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ABSTRACT 

The main objective of this research is to explore, investigate and develop the new data 

analysis techniques along with novel sensing technologies for structural health monitoring 

applications. The study has three main parts. First, a systematic comparative evaluation of some 

of the most common and promising methods is carried out along with a combined method 

proposed in this study for mitigating drawbacks of some of the techniques. Secondly, non-

parametric methods are evaluated on a real life movable bridge. Finally, a hybrid approach for 

non-parametric and parametric method is proposed and demonstrated for more in depth 

understanding of the structural performance.  

In view of that, it is shown in the literature that four efficient non-parametric algorithms 

including, Cross Correlation Analysis (CCA), Robust Regression Analysis (RRA), Moving 

Cross Correlation Analysis (MCCA) and Moving Principal Component Analysis (MPCA) have 

shown promise with respect to the conducted numerical studies. As a result, these methods are 

selected for further systematic and comparative evaluation using experimental data. A 

comprehensive experimental test is designed utilizing Fiber Bragg Grating (FBG) sensors 

simulating some of the most critical and common damage scenarios on a unique experimental 

structure in the laboratory. Subsequently the SHM data, that is generated and collected under 

different damage scenarios, are employed for comparative study of the selected techniques based 

on critical criteria such as detectability, time to detection, effect of noise, computational time and 

size of the window. The observations indicate that while MPCA has the best detectability, it does 

not perform very reliable results in terms of time to detection. As a result, a machine-learning 

based algorithm is explored that not only reduces the associated delay with MPCA but further 
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improves the detectability performance. Accordingly, the MPCA and MCCA are combined to 

introduce an improved algorithm named MPCA-CCA. The new algorithm is evaluated through 

both experimental and real-life studies. It is realized that while the methods identified above 

have failed to detect the simulated damage on a movable bridge, the MPCA-CCA algorithm 

successfully identified the induced damage.  

An investigative study for automated data processing method is developed using non-

parametric data analysis methods for real-time condition maintenance monitoring of critical 

mechanical components of a movable bridge. A maintenance condition index is defined for 

identifying and tracking the critical maintenance issues. The efficiency of the maintenance 

condition index is then investigated and demonstrated against some of the corresponding 

maintenance problems that have been visually and independently identified for the bridge. 

Finally, a hybrid data interpretation framework is designed taking advantage of the 

benefits of both parametric and non-parametric approaches and mitigating their shortcomings. 

The proposed approach can then be employed not only to detect the damage but also to assess 

the identified abnormal behavior. This approach is also employed for optimized sensor number 

and locations on the structure. 
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CHAPTER ONE: INTRODUCTION 

1.1. Introduction 

As a result of advances in sensing and information technologies, Structural Health 

Monitoring (SHM) is rapidly developing as a multi-disciplinary technology solution for 

condition assessment and performance evaluation of civil infrastructures of infrastructure 

systems, particularly bridges [1-2]. Several studies report that about a quarter of the bridges are 

either structurally deficient or functionally obsolete in the United States [3]. Accordingly, $17 

billion in annual investments is required to substantially enhance current bridge conditions.  

As a consequence, there is an unavoidable and continuously increasing demand for 

monitoring the behavior of existing structures over time [4]. SHM can be considered as a 

promising technology for effective and efficient management of different structures such as 

bridges, buildings, airplanes [5-7]. Steps for SHM implementations are summarized and 

illustrated in Figure 1. In comparison to all civil structures, bridges have always been classified 

as critical strategic lifeline structures due to serving crucial role in transportation networks.  

Consequently, bridges have received a significant amount of attention in terms of 

condition evaluation and assessment by utilizing SHM. Pursuing this intention, a number of 

investigations have been designed and devoted to investigate SHM of bridge structures [8-12].  It 

is fairly clear, as also shown in Figure 1, that the first two stages of SHM are fundamental and 

critical phases in order to accomplish the predefined decision-making objectives.  

The first stage, referred to as monitoring and measurement, highly relies on having a 

properly designed and well-distributed network of sensors to generate useful data. In other 
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words, the major goal of the first stage is to turn a structure into a smart and sensible structure. 

This mission can be achieved by employing advanced precise measurement devices including 

superior sensors and data acquisition systems such as optical sensors.  

In particular, Fiber Bragg Grating (FBG) sensors are popular alternatives to the traditional 

sensors in terms of several aspects, such as spatial resolution, durability, stability and immunity 

to electrical noise [13-17]. FBG strain sensors hold a great deal of potential for civil structural 

health monitoring [18-23]. Having a well-distributed network of sensor provides the opportunity 

of measuring desired structural parameters over critical areas along the monitored structure; 

however processing this data and extracting the useful information is still a challenging step and 

tackled at so called signal processing stage of Figure 1.  

 

Figure 1: Simplified representation of stages involved in SHM process 
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Basically, the processing, analysis and interpretation within the concept of SHM fall into 

two main classes: parametric (also known as model-based) methods and non-parametric (also 

known as model-free or data-driven) methods [24]. 

These methodologies follow specific procedures and are applicable in distinct contexts. 

These interpretation methods will be preferred over each other based on desired objectives. If the 

objective is to provide a better physical conceptualization or developing a prediction model, then 

parametric methods may be better alternatives while dependency on behaviour model is the main 

downside associated with this type of algorithm [25-28].  

Alternatively, non-parametric methods, (also called model-free approaches or data driven 

methods) are superior for non-parametric the circumstances in which creating a behavioral model 

is either time consuming or expensive, and this aspect is considered as the leading advantage of 

nonparametric methods over parametric ones [27-28]. 

 

Figure 2: Comparison of parametric and nonparametric approach 
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 Indeed, model-free approaches are free of geometrical and material information. Also, 

interpreting a finite element model is not needed for these methods. The main shortcoming of 

these approaches is that having a predictive model based on existing data driven methods is not 

possible. The flowchart presented in Figure 2 sheds light on the critical aspects of parametric and 

non-parametric damage detection algorithms.  

The model based, and model free approaches are discussed separately and in more details 

through the following sections.  

1.2. Data Interpretation Approaches 

Long term monitoring of real-life structures, particularly large and complex ones, requires 

dealing with high dimension data sets, captured from different types of sensors. Having a large 

civil structure heavily instrumented with several sensors is eventually ends up with a huge 

amount of data that, however, has not any value without being really well interpreted. There are 

two distinct approaches toward an interpretation of SHM data so-called parametric and non-

parametric methods. 

The selection of one method over another one stands on the expected objectives from the 

data interpretation. The parametric is preferred in the cases that conceptualization and prediction 

are of the main concerns. Non-parametric techniques, on the contrary, are considered as an 

appropriate alternative when prediction is not a matter of interest and also developing a 

mathematical model of structure is either expensive or time consuming. Each of these 

approaches is discussed in further details throughout the following sections. 
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1.2.1.      Parametric Data Analysis Approach 

There are some responses or attributes of structure that can be measured by means of 

sensors such as strain, displacement, acceleration, etc.  In most of the cases, however, these types 

of responses are not directly carrying the sort of information that can be beneficial for identifying 

the healthy status of structure. Instead, other responses are of interest such as load carrying, 

capacity, reliability index and, etc. The solution to this challenge is referred as structural 

identification.  In fact, the parametric structural identification techniques can be viewed as 

translation of “raw” measured parameters into “actionable” information. 

Since the 1970’s, there has been a significant amount of research carried out in this field 

[29-46]. The identified model, or candidate models, makes the data conceptualization much more 

feasible. Likewise, behavioral simulation under critical operational and environmental loading 

condition is facilitated by taking advantage of this updated model. Furthermore, these models 

can be employed to explicitly diagnose the root reason of detected abnormal behavior as well as 

identifying the impact of such changes on the entire performance of structure.  

In addition to diagnosis, prognosis of structural health as well as remaining life of 

structures is possible through the parametric approach. Model-based structural identification is 

often described in six fundamental steps [1, 30]: 

  Observation and conceptualization  

 A prior modeling (developing of first generation of FE model) 

 Controlled experimentation 

 Processing and interpolation of data 

 Model correlation 

 Utilization of model for simulations 
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Readers are referred to papers for more detail information on each step.  

1.2.2.      Non-Parametric Data Analysis Approach 

Alternatively, non-parametric approaches are superior in the circumstances in which 

creating a behavioral model is either time consuming or expensive, and this aspect is considered 

as the leading advantage of nonparametric methods over parametric ones [27-28]. Indeed, model-

free approaches are free of geometrical and material information. Also, interpreting a finite 

element model is not needed for these methods. Unlike parametric approaches, through the data-

driven techniques, a statistical model are generated based on the signal itself, and any change can 

be detected explicitly by only continuously evaluating this model. Dealing with this statistical 

model is much more convenient and in most of the cases is preferred to a complex mechanical 

model. Moreover, tracking the abnormal behaviors from statistical models turns the 

nonparametric techniques into a well-suited approach for long term monitoring of civil structure.  

It was not until early 1990s that researchers have started exploring the efficiency of 

nonparametric methods for system identification and subsequently SHM applications. Some of 

the most well-known data-driven methods are summarized as follow: 

 Artificial Neural Networks (ANNs) [47-49]. 

 Wavelet decomposition [50-53]. 

 Auto-regressive moving average vector (ARMAV) models [54-56]. 

 State space models, and empirical mode decomposition (EMD) in conjunction with the 

Hilbert- Huang Transform [57-60]. 

 Instance based method [61]. 

 Correlation anomaly scores analysis [62]. 

 Principal Component Analysis (PCA) [63]. 
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 Moving principal component analysis (MPCA) and robust regression analysis (RRA) 

[63-65]. 

 

However, the main inadequacies associated with this approach are lacking prediction 

capability as well as the absence of the physical conceptualization. The extensive application of 

data-driven techniques in SHM is somewhat negatively affected by the aforementioned 

deficiencies. 

1.3. Local and Global Monitoring 

The SHM objectives can be, generally, pursued through two distinct strategies data 

collection: static and dynamic monitoring. In this text, dynamic monitoring refers to identifying 

dynamic properties for global condition evaluation by means of input -output testing. There have 

been significant amount of investigations focused on vibration based structural health 

monitoring. A comprehensive summary of these studies can be found in the report prepared by 

S.W. Doebling et.al. [36]. Despite the vast amount of research being conducted in this area, the 

applicability of dynamic monitoring is restricted, particularly for large complex civil structure. It 

has been proven that, particularly in the case of complex structures, even a severe damage may 

result in a minor alteration of the natural frequencies [66-70].  

Furthermore, the proficiency of this strategy, dynamic monitoring, is seriously threatened 

by the presence of noise in the data [71-73]. In other words, the occurrence of damage can be 

masked by presence of noise in the data [73]. Therefore, for the long-term monitoring of 

complex structures, which is the case for many of the civil structures, dynamic monitoring is not 

the most reliable approach. Alternatively, localized change or damage can be identified through 
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the static monitoring by comparing the predictive model, or candidate models, with the static 

structural responses, including strain, displacement, etc.  

However, as it was discussed before, creating a model is both expensive and time 

consuming. In addition, regardless of time and expenses, specifically in the case of complex 

structures, this model may not accurately reflect the behavior of structure. Even by taking 

benefits of multiple model approach, there is not still any assurance, due to difficulties and 

uncertainties involved in the procedure, that the damage can be identified accurately. To address 

these issues, long term monitoring is required to produce reliable information. In fact, the roles 

of the models are replaced by long period of data captured from critical locations of structure. 

Monitoring a real-life structure for a long period of time was not practical, due to the lack of 

reliable and low cost sensors, only until recently.  

Due to significant advances in the field of sensor technology, the main challenge in front 

of long-term structural health monitoring is to interpret the vast amount of data effectively, 

timely yielding meaningful information. By decreasing the cost of both reliable sensors and data-

acquisition systems, the amount of structures that are monitored is vastly growing and this 

subsequently results in a great amount of measurements in different formats. Therefore, a 

properly developed non-parametric algorithm, which can process this vast information and 

extract the most informative features, is one of the most important SHM concerns. 

1.4. Objective and Scope 

As it was presented throughout the previous sections, despite the great amount of research 

devoted to the field of SHM and in particular data interpretation, still a lot more research to be 
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done, especially for long term monitoring of structures. There are still some difficulties against 

the widespread acceptance of SHM, particularly for civil structures. As it was discussed earlier, 

the sensing issues are not considered as very critical challenges anymore, thanks to vast 

improvement of sensing technologies in the past decade. However, inferring the deep meaning of 

massive data for long-term monitoring of large and complex civil structures is one of the most 

critical difficulties that the SHM is facing. The challenge of damage identification and 

localization for long term monitoring has been investigated recently [63-65]. To the best 

knowledge of the author, there are only limited comparative studies that investigate the 

performance of non-parametric algorithms using SHM data from both experimental and real-life 

studies. 

Exploring and developing new data analysis techniques along with novel sensing 

technologies for structural health monitoring are the main objectives of this study. Therefore 

three parts have been designed for this study, as follow: 

1) A systematic comparative evaluation of some of the most common and promising 

methods is carried out along with a combined method proposed in this study for 

mitigating drawbacks of some of the techniques. 

2) Non-parametric methods are evaluated on a rea-life movable bridge using data from 

both structural and mechanical components. 

3) A hybrid data interpretation approach is proposed and demonstrated for more in depth 

understanding of the structural performance. 

Therefore in order to meet the objectives of this study eight chapters are designed for this 

dissertation. These chapters are discussed in more details throughout the following section.   
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1.5. Organization of the Dissertation 

The organization of the dissertation as follow: 

In chapter 2, sensing technologies for SHM with a special emphasis on Fiber Optic 

Sensing (FOS) are discussed. In addition, an in-house developed FBG system is introduced in 

this chapter. Different types of FOS are reviewed including FBG, BOTDA and BOTDR. An 

experimental bridge model is instrumented and monitored with point type FOS (FBG) as well as 

distributed FOS (BOTDA/BOTDR). 

In chapter 3, some of the most efficient non-parametric techniques which have shown 

promising results, in particular with regard to civil infrastructure, are selected through an 

extensive literature review. The procedure and basic behind the selected algorithms including 

Cross Correlation Analysis (CCA), Robust Regression Analysis (RRA), Moving Cross 

Correlation Analysis (MCCA), and Moving Principal Component Analysis (MPCA) are 

discussed in detail. 

Chapter 4 is designed to explore the efficiency of the selected algorithm utilizing the 

SHM data from a unique experimental structure named as 4-Span Bridges. Several critical and 

common damage scenarios are simulated on the 4-Span Bridge and the corresponding SHM data 

are collected using the in-house developed FBG system. The data is then implemented to test the 

performance of the selected algorithms. 

Chapter 5 is dedicated to design and introduce a new machine-learning algorithm through 

which some of the associated disadvantages of existing algorithms are being covered. The newly 

developed algorithm (MPCA-CCA) is designed based on combining the MPCA and CCA 

analysis. The main objective is to reduce the corresponding delay associated with MPCA and 
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also further improve the detectability potential. The performance of the MPCA-CCA is evaluated 

using the SHM data from the laboratory study as well as the real-life SHM data from a unique 

structure. Moreover, the proposed algorithm is compared against some of the selected algorithms 

utilizing new identified critical criteria including, detectability, time to detection, computational 

time, effect of noise and window size (amount of required data sets for training phase). 

In chapter 6, an investigative study for automated data processing method is developed 

using non-parametric data analysis methods for real-time condition maintenance monitoring of 

critical mechanical components of a movable bridge. A maintenance condition index is defined 

for identifying and tracking the critical maintenance issues. The efficiency of the maintenance 

condition index is then investigated and demonstrated against some of the corresponding 

maintenance problems that have been visually and independently identified for the bridge. 

Chapter 7 is dedicated to develop a hybrid data interpretation framework for automated 

and continuous performance assessment of infrastructure. The framework is developed by 

integrating the parametric and non-parametric approaches. The critical damage scenarios are 

identified and simulated on the FEM model of a given infrastructure and the corresponding 

responses are predicted through Monte-Carlo simulation technique. The responses are 

subsequently analyzed by MPCA algorithm to extract the sensitive features. The hypothesis 

testing is implemented to learn to underlying distribution of performance sensitive feature under 

individual damage scenarios. Afterward, the supervised damage classification algorithm can be 

employed for processing the live-SHM data and classifying the possible abnormal behavior. The 

proposed algorithm can be further used to identify the optimized amounts of sensors and the 

corresponding locations. 
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Finally, Chapter 8 provides the summary and presents the conclusions after theoretical 

and applied studies are given in the dissertation. General comments about the methodologies 

described in this study are reviewed along with recommendations and possible directions for 

future research.  
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CHAPTER TWO: SENSING TECHNOLOGIES FOR SHM: 

EMPHASIS ON FIBER OPTIC SENSORS (FOS)  

2.1. Introduction 

The fundamental idea of structural health monitoring stands on the hypothesis that 

perturbations in a structural system can be identified from local or global monitoring. The 

confirmation of this hypothesis is highly dependent on the sensing technology for structural 

health monitoring.  

However, the structural properties or responses of interest are, in most cases, impossible 

to be intuitively measured. Some of the responses correspond to the structural performance, such 

as reliability index, load carrying capacity or remaining life of the structure cannot be measured 

directly by means of a sensor. In order to deal with this issue, the most sensitive and relevant 

physical quantities to the response of interest can be identified through a preliminary sensitivity 

analysis. Followed by identification of these physical quantities, appropriate sensors are to be 

determined for the monitoring purpose.  

A number of different types of sensors are used for SHM. Among all of the different 

technologies, Fiber Optic Sensors (FOS) have gained great attention during the recent decade. 

The reason is that the conventional sensors have suffered from major deficiencies including 

sensitivity to electrical noise, heavy cabling labor, etc. Inappropriately, noise and outliers are 

very common challenges in dealing with civil structures and accordingly this, in particular, 

sensitivity to noise, makes the implementation of conventional sensors even more restricted for 

civil SHM applications. 
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Inspired by this, an in-house developed FBG system was assembled in the UCF Structural 

Lab. In order to explore the development of low-cost fiber optic interrogator, use of FBGs and 

promising practical non-parametric methods in a comparative fashion for commonly experienced 

bridge problems, studies have been carried out in an integrated manner as a step towards holistic 

SHM implementation on highway bridges. Therefore, this chapter is devoted to shed light on the 

special in-house developed FBG system as well as different types of FOSs.  

2.2. Fiber Optic Sensor (FOS) 

The sensor technology has been dominated by electrical based sensors for decades.  

However, there are several features in which conventional sensors need significant 

improvements including sensitivity to electrical noise, heavy cabling labor, etc. Due to these 

deficiencies, a significant amount of effort has been devoted by researchers worldwide to the 

improvement of traditional sensors. Hence, these efforts resulted in a new generation of sensors, 

so called optical fiber technology.  

The most superior aspects of optical fiber, in comparison to electrical-based sensors, are 

switching from electricity and copper wire to light and optical fiber, respectively. Eventually, 

these benefits turn the FOS into one of the most attractive sensors for SHM applications. Due to 

the integrated implementation of special FOS-network with non-parametric data analysis this 

chapter is dedicated to explore this type of sensor in more detail. 

