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ABSTRACT
We conducted hydroponic culture experiments to characterize root traits in a rice cultivar ‘Puluik 
Arang’ that has been identified in a previous study as a cultivar that is adaptable to unflooded 
conditions. Root morphological traits and the expression of 11 aquaporin genes in rice seedlings 
(cv. Puluik Arang and cv. Akitakomachi) subjected to osmotic stress by polyethylene glycol (PEG) 
treatments (10 and 20%) were analysed. ‘Puluik Arang’ exhibited significantly greater water uptake 
under 10% PEG treatment than ‘Akitakomachi’. Lateral root development was maintained in ‘Puluik 
Arang’ under PEG treatments. The expression of some aquaporin genes, particularly OsTIP2;1, was 
higher in ‘Puluik Arang’ than in ‘Akitakomachi’. Immunocytochemical analysis showed that the 
OsTIP2;1 protein mainly accumulated in endodermal cells. The results suggest that better lateral 
root development and the function of aquaporins could contribute to water uptake in ‘Puluik Arang’ 
under osmotic stress.
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One of the biggest challenges in increasing rice produc-
tion under limited water supply is improving the plant’s 
drought resistance. Genetic improvement and agronomic 
management strategies for the efficient use of available 
soil moisture are of utmost importance (Kamoshita, 2011; 
Serraj et al., 2011). Several studies related to drought 
resistance in rice have been conducted over the years. 
Various plant adaptation mechanisms to drought have 
been delineated in previous studies (Bouman et al., 2006; 
Fukai & Cooper, 1995). Biomass production in plants can 
be determined by water uptake multiplied by water use 
efficiency. Therefore, enhancing water uptake under soil 
moisture deficit is important for improving rice produc-
tion under drought stress (Blum, 2009; Kobata et al., 1996; 
Nguyen et al., 1997).

Plant water status is regulated by the balance of water 
uptake through the root system and water demand by 
the shoot. The root system responds to various soil condi-
tions and plays an important role in maintaining the plant’s 
water status by regulating water uptake under conditions 
of low water availability. For example, deep root growth 
and root thickness enable the plant to uptake water from 

a deep layer of soil (Kato et al., 2006; Uga et al., 2013). The 
plasticity of root development is also important for the 
adaptability to soil moisture changes (Suralta et al., 2008; 
Kano et al., 2011, Kano-Nakata et al., 2011). Several stud-
ies have investigated the molecular mechanisms of water 
transport in roots. The flow of water in roots occurs in a 
radial manner from the root surface to the central cylin-
der by both apoplastic and cell-to-cell pathways. Where 
apoplastic barriers such as Casparian bands exist, water 
is transported via the cell-to-cell pathway. In this path-
way, water channels known as aquaporins regulate water 
transport (Javot & Maurel, 2002; Maurel et al., 2008). Recent 
studies have reported that aquaporins facilitate water 
transport in plant tissues in many plant species (Knipfer 
et al., 2011; Mahdieh et al., 2008; Murai-Hatano et al., 2008; 
Sakurai et al., 2008). The regulation of aquaporin gene 
expression, their trafficking and/or their reversible gating 
actively regulate the water movement in the plant and 
play an important role in drought resistance and/or recov-
ery from drought (Matre et al., 2002; Tournaire-Roux et al., 
2003; Lian et al., 2006; Guo et al., 2006; Hachez et al., 2013; 
Luu & Maurel, 2013). These studies indicate that aquaporin 
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previous studies (Sakurai et al., 2005; Sakurai-Ishikawa  
et al., 2011).

