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ABSTRACT 

Safety performance functions (SPFs) are essential in road safety since they are used to predict 

crash frequencies. They are commonly applied for detecting hot spots in network screening and 

assessing whether road safety countermeasures are effective. In the Highway Safety Manual 

(HSM), SPFs are provided for several crash classifications for several types of roadway 

facilities. The SPFs of the HSM are developed using data from multiple states. In regions where 

jurisdiction specific SPFs are not available, it is custom to adopt nationwide SPFs for crash 

predictions then apply a calibration factor. Yet, the research is limited regarding the application 

of national SPFs for local jurisdictions. In this study, the topic of transferability is explored by 

examining rural multilane highway SPFs from Florida, Ohio, and California. That is for both 

divided segments and intersections. Traffic, road geometrics and crash data from the three states 

are collected to develop one-state, two-state and three-state SPFs. The SPFs are negative 

binomial models taking the form of those of the HSM. Evaluation of the transferability of models 

is undertaken by calculating a measure known as the transfer index. It is used to explain which 

SPFs may be transferred tolerably to other jurisdictions. According to the results, the 

transferability of rural divided segments’ SPFs of Florida to California and vice versa is superior 

to that of Ohio’s SPFs. For four-leg signalized intersections, neither state’s models are 

transferable to any state. Also, the transfer index indicates improved transferability when using 

pooled data from multiple states. Furthermore, a modified version of the Empirical Bayes 

method that is responsible for segment specific adjustment factors is proposed as an alternative 

to the HSM calibration method. It is used to adjust crash frequencies predicted by the SPFs being 

transferred to the jurisdiction of interest. The modified method, proposed, outperforms the HSM 

calibration method as per the analysis results.  
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CHAPTER 1: INTRODUCTION 

As per the Local and Rural Road Safety Program of the Federal Highway Administration 

(FHWA), in 2012, almost half of the fatal crashes in the US were on rural roads. Therefore, 

safety on rural roads is a crucial area in improving traffic safety. Safety performance functions 

(SPF) form a critical part of road safety improvement. Safety analysis need not necessarily be 

undertaken by applying SPFs. Other statistical methods such as the logistic regression approach 

for estimating crash risk (Pande and Abdel-Aty, 2009), matched case-control methods that 

require crash versus non-crash cases for identifying crash patterns (Jovanis and Gross, 2007), 

regression tree analysis for identifying the critical contributing factors to crashes and ordered 

probit models that are used to examine factors that contribute to severities of crashes (Abdel-Aty 

and Keller, 2005) are applied in traffic safety research. Driving simulator (Yan et al., 2008) and 

crash worthiness (Huang et al., 2011) studies have also contributed to the traffic safety literature. 

Crash worthiness is the potential for the victims of a crash not to be severely injured and recover 

as quickly as possible. In this context, the focus of the study is on SPFs. They are used to predict 

crash counts and identify hot spots on the road network typically for a forecast year. The SPFs 

may be implemented for prediction of the frequencies of crashes of any type or severity level. 

The crashes may be multi-vehicle (MV) crashes, head-on crashes, sideswipe crashes, rear-end 

crashes, left-turn crashes, angle crashes, pedestrian crashes, single-vehicle crashes (SV), bicycle 

crashes, animal crashes or any other type of crashes. The severity levels are: fatal (K), 

incapacitating injury (A), non-incapacitating injury (B), possible injury (C) and property damage 

only (O). The SPFs are developed by using the crash frequency, of the crash classification under 

study, as the dependent variable while modeling the traffic flow and roadway geometric features 

as independent variables. Ordinary linear regression models are problematic since crash counts 
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are not continuous and cannot be negative (Miaou and Lum, 1993; Miaou, 1994; Kim et al., 

2005; Garber and Wu, 2001). Generalized linear regression models (GLM) were applied lately 

(Sawalha and Sayed, 2006; Taylor et al., 2002; Harnen et al., 2004; Donnell and Mason, 2006). 

For instance, Ackaah and Salifu (2011) modeled crash frequencies on two lane roads in the 

Ashanti region of Ghana by means of the GLM. Poisson and Negative Binomial (NB) models are 

more appropriate mathematically since they account for the fact that crash frequencies are 

discrete. Yet, the mean and the variance of crash frequencies are typically unequal, a violation of 

the basic assumptions of the Poisson model. The variance, in most cases is greater than the mean, 

a condition known as overdispersion. Instead, in the current road safety literature, NB SPFs are 

fitted since the NB model accommodates the overdispersion (Miaou and Lum, 1993; Miaou, 

1994; Harnen et al., 2004; Lord et al., 2005).  

Negative Binomial SPFs are provided by the Highway Safety Manual (HSM) for several types of 

roadway facilities. Typically, the HSM’s SPFs are for base conditions pertaining to specific 

roadway characteristics. For divided rural multilane highway segments, the base conditions are: 

 12 ft lanes 

 8 ft shoulders 

 30 ft medians 

 No street lighting 

 No automated speed enforcement  

The SPFs for rural divided multilane highway segments in the HSM are developed based on 

crash data from California and Texas (Lord et al., 2008). Specifically, both state’s data are 

pooled and negative binomial SPFs are developed based on the combined data. In addition, four-
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leg signalized intersection SPFs are estimated based on data from Minnesota. Furthermore, 

development of separate SPFs for four-leg signalized intersections is undertaken by employing 

data from California. Based on the key findings and the research team’s judgement, the 

recommended four-leg signalized intersection SPFs provided in the HSM are the estimated ones 

of Minnesota (Lord et al., 2008). Therefore, as part of this study, the effect of pooling data from 

more than one state on the transferability of SPFs is examined. It should be noted that base 

conditions for four-leg signalized intersections are not defined in the current HSM as of now. It 

is common practice that if jurisdiction specific SPFs are unavailable, the national SPFs provided 

by the HSM are applied. Since roadway facilities in the jurisdiction of interest do not necessarily 

satisfy the HSM base conditions, crash modification factors (CMFs), also provided in the HSM, 

are used to adjust crash predictions accordingly but that is a topic beyond the scope of this study. 

The HSM’s SPFs are then multiplied by calibration factors when applied to the jurisdiction of 

interest. The calibration factor is calculated as the ratio of the total observed crashes in all sites, 

whether segments or intersections, to the total predicted crashes in all sites. Thus, the calculated 

ratio is an aggregate factor. The multiplication of the predicted number of crashes by the 

calibration factor can be interpreted as adjusting the constant term of the SPF. The HSM’s SPFs 

are applied to rural divided multilane highway segments and four-leg signalized intersections in 

several US states and in other nations. The observed crash frequencies are compared with those 

predicted by the HSM’s SPFs to assess the SPFs’ prediction accuracies. In addition, in some 

regions, jurisdiction specific SPFs are developed. They are compared with the HSM’s SPFs.  

This study contributes to the research on SPF transferability. Precisely, jurisdiction specific SPFs 

of Florida (FL), Ohio (OH) and California (CA) are estimated and applied to each state. The 

accuracies of the SPF predictions are assessed. Furthermore, data from multiple states are pooled 
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and joint SPFs are developed. The joint SPFs are also applied to each state. That is to assess the 

effect of pooling the data from multiple states on transferability. In this study, the pooling of data 

from two states and three states for SPF estimation is considered. The SPFs are compared using a 

measure called the transfer index. In addition, a more disaggregate adjustment method is 

proposed to be used for correcting crash predictions of SPFs being transferred to the jurisdiction 

of interest. The HSM calibration method and the proposed one are compared in this study. 

 

1.1 Objectives 

 The aim of this study is to assess whether Florida, Ohio and California’s SPFs, taking the 

form of those of the HSM, are transferable among each state for both rural divided 

multilane highway segments and four-leg signalized intersections. The SPFs are for total 

(KABCO), KABC, KAB, KA, SV and MV crashes. The assessment is conducted for 

average conditions, in which none of the variables is controlled. Furthermore, the 

assessment is undertaken for proposed modified versions of the HSM base conditions to 

examine the influence of controlling for variables on SPF transferability.  

 Another objective is to investigate the impact of developing SPFs from pooled data of 

multiple states on the transferability of SPFs. 

 The third objective is to assess the performance of the proposed modified Empirical 

Bayes Method relative to that of the HSM calibration factor method in terms of 

correcting the crash predictions.   

In the following chapters, previous studies about SPF transferability, this study’s data 

preparation, research methodology, analysis results interpretations, conclusions, key findings 

and suggestions for future work on SPF transferability assessment are discussed.  
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CHAPTER 2: LITERATURE REVIEW 

In road safety literature, investigating the transferability of SPFs is a topic which is researched to 

a limited extent. Typically, the HSM’s SPFs are applied to a specific jurisdiction and the 

calibration factors are calculated. Not in all of the previous studies jurisdiction specific SPFs are 

developed based on local data. The jurisdiction specific SPFs are compared with the HSM’s 

SPFs that are multiplied by the calibration factors. This analysis approach has been the norm for 

studies of rural divided multilane highway segments, four-leg signalized intersections and other 

types of roadway facilities in Missouri, North Carolina, Oregon, Alabama, Regina, 

Saskatchewan, Canada and Toronto. This approach is also implemented abroad North America 

for the Messina-Catania region in Italy, Turin, Italy and Riyadh, Saudi Arabia. Another generic 

study was carried out to compare SPFs developed in the US with those of Sweden and New 

Zealand. 

Sun et al. (2014) collected data of total crashes from the years 2009 to 2011 from the 

Transportation Management System (TMS) of the Missouri Department of Transportation 

(DOT) and applied the HSM’s SPFs to rural divided multilane highway segments in Missouri. 

The HSM’s NB model that takes the following form is used to predict the number of crashes for 

every rural divided multilane highway segment. 

𝑁𝑆𝑃𝐹 = exp[𝐴 + 𝐵ln(𝐴𝐴𝐷𝑇) + ln(𝐿)]                                       (2.1) 
 

In the SPF shown, L is the segment length, which is an exposure measure. Also, A and B are 

regression coefficients. The model with only the average annual daily traffic (AADT) and 

segment length is simple but convenient for identifying hot spots (Salifu, 2004). Since the 

segments, sampled for the Missouri study, do not necessarily conform to the HSM base 
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conditions, the SPF being applied is multiplied by the HSM’s CMFs. The calibration factor is 

determined to be 0.98 indicating that the HSM’s SPF to a slight extent over-predicts frequencies 

of total crashes at rural divided multilane highway segments in Missouri. The study is also 

conducted for three and four-leg stop controlled intersections. According to the results, the 

calibration factors are less than 0.4 for both types of intersections. A possible explanation is that 

when the analysis is conducted, fewer than 100 crashes are observed for each intersection type 

causing more variability in the data. That is a direct violation to the HSM standards. 

Srinivasan and Carter (2011) carried out the same type of analysis for rural divided multilane 

highway segments in North Carolina on data of total crashes that are collected between 2004 and 

2008 from the Accident Analysis System of the North Carolina DOT. The HSM’s SPF 

calibration factor is calculated to be 0.97. The analysis is also conducted for 19 four-leg 

signalized intersections and the crash data collected are from the same crash years. The resulting 

calibration factor is 0.49 for the intersections. Therefore, the HSM’s SPF for four-leg signalized 

intersections over-predicts total crashes by 51%.  

Xie et al. (2011) predicted frequencies of total crashes for rural divided multilane highway 

segments and other types of roadway facilities in Oregon by processing crash data from the years 

2004 to 2006. According to the results of the analysis, the calibration factor for the divided 

segments is 0.78 after taking into consideration the HSM’s CMFs. That indicates that the total 

crashes in Oregon are to a considerable extent over-predicted by the nationwide HSM SPF. 

Variations in crash reporting thresholds are potential explanations. Since part of the data 

processed for development of rural multilane highway segments of the HSM are from California 

and Texas, these states’ reporting thresholds are different from that of Oregon. The crash 

reporting threshold of Oregon is $1,500 worth of property damage (Xie et al., 2011). That is 
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twice that of California, which is $750 (Xie et al., 2011), and 50% greater than that of Texas, 

which is $1,000 as per the Driver Safety and Laws policy of the Texas Department of 

Transportation. 

In Alabama, Mehta and Lou (2013), not only applied the HSM’s SPFs to the local jurisdiction 

but also compared the HSM’s SPFs’ performances with local SPFs for rural divided multilane 

highway segments. In the study, records of total crashes from 2006 to 2009 are used to develop 

local SPFs. The research team estimated a series of SPFs having different functional forms. In 

addition, the HSM’s SPFs are applied and multiplied by calibration factors after taking into 

consideration the CMFs also provided in the HSM. The local SPFs, estimated, are compared 

with those of the HSM that are multiplied by calibration factors when applied to a validation 

dataset of 2000 homogeneous segments. The mean absolute deviation (MAD), mean predicted 

bias (MPB), mean squared predicted error (MSPE), and Akaike’s information criterion (AIC) are 

used to compare the SPFs. The superior SPF is a local one similar to that of the HSM but with 

supplementary variables including the lane width, posted speed limit and a dummy variable that 

represents the crash year. The superior model also includes a coefficient for the segment length 

as opposed to the HSM’s SPF where the segment length is not associated with any coefficient. 

In another study by Young and Park (2012), HSM SPFs are calibrated for signalized and 

unsignalized intersections in Regina, Saskatchewan, Canada. The intersections include 143 

signalized intersections, 123 three-leg unsignalized intersections and 121 four-leg unsignalized 

intersections. The crash data are collected from the province’s government insurance records. 

Crash years are from 2005 to 2009. The geometric data are collected in the form of shapefiles 

accessible by means of ArcGIS software. From the crash data, 70% are used for estimation of 



8 
 

local SPFs while the remaining 30% are used for validation. The models are for total, KABC and 

property damage only crashes. The local SPFs take the following form: 

𝑁𝑆𝑃𝐹 = exp⁡(β0) × (𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟/1000)β1 × (𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟/1000)β2       (2.2) 

 

The terms AADTmajor and AADTminor are the major and minor road entering AADTs respectively. 

The local SPFs’ prediction accuracies are compared with those of the HSM’s SPFs and of the 

HSM’s SPFs multiplied by the calibration factors. In terms of MAD, MSPE and Freeman-

Tukey’s R2 measures, the local SPFs outperform those of the HSM. 

