 (4-4) 

Where: 

a = Constant describing steepness of parabolic curve 

b = Constant describing x-axis translation 

c = Constant describing y-axis translation 

c1 = Model parameter, 𝑐1 = 𝑎𝑏2 + 𝑐 

c2 = Model parameter, 𝑐2 = 2𝑎𝑏 

c3 = Model parameter, 𝑐3 = 𝑎 
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Figure 4–73 Example of Gaussian Distribution 

𝑀𝑇𝐶 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡(%) = 𝑐1 + (𝑐2 − 𝑐1)𝑒[−𝑐3×(𝐴𝐿𝐾𝐷𝑂𝐶−𝑐4)2]
 (4-5) 

Where: 

c1 = Model parameter describing y-axis translation 

c2 = Model parameter describing maximum y-value of curve peak 

c3 = Model parameter describing steepness of Gaussian distribution 

c4 = Model parameter describing x-axis translation 

To determine whether a quadratic equation or Gaussian distribution could be used to develop a 

predictive model, Equations 4-4 and 4-5 were fitted against the biofiltration data using non-linear 

regression in Minitab®. The starting values for the model parameters (included in Table 4-18) were 

selected based on evaluation of Figure 4-71. 
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Table 4–18 Starting Values for Model Parameters in Minitab® 

Parameter 
Starting Value 

Quadratic Equation Gaussian Distribution 

c1 1 0 

c2 1 55 

c3 1 0 

c4 - 12 

 

For the quadratic equation, starting model parameters were set to one. For the Gaussian 

distribution, y-axis peak, y-axis translation, x-axis translation, and curve steepness were 

approximated as 55, 0, and 12, and 0, respectively. After the starting parameters were selected, the 

Minitab® software executed the non-linear regression analysis for the quadratic equation and 

Gaussian distribution. 

The Minitab® non-linear regression models with fitted constants are presented in Equations 4-6 

and 4-7. The corresponding quadratic equation and Gaussian distribution fitted line plots for the 

MTC improvement versus ALK/DOC ratio is illustrated in Figure 4-74. The model statistics are 

summarized in Table 4-19. The complete Minitab® output summary is included in Appendix H. 

Quadratic:  𝑀𝑇𝐶 𝐼𝑚𝑝. = −1.023 + 8.966 (𝐴𝐿𝐾𝐷𝑂𝐶) − 0.3720 (𝐴𝐿𝐾𝐷𝑂𝐶)2
 (4-6) 

Gaussian:  𝑀𝑇𝐶 𝐼𝑚𝑝. = −36.46 + (57.26 + 36.46)𝑒[−0.0061×(𝐴𝐿𝐾𝐷𝑂𝐶−12.03)2]
 (4-7) 
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Figure 4–74 ALK/DOC versus MTC Improvement Empirical Model 

 

Table 4–19 Minitab® Model Statistics Summary 

Statistic 
Value 

Quadratic Equation Gaussian Distribution 

Iterations 2 11 

Degrees of Freedom 6 5 

Mean Square Error (MSE) 54.3 55.9 

Standard Deviation (s) 7.37 7.47 
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As shown in Figure 4-74, both the quadratic equation and Gaussian distribution fitted models 

followed the data closely. The model statistics reveal that the quadratic equation had a lower MSE 

value of 54.3 as compared to the Gaussian distribution model, which had a MSE of 55.9. 

Nevertheless, the relatively low MSE values of both models confirm that the biofiltration 

performance correlates with the dimensionless alkalinity to substrate ratio. Hence, the empirical 

relationship between MTC improvement and ALK/DOC ratio can be modeled as a quadratic or 

Gaussian mathematical equation. For the quadratic equation, boundary conditions are defined as 

ALK/DOC ratios between zero and 24. For the Gaussian distribution, it appears that the MTC 

improvement boundary level approaches negative 36 percent for ALK/DOC ratios greater than 40. 

According to both ALK/DOC models, biofiltration performance is optimized when the alkalinity 

to substrate ratio is between 10 and 14. Interestingly, for this data set, the ALK/DOC optimum 

ratio approximates twelve. Alkalinity to substrate ratios less than 10 or greater than 14 yield a 

diminished improvement on the membrane’s MTC. MTC improvement drops below 20 percent 

for alkalinity to substrate ratios less than 3 or greater than 21. The water quality conditions where 

the alkalinity to substrate ratio is less than 3 or greater than 21 are newly defined as “alkalinity 

limited” or “substrate limited.” 

For alkalinity limited water supplies, the waters may contain adequate substrate levels, but are low 

in alkalinity. It is anticipated that low alkalinity water sources lack sufficient levels of polyvalent 

metal cations, mainly calcium and magnesium that aid in strengthening the EPS matrix necessary 

for the development of a robust biomass on the filter media (Lion et al., 1988; Novak et al., 1998; 

Zhu et al., 2010). Therefore, poor attachment and possible detachment of the biomass may increase 

the bioactivity in the biofilter effluent as measured by viable ATP or HPC. 
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LeChevallier and colleagues (1992) reported an increase in HPC bacterial counts across a biofilter 

treating surface water with relatively low ALK/DOC ratio of 1.2 and total hardness of 56 mg/L. It 

is expected that higher biological activity in the biofilter effluent would offer limited benefit to a 

downstream UF membrane process; however, the researchers did not evaluate a membrane process 

downstream of the biofilter (LeChevallier et al., 1992). 

To investigate whether hardness could be used in place of alkalinity to model biofilter 

performance, an analogous evaluation of MTC improvement versus dimensionless hardness to 

DOC ratio was performed. The MTC improvement versus harness to DOC ratio scatter-plot 

(Figure 4-75) reveals a weak linear correlation with r-squared value of 0.46. 

 

Figure 4–75 MTC Improvement versus Hardness to DOC Ratio Scatter-Plot 
Note:  Hardness data for Wang, 2014 reference was retrieved from Regional Municipality of Peel, 
2014; hardness data was not found for Wei et al., 2011 source 
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The hardness to DOC ratio analysis implies that alkalinity is not simply a surrogate parameter but 

likely plays a direct role in chemical and biological processes within biofilters. Furthermore, the 

Olinda BAC pilot study incorporated pH adjustment to reach a neutral pH with caustic, yet the 

engineered biofiltration measure did not enhance biofilter performance. Hence, it is anticipated 

that both hardness (calcium and magnesium) and alkalinity (inorganic carbon) concentrations 

influence biofilter performance relative to UF membranes. Further research is needed to identify 

and understand the chemical and biological mechanisms occurring in alkalinity-limited bio-

stabilization. Nevertheless, the results from the present BAC pilot study document for the first 

time the limitation of biofilters treating low alkalinity surface water sources ahead of UF 

membranes. 

In addition to alkalinity limited constraints, biofiltration processes treating waters rich in alkalinity 

but poor in substrate would not provide sufficient benefit to downstream UF membranes. Under 

the substrate limited water quality condition there is not enough carbon or energy source (“food”) 

for microorganisms to sustain their metabolic processes, as has been previously demonstrated by 

LeChevallier (1991) and Metcalf and Eddy (2003). 

Based on the concept of alkalinity or substrate limited water supplies, the ALK/DOC model 

provides a method for optimizing biofilters by targeting the ALK/DOC ratio that maximizes 

improvement on the membrane’s MTC. Generally, ALK/DOC ratios between 5 and 20 are 

expected to yield between 30 to 57 percent improvement on the membrane MTC. If the feed water 

quality falls out of the 5 to 20 ALK/DOC range, the feed water may be supplemented with either 

alkalinity (bicarbonate) or substrate (acetic acid) to achieve adequate biofilter performance. 
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While the models cannot be fully validated due to the absence of additional data, the relatively low 

MSE values indicate that the models are a good fit for the data. Additionally, predicted versus 

actual scatter-plots of the MTC improvement data for the quadratic and Gaussian models are 

presented in Figure 4-76. The scatter-plots reveal a linear fit with r-squared values of 0.88 and 0.89 

for the quadratic and Gaussian models, respectively. The predicted versus actual analysis supports 

that the ALK/DOC empirical models provide a promising foundation for future researchers to 

validate and refine the models. Further research, particularly at low and high ALK/DOC ratios is 

needed to better define the MTC improvement behavior near the “tails” or boundaries of the 

models. Nevertheless, both ALK/DOC models are expected to provide a practical approach for 

identifying alkalinity or substrate limitations and optimizing biofilter performance. 

 

Figure 4–76 Predicted versus Actual MTC Improvement 
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Addressing the Notice of Retraction of Wei et al., 2011 Reference 

After development of the biofiltration models defined in Equations 4-6 and 4-7, IEEE (2015) 

released a notice of retraction for the Wei et al. (2011) reference. The Minitab® non-linear 

regressions were re-evaluated without the Wei et al. (2011) data reference. The model parameters 

and statistical outputs for the quadratic equation and Gaussian distribution are included in 

Appendix H. The Minitab® regression results revealed that without the Wei et al. (2011) reference 

the fitted quadratic equation had a MSE of 62.4 and the fitted Gaussian distribution had a MSE of 

59.8. While each model similarly predicts biofiltration performance as was previously defined in 

Equations 4-6 and 4-7 respectively, the Gaussian distribution model revealed a better statistical fit 

to the data without the Wei et al. (2011) reference. 

Conceptual Economic Evaluation 

The MIEX®, GAC adsorption, and BAC pretreatment alternatives were further evaluated based on 

qualitative non-cost considerations and conceptual opinions of probable construction and 

operating costs. The non-cost considerations provide a means of comparison based on water 

quality, regulation compliance, and operational performance. Additionally, the conceptual cost 

opinions provide a means of economical comparison based on vendor based estimates, experience 

with analogous systems, USEPA cost curves, and literature citations. 
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Non-Cost Evaluation 

The purpose of analyzing the pretreatment alternatives based on non-cost considerations is to aid 

in identifying the process that best meets regulatory, water quality, and operating goals. The 

pretreatment options were compared to the status quo (existing system condition) according to the 

following conceptual evaluation strategies. 

 Advantages and Disadvantages 

 Water Treatment Performance 

 Non-Cost Criteria Matrix 

 Conceptual Risk Assessment Matrix 

The non-cost evaluation was developed based on the understanding of the alternative technologies 

and the site-specific issues associated with the Upcountry water systems. The advantages and 

disadvantages of the alternatives and status quo are outlined in Table 4-20. 

The water treatment performance evaluation consists of rating each alternative as either not 

effective, partially effective, or effective treatment against major microbial and organic 

contaminants. The treatment ratings for the alternatives and status quo are presented in Table 4-

21. The water quality treatment performance evaluation revealed that the UF process of the status 

quo is the most effective with respect to microbial treatment, and the MIEX® and GAC 

pretreatments are the most effective for organic carbon and DBP control. For the Olinda water 

quality conditions, the BAC pretreatment offers partial treatment effectiveness for microbial and 

organic removal. Therefore, for effective microbial and organic treatment a combination of the 

existing system and MIEX® or GAC would be the preferred integrated treatment process. 
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Table 4–20 Advantages and Disadvantages of Treatment Strategies 

Treatment Strategies Advantages Disadvantages 

Status Quo – Existing System  Maintain DBP compliance 
with chloramine disinfection 

 No additional water treatment 
costs 

 Membrane fouling related to 
floc carry over 

 Nitrification events trigger 
distribution system flushing 

 Lower system cannot 
supplement Upper system 
during drought conditions 

Install MIEX® High Rate system 
pretreatment of Olinda raw water 
ahead of coagulation 

 Reduce dissolved organic 
precursors 

 Meet DBP regulations on free 
chlorine 

 Reduce ACH coagulant dose 
requirements and associated 
chemical costs 

 Capital costs 

 Salt required for resin 
regeneration 

 Resin supplementation  

 Brine waste disposal 

 Complex operation and 
maintenance requirements 

 Possible 24 hour staffing 
requirement 

 Frequent transportation of salt, 
resin, and brine through narrow 
residential roadway 
(City of St. Could, 2011; Palm 

Beach County, 2014) 

Install GAC contactor column 
post-coagulation/pre-filtration 
treatment of Olinda settled water 

 Reduce dissolved organic 
precursors 

 Meet DBP regulations on free 
chlorine 

 Further reduce organic and 
particulate loading on the UF 
membranes, which may reduce 
UF backwashing and chemical 
cleaning frequencies, and 
increased productivity 

 Ease of operation and 
maintenance  

 Capital costs 

 High GAC replacement 
frequency and costs due to rapid 
exhaustion of the GAC media 

 Pilot testing revealed a monthly 
GAC replacement frequency 

 Frequent transportation of spent 
and fresh GAC through narrow 
residential roadway  

Install BGAC filtration post-
coagulation/pre-filtration 
treatment of Olinda settled water 

 Reduce DBP formation 
potential through natural 
bacterial degradation of 
dissolved organic carbon 

 Reduce particulate and organic 
fouling of UF membranes 

 Extend the GAC bed life and 
reduce change-out frequency by 
biological regeneration 

 Ease of operation and 
maintenance 

 Capital cost 

 Pilot study demonstrated that 
BGAC filtration treatment did 
not significantly extend the GAC 
bed life nor reduce the DBP 
formation potential of the 
chlorinated Olinda finished 
water 
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Table 4–21 Conceptual Evaluation of Treatment Performance 

Water 

Quality→ 
Treatment↓ 

Microbial Organic 

Bacteria Virus Turbidity 
Giardia/
Crypto 

HAA 5 
Precursor 

TTHM 
Precursor 

TOC Color 

Status Quo 

Coagulation/
Flocculation/
Basin(1) 

◐ ○ ◐ ○ ◐ ◐ ◐ ● 

UF ● ◐ ● ● ○ ○ ○ ○ 

Chloramines ● ● ○ ○ ◐ ◐ ○ ○ 

Possible Pretreatments 

MIEX® ○ ○ ○ ○ ● ● ● ● 

GAC ◐ ○ ◐ ○ ● ● ● ● 

BGAC ◐ ○ ◐ ○ ○ ○ ○ ◐ 

○  not effective treatment 

◐  partially effective treatment 

●  effective treatment 

(1) The basin is intended to serve as a clarifier; however, the basin is not designed to provide 
clarification as no sludge handling facility exists. 

 

The descriptions and impact factors for the selected non-cost criteria are defined in Table 4-22. 

The non-cost criteria matrix evaluation assigns a numerical ranking system for each alternative 

with respect to how effective the treatment is the four major areas of consideration—sustainability, 

operability, reliability and constructability. Each criteria has an impact factor for the entire 

category and sub-categories for which each technology is assigned a score. The technology that 

achieves the highest score is considered to be the preferred process with respect to the specified 

non-cost criteria. The scores for each pretreatment alternative were selected based on the 

performance of each alternative and its applicability to the unique conditions of the Upcountry 

water system. 
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Table 4–22 Non-Cost Criteria Evaluation 

Criteria Sub-Criteria 

Impact 
Factor 
Weight 

(%) 

Description 

Scale 

Lowest= 1 Highest = 5 

Sustainability 

Public Perception 

12.3% 

 Public perception issues 
 Chemical and energy usage 
 Water loss 

Lowest public 
acceptability and 
process efficiency 

Highest public 
acceptability and 
process efficiency 

Chemical 
Efficiency 

Energy Efficiency 

Production 
Efficiency 

Operability 

Residuals Disposal 8.7% 
 Residual type and quantity 
 Ease of disposal 

Highest residual 
quantity and 
disposal challenges 

Lowest residual 
quantity and disposal 
challenges 

Staffing 
Requirements 

9.8% 
 Operator training and 

staffing 
Highest training and 
staffing 
requirements 

Lowest training and 
staffing requirements 

Operator Safely 18.8%  Operational safety risks Highest risk Lowest risk 

Maintainability 11.9% 
 Operation and maintenance 

requirements 
Most challenging to 
operate and maintain 

Easiest to operate and 
maintain 

Reliability 

Proven 
Technology 

10.1% 
 Effective performance 

proven with previous 
successful installations 

Least references and 
installation 

Most references and 
installations 

Flexibility/ Water 
Quality 

20.2% 
 Meeting current and future 

regulations 
 Variation in water quality 

Lowest probability 
of meeting 
regulations 

Highest probability of 
meeting regulations 

Constructability 

Flexibility 

8.2% 

 Expandability 
 Environmental impacts 
 Footprint requirement 

Lowest flexibility of 
construction and 
expandability and 
highest footprint 

Highest flexibility of 
construction and 
expandability and 
lowest footprint  

Footprint 
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The non-cost consideration results, presented in Table 4-23, found that the highest ranked 

pretreatment alternative based on non-cost criteria was GAC followed by MIEX® and BAC. The 

GAC alternative achieved the highest non-cost criteria score because of the high DBP precursor 

removal efficiency and relatively easy operation and maintenance requirements. The MIEX® 

received a lower score due to the intensive operation and maintenance requirements and the need 

to dispose of a concentrated brine waste stream. The BAC received the lowest non-cost criteria 

score because of the low treatment efficiency relative to regulated DBP formation potential. 

The conceptual risk assessment is displayed in Figure 4-77. For the conceptual risk analysis, the 

alternatives were assigned a grid (x,y) score based on the impact on Olinda WTP costs (x) and 

probability of success with DBP compliance (y). The status quo provides the baseline for 

comparison and was assigned a grid score of (5,5). The pretreatment alternatives were assigned a 

(x,y) score based on the treatment efficiency and relative impact on water treatment costs. The 

interpretation of the (x,y) score depends on the grid quadrant location. Alternatives that fall on the 

status quo lines have similar impacts as the status quo. The preferred alternative would be located 

in the fourth quadrant, in which effective DBP control is achieved at lower costs. 

The risk assessment revealed that the MIEX® and GAC alternatives fell in the first quadrant, while 

the BAC alternative fell in the second quadrant. Based on the relative impacts on DBP control and 

treatment costs, the MIEX® alternative would achieve DBP compliance with free chlorine 

disinfection at the lowest impact on Olinda WTP costs. The GAC alternative offers a high 

probability of success relative to DBP compliance with free chlorine at the highest impact on 

Olinda WTP costs. On the other hand, the BAC would yield a low probability of success relative 

to DBP compliance with free chlorine at a high impact to Olinda WTP costs. 
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Table 4–23 Non-Cost Considerations Matrix 

Consideration 
Impact 
Weight 
Factor(1) 

Alternative Score(3) 

GAC MIEX® BAC 

PS(2) WS(3) PS(2) WS(3) PS(2) WS(3) 

Sustainability(4) 12.3% 4 0.10 3.5 0.09 4.25 0.10 
Public Perception  5  4  3  
Chemical 
Efficiency 

 1  1  4  

Energy Efficiency  5  5  5  
Production 
Efficiency 

 5  4  5  

Operability        
Residuals Disposal 8.7% 1 0.02 1 0.02 2 0.03 
Staffing 
Requirements 

9.8% 5 0.10 1 0.02 5 0.10 

Operator Safety 18.8% 4 0.15 4 0.15 5 0.19 
Maintainability 11.9% 1 0.02 2 0.05 5 0.12 

Reliability        
Proven 
Technology 

10.1% 5 0.10 5 0.10 2 0.04 

Flexibility/Water 
Quality 

20.2% 5 0.20 5 0.20 1 0.04 

Constructability(4) 8.2% 3.5 0.06 4 0.07 3.5 0.06 

Flexibility  4  5  4  
Footprint  3  3  3  

Total Score (3)  0.75  0.69  0.68 

(1) Non-cost considerations are assigned an impact weight factor. 
(2) Processes are ranked with a point score (PS) from 1 to 5 with 5 being the best. 

(3) The normalized weighted score (WS) is the product of the impact weight factor (%) and the 

point score divided by 5 (IF x PS / 5).The preferred process is the one with the highest total 

score (closest to 1). 

(4) The average PS of the respective sub-considerations is used to calculate the normalized WS. 
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Figure 4–77 Conceptual Risk Assessment 

(1) Probability of success ranked from lowest probability (1 is least favorable) to highest 
probability (9 is best) of DBP compliance in the Upper Kula distribution system. 