Generally, there are two individual categories of optical sensors available for distinct 

applications. The first category named as point type of sensor and the most famous optical sensor 

in this category is Fiber Bragg Grating (FBG). The distributed types of sensors are considered as 



15 
 

the second category, including Brillouin Optical Time Domain Analysis (BOTDA) and Brillouin 

Optical Time Domain Reflectometry (BOTDR) [74]. In the following sections, first a summary 

of optical sensors application for SHM is presented and eventually different types of FOS are 

discussed in more detail. 

 

Figure 3: Measurement principal of Fiber Bragg Grating (FBG) sensor 

2.3. Application of Optical Sensors in SHM Applications 

Optical sensors are gaining attention particularly in the field of structural health 

monitoring. In this section a short summary of their applications in the SHM is presented. One 

the most interesting features of the FOS is that it can be embedded within the structure. Giles 

et.al (1999) explored the application of embedded fiber optic sensor for monitoring of composite 
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structures [74]. The findings confirmed that the distributed fiber optic sensors are able to monitor 

strain as well as impact within the structure. Seim et.al (1999) implemented the FBG strain 

sensors for monitoring of a historical bridge [75]. The data from the bridge was used to validate 

finite element models and eventually predict the performance of this historical bridge. The 

application of FBG for fatigue and crack monitoring is considered as another attractive 

implementation of FBG sensors [76].   

The results show that FBG can be successfully applied for crack and delamination 

monitoring. Monitoring and detecting transverse cracks within FRP structures are investigated by 

Takeda et.al (1999) [77]. From the experiments, the authors concluded that the presence of 

cracks near the sensors resulted in a nonlinear reduction in the optical power transmitted. 

Exploring the ability of optical waveguide sensors for strain measurement up to 2000 microstrain 

is conducted by Gregory et al (1999) [78]. The fiber optic sensor has been also applied for 

composite bridge deck monitoring [79]. Kwon et al (2000) study the use of fiber optics for 

detecting damage in reinforced concrete beams [80]. A procedure for long term monitoring of 

structures using SOFO deformation sensors is proposed by LIoret and his colleague [81]. 

Farhad Ansari et.al (2009) investigated some of the most common issues associated with 

FOSs including strain transfer mechanism sensor packaging, sensor placement in construction 

environment, and reliability and survivability of the sensors [82]. The application of three 

individual FOS including: fiber Bragg grating sensor, Brillouin OTDR(optical time domain 

reflectometry) and Raman OTDR in structural health monitoring has been explored by Dr.Il Bum 

Kwon et al (2012) [83]. The SOFO system is a fiber optic measurement system based on low 

coherence interferometry. It was introduced by SMARTEC and is widely used for structural 

health monitoring. Important issues like temperature insensitivity and long- term stability of 
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SOFO system is investigated and it is shown that SOFO has reliable measurement system for 

long-term applications [84]. 

These are just a few selected applications of optical fiber sensors in the field of SHM. In 

the following sections more details are presented in term of sensing mechanism and principal of 

optical sensors. 

2.3.1.      In-house Developed FBG System 

The basic working principle of FOS and FBG sensors is reflection and filtration of 

different wavelengths of light; this concept is presented in Figure 4. A conventional FBG sensor 

system is composed of a broadband light source, FBGs, a wavelength interrogator, and system 

software, as shown in Figure 3. When broadband light is launched into an FBG, the reflection 

occurs at the FBG. Some light, of which wavelength satisfies Bragg condition of Equation (1), is 

reflected, and the others passes the grating. 

        
( 1 ) 

 

Where l is the Bragg wavelength, ne is the effective refractive index, and  is the grating 

period. When strain is induced in an FBG, the Bragg wavelength is expected to have a 

proportional shift. The strain can be easily determined by analyzing the change of the 

wavelength. According to this principle, FBG sensors can sense the grating period change due to 

strain variation, and they can measure strain without the influence from noise and light intensity 

perturbation. 

The wavelength shift is proportional to strain, and absolute strain can be measured.  
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             [     (       )]   
( 2 ) 

 

Where      are the silica photo-elastic tensor components and  is the Poisson’s ratio.  

 

Figure 4: In-house developed FBG system 

In order to construct an FBG sensor system, three major elements are needed:  

1) The power source which has to have a voltage about 5V and 0.4-0.5 A to insure the 

optical light source is working fine. 
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2) A minilite light source (ASE source) which has a wavelength range of 800-1650 nm, 

spectral width of 100 nm, output power: up to 30 mW and it is operating temperature 

between 10-70 oC (50-158 oF).  

3) The most important part, the FBG interrogator has a wavelength range of 1525-1565 

nm, resolution about 1 pm, operating frequency around 5 kHz and interface with USB 

2.0 and it requires the operating temperature between 0-70 oC (32-158 oF) and the 

last one is the circulator, which is to making sure the reflected wavelength is going 

back to the FBG interrogator and the interrogator is going to send the data directly to 

the computer to do analysis, The system picture and components are shown in Figure 

4.  

2.4. Methods for Bragg Grating 

The structure of the FBG can vary as a consequence of modification of grating period or 

refractive index. Based on these modifications and subsequently various types of FBG structures, 

multiple types of Bragg Grating exist. Since detailed information about various methods of 

Bragg grating is beyond the scope of this report, only the titles of these methods are presented 

here [21].  

1) Uniform Fiber Bragg Grating 

2) Chirped Fiber Bragg Grating 

3) Tilted Fiber Bragg Grating 

4) Superstructure Fiber Bragg Grating 
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The above addressed types of Bragg Grating consequently result in different fiber optic 

structures as shown in Figure 5. 

 

Figure 5: Structure of Fiber in different Bragg Grating [21] 

2.5. Distributed Fiber Optic Sensor 

The Brilliouin Optical Time Domain Reflectometry (BOTDR) and Brillouin Optical Time 

Domain Analysis (BOTDA) are two distinct optical fiber systems with which strain and 

temperature can be measured along an arbitrary location of fiber. In fact, these types of 

distributed optical sensors can be considered as significant development in sensing technology. 

There is a perfect analogy between human nerve system and distributed fiber-optic sensors.  

The human nerve system, functions as a sensing network of the body structure while 

optical distributed sensors are serving as a nerve system for a structure. Having the ability to 

sense strain or temperature at any arbitrary location along the fiber makes these sensors one of 

the most attractive alternatives to the traditional sensors. The following sections are dedicated to 

shed some light on the principal mechanism of these advanced systems. 
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2.5.1.      Measurement Principal of Optical Time Domain Reflectometry (BOTDR)  

The principal measurement of BOTDR stands on the interaction between light waves that 

are launched from light source through the fiber line and acoustic phonons. As a consequence of 

this interaction, Brillouin scattered is generated and broadcasts in the reverse direction of the 

original light waves. The Brillouin frequency is sensitive to any applied external load, including 

strain and temperature. Therefore, the strain and temperature variation can be calculated by 

monitoring any shift in Brillouin frequency. In other words, any shift in Brillouin frequency () 

is in proportion to the strain caused either by external load or temperature variation and this can 

be computed by the following Equation: 

  ( )    ( )     ( )    
( 3 ) 

 

Where the coefficient 
   ( )   is approximately given by: 

   ( )           (       ) 
( 4 ) 

 

The distance (Z) between the location of system (light source) and the position that 

induced strain has taken place can be identified through the following Equation: 

       
( 5 ) 

 

Where C is light velocity in a vacuum and n is the refractive index for optical fiber. 

Figure 6 exhibits the measurement principle of BOTDR. 
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Figure 6: BODTR measurement principle [74] 

2.5.2.      Measurement principle of Optical Time Domain Analysis (BOTDA)  

The BOTDA out-performs the BOTDR system in terms of spatial resolution. In fact, 

BOTDA was developed to compensate for spatial resolution issue corresponded to BOTDR 

system. Unlike BOTDR system, which is functioning with only one laser source, the BOTDA 

requires two individual laser sources: a pulse laser (pump laser) source and a continuous laser 

source. The functionality of BOTDA is established on the idea of stimulating the Brillouin back 

scattering. Basically, the intention of having two distinct laser sources is to stimulate Brillouin 

back scattering. When the frequency difference between the two lasers is equal the Brillouin 

frequency shift, the back Brillouin is stimulated. The Brillouin frequency shift, similar to 

BOTDR, is derived from this Equation: 

  (   )          
( 6 ) 
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Where    and    are the strain and temperature coefficients, respectively.  

2.6. Concluding Remarks 

The in-house developed FBG system is utilized to collect the data from an experimental 

structure known as UCF 4-Span Bridge. The collected data by means FOSs (both FBG and 

BOTDA) are used to integrate the implementation of FOSs and non-parametric methods. 

Different damage scenarios are simulated on the UCF 4-Span Bridge and the generated data are 

captured with 12 individual FBG sensors as well as BOTDA system. Consequently the data are 

fed into the selective non-parametric algorithms to explore the efficiency of both in-house FBG 

and also non-parametric methods. The results will be discussed in more details in Chapters 3 and 

4. 
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CHAPTER THREE: REVIEW OF SOME NON-PARAMETRIC 

TECHNIQUES  

3.1. Introduction 

Long term monitoring of real-life structures, particularly large and complex ones, requires 

dealing with high dimension data sets, captured from different types of sensors. Having a large 

civil structure heavily instrumented with several sensors eventually ends up with a huge amount 

of data which should be well interpreted and utilized in timely manner. There are mainly two 

distinct approaches toward an interpretation of SHM data parametric and non-parametric 

methods. 

The selection of one approach over another one stands on the expected objectives from 

data interpretation. There are recognized hierarchy levels for change/damage detection procedure 

that can be divided into following steps [85]: 

Level 1. (Detection.) The damage detection algorithm should be capable of timely raising 

the alarm after any damage taken place. 

Level 2. (Localization.) The location of the damage is informed by the algorithm.  

Level 3. (Assessment.) The information is provided about the severity and extension of 

the occurred damage. 

Level 4. (Prediction.) The information is provided about the future performance of 

structure, e.g. estimation of remaining life. 

Although there are some major deficiencies associated with the parametric approach for 

data interpretation, all the damage detection levels are achievable. However, due to some issues, 
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such as time, expense, level of expertise, etc., it may not be the perfect solution to data 

interpretation or damage identification of structure. The dependency on the physical model can 

be avoided by taking advantage of non-parametric techniques. The non-parametric techniques 

generally fall into two main categories: supervised and unsupervised learning. The former 

requires having some knowledge of damage conditions so that the algorithm can be trained. This 

feature makes this type of algorithm less effective for at least civil structure applications due to 

the fact that having access to experimental data from a damaged structure in most of the cases is 

almost impossible.  

The latter, unsupervised, can be implemented to the data not containing example from the 

damage structure. In fact, the unsupervised learning algorithms develop a baseline structure upon 

the training data and consequently, any significant deviation from that baseline is considered as 

abnormal behavior. However, this approach has some inherent limitations that make its 

application restricted as well. Basically, the applications of unsupervised based data driven 

technique are restricted to level 1 (detection) and in some cases level 2 (localization). 

There are several strategies proposed by different researchers as data-driven techniques 

for damage identification. These methods can be summarized as follows:  

1) Auto-regressive methods [55-57]. 

2) Fourier analyses [87]. 

3) Wavelet methods [51-56]. 

4) Robust regression [63-65]. 

5) Correlation analysis [62][88]. 

6) Instance-based methods [61][89]. 
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7) Moving principal component analysis [62-64]. 

However, in the field of localized long term monitoring, the problem of damage detection 

and localization has more recently been faced than global monitoring [62-64]. A comparative 

study, including the existing algorithms indicates that moving correlation analysis (MCCA); 

moving principal components analysis (MPCA) and robust regression analysis (RRA) have the 

greatest deal of potential in compare to other techniques.  

For that reason, this chapter is started with a brief outline of CCA, MCCA, MPCA and 

RRA. Finally, this chapter will be concluded with a summary of a comparison between these 

techniques. 

3.2. Selective Data-Driven Techniques 

3.2.1. Cross Correlation Analysis (CCA) 

One of the most preliminary objectives followed by SHM is timely detection and 

localization of any possible anomaly behavior and subsequently making appropriate decision in 

order to mitigate any potential detrimental effect on the structure. For that reason, properly 

developed change/damage detection algorithms should be designed and employed along sensor 

network. Herein, Cross Correlation Analysis (CCA) is presented and evaluated with the FBG 

data.  

The methodology is based on comparing the correlation matrices for the baseline and 

damaged cases. The cross correlation coefficients of the strain data at one location and all other 

locations are calculated to create a row of the cross-correlation matrix. Then, the same procedure 

is repeated for all of the sensors and a full cross-correlation coefficient matrix is created. After 
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obtaining these matrices for baseline and damaged conditions, they are compared to detect and 

locate the damage. When comparing two signal pairs, the correlation can be obtained using the 

following formula: 
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  ( 7 ) 

 

Where  ij is the correlation between the sensors i and j, n is the total number of time 

observations during the monitoring duration, Si(tk) and Sj(tk) are the values of the sensors i and j 

at time tk, and,  i,  j are the mean values of the sensors i and j. 

Baseline correlation matrices are generated based on the data captured from undamaged 

structure. For each baseline data set, a baseline correlation matrix, which consists of the 

correlation of individual pairs of sensors, is generated. Baseline correlation matrix is an nxn 

matrix where n refers to number of sensors existing on monitored structure. Each row (or 

column) in the matrix is presenting the correlation of a sensor with the rest of sensors. Creating 

the baseline matrix, the state of structure prior to damage occurrence is characterized.  

The same steps should be taken for data sets measured from damaged (or unknown state) 

structure to obtain the new matrices. Afterwards, these two sets of matrices are compared in 

order to obtain damage location matrices (Equation 8). Steps toward CCA are presented in 

Figure 7. 

 Damage Location Matrix = (Damaged Matrix)-(Baseline Matrix) 
( 8 ) 
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Figure 7: Sequential steps for detection algorithm based on Cross Correlation Analysis 
(CCA) 

3.2.2. Robust Regression Analysis (RRA) 

In order to mitigate some of the drawbacks associated with traditional regression 

methods, robust regression method has been utilized [90-91]. Traditional regression methods are 

based on least square estimation and sensitive to their underlying assumption such as a normal 

distribution of errors in the observed responses. On the other hand, robust regression works by 
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assigning a weight to each data point. Weighting is done automatically and iteratively using a 

process called iteratively reweighted least squares. In the first iteration, each point is assigned 

equal weight and model coefficients are estimated using ordinary least squares. At subsequent 

iterations, weights are recomputed so that points farther from model predictions in the previous 

iteration are given lower weight. 

Model coefficients are then recomputed using weighted least squares. The process 

continues until the values of the coefficient estimates converge within a specified tolerance. As a 

result these methods are highly non-robust to outliers. Application of RRA for damage detection 

is discussed in the next section.  

RRA damage detection algorithm consists of two main steps, preliminary correlation 

analysis and robust regression analysis. A matrix of data should be generated by inserting the 

time history of data from each sensor into individual columns. Once the matrix is created, it 

should be divided into two segments, called training and monitoring phases. The training phase 

is intended for developing a baseline, confidence interval, based on normal condition, while 

monitoring phase is set for long term monitoring.  

A correlation analysis is performed for training phase in order to find sensor pairs with 

high correlation.  
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Figure 8: Sequential steps for detection algorithm based on Robust Regression Analysis 
(RRA) 

After conducting the correlation analysis in the training phase, sensor pairs should be 

stored in a new matrix called matrix of highly correlated sesnors. In other words, the RRA 

algorithm identify sensor pairs that have high correlation, above the threshold, in the training 
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phase and then by arranging those in a new matrix, the study is focused on these pairs. Next in 

order, correlations of these pairs are tracked during monitoring phase in order to detect any 

abnormal behaviour. The steps are shown in Figure 8. 

3.2.3. Moving Cross Correlation Analysis (MCCA) 

Moving Cross Correlation Analysis (MCCA) was developed as a promising upgraded 

version of CCA adapted for long term SHM. A key parameter of MCCA is the size of the 

moving window Nw. This parameter should be sufficiently large so that it is not influenced by 

variations in measurements due to environmental effects and small enough to provide rapid 

anomaly detection. The same matrix of data structure is developed and CCA is conducted for 

each individual window. Therefore, performing CCA for each moving window, correlation 

coefficient value is computed as correlation of sensor “i” and “j”.  

For detecting any possible abnormal behavior, the matrix of data is separated unequally 

into two segments as training and monitoring segments. The baseline behavior for each pair of 

sensors, sensors “i” and “j”, are defined by the confidence interval developed based on 

correlation coefficients obtained in the training phase. In the following step, the generated 

confidence intervals in training phase are considered as damage criteria for each pair of sensor 

throughout the monitoring phase. In other words, if the observed correlation coefficients for a 

given sensor “i” and “j” in monitoring phase exceed the confidence interval for the same sensors 

in training phase, then it can be claimed that possible abnormal, behavior exists in the structure. 

The entire process is summarized in Figure 9. 
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Figure 9: Procedure for Moving Cross Correlation Analysis (MCCA) 

3.2.4. Principal Component Analysis (PCA) 

Long term monitoring of real life, large and complex structures requires dealing with 

multi-modal large data sets captured from different type of sensors. Therefore, efficient data 

analysis methods should be employed to deal with large sets of data and to evaluate the condition 

of the monitored structure by means of detecting any change that can be attributed to damage or 

change in operational conditions. In many cases, high dimensional parametric data analysis 

methods may not only be complicated but also time consuming. In addition, the interpretation of 

the results may be challenging.  

In contrast, multivariate dimensionality reduction techniques are desirable methods for 

SHM to avoid such disadvantages. Principal Component Analysis (PCA) is one the most 

powerful techniques for reducing a complex data set to fewer dimensions. PCA is used for 

feature extraction from high dimensional data to reveal the most informative underlining patterns 
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in fewer dimensions. PCA can be referred as a projection/transformation method to turn a set of 

observations of possibly correlated variables, variable space, into sets of independent variables 

termed as principal components, principal space. The schematic presentation of this projection is 

demonstrated in Figure 10. In fact, PCA can be considered as a projection technique in which the 

observations are projected from a high dimensional space named as original space (Figure 10) 

into a less dimensional space so called principal component space.  

This projection should be performed in such a way that the new coordinates would be laid 

in the directions in which the original data has the most variance so that this transformation does 

not end up with losing important information. In order to achieve this goal, the optimized plane 

in original space should be identified in a way that projection of observations can be performed 

with the minimum possible residual value and consequently minimum possible loss of 

information; these procedures are illustrated in Figure 10. The steps towards PCA analysis are 

explained in more details in the following sections. 

3.2.4.1. Constructing and Scaling Sensor Network Measurement Data for PCA 

The preliminary step for PCA is generating a main matrix by inserting time history of 

each variable (sensor) as illustrated in the following matrix: 

(                     ) 
( 9 ) 

 

where the number of rows indicates the number of observations while the number of 

columns specifies the number of measured variables (sensors). In other words,        represents 
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the nth observation collected at time tm. There are different desired structural data that are 

collected through the SHM procedure including, strain, acceleration, displacement data etc. 

However, each of these parameters or measured variables has its own scale and magnitudes and 

as a result should be scaled before applying PCA or any other multivariate techniques. So as to 

solve this issue, several methods are recommended in the literature for scaling experimental data. 

The most popular technique among all others, which is also implemented in this study, is 

autoscaling.  Each variable (column) should be scaled in such a way that the distribution follows 

the standard Gaussian distribution. The following procedures have to be taken for performing the 

autoscale method. 