Other than the study in Regina, Saskatchewan, Canada, Hadayeghi et al. (2006) investigated the 

temporal transferability of SPFs of Toronto. That is, the authors studied whether the Toronto 

SPFs developed in 1996 are applicable for an extended period of time towards the year 2001 at a 

macroscopic level for every zone under study. The models are NB SPFs developed for total 

crashes, total crashes during the morning peak period, fatal and injury (FI) crashes, and FI 

crashes for the morning peak period. The variables used are: the natural logarithm of the vehicle-

kilometers traveled, sum of the road lengths in each zone in kilometers, number of households in 

thousands, number of employments in thousands, speed, volume to capacity ratio and density of 

intersections. An approach known as the Bayesian updating method is used to modify the 1996 

SPFs. The method is first proposed and applied by Atherton and Ben-Akiva (1976). It is used to 

update the variable coefficients of the 1996 Toronto models based on the 1996 variable 

coefficients, 1996 variable standard deviations, coefficients developed from data sampled in 

2001 and standard deviations of the coefficients developed from the data sampled in 2001. Also, 

the authors applied a calibration factor to facilitate the transferability of the unadjusted 1996 

models to 2001 as a separate part of the study. The factor is calculated as the ratio of the sum of 
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the observed crashes in 2001 to the sum of the crashes in 1996 that is predicted by the SPF 

developed from the 2001 data. The 1996 SPFs are multiplied by the calibration factors and the 

performances of SPF predictions are compared with those of the 1996 SPFs updated by the 

Bayesian method. The measures used for comparison are MPB, MAD and mean square error 

(MSE). According to the results, the calibration factor method outperforms the Bayesian 

updating method. In addition, the transfer index (Hadayeghi et al., 2006; Sikder et al., 2014) and 

the nested log-likelihood measures are applied to compare the 1996 and 2001 models’ log-

likelihoods. According to the results of the nested log-likelihood measure, the 1996 models are 

not transferable to 2001. Yet, the transfer index results indicate that the 1996 SPF for FI crashes 

and FI crashes during the morning peak account for more than 50% of the variability in severe 

crash patterns in 2001. That is most likely because the vehicle-kilometers traveled and the 

demographic factors for both 1996 and 2001 are not significantly different as per results of the t-

test conducted in the study.  

In another study conducted in Toronto, Canada, Persaud et al. (2002) estimated SPFs for urban 

three-leg and four-leg intersections. The intersections are signalized and unsignalized 

intersections. The SPFs are NB models developed for total, injury and property damage only 

crashes using crash data from the years 1990 to 1995. Several functional forms of the SPFs are 

applied. One includes the natural logarithm of the major road AADT, the natural logarithm of the 

minor road AADT and the major road AADT without any transformation as variables. Another 

is similar in form but instead of having the third variable as the major road AADT, the minor 

road AADT is included without being transformed. The third functional form is similar to that of 

the two SPFs, described, but without the third variable, which is either the major or minor road 

AADT. Local SPFs are developed for the intersections in Toronto, Vancouver, Canada and 
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California separately. The ones of Vancouver and California are multiplied by calibration factors 

to be applied for Toronto’s conditions. The calibration factor is calculated in the same manner as 

that of the HSM as the ratio of the sum of the observed crash frequencies in Toronto to that of 

the ones predicted by the transferred model, whether that of Vancouver or California. The 

calibration factors for the SPFs of both Vancouver and California range from 1.2 to 1.8 

indicating that the SPFs markedly under-predict crashes in Toronto. However, the root mean 

square errors (RMSE) of the SPFs of the three regions are to an extent similar. The research team 

used cumulative residual plots (Hauer and Bamfo, 1997) for the entering AADTs and concluded 

that the fits of the SPFs multiplied by the calibration factors are satisfactory for the range of 

entering AADTs.             

The application and calibration of SPFs of the HSM is also undertaken globally. Cafiso et al. 

(2012) undertook a similar study for the A18 divided multilane highway in the Italian region, 

Messina-Catania by analyzing KAB crash records collected from the years, 2005 to 2008. The 

research team calculated calibration factors for each year separately while taking into 

consideration the CMFs. The range of calibration factors is from 1.14 to 1.43. The average of the 

calibration factors is 1.26 indicating that the HSM’s SPF under-predicts severe crash frequencies 

for Messina-Catania’s divided segments by 26%. In addition, two local SPFs are developed. One 

is a simple model which only includes the natural logarithm of the AADT as a variable and the 

natural logarithm of the segment length without a coefficient. The other is a more complicated 

multivariable one with not only the transformed AADT and segment length but also horizontal 

curvature and gradient variables. Both local SPFs are compared in terms of the adjusted 

coefficient of determination and Pearson’s chi-squared statistic. The latter model performed 

better. Both the local multivariable model and the HSM’s SPF multiplied by the calibration 



11 
 

factor are used in network screening and compared. The RMSE is used as a relative measure of 

the difference among predictions of both SPFs. According to the results, the predictions of both 

SPFs are not considerably different. 

Other than the study in Messina-Catania, Sacchi et al. (2012) conducted a study in Turin, Italy to 

investigate the transferability of the HSM’s SPFs and CMFs for rural two-lane roads. Traffic 

volume, road geometrics and crash data are collected from the Italian National Institute of 

Statistics. The crashes are FI crashes of which records are collected from the years 2005 to 2008. 

The data are refined to exclude segments not satisfying the HSM base conditions for rural two 

lane roads. Both the HSM’s provided SPF and a locally developed one are applied and the 

resulting calibration factor is calculated to be 0.44. That is an implication that the HSM model 

over-predicts FI crashes by 56%. Yet, for low AADTs the predictions of both SPFs are similar.      

In another study conducted abroad the US by Al Kaaf and Abdel-Aty (2015), crash and 

geometric data are collected from urban divided roads in Riyadh, Saudi Arabia. The HSM 

models, used for predicting fatal and injury (FI) crashes are applied. The CMFs, provided by the 

HSM, are also applied. In the results of the analysis, the calibration factor is calculated as 0.31 

implying that the HSM, to a great extent, over-predicts crash frequencies in Riyadh, Saudi 

Arabia’s urban divided roads. Also, several local SPFs having different functional forms are 

developed and the superior one is a model with the variables including: the natural logarithm of 

the AADT, segment length with an associated coefficient, posted speed limit and driveway 

density. Furthermore, the research team developed CMFs using local data of Riyadh, Saudi 

Arabia and investigated the performances of the HSM’s CMFs relative to those of the CMFs 

developed. The local CMFs produced improved results.  
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Turner et al. (2007) compared total crashes’ SPFs for roundabouts in New Zealand, Sweden and 

the US. The variable included in the SPFs is the natural logarithm of the total entering AADT. 

Yet, the crash years based on which each nation’s SPF is developed are different for the other 

regions. Generally, the predictions of all three nation’s SPFs are similar for AADTs less than 

5000 vpd. For AADTs between 20,000 vpd to 25,000 vpd, Sweden and the US’s SPF predictions 

are similar as well. For all other AADTs the SPF predictions are considerably different. 

Variations may be explained by different reporting thresholds, weather conditions, posted speed 

limits and how intersection influence areas are defined in every nation. The authors also 

developed SPFs for total crashes at rural two-lane roads in New Zealand, Minnesota, North 

Carolina, Ohio and Washington. Calibration factors are calculated for the New Zealand model to 

be applied to each state in the US mentioned. The factors are also calculated for the US states to 

be applied amongst each other and to New Zealand. The calibration factors of New Zealand 

range from 1.3 to 3.85. Thus, the New Zealand model under-predicts crashes in the US by a great 

extent. The research team also implemented cumulative residual plots (Hauer and Bamfo, 1997) 

using the AADT as the variable to compare the US states’ SPFs multiplied by calibration factors 

with that of New Zealand under the condition that the jurisdiction where the SPFs are applied is 

New Zealand. From the plots, the New Zealand, Minnesota and Washington cumulative 

residuals are similar throughout the range of AADTs.      

In general, calibration of the predicted crash frequencies obtained from the HSM’s SPFs for 

specific jurisdictions is a subject of investigation by a considerable number of researchers in road 

safety. Yet, there is a growing need for research on the topic of transferability of SPFs. 

Furthermore, in none of the previously stated studies, except for that aimed at formulating the 

national SPFs of the HSM, the authors proposed and conducted a methodical analysis to 
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investigate the advantage of pooling data from several states when developing SPFs. The rural 

divided and undivided highway segment SPFs of the HSM are developed from pooled data 

mainly to ensure sufficient sample sizes (Lord et al., 2008). In addition, in the previously stated 

studies, the HSM calibration factors are simply applied to adjust crash predictions. Setbacks of 

the previous studies are addressed. First, the benefit of estimating SPFs from combined data from 

several states, Florida, Ohio and California, is explored and quantified. The SPFs, based on the 

pooled data, are modified to include dummy variables representing the states. That also applies 

for the over-dispersion parameters of the SPFs. Second, a transfer index is applied to measure the 

performance of SPFs that are being transferred to jurisdictions of interest. Third, a method is 

proposed and studied for adjusting predicted crash frequencies at every segment or intersection. 

Besides, in the HSM calibration factor method, the calibration factors are based on an aggregate 

measure. 
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CHAPTER 3: DATA PREPARATION FOR RURAL DIVIDED 

MULTILANE HIGHWAY SEGMENTS 

The Florida crash data are collected from the Crash Analysis Reporting System (CARS) of the 

Florida Department of Transportation (FDOT). The road geometric data of Florida are collected 

from the Roadway Characteristics Inventory (RCI) of the FDOT. The Ohio and California data, 

including traffic data, crash records and road characteristics, are collected from the Highway 

Safety Information System (HSIS) of the Federal Highway Administration (FHWA). The HSIS 

database not only contains data of Ohio and California but also of Washington, Minnesota, 

Illinois, Michigan, North Carolina and Maine. In the following subsections, the data preparation 

step for rural divided multilane highway segments is explained. The data preparation step for the 

four-leg signalized intersections is explained in the following chapter. For both segments and 

intersections, pedestrian, bicycle and animal crashes are excluded from all three states’ data.  

 

3.1 Rural Divided Multilane Highway Segments Data Preparation 

The Florida, Ohio and California data are prepared once for average conditions, which are those 

not conforming to the HSM base conditions and proposed modified base conditions. The 

modified base conditions are:  

 Lane width ≥ 12 ft 

 Paved shoulder of which width ≥ 8 ft 

 Median width ≥ 30 ft 

 No street lighting 

 No automated speed enforcement 
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The reason the modified HSM base conditions are applied is that there is an inadequate sample 

of segments that satisfy the base conditions in each state for SPF development. In the following 

subsections, the data preparation is described for average and modified base conditions of rural 

divided multilane highway segments. 

 

3.1.1 Rural Divided Multilane Highway Segments Data Preparation – Average Conditions 

The Florida data collected are composed of records of crashes that occurred from 2009 to 2011. 

The number of segments of which geometric characteristics are available in the Florida data is 

1,320. The segments comprise 835.86 mi. The Ohio data also encompass 2009 to 2011 crash 

records. Ohio’s segments data include geometric features of 1,261 segments having an aggregate 

length of 665.11 mi. Unlike Florida and Ohio, the California data comprise crash records from 

the years 2009 to 2010. The road geometrics data of California are collected from 1,349 

homogenous segments comprising 709.83 mi. In accordance with the HSM, the minimum 

segment length, for which data are collected, is not less than 0.1 mi in any of the three states. The 

crashes are classified into the categories: KABCO, KABC, KAB, KA, single vehicle (SV) and 

multi-vehicle (MV) crashes. Descriptive statistics of the Florida, Ohio and California data are 

shown in Tables 3.1 through 3.3. 
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Table 3.1: Florida's Average Conditions Descriptive Statistics for Rural Divided Multilane 
Highway Segments  

Number of Segments = 1,320 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.633 0.993 

AADT (vpd) - 25,710.482 12,001.344 

Lane Width (ft) - 11.845 0.489 

Shoulder Width (ft) - 4.225 2.277 

Median Width (ft) - 28.258 18.114 

KABCO 10,028 7.597 15.001 

KABC 4,815 3.648 6.486 

KAB 2,399 1.817 3.094 

KA 753 0.57 1.146 

SV 1,929 1.461 2.364 

MV 8,099 6.136 14.055 

 

 

Table 3.2: Ohio's Average Conditions Descriptive Statistics for Rural Divided Multilane 
Highway Segments 

Number of Segments = 1,261 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.527 0.582 

AADT (vpd) - 9,896.954 5,600.405 

Lane Width (ft) - 11.733 0.484 

Shoulder Width (ft) - 6.452 2.504 

Median Width (ft) - 43.41 21.616 

KABCO 2,541 2.015 4.028 

KABC 799 0.634 1.507 

KAB 580 0.46 1.069 

KA 145 0.115 0.382 

SV 1,362 1.08 2.094 

MV 1,179 0.935 2.605 
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Table 3.3: California's Average Conditions Descriptive Statistics for Rural Divided Multilane 
Highway Segments 

Number of 

Segments 

= 1,349 

Number of 

Crashes 
Mean 

Standard 

Deviation 

Segment 

Length 

(mi) 

- 0.526 0.568 

AADT 

(vpd) 
- 19,018.744 14,370.401 

Lane 

Width (ft) 
- 10.088 4.426 

Shoulder 

Width (ft) 
- 7.681 2.377 

Median 

Width (ft) 
- 36.787 31.262 

KABCO 5,120 3.795 6.805 

KABC 1,997 1.48 2.734 

KAB 1,014 0.752 1.392 

KA 283 0.21 0.54 

SV 2,170 1.609 3.273 

MV 2,950 2.187 4.532 

 

As shown in the tables, the lane width means and standard deviations in all three states are not 

similar. California’s lane widths’ mean and standard deviation are different from those of the 

other states’ lane widths. That is a factor that may deter the transferability of SPFs of Florida and 

Ohio to California. The shoulder widths’ mean is also different for each state even though the 

standard deviations are similar and low. That indicates that there is a low degree of variability in 

shoulder widths in each state’s data. Specifically, the state of Florida has the narrowest mean 

shoulder width, followed by Ohio followed by California. That is a factor than may inhibit SPF 

transferability among the three states. On the other hand, the median widths’ means are different 

for every state. Also, the standard deviation of the median widths of California are high. This 

indicates that there is a high degree of variability in California’s median widths relative to those 

of Florida and Ohio. This inhibits transferability of SPFs of Florida and Ohio to California. The 
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AADTs’ means and standard deviations of all states’ data are different. Therefore, it is expected 

that each of the three states experiences different crash frequencies which are proportional to the 

AADT because it is an exposure measure. It should be noted that there are discrepancies in the 

data. Less than 2% of the crashes in Florida are missing severity levels. Also, less than 0.75% of 

the crashes in California are without severity level codes. These types of crashes are considered 

for modeling predictions of KABCO crashes, SV and MV crashes only. Finally, all state’s 

crashes are normalized by the hundred million vehicle miles traveled (VMT) per year as shown 

in Table 3.4. The normalized crashes are termed crash rates. 