(2) Impact on Olinda WTP operation & maintenance and water supply costs ranked from lowest 
cost impact (1 is best) to highest cost impact (9 is lease favorable). The scores are linearly 
correlated to the conceptual opinion of amortized total costs of Table 4-24. 

(3) Ranked based on maintaining chloramines in Upper system and free chlorine in the Lower 
systems.  

(4) Ranked based on uniform free chlorine disinfection throughout the Upcountry system. 
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Conceptual Opinion of Probable Construction and Operating Costs 

The conceptual cost opinions for the MIEX®, GAC, and BAC pretreatment alternatives were 

developed based on a 2.7 million gallon per day (MGD) treated water capacity. USEPA cost 

curves, literature citations, vendor based estimates and experience with analogous systems were 

used to develop conceptual cost opinions (USEPA, 1979; 1979; MWH, 2005; Lekven, 2011; City 

of St. Cloud, 2011; Orica Watercare, 2011; Sharma et al., 2011; County of Maui, 2012; 2013; Palm 

Beach County, 2014). The conceptual cost opinions are intended to be used for comparison 

purposes only, as they do not represent design-based engineering estimates. In addition, conceptual 

operating cost opinions were based on process operation costs only. Labor, delivery charge, and 

debt service were not included in the operating cost calculations. Appendix J presents relevant 

assumptions and calculations utilized to determine the conceptual cost opinions. 

The conceptual cost opinions with non-cost considerations are summarized in Table 4-24. Of the 

pretreatment alternatives (not considering the status quo), the more economically feasible 

pretreatment option would be installing a MIEX® high rate system for $1.86/1000 gallons. The 

GAC and BAC alternatives would require a significant financial expenditure of $4.45/1000 gallons 

because of the high cost of activated carbon replacement, which is required to maintain effective 

DBP control with free chlorine disinfection. While the MIEX® alternative offers a more 

economically favorable option over the GAC and BAC alternatives, the MIEX® system has limited 

applicability in the Upcountry water system because of the operational and brine waste disposal 

challenges. Because of the limited applicability of MIEX® and high cost of GAC and BAC, the 

conceptual economic evaluation revealed that the status quo is the preferred engineering 

alternative for the Olinda WTP and Upcountry water system. 
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Table 4–24 Conceptual Evaluation of Olinda Water Treatment and Management Options 

Description of 
Alternatives 

Conceptual 
Opinion of 
Probable 

Construction 
Cost(1) ($) 

Conceptual 
Opinion of 
Probable 

Operating 
Cost(1) ($) 

Conceptual 
Opinion of 
Amortized 

Total 
Cost(2) 

($/1000 gal) 

Non-Cost 
Consideration 

Normalized 
Weighted 

Score (Highest 
is preferred) 

Conceptual 
Risk Score 

(x,y) 
(Lowest x and 

highest y 
value is 

preferred) 

Subjective Advantages 
Subjective 

Disadvantages 

Status Quo 0 1,080,000 1.10 Baseline (N/A) Baseline (5,5)  
 No additional water 

treatment costs 
 Does not address 

existing operational 
challenges 

Install MIEX® 
High Rate 
System at 
Olinda WTP 

4,890,000 1,460,000 1.86 0.690 (6,9) 

 Meet DBP regulations 
with free chlorine 
disinfection 

 Difficult to operate and 
maintain 

 Resin and salt costs 

 Brine generation and 
disposal costs 

Install GAC at 
Olinda WTP 

2,780,000 4,170,000 4.45 0.748 (9,9) 
 Meet DBP regulations 

with free chlorine 
disinfection 

 High GAC 
replacement cost due 
to short GAC bed-life 

Install BAC at 
Olinda WTP 

2,780,000 4,170,000 4.45 0.683 (9,2.5) 
 Reduce UF membrane 

fouling 

 Ease of operation 

 Not effective in 
controlling DBP 
formation potential 

(1) The US EPA cost curves, literature citations, vendor based estimates and experience with analogous systems were used to develop 

conceptual opinions of probable costs (Lekven, 2011; City of Sanford, 2013, County of Maui, 2012, 2013 & 2014; MWH, 2005; 

Orica Watercare, 2011; Sharma et al., 2011; US EPA, 1979 & 1979). 

(2) The conceptual opinions of probable costs calculations and relevant assumptions are included in the Appendix J.
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

In 2012, the County partnered with the WRF and UCF in a tailored collaboration research project 

at the Olinda WTP to address water quality and operational challenges that are due in part to the 

difficulties of coagulating low alkalinity, organic-laden surface water prior to UF membrane 

filtration. To help identify an effective pretreatment strategy for the UF membrane process, 

MIEX®, GAC adsorption, and BAC filtration were evaluated. Of the pretreatment alternatives, 

biofiltration has been recently identified by researchers as an option for controlling UF membrane 

fouling. Consequently, the main objective of the research was to contribute to the body of 

knowledge with regards to biofiltration pretreatment for UF membrane processes. Specifically, 

three central research questions were addressed: 

1. How is biofiltration performance impacted by low alkalinity water sources? 

2. What are the treatment impacts and possible benefits of integrating biofiltration within 

conventional-UF processes? 

3. Can a new modeling framework be developed to offer a practical approach for predicting 

biofilter performance ahead of UF membrane processes? 

To propose answers to these questions, biofiltration pretreatment was evaluated holistically by 

examining source water chemistry and extending the analysis into the drinking water distribution 

system. Waikamoi watershed quality was profiled to understand the chemistry of the water as it 

travels from the flume to the Olinda WTP. Additionally, MIEX®, GAC adsorption, and BAC 

filtration were compared at the pilot-scale in terms of operational requirement, DOC removal, and 

improvement to downstream UF process operation. UF performance was determined by 
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calculating the percent MTC improvement relative to the existing conventional-UF process that 

served as the control. The pretreatment alternatives were further evaluated based on cost and non-

cost considerations. 

Compared to MIEX® and GAC, which achieved effective DOC removal (40 and 40 percent, 

respectively) and MTC improvement (14 and 30 percent, respectively), BAC achieved the lowest 

overall DOC removal (5 percent) and MTC improvement (4.5 percent). While MIEX® relies on 

anion exchange and GAC relies on adsorption to target DOC removal, biofiltration uses 

microorganisms attached on the filter media to remove biodegradable DOC. Based on the BAC 

results, two mathematical models were developed that allow for a predictive means to optimize 

operation of biofiltration prior to UF membrane processes treating surface water. 

From the experimental data, one could conclude that optimized biological pre-stabilization prior 

to UF and chlorination will resolve biological fouling problems. Nevertheless, the total effect of 

pretreatment must be evaluated. Although biofiltration shows promise and appears to be a viable 

alternative, bio-stabilizing ahead of a UF process may not provide sufficient DBP precursor 

removal. Also, AOC was not evaluated in the study as chlorine was the target disinfectant. While 

monochloramine may be the disinfectant of economic choice to provide a disinfection residual for 

high TOC water supplies, it may not provide the desired disinfection effectiveness and its use may 

result in the formation of DBPs that may come into regulation in the future. 
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Surface Overland Flow Water Quality Analysis 

The headwaters of the Waikamoi watershed contained upwards of 10 mg/L of DOC at a pH of 

approximately 4.0 pH units; however, the ATP levels were typically less than 250 pg/mL. These 

findings were unlike the reservoirs that contained the greatest biological ATP levels, upwards of 

500 pg/mL at a pH of about 6.0 pH units and DOC level of approximating 6.5 mg/L. Furthermore, 

the rainy season was characterized by higher turbidity, higher DOC, and higher ATP content as 

compared to the drought condition. 

The watershed quality results reveal that the inorganic, organic, and biological composition of the 

source water is most influenced by system elevation, reservoir storage condition, and weather 

condition. Generally, the highest watershed locations contained elevated DOC levels and low pH 

units; the reservoirs contained the highest biological ATP levels; and rainy weather conditions 

experienced higher turbidity, DOC, and ATP levels. Establishing the watershed quality trends 

offered useful insights for identifying watershed management strategies that would help facilitate 

treatment at the Olinda WTP.  

Confirmation of Existing Conventional-UF Process Operations 

Based on the findings from the pilot and full scale monitoring and jar testing results, the following 

conclusions are offered. 

 On average, the full-scale Olinda WTP’s coagulation process reduced the raw water 

turbidity, color, UV 254, and DOC by 79, 94, 83, and 59 percent, respectively. 
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 Jar testing results at varying ACH doses and pH units revealed that the average optimum 

turbidity, color, UV 254, and DOC removals were 64, 95, 87, and 62 percent, respectively. 

 Comparisons between the full-scale and jar testing results revealed that Olinda’s 

coagulation process is operating near optimum particulate and organic removals. 

Therefore, additional DOC removal treatment is necessary to achieve greater DBP 

precursor removal. 

 The Olinda chlorinated TTHM and HAA5 formation potential exceeded the regulatory 

MCLs. The DBP results further support the need for additional DBP precursor treatment 

to allow for conversion of the disinfectant from monochloramine to free chlorine. 

 Olinda raw and coagulated water EEM matrix diagrams indicated that the dissolved 

organic matter (DOM) was primarily comprised of hydrophobic fulvic and humic organic 

acids and aromatic protein-like organics. Fulvic and humic acids are known precursors to 

DBP formation and contribute to UF membrane fouling. Protein-like organics also 

contribute to UF membrane fouling. Furthermore, DOM supplies the substrate for 

biological metabolic processes, which can also aggravate membrane fouling. 

 Although the pilot and full UF membrane processes did not operate at similar TMP and 

specific flux magnitudes, they shared similar fouling trends and produced filtrates with 

comparable water quality. Therefore, the UF pilot provided an acceptable control condition 

for evaluating the impact of pretreatment on UF operating performance. 

 Pilot testing and subsequent membrane autopsies confirmed that alum floc carryover 

impacted process operations and was found to be a more significant contributor to UF 

productivity decline than other identified foulants. 
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 Typically, source water turbidity averages about 3.2 ntu and settled water turbidity 

averages approximately 0.8 ntu. However, the Olinda WTP experienced settled water 

turbidity upwards of 3.0 ntu during drought condition when the full-scale plant was 

intermittently operated. Correspondingly, DOC removal effectiveness dropped to 45 

percent during drought condition. Thus, intermittent full-scale plant operation during 

drought was found to be detrimental to treatment performance. 

Ultrafiltration Pretreatment Assessment 

A summary of the MIEX®, GAC adsorption, and BAC pretreatment performance is presented in 

Table 5-1. Of the pretreatment alternatives evaluated, GAC adsorption achieved the greatest 

overall improvement in specific flux. The MIEX® system was a close second with a 14 percent 

average improvement in the specific flux. Both GAC and MIEX® achieved similar DBP formation 

removal efficiency. BAC pretreatment achieved the lowest improvement in specific flux and 

reduction in regulated DBP formation. 

Table 5–1 MIEX®, GAC Adsorption, and BAC Pretreatment Performance Summary 

Pretreatment 
Improvement 

Specific Flux TTHM HAA5 

MIEX® 14% 54% 36% 

GAC Adsorption(1) 30% 54% 40% 

BAC 4.5% 8% 9% 

(1) DBP removals approximated based on the average between GAC start-up and transition. 
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Based on the pretreatment water quality, operation, economic, and UF membrane analysis, the 

following conclusions were formulated. 

MIEX® High Rate System Pretreatment 

 The MIEX® pilot required intensive operation and maintenance activities. 

 The MIEX® pilot experienced frequent pilot shut-downs that were inadvertently caused by:  

drought impacting operation flexibility, paint chips in the resin, irregularities with the 

software settings, interruption of the regeneration cycle, conductivity probe malfunction, 

pump failure, and power outages. 

 On-site space constraints limited the settling rate of the of the coagulation pilot. Therefore, 

the coagulation pilot was operated as a direct coagulation pretreatment process. 

 Once continuous operation of the MIEX®, coagulation, and UF membrane pilots was 

established, MIEX® pretreatment was able to be assessed for treatment effectiveness. 

  MIEX® pretreatment reduced the downstream ACH coagulant dose by 57 percent. 

 The MIEX® and coagulation pretreatment increased the average operating specific flux by 

14 percent as compared to coagulation and clarification pretreatment. The improvement in 

membrane productivity was attributed to reduction in DOC and pin floc loading to the UF 

membrane. 

 The MIEX®-UF process reduced the average four-day TTHM and HAA5 formation 

potential to 65 µg/L and 33 µg/L. Based on the simulated DBP results, the MIEX® 

pretreatment effectively lowered the chlorinated TTHM and HAA5 formation potential 

below the 80 µg/L and 60 µg/L MCL. 
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 The carry-over of permeable floc aggregates from the MIEX® with direct coagulation 

pretreatment contributed to the formation of a protective cake layer on the membrane. To 

remove the cake layer before irreversible compaction, membrane operation required a 10 

minute backwashing frequency. A 10 versus 20 minute backwashing frequency reduced 

the membrane recovery from 89 to 82 percent. 

 The Evoqua membrane autopsy results confirmed that the major components of the 

membrane foulant material were aluminum, iron, and organic matter. 

GAC Adsorption Pretreatment 

 GAC pretreatment required few operation and maintenance activities, which mainly 

consisted of filter backwashing. 

 On average, GAC removed 50 and 40 percent of the feed water turbidity and DOC. 

 At pilot-start up, GAC adsorption reduced the four-day TTHM and HAA5 formation 

potential below the regulatory 80 and 60 µg/L MCLs with free chlorine disinfection. 

 GAC pretreatment improved UF specific flux rate by 30 percent. The increase in specific 

flux was accompanied by a reduction in the membrane fouling trend and chemical cleaning 

frequency. The observed enhancement in UF operating performance was most likely due 

to a reduction in feed water turbidity and DOC. 

 GAC adsorption capacity was exhausted in about 60 days of filtration run time. Effective 

DBP precursor (DOC) removal is expected to continue through approximately 45 days of 

filtration, after which the reduction in DOC would likely not be sufficient. 
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BAC Pretreatment 

 BAC operation and maintenance activities consisted of filter backwashing, orthophosphate 

injection for nutrient enhancement, and sodium hydroxide chemical feed injection for pH 

adjustment. 

 Engineered BAC pretreatment demonstrated evidence of biological DOC degradation, 

manganese oxidation, and turbidity removal. On average, the BAC filter reduced the inlet 

DOC, turbidity, and manganese levels by 11, 8, and 20 percent. 

 BAC pretreatment lowered the four-day TTHM and HAA5 formation potential by 

approximately 8 and 9 percent. However, the reduction in chlorinated DBP levels was not 

sufficient to achieve regulatory compliance. 

 By dampening the spikes in settled water turbidity and DOC concentration, BAC 

pretreatment reduced the membrane CIP frequency and increased the operating specific 

flux by about 4.5 percent, on average. 

 Intermittent full-scale plant operation during drought was found to correspond to spikes in 

plant settled water turbidity upwards of 3 ntu. This change in plant settled water quality 

that supplied the BAC pilot contributed in part to a decrease in the BAC treatment 

effectiveness relative to turbidity and DOC removal. 

 The Avista autopsy results confirmed that aluminum, iron, and organic matter contributed 

to membrane fouling. 
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An Approach for Modeling Biofilter Performance 

By combining the BAC results with findings from previous studies, two empirical models were 

developed for predicting the performance of biofiltration pretreatment for UF membrane 

processes. The empirical models describe the relationship between the alkalinity to substrate 

(ALK/DOC) ratio and the corresponding improvement of the UF membrane’s MTC. Based on the 

empirical modeling results, the following conclusions were developed. 

 For surface water sources, MTC improvement can be modeled as a quadratic or Gaussian 

distribution function of the ALK/DOC ratio. 

 While the models cannot be fully validated due to the absence of additional data, the 

relatively low MSE values of 54.3 and 55.9 for the quadratic and Gaussian distribution 

models, respectively, indicate that both models provide a good fit for the data. 

 According to both the quadratic and Gaussian distribution ALK/DOC models, biofiltration 

performance is optimized when the alkalinity to substrate ratio is between 10 and 14. 

Alkalinity to substrate ratios less than 10 or greater than 14 yield a diminished 

improvement on the membrane’s MTC. 

 The surface water quality conditions where the alkalinity to substrate ratio is less than 3 or 

greater than 21 are newly defined as “alkalinity limited” or “substrate limited.” 

 For alkalinity limited water supplies, waters may contain adequate substrate levels, but are 

low in alkalinity. On the other hand, substrate limited water sources are rich in alkalinity 

but poor in substrate. 

 Based on the concept of alkalinity or substrate limited water supplies, the ALK/DOC 

empirical models provide a practical method for optimizing biofilters by targeting the 
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ALK/DOC ratio that maximizes improvement on the membrane’s MTC. Generally, 

ALK/DOC ratios between 5 and 20 are expected to yield between 30 to 57 percent 

improvement on the MTC. 

Conceptual Economic Evaluation of Ultrafiltration Pretreatment Alternatives 

Based on the conceptual economic analysis, the following conclusions were formulated. 

 The MIEX® pretreatment alternative would provide effective DBP precursor treatment at 

a conceptual cost opinion of $1.86/1000 gallons. However, the applicability of installing 

the MIEX® system at the Olinda WTP and Upcountry water system is limited by intensive 

operation and maintenance activities and the absence of a feasible method for disposing of 

the aqueous brine waste stream. 

 The GAC pretreatment option offers effective DBP precursor treatment with low operation 

and maintenance requirements. However, the GAC alternative would require an economic 

expenditure of $4.45/1000 gallons because of the high GAC replacement frequency. 

 While the BAC pretreatment reduces UF membrane fouling, the BAC pretreatment would 

not be effective in controlling DBP formation potential. Controlling regulated DBPs would 

require the operation of the activated carbon in the adsorption mode, which translates to an 

estimated conceptual cost opinion of expenditure of $4.45/1000 gallons. 
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CHAPTER 6. RECOMMENDATIONS 

To provide value to researchers and the professional water community, the following 

recommendations are offered. 

With respect to source water quality monitoring: 

 The County should consider placing high elevation source intakes temporarily offline 

during the elevated DOC seasons (rainy conditions) to help dampen the organic load to 

the Olinda WTP. 

 The County operations staff can anticipate the use of higher ACH coagulant doses during 

and after rain events due to higher organic and turbidity levels in the source water. 

 The biological activity and leaching of metals in surface water reservoirs may be reduced 

by implementing a sediment cleaning schedule. 

 The County should consider providing a protective coating or lining for the Kahakapao 

reservoirs to prevent leaching of the concrete, which could lead to structural failure. 

 The County should continue to monitor water quality within and throughout the Waikamoi 

watershed conveyance system that provides raw water to the Olinda WTP. 

With respect to conventional-ultrafiltration process operation: 

 Surface water treatment plants that employ an integrated conventional-UF process should 

optimize the coagulation and sedimentation processes to achieve less than 1 ntu settled 

water turbidity. Based on the results from this study, settled water turbidities greater than 
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1 ntu are expected to have detrimental impacts on the operating efficiency of downstream 

UF membrane processes. 

 The County should continue to optimize its coagulation and sedimentation processes, 

particularly during times of drought when the plant is operated intermittently.  

 Since the sedimentation basin does not have sludge handling capabilities, it is expected that 

the intermittent operation causes an upwelling of the sedimentation sludge layer. 

 Since the Olinda facility can experience drought conditions for over 30 percent of the year, 

it is recommended that the County consider upgrading the Olinda settled water basin to a 

clarifier with sludge handling system. 

With respect to ultrafiltration pretreatment alternatives 

 Due to the operation, financial, or performance limitations of the evaluated pretreatment 

alternatives, the existing pretreatment system or status quo is considered to be the preferred 

engineering alternative. 

 According to the BAC results, biofiltration pretreatment of low alkalinity surface water is 

not expected to significantly improve UF membrane operating performance. Nevertheless, 

the newly developed mathematical models revealed that biofilter performance may be 

optimized by targeting a feed water alkalinity to substrate (ALK/DOC) ratio between 10 

and 14. 