 

Figure 10: Schematic demonstration of principal component analysis 

         ∑     
       
      

( 10 ) 

 

          ∑ (            
         )   

( 11 ) 
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Where      and       are mean and variance respectively, corresponding to variable j 

(sensor j).  It should be also noted that m is the number of rows, which represent the number of 

observations. Therefore, the scaled variables are derived from the succeeding Equation. 

  ̅̅̅                   ( 12 ) 

3.2.4.2. Covariance Matrix and Extraction of Eigenvectors and Eigenvalues 

Having a scaled data matrix, as it was discussed in details throughout previous sections, 

the covariance matrix is derived based on the following Equation: 

         ̅   ̅ 
( 13 ) 

 

where  ̅ denotes the scaled matrix achieved in section 3.2.4.1.  The principal components 

of the original matrix can be found by extracting the eigenvectors and eigenvalues of the scaled 

matrix, which should satisfy the Equation 14: 

(      )             
( 14 ) 

 

where   and     are referred as eigenvectors and eigenvalues of the scaled matrix.  also 

denotes nxn identity matrix. In fact, the eigenvectors are laid in the directions in which the 

original data has the most variances. Typically, the first few components contain the most of the 

variance, and the rest is just corresponded to noise measurements. Due to this fact, in most cases, 

the first few principal components are only taken into account. 
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3.2.5. Moving Principal Component Analysis (PCA) 

Real life employment of SHM involves dealing with large amount of multivariate data. 

Only a small portion of abnormal data, in comparison to overall data, is available at the time 

when damage occurs. For detecting the changes in data sets effectively, the classical PCA should 

be improved to make it more practical for long term SHM data analysis. By means of PCA, the 

damage can be detectable only when the principal components (eigenvectors) are influenced by 

abnormal behavior. Subsequently, eigenvectors are subjected to change only if certain amount of 

abnormal data are captured and possibly affected the overall structure of data. This feature makes 

PCA less effective for long term SHM implementation. Moving principal component analysis 

(MPCA) was proposed to address this challenge [62-64]. Basically, MPCA computes the PCA 

within moving windows with a constant size. MPCA procedures applied in this study can be 

summarized in five different steps, which are presented here. Moreover, Figure 11 gives details 

of MPCA algorithm designed for long term SHM applications. 

Step 1: A data matrix should be generated by sorting the time history data from each 

sensor, or variable, into individual columns. Once the matrix is created, it should be divided into 

two segments, called training and monitoring phases. The training phase is intended for 

developing a baseline, confidence interval, based on normal condition, while monitoring phase is 

set for long term monitoring. The fixed moving windows should be well-defined. In fact, 

determining the window size precisely is one of the most critical issues in MPCA. The reader is 

referred to section 5.4.5 of this study for further information on window size. 

Step 2: PCA should be conducted for each window individually and results should be 

stored. Score matrix and coefficient matrix for each window should be calculated. The size of 
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score matrix is identical to the moving window whereas the number of rows for coefficient 

matrix is equal to number of sensors and the number of columns is identical to the number of 

principal components. The score matrix is representative of projected observations in the new 

coordinate system known as principal component coordinate and as a result the number of rows, 

observations, is equal to the amount of observations inside the fixed moving window. 

Alternatively, the coefficient matrix presents individual variables in terms of principal 

components. This step should be repeated for each window. 

 

Figure 11: Procedure for Moving Principal Component Analysis (MPCA) 

Step 3: A sensitive damage index should be selected in this step based on PCA outputs. 

Different entries of the first eigenvector are considered as individual damage indices. 

In most cases the most variance is covered by the first few components. Therefore, the 

assumption is that, if any damage occurred in structure it should affect the data and consequently 

variance of data and should be detected by the first few components. It should be mentioned that 
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Dsi are calculated for each windows along the time and consequently these values are plotted 

against time as shown in Figure 11 and Step 3. As a final point, the confidence interval 

developed in the training phase should be considered as a benchmark (baseline) for detecting any 

possible damage sing the rest of the data. 

3.3. Comparative Evaluation of Selective Non-parametric Methods 

This section is dedicated to present an outline of three comparative studies of non-

parametric techniques that have been implemented to numerically simulated long-term data of 

two distinct structural cases. It should be also noticed that although these studies are very useful 

in terms of evaluation different non-parametric methods, all results are only extracted based on 

the numerically simulated data and a simple structure (a simple beam). Therefore, as it will be 

discussed in Chapter 5, evaluating non-parametric methods based on data extracted from real-life 

structure is one of the proposed objectives for this study.   Each study is reviewed and 

summarized in individual section below.  

3.3.1. First Study: Model-free Data Interpretation for Continued Monitoring of 

Complex Structures 

In the first study [62], five different non-parametric techniques, including continuous 

wavelet transform (CWT), short term Fourier transform (STFT), Instance-based method (IBM), 

Moving principal component analysis (MPCA) and Moving cross correlation analysis (MCCA) 

are compared to each other. A finite- element model of a beam is used to simulate the different 

level of damage. Subsequently, all the aforementioned techniques are evaluated in terms of 

detecting and localizing different level of damage. Total number of 12 ‘virtual’ strain sensors, 6 
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at the lower surface and 6 at the upper surface, were located to ‘virtually’ collect the data from 

the numerically simulated beam. The temperature variations, including both daily and seasonal 

variation are simulated in the FE model. As a result, the effect of temperature variations can be 

viewed in the time series captured from each sensor. Considering results obtained from each 

technique, it is realized that the performance of MPCA and MCCA for long term structural 

health monitoring are better in comparison to the other three techniques. Results of the 

comparative study between the proposed algorithms (MPCA and MCCA) and other techniques 

are summarized in Figure 12. 

 

Figure 12: Summary of the first study (Model-free data interpretation for continued 
monitoring of complex structures) [64] 
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3.3.2. Second Study: Methodologies for Model-free Data Interpretation of Civil 

Engineering Structures 

In the second study [64], ten different non-parametric (model-free) techniques are 

evaluated based on most common issues associated with the long-term data from civil structures 

including noise, outlier and missing data. The load history and the numerical model are as the 

same as the first study. Fifteen cases of variations in daily temperature, traffic loading and sensor 

noise were used in this comparison.  

The following methods were compared: 

 Auto Regressive with Moving Average (ARMA)  

 Box-Jenkins (BJ)   

 Seasonal ARIMA 

 Discrete Wavelet Transform (DWT) 

 Wavelet Packet Transform (WPT) 

 Robust Regression Analysis (RRA) 

 Instance Based Method (IBM) 

 Short-term Fourier Transform (SFT) 

 Correlation Anomaly Scores Analysis 

 

All ten techniques were able to detect damage in the absence of noise and outlier while in 

presence of those issues only few remain effective for detection. This is very important finding 

since noise and outlier are common issues in data measured from civil structures. The following 

conclusions are results of the second study [63-64]: 

1) The MPCA and RRA are effective in detecting and localizing abnormal behavior. 

2) In the case that data contains noise, only MPCA and wavelet packet transform have 

shown promising results. The performance of MPCA is even better than wavelet 
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packet transform since it can distinguish between temporary and permanent 

anomalies. 

3) RRA has the advantage of being insensitive to outlier and missing data while it is not 

as efficient as MPCA and WPT in terms of detectability. 

4) MPCA can also be adapted to situations when measurements are missing completely 

and when a single measurement is missing. 

3.3.3. Third Study: Evaluating Two Model-free Data Interpretation methods for 

Measurements that are Influenced by Temperature 

In the third study, a numerically simulated steel-truss railway bridge is used to generate 

data for the sake of comparing MPCA and RRA in term of ‘time to detection’ and ‘detectability’ 

[63]. 

Time to detection: 100%- minimum detectable damage level 

Detectability: Time to damage detection is the time interval from the moment when 

damage occurs to the one when damage is detected. 

 Different levels of damage as well sensor locations are employed to investigate the 

efficiency of MPCA and RRA for long-term monitoring of complex structure. The results from 

this study are as below: 

 Removing seasonal effect decreases the detectability of MPCA 

 MPCA performed better than RRA in terms detectability 

 RRA outperformed MPCA regarding to time to detection 

 Decrease in traffic loading increase detectability of both MPCA and RRA 



42 
 

 Removing seasonal effect has a small influence of detectability of RRA 

As it can be concluded from these three comparative studies, MPCA is a promising 

technique for long term monitoring of civil structure. However, the effectiveness of this method 

has only been explored in a few studies with real experimental data. Based on previous studies 

CCA, RRA, MPCA and MCCA are selected for experimental investigation in this study.  
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CHAPTER FOUR: PRILIMINARY EXPERIMENTAL STUDIES FOR 

IMPLEMENTATION AND DEMONSTRATION 

4.1. Introduction 

The purpose of this chapter is to experimentally explore the proficiency of some of the 

most reliable data driven techniques including cross correlation analysis (CCA), robust 

regression analysis (RRA), moving cross correlation analysis (MCCA) and moving principal 

component analysis (MPCA). As it was explained earlier, the reason for conducting this study is 

to explore the limitations associated with each technique by taking advantages of experimental 

data and also several common and critical damage scenarios. Moreover, the efficiency of in-

house-developed FBG system is investigated along with different damage detection algorithms. 

A specially designed 4-span highway bridge model in the laboratory is considered as test 

structure. This unique four span bridge model is phenomenologically representative of common 

highway bridges in terms of its local and global response as well as its structural components and 

characteristics such as the deck, girders, composite action, boundary conditions etc. A number of 

damage conditions are simulated on the bridge model based on the feedback from bridge 

engineers from four different States’ Departments of Transportation. SHM data generated under 

operating traffic loading on the model bridge are analyzed to evaluate the efficiency of the 

above-mentioned algorithms for the purpose of bridge monitoring implementations. In order to 

explore the development of low-cost fiber optic interrogator, use of FBGs and promising 

practical non-parametric methods in a comparative fashion for commonly experienced bridge 

problems, the research team carried out this study in an integrated manner as a first step towards 

holistic SHM implementation on highway bridges.  
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4.2. Structural Configuration 

For the evaluation of using the non-parametric algorithms along with FBG sensors, 

several experiments with a laboratory bridge model (UCF 4-span Bridge Model) were designed 

and conducted by considering five common damage scenarios. The structure consists of two 120 

cm (3.93 ft) approach (end) spans and two 304.8 cm (10 ft) main spans with a 3.18 mm (0.12 in) 

thick, 120 cm (3.93 ft) wide steel deck supported by two HSS 25x25x3 girders separated 60.96 

cm (2 ft) from each other. Using the 4-span bridge model in the UCF structural laboratory 

(Figure 13) it is feasible to simulate and test a variety of damage scenarios that are commonly 

observed in bridge type structures [91].  

 

Figure 13: UCF-4 Span Bridge used for experimental test 
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It is possible to simulate common boundary conditions, including roller, pin, and fixed 

support. In addition to these, the bolts connecting the girders and deck can be loosened or 

removed at different locations to modify the stiffness of the system and to simulate damage. In 

other words, the first feature provides the opportunity to simulate the global damage scenarios, 

while the second one is desirable for local damage simulations. 

It should be pointed out that even though the structure is not a scaled down model of a 

specific bridge, its responses are representative of typical values for medium-span bridges. Radio 

controlled vehicles (15.7 kg) (34.62 Ib) were crawled over the deck of the 4-span bridge to 

simulate traffic data on the bridge structure as seen in Figure 13. 

4.3. Damage Scenarios 

Based on the discussions with the Department of Transportation (DOT) engineers, several 

critical and common damage scenarios were identified and simulated on the 4-span bridge 

model. A crucial type of damage observed in bridges is alterations in boundary conditions. These 

types of alterations may cause stress redistributions and in most cases it may result in additional 

load in different elements. 

 Therefore, three cases were devoted to this type of damage using the advantage of the 

ability to shift from pinned to fixed or roller condition and vice versa. Missing bolts and section 

stiffness reductions are also observed in existing bridges. Fourth and fifth damage cases simulate 

the loss of connectivity between the girder and the deck generating localized stiffness reduction. 

The damage scenarios implemented in this study and also locations of sensors are summarized in 

Table 1 and Figure 14. 
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Table 1: The implemented damage scenarios for comparative study 

Global Damage Scenarios Local Damage Scenarios 

Case 1: 

Fixing the first 

bearing 

Case 2: 

Fixing the first 

two bearings 

Case 3: 

Fixing the 

middle bearings 

Case 4: 

Removing 4 bolts 

close to middle 

bearing 

Case 5: 

Removing 8 bolts 

on both side of 

middle bearing 

 

 

Figure 14: The implement the damage scenarios (local and global) 

4.4. Damage Assessment (RRA and CCA) 

Each of these algorithms, CCA and RRA, has its own advantages and drawbacks. 

Therefore, the algorithms should be preferred based on monitoring constraints and missions. 

RRA and CCA are both developed based on correlation between measurements. However, the 

process for each algorithm is different. Regarding to RRA, all the measurements with high 

correlation are selected and subsequently robust regression analysis is conducted on these 
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selective measurements. On the other hands, CCA is directly based on correlation between all the 

measurements. It is worth noting that, for CCA, measurement data is compared through the data 

set, which contains a window of specific amounts of measurements. For RRA, however, the 

procedure is performed for every measurement.  

The comparative study between RRA and CCA is conducted based on three different 

criteria, which includes: damage detectability, time to detection and required computational time. 

Damage detectability is the ability of algorithm to detect different types of damage scenarios. 

The period of time between the moment that the damage occurs and the moment that the damage 

is detected by an algorithm is called time to detection. Finally, the demanded total amount of 

time for each algorithm to be performed is called the computational time. A 2D perspective of 

damage location matrix is carefully chosen as diagnostic plot for CCA while three-dimensional 

graphs are preferred for the case of RRA. Regarding CCA, it is possible to merge altogether 

corresponding results in one figure as damage location matrix.  

However, since RRA is dealing with several different sensor pairs and also two different 

phases, training and monitoring phase, only selected results are presented. In other words, for the 

sake of brevity, responses associated with sensor 1, 5 and 10, which are chosen based on their 

locations, are presented here. In fact, these sensors are nominated due to their location on bridge. 

Sensors 1, 5 and 10 are the closest sensors to the first, second and third boundary condition 

respectively. In other words, possible changes over available boundary conditions would be 

expected to alter the response of selected sensors and as a consequence should be observable 

through the figures provided in the next section.  
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It should also be mentioned that, Sij at time (t) denotes the difference (error) between 

exact value (strain) of sensor i at time (t) and estimated value based on regression model and 

corresponding value of sensor j. It is apparent that any possible dramatic changes in this error 

should be considered as an indication of abnormal behaviour in the particular sensor and 

consequently near the corresponding location. In the following sections these algorithms are 

compared based on above-mentioned criteria and through individual damage scenarios. 

4.5. Global Assessment (RRA and CCA) 

4.5.1. First Damage Scenario (Fixing the First Boundary Condition) 

The detectability of CCA and RRA methods are put to the test by fixing the first bearing 

on the 4-span bridge model. The corresponding results of CCA and RRA are shown in Figure 15 

and Figure 16 respectively. It is observed from Figure 15 that damage location matrix has values 

mostly close to zero, shown with dark color, except that values for sensors that are close to the 

damage locations. In other words, all arrays in each individual column of damage location matrix 

are close to zero except for the columns corresponding to the sensors with abnormal behavior 

due to damage.  

As mentioned previously, each individual column in the damage location matrix 

corresponds to one particular sensor on the structure. Consequently, in pursuance of detecting 

damage location on the bridge model, each column should be investigated to determine if the 

sensor shows any abnormal behavior due to damage.  
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Figure 15: Damage location matrix corresponding to damage scenario 1 

It should be also pointed out that the color bar range changes from one figure to another. 

Based on observation Figure 15, it is evident that, the correlations of sensor 1 and 2 with the 

other sensors have experienced dramatic change due to this damage scenario, fixing the first 

bearing. In effect, sensors 1 and 2, express the most, and only, abnormal behavior among all 

other sensors and this confirm the efficiency of CCA algorithm in detecting irregular behavior 

due to this scenario.  

RRA results are presented in individual 3D graphs, shown in Figure 16. This graph 

illustrates the time history of error in estimating the value of corresponding sensors based on 

robust regression model generated in training phase. S12, error in estimating value of sensor 1 

based on value of sensor 2 by means of robust regression model. The calculated error is almost 

constant before damage occurred (t=600sec) and after that a dramatic shift occurred due to 

damage. The same behavior but with less intensity is observed for S13 and S14, while for S18 and 

S19 there are not any significant changes observed. This reveals the fact that fixing the first 
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bearing makes the robust regression model, generated in the training phase, less effective in 

predicting responses of sensors located close to the damage location.  

 

Figure 16: Robust Regression Analysis (RRA) corresponding to damage scenario 1 

On the contrary, this mathematical model stays effective for sensors away from damage 

location and as a result there is not noteworthy shift observed in the time history of error 

associated with these sensors. A confidence interval will develop based on the computed error 

prior to the reference point (t=200 sec). In fact, the training phase is separated from the 

monitoring phase by the reference point. Another important observation is that CCA is failed to 

detect damage adjacent to sensor 3 and 4 while RRA detects abnormal behavior from 

measurements of these sensors. 
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4.5.2. Second Damage Scenario (Fixing the First Two Boundary Conditions) 

The second simulated scenario is fixing the first two bearings on the 4- span bridge. The 

corresponding results are shown in Figure 17 and Figure 18. These results show that, fixing the 

second, middle, bearings spreads out the damage from being detected by sensors 1 and 2 to 

sensor 3, 4, 5 and 6. 

 However, the most intensive alteration is still observed by sensor 1 and 2, similar to 

scenario 1. Significant changes are also experienced by sensors 5 and 6, located next to damage 

location, while sensor 3 and 4, which are placed in the middle of the first span; exhibit less 

alteration caused by this scenario. However, there is not significant damage to be sensed over the 

second span where sensors 7, 8, 9 and 10 are positioned. Similar results are observed from 

Figure 18 which shows the RRA. 

 

Figure 17: Damage location matrix corresponding to damage scenario 2 
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Figure 18: Robust Regression Analysis (RRA) corresponding to damage scenario 2 

4.5.3. Third Damage Scenario (Fixing the Middle Boundary Condition) 

The third damage scenario is conducted by just exchanging the middle boundary 

condition from roller to fixed bearing. The CCA and RRA results are demonstrated in Figure 19 

and Figure 20 respectively. Based on CCA results, and as opposed to the first two scenarios, 

sensor 1 and 2 are not experiencing significant alterations due to this scenario. The reason is 

obviously because of reverting the first boundary condition from fixed back to roller state. 

Therefore, the damage is just concentered around the middle bearing where the sensors 4 and 6 

are positioned. Figure 19, illustrates that the correlation of sensors 5 and 6, as expected, with 

other sensors have changed meaningfully.  
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Figure 19: Damage location matrix corresponding to damage scenario 3 

 

Figure 20: Robust Regression Analysis (RRA) corresponding to damage scenario 3 
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RRA conceals almost comparable outcomes in terms of both damage intensity and 

location of abnormal response. Similar to CCA, there is not any expressive detection sensed near 

sensors 1 and 10, by means of RRA. In other words, CCA and RRA are in perfect agreement 

with each other.  