Table 3.4: Florida, Ohio and California’s Average Conditions Rural Divided Segment Crash 
Rates per Hundred Million Vehicle Miles Traveled per Year 

Crash 

Classification 
Florida Ohio California 

KABCO 47.70 32.75 53.93 

KABC 22.91 10.3 21.03 

KAB 11.41 7.48 10.68 

KA 3.58 1.87 2.98 

SV 9.18 17.55 22.86 

MV 38.53 15.2 31.07 

 

As, shown in Table 3.4, the least KABCO, KABC, KAB, KA and MV crashes per hundred 

million VMT are experienced by Ohio. The crash rates of both Florida and California are 

reasonably higher than those of Ohio. It is crucial to note that KABCO, KABC, KAB and KA 

crash rates of Florida and California are similar. Therefore, Florida’s SPFs for these types of 

crashes are expected to be transferable to California and vice versa. However, California 

experiences the most SV crashes per hundred million VMT per year followed by Ohio which is 

followed by Florida. The data of the three states are pooled into different combinations to be 
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later used for SPF development. That is, SPFs are developed from pooled data of two states and 

three states. The pooled data descriptive statistics are shown in Tables 3.5 through 3.8. 

Table 3.5: Florida and Ohio's Joint Data Average Conditions Descriptive Statistics for Rural 
Divided Multilane Highway Segments 

Number of Segments = 2,581 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.582 0.82 

AADT (vpd) - 17,984.461 12,306.954 

Lane Width (ft) - 11.79 0.49 

Shoulder Width (ft) - 5.313 2.637 

Median Width (ft) 
- 

35.661 21.291 

KABCO 12,569 4.87 11.435 

KABC 5,614 2.175 4.989 

KAB 2,979 1.154 2.432 

KA 898 0.348 0.891 

SV 3,291 1.275 2.244 

MV 9,278 3.595 10.539 

 

Table 3.6: Florida and California's Joint Data Average Conditions Descriptive Statistics for Rural 
Divided Multilane Highway Segments 

Number of Segments = 2,669 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.579 0.809 

AADT (vpd) - 22,328.258 13,665.354 

Lane Width (ft) - 10.957 3.284 

Shoulder Width (ft) - 5.972 2.899 

Median Width (ft) - 32.569 25.965 

KABCO 15,148 5.676 11.759 

KABC 6,812 2.552 5.075 

KAB 3,413 1.279 2.449 

KA 1,036 0.388 0.911 

SV 4,099 1.536 2.86 

MV 11,049 4.14 10.58 
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Table 3.7: Ohio and California's Joint Data Average Conditions Descriptive Statistics for Rural 
Divided Multilane Highway Segments 

Number of Segments = 2,610 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.527 0.575 

AADT (vpd) - 14,611.626 11,942.810 

Lane Width (ft) - 10.883 3.303 

Shoulder Width (ft) - 7.087 2.515 

Median Width (ft) - 39.987 27.231 

KABCO 7,661 2.935 5.706 

KABC 2,796 1.071 2.267 

KAB 1,594 0.611 1.255 

KA 428 0.164 0.473 

SV 3,532 1.353 2.779 

MV 4,129 1.582 3.779 

 

Table 3.8: Florida, Ohio and California's Joint Data Average Conditions Descriptive Statistics 
for Rural Divided Multilane Highway Segments 

Number of Segments = 3,930 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.563 0.744 

AADT (vpd) - 18,339.486 13,059.478 

Lane Width (ft) - 11.206 2.744 

Shoulder Width (ft) - 6.126 2.787 

Median Width (ft) - 36.047 25.165 

KABCO 17,689 4.501 10.1 

KABC 7,611 1.937 4.361 

KAB 3,993 1.016 2.141 

KA 1,181 0.301 0.791 

SV 5,461 1.39 2.647 

MV 12,228 3.111 8.968 

  

3.1.2 Rural Divided Multilane Highway Segments Data Preparation – Modified Base Conditions 

The prepared rural divided multilane highway segment data of all three states are refined to 

reflect the proposed modified HSM base conditions. Specifically, the number of segments that 

satisfy the modified base conditions in Florida, Ohio and California are 57, 432 and 572 

respectively. The descriptive statistics of the three states’ modified base conditions data are 

shown in Tables 3.9 through 3.11.  
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Table 3.9: Florida's Modified Base Conditions Descriptive Statistics for Rural Divided Multilane 
Highway Segments 

Number of Segments = 57 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.509 0.64 

AADT (vpd) - 30,275.667 12,535.496 

Lane Width (ft) - 12.018 0.093 

Shoulder Width (ft) - 9.684 2.354 

Median Width (ft) - 44.509 17.878 

KABCO 290 5.088 6.911 

KABC 152 2.667 4.142 

KAB 93 1.632 2.907 

KA 38 0.667 1.418 

SV 95 1.667 2.452 

MV 195 3.421 4.866 

   

Table 3.10: Ohio's Modified Base Conditions Descriptive Statistics for Rural Divided Multilane 
Highway Segments 

Number of Segments = 432 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.588 0.651 

AADT (vpd) - 11,188.016 4,556.527 

Lane Width (ft) - 12 0 

Shoulder Width (ft) - 8 0 

Median Width (ft) - 47.87 16.605 

KABCO 917 2.123 3.407 

KABC 262 0.606 1.252 

KAB 193 0.447 0.967 

KA 48 0.111 0.336 

SV 554 1.282 2.204 

MV 363 0.84 1.693 
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Table 3.11: California's Modified Base Conditions Descriptive Statistics for Rural Divided 
Multilane Highway Segments 

Number of Segments = 572 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.569 0.584 

AADT (vpd) - 19,488.747 13,447.115 

Lane Width (ft) - 12.043 1.004 

Shoulder Width (ft) - 9.047 1.002 

Median Width (ft) - 65.11 22.078 

KABCO 2,004 3.503 6.845 

KABC 758 1.325 2.502 

KAB 398 0.696 1.304 

KA 116 0.203 0.53 

SV 900 1.573 2.809 

MV 1,104 1.93 4.906 

 

As shown in Tables 3.9 through 3.11, the means of the lane and shoulder widths of Florida’s 

segments conforming to the modified base conditions are similar to those of Ohio and 

California’s lane widths. The standard deviations are also similar except for that of California’s 

lane widths. The variability in California’s lane widths is to a limited extent greater than those of 

Florida and Ohio’s lane widths. The shoulder widths’ means ranked from widest to narrowest are 

those of Florida, California and Ohio. Also there is a great degree of variability in Florida’s 

shoulder widths relative to California’s as indicated by the standard deviations. Ohio’s shoulder 

widths are all the same since the standard deviation is null. Therefore, it is anticipated that the 

differences in lane widths among divided segments in all three states will not impede the 

transferability of SPFs as will the differences in shoulder widths. On the other hand, the means of 

the median widths of Florida and Ohio’s segments conforming to the modified base conditions 

are considerably lower than that of California. Yet, the standard deviations of the median widths 

in all three state’s segments are high. This is an indication of a large degree of variability in 

median widths in each state. That is a factor that may inhibit transferability of modified base 

conditions SPFs for divided segments among the three states. It should be noted that less than 
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2% of the crashes that occurred at segments conforming to the modified base conditions in 

Florida and less than 1% of those in California are crashes of which the severities are unknown. 

They cannot be used for modeling of KABC, KAB and KA crashes. The crash rates of all three 

states are shown in Table 3.12. 

Table 3.12: Florida, Ohio and California’s Modified Base Conditions Rural Divided Segment 
Crash Rates Per Hundred Million Vehicle Miles Traveled Per Year 

Crash 

Classification 
Florida Ohio California 

KABCO 28.46 29.17 42.63 

KABC 14.92 8.33 16.12 

KAB 9.13 6.14 8.47 

KA 3.73 1.53 2.47 

SV 9.32 17.62 19.15 

MV 19.14 11.55 23.49 

     

As shown in Table 3.12, California’s crash rates are considerably larger than both Florida and 

Ohio. Yet, California’s crash rates are similar to Florida’s for KABC and KAB crashes. Also, 

Ohio experiences the least KABC, KAB, KA and MV crashes per hundred million VMT. It is 

critical to note that after the lane width, shoulder width, median width, lighting conditions and 

speed enforcement variables are controlled, the KABCO crash rates of Florida and Ohio become 

similar. It is expected that the KABCO modified base conditions SPF for segments in Florida is 

transferable to Ohio and vice versa as opposed to the case of the average conditions. As is the 

case of the segments’ average conditions, each state’s data of the segments’ modified base 

conditions are pooled with the other states’ data in different combinations. However, only Ohio 

and California’s segments’ modified base conditions data can be pooled since Florida’s data 

sample size is low relative to that of the data of the other states. The descriptive statistics of the 

pooled Ohio and California’s modified base conditions segments data are shown in Table 3.13. 



24 
 

Table 3.13: Ohio and California's Modified Base Conditions Descriptive Statistics for Rural 
Divided Multilane Highway Segments  

Number of Segments = 1,004 Number of Crashes Mean Standard Deviation 

Segment Length (mi) - 0.577 0.613 

AADT (vpd) - 15,917.118 11,347.743 

Lane Width (ft) - 12.024 0.758 

Shoulder Width (ft) - 8.597 0.917 

Median Width (ft) - 57.692 21.655 

KABCO 2,921 2.909 5.669 

KABC 1,020 1.016 2.089 

KAB 591 0.589 1.177 

KA 164 0.163 0.459 

SV 1,454 1.448 2.569 

MV 1,467 1.461 3.902 
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CHAPTER 4: DATA PREPARATION FOR RURAL FOUR-LEG 

SIGNALIZED INTERSECTIONS  

The data sources for all three states for the four-leg signalized intersections are the same as those 

of the segments. As is the case of the segments, the four-leg signalized intersections are 

processed for average conditions and base conditions. However, base conditions are not defined 

for four-leg signalized intersections in the current HSM. The proposed base conditions for four-

leg signalized intersections are:  

 Skew angle between 0o and 5o 

 Street lighting presence  

 No red-light-running cameras 

An additional condition specified by the HSM for stop controlled intersections is that the 

intersections should have no turning lanes. This condition is neglected in the proposed base 

conditions because there is an inadequate sample of signalized intersections in each state with no 

turning lanes. Also, in accordance with the HSM standards, any crashes within a 250 ft radius of 

intersections are considered intersection or intersection related crashes. Descriptions of the data 

preparation for average and proposed base conditions for four-leg signalized intersections are 

provided in the following subsections. Similar to the case of the segments, data corresponding to 

crash records from 2009 to 2011 are collected for Florida and Ohio. In the case of California, 

records of crashes that occurred in 2009 and 2010 are collected for analysis. The 2009 and 2010 

crash data of Florida and Ohio are to be processed for SPF development while the 2011 crash 

data of both states will be used for application of the proposed modified Empirical Bayes method 

discussed in the research methodology chapter. For California, the 2009 crash data are used for 
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estimating SPFs and the modified Empirical Bayes method will be applied to the 2010 data. The 

crashes are classified the same way for analysis purposes as they are for the case of the segments. 

 

4.1 Rural Four-Leg Signalized Intersections Data Preparation – Average Conditions 

There are 131 rural four-leg signalized intersections sampled from Florida. The software 

ArcMap is used to geocode crash locations within the 250 ft buffers of the four-leg signalized 

intersections. The geocoding is performed to aid in matching the Florida crash data from the 

CARS database with the road log data from the RCI database. In Ohio and California, there are 

122 and 34 four-leg signalized intersections sampled, respectively. The descriptive statistics for 

each state’s average conditions four-leg signalized intersection data, excluding crash data used 

for the modified Empirical Bayes method, are shown in Tables 4.1 through 4.3. For the 

California four-leg signalized intersection average conditions data, no data is available regarding 

the skew angle. 

  



27 
 

Table 4.1: Florida's Average Conditions Descriptive Statistics for Rural Four-Leg Signalized 
Intersections 

Number of 

Intersections =131 

Number of 

Crashes 
Mean 

Standard 

Deviation  

 
 
 
 
 
 
 
 
 
 
 
 

 

Major Road AADT - 11854.97 5874.483 

Minor Road AADT - 4737.752 3143.863 

Total AADT - 16592.72 7660.074 

Skew Angle - 13.996 21.933 

Presence of RTLs - 0.672 0.471 

Presence of LTLs - 0.908 0.29 

Lighting - 0.427 0.497 

KABCO 134 1.023 1.591 

KABC 71 0.542 0.987 

KAB 34 0.26 0.549 

KA 10 0.076 0.267 

SV 7 0.053 0.226 

MV 127 0.969 1.549 

Frequencies for Categorical Variables 

 
Frequency 

Present 

Percent 

Present 

Frequency 

Absent 

Percent 

Absent 

Presence of RTLs 88 67.18 43 32.82 

Presence of LTLs 119 90.84 12 9.16 

Lighting 56 42.75 75 57.25 

  



28 
 

Table 4.2: Ohio's Average Conditions Descriptive Statistics for Rural Four-Leg Signalized 
Intersections 

Number of 

Intersections =122 

Number of 

Crashes 
Mean 

Standard 

Deviation  

 
 
 
 
 
 
 
 
 
 
 
 

 

Major Road AADT - 9927.074 7117.279 

Minor Road AADT - 2622.549 2542.288 

Total AADT - 12549.62 7905.492 

Skew Angle - 9.91 13.384 

Presence of RTLs - 0.164 0.372 

Presence of LTLs - 0.525 0.501 

Lighting - 0.73 0.446 

KABCO 544 4.459 4.128 

KABC 172 1.41 2.394 

KAB 102 0.836 1.597 

KA 18 0.148 0.492 

SV 28 0.23 0.542 

MV 516 4.23 4.057 

Frequencies for Categorical Variables 

 
Frequency 

Present 

Percent 

Present 

Frequency 

Absent 

Percent 

Absent 

Presence of RTLs 20 16.39 102 83.61 

Presence of LTLs 64 52.46 58 47.54 

Lighting 89 72.95 33 27.05 
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Table 4.3: California's Average Conditions Descriptive Statistics for Rural Four-Leg Signalized 
Intersections 

Number of 

Intersections =34 

Number of 

Crashes 
Mean 

Standard 

Deviation  

 
 
 
 
 
 
 
 
 
 
 

 

Major Road AADT - 22504.06 11110.56 

Minor Road AADT - 4026.912 4438.882 

Total AADT - 26530.97 12143.41 

Presence of RTLs - 0.706 0.462 

Presence of LTLs - 0.97 0.174 

Lighting - 1 0 

KABCO 106 3.118 2.783 

KABC 47 1.382 1.206 

KAB 19 0.559 0.746 

KA 4 0.118 0.327 

SV 13 0.382 0.779 

MV 93 2.735 2.514 

Frequencies for Categorical Variables 

 
Frequency 

Present 

Percent 

Present 

Frequency 

Absent 

Percent 

Absent 

Presence of RTLs 24 70.59 10 29.41 

Presence of LTLs 32 96.97 1 3.03 

Lighting 34 100.00 0 0.00 

 

The mean of the major road AADTs of four-leg signalized intersections in California is double 

those of Florida and Ohio’s major road AADTs. Yet the standard deviations of the major road 

AADTs in intersections in all three states are high especially in California. The means and 

standard deviations of minor road AADTs of intersections in Florida and California are similar 

even though the standard deviations are considerably large. Ohio’s intersections’ minor road 

AADTs’ mean and standard deviation are lower than those of Florida and California’s minor 

road AADTs. The high standard deviations of major and minor road AADTs indicate high 

degrees of variability in entering traffic volumes and hence crashes. The AADTs from major and 

minor roads are factors that impede SPF transferability. The skew angle standard deviations of 

both the Florida and Ohio intersections are reasonably high indicating a high degree of 

variability. This may also inhibit transferability of SPFs among Florida and Ohio. In addition, the 
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proportions of right turn lanes, left turn lanes and lighting are different for each state’s four-leg 

signalized intersection data. These are other factors that may deter SPF transferability among the 

three states. The intersection crash rates are calculated as per hundred million VMT and are 

shown in Table 4.4. 