After germination in the dark for three days at 28 °C 
in Petri dishes, 10 seedlings were transplanted and 
grown in 1,200  mL of a culture solution (1.5  ×  10−3  M 
KNO3, 1.0  ×  10−3  M Ca(NO3)2, 2.5  ×  10−4  M NH4H2PO4, 
5.0 × 10−4 M MgSO4, 1.3 × 10−5 M Fe-EDTA, 2.3 × 10−6 M 
MnCl2, 1.2 × 10−5 M H3BO3, 1.9 × 10−7 M ZnSO4, 7.9 × 10−8 M 
CuSO4, and 7.5 × 10−9 M (NH4)6Mo7O24) in a plastic pot (95 
φmm, 240  mm height). Plants were grown in a growth 
chamber (MLR-350H; Sanyo, Japan) under a 12-h light/12-h 
dark photoperiod (320 μmol s−1 m−2 photosynthetic pho-
ton flux density during the light period), with 28 °C and 
70% of relative humidity. To induce osmotic stress, pol-
yethylene glycol (PEG) 6,000 was dissolved in water at 
concentrations of 0 (control), 10% (w/w), and 20%, three 
days after transplanting; the water potentials of the PEG-
treated solutions were −0.18 and −0.42 MPa, respectively. 
The osmotic potentials were measured using a vapour 
pressure osmometer (model 5520, Wescor Inc., U.S.A). PEG 
6,000 has no toxic effect under well-aerated conditions, 
which is why we used it to mimic soil water limited condi-
tions (Kano et al., 2011).

2.  Measurement of water uptake, plant growth and 
morphological root traits

The amount of water uptake of 13-day-old plants was 
measured as the decrease in pot weight during a 1-h 
measurement period, from 3 h after lights-on, with the 
same sampling timing as for the expression analysis of 
the aquaporin genes. The measurements were taken 
independently three times. Evaporations were estimated 
from the weight change of the pot without plants.

The shoot and root of the 13-day-old plants were 
sampled and dried at 80 °C for more than three days, and 
then the dry matter weight was measured. Regarding the 
morphological root trait measurements, root samples 
were fixed and stained in FAA solution and Coomassie 
Brilliant Blue. Images of the root systems were captured 
using an image scanner (GT-9800). The total root length, 
the root surface area and the total number of lateral roots 
were measured using WinRHIZO (Regent instrument Inc., 
Canada), an image analysis system. The number of long 
and thick lateral root (L-type lateral root) was counted by 
visual observation (Figure 1), and the number of short and 
thin lateral root (S-type lateral root) was calculated from 
the number of root tip using WinRHIZO.

3.  Expression analyses of the rice aquaporin genes

For the investigation of the expression of aquaporin genes 
at mRNA levels in the roots, we sampled seminal roots and 

is a key trait that could provide a better understanding 
of the adaptation of different rice varieties to conditions 
where water availability is limited.

We previously examined the genotypic variation in 
biomass production under different soil moisture con-
ditions using a rice diversity research set of germplasm 
developed by the National Institute of Agrobiological 
Science and found that an indica rice cultivar ‘Puluik Arang’ 
exhibited great water uptake, resulting in large biomass 
production under unflooded conditions (Matsunami  
et al., 2012). It was hypothesized that better development 
of the root system, especially lateral root development, 
contributed to the greater water uptake by the cultivar 
‘Puluik Arang’ under conditions of low water availabil-
ity. In addition, we hypothesized that the expression of 
root aquaporin genes could be involved in water uptake 
by different rice varieties under stress. Therefore, in this 
study, we investigated root development and expression 
of aquaporin genes in response to osmotic stresses in 
‘Puluik Arang’, as a step towards evaluating root traits 
associated with better water uptake under conditions 
with low water availability.

Materials and methods

1.  Plant material and growth conditions

An indica cultivar ‘Puluik Arang’, which was identified as a 
cultivar adaptable to unflooded condition in our previous 
study (Matsunami et al., 2012), was used for hydropon-
ics experiments. A japonica rice cultivar (O. sativa L. cv. 
Akitakomachi) was used as control, because this cultivar 
was well investigated for its aquaporin function in the 