 Additional research with respect to biofiltration pretreatment is necessary to:  validate the 

ALK/DOC models; further define the alkalinity and substrate limited tails of the 

ALK/DOC models; and elucidate the mechanisms for the impact of alkalinity on 

biofiltration performance. 
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APPENDIX A. WATER QUALITY METHODS 
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Table A–1 Water Quality Analysis Summary 

Test 

Method Reference 
Number  

(Standard Method-SM); 
Instrument 

Method 
Reporting 

Level (MRL) 

Method 
Detection 
Level goal 

(MDL) 

Accuracy Precision 
Holding 

time (HT) 
Sample 

Vol. (SV) 
Cont. Type 

(CT) 
Preservative 

pH SM 4500-H+ B 
Electrometric; HACH 
HQ440d Meter and 
PHC281 pH Electrode; 
EUTECH Portable pH 
Meter (pHTestr 30) 

0.0010 units 0.0010 units ± 0.1 pH ± 0.13 pH 
unit 
Control 
Chart 

Analyze 
immediately 

125 mL Plastic None Required 

Temperature SM 2550 B Mercury-filled 
Celsius thermometer; 
Digital thermometer 

0.1 oC 0.1 oC ± 0.1 oC NIST 
approved 

Analyze 
immediately 

125 mL Plastic None Required 

Turbidity EPA Method 180.1 
Nephelometric; HACH 
Laboratory and Portable 
Turbidimeter 

0.05 ntu 0.012 ntu ± 2 % of 
reading 
plus 0.01 
ntu 

Greater of:  
± 1 % of 
reading or ± 
0.01 ntu 

48 hours 125 mL Plastic Cool, 4 oC 

Alkalinity SM 2320 B Potentiometric 
titration of low alkalinity to 
end-point pH (4.3 to 4.7 
pH units) 

2 mg/L as 
CaCO3` 

2 mg/L as 
CaCO3 

80-120 % 
Recovery 

 

< 20 % RPD 14 days 200 mL Plastic Cool, 4 oC 

Color SM 2120 B Visual 
Comparison; HACH 
Spectrophotometer (HACH 
Method 8025) 

5 CU 1 CU ± 16 CU < 20 % RPD 48-hrs 500 mL Plastic Cool, 4 oC 

Ultraviolet 
Absorbing 
Organics (UV 
254) 

SM 5910 B Ultraviolet 
Adsorption; HACH 
Spectrophotometer (HACH 
Method 10054) 

0.005 cm-1 0.001 cm-1 N/A < 20 % RPD 48-hrs 125 mL Amber 
borosilicate 
glass bottle; 
teflon lined 
cap 

Cool, 4 oC 
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Test 

Method Reference 
Number  

(Standard Method); 
Instrument 

Method 
Reporting 

Level 
(MRL) 

Method 
Detection 
Level goal 

(MDL) 

Accuracy Precision 
Holding 

time (HT) 

Sample 
Vol. 
(SV) 

Cont. Type 
(CT) 

Preservative 

Total and 
Dissolved 
Organic Carbon 

SM 5310 C Persulfate-
Ultraviolet Oxidation; 
Sievers 5310 C Analyzer 

0.5 mg/L 0.067 mg/L 80-120 % 
Recovery 

< 20 % 
RPD 

28-days 125 mL Amber 
borosilicate 
glass bottle; 

200eflon 
lined cap 

Cool, 4oC; add 
H2SO4 to pH < 2 

Dissolved 
Oxygen 

SM 4500-O G Membrane 
Electrode; YSI 58 
Dissolved Oxygen Metter 
with YSI 5905 Probe 

0.1 mg 
DO/L 

0.1 mg DO/L ±0.1 mg 
DO/L 

±0.05 mg 
DO/L 

Analyze 
immediately 

300 mL Plastic or 
glass 

None required 

Phosphorus – 
Reactive 
Phosphate 

SM 4500-P E Ascorbic 
Acid Method; HACH 
Spectrophotometer 
(HACH Method 8048) 

0.02 mg/L 
PO4

3- 
0.02 mg/L 
PO4

3- 
80-120 % 
Recovery 

< 20 % 
RPD 

28-days 100 mL Plastic or 
Glass 

Cool, 4 oC; add 
H2SO4 to pH < 2 

Nitrogen – 
Nitrate 

HACH Method 8039 
Cadmium Reduction 

0.30 mg/L 0.30 mg/L 80-120 % 
Recovery 

< 20 % 
RPD 

48 hours at 4 

oC 
125 mL Plastic Cool, 4oC 

Heterotrophic 
Plate Count 
(HPC) 

SM 9215 B Pour Plate 
Method with R2A Agar 

1-cfu/mL 1-cfu/mL N/A N/A 24-hrs 250 mL Sterile 
Plastic or 
glass Bottle 

Cool, 4oC; add 0.2 
mL of 3% Na2S2O3 
to chlorinated 
samples 

Free and Total 
Adenosine 
Triphosphate 
(ATP) 

Based on SM 9211C.1 
Bioluminescence Test; 
3M Clean-Trace 
Luminometer with 3M 
Clean-Trace Free and 
Total ATP test kits 

N/A N/A N/A N/A Analyze 
immediately 

100 mL Sterile 
Plastic Bottle 

None required 
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Test 

Method Reference 
Number  

(Standard Method); 
Instrument 

Method 
Reporting 

Level (MRL) 

Method 
Detection 
Level goal 

(MDL) 

Accuracy Precision 
Holding 

time (HT) 
Sample 

Vol. (SV) 
Cont. Type 

(CT) 
Preservative 

Total Dissolved 
Solids 

SM 2540 C Total 
Dissolved Solids Dried at 
180 oC; Oven 

10 mg/L 7.661 mg/L N/A < 20 % RPD 7 days 200 mL Plastic Cool, 4oC 

Total 
Suspended 
Solids 

SM 2540 D Total 
Suspended Solids Dried at 
103-105 oC; Oven 

1 mg/L 1 mg/L N/A <20 % RPD 7 days 100 mL Plastic Cool, 4oC 

Iron SM 3120 B Inductively 
Coupled Plasma (ICP) 

0.005 mg/L 0.001 mg/L 80-120  % 
Recovery 

< 20 % RPD 6-months 125 mL Plastic Cool, 4oC; 2 % 
HNO3 

Manganese SM 3120 B Inductively 
Coupled Plasma (ICP) 

0.005 mg/L 0.001 mg/L 80-120 % 
Recovery 

< 20 % RPD 6-months 125 mL Plastic Cool, 4oC; 2 % 
HNO3 

Aluminum SM 3120 B Inductively 
Coupled Plasma (ICP) 

0.05 mg/L 0.005 mg/L 80-120 % 
Recovery 

< 20 % RPD 6-months 125 mL Plastic Cool, 4oC; 2 % 
HNO3 

Calcium SM 3120 B Inductively 
Coupled Plasma (ICP) 

0.1 mg/L 0.1 mg/L 80-120 % 
Recovery 

< 20 % RPD 6-months 125 mL Plastic Cool, 4oC; 2 % 
HNO3 

Magnesium SM 3120 B Inductively 
Coupled Plasma (ICP) 

0.1 mg/L 0.03 mg/L 80-120 % 
Recovery 

< 20 % RPD 6-months 125 mL Plastic Cool, 4oC; 2 % 
HNO3 

Silica SM 3120 B Inductively 
Coupled Plasma (ICP) 

0.1 mg/L 0.05 mg/L 80-120 % 
Recovery 

< 20 % RPD 28-days 125 mL Plastic Cool, 4oC; 2 % 
HNO3 

Chloride SM 4110 B Ion 
Chromatography (IC) with 
Chemical Suppresion of 
Eluent Conductivity  

0.5 mg/L 0.004 mg/L 80-120 % 
Recovery 

< 20 % RPD 28-days 125 mL Plastic None 

Sulfate SM 4110 B Ion 
Chromatography (IC) with 
Chemical Suppresion of 
Eluent Conductivity  

0.5 mg/L 0.018 mg/L 80-120 % 
Recovery 

< 20 % RPD 28-days 125 mL Plastic Cool, 4oC 
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Test 

Method Reference 
Number  

(Standard Method); 
Instrument 

Method 
Reporting 

Level 
(MRL) 

Method 
Detection 
Level goal 

(MDL) 

Accuracy Precision 
Holding 

time (HT) 
Sample 

Vol. (SV) 
Cont. Type 

(CT) 
Preservative 

Bromide SM 4110 B Ion 
Chromatography (IC) with 
Chemical Suppresion of 
Eluent Conductivity  

0.20 mg/L 0.014 mg/L 80-120 % 
Recovery 

< 20 % RPD 28-days 125 mL Plastic Cool, 4oC 

DBP Formation 
Potential 

SM 5110 A through D 
Formation of THMs and 
other DBPs 

N/A N/A N/A N/A N/A 2 – 12 L  Amber 
borosilicate 
glass; TFE 
lined cap 

Cool, 4oC 

Chlorine – free 
and total 

SM 4500-Cl G DPD 
Colorimetric; HACH 
Spectrophotometer and 
Pocket Colorimeter II 
(HACH Method 8021) 

0.02 mg/L 0.01 mg/L 80-120 % 
Recovery 

< 20 % RPD Analyze 
Immediately 

250 mL Amber 
borosilicate 
glass; TFE 
lined cap 

None Required 

THMs  SM 6232 B Liquid-Liquid 
Extraction Gas 
Chromatographic; Gas 
chromatograph with 
electron-capture detector 

8 µg/L 1 µg/L 80-120  % 
Recovery 

< 20 % RPD 14 days 1 L  Amber 
borosilicate 
glass; TFE 
lined cap 

Cool, 4oC; add 
1 mL of 100 
g/L Na2SO3 

quenching 
reagent 

HAAs SM 6251 B Micro Liquid-
Liquid Extraction or EPA 
Method 552.3 Liquid-
Liquid Micro-extraction; 
Gas chromatograph with 
electron-capture detector 

SM – 25 
µg/L 
EPA – 10 
µg/L 

SM – 0.4 
µg/L 
EPA – 0.5 
µg/L 

70-130  % 
Recovery 

< 30 % RPD 14 days 1 L  Amber 
borosilicate 
glass; TFE 
lined cap 

Cool, 4oC; add 
1 mL of 50 g/L 
NH4Cl 
quenching 
reagent 
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APPENDIX B. QUALITY ASSURANCE AND QUALITY CONTROL 
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Quality assurance and quality control (QA/QC) was an integral part of the research. The goal of 

the QA/QC program was to ensure that the design and testing activities are carried out in a 

controlled and traceable manner. General laboratory practices included the use of suitable grades 

of reagents, gases, glassware, and standard materials. Reagents were of at least reagent grade for 

the inorganic analyses. ACS or HPLC (or higher) grade solvents were used for organic analyses. 

Gases and standards were of the highest purity obtainable; with the exact purity of the primary 

standard materials being known. Primary standards were purchased fresh at least every six months 

with working standard solutions being replaced in accordance with the particular analytical 

methods. Volumetric glassware was Class A grade. Periodic checks on performance of the 

laboratory equipment were performed regularly as part of the quality control program. Likewise 

the performance of the analytical balances was be monitored on a semi-annual basis by weighing 

a series of Class S weights and making any necessary adjustments. 

Laboratory quality control procedures according to the Handbook of Analytical Quality Control 

in Water and Wastewater Laboratories and the Standard Methods for the Examination of Water 

and Wastewater were followed to monitor and evaluate the reliability of the data collection process 

(APHA, AWWA & WEF, 2005; USEPA, 1979). These quality control procedures include proper 

sample collection, storage, cleaning of glassware, and maintenance of equipment. The reliability 

of the data with respect to precision and accuracy was evaluated by analyzing duplicate and spike 

samples. During sample collection and analysis about 1 out of every 5 samples was duplicated. 

The precision of the analyses was assessed by calculating the relative standard deviation (RSD) at 

95% confidence for each duplicate pair according to Equation B-1, where A and B represent the 

concentrations of the duplicate pairs. The accuracy of the analyses was assessed by calculating the 
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percent recoveries on the spiked samples according to Equation B-2, where Csample+spike, Csample, 

and Cspike represent the concentrations of the spiked sample, original sample, and spike 

respectively. 

%𝑅𝑆𝐷95 = |𝐴−𝐵|𝐴+𝐵 × 0.89 × 100 (B-1) 

%𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 𝐶𝑠𝑎𝑚𝑝𝑙𝑒+𝑠𝑝𝑖𝑘𝑒−𝐶𝑠𝑎𝑚𝑝𝑙𝑒𝐶𝑠𝑝𝑖𝑘𝑒 × 100 (B-2) 

Laboratory quality control compliance was assessed by developing control charts for precision 

(percent RSD) and accuracy (percent recovery). To develop the control chart for precision, the 

expected value (average) of approximately 20 RSD duplicate pairs was utilized to construct the 

upper warning limit (UWL) and upper control limit (UCL) according to Equations B-3 and B-4. 

The control chart for precision was constructed using the expected value and standard deviation 

(s) of about 20 determinations of percent recovery. Equations B-5 through B-8 were applied to 

calculate the upper (UWL) and lower warning limits (LWL) and upper (UCL) and lower control 

limits (LCL). The duplicate sample pairs are in compliance if the RSD determinations are within 

20% and remain within the warning and control limits. Similarly, the spiked samples are in 

compliance if the percent recovery falls between 70 and 130% and remain within the warning and 

control limits. Furthermore, if two consecutive determinations fall outside the warning limit or one 

determination falls outside the control limit, corrective action is taken to maintain the 

determinations within the warning and control limits. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑈𝑊𝐿 = 2.512 × 𝑅𝑆𝐷𝐴𝑉𝐺  (B-3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑈𝐶𝐿 = 3.267 × 𝑅𝑆𝐷𝐴𝑉𝐺  (B-4) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑈𝑊𝐿 = %𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑉𝐺 + 2𝑠 (B-5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐿𝑊𝐿 = %𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑉𝐺 − 2𝑠 (B-6) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑈𝐶𝐿 = %𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑉𝐺 + 3𝑠 (B-7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐿𝐶𝐿 = %𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑉𝐺 − 3𝑠 (B-8) 

The laboratory quality control charts for the DBP (TTHMs and HAA5s), metals (iron, manganese, 

calcium, magnesium, silica, and aluminum), anions (chloride and sulfate), and total solids (sum of 

total suspended and dissolved solids) analyses are presented in Figures B-1 through B-21. As 

demonstrated in Figures B-1 through B-21, the percent RSD and recovery determinations exhibited 

variation from the corresponding expected values. The variation in percent RSD and recovery 

determinations may be attributed to the heterogeneous nature of surface water samples, 

experimental errors associated with sample dilutions, preparation of analyte standards and spikes, 

equipment operation, and equipment maintenance. Nevertheless, the variation in the percent RSD 

and recovery within 30 percent is acceptable for assessing differences between experimental 

treatments. 

The TTHM analyses were in compliance with the QA/QC plan for precision and accuracy. The 

HAA5 analyses were in compliance with the QA/QC plan for precision; however, about two HAA5 

percent recovery determinations fell below 70 percent. The lower HAA5 percent recoveries may 

be attributed to the different procedure used for extracting standards versus samples in both the 

Standard 6251 and EPA 552.3 methods. 
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Of the metal analyses, the manganese, calcium, magnesium, silica, and aluminum results were in 

compliance with the QA/QC plan for precision and accuracy, while one iron percent recovery 

determination exceeded the UCL. Corrective action was taken by remaking standards and spike 

samples and reanalyzing the corresponding sample set to obtain adherence to the QA/QC program. 

For the total suspended and dissolved solids, analyte spike samples and recoveries were not 

measured and the RSD determinations varied about the 22 percent expected value. The variation 

in the total solids analysis may have resulted from the heterogeneous characteristics of surface 

water samples, absorption of moisture onto solids, and experimental errors associated with 

filtering, drying, and weighing procedures. 

 

Figure B–1:  TTHM Quality Control Chart for Precision 
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Figure B–2:  TTHM Quality Control Chart for Accuracy 

 

Figure B–3:  HAA5 Quality Control Chart for Precision 
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Figure B–4:  HAA5 Quality Control Chart for Accuracy 

 

Figure B–5:  Iron Quality Control Chart for Precision 
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Figure B–6:  Iron Quality Control Chart for Accuracy 

 

Figure B–7:  Manganese Quality Control Chart for Precision 
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Figure B–8:  Manganese Quality Control Chart for Accuracy 

 

Figure B–9:  Calcium Quality Control Chart for Precision 
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Figure B–10:  Calcium Quality Control Chart for Accuracy 

 

Figure B–11:  Magnesium Quality Control Chart for Precision 
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Figure B–12:  Magnesium Quality Control Chart for Accuracy 

 

Figure B–13:  Silica Quality Control Chart for Precision 
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Figure B–14:  Silica Quality Control Chart for Accuracy 

 

Figure B–15:  Aluminum Quality Control Chart for Precision 
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Figure B–16:  Aluminum Quality Control Chart for Accuracy 

 

Figure B–17:  Chloride Quality Control Chart for Precision 
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Figure B–18:  Chloride Quality Control Chart for Accuracy 

 

Figure B–19:  Sulfate Quality Control Chart for Precision 
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Figure B–20:  Sulfate Quality Control Chart for Accuracy 

 

Figure B–21:  Total Solids Quality Control Chart for Precision 
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Free and Total Adenosine Triphosphate Analysis 

The free and total ATP calibration curves are illustrated in Figures B-22 and B-23, The calibration 

curves exhibited a good linear correlation for their respective linear mathematical regressions. 

𝐹𝑟𝑒𝑒 𝐴𝑇𝑃 𝑅𝐿𝑈𝑠 = 6.1897 (𝐹𝑟𝑒𝑒 𝐴𝑇𝑃 𝑝𝑔𝑚𝐿) (B-9) 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑇𝑃 𝑅𝐿𝑈𝑠 = 6.1582 (𝑇𝑜𝑡𝑎𝑙 𝐴𝑇𝑃 𝑝𝑔𝑚𝐿) (B-10) 

The laboratory quality control analysis for precision and accuracy was performed on four duplicate 

and spike sample pairs. The expected value of the percent relative standard deviation (RSD) and 

recovery for the free ATP were 29 ±17 % and 92 ± 64 %. The expected value of the percent RSD 

and recovery for the total ATP were 13 ± 13 % and 107 ± 67 %. Additional experiments with 20 

+ determinations of duplicate pairs and percent recoveries would be necessary in future work to 

establish a quality control chart for accuracy and precision for the free and total ATP. Nevertheless, 

the rapid ATP luminometer detection method is expected to be a useful tool for monitoring 

biological activity by allowing the relative comparison of ATP content in source water samples. 
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Figure B–22:  Free ATP Calibration Curve 

 

Figure B–23:  Total ATP Calibration Curve 
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APPENDIX C. CHEMICAL USE INFORMATION 
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Table C–1 Chemical Information Summary 

Name Purpose CAS No. Strength Source 

Aluminum 
chlorohydrate 

(ACH) 
Coagulant 12042-91-0 

50% liquid; 
Specific gravity 

= 1.34 

California 
Aluminum 
Chemicals 

(Modesto, CA) 

Citric Acid 
Membrane clean 

in place (CIP) 
77-92-9 50% liquid 

Brenntag 
Pacific, Inc. 