Table 4.4: Florida, Ohio and California Average Conditions Rural Four-Leg Signalized 
Intersection Crash Rates Per Hundred Million Vehicle Miles Traveled Per Year 

Crash 

Classification 
Florida Ohio California 

KABCO 5.63 32.45 16.10 

KABC 2.98 10.26 7.14 

KAB 1.43 6.08 2.89 

KA 0.42 1.07 0.61 

SV 0.29 1.67 1.97 

MV 5.34 30.78 14.12 

 

In general, Florida experiences the least crashes at four-leg signalized intersections per hundred 

million VMT per year followed by California, followed by Ohio except for SV crashes as shown 

in Table 4.4. The SV crash rates of California are higher than those of Ohio. Since there are no 

similarities in crash rates among states it is not expected that the SPFs of each state are 

transferable to either states. Furthermore, as is the case of segments, average conditions four-leg 

signalized intersection data of Florida and Ohio are pooled for analysis purposes. California’s 

intersection data cannot be pooled with those of any other state since its sample size is low 

relative to the other states leading to biased results. The descriptive statistics of the pooled 

Florida and Ohio intersection data are shown in Table 4.5.  
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Table 4.5: Florida and Ohio’s Average Conditions Descriptive Statistics for Rural Four-Leg 
Signalized Intersections 

Number of 

Intersections = 253 

Number of 

Crashes 
Mean 

Standard 

Deviation  

 
 
 
 
 
 
 
 
 
 
 
 

 

Major Road AADT - 10925.31 6561.783 

Minor Road AADT - 3717.773 3053.48 

Total AADT - 14643.08 8023.453 

Skew Angle - 12.018 18.379 

Presence of RTLs - 0.427 0.496 

Presence of LTLs - 0.723 0.448 

Lighting - 0.573 0.496 

KABCO 678 2.68 3.528 

KABC 243 0.96 1.855 

KAB 136 0.538 1.21 

KA 28 0.111 0.393 

SV 35 0.138 0.419 

MV 643 2.542 3.436 

Frequencies for Categorical Variables 

 
Frequency 

Present 

Percent 

Present 

Frequency 

Absent 

Percent 

Absent 

Presence of RTLs 108 42.69 145 57.31 

Presence of LTLs 183 72.33 70 27.67 

Lighting 145 57.31 108 42.69 

 

 

4.2 Rural Four-Leg Signalized Intersections Data Preparation – Proposed Base Conditions 

Florida and Ohio’s average conditions four-leg signalized intersections are subset to include only 

intersections with street lighting, no automated speed enforcement and skew angles between 0o 

and 5o. Also, California’s  data of the four-leg signalized intersections conforming to the base 

conditions, proposed, are not prepared since no information is known about the skew angles. 

There are 39 and 63 four-leg signalized intersections that satisfy the proposed base conditions in 

Florida and Ohio, respectively. The descriptive statistics of both states’ data are shown in Tables 

4.6 through Table 4.7.  
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Table 4.6: Florida’s Base Conditions Descriptive Statistics for Rural Four-Leg Signalized 
Intersections 

Number of 

Intersections = 39 

Number of 

Crashes 
Mean 

Standard 

Deviation  

 
 
 
 
 
 
 
 
 
 
 
 

 

Major Road AADT - 11,372.731 6,176.434 

Minor Road AADT - 4,027.795 2,929.942 

Total AADT - 15,400.526 7,992.558 

Skew Angle - 0 0 

Presence of RTLs - 0.462 0.505 

Presence of LTLs - 0.821 0.389 

Lighting - 1 0 

KABCO 35 0.897 1.553 

KABC 15 0.385 0.633 

KAB 6 0.154 0.366 

KA 1 0.026 0.16 

SV 1 0.026 0.16 

MV 34 0.872 1.508 

Frequencies for Categorical Variables 

 
Frequency 

Present 

Percent 

Present 

Frequency 

Absent 

Percent 

Absent 

Presence of RTLs 18 46.15 21 53.85 

Presence of LTLs 32 82.05 7 17.95 

Lighting 39 100 0 0.00 
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Table 4.7: Ohio’s Base Conditions Descriptive Statistics for Rural Four-Leg Signalized 
Intersections 

Number of 

Intersections = 63 

Number of 

Crashes 
Mean 

Standard 

Deviation  

 
 
 
 
 
 
 
 
 
 
 
 

 

Major Road AADT - 7,584.444 4,921.543 

Minor Road AADT - 2,678.937 2,643.804 

Total AADT - 10,263.38 5,943.094 

Skew Angle - 1.127 1.143 

Presence of RTLs - 0.095 0.296 

Presence of LTLs - 0.349 0.481 

Lighting - 1 0 

KABCO 255 4.048 3.438 

KABC 63 1 1.666 

KAB 34 0.54 1.28 

KA 3 0.048 0.215 

SV 17 0.27 0.601 

MV 238 3.778 3.367 

Frequencies for Categorical Variables 

 
Frequency 

Present 

Percent 

Present 

Frequency 

Absent 

Percent 

Absent 

Presence of RTLs 6 9.52 57 90.48 

Presence of LTLs 22 34.92 41 65.08 

Lighting 63 100 0 0.00 

 

The major road AADTs’ means and standard deviations of Florida’s intersections satisfying the 

proposed base conditions are considerably higher than those of Ohio’s major road AADTs. That 

is also the case with the minor road AADTs. Yet, the standard deviations of the major and minor 

road AADTs in both states are large. That is a factor that may inhibit transferability of Florida’s 

SPFs of intersections conforming to proposed base conditions to Ohio. The transferability of 

Ohio’s intersection SPFs to Florida will be deterred in a similar fashion. In addition, the skew 

angles’ mean and standard deviation in the Florida proposed base conditions intersection data are 

zero while those of Ohio are considerably low. That is a factor that may facilitate SPF 

transferability. Yet, the proportions of turning lanes are different in each state. That may impede 

each state’s SPFs to be transferable to the other state. The Florida and Ohio’s crash rates 
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calculated for four-leg signalized intersections that conform to the proposed base conditions are 

shown in Table 4.8. 

Table 4.8: Florida and Ohio’s Proposed Base Conditions Rural Four-Leg Signalized Intersection 
Crash Rates Per Hundred Million Vehicle Miles Traveled Per Year 

Crash 

Classification 
Florida Ohio 

KABCO 5.32 36.02 

KABC 2.28 8.90 

KAB 0.91 4.80 

KA 0.15 0.42 

SV 0.15 2.40 

MV 5.17 33.61 

 

As shown in Table 4.8, the crash rates of all crash classifications of Ohio are to a considerable 

extent larger than those of Florida. Therefore, it is expected that the SPFs for proposed base 

conditions of rural four-leg signalized intersections of each state are not transferable to the other 

state. Florida and Ohio’s proposed base conditions intersection data are pooled. Their descriptive 

statistics are shown in Table 4.9.  
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Table 4.9: Florida and Ohio’s Base Conditions Descriptive Statistics for Rural Four-Leg 
Signalized Intersections 

Number of 

Intersections = 102 

Number of 

Crashes 
Mean 

Standard 

Deviation  

 
 
 
 
 
 
 
 
 
 
 
 

 

Major Road AADT - 9,032.907 5,713.514 

Minor Road AADT - 3,194.676 2,820.367 

Total AADT - 12,227.583 7,211.813 

Skew Angle - 0.696 1.051 

Presence of RTLs - 0.235 0.426 

Presence of LTLs - 0.529 0.502 

Lighting - 1 0 

KABCO 290 2.843 3.245 

KABC 78 0.765 1.394 

KAB 40 0.392 1.045 

KA 4 0.039 0.195 

SV 18 0.176 0.496 

MV 272 2.667 3.135 

Frequencies for Categorical Variables 

 
Frequency 

Present 

Percent 

Present 

Frequency 

Absent 

Percent 

Absent 

Presence of RTLs 24 23.53 78 76.47 

Presence of LTLs 54 52.94 48 47.06 

Lighting 102 100.00 0 0.00 
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CHAPTER 5: RESEARCH METHODOLOGY 

The research methodology includes developing SPFs for KABCO, KABC, KAB, KA, SV and 

MV crashes for each state for rural divided segments and four-leg signalized intersections. These 

SPFs are referred to as jurisdiction specific SPFs. Then, each state’s data are pooled with those 

of the other states in different combinations as described in the data preparation chapter. 

Similarly, SPFs are developed for the same crash classifications for the pooled data. That is, two-

state joint SPFs, which are models estimated from data of two states, and three-state joint SPFs, 

which are models estimated from data of the three states, are developed. That is performed for 

both average and proposed base conditions. In the following subsections, descriptions of the 

methods used to process the segment and intersection data are provided. 

 

5.1 Rural Divided Multilane Highway Segments – Research Methodology 

The PROC NLMIXED procedure of the statistical analysis software (SAS) version 9.4 is used 

for estimating models for divided segments. The KABCO, KABC, KAB, KA, SV and MV SPFs 

are developed for each state’s average conditions segments data. The SPF takes the form of 

negative binomial model of the HSM for rural divided multilane segments as follows. 

𝑁𝑆𝑃𝐹 = exp[𝐴 + 𝐵 ln(𝐴𝐴𝐷𝑇) + ln(𝐿 × 𝑦)]⁡           (5.1) 

The overdispersion parameter is defined as follows. 

𝑘 = 1/exp⁡[𝐶 + 𝐷⁡ln⁡(𝐿 × 𝑦)⁡]            (5.2)  

In Equations (5.1) and (5.2), L, represents the segment length and y is an offset variable which 

represents the number of crash years. The parameters A, B, C and D are regression coefficients. It 

is critical to note that the overdispersion formula in the HSM for rural divided segments’ SPFs 
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there is no coefficient multiplied by the segment length. The data are then pooled for 

development of joint SPFs. If two states’ data are pooled the SPFs and their corresponding 

overdispersion parameters would take the following forms. 𝑁𝑆𝑃𝐹 = exp[𝐴 + 𝐵 ln(𝐴𝐴𝐷𝑇) + E(𝑠𝑡𝑎𝑡𝑒⁡2) + F(𝑠𝑡𝑎𝑡𝑒⁡2 × ln(𝐴𝐴𝐷𝑇)) + ln(𝐿 × 𝑦)]           (5.3) 𝑘 = 1/exp⁡[𝐶 + G(𝑠𝑡𝑎𝑡𝑒⁡2) + (𝐷 + 𝐻 × 𝑠𝑡𝑎𝑡𝑒⁡2)⁡ln⁡(𝐿 × 𝑦)⁡]         (5.4) 

The variable state 2 is a dummy variable representing the state where crashes occurred while the 

other state is the reference state. In this case, four supplementary parameter coefficients E, F, G 

and H are estimated to capture differences in crash frequencies between states. In the case of 

pooling the three state’s data and estimating SPFs, the joint SPF form is as follows. 

𝑁_𝑆𝑃𝐹 = exp[𝐴 + 𝐵⁡ln⁡(𝐴𝐴𝐷𝑇) + E(𝑠𝑡𝑎𝑡𝑒⁡2) + I(𝑠𝑡𝑎𝑡𝑒⁡3) + F(𝑠𝑡𝑎𝑡𝑒⁡2 × ln⁡(𝐴𝐴𝐷𝑇)⁡) +J(𝑠𝑡𝑎𝑡𝑒⁡3 × ln⁡(𝐴𝐴𝐷𝑇)⁡) + ln⁡⁡(𝐿 × 𝑦)⁡]           (5.5) 

Any state can be the reference state while the other two are identified by their dummy variables, 

state 2 and state 3. The overdispersion parameter formula is the following. 𝑘 = 1/exp⁡[𝐶 + G(𝑠𝑡𝑎𝑡𝑒⁡2) + K(𝑠𝑡𝑎𝑡𝑒⁡3) + (𝐷 + 𝐻 × 𝑠𝑡𝑎𝑡𝑒⁡2 + 𝑀 × 𝑠𝑡𝑎𝑡𝑒⁡3)⁡⁡ln⁡(𝐿 × 𝑦)⁡]⁡           (5.6) 

The coefficients added are I, J, K and M. The analysis procedure is conducted once for average 

conditions and once for the proposed based conditions. 

 

5.2 Rural Four-Leg Signalized Intersections – Research Methodology 

The PROC GENMOD and NLMIXED procedures of SAS are used to develop SPFs for four-leg 

signalized intersections. Similar to the segments’ case, each state’s four-leg signalized 

intersection data are used for SPF development. The SPFs take the following form. 
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𝑁𝑆𝑃𝐹 = exp[𝐴 + 𝐵 ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) +𝐷 ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)]           (5.7) 

 

The terms AADTmajor and AADTminor are entering AADTs from the major road and minor roads, 

respectively. If the transformed minor road AADT variable is statistically insignificant at the 95th 

percentile confidence interval, the total entering AADT, AADTtotal, is used instead as shown in 

Equation (5.8). 