L-type lateral
roots

S-type lateral
roots

Seminal root

Figure 1. Two types of lateral root, e.g. root of Puluik Arang under 
10% PEG treatment.
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lateral roots emerged from seminal root from 13-day-old 
plants 3 h after lights-on, when the highest expression is 
observed in most plasma membrane intrinsic protein (PIP) 
members (Sakurai et al., 2005). The root samples were imme-
diately frozen in liquid nitrogen. Approximately 100 mg 
(fresh weight) of the seminal roots from two or three plants 
was ground with a pestle. Total RNA was extracted from the 
ground sample using the RNeasy Plant Mini Kit (Qiagen, 
the Netherlands), according to the manufacturer’s instruc-
tions. First-strand cDNA was synthesized using TaKaRa RNA 
PCR Kit (AMV) Ver. 3.0 (Takara Bio Inc., Japan). After dilution 
of the synthesized cDNA (2 ng μL−1), we conducted a quan-
titative real-time PCR using the StepOne Real-Time PCR sys-
tem (Applied Biosystems, U.S.A). The PCR was conducted 
using the Fast SYBR Green system (Applied Biosystems). 
From 33 rice aquaporin genes (Sakurai et al., 2005), we 
determined 8 PIPs and 3 tonoplast intrinsic proteins (TIPs) 
(OsPIP1;1, OsPIP1;2, OsPIP1;3, OsPIP2;1, OsPIP2;2, OsPIP2;3, 
OsPIP2;5, OsPIP2;6, OsTIP1;1, OsTIP2;1 and OsTIP2;2), which 
are strongly expressed in the root (Sakurai-Ishikawa et al., 
2011). The PCR conditions were as follows: 1 cycle at 95 °C 
for 20 s, followed by 40 cycles at 95 °C for 3 s and at 60 °C for 
30 s. Three biological replications were conducted for the 
determination of the expression of aquaporin genes. The 
sequence of primers and the calculation of the absolute 
copy number of expressed aquaporin mRNAs are given 
in Sakurai-Ishikawa et al. (2011). Using sequence analysis, 
we confirmed the differences of sequences of expressed 
genes between several indica and japonica cultivars. The 
cultivar differences were not observed in the sequences of 
primer pairs used for real-time PCR in this study, indicating 
that these primers are suitable for comparison of cultivar 
differences.

4.  Immunocytochemistry

Root tissue samples from 13-day-old plants of ‘Puluik 
Arang’ under 10% PEG treatment were excised from the 
lateral root initiation zone (approximately 1–2  cm from 
the root tip) and from the mature zone (middle position 
of seminal root) of the seminal root. After fixation with 4% 
paraformaldehyde in phosphate-buffered saline (PBS) at 
4 °C, the tissues were dehydrated through a tertiary-bu-
tyl alcohol series. Then, the tissues were embedded in 
paraffin blocks and sectioned into 7-μm slices using a 
microtome (HM355S, Thermo Fisher Scientific, Germany). 
After dewaxing by xylene, the sections were gradually 
hydrated through an ethanol series, from 100% to 30%. 
The sections were then treated with a blocking solution 
(1% bovine serum albumin in PBS-Tween20 [0.1%]) for 
45  min to block intrinsic alkaline phosphatase activity. 
After washing in PBS, the sections were reacted with 
anti-aquaporin antibodies overnight. The sections were 

carefully washed in PBS, and then the sections were 
reacted with a second antibody (a 200-fold dilution of 
anti-rabbit goat IgG-alkaline phosphatase conjugate; 
Promega, U.S.A) for 4–5 h, and visualized with Western Blue 
(Promega) stabilized substrate for alkaline phosphatase. 
When a blue/purple colour was observed, the slides were 
rinsed with water and then dehydrated in a graded water 
ethanol series, ethanol–xylene and xylene. The slides were 
mounted with Eukitt® and observed under a microscope 
(BX51, Olympus, Japan).