4.6. Local Assessment (RRA and CCA) 

The last two damage scenarios are local stiffness reduction. Scenario 4 is designed to 

remove 4 bolts on the first span and close to middle bearing while scenario 5 is removing 

additional 4 bolts, symmetrically, from the second span, see Figure 14 for more details. Through 

the next two following sections, detectability of CCA and RRA will be evaluated based on their 

sensitivity to local stiffness reduction. 

4.6.1. Fourth Damage Scenario (Removing Four Bolts from the First Span) 

As it was discussed above, the fourth damage scenario is removing 4 bolts from the first 

span and close to middle bearing. The results related to RRA and CCA for this case are presented 

in Figure 21 and Figure 22 respectively. The results reveal that both methods are efficient in 

detecting abnormal behaviour due to the induced damage. The correlation of sensor 4 with the 

other sensors is affected due to removing 4 bolts from a location close to this sensor. This 

abnormal behaviour is clearly illustrated in Figure 21. In addition to sensor 4, a slightly change is 

detected over sensor 3 which is also shown in Figure 21 and Figure 22 present RRA results. 

Based on RRA results, Figure 22, this damage scenario only influences the correlation of sensor 

4 and other sensors. 
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Figure 21: Damage location matrix corresponding to damage scenario 4 

 

Figure 22: Robust Regression Analysis (RRA) corresponding to damage scenario 4 
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4.6.2. Fifth Damage Scenario (Removing Eight Bolts from the First and Second Span) 

This damage scenario is designed to remove 8 bolts from both first and second span in a 

way it can effectively represent the lack of local connectivity which is very critical issue in 

bridge structure. CCA results are presented in Figure 23 while RRA results are shown through 

Figure 24. The first obvious point, which should be highlighted, is that removing another 4 bolts 

from the second span (in comparison to the previous scenario) will disperse the damage. In fact 

the distribution of damage due to lack of local connectivity is seems to be worse than the first 

two scenarios, which were fixing the boundary condition in terms of distribution issue. It is 

evidently perceived from Figure 23 that the correlations of sensors 4, 5 and 6 with other sensors 

are affected due to this induced damage. Therefore CCA algorithm was able to precisely detect 

the location and intensity of abnormal behaviour caused by lack of local connectivity in bridge. 

As a final point, RRA results, which are presented in Figure 24, are discussed here. 

 

Figure 23: Damage location matrix corresponding to damage scenario 5 
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Figure 24: Robust Regression Analysis (RRA) corresponding to damage scenario 5 

 It is shown that correlation of sensor 1 and 10 with all other sensors are not affected due 

to this damage while correlation of sensor 6, which was located close to the damage location is 

altered. In other words, RRA results obtained for this condition exposed the detectability of this 

detection algorithm in dealing with lack of local connectivity. 

4.7.  Damage Assessment (MPCA and MCCA) 

A total number of 30 data sets, 15 from baseline condition and 15 from damage condition, 

have been considered in this study. Each data set consisted of approximately 10000 to 13000 

data points. This results in a main matrix with 360175 rows (data points or measurements) and 
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12 columns (number of FBG sensors or variables). Taking this information into account, the size 

of the moving window was chosen as 13000 x 12 while the moving rate (or window overlap) is 

selected as 2000 points. In order to develop a confidence interval, the first 50000 points have 

been considered as training (baseline) phase for both MPCA and MCCA algorithms. In fact, the 

first 193875 points (measurements) out of 360175 points are captured from a baseline structure 

while only the first 50000 points are involved in developing the confidence interval. Since this is 

multivariate data analysis, the results of selective sensors are presented instead of individual 

sensors. 

Consequently, in order to conduct a fair comparative study as well as to fully understand 

the capability of the algorithms for both global and local damage detection, two sensors close to 

damage location and one senor away from damage were selected for illustration purposes.   

Therefore, for the first three cases, the MPCA results corresponding to sensor 1 (close to 

first bearing), sensor 5 (close to middle bearing) and sensor 10 (close to third bearing) are 

presented while for case 4 (local stiffness reduction) sensors 4 and 6 (both close to damage 

locations) and sensor 10 (away from damage location) are selected. Correspondingly, for case 5 

(severe local stiffness reduction), sensors 4 and 7, which are both located close to the location of 

removed bolts and sensor 10 (away from damage location) were selected as representative 

sensors for evaluating the efficiency of MPCA algorithm. Alternatively, for MCCA illustration, 

correlation of sensors 1, 5 and 10 with sensors 2, 3 and 4 will be presented respectively for the 

first three cases while correlation of sensors 4, 6 and 10 with sensor 1, 2 and 3 are illustrated for 

case 4. Consistently for case 5, correlation of sensor 7, 8 and 10 with sensor 1, 2 and 3 will be 

monitored for the sake of verifying the proficiency of MCCA algorithm. In the following 



59 
 

subsections the corresponding results for both MPCA and MCCA and different scenarios will be 

discussed. 

4.8.  Damage Assessment (MPCA and MCCA) 

4.8.1. First Damage Scenario (Fixing the First Boundary Condition) 

The main idea behind this damage case is to simulate one of the most common faults in 

bridge type structures, which is altering the boundary condition from roller condition to fixed 

condition. In fact, this type of change will result in redistribution of force in the structure and 

may cause unexpected bending moment at boundary location which can has detrimental effect on 

the performance of the structure. The corresponding results for MPCA and MCCA are presented 

separately in Figure 25 and Figure 26. 

 Each graph, as it was mentioned, is separated into two parts so called training and 

monitoring phase. As it is observed MPCA precisely detected the abnormal behavior due to this 

damage. Dramatic change in principal component value of sensor 1 is detected while only slight 

change is noticed over sensor 5 and almost no change at the location of sensor 10. The PCA 

value for sensor 1 is well separated before and after damage. In effect, the values of PCA for 

sensor 1, after damage occurred, are clearly out of the confidence interval developed in training 

phase. 

In other words, shifting the boundary condition from roller into fixed condition caused 

unexpected extra moment force at the location of sensor 1 which subsequently resulted in 

dramatic shift in PCA value computed from this sensor. This alteration, force redistribution, is 

even slightly sensed over sensor 5 close to the middle bearing which is predictable based on 
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structural analysis since it is a continuous section. However, since there is a major shift in the 

mean PCA values and some points go beyond the confidence intervals, it can be concluded that 

damage is felt at sensor 5 as well. In contrast, there is not any abnormality detected for sensor 10 

and as a result it can be mentioned with 99 percent confidence that the structure around this 

sensor has not experienced any force redistribution issue. In the case of MCCA, the correlation 

of sensor 1 with sensor 2, 3 and 4 showed obvious variations after damage occurred. However, 

slight change over sensor 5 and no significant alteration over sensor 10 are observed.  

 

Figure 25: MPCA results for selected sensors (case1) 
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Figure 26: MCCA results for selected sensors (case1) 

However, it should be also mentioned that, in terms of computational time needed for 

each algorithm, MCCA algorithm is superior. Also, significantly more complicated mathematical 
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4.8.2. Second Damage Scenario (Fixing the First Two Boundary Conditions) 

The second damage scenario was designed and implemented to simulate the situation in 

which a number of bearings are experiencing the fixing issue. For that reason, the middle bearing 

was fixed in addition to the first one. The results for this case are summarized in Figure 27 and 

Figure 28. In the second case, sensor 1 again shows the most dramatic change similar to case 1. 

However, in this case an abrupt jump is observed in the location of sensor 5 (close to the middle 

bearing).  

 

Figure 27: MPCA results for selected sensors (case2) 
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Figure 28: MCCA results for selected sensors (case2) 
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change. However, it is expected to have some minor unexpected force redistribution near the first and the 

last boundary. It is observed from MPCA and MCCA results that only sensor 5 expresses damage while 

almost no significant variation detected around sensor 1 and sensor 10. 

 

Figure 29: MPCA results for selected sensors (case3) 
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by removing four bolts from the first span and close to middle bearing. The MPCA algorithm 

detects significant change at the position of sensor 4, which is at the location of the removed 

bolts.  

 

Figure 30: MCCA results for selected sensors (case3) 
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Figure 31: MPCA results for selected sensors (case4) 

4.9.2. Fifth Damage Scenario (Removing Eight Bolts from the First and Second Span) 

To end with, the last damage scenario simulates a distributed lack of local connectivity. 

For this reason, another four bolts are removed from the second span, which adds up to 8 

removed bolts. Principal component values corresponding to both sensor 4 (close to the four 

bolts removed from first span) and sensor 7 (close to 4 bolts removed from second span) were 

affected due to this damage.  

 

0 50 100 150 200

0.45

0.5

0.55

0.6

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0 50 100 150 200
-0.04

-0.02

0

0.02

0.04

0.06

Monitoring PhaseTraining Phase

R
e

fe
re

n
ce

 P
o

in
t

Sensor 4 Sensor 6

3s

3s



Monitoring PhaseTraining Phase

R
e

fe
re

n
ce

 P
o

in
t

3s

3s



Sensor 10

Number of Moving Windows 

D
a

m
a

g
e

 i
n

d
e

x

fo
r 

M
P

C
A

Damage Observed

Monitoring PhaseTraining Phase

R
e

fe
re

n
ce

 P
o

in
t3s

3s



Number of Moving Windows 

D
a

m
a

g
e

 i
n

d
e

x

fo
r 

M
P

C
A

Damage Occurred

Damage Occurred

Number of Moving Windows 

Removing Bolts from the first span

Baseline Damage

Removing Bolts

3
0

 c
m

3
0

 c
m

3
0

 c
m

61.2 cm

S
N

 2

S
N

 3

S
N

 4

S
N

 1

S
N

 5

S
N

 6

S
N

 7

S
N

 8

S
N

 9

S
N

 1
0

3
0

 c
m

61.2 cm



67 
 

 

Figure 32: MCCA results for selected sensors (case4) 
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revealed that these methods are efficient not only in terms of detection but also in the sense of 

measuring the intensity of abnormal behavior. 

 

Figure 33: MPCA results for selected sensors (case5) 
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these algorithms was tested using a laboratory bridge structure instrumented with fiber optic 

sensors. The most common and critical damage scenarios have been selected and simulated on 

the structure including three global and two local damage scenarios.  

 

Figure 34: MCCA results for selected sensors (case5) 
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However, throughout the next chapter a systematic comparison study is conducted based 

the new defined criteria. In addition, a new machine-learning damage detection algorithm is 

introduced to cover some of the main drawbacks associated with selected algorithms. 
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CHAPTER FIVE: AN INNOVATIVE MACHINE LEARNING 

ALGORITHM FOR LONG-TERM STRUCTURAL HEALTH 

MONITORING OF INFRASTRUCTURES: CONCEPT, LAB, AND REAL-

LIFE STUDIES 

5.1. Introduction 

A systematic comparison study has been conducted on ten different data-driven based 

algorithms and it has been shown that only a few of these methods, including the Moving 

Principal Component Analysis (MPCA), Moving Cross Correlation Analysis (MCCA) and the 

Robust Regression Analysis (RRA) are applicable for long-term civil infrastructure monitoring 

[63-65]. Although these algorithms were proven to be more effective than other techniques, still 

there remain some main drawbacks associated with each method. For instance, the MPCA has a 

delay in detection whereas the RRA does not have a reliable detectability [63]. Therefore, neither 

of these techniques is quite reliable for the monitoring of critical infrastructure for which both 

detectability and timely detection are of the most concern.  

Moreover, the other issue that has to be highlighted is that the above-mentioned 

comparative studies were conducted on numerically developed models of the civil structures, 

including a simple beam and a truss bridge. In fact, data were generated from numerically 

developed FE models with virtual sensors at different locations. However, in order to effectively 

evaluate the non-parametric algorithms for damage detection, long-term data from a real life 

structure is needed. This is an important issue because even if there are significant amounts of 

long-term data available from real life civil structures, to the best knowledge of the authors, there 

are only a few cases with the reported damage.  
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In response to these demands, three individual sections are designed for this chapter. The 

first section is dedicated to the presentation of an innovative machine-learning algorithm for 

damage detection. This real-time data interpretation method is designed and proposed to 

overcome some of the drawbacks associated with the existing methods. This method named as 

MPCA-CCA is developed by integrating the MPCA and CCA. The main intention is to reduce 

the delay in detection that comes with the MPCA and also improve detectability. Throughout the 

second phase (section) of this chapter, a systematic comparative study is conducted in which the 

MPCA, MCCA, RRA and MPCA-CCA are compared with respect to some critical criteria such 

as detectability, delay (time to detection), computational time, robustness to noise and window-

size (required data sets for training phase) [93-94].  

The data that is utilized for this section is collected from the experimental structure (4-

Span Bridge) under different damage scenarios. Finally, the long-term SHM data from a unique 

real life structure is employed for evaluating the efficiency of the algorithms. For that reason, the 

Sunrise Boulevard Bridge is heavily instrumented with various types of sensors. More than 200 

sensors were installed on both structural and mechanical components of the bridge. The baseline 

data has been collected continuously along with the data from three critical and common damage 

scenarios. It is shown that the MPCA-CCA outperforms MPCA other techniques in terms of 

detectability, timely detection and effect of noise.  

5.2. An Innovative Machine-learning Algorithm (MPCA-CCA) 

As it was pointed out, there is a main drawback associated with the MPCA algorithm. In 

fact, the associated delay in detection turns MPCA into an unreliable algorithm for monitoring of 

critical structures in which timely detection is of most concern. On the other hand, the RRA 
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algorithm has shown promising results in terms of time to detection (delay) but its detectability is 

considered a main weakness of this method. Consequently, neither of these techniques is 

desirable for real-time monitoring of civil infrastructure. Motivated by this issue, a combined 

machine-learning algorithm is designed and proposed in order to not only decrease the time to 

detection (delay in detection) but also increase the detectability of the existing methods, which 

accordingly makes it more competitive for real-life applications. 

 In order to achieve this objective, the damage indices that are derived based on the 

MPCA are further processed taking advantage of the Cross Correlation Analysis (CCA). The 

primary intention of adapting the CCA is to reduce the time to detection.  

As a result, the algorithm is the integration of two statistical techniques including MPCA, 

and CCA. The steps that are involved in this algorithm are presented in Figure 35. The first three 

steps are the ones that were used for MPCA algorithms. For that reason, throughout the first step, 

the matrix of raw data is generated and consequently divided into two main portions named as 

training and monitoring phase. The data within the training phase is implemented for establishing 

the baseline condition. 

 In other words, the underlying distributions of the damage indices are learnt during the 

training phase and any significant variations from these distributions are reported as a change, 

which might be due to damage. Designing a fixed-size moving window which can move through 

the data is the next step in order and it is followed by conducting a PCA for the data inside each 

of the individual windows. The third step is to extract the damage indices for the MPCA, which 

was discussed in chapter 3. Having extracted the damage indices for the MPCA, the following 

step is to conduct a cross correlation analysis.  
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Basically, the idea behind designing the fourth step (Figure 35) is to track the correlation 

of different time series of eigenvector (the first principal component). The underlying 

assumption is that if damage occurs then it should affect the correlation coefficient of the 

eigenvectors.  

 

Figure 35: Steps that are involved in MPCA-CCA algorithms 
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Therefore, another fixed-size window is defined and moved through the matrix of time 

series. The CCA analysis is performed for each window and subsequently the correlation 

coefficients are determined. These coefficients are then monitored to detect any abnormal 

behavior in the system (step 5 in Figure 35).   

Figure 36, presents the flowchart in which the above-mentioned procedure for MPCA-

CCA algorithm is summarized. After learning the underlying distributions of the new damage 

indices (time history of correlation coefficient values) any variation from that is reported as 

abnormal behavior and accordingly utilized to take the corresponding maintenance action. The 

entire process for MPCA-CCA is coded in Matlab software. In the following sections, the 

efficiency of the proposed algorithm is challenged by conducting a systematic comparison study 

on the MCCA, MPCA, RRA and MPCA-CCA. 

5.3. Part I: Lab Study on Four Span Bridge Using Fiber Bragg Grating Sensor 

(FBG) 

5.3.1. Experimental Test (Experimental Structure and the Implemented Damage 

Scenarios) 

In order to conduct a systematic comparative study, several experiments with a laboratory 

bridge model (UCF 4-span Bridge Model) were designed and tested. The in-housed developed 

FBG system is used as a measurement system. Three different damage scenarios (two global 

damages as well as one local) as shown in Figure 37 are considered for this systematic 

comparative study.  
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Figure 36: The sequential steps for conducting MPCA-CCA algorithm 
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Figure 37: The implemented damage scenarios for systematic comparative study 

5.4. Systematic Comparison of the Algorithms Using Experimental Data 

In this section the results from the lab study are presented in a comparative fashion. 

Selective results obtained from different damage detection algorithms under individual damage 

scenarios are illustrated in Figure 38. In addition, the results are reviewed and systematically 

compared with respect to different criteria, including detectability, time to detection, effect of 

noise, computational time and size of the window. Therefore, considering these unique criteria, 

one would be able to select an appropriate algorithm for a desired application. 

5.4.1. Detectability 

Detectability is the primary feature of a reliable damage detection algorithm. As it is clear 

from the name, it refers to the ability of an algorithm to identify an abnormal behavior based on 

the signals streaming from a given structure. 
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Figure 38: Selective results of different algorithms under different damage scenarios 

0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20
-0.5

0

0.5

1

0 5 10 15 20
-1

-0.5

0

0.5

1

0 50 100 150 200
-1

-0.5

0

0.5

1

0 1 2 3 4

x 10
5

0

20

40

60

80

100

0 50 100 150 200
-0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200
-0.4

-0.2

0

0.2

0.4

0 1 2 3 4

x 10
5

0

20

40

60

80

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

x 10
5

0

5

10

15

0 50 100 150 200

0.35

0.4

0.45

0.5

0.55

0.6

Damage Scenario 1

Damage Scenario 2

S
N

 1

S
N

 2

S
N

 3

S
N

 4

S
N

 5

S
N

 6

S
N

 7

S
N

 8

S
N

 9

S
N

 1
0

Removing BoltsFixing the Boundary 

Conditions

Damage Scenario 3

Damage Scenario # 1 Damage Scenario # 2 Damage Scenario # 3
S

N
 1

S
N

 2

S
N

 3

S
N

 4

S
N

 5

S
N

 6

S
N

 7

S
N

 8

S
N

 9

S
N

 1
0

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h
as

e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

D
am

ag
e 

In
d

ex
 _

 M
C

C
A

D
am

ag
e 

In
d

ex
 _

 M
C

C
A

D
am

ag
e 

In
d

ex
 _

 M
C

C
A

Damage

Damage

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

T
ra

in
in

g
 P

h
as

e

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h
as

e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o

ri
n
g
 

P
h

as
e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

Damage

T
ra

in
in

g
 P

h
as

e

M
o
n

it
o
ri

n
g
 

P
h

as
e

D
am

ag
e 

In
d

ex
 _

 R
R

A
D

am
ag

e 
In

d
ex

 _
 M

P
C

A

In
d
ex

 _
 M

P
C

A
-C

C
A

D
am

ag
e 

In
d

ex
 _

 R
R

A
D

am
ag

e 
In

d
ex

 _
 M

P
C

A

D
am

ag
e 

In
d

ex
 _

 R
R

A
D

am
ag

e 
In

d
ex

 _
 M

P
C

A

Number of Windows Number of Windows Number of Windows

Number of Data Points Number of Data Points Number of Data Points

Number of Windows Number of Windows Number of Windows

Number of Windows Number of Windows Number of Windows

In
d
ex

 _
 M

P
C

A
-C

C
A

In
d
ex

 _
 M

P
C

A
-C

C
A



79 
 

Although it is a very critical aspect of a detection algorithm, and can significantly 

influence the selection of the algorithm, there is not any specific criterion to quantify 

detectability. In this study, as a first step to systematically compare the selected algorithms, a 

criterion is defined to quantify the detectability ability of a given algorithm.  