𝑁𝑆𝑃𝐹 = exp[𝐴 + 𝐽 ln(𝐴𝐴𝐷𝑇𝑡𝑜𝑡𝑎𝑙)]              (5.8) 

The overdispersion parameter, k, is simply equal to a single value, P, to be estimated. When 

intersection data from two states are pooled for development of joint SPFs, the SPFs take the 

following form. 

𝑁𝑆𝑃𝐹 = exp[𝐴 + 𝐵 ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) +𝐷 ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) + E(𝑠𝑡𝑎𝑡𝑒⁡2) + F(𝑠𝑡𝑎𝑡𝑒⁡2 ×ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟)) + 𝐼(𝑠𝑡𝑎𝑡𝑒⁡2 × ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟))]           (5.9) 

Similarly, if the minor road AADT is insignificant at the 95th percentile confidence interval, the 

joint SPF takes the form as follows. 

𝑁𝑆𝑃𝐹 = exp[𝐴 + 𝐽 ln(𝐴𝐴𝐷𝑇𝑡𝑜𝑡𝑎𝑙) + E(𝑠𝑡𝑎𝑡𝑒⁡2) + M(𝑠𝑡𝑎𝑡𝑒⁡2 × ln(𝐴𝐴𝐷𝑇𝑡𝑜𝑡𝑎𝑙))]                (5.10) 

Whether both the major and minor road AADTs are used or the total AADT is used, the 

overdispersion parameter takes the following form for the pooled SPF. 

 𝑘 = 𝑃 + 𝑄 × 𝑠𝑡𝑎𝑡𝑒⁡2            (5.11) 

The additional parameter coefficients E, F, I, M and Q are used to capture differences between 

crash frequencies in the two states of which data are used for developing the SPF. The dummy 

variable, state 2, is used to represent one state while the other state is the reference state. Both 
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average and proposed base conditions of the four-leg signalized intersection data are processed 

by means of the research methodology described. 

 

5.3 Transferability Assessment 

After development of SPFs, which are based on each state’s data, and joint SPFs, which are 

based on data pooled from multiple states, the transferability of SPFs is assessed. First, the 

jurisdiction specific SPFs and joint SPFs are applied to each state. Subsequently, the 

transferability assessment is conducted by calculating a measure called the transfer index, TI, 

which was used in similar settings by Sikder et al. (2014) and Hadayeghi et al. (2006). The TI 

value indicates the performance of the SPF being transferred to the jurisdiction of which it is 

being applied. The TI is calculated by the following formula. 

𝑇𝐼 = (𝐿𝐿𝑖(𝛽𝑗) − 𝐿𝐿𝑗(𝛽𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝑗)) / (𝐿𝐿𝑗(𝛽𝑗) − 𝐿𝐿𝑗(𝛽𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝑗))       (5.12) 

In Equation (5.12), LLi(βj) is the log-likelihood of the SPF, estimated based on data, i, that is 

being implemented to predict crash frequencies in a specific jurisdiction, j. The terms LLj(βj) and 

LLj(βreference j) are the log-likelihoods of the jurisdiction specific SPF and of the jurisdiction 

specific SPF with the constant only respectively. The transfer index is a measure that is used to 

compare the model being transferred relative to the jurisdiction specific model. High transfer 

index values indicate that the transferred SPF performs better than the jurisdiction specific one 

with the constant only. The maximum transfer index value is unity. It indicates that the 

transferred model is performing as well as the jurisdiction specific model. Negative transfer 

indices indicate that the transferred SPF underperforms the jurisdiction specific one with the 

constant only.  
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5.4 Modified Empirical Bayes Method 

A modified Empirical Bayes (EB) method is proposed as a substitute to the HSM calibration 

factor method. That is because there is a drawback of the HSM calibration factor method. It is 

that every segment’s predicted crash frequency is multiplied by the same calibration factor. Not 

all segments’ or intersections’ predicted crash frequencies will become nearer to the observed 

crash frequencies. The proposed modified EB method is used to adjust each segment or 

intersection’s predicted crash frequency. In the modified EB method, a certain weight, w, is 

allocated to observed crash frequencies, Nobs, and predicted crash frequencies, NSPF. The sum of 

the weighted observed and predicted crash counts is the expected crash count, Nexp. It is defined 

as shown as per the HSM. 

𝑁𝑒𝑥𝑝⁡𝑖 = (1 − 𝑤𝑖)𝑁𝑜𝑏𝑠⁡𝑖 + 𝑤𝑖 ×𝑁𝑆𝑃𝐹⁡𝑖         (5.13) 

The subscripts i are the segment or intersection number. In addition, the weight is a function of 

the overdispersion parameter of the SPF applied. It is defined as follows. 

𝑤𝑖 = 1/(1 + 𝑘𝑖 × 𝑁𝑆𝑃𝐹)            (5.14) 
 

Since the observed crashes for every segment or intersection for a future year is unavailable, the 

modified EB method is used with past observed crash data of the jurisdiction under study. That 

is, the term Nobs i is replaced by Npobs i, which represents the observed crash frequency of a past 

period for segment or intersection i. The basis of the modified EB method is that if the 

overdispersion parameter of the SPF being transferred is low, the expected crash frequency will 

be dependent mostly on the predicted crash frequency. On the other hand, if the overdispersion 

parameter is large, then the expected crash frequency will be excessively dependent on the past 

observed crash frequency. 
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5.5 Goodness of Fit Measures 

The goodness of fit measures of SPFs that are used are negative twice the log-likelihood value of 

the SPFs, or -2LL, mean absolute deviation (MAD) and mean square predicted error (MSPE). 

The measures MAD and MSPE are defined as shown. 

𝑀𝐴𝐷 = ∑ |𝑁𝑜𝑏𝑠⁡𝑖 − 𝑁𝑆𝑃𝐹⁡𝑖|/𝑁𝑁𝑖=1           (5.15) 

𝑀𝑆𝑃𝐸 = ∑ (𝑁𝑜𝑏𝑠⁡𝑖 − 𝑁𝑆𝑃𝐹⁡𝑖⁡)2/𝑁𝑁𝑖=1           (5.16) 

The subscripts i, are the segment or intersection numbers. Generally, both the MAD and MSPE 

are measures of the average deviation between each segment or intersection’s predicted crash 

frequency and observed crash frequency.   
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CHAPTER 6: DATA ANALYSIS AND DISCUSSION FOR RURAL 

DIVIDED MULTILANE HIGHWAY SEGMENTS 

In this chapter, results of the jurisdiction specific, two-state and three-state joint SPFs are 

presented and discussed. Also included are the results of the transfer indices and modified EB 

method. That is for both rural multilane highway segments and four-leg signalized intersections 

for average and proposed base conditions. In all cases, statistically insignificant variables at the 

95th percentile confidence interval are removed from the SPFs and the models are re-estimated. 

 

6.1 Rural Divided Multilane Highway Segments – Average Conditions Safety Performance 

Functions 

The average conditions one-state and joint SPFs are developed for KABCO, KABC, KAB, KA, 

SV and MV crashes at segments. That is based on the 2009 through 2011 crash data of both 

Florida and Ohio. California’s SPFs are developed using its 2009 through 2010 crash data. 

Hence, there are a total of 42 SPFs developed for segments conforming to the average 

conditions. The results of the average conditions SPFs of the segments are presented and 

discussed in the following subsections. They are also documented in an article accepted for 

presentation at the 95th annual meeting of the Transportation Research Board (Farid et al., 2016).  

 

6.1.1 Jurisdiction Specific Average Conditions Segments’ Safety Performance Functions 

The Florida, Ohio and California jurisdiction specific SPFs are estimated successfully. Their 

results are shown in Tables 6.1 through 6.3. 
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Table 6.1: Florida’s SPFs for Average Conditions Rural Divided Multilane Highway Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-8.5925 
(<.0001) 

-9.4251 
(<.0001) 

-8.4571 
(<.0001) 

-6.7154 
(<.0001) 

-3.3229 
(<.0001) 

-12.1531 
(<.0001) 

Ln(AADT) 
1.0189 

(<.0001) 
1.0175 

(<.0001) 
0.8479 

(<.0001) 
0.5546 

(<.0001) 
0.3142 

(<.0001) 
1.3474 

(<.0001) 

C 
0.6786 

(<.0001) 
0.7186 

(<.0001) 
0.9805 

(<.0001) 
0.8352 

(0.0154) 
0.4376 

(0.0002) 
0.3649 

(<.0001) 

D 
-0.1991 
(0.0003) 

-0.04544 
(0.5154) 

-0.03383 
(0.7587) 

0.2077 
(0.3415) 

0.4729 
(<.0001) 

-0.2322 
(<.0001) 

Goodness of Fit Measures 

-2LL 7394.0 5662.7 4222.1 2326.6 3948.7 6870.6 

MAD 6.263 2.678 1.355 0.581 1.122 5.766 

MSPE 194.277 28.764 5.576 0.787 2.923 182.88 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 
the SPF 

 

Table 6.2: Ohio’s SPFs for Average Conditions Rural Divided Multilane Highway Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-9.6493 
(<.0001) 

-9.5687 
(<.0001) 

-8.9987 
(<.0001) 

-8.9187 
(<.0001) 

-7.2307 
(<.0001) 

-13.934 
(<.0001) 

Ln(AADT) 
1.0654 

(<.0001) 
0.9331 

(<.0001) 
0.8391 

(<.0001) 
0.6821 

(<.0001) 
0.7413 

(<.0001) 
1.4364 

(<.0001) 

C 
0.3024 

(0.0057) 
0.1979 

(0.4002) 
0.06173 
(0.8286) 

-0.03457 
(0.9711) 

0.3091 
(0.0573) 

-0.3352 
(0.0126) 

D 
0.58 

(<.0001) 
0.2672 

(0.1559) 
0.3593 

(0.1257) 
1.8963 

(0.0591) 
0.7664 

(<.0001) 
0.5164 

(0.0003) 

Goodness of Fit Measures 

-2LL 3951 2283.1 1940.2 800.4 3000.7 2691.4 

MAD 1.419 0.661 0.531 0.176 0.879 0.888 

MSPE 6.831 1.355 0.763 0.118 1.964 3.974 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 
the SPF 
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Table 6.3: California’s SPFs for Average Conditions Rural Divided Multilane Highway 
Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-9.2647 
(<.0001) 

-9.5299 
(<.0001) 

-8.4909 
(<.0001) 

-8.0426 
(<.0001) 

-8.2696 
(<.0001) 

-11.7955 
(<.0001) 

Ln(AADT) 
1.0798 

(<.0001) 
1.0085 

(<.0001) 
0.8346 

(<.0001) 
0.6625 

(<.0001) 
0.8901 

(<.0001) 
1.2812 

(<.0001) 

C 
0.2669 

(<.0001) 
0.2135 

(0.0167) 
0.3101 

(0.0332) 
0.2428 

(0.5045) 
0.3966 

(<.0001) 
-0.4304 
(<.0001) 

D 
0.502 

(<.0001) 
0.7057 

(<.0001) 
0.9289 

(<.0001) 
0.4724 

(0.3581) 
0.426 

(<.0001) 
0.4834 

(<.0001) 

Goodness of Fit Measures 

-2LL 5721.5 3839.3 2737.2 1354.2 3889.3 4583.7 

MAD 2.793 1.238 0.713 0.3 1.232 2.144 

MSPE 28.477 4.869 1.244 0.253 6.549 17.169 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 
the SPF 

 

In Tables 6.1 through 6.3, the parameters representing the constants, A’s, are negative, indicating 

that for a short segment with a considerably low AADT, the sum of the constant, natural 

logarithm of the AADT and natural logarithm of the segment length terms will yield a value of 

zero or less. The exponentiation of the value results in 1 crash if the value is zero or a fraction 

near zero if the value is to a great extent less than zero. The coefficients for the natural logarithm 

of the AADT are positive and less than 1.5. For a unit increase in the natural logarithm of the 

AADT, the predicted crash frequency increases by the corresponding coefficient of the natural 

logarithm of the AADT. It should be noted that the MSPE values for KABCO and MV crashes 

are considerably high in Florida and California. These high values may be an indication of the 

presence of outliers.  
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6.1.2 Joint Average Conditions Segments’ Safety Performance Functions 

The two-state and three state SPFs for segment average conditions are also estimated 

successfully. In some cases, the dummy variable representing the state is statistically 

insignificant on the 95th percentile confidence interval while interaction terms between the 

dummy variables and the natural logarithm of the AADT are significant. In those cases, the 

interaction terms are removed instead. That is to interpret the SPFs in a more meaningful 

manner. The joint SPF results are shown in Tables 6.4 through 6.7. 