Sodium 
hypochlorite 

solution (with 1% 
sodium 

hydroxide) 

Membrane CIP 7681-52-9 12.5% liquid 
BEI Hawaii 

(Honolulu, HI) 

Sodium hydroxide 
(caustic) 

pH adjustment 1310-73-2 50% liquid 
BEI Hawaii 

(Honolulu, HI) 

Monophotassium 
phosphate (food 

grade) 

Nutrient 
enhancement 

7778-77-0 98% powder 

Tianjin 
Ronghong 

Chemical Col, 
LTD 

(Tianjin,China) 

Food grade lime 
(calcium oxide) 

pH adjustment 1305-78-8 99% powder 
Fisher 

Scientific 

Sodium 
hypochlorite 

Simulated 
disinfection 

7681-52-9 4-6% liquid 
Fisher 

Scientific 

Adenosine 
triphosphate 

(ATP) 

Calibration 
standard 

987-65-5 100 mM 
Thermo 

Scientific 
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APPENDIX D. WAIKAMOI WATERSHED CHARACTERIZATION 
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Figure D–1 Kahakapao Reservoirs 

 

Figure D–2  First Caisson Pipeline 

 

Figure D–3 Second Caisson Pipeline 
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Figure D–4 Waikamoi Reservoirs 

 

Figure D–5 Waikamoi Flume Outlet 

 

Figure D–6 Aluminum vs Redwood Flume 

Flume Outlet 

White Pipeline 

Blue Pipeline 

Combined 

Flume Outlet 
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Figure D–7 Flume Intake 2 (Middle) 

 

Figure D–8 Flume Intake 1 (Beginning) 
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Table D–1 Waikamoi Watershed Preliminary DOC vs TOC Comparison 

Location(1) DOC (mg/L) TOC (mg/L) DOC/TOC Fraction 

Kahakapao Reservoir 1 8.58 8.24 1.0 

Kahakapao Reservoir 2 8.14 8.61 0.9 

1st Caisson Pipeline 8.78 8.6 1.0 

2nd Caisson Pipeline 8.15 7.9 1.0 

Waikamoi Reservoir 9.78 10.1 1.0 

Flume Outlet 10 10.5 1.0 

Flume Intake 2 10 11.7 0.9 

Flume Intake 1 9.2 10.1 0.9 

Blue Pipeline 11.3 11.6 1.0 

(1) Data collected on November 15, 2012 

 

Figure D–9 Waikamoi Watershed Preliminary DOC/TOC Fraction Comparison 
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Table D–2 3M Clean-TraceTM Free and Total ATP Product Instructions 

Procedure(1) Diagram(1) 

Step 1  Place the free or total ATP test devices at room temperature 
for at least 10 minutes before use. 

 Collect water samples from the test sites. 

 

Step 2  Swirl to mix the sample. 

 Remove a Free or Total ATP test device from the foil 
pouch. 

 Remove the sampling stick from the 3M device and 
immerse the sample collection rings into the water sample, 
tapping the handle gently if bubbles form. 

 
Step 3  Immediately remove the sampling stick from the water 

sample and carefully return it to the test device such that the 
handle is at its starting position. 

 To process the sample, push down firmly on the top of the 
free or total ATP sample stick handle. The handle will slide 
into the test device tube and the top of the handle should be 
level with the top of the device tube when fully depressed. 

 

(1) Product instructions reproduced with permission from 3M (2012 & 2013). 
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Procedure Diagram 

Step 4  Grip the top of the test device and shake rapidly side-to-side 
for at least five seconds to mix the sample and reagent. 

 

Step 5  Immediately open the sample chamber of the 3M Clean-
Trace NG Luminometer and insert the free or total ATP test 
device. 

 Close the chamber cap and press the measure button. The 
light emitted by the 3M Clean-Trace test device will be 
measured and the result (in RLU) will appear on the 
display. 
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Table D–3 Dry vs Rainy Watershed Quality Averages 

Water Quality 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

pH 
Dry 6.5 6.3 5.5 5.7 5.7 5.0 4.8 4.8 4.9 4.8 4.4 

Rainy 6.3 6.5 5.3 5.1 4.7 4.6 4.7 4.3 4.3 4.1 4.3 

Temp. 
(oC) 

Dry 21.3 21.5 17.4 18.7 22.2 19.3 22.4 18.2 19.0 19.0 17.9 

Rainy 17.5 17.5 15.2 15.4 16.1 17.3 18.0 16.0 16.2 15.0 15.6 

Turb. 
(ntu) 

Dry 2.58 3.48 0.97 3.30 6.15 1.93 3.18 1.15 1.34 0.51 0.75 

Rainy 2.73 3.10 2.25 3.95 6.63 5.25 5.47 5.02 3.02 4.42 4.05 

Alk. 
(mg/L 

CaCO3) 

Dry 4.8 4.5 3.3 4.4 5.5 2.0 4.0 0.9 4.0 3.5 0.3 

Rainy 4.6 4.0 2.5 2.4 1.6 1.0 0.5 0.8 0.8 0.3 0.7 

DO 
(mg/L) 

Dry 6.8 6.7 6.2 5.4 6.5 7.0 7.2 6.7 6.8 7.0 6.4 

Rainy 8.5 8.3 9.2 8.1 8.5 7.7 7.5 9.1 10.0 9.7 8.7 

Color 
(CU) 

Dry 66 72 27 15 50 83 64 86 29 11 88 

Rainy 67 67 38 43 94 117 110 113 109 118 133 

UV254 
(1/cm) 

Dry 0.315 0.330 0.162 0.092 0.283 0.378 0.298 0.392 0.167 0.085 0.428 

Rainy 0.301 0.295 0.228 0.252 0.426 0.541 0.498 0.537 0.508 0.568 0.626 

DOC 
(mg/L) 

Dry 6.5 6.6 4.7 3.3 6.5 7.0 5.0 7.8 4.2 3.1 7.9 

Rainy 7.2 7.0 7.1 7.2 8.4 9.6 7.9 10 9.5 10 11 

SUVA 
(L/g-m) 

Dry 4.8 5.0 3.5 2.8 4.5 5.3 6.0 5.0 4.0 2.8 5.2 

Rainy 4.1 4.2 3.2 3.4 5.1 5.6 6.3 5.2 5.4 5.4 5.7 

F ATP 
(pg/mL) 

Dry 115 150 35 36 166 58 55 45 53 23 55 

Rainy 54 58 67 69 125 69 57 89 60 62 45 

T ATP 
(pg/mL) 

Dry 316 305 58 86 571 73 68 70 61 24 65 
Rainy 106 183 104 179 214 242 221 126 117 50 85 

Cellular 
ATP 

(pg/mL) 

Dry 201 155 23 50 405 15 13 26 8 0 10 

Rainy 52 116 41 150 154 173 164 67 95 4 59 

F/T ATP 
Dry 0.40 0.58 0.67 0.40 0.47 0.78 0.81 0.64 0.88 0.99 0.87 

Rainy 0.63 0.37 0.81 0.64 0.47 0.29 0.26 0.70 0.44 0.94 0.48 
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Water Quality 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

TSS 
(mg/L) 

Dry 2.3 3.2 4.7 2.2 3.3 1.1 3.2 0.4 3.0 0 0 

Rainy 1.7 3.0 2.3 2.8 3.2 2.5 1.5 3.7 2.9 2.0 0.8 

TDS 
(mg/L) 

Dry 27 29 16 16 25 25 26 13 22 12 20 

Rainy 39 27 14 20 37 27 36 63 40 23 58 

Fe 
(mg/L) 

Dry 0.412 0.522 0.636 0.883 1.237 0.557 0.999 0.602 0.688 0.050 0.359 

Rainy 0.442 0.499 0.434 0.413 0.702 0.410 0.211 0.428 0.523 0.313 0.497 

Mn 
(mg/L) 

Dry 0.016 0.024 0.037 0.038 0.054 0.021 0.030 0.020 0.030 0.004 0.021 

Rainy 0.010 0.014 0.018 0.013 0.014 0.016 0.010 0.014 0.015 0.012 0.023 

Ca 
(mg/L) 

Dry 1.55 1.45 0.72 1.22 1.11 0.63 0.59 0.52 0.46 0.45 0.39 

Rainy 1.43 1.42 0.63 0.60 0.55 0.22 0.14 0.47 0.35 0.50 0.50 

Mg 
(mg/L) 

Dry 0.38 0.41 0.51 0.52 0.75 0.33 0.33 0.33 0.38 0.31 0.29 

Rainy 0.32 0.31 0.48 0.46 0.32 0.20 0.16 0.28 0.27 0.31 0.28 

Si 
(mg/L) 

Dry 1.48 1.60 1.28 1.48 1.81 3.30 3.78 2.18 4.22 5.10 2.13 

Rainy 1.39 1.37 1.42 1.28 1.07 0.59 0.42 0.85 0.78 1.09 0.82 

Al 
(mg/L) 

Dry 0.21 0.21 0.17 0.11 0.22 0.22 0.20 0.29 0.11 0.06 0.28 

Rainy 0.16 0.15 0.14 0.21 0.24 0.36 0.20 0.26 0.33 0.35 0.25 

Cl- 
(mg/L) 

Dry 3.9 3.9 4.2 4.5 4.0 4.0 5.2 3.4 5.6 4.8 3.5 

Rainy 3.5 3.4 3.8 3.6 3.3 1.9 1.7 3.2 3.3 3.8 2.9 

SO4
2- 

(mg/L) 

Dry 1.6 1.6 1.5 1.6 1.2 1.4 1.6 1.2 1.9 1.9 1.3 

Rainy 1.6 1.5 1.6 1.7 1.5 0.8 0.8 1.7 1.7 1.9 1.1 

Br- 
(mg/L) 

Dry <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Rainy <0.2 <0.2 <0.2 <0.3 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 
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Figure D–10 Dry vs Rainy Temperature 

 

Figure D–11 Dry vs Rainy Dissolved Oxygen 
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Figure D–12 Dry vs Rainy Alkalinity 

 

Figure D–13 Dry vs Rainy Color 
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Figure D–14 Dry vs Rainy UV 254 

 

Figure D–15 Dry vs Rainy SUVA 
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Figure D–16 Dry vs Rainy Iron 

 

Figure D–17 Dry vs Rainy Manganese 
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Figure D–18 Dry vs Rainy Aluminum 

 

Figure D–19 Dry vs Rainy Calcium 
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Figure D–20 Dry vs Rainy Magnesium 

 

Figure D–21 Dry vs Rainy Silica 
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Table D–4 Waikamoi Watershed Quality Summary 

Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

pH 

11/15/2012 5.88 5.97 5.09 4.87 4.30 - - 4.03 3.84 4.12 3.99 

1/31/2013 6.29 6.99 5.13 5.18 4.92 - - 4.31 4.47 4.17 4.24 

4/30/2013 6.77 6.53 5.66 5.84 6.09 5.07 4.85 - 4.89 4.78 - 

8/6/2013 6.59 6.30 5.29 5.16 4.58 4.38 - 4.67 - - 4.07 

10/22/2013 6.24 6.00 5.68 6.00 6.48 5.43 - 5.00 - - 4.64 

5/12/2014 6.61 6.40 5.62 5.15 4.74 4.56 4.72 4.51 4.57 - 4.56 

Temperature (oC) 

11/15/2012 17.6 17.4 15.1 15.6 15.2 - - 15.0 16.9 15.5 15.1 

1/31/2013 15.7 16.7 14.1 14.4 16.1 - - 15.9 14.3 14.5 14.4 

4/30/2013 21.8 21.5 17.3 17.6 25.2 22.7 22.4 - 19.0 19.0 - 

8/6/2013 22.1 22.6 18.2 18.9 19.6 18.6 - 19.5 - - 18.7 

10/22/2013 20.0 20.6 16.6 19.5 21.9 16.7 - 16.9 - - 17.2 

5/12/2014 19.1 18.4 16.4 16.2 17.1 17.3 18.0 17.3 17.5 - 17.4 

Turbidity (ntu) 

11/15/2012 3.56 4.60 2.21 2.74 6.46 - - 2.77 1.91 1.60 2.63 

1/31/2013 2.72 2.69 2.35 1.32 3.39 - - 7.48 2.55 7.24 4.60 

4/30/2013 1.80 2.20 0.84 3.05 6.36 2.94 3.18 - 1.34 0.51 - 

8/6/2013 3.40 4.37 1.39 3.87 7.41 2.09 - 1.33 - - 1.07 

10/22/2013 2.54 3.86 0.69 2.99 4.69 0.75 - 0.98 - - 0.43 

5/12/2014 1.92 2.01 2.21 7.79 10.1 5.25 5.47 4.81 4.62 - 4.93 
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Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

Alkalinity (mg/L as CaCO3) 

11/15/2012 3.75 5 2 1.5 0.75 - - 0 0 0 0 

1/31/2013 5.5 3.5 2.5 3.3 2 - - 1.5 2 0.5 1 

4/30/2013 6 5.5 5.5 5 9 4 4 - 4 3.5 - 

8/6/2013 5 5 3.5 3.5 2.25 1.5 - 1.75 - - 0.5 

10/22/2013 3.25 3 1 4.75 5.25 0.5 - 0 - - 0 

5/12/2014 4.5 3.5 3 2.5 2 1 0.5 1 0.5 - 1 

DO (mg/L) 

11/15/2012 7.4 7.2 8.4 7.4 8.4 - - 8.7 9.1 8.7 8.1 

1/31/2013 11.3 10.8 12.2 9.9 10.2 - - 10.9 11.0 10.8 10.7 

4/30/2013 7.6 7.0 7.0 6.4 7.2 7.1 7.2 - 6.8 7.0 - 

8/6/2013 6.3 6.2 5.3 4.5 5.8 6.7  6.4 - - 6.8 

10/22/2013 6.4 6.9 6.3 5.3  7.2  6.9 - - 6.1 

5/12/2014 7.0 7.0 7.0 7.1 6.8 7.7 7.5 7.9 - - 7.5 

Color (CU) 

11/15/2012 84 84 44 42 99 - - 97 112 81 122 

1/31/2013 65 66 45 26 81 - - 123 108 154 139 

4/30/2013 43 44 22 6 45 59 64 - 29 11 - 

8/6/2013 78 83 36 22 67 128 - 96 - - 122 

10/22/2013 77 88 22 16 39 61 - 76 - - 54 

5/12/2014 52 52 25 61 101 117 110 120 106 - 137 
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Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

UV 254 (1/cm) 

11/15/2012 0.365 0.363 0.260 0.247 0.479 - - 0.484 0.534 0.432 0.586 

1/31/2013 0.296 0.306 0.258 0.151 0.343 - - 0.578 0.511 0.704 0.677 

4/30/2013 0.223 0.224 0.146 0.061 0.290 0.270 0.298 - 0.167 0.085 - 

8/6/2013 0.352 0.370 0.195 0.124 0.328 0.562 - 0.440 - - 0.566 

10/22/2013 0.370 0.397 0.146 0.092 0.230 0.303 - 0.345 - - 0.289 

5/12/2014 0.242 0.217 0.167 0.359 0.457 0.541 0.498 0.549 0.480 - 0.616 

DOC (mg/L) 

11/15/2012 8.58 8.14 8.78 8.15 9.78 - - 10.00 10.00 9.20 11.30 

1/31/2013 7.21 6.96 7.04 4.92 7.66 - - 11.20 9.66 11.40 12.30 

4/30/2013 4.62 4.46 4.15 2.97 5.12 4.80 5.00 - 4.22 3.09 - 

8/6/2013 7.52 7.75 5.47 3.81 7.45 9.44 - 8.59 - - 9.21 

10/22/2013 7.44 7.68 4.45 2.97 6.95 6.91 - 6.97 - - 6.66 

5/12/2014 5.95 5.91 5.61 8.50 7.82 9.58 7.89 9.94 8.85 - 9.68 

SUVA (L/mg-m) 

11/15/2012 4.25 4.46 2.96 3.03 4.90 - - 4.84 5.34 4.70 5.18 

1/31/2013 4.11 4.40 3.66 3.07 4.47 - - 5.16 5.29 6.18 5.50 

4/30/2013 4.83 5.02 3.52 2.05 5.66 5.63 5.96 - 3.96 2.75 - 

8/6/2013 4.68 4.77 3.56 3.25 4.40 5.95 - 5.12 - - 6.15 

10/22/2013 4.98 5.17 3.28 3.10 3.31 4.38 - 4.95 - - 4.34 

5/12/2014 4.07 3.67 2.98 4.22 5.84 5.65 6.31 5.52 5.42 - 6.36 
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Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

Free ATP (pg/mL) 

11/15/2012 - - - - - - - - - - - 

1/31/2013 57 53 75 41 158 - - 80 31 62 39 

4/30/2013 89 140 45 19 136 49 55  53 23 - 

8/6/2013 146 213 47 62 149 90 - 41 - - 81 

10/22/2013 109 98 13 25 213 35 - 48 - - 30 

5/12/2014 52 62 59 98 92 69 57 98 89 - 51 

Total ATP (pg/mL) 

11/15/2012 104 201 98 100 86 - - 63 41 34 46 

1/31/2013 63 115 60 40 243 - - 82 59 66 65 

4/30/2013 185 149 47 58 889 57 68 - 61 24 - 

8/6/2013 516 461 106 135 161 103 - 64 - - 98 

10/22/2013 247 307 22 65 664 59 - 77 - - 33 

5/12/2014 151 233 155 399 313 242 221 231 250 - 143 

Cellular ATP (pg/mL) 

11/15/2012 - - - - - - - - - - - 

1/31/2013 6 62 <0.5 <0.5 86 -  2 28 4 27 

4/30/2013 96 9 2 39 753 8 13 - 8 0 - 

8/6/2013 370 247 59 73 12 12 - 23 - - 17 

10/22/2013 138 208 9 39 451 24 - 29 - - 3 

5/12/2014 99 170 96 301 222 173 164 133 162 - 92 
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Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

Free/Total ATP Fraction 

11/15/2012 - - - - - - - - - - - 

1/31/2013 0.91 0.46 1.24 1.04 0.65 - - 0.98 0.53 0.94 0.59 

4/30/2013 0.48 0.95 0.97 0.33 0.15 0.86 0.81 - 0.88 0.99 - 

8/6/2013 0.28 0.47 0.45 0.46 0.93 0.89 - 0.65 - - 0.83 

10/22/2013 0.44 0.32 0.61 0.39 0.32 0.60 - 0.63 - - 0.90 

5/12/2014 0.35 0.27 0.38 0.25 0.29 0.29 0.26 0.43 0.36 - 0.36 

TSS (mg/L) 

11/15/2012 0.7 4.0 2.0 0.2 1.2 - - 0.5 0.7 - 0.0 

1/31/2013 2.5 3.0 3.0 1.5 2.5 - - 7.3 4.0 2.0 2.0 

4/30/2013 3.0 3.0 2.5 3.0 6.5 3.2 3.2 - 3.0 0.0 - 

8/6/2013 2.5 3.5 11.5 3.7 1.0 0.0 - 0.4 - - 0.0 

10/22/2013 1.2 3.0 0.0 0.0 2.5 0.0 - 0.4 - - 0.0 

5/12/2014 1.7 2.0 2.0 6.5 6.0 2.5 1.5 3.3 4.0 - 0.5 

TDS (mg/L) 

11/15/2012 62 36 12 5 50 - - 101 35 - 87 

1/31/2013 28 19 8 29 15 - - 36 38 23 38 

4/30/2013 33 43 23 33 53 23 26 - 22 12 - 

8/6/2013 14 13 8 9 12 19 - 18 - - 18 

10/22/2013 33 31 19 6 10 32 - 9 - - 22 

5/12/2014 27 26 22 28 45 27 36 53 45 - 48 
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Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 

Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

Iron (mg/L) 

11/15/2012 0.656 0.796 0.493 0.293 0.647 - - 0.361 0.439 0.278 0.455 

1/31/2013 0.362 0.337 0.292 0.180 0.662 - - 0.549 0.665 0.348 0.610 

4/30/2013 0.215 0.234 0.350 1.384 2.304 0.855 0.999 - 0.688 0.050 - 

8/6/2013 0.554 0.623 1.136 0.665 0.674 0.381 - 0.512 - - 0.438 

10/22/2013 0.468 0.710 0.423 0.601 0.733 0.435 - 0.693 - - 0.280 

5/12/2014 0.308 0.365 0.516 0.767 0.796 0.410 0.211 0.374 0.464 - 0.426 

Manganese (mg/L) 