When it comes to designing a network of sensors (number and location of sensors) for a 

given structure, there are always several scenarios or arrangements of sensors available. In other 

words, there is not any straightforward approach for designing a network of sensors, in particular 

with respect to civil structures. Therefore, a robust algorithm in terms of detectability is the one 

which is less sensitive to the arrangement of sensors. In fact, a reliable algorithm is one that can 

detect damage regardless of the arrangement of sensors (network design). In this study, the 

detectability is calculated utilizing the following equation: 

(NC)Damage= The number of the sensor networks that generate the data with which the 

algorithm is able to detect the damage 

(NC) total= The total number of sensor networks that can be designed for a given structure. 

              (  )       (  )          
( 15 ) 

In fact, the detectability increases when the (  )        increases which indicates that 

the algorithms is less sensitive to the arrangement of sensor. For instance, consider a case in 

which a designer has to design a network of sensor including two FBGs for monitoring the 4-

Span Bridge. As it is demonstrated in Table 2, there are 10 candidate locations for installing two 

FBG sensors and as a consequence there are (   )     different configurations or designs 

available for that purpose.  
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Table 2: Potential design scenarios for network of FBG sensor (4-Span Bridge) 

   

Design ID Locations Design ID Locations Design ID Locations 

1 (1-2) 16 (2-9) 31 (5-6) 

2 (1-3) 17 (2-10) 32 (5-7) 

3 (1-4) 18 (3-4) 33 (5-8) 

4 (1-5) 19 (3-5) 34 (5-9) 

5 (1-6) 20 (3-6) 35 (5-10) 

6 (1-7) 21 (3-7) 36 (6-7) 

7 (1-8) 22 (3-8) 37 (6-8) 

8 (1-9) 23 (3-9) 38 (6-9) 

9 (1-10) 24 (3-10) 39 (6-10) 

10 (2-3) 25 (4-5) 40 (7-8) 

11 (2-4) 26 (4-6) 41 (7-9) 

12 (2-5) 27 (4-7) 42 (7-10) 

13 (2-6) 28 (4-8) 43 (8-9) 

14 (2-7) 29 (4-9) 44 (8-10) 

15 (2-8) 30 (4-10) 45 (9-10) 

 

The data is generated under different damage scenarios and collected using all the 

possible designs for sensor networks (45). Finally, employing Equation 15, the detectability 

indices are computed and the results are plotted in Figure 39. The results reveal the fact that, the 

MPCA-CCA algorithm has a better detectability in comparison with other techniques and with 

respect to all the considered damage scenarios.  

On the contrary, the RRA has the worst performance in terms of detectability. It is also 

noticed that, the performance of MPCA is slightly better than that of the MCCA and also that, 

the detectability of the MCCA, MPCA and RRA has considerably decreased when it comes to 

local detectability. On the other hand, it is realized that the detectability of the MPCA-CCA is 

more robust with respect to the type of damages (local and global). 
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5.4.2. Time to Detection 

Another parameter that is playing an important role in selecting the algorithm is time to 

detection or the corresponding delay. Time to detection is the period of time between the 

moment that the damage occurs and the moment that the damage is detected by the algorithm. 

Timely detection is very important for most of the structures, especially critical ones such as 

nuclear plants or aircrafts. In fact any delay in detecting damage in such a structure may result in 

detrimental consequences. Figure 39 presents the delay in detection associated with each damage 

detection technique.  

 The very first observation is that, unlike in detectability, with respect to time to detection, 

the RRA algorithm has by far the most reliable performance among any other tested method. It is 

also observed that after the RRA, the MPCA-CCA algorithm has the least associated delay in 

detecting abnormal behavior. Alternatively, the MPCA and MCCA have the most delay in 

detection of change/damage. On the other hand, the MPCA-CCA algorithm is the most reliable 

technique (among the tested methods) in terms of detectability while it has the least delayed in 

detection after RRA. The performance of the MPCA and MCCA are acceptable when it comes to 

detection, however, these techniques do not express consistent behavior regarding to time to 

detection criterion. Therefore, considering these two criterions, the MPCA-CCA algorithm has 

the superior performance in comparison with other discussed methods. 

5.4.3. Effect of Noise 

The effect of noise on the detectability of different techniques is illustrated in Figure 39. 

The most important point is that the detectability of the MPCA-CCA is not sensitive to the 
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presence of noise in data. In other words, the detectability indices of the MPCA-CCA are almost 

identical for data with and without noise, which is an advantage especially for real-life and civil 

infrastructure applications. Alternatively, the RRA is the technique that is most influenced by the 

presence of noise in the data.  

 

Figure 39: Systematic comparison study on the selective algorithms 

Sc1: Damage Scenario 1 (fixing the first boundary condition)

Sc2: Damage Scenario 2 (Fixing the first two boundary conditions)

Sc3: Damage Scenario 3 (Removing 8 bolts from the first span)
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In fact the detectability index (RRA) drops by 40% in the presence of noise. The 

performance of the MPCA and MCCA is also to some extent affected by the presence of noise. 

5.4.4. Computational Time 

The demanded time for a damage detection algorithm is referred to as computational time. 

This parameter becomes a critical issue in particular with respect to long term monitoring of a 

complex civil structure in which one is dealing with huge amounts of data. The RRA by far 

outperforms other techniques regarding computational time.  

The MPCA-CCA obviously requires much more than the RRA since it is dealing with 

two statistics and machine learning techniques (CCA and MPCA). The MPCA also needs a 

significant amount of time to be performed. However, the MCCA needs much less time in 

comparison to the MPCA and MCCA-CCA. The results for computational time are presented in 

Figure 39. 

5.4.5. Size of the Moving Window and Required Data for Training Phase 

The size of the window is a key parameter for the MPCA and MCCA as well as for the 

MPCA-CCA algorithm. Commonly it is recommended that the window should be large enough 

so that the damage indices are not influenced by periodicity of the data. Alternatively it should 

be small enough to timely detect abnormal behavior. This is a very general prescription and in 

most of the cases there is not any straightforward procedure to identify the window-size. 

Therefore in this section a procedure is proposed as a method to define effective window-size for 

MPCA, MCCA and MPCA-CCA. It is worth noting that the window-size for the MPCA-CCA is 



84 
 

identical to the one used for the MPCA. Therefore in this section only the results related to the 

MPCA and MCCA are discussed. 

Another important feature for an unsupervised damage detection algorithm is the amounts 

of data sets that are required for the training phase. The advantage is given to the algorithm that 

needs the least number of data sets to establish the baseline. The amount of data that is needed by 

an unsupervised algorithm for the training phase directly depends on the size of the window. As 

a consequence, a new approach is proposed in this study to identify the appropriate size of the 

window and accordingly the required training data-sets. The sequential steps for this approach 

are presented as follow: 

Step 1: The largest periodicity in the data (P) is identified.  

Step 2: A vector of window-size is generated as follows: 

Window Size= [0.1P, 0.2P… 3P, 4P] 

Step 3: The damage indices are derived for all the window-sizes (in the vector) and the 

stochastic process for the corresponding damage indices are plotted (see Figure 40). The 

optimized window-size is the smallest one that results in a stationary process as it is illustrated in 

Figure 40. The corresponding results for the MPCA and MCCA are visualized in Figure 40. The 

horizontal axis indicates the size of window whereas the vertical axis presents the mean of the 

corresponding damage indices. The results are presented for the first damage indices.  

The left plot in Figure 40 contains 10 plots, which are the corresponding mean of damage 

indices calculated by the MPCA algorithm while the right one expresses the mean of damage 

indices for the MCCA. As it is noticed, the size of the window that is required for the MCCA 
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(8500 data points) is significantly less than the one needed for the MPCA (11500 data points). In 

other words, the MCCA requires less data for training in comparison to MPCA and accordingly 

to the MPCA-CCA. This is a major advantage for an unsupervised detection algorithm. 

 

Figure 40: The procedure for selecting an optimized size for the moving window 

 As it is obvious from Figure 40, if the window size is selected less than 11500 data points 

for the MPCA, then the damage indices are influenced by periodicity of the data. This 

significantly reduces the detectability of the MPCA algorithm.  

On the other hand, selecting any window-size larger than 11500 data points will cause 

delay in detection. Therefore, in the case that there is limited amount of data available from a 

baseline (healthy) structure, the priority is given to the MCCA as the best option for processing 

and interpreting of the data. Therefore, Table 3 is generated based on the above-mentioned 

criteria including detectability, effect of noise, computational time, time to detection (delay in 

detection) and the required size of window. This Figure can be utilized as a reference for 

selecting an appropriate algorithm for a particular application. 
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Considering all the selected criteria, the proposed algorithm (MPCA-CCA) can be chosen 

as a reliable damage detection algorithm. The performances of these algorithms are further 

investigated and challenged utilizing the data from a unique real-life structure. 

Table 3: Systematic comparison of the selective non-parametric algorithms (darker colors 
indicates more advance performance) 

      Criteria 

 

Method 

Detectability with 
Noise 

Detectability without 

Noise Delay in 

Detection 

Computational 

Time 

Required 

Training Data 
Global Local Global Local 

RRA        

MCCA        

MPCA        

MPCA-CCA        

 

5.5. Part II: Real-life Study Utilizing the Data from Sunrise Movable Bridge 

The objective of this part is to explore the efficacy of the MPCA and MPCA-CCA 

algorithms (as two of the effective methods) for detecting abnormal behavior from the large-size 

SHM data sets which are collected over years. In fact, the algorithms are challenged in terms of 

not only detectability performance but also the ability to handle large-size SHM data sets, which 

is a big advantage for long-term monitoring of civil infrastructure.  

Therefore a movable bridge, Sunrise Boulevard Bridge, has been instrumented with 

various types of sensors and has been monitored for the past five years, as it is shown Figure 41. 

The data has been collected continuously from the baseline and also some of the critical and 

common damage conditions.  
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Figure 41: Sunrise Boulevard Bridge, Fort Lauderdale, Florida, United States 

In fact, having access to data from damage conditions is one the unique aspects of this 

study since there are only a few cases where damage data from a real-life structure is available.  

The selected movable span of the bridge is the West-bound span of two parallel spans on SR-

838, crossing a canal in Ft. Lauderdale, FL.  

This span was constructed in 1989. It has double bascule leaves, with a total length of 

35.7 m, and a width of 16.3 m, carrying three traffic lanes. The most critical electrical, 

mechanical and structural components are monitored by a comprehensively designed monitoring 

system consisting of an array of 160 sensors which add up to 200+ channels [92].  
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The structure is equipped with appropriate sensors at the most critical locations including, 

girders, floor beams, stringers, live load shoes (LLSs) and span locks (SPs). In this study, the 

strain data that is collected by dynamic SGs (Hitec weldable) at 12 individual locations along the 

bottom flange of the main girders is used (Figure 42). 

 The data is captured with 250 Hz sampling frequency. Figure 41 illustrates the locations 

of SGs and corresponding nomenclatures, WN refers to West North and ES refers to East South.  

In a 24-h period, three prescheduled time slots (morning and early and late afternoons), 

corresponding to peak hours of operation are selected for data collection. Each data set is 

collected for 5 min continuously for each data set. Field tests were conducted to establish 

thresholds for conditions that are critical for the maintenance and operation of the bridge. These 

conditions will be referred to as “damage”. In collaboration with FDOT engineers, some of the 

most common structural maintenance problems are identified and subsequently implemented on 

the movable bridge to simulate the damage condition. These damage scenarios are discussed as 

follow. 

5.5.1. Implemented Damage Scenarios 

Critical issues that create maintenance problems on the bridge are discussed and 

simulated on the Sunrise Boulevard Bridge based on the detailed investigation of the bridge 

inspection reports and interviews with the bridge engineers. The two main structural damage 

scenarios for this study are live load shoe (LLS) shim removal and span lock (SL) shim removal. 

A combined damage scenario was also applied to the structure. First, the West South LLS shims 

were removed (Case-1), then the West South SL shims were removed for the combined damage 
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scenario (Case-2), and finally the LLS shims were installed again to see only the SL effect on the 

structure (Case-3), as it illustrated in Figure 42.  

The Live Load Shoes (LLS) are the support locations of the main girders when the bridge 

is in closed position (Figure 42). For the Sunrise Blvd. Bridge the LLS is located forward of the 

trunnions. Cracking and wear are rarely seen on the live load shoe, but mainly, operational 

problems, such as loss of contact, are of concern. If misaligned or improperly balanced, the 

bridge may not fully sit on the LLS. In that case, the dead load and traffic load are transferred to 

the gears and shafts, which cause damage to mechanical assemblies. Small gaps also lead the 

girders to pound on the live load shoes, which results in further misalignment, additional 

stresses, fatigue damage, and excessive wear.  

 

Figure 42: Simulating the maintenance issues as individual damage scenarios on the 
Sunrise Bridge 

Case-1 is the creation of a gap (around 1/8” up to 3/16”) between the West South LLS 

and resting support pads, which corresponds to non-fully seated LLS (Figure 42). This will cause 

Live Load Shoe Live Load in Place
Removing Live Load
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Span Lock Connecting Eats and 
West leaf Typical Span Lock
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misalignment and problems for proper opening and closing of the leaves. Moreover, because of 

the inadequate support conditions, bouncing may occur in the girders, creating additional stresses 

due to impact as well as stress redistribution possibly subjecting the structure to different internal 

forces. 

 In double leaf bascule bridges, Span Locks (SL) are used to connect the tip ends of the 

two cantilever bascule leaves forcing both leaves to deflect equally (Figure 42). Consequently, 

this situation prevents a discontinuity in the deck during the operational traffic. In most of the 

span locks, there are two main components: the receiver and the rectangular lock bar.  

5.5.2. Results from Real-Life Study 

The corresponding results for the MPCA and MPCA-CCA are summarized in Figure 43 

through 45. The results are quite interesting since the MPCA algorithm was found ineffective for 

real-life bridge monitoring. In the earlier study, it is shown that this algorithm (MPCA) is quite 

effective for detecting the abnormal behaviors which were simulated on the 4-Span Bridge in 

structural laboratory. However, when it comes to long-term monitoring of a movable bridge only 

the MPCA-CCA remains effective. It was already discussed in the first part of the study that the 

MPCA-CCA has several advantages in comparison to others in terms of detectability, time to 

detection and also immunity to noise.  

The damage index, which was calculated by the MPCA algorithm and it is displayed in 

Figure 43 is bounded within the confidence interval. There is not, therefore, any abnormal 

behavior that can be observed during the time that damage was introduced (the highlighted part 

in Figure 43). Alternatively, the corresponding damage index for the MPCA-CCA is sensitive 
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enough to detect the induced damage, live load shoe shim removal. Figure 43 displays an abrupt 

jump in the results related to the MPCA-CCA right after inducing the damage.  

 

Figure 43: The corresponding results for case 1(removing some of the shim from the live 
load shoe close to the location of WES3 sensor)   

Figure 44 illustrates the corresponding results for the second damage scenario which is 

the most severe induced damage scenario in this study. It is obvious that the MPCA has failed to 

capture the malfunction while the MPCA-CCA could detect it clearly. In fact, integrating the 

MPCA with the CCA increases the detectability of the MPCA algorithm to a level that it allows 

it to be considered a reliable algorithm for real-life applications. Moreover, after fixing the 

structure and replacing the live load, the damage index from MPCA-CCA is shifted back to the 

level it was before inducing the damage. 
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This is an important conclusion since it is revealed the fact that the damage index from 

MPCA-CCA can be directly linked to the performance condition of the structure. As a result, 

although the MPCA has shown promising results with respect to lab study, it is not a reliable one 

for long-term bridge monitoring. 

 

Figure 44: The corresponding results for case 2 (removing some of the shim from the span lock and live 

load shoe close to the location of WES3 and WS1 sensors)   

Finally, Figure 45 presents the results for the third damage scenarios. As it obvious from 

the results, similar to the previous cases, only MPCA-CCA could detect the induced damage. 

This further emphasises the reliability of the proposed damage detection algorithm (MPCA-

CCA). 
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Figure 45: The corresponding results for case 3 (removing some of the shim from the span lock and close 

to the location of WS1 sensor)   

5.6. Concluding Remarks 

This chapter has been dedicated to investigate the efficiency of some of the selective 

damage detection algorithms in conjunction with a new designed algorithm for long-term 

monitoring of civil infrastructures. A systematic study is conducted between the proposed 

algorithm and other selective ones introducing critical criteria including local and global 

detectability, computational time, delay in detection and the amount of required training data 

sets. A new approach is introduced for identifying the detectability and also the amount of 

required training data sets.   
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An experimental study is conducted using an in-house developed FBG system and the 4-

Span Bridge. Some of the critical damage scenarios associated with bridge structures are 

identified and simulated on the 4-Span Bridge and the data is accordingly collected using FBG 

sensors. It is shown that the proposed algorithm outperforms the existing methods in terms of 

detectability and time to detection (delay in detection).  

It is also observed that the RRA algorithm has a better performance with respect to 

computational time as well as time to detection. The MCCA is preferred when it comes to 

amount of the required training data sets. Finally, the MPCA has an acceptable performance 

regarding detectability while it is not reliable when it comes to time to detection. In addition to 

the lab study, the proposed algorithm is further challenged and explored utilizing the data from a 

unique real-life structure, the Sunrise Movable Bridge.  

The data is unique in the sense that it includes the data from both baseline and damage 

conditions. In fact, some of the critical damage conditions are induced on the Sunrise Movable 

Bridge and the data is collected under traffic load. This data is then fed into the MPCA-CCA 

algorithm to test the detectability of the proposed method. It is concluded that the MPCA-CCA 

algorithm could detect the introduced damage while the MPCA has failed to identify any 

abnormal behaviors. Therefore, the MPCA-CCA can be implemented for continuous real-life 

monitoring of civil infrastructures. 
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CHAPTER SIX: A MACHINE LEARNING APPROACH TOWARD 

ON-LINE OPERATIONAL MONITORING OF THE CRITICAL 

MECHANICAL COMPONENTS OF A MOVABLE BRIDGE 

6.1. Introduction 

In this chapter an investigative study for automated data processing method is developed 

using non-parametric data analysis methods for real-time condition maintenance monitoring of 

critical mechanical components of a movable bridge. A maintenance condition index is defined 

for identifying and tracking the critical maintenance issues. The efficiency of the maintenance 

condition index is then investigated and demonstrated against some of the corresponding 

maintenance problems that have been visually and independently identified for the bridge. 

6.2. Condition Assessment of the Critical Mechanical Components of the Sunrise 

Movable Bridge 

For static structures, monitoring of structural components is usually the only concern for 

maintenance, safety and operation; however, for movable bridges, the monitoring of mechanical 

and electrical components is equally important. Bridge opening and closing operations induce 

additional stress on the structural and mechanical components of a movable bridge due to 

mechanical and dynamic forces.  