Table 6.4: Florida and Ohio’s Joint SPFs for Average Conditions Rural Divided Multilane 
Highway Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-8.773 

(<.0001) 
-9.21 

(<.0001) 
-8.4354 
(<.0001) 

-6.931 
(<.0001) 

-3.323 
(<.0001) 

-12.4247 
(<.0001) 

Ln(AADT) 
1.0366 

(<.0001) 
0.9964 

(<.0001) 
0.8458 

(<.0001) 
0.5761 

(<.0001) 
0.3142 

(<.0001) 
1.3741 

(<.0001) 

OH 
-0.6091 
(<.0001) 

-0.9475 
(<.0001) 

-0.6256 
(<.0001) 

-1.000 
(<.0001) 

-3.9077 
(<.0001) 

-0.9284 
(<.0001) 

OH× 

Ln(AADT) 
- - - - 

0.4271 
(<.0001) 

- 

C 
0.6793 

(<.0001) 
0.7171 

(<.0001) 
0.9804 

(<.0001) 
0.8405 

(0.0151) 
0.4376 

(0.0002) 
0.3652 

(<.0001) 

G 
-0.381 

(0.0018) 
-0.5039 
(0.0434) 

-0.917 
(0.0043) 

-0.9145 
(0.3546) 

-0.1285 
(0.519) 

-0.7125 
(<.0001) 

D 
-0.1958 
(0.0004) 

-0.04821 
(0.4897) 

-0.03411 
(0.7566) 

0.2049 
(0.3483) 

0.4729 
(<.0001) 

-0.2278 
(<.0001) 

H 
0.7809 

(<.0001) 
0.3019 

(0.1324) 
0.392 

(0.1298) 
1.6752 

(0.0961) 
0.2936 

(0.1487) 
0.7553 

(<.0001) 

Goodness of Fit Measures 

-2LL 11,345.0 7,946.5 6,162.3 3,127.5 6,949.4 9,562.7 

MAD 3.894 1.692 0.952 0.383 1.004 3.386 

MSPE 102.963 15.316 3.224 0.460 2.455 96.157 

 
-  : statistically insignificant variables at alpha = 0.05 removed from the 
SPF 
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As shown in Table 6.4, the dummy variable, OH, represents Ohio state while the reference state 

is Florida. The dummy variable is statistically significant and negative for all crash 

classifications. That indicates that if all other variable values are unchanged, Ohio experiences 

fewer crashes than Florida, regardless of crash classification. The interaction term between the 

dummy variable and natural logarithm of the AADT is significant at the 95th percentile 

confidence interval and positive only for SV crashes. That is, the effect of the AADT on SV 

crashes in Ohio is more influential than in Florida. For all other crash classifications, the effects 

of the AADT on crash frequencies in both states are the same. The significances of the 

overdispersion coefficients associated with the dummy variable representing Ohio indicate that 

there are significant differences in crash frequencies in both states.  
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Table 6.5: Florida and California’s Joint SPFs for Average Conditions Rural Divided Multilane 
Highway Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-9.0931 
(<.0001) 

-9.3789 
(<.0001) 

-8.392 
(<.0001) 

-7.1268 
(<.0001) 

-3.323 
(<.0001) 

-11.8394 
(<.0001) 

Ln(AADT) 
1.0658 

(<.0001) 
1.013 

(<.0001) 
0.8415 

(<.0001) 
0.5955 

(<.0001) 
0.3142 

(<.0001) 
1.3166 

(<.0001) 

CA - 
-0.1951 
(<.0001) 

-0.1673 
(0.0019) 

-0.257 
(0.0017) 

-4.9467 
(<.0001) 

-0.3041 
(<.0001) 

CA×Ln(AADT) - - - - 
0.5758 

(<.0001) 
- 

C 
0.6783 

(<.0001) 
0.7183 

(<.0001) 
0.9801 

(<.0001) 
0.8451 

(0.0149) 
0.4376 

(0.0002) 
0.3641 

(<.0001) 

G 
-0.4231 
(<.0001) 

-0.5048 
(<.0001) 

-0.6706 
(0.0012) 

-0.5999 
(0.2326) 

-0.04098 
(0.7776) 

-0.7927 
(<.0001) 

D 
-0.1727 
(0.0011) 

-0.04601 
(0.5091) 

-0.03469 
(0.7526) 

0.2015 
(0.3564) 

0.4729 
(<.0001) 

-0.2372 
(<.0001) 

H 
0.6434 

(<.0001) 
0.751 

(<.0001) 
0.9613 

(<.0001) 
0.2812 

(0.6184) 
-0.04686 
(0.7586) 

0.7256 
(<.0001) 

Goodness of Fit Measures 

-2LL 13,118.0 9,502.0 6,959.3 3,681.6 7,838.0 11,455.0 

MAD 4.472 1.951 1.03 0.439 1.178 3.94 

MSPE 109.273 16.678 3.385 0.517 4.756 98.706 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 
the SPF 

 

For the joint Florida and California’s average conditions segments’ SPFs, the dummy variable 

representing California, CA, is statistically significant at the 95th percentile confidence interval 

and less than zero in SPFs of all crash classifications except for the KABCO SPF. The 

interaction term between the natural logarithm of the AADT and dummy variable is significant 

for the SV SPF only as is the case with the Florida and Ohio segments’ joint SV SPF. The 

significances of the overdispersion coefficients associated with the dummy variable representing 

the state indicate differences in crash frequencies in Florida and California. 
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Table 6.6: Ohio and California’s Joint SPFs for Average Conditions Rural Divided Multilane 
Highway Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-9.2195 
(<.0001) 

-9.3468 
(<.0001) 

-8.5024 
(<.0001) 

-8.091 
(<.0001) 

-7.8223 
(<.0001) 

-12.3026 
(<.0001) 

Ln(AADT) 
1.0751 

(<.0001) 
0.9898 

(<.0001) 
0.8357 

(<.0001) 
0.6675 

(<.0001) 
0.8444 

(<.0001) 
1.3329 

(<.0001) 

OH 
-0.5197 
(<.0001) 

-0.7498 
(<.0001) 

-0.465 
(<.0001) 

-0.6908 
(<.0001) 

-0.3637 
(<.0001) 

-0.6663 
(<.0001) 

OH×Ln(AADT) - - - - - - 

C 
0.2666 

(<.0001) 
0.2133 

(0.0168) 
0.31 

(0.0331) 
0.2422 

(0.5054) 
0.3913 

(<.0001) 
-0.4281 
(<.0001) 

G 
0.03701 
(0.7682) 

-0.00157 
(0.9951) 

-0.2491 
(0.4354) 

-0.2813 
(0.7821) 

-0.08927 
(0.6277) 

0.072 
(0.6279) 

D 
0.502 

(<.0001) 
0.7086 

(<.0001) 
0.9285 

(<.0001) 
0.4713 

(0.3582) 
0.437 

(<.0001) 
0.4904 

(<.0001) 

H 
0.07615 
(0.5854) 

-0.4535 
(0.0363) 

-0.5685 
(0.0513) 

1.4232 
(0.206) 

0.3158 
(0.1136) 

0.04359 
(0.7909) 

Goodness of Fit Measures 

-2LL 9,672.5 6,122.9 4,677.3 2,154.6 6,893.2 7,276.9 

MAD 2.128 0.958 0.625 0.24 1.062 1.549 

MSPE 17.978 3.155 1.011 0.188 4.346 11.228 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 
the SPF 

 

For the Ohio and California average conditions segments’ joint SPF, the dummy variable 

representing Ohio, OH, is statistically significant in all crash classifications and negative. Also, 

the interaction term between the natural logarithm of the AADT with the dummy variable is not 

significant in all crash types and severity levels. That is, Ohio experiences fewer crashes, 

regardless of classification, than California but the impact of the AADT on crashes is the same in 

both states’ rural divided multilane highway segments. In addition, the significances of the 
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overdispersion coefficients associated with the interaction terms capture differences in crash 

frequencies in Ohio and California that are not evident. 

Table 6.7: Florida, Ohio and California’s Joint SPFs for Average Conditions Rural Divided 
Multilane Highway Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-9.0923 
(<.0001) 

-9.2633 
(<.0001) 

-8.3885 
(<.0001) 

-7.2242 
(<.0001) 

-3.323 
(<.0001) 

-12.0694 
(<.0001) 

Ln(AADT) 
1.0657 

(<.0001) 
1.0016 

(<.0001) 
0.8412 

(<.0001) 
0.6052 

(<.0001) 
0.3142 

(<.0001) 
1.3392 

(<.0001) 

OH 
-0.5599 
(<.0001) 

-0.943 
(<.0001) 

-0.6295 
(<.0001) 

-0.9777 
(<.0001) 

-3.9077 
(<.0001) 

-0.9586 
(<.0001) 

CA - 
-0.1991 
(<.0001) 

-0.1674 
(0.0018) 

-0.2546 
(0.0018) 

-4.9467 
(<.0001) 

-0.2954 
(<.0001) 

OH×Ln(AADT) - - - - 
0.4271 

(<.0001) 
- 

CA×Ln(AADT) - - - - 
0.5758 

(<.0001) 
- 

C 
0.6783 

(<.0001) 
0.7175 

(<.0001) 
0.9801 

(<.0001) 
0.8474 

(0.0148) 
0.4376 

(0.0002) 
-0.3547 
(0.0072) 

G 
-0.3758 
(0.0021) 

-0.5032 
(0.0438) 

-0.9179 
(0.0042) 

-0.9091 
(0.3615) 

-0.1285 
(0.519) 

0.7194 
(<.0001) 

K 
-0.4231 
(<.0001) 

-0.504 
(<.0001) 

-0.6706 
(0.0012) 

-0.6019 
(0.2315) 

-0.04098 
(0.7776) 

-0.07328 
(0.6216) 

D 
-0.1727 
(0.0011) 

-0.04751 
(0.4953) 

-0.03473 
(0.7522) 

0.1996 
(0.361) 

0.4729 
(<.0001) 

0.533 
(0.0002) 

H 
0.7527 

(<.0001) 
0.3001 

(0.1342) 
0.3936 

(0.1279) 
1.6858 

(0.0962) 
0.2936 

(0.1487) 
-0.7666 
(<.0001) 

M 
0.6434 

(<.0001) 
0.7543 

(<.0001) 
0.9614 

(<.0001) 
0.2822 

(0.6168) 
-0.04686 
(0.7585) 

-0.04186 
(0.7988) 

Goodness of Fit Measures 

-2LL 17,069.0 11,786.0 8,899.4 4,482.3 10,839.0 14,148.0 

MAD 3.492 1.536 0.87 0.355 1.082 2.966 

MSPE 76.401 11.735 2.544 3.846 3.969 57.264 

 

 
-  : statistically insignificant variables at alpha = 0.05 removed from the SPF 

 

In the joint three state SPFs, more variables are estimated relative to the two-state and 

jurisdiction specific SPFs because there are two dummy variables representing the states, 
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interaction terms of the additional dummy variable and overdispersion coefficients for the 

additional dummy variable. The dummy variables are statistically significant at the 95th 

percentile confidence interval except for the KABCO SPF. That is, the crash frequencies in all 

three states are different if all variable values are the same. Yet for KABCO crashes, Florida and 

California’s crash frequencies are not considerably different. They are also greater than the 

KABCO crashes in Ohio. Also, the interaction terms are statistically insignificant in all crash 

classifications except for SV crashes as are the cases of the two-state joint SPFs. For the three-

state joint SV crashes’ SPF, the significance of the interaction terms indicate that the effect of the 

AADT on SV crashes in California is the greatest followed by that of Ohio, which is followed by 

that of Florida. The significance of the overdispersion coefficients that are associated with the 

state dummy variables describe the differences in contributing factors in crash frequencies 

among all three states that are not observed. 

 

6.1.3 General Remarks on the Joint Safety Performance Functions 

The development of two and three-state joint SPFs unmistakably brings to attention the 

differences in evident and latent contributing factors that lead to crashes in Florida, Ohio and 

California. When differences in the overdispersion parameter are taken into consideration, 

differences in crash counts among states are captured by including dummy variables representing 

the states. According to the results of the analysis, it is crucial to include the state dummy 

parameter in the overdispersion. That is a frequently overlooked issue in SPF estimation. The 

coefficients belonging to the overdispersion parameter capture jurisdiction specific 

characteristics such as roadway geometrics, environmental factors, driver behavior factors and 

other factors that contribute to crashes.  
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6.1.4 Transferability Assessment for Segment Average Conditions 

The transferability assessment is performed by applying one-state, two-state and three-state joint 

SPFs to a chosen jurisdiction whether Florida, Ohio or California. In addition, the transfer 

indices are calculated. The process is repeated for every jurisdiction and all crash classifications. 

Transfer indices are presented in Table 6.8. 
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Table 6.8: Average Conditions Rural Divided Multilane Highway Segments - Transfer Indices 

Crash Type or 

Severity 
SPF 

Application Data 

Florida Ohio California 

KABCO 

Florida 1 -0.273 0.716 

Ohio -0.367 1 0.429 

California 0.453 0.172 1 

Florida and Ohio 1 0.999 0.72 

Florida and California 0.996 -0.033 0.998 

Ohio and California 0.454 1 1 

Florida, Ohio and California 0.995 1 0.998 

KABC 

Florida 1 -3.2 0.738 

Ohio -2.718 1 -0.47 

California 0.518 -1.85 1 

Florida and Ohio 0.999 0.996 0.732 

Florida and California 1 -3.24 1 

Ohio and California 0.508 0.997 1 

Florida, Ohio and California 1 0.995 1 

KAB 

Florida 1 -1.573 0.728 

Ohio -0.982 1 0.328 

California 0.453 -0.642 1 

Florida and Ohio 1 1 0.728 

Florida and California 1 -1.62 1 

Ohio and California 0.453 1 1 

Florida, Ohio and California 1 1 1 

KA 

Florida 1 -9.671 0.581 

Ohio -7.464 1 -1 

California 0.352 -3.418 1 

Florida and Ohio 0.998 0.978 0.603 

Florida and California 0.994 -8.913 0.99 

Ohio and California 0.356 1 1 

Florida, Ohio and California 0.991 0.989 0.993 

SV 

Florida 1 0.634 -0.864 

Ohio -6.371 1 0.512 

California -20.822 0.187 1 

Florida and Ohio 1 1 -0.865 

Florida and California 1 0.634 1 

Ohio and California -19.985 0.981 0.997 

Florida, Ohio and California 1 1 1 

MV 

Florida 1 -0.83 0.208 

Ohio -0.818 1 0.361 

California 0.25 0.186 1 

Florida and Ohio 0.999 0.998 0.212 

Florida and California 0.999 -0.937 0.999 

Ohio and California 0.265 0.995 0.998 

Florida, Ohio and California 1 0.996 0.998 
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As shown in Table 6.8, the Florida SPFs being transferred to Florida state yield the maximum 

transfer indices of unity. This applies to all other states. Regarding the one-state SPFs, the 

transfer indices indicate poor transferability except for Florida and California. When two-state 

models are applied, the transfer indices increase considerably. For transfer indices corresponding 

to the two-state joint SPFs, only Ohio has negative transfer indices. Implications of the transfer 

index results are that Florida and Ohio regions are different. That is because each’s SPFs are not 

transferable to the other state. Yet, when Ohio’s data are combined with that of California, the 

SPF transferability to Florida improves. Therefore, if local data are not available, application of 

SPFs developed from at least two states is recommended for use. That is to prevent use of SPFs 

that are uncharacteristic of the actual conditions. When the three-state joint SPFs are applied, the 

transferability is more likely to improve because the addition of data from a state increases the 

sample size in the combined data. The transfer indices are near unity. It would be recommended 

to apply the joint three-state model to any state other than Florida, Ohio or California. 

 

6.1.5 Modified Empirical Bayes Results for Average Conditions Segments 

The modified EB method is proposed to facilitate transferability of SPFs among states. The 

method is applied to correct for each segment’s predicted crash frequency. The proposed method 

is compared with the HSM calibration method. The comparison is made by applying one-state 

models to the other two states. Once, the models are applied to predict crash frequencies the 

MAD and MSPE measures are calculated for three scenarios. The first scenario is the one in 

which the predicted crash frequencies are kept unadjusted. In the second scenario, the predicted 

crash frequencies are adjusted using the HSM calibration method. The third scenario is the one in 
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which the modified EB method is applied to correct for predicted crash frequencies. The 

comparisons are made for KABCO crashes and the results are shown in Table 6.9.   