11/15/2012 0.010 0.020 0.030 0.012 0.015 - - 0.015 0.014 0.014 0.015 

1/31/2013 0.010 0.011 0.008 0.009 0.011 - - 0.013 0.018 0.011 0.014 

4/30/2013 0.006 0.010 0.009 0.066 0.102 0.027 0.030 - 0.030 0.004 - 

8/6/2013 0.018 0.023 0.086 0.023 0.015 0.013 - 0.019 - - 0.021 

10/22/2013 0.023 0.039 0.015 0.025 0.046 0.021 - 0.022 - - 0.021 

5/12/2014 0.011 0.011 0.016 0.018 0.016 0.016 0.010 0.014 0.013 - 0.041 

Calcium (mg/L) 

11/15/2012 1.52 1.74 0.721 0.680 0.717 - - 0.579 0.357 0.474 0.728 

1/31/2013 1.58 1.41 0.713 0.725 0.579 - - 0.595 0.456 0.531 0.525 

4/30/2013 1.70 1.32 0.813 1.33 1.46 0.714 0.587 - 0.455 0.452 - 

8/6/2013 1.47 1.48 0.616 0.630 0.490 0.473 - 0.507 - - 0.411 

10/22/2013 1.49 1.56 0.725 1.69 1.38 0.708 - 0.535 - - 0.376 

5/12/2014 1.19 1.12 0.441 0.391 0.369 0.224 0.140 0.221 0.243 - 0.238 
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Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

Magnesium (mg/L) 

11/15/2012 0.306 0.315 0.568 0.550 0.430 - - 0.323 0.279 0.318 0.310 

1/31/2013 0.351 0.343 0.453 0.444 0.259 - - 0.328 0.307 0.306 0.304 

4/30/2013 0.325 0.340 0.515 0.586 1.017 0.333 0.328 - 0.375 0.307 - 

8/6/2013 0.394 0.406 0.467 0.440 0.371 0.328 - 0.327 - - 0.304 

10/22/2013 0.431 0.475 0.549 0.541 0.871 0.315 - 0.324 - - 0.286 

5/12/2014 0.289 0.288 0.405 0.391 0.281 0.200 0.163 0.194 0.221 - 0.211 

Silica (mg/L) 

11/15/2012 1.52 1.56 1.51 1.46 1.14 - - 0.943 0.853 1.13 0.991 

1/31/2013 1.36 1.23 1.48 1.14 1.12 - - 1.07 0.810 1.06 0.882 

4/30/2013 1.20 1.40 1.10 1.33 2.55 3.92 3.78 - 4.22 5.10 - 

8/6/2013 1.47 1.49 1.41 1.46 1.46 3.08 - 1.90 - - 1.57 

10/22/2013 1.78 1.92 1.32 1.66 1.41 2.90 - 2.47 - - 2.68 

5/12/2014 1.29 1.33 1.27 1.23 0.960 0.591 0.418 0.549 0.668 - 0.574 

Aluminum (mg/L) 

11/15/2012 0.079 0.058 0.005 0.005 0.103 - - 0.083 0.115 - 0.005 

1/31/2013 0.221 0.226 0.228 0.170 0.262 - - 0.362 0.438 0.354 0.399 

4/30/2013 0.154 0.150 0.109 0.076 0.136 0.183 0.203 - 0.111 0.060 - 

8/6/2013 0.211 0.237 0.304 0.177 0.406 0.270 - 0.363 - - 0.370 

10/22/2013 0.266 0.243 0.096 0.069 0.131 0.205 - 0.227 - - 0.192 

5/12/2014 0.165 0.181 0.193 0.452 0.367 0.364 0.197 0.337 0.441 - 0.340 
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Date 
Kahakapao 

Res. 1 
Kahakapao 

Res. 2 

1st 
Caisson 
Pipeline 

2nd 
Caisson 
Pipeline 

Waikamoi 
Res. 

Combined 
Flume 
Outlet 

White 
Pipeline 

Flume 
Outlet 

Flume 
Intake 

2 

Flume 
Intake 

1 

Blue 
Pipeline 

Chloride (mg/L) 

11/15/2012 3.81 3.62 4.68 4.50 4.38 - - 4.43 4.45 3.95 4.40 

1/31/2013 4.27 4.45 4.28 4.09 3.55 - - 3.00 3.74 3.64 2.32 

4/30/2013 4.99 4.80 5.29 5.91 5.20 4.98 5.19 - 5.58 4.77 - 

8/6/2013 4.11 3.99 4.30 4.37 4.26 4.16 - 3.99 - - 4.19 

10/22/2013 2.73 2.97 3.16 3.21 2.68 2.82 - 2.86 - - 2.82 

5/12/2014 2.34 2.16 2.57 2.25 2.00 1.92 1.74 2.08 1.75 - 1.91 

Sulfate (mg/L) 

11/15/2012 1.77 1.62 1.76 1.73 1.68 - - 1.53 1.58 1.51 1.53 

1/31/2013 2.09 2.04 2.25 2.39 1.93 - - 2.74 2.86 2.38 1.00 

4/30/2013 2.05 1.90 1.77 1.99 1.00 1.63 1.64 - 1.86 1.92 - 

8/6/2013 1.87 1.86 1.84 1.89 1.81 1.83 - 1.78 - - 1.77 

10/22/2013 0.82 0.90 0.80 0.86 0.77 0.77 - 0.70 - - 0.81 

5/12/2014 0.86 0.85 0.92 0.92 0.79 0.80 0.78 0.83 0.78 - 0.78 

Bromide (mg/L) 

11/15/2012 <0.2 <0.2 <0.2 <0.2 <0.2 - - <0.2 <0.2 <0.2 <0.2 

1/31/2013 <0.2 <0.2 <0.2 <0.2 <0.2 - - <0.2 <0.2 <0.2 <0.2 

4/30/2013 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 - <0.2 <0.2 - 

8/6/2013 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 - <0.2 - - <0.2 

10/22/2013 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 - <0.2 - - <0.2 

5/12/2014 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 - <0.2 

 

  



 

245 

APPENDIX E. CONFIRM EXISTING PROCESS OPERATION
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Table E–1 Preliminary and Experimental Jar Testing Results 

ACH Dose 
(mg/L) 

pH 
Temperature, 

oC 
Alkalinity, 

mg/L CaCO3 
Turbidity, ntu 
(Removal, %) 

Color, CU 
(Removal, %) 

UV254, 1/cm 
(Removal, %) 

DOC, mg/L 
(Removal, %) 

SUVA, L/mg-m 
(Removal, %) 

Date:  9/18/12     Plant ACH Dose:  29.5 mg/L     pH Adjustment:  None 

0 (Raw) 5.6 17 2.25 1.42 83 0.362 7.05 5.13 

21.4 - - - 3.19 (0) - - - - 

24.1 - - - 1.35 (5) - - - - 

25.5 - - - 1.09 (23) - - - - 

29.5 - - - 1.09 (23) - - - - 

29.5 - - - 1.49 (0) - - - - 

32.2 - - - 3.24 (0) - - - - 

Date:  4/23/13     Plant ACH Dose:  21 mg/L     pH Adjustment:  None 

0 (Raw) 6.09 15.8 5 2.1 48 0.217 4.66 4.66 

18.8 6.08 20.5 3.5 0.819 (61) 2 (96) 0.03 (86) - - 

20.1 5.85 20.5 3.5 0.888 (58) 0.5 (99) 0.026 (88) 2.2 (53) 1.18 (75) 

21.4 5.88 19.7 3.5 0.753 (64) 0.5 (99) 0.028 (87) 2.19 (53) 1.28 (73) 

21.4 5.88 20 3.5 0.763 (64) 1 (98) 0.029 (87) 2.15 (54) 1.35 (71) 

22.8 5.88 20 3.5 1.01 (52) 3 (94) 0.028 (87) - - 

24.1 5.86 20.3 3.5 3.06 (0) 0.5 (99) 0.024 (89) - - 

Date:  4/24/13     Plant ACH Dose:  21.7 mg/L      pH Adjustment:  None 

0 (Raw) 6.09 16 5.5 2.02 44 0.218 4.58 4.76 

18.8 5.94 21.7 3.5 0.5 (75) 3 (93) 0.038 (83) - - 

20.1 5.9 21.4 3.25 0.597 (70) 3 (93) 0.03 (86) - - 

21.4 5.86 21.1 3.5 0.433 (79) 3 (93) 0.039 (82) - - 

21.4 5.86 21.4 3.5 0.49 (76) 3 (93) 0.037 (83) - - 

22.8 5.84 21.6 3.5 0.594 (71) 3 (93) 0.033 (85) - - 

24.1 5.77 21.9 3.5 1.46 (28) 2 (95) 0.027 (88) - - 
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ACH Dose 
(mg/L) 

pH 
Temperature, 

oC 
Alkalinity, 

mg/L CaCO3 
Turbidity, ntu 
(Removal, %) 

Color, CU 
(Removal, %) 

UV254, 1/cm 
(Removal, %) 

DOC, mg/L 
(Removal, %) 

SUVA, L/mg-m 
(Removal, %) 

Date:  5/17/14     Plant ACH Dose:  21 mg/L     pH Adjustment:  None 

0 (Raw) 5.38 17.9 4 2.61 64 0.246 6.15 4.00 
14.7 - - - 1.38 (47) 7 (89) 0.062 (75) 3.09 (50) 2.01 (50) 
17.4 - - - 0.845 (68) 3 (95) 0.048 (80) 2.41 (61) 1.99 (50) 
20.1 - - - 1.58 (39) 4 (94) 0.027 (89) 1.96 (68) 1.38 (66) 
22.8 - - - 3.27 (0) 3 (95) 0.024 (90) 1.85 (70) 1.30 (68) 
25.5 - - - 4.39 (0) 1 (98) 0.024 (90) 2.13 (65) 1.13 (72) 
28.1 - - - 4.34 (0) 1 (98) 0.032 (87) 2.55 (59) 1.25 (69) 

Date:  5/18/14     Plant ACH Dose:  21 mg/L     pH Adjustment:  8.00 

0 (Raw) 5.8 18.6 2 3.67 62 0.246 6.27 3.92 
25.5 - - - 3.08 (16) 8 (87) 0.045 (82) 3 (52) 1.50 (62) 
28.1 - - - 1.17 (68) 5 (92) 0.038 (85) 2.57 (59) 1.48 (62) 
30.8 - - - 0.571 (84) 2 (97) 0.025 (90) 2.22 (65) 1.13 (71) 
33.5 - - - 0.53 (86) 2 (97) 0.025 (90) 2.13 (66) 1.17 (70) 
36.2 - - - 0.8 (78) 7 (89) 0.042 (83) 2.39 (62) 1.76 (55) 

Date:  5/21/14     Plant ACH Dose:  21.2 mg/L      pH Adjustment:  7.00 

0 (Raw) 5.4 18.3 3 3.54 67 0.309 6.5 4.75 
17.4 - - - 2.74 (23) 8 (88) 0.065 (79) 3.12 (52) 2.08 (56) 
20.1 - - - 1.56 (56) 6 (91) 0.045 (85) 2.82 (57) 1.60 (66) 
22.8 - - - 0.81 (77) 2 (97) 0.034 (89) 2.4 (63) 1.42 (70) 
25.5 - - - 0.62 (82) 2 (97) 0.027 (91) 2.23 (66) 1.21 (75) 
28.1 - - - 0.74 (79) 3 (96) 0.028 (91) 2.32 (64) 1.21 (75) 
30.8 - - - 0.9 (75) 8 (88) 0.043 (86) 2.48 (62) 1.73 (64) 

Date:  5/22/14     Plant ACH Dose:  23.6 mg/L     pH Adjustment:  7.50 

0 (Raw) 5.4 18.1 3 3.18 63 0.274 6.33 4.33 
17.4 - - - 2.51 (21) 7 (89) 0.061 (78) 3.02 (52) 2.02 (53) 
20.1 - - - 1.42 (55) 5 (92) 0.044 (84) 2.64 (58) 1.67 (61) 
22.8 - - - 0.73 (77) 2 (97) 0.032 (88) 2.33 (63) 1.37 (68) 
25.5 - - - 0.54 (83) 2 (97) 0.024 (91) 2.18 (66) 1.10 (75) 
28.1 - - - 0.8 (75) 1 (98) 0.027 (90) 2.26 (64) 1.19 (72) 
30.8 - - - 0.89 (72) 4 (94) 0.038 (86) 2.47 (61) 1.54 (64) 
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ACH Dose 
(mg/L) 

pH 
Temperature, 

oC 
Alkalinity, 

mg/L CaCO3 
Turbidity, ntu 
(Removal, %) 

Color, CU 
(Removal, %) 

UV254, 1/cm 
(Removal, %) 

DOC, mg/L 
(Removal, %) 

SUVA, L/mg-m 
(Removal, %) 

Date:  5/23/14     Plant ACH Dose:  22.1  mg/L     pH Adjustment:  6.5 

0 (Raw) 5.43 18 3 3.14 65 0.268 6.1 4.39 

14.7 - - - 1.25 (60) 9 (86) 0.065 (76) 2.92 (52) 2.23 (49) 

17.4 - - - 0.92 (71) 9 (86) 0.052 (81) 2.53 (59) 2.06 (53) 

20.1 - - - 0.78 (75) 3 (95) 0.025 (91) 2.07 (66) 1.21 (73) 

22.8 - - - 1.13 (64) 3 (95) 0.054 (80) 2.39 (61) 2.26 (49) 

25.5 - - - 2.58 (18) 8 (88) 0.059 (78) 2.64 (57) 2.23 (49) 

28.1 - - - 3.15 (0) 11 (83) 0.067 (75) 3.02 (50) 2.22 (50) 

Date:  5/29/14     Plant ACH Dose:  21.3 mg/L      pH Adjustment:  8.70 

0 (Raw) 5.43 18 3 3.14 65 0.268 6.1 4.39 

34.8 - - - 0.98 (69) 2 (97) 0.034 (87) 2.25 (63) 1.51 (66) 

37.5 - - - 0.52 (83) 1 (98) 0.024 (91) 1.94 (68) 1.24 (72) 

40.2 - - - 0.47 (85) 2 (97) 0.026 (90) 1.98 (68) 1.31 (70) 

Date:  5/31/14     Plant ACH Dose:  19.8 mg/L      pH Adjustment:  8.50 

0 (Raw) 5.41 18.9 3 3.34 63 0.327 6.51 5.02 

32.2 - - - 1.1 (67) 3 (95) 0.048 (85) 2.62 (60) 1.83 (64) 

34.8 - - - 0.84 (75) 2 (97) 0.031 (91) 2.3 (65) 1.35 (73) 

37.5 - - - 0.57 (83) 2 (97) 0.025 (92) 1.91 (71) 1.31 (74) 

40.2 - - - 0.53 (84) 2 (97) 0.028 (91) 2.15 (67) 1.30 (74) 

Date:  6/1/14     Plant ACH Dose:  22.4 mg/L      pH Adjustment:  7.50 

0 (Raw) 5.18 18.6 3 2.58 69 0.303 6.29 4.82 

20.1 - - - 1.61 (38) 7 (90) 0.053 (83) 2.79 (56) 1.90 (61) 

22.8 - - - 1.23 (52) 5 (93) 0.043 (86) 2.57 (59) 1.67 (65) 

25.5 - - - 0.74 (71) 3 (96) 0.039 (87) 2.4 (62) 1.63 (66) 

28.1 - - - 0.47 (82) 1 (99) 0.026 (91) 1.99 (68) 1.31 (73) 

30.8 - - - 0.6 (77) 2 (97) 0.033 (89) 2.2 (65) 1.50 (69) 

33.5 - - - 0.69 (73) 3 (96) 0.035 (88) 2.28 (64) 1.54 (68) 
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Table E–2 Water Quality Averages for Olinda Process Train and Control-UF 

Water 
Quality 

Raw Plant-ACH Plant-UF Control-UF 

Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

pH 4.6 5.9 7.3 4.7 5.7 7.2 4.7 5.7 7.3 4.7 5.6 6.7 

Temp. 
(oC) 

13.8 18.7 22.1 15.2 19.1 22.2 15.1 19.3 22.7 15.8 19.4 22.7 

Turb. 
(ntu) 

0.71 3.2 12 0.06 0.74 3.01 0.04 0.06 0.31 0.03 0.05 0.12 

Alk. 
(mg/L 

CaCO3) 
0.75 4.5 13 0.75 3.5 11 0.75 3.5 10 0.75 3.3 9.8 

Color 
(CU) 

2 70 108 0 3 16 0 2 9 0 2 12 

UV254 
(1/cm) 

0.039 0.309 0.441 0.012 0.047 0.350 0.013 0.043 0.085 0.010 0.043 0.104 

DOC 
(mg/L) 

3.0 6.8 10.4 1.6 2.7 4.8 1.3 2.3 5.7 1.3 2.3 3.6 

SUVA 
(L/mg-

m) 
1.2 4.6 8.6 0.64 1.7 10.6 0.76 1.9 2.9 0.41 1.9 3.1 

TSS 
(mg/L) 

0.5 3 6 0 1 4 0 0 0.5 0 0 0.5 

TDS 
(mg/L) 

9 41 100 7 32 90 4 31 98 3 26 62 

Fe 
(mg/L) 

0.282 0.612 0.968 0.003 0.053 0.150 0.002 0.012 0.043 0.002 0.010 0.029 

Mn 
(mg/L) 

0.007 0.017 0.041 0.012 0.018 0.025 0.010 0.018 0.026 0.010 0.018 0.025 

Al 
(mg/L) 

0.005 0.256 0.444 0.005 0.042 0.251 0.005 0.008 0.043 0.005 0.007 0.037 

Ca 
(mg/L) 

0.96 1.50 2.49 1.20 1.84 2.97 1.09 1.44 1.93 1.02 1.42 1.92 

Mg 
(mg/L) 

0.30 0.38 0.47 0.33 0.39 0.45 0.30 0.37 0.44 0.30 0.37 0.45 

Si 
(mg/L) 

1.35 1.51 1.81 1.29 1.56 1.91 1.30 1.45 1.70 1.29 1.44 1.69 

Cl- 
(mg/L) 

2.6 4.6 8.3 4.5 6.4 10.1 4.4 6.0 7.9 4.4 6.0 7.1 

SO4
2- 

(mg/L) 
0.73 1.5 2.0 0.69 1.4 2.2 0.69 1.4 2.1 0.70 1.4 1.9 

Br- 
(mg/L) 

<0.2 0.2 0.6 - <0.2 - - <0.2 - - <0.2 - 

TTHM 
(µg/L) 

- - - - - - 120 185 250 120 187 250 

HAA5 
(µg/L) 

- - - - - - 45 75 110 45 73 110 
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Figure E–1 Olinda WTP Temperature and pH Time-Series Graph 

 

Figure E–2 Olinda WTP Turbidity Time-Series Graph 
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Figure E–3 Olinda WTP Color Time-Series Graph 

 

Figure E–4 Olinda WTP UV 254 Time-Series Graph 
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Figure E–5 Olinda WTP DOC Time-Series Graph 

 

Figure E–6 Olinda WTP SUVA Time-Series Graph 
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Figure E–7 Olinda WTP Iron Time-Series Graph 

 

Figure E–8 Olinda WTP Aluminum Time-Series Graph 
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Figure E–9 Olinda WTP Average Color 

 

Figure E–10 Olinda WTP Average UV 254 
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Figure E–11 Olinda WTP Average SUVA 

 

Figure E–12 Olinda WTP Average Iron 
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Figure E–13 Olinda WTP Average Aluminum 

Table E–3 Full-Scale DBP Formation Potential Experimental Parameters 

Experimental 
Parameters 

7-Dec-12 28-Jan-13 28-Apr-13 5-Aug-13 21-Oct-13 9-Dec-13 

pH 8.81 8.7 8.75 8.7 8.78 8.81 

UV 254 0.045 0.03 0.029 0.048 0.054 0.052 

TOC (mg/L) 2.51 1.7 1.43 2.38 2.79 2.34 

SUVA (L/mg-m) 1.8 1.8 2.03 2.02 1.94 2.22 

Chlorine Dose 
(mg/L Cl2) 