5.  Statistical analysis

Statistical analyses were performed using JMP 8 Statistical 
Discovery software (SAS Institute, U.S.A). The data analy-
sis was conducted to determine the effects of the water 
treatment on the water uptake, shoot and root DW and 
root morphological traits by Tukey’s multiple means test, 
and significant difference between cultivars under each 
treatment was determined by t-test. To determine the indi-
vidual and interaction effects of the treatment and cultivar 
for aquaporin genes expression level, a two-way analysis 
of variance (ANOVA) was performed.

Results and discussion

Water uptake, dry matter production and morphological 
root traits of the cultivars ‘Puluik Arang’ and ‘Akitakomachi’ 
are shown in Table 1. Water uptake under the 10% PEG 
treatment in ‘Puluik Arang’ was comparable to that under 
control. ‘Akitakomachi’ showed a small reduction in water 
uptake under the 10% PEG treatment compared to control, 
although the difference was not significant. Water uptake 
was strongly inhibited under the 20% PEG treatment 
regardless of the cultivar tested; the water uptake in ‘Puluik 
Arang’ was approximately 50% and in ‘Akitakomachi’ was 
approximately 30% of that under the control treatment. 
‘Puluik Arang’ (172 mg plant−1 h−1) absorbed significantly 
larger amounts of water than ‘Akitakomachi’ (121  mg 
plant−1 h−1) under the 10% PEG treatment. The response 
of shoot dry weight to osmotic stresses was similar to that 
of water uptake. On the other hand, PEG treatment did 
not have a significant effect on root dry weight, although 
a small reduction was observed under the 20% PEG treat-
ment in both cultivars.

Contrary to our expectations, morphological root traits 
such as root length and lateral root number were not bet-
ter in ‘Puluik Arang’ than in ‘Akitakomachi’; ‘Akitakomachi’ 
had significantly longer root length and larger root sur-
face area than ‘Puluik Arang’ under the control and 10% 
PEG treatments. Therefore, the water uptake per unit root 
length was significantly better in ‘Puluik Arang’ than in 
‘Akitakomachi’ regardless of the treatment. We also found 
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made in the analysis of quantitative trait loci (QTL) associ-
ated with lateral root development can contribute towards 
elucidation of the genetic control of lateral root develop-
ment (Niones et al., 2015). The evaluation of differences in 
the genetic control of development and function of S-type 
and L-type lateral roots will be required to clarify the role 
played by L-type lateral roots in conditions where water 
availability is low.

Quantitative analysis of gene expression in the roots 
showed that the expression levels of several aquaporin 
genes (e.g. OsPIP2;1, OsPIP2;2, OsPIP2;5, OsTIP2;1) were 
higher in ‘Puluik Arang’ than in ‘Akitakomachi’ under con-
trol and 10% PEG treatments (Figure 2). In particular, the 
expression level of OsTIP2;1, a root-specific TIP (Sakurai et 
al., 2005; Sakurai et al., 2008; Sakurai-Ishikawa et al., 2011), 
was approximately seven times higher in ‘Puluik Arang’ 
than in ‘Akitakomachi’ under the 10% PEG treatment. Henry 
et al. (2012) also found that the expression level of OsTIP2;1 
was higher in the drought tolerant cultivar ‘Dular’ than in 
‘IR 64’ during the earlier and middle part of the day under 
drought stress. Immunocytochemical analysis showed that 
the OsTIP2;1 proteins had accumulated from the central 
cylinder to the exodermis of the lateral root initiation zone 
(Figure 3). In the mature zone, the accumulation of aqua-
porin proteins mainly occurred on the endodermis of the 
seminal root, and also on the endodermis of lateral roots. 
Casparian bands restrict water transport via an apoplastic 
pathway around these cells. Aquaporins that accumulate 
adjacent to the Casparian bands may facilitate water trans-
port in these regions and could determine root hydraulic 
conductivity. Therefore, in comparison with ‘Akitakomachi’, 
the higher expression level of OsTIP2;1 in ‘Puluik Arang’ in 
response to 10% PEG treatment might be associated with 
better water uptake through the regulation of root water 
transport.