Table 6.9: Comparison of Predicted, Calibrated and Expected KABCO Crash Frequencies – 
Average Conditions Rural Divided Multilane Highway Segments 

Goodness of 

Fit Measures 

Based on 

Predicted Crash 

Frequency 

Based on Predicted Crash 

Frequency Multiplied by the 

HSM’s Calibration Factor 

Based on Predicted 

Crash Frequency with 

EB Correction 

 Application of Florida’s KABCO SPF to Ohio 

MAD 2.329 1.423 0.676 

MSPE 15.194 6.883 0.663 

 Application of Florida’s KABCO SPF to California 

MAD 2.906 2.679 0.890 

MSPE 29.550 26.949 2.187 

 Application of Ohio’s KABCO SPF to Florida 

MAD 4.609 5.149 1.075 

MSPE 161.521 163.573 4.184 

 Application of Ohio’s KABCO SPF to California 

MAD 2.471 2.676 0.848 

MSPE 28.418 27.076 2.233 

 Application of California’s KABCO SPF to Florida 

MAD 5.977 5.142 0.820 

MSPE 186.324 163.869 1.669 

 Application of California’s KABCO SPF to Ohio 

MAD 2.088 1.423 0.629 

MSPE 12.386 6.816 0.649 

     

As shown in Table 6.9, the HSM calibration method does not necessarily improve the accuracy 

of the prediction of the SPFs. For instance, when Ohio’s KABCO SPF is applied to Florida and 

the HSM calibration factor is multiplied by the predicted crash frequencies, the resulting 

prediction becomes less accurate. On the other hand, the modified EB method markedly reduces 

the MADs and MSPEs relative to the HSM calibration method. Therefore, the modified EB 

method is convenient for adjusting crash counts predicted by the transferred SPFs. 
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6.2 Rural Divided Multilane Highway Segments – Modified Base Conditions’ Safety 

Performance Functions 

The rural divided highway segments average conditions data are subset to include only segments 

that satisfy the modified base conditions. The Florida and Ohio one-state SPFs are developed 

using each state’s crash data from the years 2009 to 2011. California’s SPFs are developed from 

the 2009 and 2011 crash data. Furthermore, only the Ohio and California data are pooled for 

development of joint SPFs. That is because of the lack of segments satisfying the modified base 

conditions in Florida relative to the other states. The analysis results for the segments’ modified 

base conditions are presented and discussed in the following subsections. 

 

6.2.1 Jurisdiction Specific Modified Base Conditions Segments’ Safety Performance Functions 

The jurisdiction specific SPFs for divided segments that conform to the modified base conditions 

are developed successfully. Their results are shown in Tables 6.10 through 6.12. 
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Table 6.10: Florida’s SPFs for Modified Base Conditions Rural Divided Multilane Highway 
Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-4.5044 
(0.0207) 

-6.4534 
(0.0335) 

-6.2837 
(0.0651) 

-4.5994 
(0.3393) 

-2.1744 
(0.3665) 

-7.1909 
(0.012) 

Ln(AADT) 
0.5518 

(0.0038) 
0.6776 

(0.0221) 
0.6134 

(0.0622) 
0.3654 

(0.4315) 
0.2195 

(0.3461) 
0.7732 

(0.0058) 

C 
1.4488 

(0.0016) 
0.9281 

(0.0589) 
0.608 

(0.3002) 
-0.2127 
(0.7795) 

12.5049 
(0.9061) 

0.7596 
(0.0469) 

D 
1.0254 

(0.0778) 
0.9925 

(0.1041) 
1.1196 

(0.0779) 
1.2081 

(0.0618) 
0.6444 

(0.9839) 
0.9318 

(0.0778) 

Goodness of Fit Measures 

-2LL 274.0 218.6 174.4 106.4 158.6 248.5 

MAD 2.083 1.603 1.137 0.607 0.885 1.917 

MSPE 8.927 5.073 2.630 0.801 1.352 7.957 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 
the SPF 

    

Table 6.11: Ohio’s SPFs for Modified Base Conditions Rural Divided Multilane Highway 
Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-11.6144 
(<.0001) 

-13.2993 
(<.0001) 

-14.1526 
(<.0001) 

-12.9638 
(0.0006) 

-9.7614 
(<.0001) 

-16.0015 
(<.0001) 

Ln(AADT) 
1.2629 

(<.0001) 
1.3075 

(<.0001) 
1.3666 

(<.0001) 
1.092 

(0.0063) 
1.0119 

(<.0001) 
1.6287 

(<.0001) 

C 
0.5562 

(0.0066) 
0.1494 

(0.7333) 
0.08201 
(0.8776) 

11.1799 
(0.962) 

0.2857 
(0.2632) 

-0.1121 
(0.6614) 

D 
0.6307 

(0.0037) 
0.5468 

(0.1253) 
0.3836 

(0.3446) 
0.7514 
(0.991) 

0.8936 
(0.0009) 

0.7035 
(0.0125) 

Goodness of Fit Measures 

-2LL 1413 751.8 641.7 263.2 1124.8 929.4 

MAD 1.366 0.61 0.507 0.166 0.986 0.756 

MSPE 4.194 0.929 0.686 0.091 1.963 1.771 

 
-  : statistically insignificant variables at alpha = 0.05 removed from the 
SPF 
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Table 6.12: California’s SPFs for Modified Base Conditions Rural Divided Multilane Highway 
Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-9.8162 
(<.0001) 

-10.0834 
(<.0001) 

-9.7057 
(<.0001) 

-8.6512 
(<.0001) 

-7.8579 
(<.0001) 

-13.6728 
(<.0001) 

Ln(AADT) 
1.1055 

(<.0001) 
1.0357 

(<.0001) 
0.9328 

(<.0001) 
0.704 

(<.0001) 
0.8308 

(<.0001) 
1.4265 

(<.0001) 

C 
0.4915 

(<.0001) 
0.4047 

(0.0142) 
0.5033 

(0.0836) 
-0.00616 
(0.9925) 

1.0947 
(<.0001) 

-0.3918 
(0.0005) 

D 
0.5836 

(<.0001) 
0.663 

(0.0007) 
1.0829 

(0.0009) 
1.6728 

(0.0622) 
0.4383 

(0.0597) 
0.6527 

(<.0001) 

Goodness of Fit Measures 

-2LL 2258.6 1495.5 1087.9 551.7 1617.0 1689.6 

MAD 2.285 1.058 0.648 0.287 1.064 1.776 

MSPE 19.850 3.070 0.915 0.242 3.074 15.608 

 
-  : statistically insignificant variables at alpha = 0.05 removed from the 
SPF 

 

As shown in Tables 6.10 through 6.12, the natural logarithm of the AADT variable is statistically 

insignificant at the 95th percentile confidence interval for Florida’s KAB, KA and SV crashes. 

That is because of the low sample size of 57 segments. There is a lack of data to support the 

assertion that the AADT influences non-incapacitating, incapacitating and single-vehicle crashes. 

That is unlike the cases of Ohio and California. 

 

6.2.2 Ohio and California Joint Modified Base Conditions Divided Segments’ Safety 

Performance Functions 

The Ohio and California data of the divided segments conforming to the base conditions are 

combined. The developed joint SPFs of the pooled data are shown in Table 6.13. 
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Table 6.13: Ohio and California’s Joint SPFs for Modified Base Conditions Rural Divided 
Multilane Highway Segments 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-10.4375 
(<.0001) 

-11.0919 
(<.0001) 

-10.6220 
(<.0001) 

-9.8039 
(<.0001) 

-8.3530 
(<.0001) 

-14.5149 
(<.0001) 

Ln(AADT) 
1.1371 

(<.0001) 
1.0723 

(<.0001) 
0.9904 

(<.0001) 
0.7557 

(<.0001) 
0.8613 

(<.0001) 
1.4704 

(<.0001) 

CA 
0.3096 

(<.0001) 
0.6451 

(<.0001) 
0.3416 

(0.0046) 
0.6377 

(0.0011) 
0.1922 

(0.0151) 
0.4072 

(0.0002) 

CA×Ln(AADT) - - - - - - 

C 
0.5442 

(0.0073) 
0.1215 

(0.7788) 
0.05130 
(0.9225) 

9.7495 
(0.9715) 

0.2823 
(0.2693) 

-0.1336 
(0.5964) 

G 
-0.05102 
(0.8236) 

0.2822 
(0.5422) 

0.4394 
(0.4653) 

-9.7658 
(0.9715) 

0.8175 
(0.0135) 

-0.2578 
(0.3501) 

D 
0.6473 

(0.0027) 
0.5680 

(0.1079) 
0.4024 

(0.3237) 
1.0930 

(0.9937) 
0.8964 

(0.0008) 
0.7255 

(0.0094) 

H 
-0.06195 
(0.8018) 

0.09297 
(0.8177) 

0.6697 
(0.1977) 

0.5744 
(0.9967) 

-0.4491 
(0.2051) 

-0.07034 
(0.8177) 

Goodness of Fit Measures 

-2LL 3672.7 2248.8 1732.3 815.7 2743.1 2619.9 

MAD 1.901 0.868 0.588 0.235 1.031 1.347 

MSPE 13.149 2.161 0.816 0.177 2.581 9.794 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 
the SPF 

 

As shown in Table 6.13, the dummy variables representing California, CA, are statistically 

significant at the 95th percentile confidence interval in the SPFs of all crash classifications. The 

dummy variables are also positive indicating that with the AADT being unchanged, California’s 

segments conforming to the modified base conditions experience more KABCO, KABC, KAB, 

KA, SV and MV crashes than Ohio’s. In the case of the Ohio and California’s average conditions 

divided segments’ joint SPFs, the dummy variable representing California is also significant in 

all crash classifications but negative. That is, either the lane width, shoulder width, median 
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width, lighting conditions or automated speed enforcement contributes significantly to crashes. It 

should be noted that the KA crashes’ SPF is run with the interaction term between the dummy 

variable representing the state with the natural logarithm of the AADT and did not converge. 

Removal of the interaction term caused the model to converge. In addition, the statistical 

insignificance of the interaction terms indicate that the effect of the AADT on crashes, regardless 

of type or severity level, in California is not different from that in Ohio. That is similar to the 

case of Ohio and California’s joint SPFs for divided segments conforming to average conditions. 

 

6.2.3 Transferability Assessment for Divided Segments Modified Base Conditions 

The transferability assessment is conducted by applying the modified base conditions jurisdiction 

specific SPFs to each state and calculating the transfer indices. Also, the Ohio and California’s 

modified base conditions segments’ joint SPFs are applied to each state and the transfer indices 

are calculated. Transfer index results are shown in Table 6.14. As previously stated in the data 

preparation chapter, the Florida data are not pooled with those of any other state because the 

number of segments, conforming to the modified base conditions, in Florida is low relative to 

those of the other two states. That may bias the results. 
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Table 6.14: Modified Base Conditions Rural Divided Multilane Highway Segments - Transfer 
Indices 

Crash Type or 

Severity 
SPF 

Application Data 

Florida Ohio California 

KABCO 

Florida 1 -1.478 -0.076 

Ohio -0.948 1 0.838 

California -1.229 0.505 1 

Ohio and 

California 
-0.485 0.990 0.999 

KABC 

Florida 1 -5.705 0.726 

Ohio -1.009 1 0.339 

California 0.649 -1.418 1 

Ohio and 

California 
-2.405 0.968 0.999 

KAB 

Florida 1 -3.803 0.654 

Ohio -0.359 1 0.683 

California 0.587 -0.112 1 

Ohio and 

California 
-1.825 0.928 0.996 

KA 

Florida 1 -20.978 -1.803 

Ohio -38.673 1 -0.676 

California -11.185 -2.426 1 

Ohio and 

California 
-59.267 0.914 0.994 

SV 

Florida 1 -1.290 -1.544 

Ohio NA 1 0.710 

California NA 0.451 1 

Ohio and 

California 
NA 0.978 0.998 

MV 

Florida 1 -2.481 -0.094 

Ohio -0.441 1 0.779 

California -0.843 0.508 1 

Ohio and 

California 
-0.436 0.990 0.999 

 
NA : Constants only model of jurisdiction specific data failed to 
converge  

 

The Florida KABC and KAB SPFs are transferable to California and vice versa as indicated by 

the high transfer indices. They are even higher than their counterparts in the divided segments’ 

average conditions. That is because both states’ divided segments’ characteristics conform to the 

modified base conditions. Yet, the transfer indices of Florida to California and vice versa for 
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KABCO crashes for modified base conditions are lower than those of the average conditions. 

That is most likely because of the low sample size of segments conforming to the modified base 

conditions in Florida. On the other hand, Florida’s SPFs, regardless of crash classification, are 

not transferable to Ohio and vice versa as indicated by the negative transfer indices. Furthermore, 

it crucial to note that for SV crashes, the constants only SPF of Florida failed to converge 

inhibiting calculation of transfer indices of the other two states’ SV SPFs and the joint SV SPF to 

Florida state. Finally, the Ohio and California joint SPFs are not transferable to Florida as 

indicated by the negative transfer indices as opposed to the case of the average conditions. 

Similarly, that is possibly because there are only 57 divided segments satisfying the modified 

base conditions in Florida.  
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CHAPTER 7: DATA ANALYSIS AND DISCUSSION FOR RURAL FOUR-

LEG SIGNALIZED INTERSECTIONS 

 

7.1 Rural Four-Leg Signalized Intersections – Average Conditions Safety Performance 

Functions 

The analysis procedure is different for four-leg signalized intersections. Florida and Ohio’s 

average conditions four-leg signalized intersection data from 2009 to 2010 are used for 

development of one-state and joint SPFs. California’s 2009 data are also used for estimating 

jurisdiction specific SPFs. Florida’s 2011 data, Ohio’s 2011 data and California’s 2010 data are 

used for application of the modified EB method. The results of the average conditions SPFs for 

four-leg signalized intersections are presented and discussed in the following subsections. Since 

the number of intersections sampled in California is limited, only the Florida and Ohio data are 

used for estimation of joint SPFs. 

 

7.1.1 Jurisdiction Specific Average Conditions Rural Four-Leg Signalized Intersections’ Safety 

Performance Functions 

The jurisdiction specific SPFs for average conditions are developed successfully except for SV 

crashes in Florida and KA crashes in California. That is mainly because there are only 7 SV 

crashes in Florida and 4 KA crashes in California. The jurisdiction specific SPF results are 

shown in Tables 7.1 through 7.3. 