4 4 2.5 4 4 3.5 

Incubation 
Temperature (oC) 

15-22 12-21 12-22 18-25 16-25 20-25 
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Table E–4 Full-Scale TTHM Speciation 

Contact 
Time (hrs) 

Cl2 Residual 
(mg/L) 

THM Concentration (µg/L) 

Chloroform 
Bromo-

dichloromethane 
Dibromo-

chloromethane 
Bromoform TTHMs 

7-Dec-12 

9 3 89 5 1 1 96 

24 2 105 6 1 1 113 

47 2 120 7 1 1 128 

92 2 150 8 1 1 160 

185 1 157 8 1 1 168 

28-Jan-13 

7 3 64 5 1 1 71 

24 2 81 6 1 1 89 

48 2 87 6 1 1 95 

92 2 112 8 1 1 122 

168 2 127 9 1 1 138 

28-Apr-13 

6 2 110 2 1 1 115 

24 2 132 3 1 1 138 

54 1 155 4 1 1 148 

96 1 149 4 1 1 154 

168 1 176 5 1 1 183 

5-Aug-13 

8 1 185 2 1 1 189 

25 2 191 2 1 1 195 

48 2 213 3 1 1 218 

93 2 237 4 1 1 243 

188 1 242 4 1 1 248 

21-Oct-13 

6 2 135 7 2 1 144 

26 2 178 9 2 1 190 

48 1 224 11 2 1 238 

94 1 240 12 2 1 255 

165 1 259 12 2 1 274 

9-Dec-13 

6 2 112 3 1 1 117 

24 1 143 4 1 1 149 

48 1 165 4 1 1 172 

96 1 181 4 1 1 187 

168 0 209 5 1 1 216 
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Table E–5 Full-Scale HAA5 Speciation 

Date 
HAA Concentration (µg/L) 

Chloroacetic 
Acid 

Bromoacetic 
Acid 

Dichloro-
acetic Acid 

Trichloro-
acetic Acid 

Dibromo-
acetic Acid 

HAA5 

7-Dec-12 5 5 21 20 5 56 

28-Jan-13 5 5 14 17 5 45 

28-Apr-13 10 5 16 15 5 51 

5-Aug-13 9 1 51 46 1 108 

21-Oct-13 7 1 48 29 3 89 

9-Dec-13 18 1 53 25 6 103 
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APPENDIX F. MIEX® PRETREATMENT PERFORMANCE 
EVALUATION 
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Table F–1 8 gpm Set-Point:  MIEX® Phase Average Water Quality 

Water 
Quality 

Raw MIEX® Plant-ACH 
MIEX®-

ACH 
Control-UF MIEX®-UF 

pH 5.7 5.6 5.4 5.5 5.4 5.4 

Temp. (oC) 18.0 18.6 18.1 19.5 19.0 19.0 

Turb. (ntu) 1.84 2.4 0.24 2.86 0.06 0.07 

Alk. (mg/L 
CaCO3) 

3.07 2.4 2 1.94 1.9 1.9 

Color (CU) 84 60 4 11 3 6 

UV254 
(1/cm) 

0.358 0.231 0.061 0.076 0.048 0.041 

DOC 
(mg/L) 

7.9 5.1 2.9 3.1 2.6 2.1 

SUVA (L/g-
m) 

4.3 4.3 1.8 2.39 1.9 1.4 

TSS (mg/L) 1.5 1 0 3 0 0 

TDS (mg/L) 77 46 64 50 35 43 

Fe (mg/L) 0.484 0.455 0.144 0.427 0.027 0.036 

Mn (mg/L) 0.008 0.009 0.012 0.008 0.010 0.009 

Al (mg/L) 0.149 0.148 0.005 1.552 0.005 0.005 

Ca (mg/L) 1.08 1.09 2.96 3.58 1.08 1.01 

Mg (mg/L) 0.30 0.31 0.39 0.39 0.30 0.30 

Si (mg/L) 1.41 1.42 1.70 2.03 1.31 1.30 

Cl- (mg/L) 4.2 4.5 5.9 5.4 5.7 5.3 

SO4
2- 

(mg/L) 
1.39 1.3 1.3 <1.0 1.3 <1.0 

Br- (mg/L) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 
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Table F–2 6 gpm Set-Point:  MIEX® Phase Average Water Quality 

Water 
Quality 

Raw MIEX® Plant-ACH 
MIEX®-

ACH 
Control-UF MIEX®-UF 

pH 6.2 5.8 5.9 5.6 5.9 5.6 

Temp. (oC) 17.0 18.1 17.6 18.8 18.2 19.0 

Turb. (ntu) 2.62 3.1 0.42 3.29 0.06 0.11 

Alk. (mg/L 
CaCO3) 

4.35 2.3 2 1.79 2.3 1.5 

Color (CU) 86 50 4 9 2 1 

UV254 
(1/cm) 

0.353 0.185 0.082 0.053 0.045 0.027 

DOC 
(mg/L) 

8.7 5.2 3.4 3.4 2.8 1.7 

SUVA (L/g-
m) 

4.0 3.6 2.5 1.58 1.6 1.6 

TSS (mg/L) 1.5 1 1 9 0 0 

TDS (mg/L) 53 34 95 54 80 41 

Fe (mg/L) 0.661 0.694 0.097 0.613 0.004 0.002 

Mn (mg/L) 0.010 0.011 0.009 0.011 0.011 0.009 

Al (mg/L) 0.209 0.117 0.051 3.064 0.005 0.029 

Ca (mg/L) 1.57 1.59 2.25 1.87 1.47 1.58 

Mg (mg/L) 0.31 0.31 0.35 0.34 0.31 0.31 

Si (mg/L) 1.49 1.47 1.73 1.97 1.38 1.43 

Cl- (mg/L) 3.8 8.7 7.9 12.0 5.8 8.9 

SO4
2- 

(mg/L) 
1.48 1.4 1.4 <1 1.4 <1 

Br- (mg/L) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 



 

262 

Table F–3 ACH Pump Replacement:  MIEX® Phase Average Water Quality 

Water 
Quality 

Raw MIEX® Plant-ACH 
MIEX®-

ACH 
Control-UF MIEX®-UF 

pH 6.2 5.7 5.9 5.7 5.9 5.7 

Temp. (oC) 16.1 16.2 16.8 16.9 16.7 16.9 

Turb. (ntu) 2.41 2.8 0.46 2.72 0.05 0.05 

Alk. (mg/L 
CaCO3) 

4.52 2.6 3 2.44 2.6 2.4 

Color (CU) 76 37 2 1 1 0 

UV254 
(1/cm) 

0.321 0.139 0.036 0.018 0.034 0.014 

DOC 
(mg/L) 

7.6 4.2 2.8 2.1 2.0 1.1 

SUVA (L/g-
m) 

4.2 3.3 1.2 0.96 1.6 1.2 

TSS (mg/L) 2.1 3 1 4 0 0 

TDS (mg/L) 49 34 34 23 17 29 

Fe (mg/L) 0.414 0.322 0.062 0.258 0.005 0.078 

Mn (mg/L) 0.008 0.011 0.013 0.014 0.013 0.012 

Al (mg/L) 0.235 0.118 0.073 1.133 0.037 0.191 

Ca (mg/L) 2.04 2.57 2.19 2.91 1.54 2.63 

Mg (mg/L) 0.34 0.37 0.38 0.39 0.33 0.36 

Si (mg/L) 1.42 1.46 1.71 1.68 1.36 1.43 

Cl- (mg/L) 5.9 10.2 6.9 12.9 6.4 12.8 

SO4
2- 

(mg/L) 
2.02 <1 2.1 <1 1.9 <1 

Br- (mg/L) 0.39335 <0.2 <0.2 <0.2 <0.2 <0.2 
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Figure F–1 MIEX® Phase Temperature and pH Time-Series Graph 

 

Figure F–2 MIEX® Phase Turbidity Time-Series Graph 
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Figure F–3 MIEX® Phase Color Time-Series Graph 

 

Figure F–4 MIEX® Phase UV 254 Time-Series Graph 
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Figure F–5 MIEX® Phase DOC Time-Series Graph 

 

Figure F–6 MIEX® Phase SUVA Time-Series Graph 
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Figure F–7 MIEX® Phase Iron Time-Series Graph 

 

Figure F–8 MIEX® Phase Aluminum Time-Series Graph 
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Table F–4 MIEX® Phase Control-UF TTHM speciation 

Contact 
Time 
(hrs) 

Cl2 Residual 
(mg/L) 

THM Concentration (µg/L) 

Chloroform 
Bromo-

dichloromethane 
Dibromo-

chloromethane 
Bromoform TTHMs 

7-Dec-12 

11 2 82 4 1 1 88 

25 2 101 6 1 1 109 

49 2 133 7 1 1 142 

93 2 145 8 1 1 155 

186 1 179 9 1 1 190 

28-Jan-13 

6 3 60 5 1 1 67 

24 3 76 6 1 1 84 

48 2 85 7 1 1 94 

91 2 107 8 1 1 117 

168 2 128 10 1 1 140 

 

Table F–5 MIEX® Phase Control-UF HAA5 Speciation 

Date 
HAA Concentration (µg/L) 

Chloroacetic 
Acid 

Bromoacetic 
Acid 

Dichloro-
acetic Acid 

Trichloro-
acetic Acid 

Dibromo-
acetic Acid 

HAA5 

7-Dec-12 5 5 22 16 5 53 

28-Jan-13 5 5 14 17 5 45 
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Table F–6 MIEX®-UF TTHM Speciation 

Contact 
Time 
(hrs) 

Cl2 Residual 
(mg/L) 

THM Concentration (µg/L) 

Chloroform 
Bromo-

dichloromethane 
Dibromo-

chloromethane 
Bromoform TTHMs 

7-Dec-12 

10 3 39 1 1 1 42 

24 3 46 1 1 1 49 

48 1 57 1 1 1 60 

92 2 67 1 1 1 70 

185 2 78 1 1 1 82 

28-Jan-13 

6 3 46 2 1 1 49 

24 2 53 2 1 1 57 

48 2 59 3 1 1 64 

91 2 55 2 1 1 59 

168 2 64 3 1 1 69 

 

Table F–7 MIEX®-UF HAA5 Speciation 

Date 
HAA Concentration (µg/L) 

Chloroacetic 
Acid 

Bromoacetic 
Acid 

Dichloro-
acetic Acid 

Trichloro-
acetic Acid 

Dibromo-
acetic Acid 

HAA5 

7-Dec-12 5 5 9 11 5 35 

28-Jan-13 5 5 9 6 5 30 
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Figure F–9 Control vs MIEX® Organic Water Quality for 7-Dec-12 

 

Figure F–10 Control vs MIEX® Chlorine Residual Decay for 7-Dec-12 
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Figure F–11 Control vs MIEX® TTHM Formation Potential for 7-Dec-12 

 

Figure F–12 Control vs MIEX® Organic Water Quality for 28-Jan-13 
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Figure F–13 Control vs MIEX® Chlorine Residual Decay for 28-Jan-13 

 

Figure F–14 Control vs MIEX® TTHM Formation Potential for 28-Jan-13 
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Figure F–15 Control-UF Feed Temperature, Flow, and TMP 

 

Figure F–16 Control-UF Specific Flux 
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Figure F–17 MIEX®-UF Feed Temperature, Flow, and TMP 

 

Figure F–18 MIEX®-UF Specific Flux 
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Table F–8 Top-Outside Fiber 2 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 Times Magnification 

  

SEM at 1000 Times Magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–9 Top-Outside Fiber 3 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 Times Magnification 

  

SEM at 2500 Times Magnification SEM at 1000 Times Magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–10 Middle-Outside Fiber 2 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 times magnification 

  

SEM at 1000 times magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–11 Middle-Outside Fiber 3 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 250 times magnification SEM at 500 times magnification 

  

SEM at 1000 times magnification SEM at 2000 times magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–12 Middle-Middle Fiber 2 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 times magnification 

  

SEM at 1000 times magnification SEM at 2500 times magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–13 Middle-Middle Fiber 3 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 times magnification 

  

SEM at 1000 times magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–14 Bottom-Outside Fiber 2 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 times magnification 

  

SEM at 1000 times magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–15 Bottom-Outside Fiber 3 SEM and EDS Results 

MIEX®-UF Control-UF 

SEM at 100 times magnification 

  

SEM at 1000 times magnification 

  

EDS 

  

Source:  Courtesy of Evoqua Water Technologies 
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Table F–16 MIEX® Foulant SEM and EDS Results 

SEM EDS 

60 times magnification Foulant 1 

  

1000 times magnification Foulant 2 

  

2500 times magnification Foulant 3 & 4 Sphere 

  

 
Source:  Courtesy of Evoqua Water Technologies 
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APPENDIX G. GAC AND BAC PRETREATMENT EVALUATION 
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Table G–1 GAC Adsorption Phase Average Water Quality 

Water Quality Raw Plant-ACH GAC GAC-UF Control-UF 

pH 6.3 6.0 6.1 6.1 6.0 

Temp. (oC) 18.7 19.1 19.5 19.6 19.1 

Turb. (ntu) 2.18 0.3 0.20 0.05 0.05 

Alk. (mg/L CaCO3) 6.45 5.0 5 5.14 4.9 

Color (CU) 65 1 0.3 0.3 1 

UV254 (1/cm) 0.292 0.032 0.017 0.016 0.031 

DOC (mg/L) 5.8 2.0 1.3 1.0 1.7 

SUVA (L/g-m) 5.1 1.6 1.2 1.6 1.9 

DO (mg/L) - 7.0 6.0 - - 

Ortho-P (mg/L PO4
3-) - 0.04 0.02 - - 

Nitrate (mg/L N) - <0.1 <0.1 - - 

Fe (mg/L) 0.58 0.016 0.012 0.008 0.019 

Mn (mg/L) 0.015 0.016 0.017 0.016 0.016 

Al (mg/L) 0.23 0.011 0.025 0.005 0.005 

Ca (mg/L) 1.26 1.80 1.26 1.25 1.23 

Mg (mg/L) 0.38 0.39 0.38 0.38 0.38 

Si (mg/L) 1.49 1.48 1.47 1.47 1.44 

Cl- (mg/L) 5.0 6.8 6.5 6.6 6.6 

SO4
2- (mg/L) 1.88 1.8 1.8 1.45 1.5 

Br- (mg/L) <0.2 <0.2 <0.2 <0.2 <0.2 

TSS (mg/L) 2.4 1 0 0.3 0 

TDS (mg/L) 27 20 17 16 16 
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Table G–2 BAC Transition Phase Average Water Quality 

Water Quality Raw Plant-ACH BAC BAC-UF Control-UF 

pH 6.8 6.5 6.4 6.4 6.4 

Temp. (oC) 20.2 20.4 20.6 21.2 20.8 

Turb. (ntu) 2.65 0.4 0.40 0.05 0.05 

Alk. (mg/L CaCO3) 9.5 8.1 7.9 8.1 8.0 

Color (CU) 63 1.5 1.2 1.4 1.5 

UV254 (1/cm) 0.303 0.041 0.037 0.040 0.043 

DOC (mg/L) 7.0 2.4 2.4 2.1 2.3 

SUVA (L/g-m) 4.3 1.7 1.5 1.9 1.9 

DO (mg/L) - 7.6 6.7 - - 

Ortho-P (mg/L PO4
3-) - 0.04 0.06 - - 

Nitrate (mg/L N) - <0.1 <0.1 - - 

Fe (mg/L) 0.53 0.011 0.003 0.005 0.007 

Mn (mg/L) 0.017 0.018 0.017 0.017 0.018 

Al (mg/L) 0.43 0.050 0.005 0.005 0.005 

Ca (mg/L) 1.50 1.54 1.50 1.49 1.47 

Mg (mg/L) 0.40 0.42 0.40 0.40 0.41 

Si (mg/L) 1.53 1.91 1.54 1.47 1.47 

Cl- (mg/L) 5.5 6.3 6.3 6.1 6.1 

SO4
2- (mg/L) 1.86 1.8 1.8 1.81 1.8 

Br- (mg/L) <0.2 <0.2 <0.2 <0.2 <0.2 

TSS (mg/L) 3.5 0 0 0.2 0 

TDS (mg/L) 9 12 12 5 4 
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Table G–3 BAC with Ortho-P Adjustment Phase Average Water Quality 

Water Quality Raw Plant-ACH BAC BAC-UF Control-UF 

pH 5.5 5.3 5.2 5.3 5.3 

Temp. (oC) 20.1 20.6 21.0 21.0 20.6 

Turb. (ntu) 3.75 1.1 1.05 0.07 0.06 

Alk. (mg/L CaCO3) 2.9 2.1 1.9 2.0 2.0 

Color (CU) 72 3.0 2.3 1.8 2.0 

UV254 (1/cm) 0.320 0.052 0.045 0.042 0.048 

DOC (mg/L) 7.0 3.0 2.7 2.3 2.5 

SUVA (L/g-m) 4.4 1.8 1.7 1.9 1.9 

DO (mg/L) - 7.3 6.3 - - 

Ortho-P (mg/L PO4
3-) - 0.36 0.26 - - 

Nitrate (mg/L N) - <0.1 <0.1 - - 

Fe (mg/L) 0.70 0.061 0.057 0.002 0.005 

Mn (mg/L) 0.025 0.023 0.018 0.019 0.022 

Al (mg/L) 0.31 0.036 0.005 0.042 0.005 

Ca (mg/L) 1.74 1.58 1.59 1.51 1.50 

Mg (mg/L) 0.40 0.39 0.39 0.38 0.38 

Si (mg/L) 1.59 1.50 1.52 1.48 1.48 

Cl- (mg/L) 5.0 5.9 5.9 5.8 5.6 

SO4
2- (mg/L) 1.16 1.1 1.1 1.14 1.1 

Br- (mg/L) <0.2 <0.2 <0.2 <0.2 <0.2 

TSS (mg/L) 4.1 2 2 0.0 0 

TDS (mg/L) 37 24 26 25 25 
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Table G–4 BAC with Ortho-P & pH Adjustment Phase Average Water Quality 

Water Quality Raw Plant-ACH BAC BAC-UF Control-UF 

pH 5.2 5.3 5.3 5.9 5.9 

Temp. (oC) 17.5 17.9 18.7 18.8 18.4 

Turb. (ntu) 4.83 1.2 1.24 0.06 0.06 

Alk. (mg/L CaCO3) 2.5 2.3 5.2 5.3 2.4 

Color (CU) 67 4.9 5.7 3.3 3.1 

UV254 (1/cm) 0.294 0.060 0.063 0.051 0.053 

DOC (mg/L) 6.9 3.2 3.2 2.5 2.6 

SUVA (L/g-m) 4.2 1.8 1.9 2.0 2.0 

DO (mg/L) - 7.3 6.6 - - 

Ortho-P (mg/L PO4
3-) - 0.42 0.39 - - 

Nitrate (mg/L N) - <0.1 <0.1 - - 

Fe (mg/L) 0.66 0.068 0.098 0.001 0.004 

Mn (mg/L) 0.023 0.019 0.013 0.012 0.020 

Al (mg/L) 0.24 0.103 0.175 0.005 0.005 

Ca (mg/L) 1.36 1.75 1.74 1.61 1.62 

Mg (mg/L) 0.40 0.42 0.42 0.41 0.42 

Si (mg/L) 1.49 1.52 1.53 1.50 1.49 

Cl- (mg/L) 2.7 5.4 5.5 5.4 5.4 

SO4
2- (mg/L) 0.78 0.9 0.8 0.83 0.7 

Br- (mg/L) <0.2 <0.2 <0.2 <0.2 <0.2 

TSS (mg/L) 4.0 2 2 0.1 0 

TDS (mg/L) 46 43 44 43 39 



 

288 

Table G–5 GAC and BAC Phase Biological Activity Results Summary 

Testing 
Period 

Free ATP 
(pg/mL) 