Therefore, a properly designed monitoring system for a movable bridge should be 

considered all structural, mechanical and electrical components of a movable bridge. This 

chapter is concentrated on the mechanical part of the project where the objective is to monitor 

the maintenance conditions of mechanical components (see Figure 46).   
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Figure 46: Sunrise Bridge in Ft. Lauderdale, Florida 

The most important components are the gearbox, motor, rack and pinion, shaft, open gear 

and trunnion. Locations of some of these components are schematically illustrated in Figure 47. 

In this study, the corresponding data sets from gearbox, motor and rack and pinion are utilized.  

 

Figure 47: Machinery Room for the mechanical components of the Sunrise Bridge 

Herein, a brief discussion on each of these components including their functionality and 

the implemented sensors are presented. 

Closing PhaseOpening PhaseSunrise Bridge

MotorGearbox Rack and Pinion

Machinery Room
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6.2.1. Critical Mechanical Components 

6.2.1.1. Gearbox 

The gearboxes contain the assembly that transmits the torque generated by the motor to 

the shafts (Figure 48). When the gearboxes experience deterioration or lack of lubrication, some 

change in the vibration and sound characteristics during the bridge operation should be noted. 

Abnormal vibration is an indicator of wear in the gears. Oil viscosity is also an important 

parameter for proper functioning of the gearbox. Considering these issues, the monitoring system 

included four accelerometers to measure the vibration of the gearbox during bridge opening and 

closing events.  

 

Figure 48: Sample measurement from the gearbox during opening and closing phases 

Furthermore, microphones were also installed in the vicinity of the gearbox to determine 

its acoustic signature for opening and closing events. In this study, as mentioned earlier, the data 

collected with accelerometer during opening phase is used (Figure 48). 
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6.2.1.2. Electrical Motor 

The electrical motors generate the torque required for the opening and closing of the 

bridge. Some of the indicators for improper functioning of the electrical motors are high 

amperage, high temperature, high vibration level and high revolution speed.  

 

Figure 49: Sample measurement from the motor during opening and closing phases 

Therefore, it was decided that the monitoring system would include ampmeters to 

measure the amperage levels for each one of the electric motor phases, two accelerometers to 

measure the vibration on the motor during the bridge openings and closings, and infrared 

temperature sensors to monitor the temperature of the electrical motor (Figure 49). Similar to the 

gearbox, the vibration data collected using the accelerometers is investigated to disclose the 

maintenance condition of the electrical motor.  
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6.2.1.3. Rack and Pinion 

The open gears are the main gears, which are part of the leaf main girder and receive the 

torque from the rack and pinion assembly. Corrosion due to lack of lubrication, excessive strain, 

out-of-plane rotation and misalignment are common problems for open gears. Another concern is 

loading sequence problems, which mean that the drive shafts begin rotation in delayed sequence. 

This has an adverse effect on the condition of the open gears, usually by causing impact loading.  

 

Figure 50: Sample measurement from the Rack and Pinion during opening and closing 
phases 

Routine maintenance is required on the gear teeth. If the gear teeth are not kept lubricated 

at all times, wear and corrosion due to grinding of the rack and the pinion will occur. To monitor 

the condition and maintenance needs of the open gears and rack and pinions, accelerometers 

were installed at the base of the rack and pinion to monitor its vibrations (see Figure 50).  
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6.2.2. Field Tests with Artificially Induced Damages and Long Term Monitoring 

One of the primary objectives of this study is to collect data that serves toward 

establishing criteria for system –wide monitoring of a bridge population. In order to meet the 

objective, field tests were conducted to establish thresholds for conditions that are critical for the 

maintenance and operation of the bridge. These conditions are referred to as “damage”. In 

collaboration with FDOT engineers, some of the most common mechanical maintenance 

problems are identified and subsequently implemented on the movable bridge to simulate such 

damage conditions. These common damages are discussed individually through the following 

sections. 

6.2.2.1. Gearbox Oil Removal 

The gearbox, also called the transmission, uses gears to provide speed and torque 

conversion from a rotating power source to another device. The gearbox is equipped to provide 

the necessary amount of oil to the various gear meshes and bearings, thereby resulting in smooth 

and trouble free operation. The gearbox should be regularly checked for any leaks to see if the 

gearbox has adequate oil. In this project, the oil in the gearbox was partially removed to provide 

data corresponding to such an undesirable condition. Figure 51 shows the removal of the oil from 

the gearbox. Only 25% of the oil was removed, and the effect of the oil reduction was monitored 

by six accelerometers attached to the gearbox during a few openings of the bridge spans. 

6.2.2.2. Rack and Pinion Bolts Removal 

The rack and pinion system is located between the shaft and the open gear; therefore, it 

can be considered a transmission zone for opening and closing operation forces. As a result, it 
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should be free from defects to ensure safe operation of the bridge. Here, the removal of bolts was 

the simulated damage scenario, and the effect of the absence of these bolts was monitored by two 

horizontal accelerometers at north and south part of the rack and pinion. Figure 51 shows the 

Rack and Pinion with the removed bolts. 

 

Figure 51: Simulation of common critical maintenance issues on mechanical components 

 

The efficacy of the MPCA for anomaly detection of machinery components of movable 

bridges is explored in this section. In order to thoroughly evaluate the detectability of the MPCA 

algorithm, the data from both baseline (normal operation) and damaged (operation under 

significant maintenance issues) condition is required. The data from the baseline condition was 

collected during normal operation of mechanical components while the bridge was in opening 

phase. Regarding to the data from damaged condition, however, a comprehensive field test was 

designed and implemented.  For that reason, the common damage scenarios associated with 

critical mechanical components are identified and simulated (on the relevant components) using 

the feedback from the Florida Department of Transportation (FDOT) engineers as well as the 

maintenance personnel. For the gearbox, it has been decided to extract some of the oil while the 

representative maintenance issue for the rack and pinion was simulated by removing some of the 

Extracting the Oil from the Gearbox Removing the Bolts (Rack and Pinion)



102 
 

bolts from the north site. Having collected the required real-life data (under both baseline and 

damaged condition) next in order is to generate the matrices of raw data from each individual 

component (gearbox and rack and pinion).  

The data that was collected from each source (accelerometer) are inserted into individual 

column. As a consequence, the number of the columns for each matrix depends on the number of 

the sensors that was installed on the corresponding component. For instance, the matrix for the 

gearbox component includes four columns since there are four accelerometers installed. The 

MPCA algorithm is performed separately on each matrix to extract the covariance matrix and the 

relevant eigenvectors and damage indices. 

It should be also mentioned that, the field test was conducted on October 21, 2009 where 

the oil was extracted from the gearbox and the bolts were removed from the rack and pinion. 

Upon inducing the damage scenarios on gearbox and rack and pinion, the sample data sets were 

collected during the opening phase. Furthermore, the sample data sets for the baseline condition 

were selected from the data sets before and after October 21, 2009 when the bridge was 

functioning in a normal condition. The results are summarized in individual section as follow. 

6.3. Detection of Maintenance Issue in Gearbox (Extraction of Gearbox Oil) 

As explained earlier, one of the most common sources of damage to the gearbox is lack of 

oil. In light of this fact, 25% of oil was extracted from the gearbox at the Sunrise Boulevard 

Bridge in order to study the efficacy of the MPCA algorithm for anomaly detection. The damage 

indices calculated by the MPCA algorithm are presented in Figure 52. As it is obvious from the 

Figure, the damage indices are quite sensitive to the simulated damage. The underlying 
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distributions of individual damage indices, as shown in Figure 52, are learnt during the normal 

operation (baseline condition). Consequently, any significant variation from these baseline 

conditions is reported as damage or critical maintenance issue. 

 

Figure 52: The MPCA results for gearbox fault detection 

As it is observed from Figure 52, the calculated damage indices are confined within the 

established confidence interval prior to introducing the damage (extracting oil). However, once 

25% of the oil is extracted from the gearbox, the computed damage indices experience an abrupt 

jump which is observed in all indices in Figure 52.  

This reveals the importance of regularly checking the gearbox leakage and the oil level.  

In fact, any leakage in gearbox (that causes reduction in the oil level) induces additional 

vibration to the gearbox which might be resulted in major gearbox issue. 
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Once the extracted oil is replaced, the damage indices shift back to normal range. Lack of 

necessary amount of oil to gear meshes and bearings affect the smooth and trouble free operation 

of gearbox. Any malfunction in gearbox will directly influence the functionality of the motor and 

open gear will subsequently affect the entire bridge operation.  

Having calculated these damage indices in real-time, provides the opportunity for the 

bridge owner to timely detect and identify any possible abnormal behavior in gearbox. Being 

timely informed can save both time and money for the bridge owner. Considering the results that 

are observed in this section, the MPCA can be regarded as a reliable technique for gearbox 

condition monitoring. 

6.4. Detection of Maintenance Issue in Rack and Pinion (Removing bolts) 

Two bolts were removed from the north rack and pinion in order to simulate one of the 

most common maintenance issues (damages) associate with this critical component. The results 

for both damage indices are illustrated in Figure 53. It is realized that the first damage index for 

the rack and pinion exhibits an abrupt jump due to the damage, while there is not any significant 

variation in the second damage index.  

Therefore, the MPCA can also be considered as an effective and reliable technique for 

identifying the corresponding maintenance issues of rack and pinion. However, the authors 

realized that implementation of MPCA for long term monitoring of gearbox and rack and pinion 

still has a main practical issue which will be discussed in the next section. 
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Figure 53: The MPCA results for Rack and Pinion fault detection 

6.5. A Data Interpretation Framework for Long-term Maintenance Monitoring of 

Mechanical Components 

The application of MPCA algorithm for detecting the corresponding maintenance issues 

of gearbox and rack and pinion were discussed through the previous section. Although the 

damage indices have shown promising results in terms of being sensitive to abnormal behavior 

(maintenance issues), the application of MPCA for long term condition monitoring is still 

challenging.  

The size of a single data set that is collected from an opening phase (bridge opening) is 

16000 data points. Considering that there are approximately ten openings during a day, the size 

of the data matrix will be equal to 48 ×105 for one month data and eventually 576×105 over a 

year. For instance, the data that are utilized for this study is collected between November 10, 

2009 and May 3, 2013 which includes 5647 openings. This means the size of the matrix will be 

90352000 data points. Preforming the MPCA on such a matrix requires significant amount of 

time and also in some cases results in computational issues.  
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Therefore, in order to make the MPCA more efficient for long-term processing of the 

mechanical data, a modified version of this algorithm is proposed in this study. The performance 

of the proposed algorithm is verified taking advantage of long-term SHM data along with the 

corresponding maintenance actions. 

 In fact, after processing the SHM data with the algorithm and extracting the condition 

index for motor and gearbox, the next step is to study the condition index along with the 

maintenance actions which are separately reported by FDOT personnel. These maintenance 

actions are extracted from the maintenance logs which are submitted to FDOT by the 

maintenance personnel for the last 4 years.  

Through this, all the corresponding maintenance issues that have been occurred to the 

gearbox and motor (during the last 4 years) are identified and classified. Alternatively, the 

condition indices for the same component are derived utilizing the SHM vibration data which has 

been collected since 2009.  

The efficiency of the SHM system and the proposed method is then explored by 

performing a correlation study between the derived condition index and the extracted 

maintenance actions. In order to reduce the size of the matrix and at the same time keep the 

sensitivity of the condition index, four statistical features are selected and extracted from each 

data set which represents the vibration level of the corresponding components. The statistical 

features that are selected to extract from a data set are as follow: 

Note: Xi ={x1, x2… xn} is a data set collected during ith opening  

1. Average of the ten largest values of each data set.  

 



107 
 

             ∑    
  

    
( 16 ) 

 

Where Xd = {xd1, x d2… x dn} is the result of sorting Xi in descending order. 

 

2. Average of ten minimum values of each data set. 

 

             ∑    
  

    
( 17 ) 

 

Where Xa = {xa1, x a2… x an} is the result of sorting Xi in ascending order. 

 

3. Standard deviation of each data set. 
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4. Root mean square of each data set. 

 

          √  (             ) 
( 19 ) 

 

The framework (Figure 54) is divided into two individual sections so called training and 

monitoring phase. The sequential steps for the proposed framework are summarized in Figures 

54 and 55. Throughout the training phase, the algorithm learns the underlying distribution of 

damage indices under baseline condition. In fact, the main intention of the training phase is to 

establish the confidence intervals for individual components during the healthy condition.  
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Figure 54: The Steps involved in the proposed framework 

Once the underlying distributions are learnt, the subsequent phase is the monitoring 

section where any variations from the threshold are considered as change/damage. Therefore, 

each of the statistical features is inserted into an individual column and by that the matrix of data 

is generated. 

 Through the following section the performance of this framework is tested using the 

SHM data as well as the extracted maintenance actions. 
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Figure 55: The sequential steps for the proposed framework 
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derived condition indices for gearbox and motor are investigated along with the corresponding 

maintenance action.  

6.5.2. Correlation of the Damage Indices and the Gearbox Maintenance Actions 

Time history of the condition index is calculated according to the procedure explained in 

Figures 54 and 55. The results for the gearbox are shown in Figure 56 in which the time histories 

of statistical features are plotted along with the time histories of condition indices for each 

individual gearbox accelerometer.  

The idea is to investigate the correlation of condition index values and the maintenance 

actions extracted from the maintenance reports. It is realized that the variations observed in the 

index values are consistent with the critical maintenance actions that has been experienced by the 

gearbox component over the past 4 years. This indicates the fact that the condition indices which 

are derived through the proposed framework can be deployed as a reliable indicator for assessing 

the maintenance condition of the gearbox. Therefore, the variation in the values of the condition 

index is linked to a critical maintenance issues related to the gearbox which in turns used by 

bridge owner to take a timely appropriate maintenance action.  

In this study the SHM data sets that were collected between November 5, 2009 and 

January 5, 2010 is considered as training data sets (training phase). Hence, as the first step, the 

confidence interval is established for the training phase. In other words, the underlying 

distributions of the extracted condition indices are learnt for the training data sets (see Figure 

56).  
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Figure 56: The corresponding condition (damage) indices for gearbox component  
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The corresponding confidence intervals are plotted for each damage (condition) index in 

Figure 56. As observed from Figure 56, all the calculated damage indices demonstrate abnormal 

behavior between May 2, 2011 and March 5, 2012. 

Since the condition indices are conveying almost the same information and for the sake of 

brevity, the concentration is dedicated to the third index in Figure 56. As a result, the third 

condition index is displayed individually in Figure 57 along with the time histories of statistical 

features as well as the extracted critical maintenance actions.  

Despite the fact that the condition index values are confined within the confidence 

interval during the training period, the values have exceeded the threshold on January 13, 2010 

for the first time. The abnormal behavior continued for five days until January 18, 2010, when 

the condition values reverted to the normal condition (within the established confidence 

interval). The root cause of this behavior further investigated through the maintenance reports 

(logs), where it is realized that on January 18, 2010 the gear reducer break was replaced by 

FDOT maintenance personnel.  

As it is shown in Figure 57, the relevant maintenance actions for gearbox are listed in 

order of occurrence. An important issue that has to be pointed out is that the bridge maintenance 

personnel were not able to detect this issue until January 18, 2010, which was almost 5 days after 

the abnormal behavior in gearbox initiated. Alternatively, The SHM system was able to identify 

and detect this malfunction immediately after it occurred, which is big advantage. In fact, this 

malfunction could have been eventually led into a major operational issue for the movable 

bridge. This can highlight the importance of having SHM system for timely detection of critical 

issues, which can avoid the operational issues besides saving money and time. 
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Figure 57: The third gearbox condition index along with the time history of the statistical 
features and the corresponding critical maintenance actions  

After the gear reducer brake was replaced, the gearbox operated in a normal range until 

April 12, 2011, where the fluctuation is again observed in the condition index. Inspection of the 

maintenance reports reveals the fact that on May 2, 2011 the input shaft seal for the gearbox had 

been replaced.  

Indeed, the input shaft seal has experienced a major problem, which started on April 12, 

2011 and identified by FDOT maintenance personnel with almost two weeks delay on May 2, 

2011. Similar to the first issue, this could have been resulted in a major problem for the bridge. 

On the other hands, however, the functionality issue of the gearbox was detected without any 

delay by taking advantages of the proposed condition index. This is another evidence for the 
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efficiency of the SHM system along with the proposed data interpretation framework for 

tracking the condition of machinery components.  

Having replaced the input shaft seal for the gearbox, the index shifted back to baseline 

(normal) condition as it can be observed from Figure 57. Only after 6 weeks of normal operation, 

the condition index went again beyond the developed confidence interval started on June 17, 

2011. Having the maintenance reports analyzed for the Sunrise Blvd. Bridge, it is understood 

that the output shaft seal was replaced for the west gearbox on June 28, 2011. Similar to previous 

cases, this abnormal behavior was also identified by SHM system ten days ahead of FDOT 

maintenance personnel.  

Replacing the output shaft seal for the gearbox, the index changed back to the normal 

condition again. The gearbox did not experience any significant maintenance issues until 

September 21, 2011 where the electrical motor had an operational problem and caused a 

dramatic alteration in the value of the condition index. In fact, this time the problem was not due 

to the gearbox, but instead the motor which is connected directly to it had an operational issue. 

There are several notes in the report from September 21, 2011until September 27, 2011 related to 

the motor’s abnormal behavior.  

There were some serious problem associated with the motor including bearing and brake 

issues. As it is clearly noticed from Figure 13, these functionality issues in the motor led into 

operational problem in the gearbox during the same period. Based on the information from the 

maintenance logs, the motor was repaired on September 28, 2011. Finally on March 5, 2012 the 

gearbox brakes were replaced by new ones allowing the condition index to change back to the 

normal range.  
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After this point the gearbox operated in normal condition for more than one year (until 

June 15, 2013) and the index continued bounded within the confidence interval, meaning that 

there were not any critical issues related to the gearbox.  

6.5.3. Correlation of the Damage Indices and the Motor Maintenance Actions 

The second critical component of the movable bridge, which is studied here along with 

the relevant maintenance actions, is the electrical motor. This component is directly linked to the 

gearbox which in turn causes the close interaction. In order words, a malfunction issue in either 

of motor or gearbox can influence the performance of the other component.  

The corresponding damage indices calculated for motor are displayed in Figure 58. It is 

realized that both condition indices demonstrate some abnormal behavior between May 2, 2011 

and March 5, 2012 which is exactly in the same period that gearbox expressed some malfunction 

issues. This good consistency between the condition indices of motor and gearbox and their 

meaningful correlation with maintenance actions reveal the fact that the proposed condition 

assessment framework is a reliable one for long term performance monitoring of machinery 

components. 

The second damage index is selected to study along with the extracted information from 

the maintenance reports. The second condition index as well as the statistical features and a list 

of relevant maintenance actions (for motor) are presented in Figure 58. The variations in 

condition index have been interpreted through the maintenance actions extracted from the 

maintenance reports.  After investigating the maintenance reports, the variations of the condition 
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index were found to be very meaningful. The variation started around May 2, 2011 in which the 

gearbox started facing some operational issues.  