Previous studies have reported the effects of osmotic 
stress on the expression of aquaporin genes and the 
genotypic difference in the response of aquaporin gene 
expression to osmotic stresses (Guo et al., 2006; Lian et 
al., 2006). However, the study is limited to evaluation of 
the relationship between aquaporin gene expression 

that the response of root development to osmotic stress 
was different in the two cultivars. ‘Puluik Arang’ maintained 
similar root length and root surface area under both PEG 
treatments, whereas root length and surface area were 
decreased by osmotic stress in ‘Akitakomachi’. Osmotic 
adjustment contributes to the maintenance of turgor 
pressure, resulting in the maintenance of root elongation 
under osmotic stress (Ogawa and Yamauchi, 2006). It has 
also been reported that the cell production influences 
root elongation under salt stress (Ogawa et al., 2006). 
Investigation of these physiological traits may help in elu-
cidating the mechanism that maintains root development 
in ‘Puluik Arang’ under osmotic stress.

Lateral root development in the two cultivars was signif-
icantly different. Regardless of the treatment, the number 
of S-type lateral roots in ‘Akitakomachi’ (1035–1231 roots 
plant−1) was significantly higher than that in ‘Puluik Arang’ 
(781–854 roots plant−1). The PEG treatments did not affect 
the number of S-type lateral roots in ‘Puluik Arang’, while 
the number of S-type lateral roots in ‘Akitakomachi’ was 
reduced by osmotic stress. The S-type lateral root mostly 
consisted of the root length of the whole root system in 
this study; therefore, the maintenance of S-type lateral 
root development contributed to the maintenance of root 
length in ‘Puluik Arang’ under PEG stress. The number of 
L-type lateral roots was significantly higher in ‘Puluik Arang’ 
(20–37 roots plant−1) than in ‘Akitakomachi’ (8–15 roots 
plant−1). L-type lateral root development is considered a 
key trait for adaptation to conditions where water availabil-
ity is low (Bañoc et al., 2000, Suralta et al., 2008). Toyofuku 
et al. (2015) compared the genotypic difference in L-type 
lateral root formation between osmotic stress tolerant and 
stress sensitive genotypes and showed that under osmotic 
stress, L-type lateral root development was better in stress 
tolerant genotypes. These results indicated that L-type lat-
eral root development is an important root trait involved 
in stress tolerance in rice; therefore, L-type lateral root 
development in ‘Puluik Arang’ might contribute towards 
better water uptake under osmotic stress. However, the 
difference in the water uptake ability of S-type lateral root 
and L-type lateral root still remains unknown. The progress 

Table 1. Water uptake, dry matter production and root morphological traits of two rice cultivars in response to PEG stress.

Notes. Measurements of water uptake (n = 3) were conducted in 13-day-old plants from 3 to 4 h after lights-on. Dry matter weight (n = 3) and root morphological 
traits (n = 10) of 13-day-old plants were measured. The amount of water uptake per unit root length was calculated by dividing water uptake amount from 3 h 
to 4 h after lights-on by average root length. Values followed by a different letter within each cultivar indicate significant difference at p < 0.05 by Tukey’s test. 
Asterisk indicates significant difference between the cultivars ‘Puluik Arang’ and ‘Akitakomachi’ under each treatment by t-test (p < 0.05), and ns = not significant.

Cultivar Treatment
Water uptake 

(mg plant−1 h−1)
Shoot DW 

(mg plants−1)
Root DW  

(mg plants−1)

Total root 
length (cm 

plant−1)

Root surface 
area (cm2 
plant−1)

S type lateral 
root number 

(plant−1)

L type lateral 
root number 

(plant−1)

Water uptake/
root length 

(mg cm−1 h−1)
Puluik Arang Control 169a 26.5ab 4.9a 255a 12.8a 843a 20b 0.66a

10% PEG 172a 28.1a 4.9a 250a 13.6a 781a 36a 0.69a
20% PEG 86b 19.9b 4.3a 233a 11.8a 854a 37a 0.37b