Total ATP 
(pg/mL) 

Free/Total 
ATP Fraction 

Viable ATP 
(Total - Free, 

pg/mL) 
HPC 

(CFU/mL) 

Plant-
ACH BAC 

Plant-
ACH BAC 

Plant-
ACH BAC 

Plant-
ACH BAC 

Plant-
ACH BAC 

GAC 
Adsorption 5 9 6 10 0.83 0.86 1.8 1.6 - - 

BAC 
Transition 4 21 5 21 0.75 0.78 1.5 3.1 - - 

BAC 
(Ortho-P 
Adjustment) 21 43 36 90 0.54 0.59 17 47 2600 4900 
BAC 
(Ortho-P & 
pH 
Adjustment) 12 41 26 59 0.60 0.68 14 23 3900 5200 

 

 

Figure G–1 GAC/BAC Phase Temperature and pH Time-Series Graph 
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Figure G–2 GAC/BAC Phase Turbidity Time-Series Graph 

 

Figure G–3 GAC/BAC Phase UV 254 Time-Series Graph 
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Figure G–4 GAC/BAC Phase DOC Time-Series Graph 

 

Figure G–5 GAC/BAC Phase SUVA Time-Series Graph 
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Figure G–6 GAC/BAC Phase Aluminum Time-Series Graph 

 

Figure G–7 GAC/BAC Phase Iron Time-Series Graph 
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Figure G–8 GAC/BAC Phase Manganese Time-Series Graph 

 

Figure G–9 GAC/BAC Phase Orthophosphate Time-Series Graph 
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Figure G–10 GAC/BAC Phase Free ATP Time-Series Graph 

 

Figure G–11 GAC/BAC Phase Viable ATP Time-Series Graph 
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Figure G–12 GAC/BAC Phase HPC Time-Series Graph 

 

Figure G–13 GAC/BAC Phase Average Temperature 
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Figure G–14 GAC/BAC Phase Average pH 

 

Figure G–15 GAC/BAC Phase Average Turbidity 
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Figure G–16 GAC/BAC Phase Average UV 254 

 

Figure G–17 GAC/BAC Phase Average DOC 
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Figure G–18 GAC/BAC Phase Average SUVA 

 

Figure G–19 GAC/BAC Phase Average Free/Total ATP Fraction 
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Figure G–20 GAC/BAC Phase Average Orthophosphate 
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Table G–6 GAC/BAC Phase Control-UF TTHM Speciation 

Contact 
Time (hrs) 

Cl2 Residual 
(mg/L) 

THM Concentration (µg/L) 

Chloroform 
Bromo-

dichloromethane 
Dibromo-

chloromethane 
Bromoform TTHMs 

28-Apr-13 
6 2.4 120 3 1 1 124 
24 2.5 143 3 1 1 149 
54 1.6 159 4 1 1 165 
96 1.4 166 4 1 1 172 

168 1.2 158 4 1 1 164 

5-Aug-13 
7.1 1.2 199 2 1 1 203 
24 2.3 219 3 1 1 223 
48 1.9 205 3 1 1 209 
92 1.5 220 3 1 1 225 

187 1.0 263 4 1 1 270 

21-Oct-13 
6 2.2 139 7 2 1 149 
25 1.6 190 10 2 1 203 
59 1.1 223 11 2 1 237 
94 0.7 231 11 2 1 245 

164 0.5 259 12 2 1 273 

9-Dec-13 
6 1.7 106 2 1 1 110 
24 1.2 143 4 1 1 148 
48 0.8 163 4 1 1 169 
96 0.5 185 5 1 1 192 

168 0.3 190 4 1 1 197 
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Table G–7 GAC/BAC Phase Control-UF HAA5 Speciation 

Date 
HAA Concentration (µg/L) 

Chloroacetic 
Acid 

Bromoacetic 
Acid 

Dichloro-
acetic Acid 

Trichloro-
acetic Acid 

Dibromo-
acetic Acid 

HAA5 

28-Apr-13 10 5 17 16 5 52 

5-Aug-13 10 1 55 41 1 108 

21-Oct-13 7 1 43 23 2 77 

9-Dec-13 18 1 52 26 6 103 

 

Table G–8 GAC/BAC-UF TTHM Speciation 

Contact 
Time (hrs) 

Cl2 
Residual 
(mg/L) 

THM Concentration (µg/L) 

Chloroform 
Bromo-

dichloromethane 
Dibromo-

chloromethane 
Bromoform TTHMs 

28-Apr-13 

6 2.3 5 1 1 1 8 

24 2.4 5 1 1 1 8 

55 2.3 5 1 1 1 8 

96 2.4 6 1 1 1 9 

168 2.3 8 1 1 1 11 

5-Aug-13 

1 1.2 106 1 1 1 109 

24 2.5 178 3 1 1 183 

48 2.1 203 3 1 1 208 

92 1.8 193 3 1 1 198 

187 1.2 274 5 1 1 281 

21-Oct-13 

6 2.5 113 8 2 1 124 

25 2.0 138 9 2 1 150 

59 1.5 164 10 2 1 177 

93 1.2 213 12 2 1 227 

164 1.0 246 13 2 1 262 

9-Dec-13 

6 2.0 89 4 1 1 95 

24 1.4 130 3 1 1 136 

48 1.1 158 4 1 1 164 

96 0.8 173 4 1 1 179 

168 0.6 185 4 1 1 191 
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Table G–9 GAC/BAC-UF HAA5 Speciation 

Date 
HAA Concentration (µg/L) 

Chloroacetic 
Acid 

Bromoacetic 
Acid 

Dichloro-
acetic Acid 

Trichloro-
acetic Acid 

Dibromo-
acetic Acid 

HAA5 

28-Apr-13 10 5 5 5 5 30 

5-Aug-13 9 1 50 35 1 96 

21-Oct-13 6 1 49 30 2 88 

9-Dec-13 5 1 48 21 6 81 

 

 

Figure G–21 GAC Start-Up Organic Water Quality 
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Figure G–22 GAC Start-Up Chlorine Decay 

 

Figure G–23 GAC Start-Up TTHM Formation Potential 
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Figure G–24 BAC Transition Organic Water Quality 

 

Figure G–25 BAC Transition Chlorine Decay 
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Figure G–26 BAC Transition TTHM Formation Potential 

 

Figure G–27 BAC Ortho-P Organic Water Quality 
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Figure G–28 BAC Ortho-P Chlorine Decay 

 

Figure G–29 BAC Ortho-P TTHM Formation Potential 
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Figure G–30 BAC Ortho-P & pH Organic Water Quality 

 

Figure G–31 BAC Ortho-P & pH Chlorine Decay 
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Figure G–32 BAC Ortho-P & pH TTHM Formation Potential 

 

Figure G–33 GAC/BAC Thase TCTMP Time-Series Graph 
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Figure G–34 GAC/BAC Phase Specific Flux Time-Series Graph 
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Table G–10 Additional Results and Figures from Avista Autopsy Results 

Control-UF BAC-UF 

FTIR results for lightly fouled fiber 

  

FTIR results for heavily fouled fiber 

  

SEM at 200 times magnification of lightly fouled feed size (exterior) 

  
Source:  Courtesy of Avista Technologies 
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Control-UF BAC-UF 

SEM at 200 times magnification of heavily fouled fiber (exterior feed side) 

  

CEI image at 500 times magnification of lightly fouled fiber (exterior feed side) 

  
Source:  Courtesy of Avista Technologies 
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Control-UF BAC-UF 

CEI image at 500 times magnification of heavily fouled fiber (cross section) 

  

CEI image at 500 times magnification of heavily fouled fiber (exterior feed side) 

  

Source:  Courtesy of Avista Technologies 
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APPENDIX H. MINITAB® SOFTWARE OUTPUT 
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Minitab® Output Summary 

Table H–1 Minitab® Model Parameter Estimates 

Parameter 
Quadratic Equation Gaussian Distribution 

Estimate 
95% Confidence 

Interval 
Estimate 

95% Confidence 
Interval 

c1 -1.023 ( -15.54, 13.49) -36.46 ( - , 52.1058) 
c2 8.966 ( 5.596, 12.34) 57.26 ( 41.30, 75.22) 
c3 -0.3720 ( -0.5138, -0.2302) 0.0061 ( -0.0131, 0.0266) 
c4 - - 12.03 ( 10.78, 13.37) 

 

Table H–2 Confidence and Prediction Intervals for MTC Improvement Model Output 

ALK/DOC 
Ratio 

Observation 

Quadratic Equation Gaussian Distribution 
Predicted MTC 
Improvement 

95% Confidence 
Interval 

Predicted MTC 
Improvement 

95% Confidence 
Interval 

0.135 0.1807 ( -13.97, 14.33) 3.18 ( -13.12, 19.48) 
3.00 22.53 ( 13.77, 31.29) 20.6 ( 9.592, 31.65) 
4.40 31.24 ( 23.20, 39.28) 29.3 ( 18.19, 40.48) 
5.34 36.25 ( 28.09, 44.41) 34.9 ( 24.24, 45.63) 
9.96 51.37 ( 40.94, 61.81) 54.9 ( 39.41, 70.30) 
15.7 48.40 ( 38.85, 57.95) 50.4 ( 38.15, 62.65) 
18.9 35.56 ( 27.01, 44.11) 33.9 ( 22.76, 45.01) 
19.5 32.35 ( 23.57, 41.14) 30.3 ( 18.66, 41.91) 
23.1 7.770 ( -6.982, 22.52) 8.15 ( -6.089, 22.40) 

 

  



 

314 

Minitab® Output for Quadratic Equation Curve Fit 

 

Figure H–1 Fitted Line Plot with Confidence and Prediction Intervals for Quadratic Model 

 

Figure H–2 Residual Plots for Model 
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Nonlinear Regression: MTC Improvement (%) = theta1 + ...  

 
Method 

 

Algorithm        Gauss-Newton 

Max iterations            200 

Tolerance             0.00001 

 

 

Starting Values for Parameters 

 

Parameter  Value 

theta1         1 

theta2         1 

theta3         1 

 

 

Estimates at Each Iteration 

 

Iteration     SSE    theta1   theta2    theta3 

        0  601761   1.00000  1.00000   1.00000 

        1     326  -1.02290  8.96575  -0.37201 

        2     326  -1.02290  8.96575  -0.37201 

 

 

Equation 

 

MTC Improvement (%) = -1.0229 + 8.96575 * 'ALK/Substrate Ratio' - 0.372005 * 

'ALK/Substrate 

     Ratio' ^ 2 

 

 

Parameter Estimates 

 

Parameter  Estimate  SE Estimate         95% CI 

theta1     -1.02290      5.93137  (-15.5364, 13.4906) 

theta2      8.96575      1.37724  (  5.5958, 12.3357) 

theta3     -0.37201      0.05795  ( -0.5138, -0.2302) 

 

MTC Improvement (%) = theta1 + theta2 * 'ALK/Substrate Ratio' + theta3 * 'ALK/Substrate 

     Ratio' ^ 2 

 

 

Correlation Matrix for Parameter Estimates 

 

           theta1     theta2 

theta2  -0.812753 

theta3   0.699026  -0.974081 

 

 

Lack of Fit 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

 

 

Summary 
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Iterations        2 

Final SSE   326.048 

DFE               6 

MSE         54.3413 

S           7.37165 

 

 

Prediction 

 

New  ALK/Substrate 

Obs          Ratio      Fit   SE Fit         95% CI               95% PI 

  1         0.1350   0.1807  5.78199  (-13.9673, 14.3287)  (-22.7437, 23.1051) 

  2         3.0000  22.5263  3.57983  ( 13.7668, 31.2858)  (  2.4741, 42.5785) 

  3         4.4028  31.2401  3.28536  ( 23.2011, 39.2791)  ( 11.4920, 50.9882) 

  4         5.3400  36.2463  3.33452  ( 28.0870, 44.4055)  ( 16.4489, 56.0436) 

  5         9.9600  51.3724  4.26432  ( 40.9380, 61.8069)  ( 30.5341, 72.2108) 

  6        15.5659  48.4011  3.90413  ( 38.8481, 57.9542)  ( 27.9898, 68.8125) 

  7        18.8976  35.5578  3.49347  ( 27.0095, 44.1060)  ( 15.5970, 55.5186) 

  8        19.5000  32.3542  3.59029  ( 23.5691, 41.1393)  ( 12.2908, 52.4176) 

  9        23.0769   7.7696  6.02853  ( -6.9817, 22.5209)  (-15.5319, 31.0712) 

Minitab® Output for Gaussian Distribution Curve Fit 

 

Figure H–3 Fitted Line Plot with Confidence and Prediction Intervals for Gaussian Model 
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Figure H–4 Residual Plots for Gaussian Model 

Nonlinear Regression: MTC Improvement (%) = Theta1 + (Theta2 - ...  

 
* WARNING * Singular or nearly singular gradient matrix detected at iteration: 0. 

 

Method 

 

Algorithm        Gauss-Newton 

Max iterations            200 

Tolerance             0.00001 

 

Starting Values for Parameters 

 

Parameter  Value 

Theta1         0 

Theta2        55 

Theta3         0 

Theta4        12 

 

Estimates at Each Iteration 

 

Iteration      SSE    Theta1   Theta2     Theta3   Theta4 

        0  8480.22    0.0000  55.0000  0.0000000  12.0000 

        1   980.28    0.0000  55.0000  0.0073233  12.0000 

        2   399.56  -35.6362  57.1759  0.0052219  12.0287 

        3   280.51  -32.9267  57.3414  0.0063262  12.0381 

        4   279.30  -36.8847  57.2293  0.0060238  12.0272 

        5   279.25  -36.3116  57.2727  0.0060960  12.0301 

        6   279.25  -36.4934  57.2620  0.0060790  12.0294 

        7   279.25  -36.4535  57.2645  0.0060829  12.0296 

        8   279.25  -36.4629  57.2639  0.0060820  12.0296 
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        9   279.25  -36.4607  57.2641  0.0060822  12.0296 

       10   279.25  -36.4612  57.2640  0.0060822  12.0296 

       11   279.25  -36.4611  57.2640  0.0060822  12.0296 

 

Equation 

 

MTC Improvement (%) = -36.4611 + (57.264 + 36.4611) * exp(-0.0060822 * ('ALK/Substrate 

Ratio' 

     - 12.0296) ^ 2) 

 

Parameter Estimates 

 

Parameter  Estimate  SE Estimate        95% CI 

Theta1     -36.4611      72.7092  (      *, 52.1058) 

Theta2      57.2640       6.8018  (41.2980, 75.2149) 

Theta3       0.0061       0.0071  (-0.0131,  0.0266) 

Theta4      12.0296       0.4607  (10.7780, 13.3702) 

 

MTC Improvement (%) = Theta1 + (Theta2 - Theta1) * exp(-Theta3 * ('ALK/Substrate 

Ratio' - 

     Theta4) ^ 2) 

 

Correlation Matrix for Parameter Estimates 

 

          Theta1     Theta2     Theta3 

Theta2  0.601767 

Theta3  0.989384   0.685153 

Theta4  0.043688  -0.028455  0.0232639 

 

Lack of Fit 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

 

 

Summary 

 

Iterations       11 

Final SSE   279.253 

DFE               5 

MSE         55.8505 

S           7.47332 

 

Prediction 

 

New  ALK/Substrate 

Obs          Ratio      Fit   SE Fit         95% CI               95% PI 

  1         0.1350   3.1794  6.33974  (-13.1174, 19.4762)  (-22.0127, 28.3715) 

  2         3.0000  20.6195  4.28999  (  9.5918, 31.6473)  ( -1.5314, 42.7705) 

  3         4.4028  29.3360  4.33671  ( 18.1881, 40.4838)  (  7.1249, 51.5470) 

  4         5.3400  34.9309  4.16049  ( 24.2360, 45.6258)  ( 12.9437, 56.9180) 

  5         9.9600  54.8540  6.00782  ( 39.4104, 70.2975)  ( 30.2053, 79.5027) 

  6        15.5659  50.3995  4.76589  ( 38.1483, 62.6506)  ( 27.6147, 73.1842) 

  7        18.8976  33.8878  4.32800  ( 22.7623, 45.0133)  ( 11.6880, 56.0876) 

  8        19.5000  30.2876  4.52207  ( 18.6633, 41.9120)  (  7.8337, 52.7416) 

  9        23.0769   8.1539  5.54082  ( -6.0892, 22.3970)  (-15.7610, 32.0688) 
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Minitab® Software Output Summary Excluding Wei et al., 2011 Reference 

Minitab® Output for Quadratic Equation Curve Fit 

 

Figure H–5 Minitab® Quadratic Fitted Line Plot Excluding Wei et al., 2011 Reference 

 

Figure H–6 Residual Plots for Quadratic Model Excluding Wei et al., 2011 Reference 
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Nonlinear Regression: MTC Improvement (%) = theta1 + ...  

 
Method 

 

Algorithm        Gauss-Newton 

Max iterations            200 

Tolerance             0.00001 

 

 

Starting Values for Parameters 

 

Parameter  Value 

theta1         1 

theta2         1 

theta3         1 

 

 

Estimates at Each Iteration 

 

Iteration     SSE    theta1   theta2    theta3 

        0  487429   1.00000  1.00000   1.00000 

        1     312  -0.66839  8.85164  -0.36966 

        2     312  -0.66839  8.85164  -0.36966 

 

 

Equation 

 

MTC Improvement (%) = -0.668392 + 8.85164 * 'ALK/DOC Ratio' - 0.369662 * 'ALK/DOC Ratio' 

^ 2 

 

 

Parameter Estimates 

 

Parameter  Estimate  SE Estimate         95% CI 

theta1     -0.66839      6.39625  (-17.1105, 15.7737) 

theta2      8.85164      1.49431  (  5.0104, 12.6929) 

theta3     -0.36966      0.06226  ( -0.5297, -0.2096) 

 

MTC Improvement (%) = theta1 + theta2 * 'ALK/DOC Ratio' + theta3 * 'ALK/DOC Ratio' ^ 2 

 

 

Correlation Matrix for Parameter Estimates 

 

           theta1     theta2 

theta2  -0.815414 

theta3   0.701276  -0.971179 

 

 

Lack of Fit 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

 

 

Summary 

 

Iterations        2 

Final SSE   311.737 
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DFE               5 

MSE         62.3475 

S           7.89604 

 

 

Prediction 

 

New  ALK/DOC 

Obs    Ratio      Fit   SE Fit         95% CI               95% PI 

  1   0.1350   0.5199  6.23363  (-15.5042, 16.5439)  (-25.3404, 26.3802) 

  2   4.4028  31.1376  3.52556  ( 22.0749, 40.2004)  (  8.9089, 53.3664) 

  3  19.5000  31.3748  4.35522  ( 20.1794, 42.5703)  (  8.1946, 54.5551) 

  4   3.0000  22.5596  3.83511  ( 12.7011, 32.4181)  ( -0.0053, 45.1245) 

  5  15.5659  47.5474  4.54573  ( 35.8622, 59.2326)  ( 24.1267, 70.9681) 

  6   9.9600  50.8230  4.70947  ( 38.7169, 62.9290)  ( 27.1895, 74.4565) 

  7   5.3400  36.0583  3.59322  ( 26.8216, 45.2949)  ( 13.7580, 58.3585) 

  8  23.0769   6.7391  6.80622  (-10.7569, 24.2351)  (-20.0582, 33.5364) 

Minitab® Output for Gaussian Distribution Curve Fit 

 

Figure H–7 Minitab® Gaussian Fitted Line Plot Excluding Wei et al., 2011 Reference 
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Figure H–8 Residual Plots for Gaussian Model Excluding Wei et al., 2011 Reference 

Nonlinear Regression: MTC Improvement (%) = Theta1 + (Theta2 - ...  

 
* WARNING * Singular or nearly singular gradient matrix detected at iteration: 0. 