 

Figure 58: The motor condition index along with the time history of the statistical features 
and the corresponding critical maintenance actions  

This variation continued until September 28, 2011 when the motor was replaced due to 

major malfunction issues. Similar to gearbox case, all the abnormal behaviors were timely 

detected by SHM system. This can prove the efficiency of both SHM system and the proposed 

condition assessment framework. Therefore, considering both gearbox and motor, the established 

condition index can be used for condition assessment and in general fault detection of machinery 

components. 
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6.6. Concluding Remarks 

The machinery components are critical elements for the functionality of the movable 

bridges. As a consequence, the continuous condition assessment of these components is 

necessary. In this study the efficiency of implementing SHM system for tracking the condition of 

the components including gearbox, motor and rack and pinion has been explored. For the 

purpose, the Sunrise Blvd. Bridge has been selected and heavily instrumented with various types 

of sensors. Accordingly the data has been collected over the past 4 years from all the mechanical 

and structural components of the bridge.  

In addition to data sensing, the Moving Principal Component Analysis is employed for 

detecting any possible malfunction in the machinery components. In order to evaluate the 

application of MPCA for fault detection, some of the common and critical damage scenarios 

have selected taking advantages of the feedback from the FDOT engineers and maintenance 

personnel. 

 Therefore, the MPCA has been verified utilizing the data from both baseline (normal) 

and damage conditions. It has been shown that the MPCA is a reliable algorithm for detecting 

the abnormal behavior of the mechanical components. However, it is realized that the application 

of MPCA algorithm for large-size SHM data sets is very time consuming with respect to the size 

of the matrices. In light of the above-mentioned issue, the MPCA algorithm has been modified 

for long-term applications.  

The proposed data interpretation methodology has been evaluated along with the 

maintenance actions that were extracted from the maintenance reports (logs). The reports have 

been prepared and documented by the FDOT maintenance personnel for more than 4 years. The 
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maintenance reports have been investigated and the critical maintenance action have been 

extracted and classified for the corresponding mechanical components. The condition indices 

were interpreted through the critical maintenance actions in order to test the reliability of the 

indices. The condition indices were found very meaningful in terms of being consistent with the 

extracted maintenance actions for gearbox and electrical motor. 
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CHAPTER SEVEN: A HYBRID FRAMEWORK FOR LONG-TERM 

PERFORMANCE ASEESSMENT OF INFRASTRUCTURES 

7.1. Introduction 

The objective of this chapter is dedicated to propose and design a hybrid data 

interpretation framework for SHM data so that the extracted information can be employed in 

performance assessment. As such, the objective of the present study is to develop a hybrid data 

interpretation framework for automated performance monitoring of infrastructures that combines 

the benefits of both parametric and non-parametric approaches and mitigates their shortcomings. 

The proposed approach can then be employed not only to detect the damage but also to assess 

the identified abnormal behavior.  

Furthermore, another objective that is pursued in this study is to determine the number of 

sensors and their corresponding locations required to effectively monitor a potential 

infrastructure. In particular, the sensor network is optimized so that the collected information can 

be ultimately used in continuous performance assessment. The presented framework is 

categorized as a supervised classification approach wherein an algorithm is initially trained 

utilizing the data generated through Monte-Carlo simulation techniques and processed using 

Moving Principal Component Analysis (MPCA) to extract relevant features.  

Then, statistical learning methods are used to learn the underlying distributions of the 

features during a training phase and a decision rule is developed in a hypothesis testing 

framework. Once the training phase is completed, the live SHM data are analyzed and classified 

using MPCA and hypothesis testing, respectively, to identify the performance status of the 

structure. 
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The framework is evaluated through both analytical and experimental studies. An 

experimental structure (UCF-4Span Bridge) is employed along with an In-house developed Fiber 

Bragg grating (FBG) system for simulating the common damages and collecting the 

corresponding SHM data, respectively. The framework has shown promising results in terms of 

both designing the sensor network and also the continuous evaluation of the structural 

performance.  

The premise is that the continuously provided information can be exploited into the 

Performance–Based Engineering (PBE) framework to improve the knowledge and understanding 

of the structural performance levels.  

7.2. An Integrated (Hybrid) Framework for Automated Performance Monitoring 

The objective of this research is to develop a hybrid framework for continuous 

performance assessment of infrastructures through which the damages are not only detected but 

also effectively classified. The framework is termed hybrid since it is designed based on the 

integration of non-parametric (data-driven or model free) and parametric (model-based) 

approaches. The first step toward developing such an integrated framework is to study the 

structure in terms of the common damage scenarios.    

A comprehensive study is conducted to identify the most common and critical damage 

scenarios that a given structure is likely to undergo in the course of its lifetime. This can be 

accomplished through several different sources including engineering judgment, feedback from 

experts, long-term performance of that specific type of structure, etc. Once this initial task (step 

1) is carried out the following steps are followed to developing the hybrid framework.  
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7.3. The Procedure for Developing the Hybrid Framework 

7.3.1. Simulate the Performance of the Structure under the Selected Damage Scenarios 

and the Corresponding Uncertainties using a Monte-Carlo Simulation Technique 

The second major step is to conduct a Monte-Carlo simulation in order to simulate and 

predict the performance/responses of a given structure due to the occurrence of different damage 

scenarios. In addition, using Monte-Carlo simulation provides the opportunity to incorporate the 

uncertainty associated with the governing parameters (parameters which are affecting the desired 

responses of the structure) in the mathematical model of the structure and eventually in the 

predicted responses.  

Initially, a calibrated (parent) Finite Element Model (FEM) of the structure is generated 

for the baseline (healthy) condition through the FEM updating. Upon finding the calibrated FEM 

for the baseline condition, the selected damage scenarios are individually simulated in order to 

develop the calibrated (parent) FEMs for each individual scenario. Therefore, there would be a 

representative calibrated FEM for each structural condition (including baseline and damage 

conditions), as visualized in Figure 59.  

Lastly, based on the calibrated (parent) FEMs and the associated uncertainty of the 

governing parameters, a Monte-Carlo simulation is performed to produce offspring FEMs. The 

details of Figure 59 are discussed through the following subsections.   

7.3.1.1. Generating Offspring FEMs based on the Calibrated (Parent) FEMs 

In general, a wide range of computational algorithms that were developed based on the 

idea of repeated random sampling to reach numerical results are referred to as Monte-Carlo 
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methods or simulations. Some of the main applications of Monte-Carlo simulations include 

optimization, numerical integration and sampling from a probability distribution. In this study, 

the Monte-Carlo technique is employed for generation of samples from the uncertainty 

distribution associated to the sensitive parameters (Figure 59).  

 

Figure 59: Monte-Carlo simulation for generating offspring FEMs 

In other words, in order to construct an appropriate predictive model, thousands of 

offspring FEMs are generated from the probability distributions related to sensitive parameters 

utilizing the Monte-Carlo simulation. Having established the predictive model for each damage 

scenario, one can forecast the performance of the structure under a particular damage condition. 
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The number of offspring FEMs that is required for each calibrated (parent) model is derived 

from the following Equation: 

𝑃                 √(  𝑃 )  𝑃  
( 20 ) 

          Where Pf is the estimated probability of failure while n indicates the number of required 

simulations. In this study, a total of 10,000 offspring FEMs are generated from each parent FEM, 

which in turn results in a 0.01 probability of failure probability and 20% error. The generated 

offspring FEMs are analyzed under a simulated traffic load in order to compute the range of 

responses corresponding to each damage condition.  

7.3.1.2. Uncertainty Associated with the Sensitive Parameters 

Uncertainty plays an important role in engineering, particularly in reliability analysis. 

Based on the literature, the uncertainty has two main sources (although it may have several other 

sources) . The first one is so-called Aleatory Uncertainty and is associated with randomness; the 

second source is called Epistemic Uncertainty and is due to lack of information because of the 

data or the mathematical model. The effect of the second source can be reduced by improving 

knowledge in terms of measurements and modeling. In this study, the uncertainties associated 

with material properties, section properties and traffic load factor are considered in order to 

generate offspring FEMs (Figure 59).  

7.3.2. Extracting the Performance Sensitive Features 

Having developed and analyzed the offspring FEMs under the simulated traffic load, the 

responses are stored in individual matrices called matrices of raw data.  Having 10,000 offspring 



124 
 

FEMs for each damage condition will eventually result in generating 10,000 matrices of raw 

data, as illustrated in Figure 60. These matrices are then processed using advanced statistical 

analysis methods in order to derive the damage sensitive indices as discussed in the following 

section. 

7.3.2.1. Moving Principal Component Analysis (MPCA) 

Monitoring of complex infrastructure over a long time will result in multi modal massive 

amounts of data. As a consequence, effective statistical methods are applied to extract the 

information from the collected massive data. Principal Component Analysis (PCA) is one of the 

most effective dimensionality reduction techniques that can significantly reduce the dimension of 

the data while retaining the informative part of the measurements.  

For this study, the MPCA algorithm is employed (based on the great potential that it has 

shown for SHM applications) for processing the data and extracting the performance features, 

which are subsequently used to classify the damages.  The application of MPCA in this study is 

outlined in the following steps and illustrated in Figure 60. The subsequent steps provide details 

about developing the matrices of raw data and calculating the damage indices as illustrated in 

Figure 60.  

i. Generate the matrices of raw data by assigning the time history of the measurements 

from each variable (sensor) to individual columns, as illustrated in Figure 2. It should 

be also noted that each matrix contains data from a baseline as well as a corresponding 

damage scenario, i.e., the data consists of history before and after a given damage 

scenario.  

ii. The notations that are used in Figure 60 are: 
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iii.     : Matrix of raw data corresponding to damage Di.  

iv.      ( ) : Measurement of sensor S under condition Di at time t. 

v.             : Refers to the sensor index where Ns is the total number of sensors. 

vi.              : Performance condition of the structure (B refers to the baseline 

condition while Di represents damage scenario i). 

vii.    (  ) is the matrix with rows     ( )               

viii.   : Total number of sensors installed on the structure. 

ix.   : The total number of the measurements/ observations from a sensor under a 

baseline and a given damage condition. 

x.   : The size of the fixed-window whose exact role will be explained later.  

xi.                 : Time Step. 

xii. Since the matrices of raw data may include different physical variables which are 

collected with different types of sensors (strain gauge, accelerometer, microphone and etc.), the 

variables have to be scaled before implementation. In this study the data was scaled in such way 

that all the variables have zero mean and unit variance. 

xiii. Selecting the size of the moving window (Nw) is a key parameter for performing 

MPCA. There is a fundamental tradeoff associated with the choice of the size of the window 

since it should be selected large enough so that it is not influenced by periodicity in data, but also 

small enough in order to timely detect any abnormal behavior. 
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xiv. Computing the covariance matrix Ck and subsequently the corresponding 

eigenvectors and eigenvalues for kth time steps (data within the kth moving window) using the 

following equations (Figure 60). 

   ∑    (  )    (  )      (  )    (  )    
    

( 21 ) 

 

 

Figure 60: Matrices of raw data and the procedure for conducting MPCA 

xii. Extracting the eigenvectors (  ) and eigenvalues (  ) of the covariance matrix as 

shown in Figure 2 and Equation 22. 
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(      )     
( 22 ) 

 

7.3.2.2. Damage Indices 

The first objective of SHM is to timely detect and identify abnormal behavior so that 

catastrophic failure can be avoided. In order to achieve such an objective, we have to select 

sensitive damage indices that reflect the corresponding malfunctions.  

 

Figure 61: The procedure for deriving the damage indices 
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61, are restored individually and introduced as the damage indices. These damage indices are 

derived based on Equation 23. 

𝐷   𝑔           (𝑘)  (   )    
( 23 ) 

Where                refers to the number of the simulation (offspring) while 𝑘               indicates the time step. 

7.3.2.3. Performance Sensitive Features 

The second major objective of SHM, after detecting damage, is to be able to evaluate and 

assess the damage.  Thus, a feature that is sensitive to the performance of the structure is 

demanded. Therefore, after deriving the damage indices, the subsequent step is to extract 

performance-sensitive features that can intuitively reflect the performance level of the structure. 

Knowing the performance condition of the structure can be of significant value for infrastructure 

owners as they can take an appropriate action according to different states of structural 

performance.  

Herein, the performance-sensitive features are considered as the separation of the 

extracted damage indices due to experiencing different damage conditions. These features are 

derived through the following Equation. 

  ( )   

∑ 𝐷   𝑔          (𝑘)                ∑ 𝐷   𝑔          (𝑘)                    

( 24 ) 
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The intuition is that different types and levels of damages induce different levels of 

separation in the damage indices, and as a result this can be a potential feature to classify the 

damage.   

7.3.3. Learning the Distributions of the Performance-Sensitive Features 

Once the corresponding performance-sensitive features are extracted for each individual 

damage level (scenarios) using Equation 24, the following step is to learn the underlying 

distributions. In fact, by learning the underlying distributions for individual scenarios, the 

framework can be used to predict and classify the new incoming features into the relevant 

categories and accordingly identify the current performance status of the structure. While there 

are various statistical learning techniques available, hypothesis testing is used in this study to 

classify the features.  

For completeness, we briefly describe the main problem of binary hypothesis testing. The 

goal is to decide between two hypotheses, H0 (termed the null hypothesis), and H1 (the 

alternative hypothesis). Given an observation X, the goal is to decide which of the two 

hypotheses has occurred, as shown in Equation 25. 

{      (     )       (     ) 
( 25 ) 

 

Where m0 and K0 are the mean and covariance matrix under the null hypothesis H0, 

respectively, and m1 and k1 denote the mean and covariance under H1. In other words, under 

hypothesis Hi, i  {0,1}, the observation X has a Gaussian distribution with mean mi and 
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covariance matrix Ki. The optimal decision rule is to compare a sufficient statistic to a threshold 

as shown in (Equation 26). 

 ( )         
( 26 ) 

 

If the sufficient statistic S(X) exceeds the threshold t, we decide in favor of H1, otherwise 

we choose H0.  For the Gaussian binary hypothesis testing problem in (Equation 25), the 

sufficient statistic is given by: 

 ( )      (         )    (             ) 
( 27 ) 

 

The threshold t is given by: 

    [                      (|  ||  |)] 
( 28 ) 

 

Where |K| denotes the determinant of the matrix K. Thus, Equation 26 is a decision 

criterion with which one can decide whether the observation belongs to hypothesis H0 or H1. 

Furthermore, the Receiver Operating Characteristic (ROC) curves are used to evaluate the 

performance of the decision rule. The ROC curves present the fraction of true positive out of 

positives (TPR= true positive rate) against the fraction of false positive out of negatives (FPR= 

false positive rate) at various threshold settings (Equation 26 through Equation 28).  

In this study, the X (observation) is the extracted feature obtained from Equation 24 while 

m0 and K0 are the corresponding mean and covariance matrix. The objective is to first extract the 
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feature from the live SHM data (using MPCA) and with the hypothesis testing decide between 

H0 (the structure is in baseline condition and maintenance action is not required), and H1 ( the 

structure is experiencing damage type i and consequently the corresponding maintenance action 

has to be taken). 

7.4. The Proposed Hybrid Algorithm 

Based on the aforementioned procedures, the proposed hybrid algorithm is summarized in 

Figure 62. As mentioned earlier, the goal of the designed algorithm is to first detect the damage 

and then to classify the damage. 

 In addition, using the proposed algorithm, one is able to also identify the optimal sensor 

configuration for the structure. In fact, the hybrid framework enables the designer to identify the 

minimum number of sensors to be installed on the structure so that the damage can be quickly 

detected and efficiently classified. 

7.4.1. Identifying the Optimized Network of Sensor  

As shown in Figure 62, the second phase of the hybrid algorithm is dedicated to design 

the network of sensors. Basically, the second phase is a try and error process whereby the 

locations and the  number of required sensors are identified. It should be also noted that since the 

MPCA algorithm is fundamentally a multivariate technique, the minimum number of required 

sensors is two. Furthermore, it has to be pointed out that prior to design the network of sensors, 

the candidate locations (Nloc) have to be determined. In fact, the critical locations of the 

structures (based on the type of the structure) have to be identified and chosen as candidate 
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locations for installing the sensors. Given NS sensors and Nloc locations, the total number of 

candidate configurations is given by  

   (      )  (    ) (       ) (  )  ( 29 ) 

 

Therefore, for the first try the number of sensor (Ns) is equal to 2. For instance if the 

number of candidate locations (critical locations of the structure) is 10 then the possible number 

of configurations would be equal to 45. These networks are compared against each other based 

on the ROC curve. A better ROC curve means a better tradeoff between the probability of 

detection and the probability of false alarm. 

 In fact, if a given configuration results in a perfect ROC curve then we stop the search 

and select this configuration. However, if the performance can be further improved, then we 

increase Ns and the search process continues.  This procedure is illustrated through the second 

phase of the algorithm in Figure 62. Having identified the optimized network, the matrices of 

raw data are generated and the underlying distributions of features are learnt (due to different 

damages) through the Monte-Carlo simulation which was described earlier.  

Finally, in phase III we process the live SHM data and extract the features needed to 

classify the damage using hypothesis testing and the underlying distributions. This phase is 

conducted in real-time and the owner can be updated regarding the real-time performance of the 

infrastructure. Furthermore, in the case of damage, the relevant maintenance action is taken with 

the minimum possible delay.   
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Figure 62: The proposed hybrid framework for continuous performance monitoring of 
civil infrastructure 
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7.5. Evaluation of the Proposed Approach through Comparison of the Experimental 

and Analytical Studies 

7.5.1. Implemented Damage Scenarios 

There are four damage scenarios that are considered for this study. Two cases (cases 1 

and 2) are devoted to global type of damage by shifting from pinned to fixed or roller conditions 

or vice versa. Missing bolts and section stiffness reductions are also cases observed in existing 

bridges. The last two damage cases (Case 3 and case 4) are designed to simulate a mixed issue, 

namely the loss of connectivity between the girder and the deck as well as boundary deficiencies. 

The damage scenarios implemented in this study are demonstrated in Figure 63. 

 

Figure 63: Implemented damage scenarios for 4-Span Bridge 
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7.5.2. Demonstration of the proposed hybrid framework 

In this section, first the optimization of the network (Phase II of Figure 62) using the 

hybrid algorithm is demonstrated. Afterward, the efficiency of the algorithm in terms of 

assessing the performance of the structure is verified utilizing the SHM data collected from the 

4-Span Bridge. Hence, the algorithm is implemented to design an optimized network of sensors 

for the 4-Span Bridge whereby the damages can be detected and effectively classified. 

Thus, the first step (Phase I) as described in Figure 62 is to identify the critical damage 

scenarios associated with a given structure. The 4-Span Bridge is representative of a mid-span 

bridge and the corresponding critical damages were demonstrated in Figure 63. Before starting 

the try and error process of phase II to design the optimized network configuration, the candidate 

locations or critical regions of the structure (Nloc) are identified based on the positions and types 

of the implemented damage scenarios.  

These candidate locations are the potential locations for installing the sensors. It should be 

also highlighted that optimizing the network in terms of locations and number of sensors will 

have a significant impact on the budget of the SHM project, in particular when it comes to large 

size civil infrastructures. With respect to the 4-Span Bridge, ten individual sections were initially 

selected as candidate positions to mount the FBG sensors shown in Table 2 (chapter 5).  

Having selected the candidate locations, the objective is now to decide the minimum 

number of sensors that should be distributed over those locations so that the predefined 

objectives are met. The initial value for Ns (phase II of Figure 4) is 2 and as a consequence the 

number of possible network configurations is 45.  
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In order to pinpoint the optimized network (out of the 45 possible arrangements), one 

should identify which of the arrangements provides the most informative data to detect and 

classify the different abnormal behaviors. The designer requires a criterion whereby all the 

networks can be compared against each other and subsequently adopt the optimized 

configuration.  