Akitakomachi Control 152ans 23.9ans 4.6ans 312a* 16.3a* 1231a* 8b* 0.49a*
10% PEG 121a* 22.5a* 4.7ans 288ab* 15.3a* 1099ab 14a* 0.42a*
20% PEG 50bns 17.4bns 4.2ans 258bns 12.5bns 1035b* 15a* 0.20b*
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by the shoot. Further studies on shoot-root communi-
cation via the regulation of aquaporins are necessary to 
evaluate how to optimize water uptake and transport 
at the whole plant level under conditions of low water 
availability. Recent studies have revealed that aquaporins 
are involved not only in plant water relations but also in 
plant growth and development, such as tissue expansion 
(Maurel et al., 2008). Péret et al. (2012) suggested that 
auxin-regulated aquaporin gene expression could play an 
important role in lateral root emergence in Arabidopsis. 
The investigation of the mechanisms of aquaporin func-
tion in root development in rice will contribute towards a 
deeper understanding of rice adaptation to various hydro-
logical conditions.

and water uptake at the whole plant level under con-
ditions of limited water availability. In this study, of the 
11 aquaporin genes, the expression of seven aquaporin 
genes was significantly correlated with both the amount 
of water uptake and the amount of water uptake per 
unit root length (Table 2). The results suggest that the 
levels of expression of aquaporin genes contribute 
towards the genotypic differences in water uptake at the 
whole plant level and water uptake per unit root length. 
Sakurai-Ishikawa et al. (2011) found that the expression 
of root-specific aquaporins, such as OsPIP2;5, was closely 
correlated with diurnal change in transpiration. Thus, root 
aquaporin gene expression is regulated by both the envi-
ronment around the root and the transpiration demand 
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Figure 2. Comparison of the copy numbers of expressed aquaporin genes in the seminal roots and lateral roots emerged from seminal 
root of different cultivars under osmotic stress. Roots of 13-day-old plants were sampled three hours after lights-on. Three replicates 
of each cultivar for each treatment were conducted using different plant samples. Bars indicate the standard error (n  =  3). Asterisk 
represents a significant difference between cultivars (p < 0.05, t-test). Probability from the results of ANOVA was shown to determine the 
individual and interaction effects of the treatment and cultivar.
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the functions of L-type lateral roots and/or aquaporins are 
required in order to explore the possibilities of enhancing 
water uptake in rice grown under conditions where water 
availability is low.
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In conclusion, the results of this study highlight gen-
otypic differences in root development and aquaporin 
gene expression under osmotic stress in hydroponic cul-
ture. Moreover, we also found that the maintenance of 
lateral root development in ‘Puluik Arang’ under PEG stress 
was better than that in ‘Akitakomachi’. The L-type lateral 
root development was significantly better in ‘Puluik Arang’ 
than in ‘Akitakomachi’. We also found that expression lev-
els of some aquaporin genes, especially OsTIP2;1, were 
higher in ‘Puluik Arang’ than in ‘Akitakomachi’ under 10% 
PEG treatment. Data indicate that better maintenance of 
lateral root development and the function of aquaporin 
could contribute to water uptake in ‘Puluik Arang’ under 
osmotic stress. In addition to better morphological devel-
opment of the root system under conditions of low water 
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Figure 3. Immunolocalization of OsTIP2;1 in seminal root tissue of the cultivar ‘Puluik Arang’ subjected to 10% PEG treatment. Root tissue 
samples from 13-day-old plants were excised from the lateral root initiation zone (approximately 1–2 cm from the root tip) and from the 
mature zone (middle position of seminal root) of the seminal root. Bars represent 100 μm.

Table 2.  Correlation coefficients between the expression levels of 11 aquaporin genes versus the amount of water uptake and the 
amount of water uptake per unit root length.

Note. Data of the two cultivars and three water treatments were combined for calculation of the coefficients.
*p < 0.05; **p < 0.01; ***p < 0.001, ns = not significant.
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