 

 

Method 

 

Algorithm        Gauss-Newton 

Max iterations            200 

Tolerance             0.00001 

 

 

Starting Values for Parameters 

 

Parameter  Value 

Theta1         0 

Theta2        55 

Theta3         0 

Theta4        12 

 

 

Estimates at Each Iteration 

 

Iteration      SSE    Theta1   Theta2     Theta3   Theta4 

        0  8220.66    0.0000  55.0000  0.0000000  12.0000 

        1   999.93    0.0000  55.0000  0.0072594  12.0000 

        2   244.61  -21.7323  57.4164  0.0084077  11.7437 

        3   239.38  -17.9545  57.8878  0.0088073  11.8022 

        4   239.30  -19.2989  57.7362  0.0085578  11.8003 

        5   239.29  -19.1442  57.7605  0.0085943  11.8038 

        6   239.29  -19.2297  57.7504  0.0085777  11.8034 
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        7   239.29  -19.2129  57.7525  0.0085809  11.8036 

        8   239.29  -19.2189  57.7518  0.0085798  11.8036 

        9   239.29  -19.2175  57.7520  0.0085800  11.8036 

       10   239.29  -19.2179  57.7519  0.0085800  11.8036 

       11   239.29  -19.2178  57.7519  0.0085800  11.8036 

 

Equation 

 

MTC Improvement (%) = -19.2178 + (57.7519 + 19.2178) * exp(-0.00857998 * ('ALK/DOC Ratio' 

- 

     11.8036) ^ 2) 

 

Parameter Estimates 

 

Parameter  Estimate  SE Estimate        95% CI 

Theta1     -19.2178      41.8079  (      *, 47.6929) 

Theta2      57.7519       7.2381  (39.2758, 78.6417) 

Theta3       0.0086       0.0081  (-0.0151,  0.0374) 

Theta4      11.8036       0.5462  (10.0065, 13.4888) 

 

MTC Improvement (%) = Theta1 + (Theta2 - Theta1) * exp(-Theta3 * ('ALK/DOC Ratio' - 

Theta4) ^ 

     2) 

 

Correlation Matrix for Parameter Estimates 

 

           Theta1     Theta2     Theta3 

Theta2   0.544095 

Theta3   0.980540   0.650960 

Theta4  -0.148798  -0.054324  -0.175574 

 

Lack of Fit 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

 

 

Summary 

 

Iterations       11 

Final SSE   239.292 

DFE               4 

MSE         59.8230 

S           7.73453 

 

Prediction 

 

New  ALK/DOC 

Obs    Ratio      Fit   SE Fit         95% CI               95% PI 

  1   0.1350   4.7138  6.27447  (-12.7069, 22.1345)  (-22.9383, 32.3658) 

  2   4.4028  28.8912  4.51828  ( 16.3464, 41.4359)  (  4.0210, 53.7613) 

  3  19.5000  27.0838  6.02764  ( 10.3484, 43.8192)  ( -0.1417, 54.3093) 

  4   3.0000  20.3667  4.38194  (  8.2005, 32.5329)  ( -4.3147, 45.0481) 

  5  15.5659  48.9492  5.21149  ( 34.4798, 63.4186)  ( 23.0548, 74.8435) 

  6   9.9600  55.5398  6.54138  ( 37.3780, 73.7016)  ( 27.4150, 83.6646) 

  7   5.3400  34.5653  4.38213  ( 22.3986, 46.7320)  (  9.8836, 59.2469) 

  8  23.0769   6.6499  5.90101  ( -9.7339, 23.0337)  (-20.3609, 33.6607) 

 

  



 

324 

APPENDIX I. GAC PILOT BREAKTHROUGH EVALUATION 
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This Appendix section presents the calculations and relevant assumptions utilized to estimate the 

GAC change-out frequency for a full-scale GAC contactor system. The full-scale GAC projections 

are based on the pilot-scale performance data. The pilot-scale data was utilized to determine the 

absorptive capacity of GAC media for the removal of DOC from the Olinda settled water. 

Determining the GAC Bed Life and Change-out Frequency 

The pilot and full scale GAC design parameters are summarized in Table I-1. The average inlet 

DOC concentration of 2.75 mg/L represents the average DOC level of the Olinda settled water. 

The GAC treatment objective was estimated at 1.4 mg/L DOC based on the pilot-scale observation 

that the downstream UF membrane process removes an additional 15 percent of the DOC. With 

the additional DOC removal, the Olinda filtered water DOC concentration at GAC breakthrough 

is estimated to be about 1.2 mg/L. This DOC level is expected to meet the DBP regulation 

requirements. 

The GAC bed life and change-out frequency were estimated using the pilot information from Table 

I-1 and Equations 2-7 through 2-10. The procedure for projecting the GAC bed life and change-

out frequency is enumerated in the following sample calculations. 
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Table I–1 Pilot and Full Scale GAC Design Parameters 

Parameter Pilot Full-Scale per Vessel 

Average inlet DOC (mg/L) 2.75 2.75 

Treatment objective - TOC (mg/L) 1.4 1.4 

Carbon Type Evoqua’s UltraCarb® 1240 Evoqua’s UltraCarb® 1240 

Carbon Density (g/L)(1) 495 495 

Contactor Volume (cf) 16.76 1020(2) 

Carbon Mass (g) 234881 14300000 

Flow Rate (L/m) 33.0 
Scenario 1:  1752(3) 
Scenario 2:  2366(4) 

Carbon Usage Rate (g GAC/L 
treated) 

0.118 0.118 

Time to breakthrough tbk (days) 42 
Scenario 1:  48 
Scenario 2:  36 

Change-out frequency (times/year) 9 
Scenario 1:  7 

Scenario 2:  10 

(1) The carbon density was estimated by averaging the 450 to 540 g/L density range provided by Evoqua 
Water Technologies. 

(2) The contactor volume was selected based on the contactor size utilized for the conceptual opinion of 

probable capital cost calculations. 

(3) Scenario 1 represents the average daily flow (2 MGD) condition. 

(4) Scenario 2 represents the peak daily flow (2.6 MGD) condition. 

1. The time-series plot of treated water DOC versus filtration run time (Figure I-1) reveals that 

the GAC pilot’s time to breakthrough was 42 days. 
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Figure I–1 Pilot-Scale Time to Breakthrough Graphical Analysis 

2. Based on the pilot’s time to breakthrough of 42 days, GAC mass of 234881 g, and treatment 

flow rate of 33.0 L/min; the carbon usage rate (CUR) is calculated according to: 

𝐶𝑈𝑅 = 𝑀𝐺𝐴𝐶𝑄 × 𝑡𝑏𝑘 = 234881 g33.0 𝐿𝑚𝑖𝑛 × 42 𝑑𝑎𝑦 × 1440 𝑚𝑖𝑛𝑑𝑎𝑦 = 0.118 𝑔 𝐺𝐴𝐶𝐿 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 

3. Using the full-scale design criteria (contactor volume) and estimated carbon density (495 g/L), 

the estimated mass of GAC for the full-scale plant is calculated as follows: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝑀𝐺𝐴𝐶 = 1020𝑓𝑡3 × 28.32 𝐿𝑓𝑡3 × 495 𝑔𝐿 = 14.3 × 106𝑔 𝐺𝐴𝐶 

4. Applying the full-scale GAC mass, CUR, and alternative operating flow rates, the full-scale 

time to breakthrough is estimated according to: 

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90

D
O

C
 (

m
g

/L
)

Pilot Run Time (days)

GAC Inlet GAC Outlet

1.4 mg/L DOC Target

before UF membranes

42 day 

Breakthrough



 

328 

(a) Scenario 1:  𝑡𝑏𝑘 = 𝑀𝐺𝐴𝐶𝑄×𝐶𝑈𝑅 = 14.3×106𝑔 𝐺𝐴𝐶463 𝑔𝑎𝑙𝑚𝑖𝑛×3.785 𝐿𝑔𝑎𝑙×1440 𝑚𝑖𝑛𝑑𝑎𝑦 ×0.118𝑔 𝐺𝐴𝐶𝐿 = 48 𝑑𝑎𝑦𝑠 

(b) Scenario 2:  𝑡𝑏𝑘 = 𝑀𝐺𝐴𝐶𝑄×𝐶𝑈𝑅 = 14.3×106𝑔 𝐺𝐴𝐶625 𝑔𝑎𝑙𝑚𝑖𝑛×3.785 𝐿𝑔𝑎𝑙×1440 𝑚𝑖𝑛𝑑𝑎𝑦 ×0.118𝑔 𝐺𝐴𝐶𝐿 = 36 𝑑𝑎𝑦𝑠 

5. Assuming there are 30 days in a month and 12 months in a year, the GAC change-out 

frequency is projected as: 

(a) Scenario 1:  𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 30 𝑑𝑎𝑦𝑠𝑚𝑜𝑛𝑡ℎ×12𝑚𝑜𝑛𝑡ℎ𝑠𝑦𝑒𝑎𝑟48 𝑑𝑎𝑦𝑠 = 7 𝑡𝑖𝑚𝑒𝑠𝑦𝑒𝑎𝑟  

(b) Scenario 2:  𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 30 𝑑𝑎𝑦𝑠𝑚𝑜𝑛𝑡ℎ×12𝑚𝑜𝑛𝑡ℎ𝑠𝑦𝑒𝑎𝑟36 𝑑𝑎𝑦𝑠 = 10 𝑡𝑖𝑚𝑒𝑠𝑦𝑒𝑎𝑟  
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APPENDIX J. ECONOMIC EVALUATION 
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This Appendix presents the calculations and assumptions utilized to determine the conceptual 

opinions of probable construction and operating cost for the Olinda water treatment alternatives. 

The conceptual opinions of probable construction and operational cost are intended to be used for 

comparison purposes only, as they do not represent design-based engineering estimates. 

Common Economic Assumptions 

Table J–1 Common Capital Cost Assumptions 

Description Value 

Mobilization and Bonding 1.5% 
Contractor Overhead 10% 

Contingency 25% 
Planning Period (n) 20 years 

Interest Rate (i) 4.5% 
Olinda Water Treatment Capacity (Peak) 2.7 MGD 

 

Table J–2 Common Operating Cost Assumptions 

Description Value(1) 

Contingency 25% 
Olinda Water Treatment Capacity (Peak) 2.7 MDG 

Electrical Cost $0.40/kwh 
Equipment Maintenance Materials(2) 2% of equipment cost per year 

Trucking(2) $22.5/ton 
Tipping(2) $96/ton 
Caustic(2) $5.32/gal 

Aluminum Chlorohydrate (ACH)(3) $6.45/gal 
Chlorine(3) $1.09/lb 

Anhydrous Ammonia (3) $3.49/lb 
Citric Acid(3) $17.83/gal 

Sodium Hypochlorite(3) $3.75/gal 
Lime(3) $0.70/lb 

(1) Conceptual opinions of probable operating cost does not include the cost of labor. 
(2) Data retrieved from Lekven, 2011. 

(3) Costs provided by the County based on actual 2013 Olinda chemical costs.  
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Amortized Present Cost Calculation: 

𝐴𝑚𝑜𝑟𝑡𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 (𝐶𝑎𝑝. ) 𝐶𝑜𝑠𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 × (1 + 𝑖)𝑛 − 1𝑖(1 + 𝑖)𝑛  

𝐴𝑚𝑜𝑟𝑡𝑖𝑧𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 $1000𝑔𝑎𝑙 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 $𝑦𝑟 + 𝐴𝑚𝑜𝑟𝑡𝑖𝑧𝑒𝑑 𝐶𝑎𝑝. 𝐶𝑜𝑠𝑡 $𝑦𝑟2700000 × 3651000 𝑔𝑎𝑙𝑦𝑟  

Update of Construction Costs: 

𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐶𝐶𝑝𝑎𝑠𝑡 × 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑁𝑅 𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥𝑃𝑎𝑠𝑡 𝐸𝑁𝑅 𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥  

Status Quo 

Table J–3 Status Quo Conceptual Opinions of Construction and Operating Costs 

Estimated Capital Cost 

Total Estimated Capital $0 

Amortized Capital $/yr $0 

Estimated Operating Cost(1) 
Olinda Process Power $191,000 

Phase 6 Pumping Process Power(2) $564,000 

ACH $49,000 

Citric $19,000 

Bleach $8,500 

Lime $12,000 

Anhydrous Ammonia $7,300 

Chlorine $9,200 

Operation Subtotal $860,000 

Contingency (25%) $215,000 

Total Operating Costs $1,080,000 

Amortized Total Cost $/1000gal $1.10 

(1) The County provided UCF the Olinda process power and chemical costs incurred in 2013. 
(2) Phase 6 pumping refers to a distribution system management condition, in which water is pumped from 

Lower Kula to Upper Kula. It was assumed that Upper Kula operates under Phase 6 pumping 
approximately 36 percent of the year. The sample cost calculation is presented in the following 
equation. 
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Phase 6 Pumping Process Power Cost: 

𝑃ℎ𝑎𝑠𝑒 6 𝐶𝑜𝑠𝑡 ( $𝑦𝑟) = 4𝑝𝑢𝑚𝑝𝑠 150ℎ𝑝𝑝𝑢𝑚𝑝 𝑘𝑤1.34102ℎ𝑝 8,760ℎ𝑟 × 0.36𝑦𝑟 $0.40𝑘𝑤ℎ = $564,000/𝑦𝑟 

MIEX® High Rate System 

Table J–4 MIEX® Economic Assumptions 

Description Value 

MIEX® Equipment Cost Estimate(1) $1,759,583 
MIEX® Resin Cost(1) $16.50/L 
MIEX® Resin Use(1) 2.0 L/MG 

Sodium Chloride Cost(2) $0.17/lb 
Salt Regeneration Use(1) 350 lb/MG 

Salt Brine Residual Production(1) 400 gal/MG 
Process Power Factor(1) 45 kwh/MG 

Electrical Cost(3) $0.40/kwh 
Discharge of Brine to WWTF(4) $0.081 

Olinda WTP Operating Cost(5) 
Cost savings related to discontinuing the ammonia 

feed, and reduction in ACH usage 

(1) Cost estimate adjusted to 2.7 MGD design flow from Orica Watercare’s County’s 6.0 MGD MIEX® 
Treatment System Budgetary Proposal for the Pi’iholo WTP. 

(2) Data retrieved from Lekven 2011. 
(3) Conservative estimate; Rounded Lekven’s $0.35/kwh estimate to $0.40/kwh 
(4) Brine disposal costs were evaluated by assuming trucking and discharge to waste water treatment 

facility (WWTP) through a receiving tank with pump metering system. 
(5) Assumed conversion to free chlorine. Assumed MIEX® pretreatment prior to coagulation reduces the 

ACH usage by half of current usage. 

 

Table J–5 MIEX® Design Assumptions 

Description Value 

MIEX® System Atmospheric (gravity flow) configuration 
Treatment Capacity 2.7 MGD 
Regeneration Rate 1000 Bed Volumes 

Resin Contactor Concentration 200 to 250 mL/L 
Contact Time 4 – 8 minutes 
Regenerant Sodium chloride 
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Table J–6 MIEX® Conceptual Opinions of Construction and Operating Costs 

Estimated Capital Cost 
MIEX® Equipment $1,759,583 

Replacement of frame and structural members with 316 SS $126,894 

Spare parts $29,608 

Concrete Basins $200,000 

Jib Crane & Hoist for MIEX® Loading $31,000 

Aluminum Cover $90,000 

Stairs $8,000 

Handrail $4,050 

Misc. Metals (weirs, wall pipes, etc.) $8,333 

TOC/DOC/Color Analyzer $35,000 

Furnishings $60,000 

MIEX® Chemical Feed Building $150,000 

Electrical $145,000 

Process Piping & Valves $700,000 

Instrumentation & SCADA System $125,000 

Brine Receiving Tank (Two-4,000 gal capacity Fiberglass tanks) $32,600 

Brine Metering Pumps $2,600 

Capital Subtotal $3,510,000 

Mobilization and Bonding $52,650 

Contractor Overhead and Profit $351,000 

Contingency (25%) $980,000 

Total Estimated Capital $4,890,000 

Amortized Capital $/yr $375,924 

Estimated Operating Cost 
Process Power – Olinda WTP(1) $187,000 

Process Power – Phase 6 Pumping(1) $564,000 

Chemical – Olinda WTP(1) $73,000 

Process Power – MIEX® $20,000 

Maintenance Materials $70,000 

Resin Replacement $120,000 

Salt $60,000 

Brine Trucking $40,000 

Brine Discharge to WWTF $30,000 

Operation Subtotal $1,164,000 

Contingency (25%) $291,000 

Total Operating Costs $1,460,000 

Amortized Total Cost $/1000gal $1.86 

(1) Olinda process power and chemical costs were estimated by subtracting the ammonia feed system costs 
from the provided 2013 Olinda cost data, and dividing the 2013 Olinda ACH cost by two. 
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GAC Contactor Columns 

Table J–7 GAC Economic Assumptions 

Description Value 

GAC Construction Cost Estimate(1) $2,070,225 
Initial GAC Cost(2) $1.60/lb 

GAC Process Power Factor(2) 78 kwh/MG 
GAC Replacement(2) $2.60/lb 

Electrical Cost(3) $0.40/kwh 

Olinda WTP Operating Cost(4) 
Cost savings related to discontinuing the ammonia 

feed 

(1) Cost estimate retrieved from the County’s 2013 Pi’iholo WTP GAC Bid Summary. No additional costs 
associated with mobilization, bonding, overhead, or profit were added to the construction cost estimate. 

(2) Data retrieved from Lekven 2011. 
(3) Conservative estimate; Rounded Lekven’s $0.35/kwh estimate to $0.40/kwh 
(4) Assumed conversion to free chlorine. 

 

Table J–8 GAC Design Assumptions 

Description Value 

Average Influent TOC 2.75 mg/L 
TOC Treatment Objective 1.4 mg/L 

Carbon Type Evoqua’s UltraCarb 1240® 
Carbon Density 495 g/L 

Carbon Usage Rate(1) 0.118 g GAC/L treated 
Number of GAC Vessels 3 

Mass of Carbon per Vessel 31,500 lbs 
Design Flow Rate per Vessel 2366 L/min 

EBCT per Vessel 12.25 min 
GAC Change-out Frequency(1) 10 times/yr 

(1) The carbon usage rate and GAC change-out frequency were determined according to pilot-scale DOC 
breakthrough evaluation, which is presented in Appendix I. 
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Table J–9:  GAC Conceptual Opinions of Construction and Operating Costs 

Estimated Capital Cost 
GAC Contactors (3-1020 ft3 vessels) $2,070,225 

Initial GAC $151,200 

Capital Subtotal $2,221,000 

Contingency (25%) $560,000 

Total Estimated Capital $2,780,000 

Amortized Capital $/yr $213,716 

Estimated Operating Cost 
Process Power – Olinda WTP(1) $187,000 

Process Power – Phase 6 Pumping(1) $564,000 

Chemical – Olinda WTP(1) $98,000 

Process Power – GAC $30,000 

Carbon Replacement $2,460,000 

Operation Subtotal $3,339,000 

Contingency (25%) $834,750 

Total Operating Costs $4,170,000 

Amortized Total Cost $/1000gal $4.45 

(1) Olinda process power and chemical costs were estimated by subtracting the ammonia feed system costs 
from the provided 2013 Olinda cost data. 

 

BAC Contactor Columns 

The BAC pilot scale evaluation revealed that operating the GAC in biological mode was not 

effective in controlling the regulated DBP formation potential. Consequently, in order to 

effectively remove the DBP precursors, the BAC must be operated in the GAC adsorption mode. 

Based on the necessity of operating the BAC in adsorption mode, the conceptual opinions of 

probable capital and operating costs for the BAC are the same as for the GAC. The conceptual 

opinions of construction and operating costs are presented in Table J-9. 
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APPENDIX K. PERMISSION TO REPRODUCE MATERIALS 
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Permission to Use 3M Free and Total ATP Product Instructions 
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Permission to Use Evoqua Autopsy Results 
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Permission to Use Avista Autopsy Results 
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