The benchmark which is utilized for this study is the ROC curve. An ROC curve is an 

efficient tool to visualize and assess the performance of a decision rule as it shows the tradeoff 

between the probability of detection and the probability of false alarm. If the ROC curves 

corresponding to different pairs of damage scenarios can be significantly improved, we increase 

the number of sensors and the process is repeated.  

Herein, in order to visualize the consequences associated with miscalculation of sensor 

network design, three different types of designs are reviewed. The designs are categorized in 

three levels including unacceptable, poor or unsatisfactory and finally optimized. The first design 

that is being discussed here is an unacceptable design for the sensor network. This design, which 

is depicted in Figure 64, includes two sensors at locations 1 and 4. Additionally, the ROC curves 

corresponding to testing damage case 2 against 3 for all 45 networks are presented. As shown, 

the ROC curve for this design is fairly close to the 45 degree line indicating that this arrangement 

(locations 1 and 4) is unacceptable as it leads to an unfavorable tradeoff between the probability 

of detection and the probability of false alarm.  

As it is also realized from Figure 64, the underlying distributions of the extracted 

performance-sensitive features for cases 2, 3 and 4 are almost indistinguishable, which leads to 

unfavorable tradeoff curves. However, the corresponding distribution of case 1 is still well 
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separated from other distributions. This is due to the fact that the level of induced damage in case 

1 is much lower than the damage induced in cases 2, 3 and 4. 

 

Figure 64: Unacceptable design of sensor network for the 4-Span Bridge 

As shown in Figure 64 (right), the underlying distributions of the first and second 

performance-sensitive features for cases 2, 3 and 4 (shown in green, black and red, respectively) 
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is almost diagonal as shown in Figure 64. The inseparability of the distributions is further shown 

in the zoomed plots (shown in yellow) in Figure 64 (right). 

The second type of design is the one that is labeled as poor or unsatisfactory. The layouts 

as well as the related outcomes are shown in Figure 65. This design (one senor at location 3 and 

the other at location 7) is preferred over the first one (unacceptable type) because of having a 

better tradeoff curve, i.e., higher probability of detection for the same probability of false alarm. 
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distinguishable in comparison to cases 2 and 3. This indicates that there is a significant risk of 

misclassification between cases 2 and 3 while the chance of misclassification is negligible when 

considering case 1 against case 4. Hence, it is concluded that while changing the arrangement of 

the sensors from the previous configuration could indeed lead to an improved tradeoff curve, it is 

still hard to distinguish between the underlying distributions of features for cases 2 and 3. The 

underlying distributions of the first and second performance-sensitive features for cases 1, 2, 3 

and 4 are shown in Figure 65 in blue, green, black and red, respectively. The zoomed plots 

(highlighted in yellow) illustrate the corresponding distributions for cases 2 and 3. It is clear that 

it is quite impossible to distinguish between the distributions of the second feature for cases 2 

and 3 while there is minor difference with respect to the distributions of the first feature.  

 

Figure 65: Poor or unsatisfactory design of sensor network for the 4-Span Bridge 
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curve, which demonstrates a favorable tradeoff between the detection and the false alarm 

probabilities. In this design, as shown in Figure 66, the underlying distributions of both features 

for cases 1, 2, 3 and 4 are well separated, which results in an almost perfect ROC curve. After 

discussing different examples of sensor network design, throughout the following sections, the 

ROC curves are studied with respect to their performance in classifying different binary 

combinations of the implemented damage scenarios. 

 

Figure 66: Optimized design of sensor network for the 4-Span Bridge 
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configurations (45 arrangements) are acceptable because the associated probabilities of false 

alarm are insignificant. This can be also realized from column A in Table 4. 

7.5.2.2. ROC curves for case 2 versus case 4 

There are 17 individual configurations (17 out of 45) that can be implemented for 

detecting and differentiating between case 2 and case 4 (Figure 67). Column C in Table 4 shows 

the appropriate designs for this case. 

7.5.2.3. ROC curves for case 3 versus case 4 

Finally, there are 12 configurations, out of 45 possible designs, that are acceptable with 

respect to case 3 and case 4. These configurations are presented in Table 4 and column D. The 

difference of case 3 and 4 is in the number of the removed bolts where 4 bolts are removed for 

case 3 and 6 bolts for case 4. 

7.5.3. Phase II: Optimized network of senor for the 4-Span Bridge 

In previous sections the optimized networks of sensors were discussed for different binary 

combinations of damage scenarios. However, since the objective is to design a reliable network 

of sensors and a decision rule to distinguish among all damage scenarios, the selected sensor 

network should have a reliable performance in terms of all binary combinations of the 

implemented damages. In other words, the optimized network would be the one, which is 

common among all binary combinations in Table 4. 

 As concluded from Table 4, with respect to the 4-Span Bridge, there is only one 

optimized design or configuration (utilizing two sensors) that can meet this criterion.  
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Table 4: Performance of individual design of sensor networks with respect to different 
binary combinations of damage scenarios 

NID: Network ID 

NC: Network Configuration 

A: Performance of network with respect 

to case 1 against all other cases 

B: Performance of network with respect 

to case 2 against 3 

C: Performance of network with respect 

to case 2 against 4 

D: Performance of network with respect 

to case 3 against 4 

Configuration (a1, a2) indicates that one 

sensor is installed at location a1 while 

the second one is installed at location a2 

 

 

 

NID NC A B C D NID NC A B C D 

1 (1-2)  × × × 24 (3-10)  × × × 

2 (1-3)  × × × 25 (4-5)  × × × 

3 (1-4)  × × × 26 (4-6)  × × × 

4 (1-5)  × × × 27 (4-7)  × ×  

5 (1-6)  × × × 28 (4-8)  × × × 

6 (1-7)  ×   29 (4-9)  × × × 

7 (1-8)  × × × 30 (4-10)  × × × 

8 (1-9)  × × × 31 (5-6)  × × × 

9 (1-10)  × × × 32 (5-7)  ×   

10 (2-3)  × ×  33 (5-8)    × 

11 (2-4)  ×   34 (5-9)  × × × 

12 (2-5)  ×   35 (5-10)  × × × 

13 (2-6)  ×   36 (6-7)  ×   

14 (2-7)  ×   37 (6-8)    × 

15 (2-8)     38 (6-9)  × × × 

16 (2-9)  ×   39 (6-10)  × × × 

17 (2-10)  × × × 40 (7-8)  × × × 

18 (3-4)  ×  × 41 (7-9)  ×   

19 (3-5)  ×  × 42 (7-10)  × × × 

20 (3-6)  ×  × 43 (8-9)  × × × 

21 (3-7)  ×  × 44 (8-10)  × × × 

22 (3-8)    × 45 (9-10)  × × × 

23 (3-9)  × × × (2-8) is the optimized network of sensor 
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The optimized design is achieved by positioning the first sensor at location 2 and the 

second sensor at location 8, as highlighted in Table 4. Thus, this arrangement is the only 

available option for a designer to distribute two sensors over the bridge in such a way that not 

only the critical and common abnormal behaviors are detected but also those can be classified 

appropriately. Other configurations will inevitably result in misclassification and may result in 

taking inappropriate maintenance actions. It is worth noting that since a reliable configuration for 

the studied damage scenarios was obtained using two sensors, we no longer need to consider a 

larger number of sensors. 

 

Figure 67: The corresponding ROC curves for individual binary combinations of 
implemented damages 
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7.5.4. Phase III: Real-time Interpretation of SHM Data 

In the previous section (phase II of the algorithm) the optimized network configuration 

was designed. Implementing the optimized network and using the Monte-Carlo simulation, the 

underlying distributions of the performance-sensitive features under common damage scenarios 

are learnt. Once the distributions are learnt, new incoming live data can be effectively classified. 

Therefore, phase III is dedicated to real-time processing of the SHM data using statistical 

analysis and classifying the extracted features.  

Having classified the new incoming features, the current status of the structure is revealed 

and subsequently the corresponding maintenance action can be taken in real-time. The proposed 

methodology is categorized as a supervised classification algorithm in the sense that initially the 

underlying distributions are learnt using a simulation study (phase I and II), then the new 

extracted features from live SHM data are classified using a statistical decision rule.  

Therefore, for the training part (phase II and phase III), the FE model of the 4-span Bridge 

is utilized to simulate the selected damages. Monte-Carlo simulations are conducted to learn the 

responses of the 4-Span Bridge under common damages. In order to experimentally verify the 

proposed framework, in phase III an experimental study is designed and conducted to collect the 

SHM data from the 4-Span Bridge using the In-house developed FBG system. The data are 

captured under the same damage scenarios as were utilized in analytical phases I and II (training 

phase).  

Moreover, in order to be consistent with the training phase, the 4-Span Bridge is 

instrumented with all possible design scenarios for the sensor network (45 different 

arrangements). The SHM data collected under different damages scenarios is then used in the 



144 
 

monitoring phase (phase III) in order to be interpret and classify the damage. The outcomes of 

the classifier (hypothesis testing) are presented in Figure 68 for individual scenarios. The 

horizontal axis indicates different designs of the sensor network (which were also shown in 

Table 4) and the vertical axis represents different damage scenarios.  

It should be also noted that, the test was repeated 15 times for each configuration and 

damage scenario. However, since the outcomes of the classifier were very similar for all the 

repeated tests and also for visualization purpose, only the results corresponding to one of the test 

is presented in Figure 68. 

The top left plot in Figure 68, presents the outcomes of the classification when the SHM 

data are captured under the first damage scenarios. As evidenced by this plot, regardless of the 

implemented network, there is not any misclassification in outcomes. The fact that there is no 

misclassification in this case is due to the difference in the level of the damage induced in this 

case compared to other scenarios.  

As it was also shown in phase II (training phase), the underlying distribution of features 

extracted from this case is well separated from the ones associated with others cases, which 

ensures no misclassification. The experimental outcomes validate the analytical results presented 

in previous sections as both indicate negligible misclassification for case1. 

However, the optimized network (2, 8), which was selected through phase II, exhibits 

faultless performance in the sense that there are no associated misclassifications. This shows that 

using the proposed methodology we are able to detect and classify the common damages and 

also design an optimized network of sensors with a minimum probability of misclassification. 
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7.6. Concluding Remarks 

A hybrid framework is proposed in this study for continuous real-time performance 

assessment of a structure. The framework is hybrid in the sense that it integrates non-parametric 

and model-based data interpretation approaches. A supervised classification algorithm consisting 

of three phases, phase I (study phase), phase II (training phase) and finally phase III (monitoring 

phase) is proposed. During phase I, a comprehensive study is conducted on a given structure to 

decide the corresponding critical damage scenarios.  

Upon identifying the corresponding damages scenarios, an FE model of the structure is 

developed to predict the relevant performance of the structure using Monte-Carlo simulations 

(phase II) under these different scenarios. In addition to detecting and classifying the damage, 

another objective is to optimize the number of sensors and their locations. Moving Principal 

Component Analysis (MPCA) is implemented to process and extract the corresponding 

performance-sensitive features for individual damage scenarios. 

 Then, we learn the underlying distributions of the extracted features to design a classifier 

based on multi-hypothesis testing. Throughout the third phase (the monitoring phase) features 

are extracted from live SHM data and fed into this classifier. The real-time classification of these 

features determines the current performance condition of the structure, which potentially leads to 

appropriate maintenance actions. The efficiency of the proposed methodology is verified through 

an experimental study on a 4-Span Bridge and the in-house developed FBG system.  

The SHM data is generated under the same damage scenarios used in the analytical part, 

and fed into the third phase of the algorithm to study the classification performance of the 

proposed algorithm. The results are shown to be consistent with the results of the analytical 
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phase. The optimized sensor network configuration, which was designed through phase II, 

demonstrates perfect performance in terms for classifying the different damage scenarios. 
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CHAPTER EIGHT: CONCLUSIONS 

8.1. Introduction 

The main objective of this dissertation study is to investigate the utilization and efficiency 

of non-parametric data analysis methods for damage/change detection within the context of 

Structural Health Monitoring (SHM). In addition, a non-parametric data analysis method is 

extended in conjunction with a model-based method approach to alleviate some of the drawbacks 

of non-parametric data analysis methods. The main points covered in this study can be 

summarized as listed in the following:  

1. Systematic comparison of selective non-parametric damage detection algorithms 

(RRA, MPCA, MCCA and CCA) utilizing in-house developed FBG sensing system 

along with the data analysis performance criteria by using experimental data from 

simulated damage scenarios.   

2. Upon evaluation of the advantages and disadvantages of the selected algorithms, a 

new machine-learning based damage detection algorithm (MPCA-CCA) is designed 

and introduced in order to mitigate drawbacks associated with the existing algorithms. 

The efficiency of the proposed algorithm is subsequently evaluated and compared 

against the selected algorithms using both experimental and real-life SHM data. 

3. Movable structures are a new class of structures with large scale mechanical and 

electrical component. In this study, an investigation is conducted in order to study the 

efficiency of the non-parametric techniques for long-term maintenance monitoring of 

mechanical components of a movable structure.  
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4. Finally a hybrid data interpretation framework is designed by integrating the non-

parametric and parametric approaches for automated long-term performance 

assessment of structures and structural components. 

In this context, a systematic comparison study is conducted between some of the most 

efficient non-parametric damage detection algorithms including CCA, RRA, MCCA and MPCA. 

The comparative study is conducted based on performance criteria including, detectability, time 

to detection, effect of noise and the required size of window. A unique experimental structure is 

used to generate the SHM data under different damage scenarios. This unique four span bridge 

model is phenomenologically representative of common highway bridges in terms of its static 

and dynamic response as well as its structural components and characteristics such as the deck, 

girders, composite action, boundary conditions etc. A number of damage conditions are 

simulated on the bridge model based on the feedback from bridge engineers. SHM data 

generated under operating traffic loading on the bridge model are analyzed to evaluate the 

efficiency of selected algorithms for the purpose of bridge monitoring implementations. Sensors 

and data acquisition are important and integral part of SHM. For the laboratory studies, Fiber 

Bragg Grating (FBG) sensors and a fiber optic interrogator developed in-house are employed for 

the experimental studies. Non-parametric and improved methods are discussed in a comparative 

fashion using the FBG data that are obtained from the study summarized above. 

8.2. Conclusion 

A new machine-learning based algorithm is designed in such a way that it can reduce 

some of the drawbacks associated with the existing non-parametric methods. The algorithm is 

developed by integrating the MPCA and MCCA techniques. The proposed algorithm is 
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evaluated utilizing the SHM data under common critical damage scenarios from both 

experimental and real-life study. The algorithm (MPCA-CCA) is compared with RRA, MCCA 

and MPCA with respect to the critical criteria. It is observed that MPCA-CCA (newly proposed 

algorithm) has the best performance in terms of detectability while the RRA algorithm 

outperforms other techniques with respect to time to detection. The MPCA-CCA is influenced by 

noise less than RRA, MCCA and MPCA. Also, MCCA and MPCA have almost the same 

performance regarding detectability and time to detection. However, when it comes to 

computational time, the MPCA-CCA has the highest required computational time while the RRA 

has the minimum required time. The noise has the most adverse effect on the RRA algorithm 

while MPCA-CCA has the least. It is also observed that, the MCCA requires less data set in 

order to establish the baseline condition in comparison to the MPCA algorithm. 

As part of data analysis method evaluation, long-term SHM data from the Sunrise Bridge 

are used to further assess the performance of the newly developed algorithm. It is observed that 

while all the selected algorithm including RRA, MCCA, MPCA have failed to detect the 

common induced damages, MPCA-CCA algorithm could effectively detect all the critical 

damage scenarios. This emphasises the reliable performance of the newly designed algorithm 

(MPCA-CCA) for SHM applications. 

In addition to the algorithms that have been studied and developed for structural health 

monitoring, a framework is introduced in order to facilitate the long-term maintenance condition 

monitoring of critical mechanical component of a movable bridge. A maintenance condition 

index is defined for identifying and tracking the critical maintenance issues. The efficiency of the 

maintenance condition index is then investigated and demonstrated against some of the 
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corresponding maintenance problems that have been visually and independently identified for 

the bridge.  

It is realized that the developed condition index is reliable for detecting critical 

maintenance issues. It is also realized that the SHM system provides the opportunity to timely 

identify the abnormal behaviors which is very important for functionality of the movable bridge. 

Finally, a hybrid data interpretation framework is designed and introduced for more 

effective long-term performance assessment of structures. The proposed framework is hybrid in 

the sense that it combines the benefits of both parametric and non-parametric approaches and 

attempts to mitigate their shortcomings. The proposed approach can then be employed not only 

to detect the damage but also to assess the identified abnormal behavior. As a side benefit with 

this approach, it is possible to determine the number of sensors and their corresponding locations 

required to effectively monitor a structure. In particular, the sensor network is optimized so that 

the collected information can be ultimately used in performance-based assessment. 

The developed hybrid algorithm is a supervised classification algorithm consisting of 

three phases: Phase I (study phase), Phase II (training phase) and finally Phase III (monitoring 

phase). During Phase I, a comprehensive study is conducted on a given structure to decide the 

corresponding critical damage scenarios. Upon defining critical damages scenarios, FE models 

of the structure is developed to predict the relevant performance of the structure using Monte-

Carlo simulations (Phase II) corresponding to these different damage scenarios. In addition to 

detecting and classifying the damage, the number of sensors and their locations are also 

optimized. Using the FE models, Moving Principal Component Analysis (MPCA) is 
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implemented to process and extract the corresponding performance-sensitive features for 

individual damage scenarios. 

Consequently, the underlying distributions of the extracted features are established to 

design a classifier based on multi-hypothesis testing. Throughout the third phase (the monitoring 

phase), features are extracted from acquired SHM data and fed into this classifier. The real-time 

classification of these features determines the current performance condition of the structure, 

which potentially leads to appropriate maintenance actions as the non-parametric evaluation is 

linked to prior established damage conditions. The efficiency of the proposed methodology is 

verified with an experimental study on a 4-Span Bridge instrumented with in-house developed 

FBG system.  

The SHM data is generated under the same damage scenarios used in the analytical study, 

and fed into the third phase of the algorithm to study the classification performance of the 

proposed algorithm. The results are shown to be consistent with the results of the analytical 

phase. The optimized sensor network configuration, which was designed in Phase II, 

demonstrates perfect performance in terms of classifying the different damage scenarios. 

8.3. Recommendations 

The newly introduced machine-learning-based algorithm (MPCA-CCA) is tested using 

both experimental and real-life SHM data; however, one immediate need for future research is to 

explore the efficiency of the algorithm in the presence of real life environmental effects. 

Although it can be expected that the additional correlation analysis on the time series of the 

eigenvectors can detect the abnormal behavior even in the presence of temperature effects, it 
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would have been an important to scientifically study such an influence. In addition, the new 

algorithm can be investigated for other types of infrastructure including pipeline, buildings, 

tunnel etc. 

Moreover, the efficiency of the method can be improved by exploring the new 

nonparametric techniques to extract the damage indices as well as performance-sensitive 

features. Besides, nonlinear classification techniques can be implemented for classifying the 

extracted performance sensitive features in the case that the boundaries between feature clusters 

are not linearly separated. 
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