  



63 
 

Table 7.1: Florida’s SPFs for Average Conditions Rural Four-Leg Signalized Intersections 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-10.4409 
(0.0003) 

-9.5045 
(0.0047) 

-9.0437 
(0.0228) 

-16.2787 
(0.0274) 

Fail to 
converge 

-11.0295 
(0.0002) 

Ln(AADT major) NA NA NA NA NA 

Ln(AADT minor) NA NA NA NA NA 

Ln(AADT total) 
1.0049 

(0.0006) 
0.8449 

(0.0145) 
0.7227 

(0.0758) 
1.3346 

(0.0737) 
1.0596 

(0.0006) 

k 1.349 1.3997 0.5891 0 1.4469 

Goodness of Fit Measures 

-2LL 351.8 254.2 164.6 68.0 
Fail to 

converge 

340.9 

MAD 1.07 0.68 0.395 0.136 1.03 

MSPE 2.238 0.912 0.291 0.068 2.129 

 NA : not applicable variables 

 

Table 7.2: Ohio’s SPFs for Average Conditions Rural Four-Leg Signalized Intersections 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-5.1407 
(<.0001) 

-9.5198 
(<.0001) 

-9.5693 
(<.0001) 

-5.9594 
(0.1902) 

0.6957 
(0.8308) 

-5.7121 
(<.0001) 

Ln(AADT major) 
0.5131 

(<.0001) 
0.8321 

(<.0001) 
0.7486 

(0.0005) 
NA NA 

0.5736 
(<.0001) 

Ln(AADT minor) 
0.1728 

(0.0006) 
0.2082 
(0.032) 

0.2474 
(0.0396) 

NA NA 
0.1675 

(0.0011) 

Ln(AADT total) NA NA NA 
0.3592 

(0.4594) 
-0.3108 
(0.3801) 

NA 

k 0.2293 0.8209 1.128 4.3726 1.2686 0.239 

Goodness of Fit Measures 

-2LL 566.6 371.5 288.5 103.4 143.5 556.1 

MAD 2.48 1.354 0.901 0.262 0.376 2.407 

MSPE 13.378 5.041 2.28 0.239 0.29 12.788 

 NA : not applicable variables 
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Table 7.3: California’s SPFs for Average Conditions Rural Four-Leg Signalized Intersections 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-7.6211 
(0.0052) 

-5.0492 
(0.1270) 

-5.0546 
(0.5639) 

Fail to 
converge 

5.2161 
(0.4895) 

-9.1584 
(0.0005) 

Ln(AADT major) NA NA NA NA 
0.8594 

(0.0006) 

Ln(AADT minor) NA NA NA NA 
0.1992 

(0.0344) 

Ln(AADT total) 
0.8605 

(0.0012) 
0.5308 

(0.1024) 
0.4415 

(0.6075) 
-0.6166 
(0.4136) 

NA 

k 0.1566 4.04×10-6 1.251×10-6 1.3221 0.0784 

Goodness of Fit Measures 

-2LL 136.7 94.8 65.8 
Fail to 

converge 

54.6 124.7 

MAD 1.756 0.804 0.613 0.554 1.451 

MSPE 5.502 1.109 0.531 0.58 3.791 

 NA : not applicable variables 

 

As shown in Tables 7.1 through 7.3, the natural logarithm of the total entering AADT is used 

instead of those of the major and minor road AADTs in several SPFs. That is because the 

transformed minor road AADT variables are statistically insignificant at the 95th percentile 

confidence interval. It is critical to note that while Florida’s SV crashes’ SPF fails to converge, in 

those of Ohio and California, the constant terms are positive implying abnormally high SV crash 

frequencies even for low AADTs. Also, the natural logarithm of the total AADTs are 

insignificant. That is an indication that the total entering AADT, an exposure measure, does not 

influence SV crashes. The positive constant and insignificant transformed AADT variable are 

results that are inconsistent with those of the segments. It is most likely because of the limited 

number of SV crashes in Ohio and California. The observed SV crash frequencies are 28 and 13 

in Ohio and California, respectively. 



65 
 

7.1.2 Florida and Ohio’s Joint Average Conditions Rural Four-Leg Signalized Intersections’ 

Safety Performance Functions 

The Florida and Ohio joint average conditions four-leg signalized intersections’ SPFs are run 

successfully for all crash classifications except for KA crashes. The KA model failed to 

converge. The results of the joint SPFs are shown in Table 7.4. 

Table 7.4: Florida and Ohio’s Joint SPFs for Average Conditions Rural Four-Leg Signalized 
Intersections 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-7.1980 
(<.0001) 

-8.5937 
(<.0001) 

-8.3259 
(0.0004) 

Failed to 
converge 

-1.4718 
(0.6333) 

-7.7673 
(<.0001) 

Ln(AADT major) 
0.5364 

(<.0001) 
NA NA NA 

0.5923 
(<.0001) 

Ln(AADT minor) 
0.1799 

(0.0003) 
NA NA NA 

0.1785 
(0.0004) 

Ln(AADT total) NA 
0.8437 

(<.0001) 
0.7530 

(0.0023) 
-0.2237 
(0.4853) 

NA 

OH 
1.7926 

(<.0001) 
- - 

1.3672 
(0.0025) 

1.8035 
(<.0001) 

OH ×Ln (AADT 

major) 
- NA NA NA - 

OH ×Ln (AADT 

minor) 
- NA NA NA - 

OH ×Ln (AADT 

total) 
NA - - - NA 

P 
1.4092 

(0.0005) 
3.1814 

(0.0015) 
3.8424 

(0.0366) 
2.596×10-6 

(-) 
1.5040 

(0.0007) 

Q 
-1.1796 
(0.0039) 

-2.2110 
(0.0391) 

-2.4381 
(0.2242) 

1.1819 
(0.2292) 

-1.2646 
(0.0045) 

Goodness of Fit Measures 

-2LL 920.2 658.2 484.9 
Failed to 
converge 

199.0 898.6 

MAD 1.770 1.158 0.759 0.234 1.715 

MSPE 7.668 3.349 1.430 0.166 7.328 

 

NA : not applicable variables 
-  : statistically insignificant variables at alpha = 0.05 removed from the 
SPF 
(-) : p-value cannot be computed due to low overdispersion parameter  
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As shown in Table 7.4, the interaction terms between the AADT, whether from the major road, 

minor road or both, and the dummy variable representing the state are statistically insignificant at 

the 95th percentile confidence interval. That is for all crash types and severity levels. Therefore, 

the effect of the AADTs on crashes in Ohio is not different than that in Florida. For KABC and 

KAB crashes, the dummy variable representing Ohio, OH, is statistically insignificant indicating 

that for the same total AADTs, KABC and KAB crash frequencies in Florida and Ohio are the 

same. That is unlike the case of average conditions of divided segments where Florida and 

Ohio’s crash patterns are significantly different for all crash classifications given the same 

AADT. 

 

7.1.3 Transferability Assessment for Four-Leg Signalized Intersections’ Average Conditions 

The transfer indices are calculated by applying the one-state and joint SPFs to each jurisdiction. 

The model log-likelihoods are compared as well by calculating the transfer indices. Transfer 

index results are shown in Table 7.5. 
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Table 7.5: Average Conditions Rural Four-Leg Signalized Intersections - Transfer Indices 

Crash Type or 

Severity 
SPF 

Application Data 

Florida Ohio California 

KABCO 

Florida 1.000 -9.723 -5.963 

Ohio -39.465 1.000 0.431 

California -27.737 -0.096 1.000 

Florida and Ohio -1.118 0.998 -12.637 

KABC 

Florida 1.000 -2.340 -4.787 

Ohio -14.305 1.000 -0.414 

California -40.740 -2.475 1.000 

Florida and Ohio -5.585 0.658 -0.899 

KAB 

Florida 1.000 -5.401 -23.393 

Ohio -22.081 1.000 -9.226 

California -25.931 -2.012 1.000 

Florida and Ohio -8.068 0.502 -6.016 

KA 

Florida 1.000 NA NA 

Ohio -1.998 1.000 NA 

California -6.587 -24.423 NA 

Florida and Ohio NA NA NA 

SV 

Florida NA NA NA 

Ohio NA 1.000 -21.431 

California NA -98.999 1.000 

Florida and Ohio NA 0.910 -63.004 

MV 

Florida 1.000 -8.497 -3.094 

Ohio -37.312 1.000 0.385 

California -25.912 -2.183 1.000 

Florida and Ohio -1.056 0.998 -6.055 

 
NA : Transfer index not calculated because of corresponding SPF failure 
to converge  

 

The KA models’ failure to converge deters calculation of transfer indices as shown in Table 7.5. 

Generally, the transfer indices indicate that neither jurisdiction specific SPFs are transferable to 

any other jurisdiction. Also, the joint Florida and Ohio SPFs are not transferable to any state. 

This is unlike the average conditions segments case where Florida’s SPFs are transferable to 

California and vice versa except for single vehicle crashes’ SPFs. 
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7.1.4 Application of the Modified Empirical Bayes Method to Average Conditions Rural Four-

Leg Signalized Intersections 

As previously stated, the 2011 data of Florida, 2011 data of Ohio and 2010 data of California are 

kept for application of the modified EB method. These data are termed validation datasets. First, 

the developed SPFs are applied to the validation data to obtain the predicted crash frequencies, 

denoted by NSPF. Each SPF is applied to all jurisdictions for all crash classifications. The next 

step is the calculation of the expected crash frequency, Nexp, per intersection which is a function 

of not only the predicted crash frequency but also of the past observed one. Since the SPFs are 

used to predict crash frequencies per year, the past observed crash frequencies are averaged over 

the years for every intersection to yield the past observed crash frequency per year, Npobs, to be 

applied in the EB equation. For instance, for an intersection i in Florida, the past observed crash 

frequency is the average of the observed crash frequencies in 2009 and 2010. That is the case if 

the transferred SPFs were applied to the Florida jurisdiction. The same applies for Ohio. For 

California, the past observed crash frequencies are simply those of 2009. Once the average 

observed crash frequencies are obtained, the expected crash frequencies are calculated. Then, the 

MAD and MSPE measures are calculated for three settings. In the first setting, the unadjusted 

predicted crash frequencies, NSPF, are compared with the observed ones of the validation data. 

The second setting is the one where the predicted crash frequencies are calibrated by means of 

the HSM method using the average of the past observed crash frequencies. The calibrated 

predictions are compared with the observed crash frequencies of the validation data. Finally, in 

the third setting, the expected crash frequencies are compared with the observed crash counts of 

the validation data. That is to compare the performance of the modified EB method with that of 
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the HSM calibration method. Results of the MAD and MSPE are presented in Tables 7.6 through 

7.8. 

Table 7.6: Comparison of Predicted, Calibrated and Expected Crash Frequencies in Florida – 
Average Conditions Rural Four-Leg Signalized Intersections     

Crash 

Type or 

Severity 

SPF 

Application Data: Florida 2011 

MAD MSPE 

MAD 

Calculated 

Using HSM 

Calibration 

Factor 

MSPE 

Calculated 

Using HSM 

Calibration 

Factor 

MAD 

Calculated 

Using 

Modified 

EB 

MSPE 

Calculated 

Using 

Modified 

EB 

KABCO 

Florida 2.997 20.346 2.995 20.325 2.975 19.526 

Ohio 2.307 10.669 3.013 20.587 2.396 12.882 

California 2.306 12.346 3.003 20.446 2.428 13.722 

Florida 

and Ohio 
3.019 20.644 3.011 20.561 2.986 19.679 

KABC 

Florida 1.707 6.856 1.707 6.853 1.693 6.717 

Ohio 1.43 4.567 1.699 6.813 1.554 5.441 

California 1.476 4.734 1.721 6.928 1.476 4.734 

Florida 

and Ohio 
1.555 5.534 1.707 6.853 1.645 6.212 

KAB 

Florida 0.918 1.93 0.918 1.93 0.916 1.926 

Ohio 0.823 1.262 0.912 1.917 0.867 1.5 

California 0.887 1.478 0.924 1.943 0.887 1.478 

Florida 

and Ohio 
0.879 1.56 0.917 1.929 0.892 1.76 

KA 

Florida 0.32 0.402 0.32 0.402 0.32 0.402 

Ohio 0.344 0.381 0.323 0.404 0.343 0.394 

California NA NA NA NA NA NA 

Florida 

and Ohio 
NA NA NA NA NA NA 

SV 

Florida NA NA NA NA NA NA 

Ohio 0.24 0.162 0.187 0.176 0.233 0.163 

California 0.54 0.325 0.187 0.176 0.386 0.188 

Florida 

and Ohio 
0.187 0.175 0.187 0.175 0.187 0.175 

MV 

Florida 2.861 18.971 2.86 18.96 2.844 18.235 

Ohio 2.268 10.175 2.88 19.2 2.309 12.192 

California 2.266 12.264 2.862 18.978 2.322 12.883 

Florida 

and Ohio 
2.885 19.254 2.878 19.176 2.856 18.378 

 NA : Measure not calculated because of corresponding SPF failure to converge 
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Table 7.7: Comparison of Predicted, Calibrated and Expected Crash Frequencies in Ohio – 
Average Conditions Rural Four-Leg Signalized Intersections 

Crash 

Type or 

Severity 

SPF 

Application Data: Ohio 2011 

MAD MSPE 

MAD 

Calculated 

Using 

HSM 

Calibration 

Factor 

MSPE 

Calculated 

Using 

HSM 

Calibration 

Factor 

MAD 

Calculated 

Using 

Modified 

EB 

MSPE 

Calculated 

Using 

Modified 

EB 

KABCO 

Florida 2.343 9.837 1.329 3.857 1.627 5.146 

Ohio 1.267 3.656 1.268 3.575 1.099 2.714 

California 1.366 4.617 1.294 3.674 1.208 3.494 

Florida 

and Ohio 
1.267 3.642 1.265 3.58 1.102 2.702 

KABC 

Florida 1.001 2.339 0.913 1.543 0.892 1.831 

Ohio 0.9 1.551 0.898 1.531 0.868 1.454 

California 0.942 1.55 0.934 1.605 0.942 1.55 

Florida 

and Ohio 
0.938 1.783 0.913 1.543 0.863 1.515 

KAB 

Florida 0.696 1.409 0.732 1.046 0.682 1.308 

Ohio 0.726 1.051 0.729 1.04 0.653 0.874 

California 0.744 1.122 0.755 1.076 0.744 1.122 

Florida 

and Ohio 
0.713 1.174 0.731 1.044 0.65 0.949 

KA 

Florida 0.156 0.127 0.193 0.12 0.156 0.127 

Ohio 0.19 0.119 0.195 0.118 0.185 0.117 

California NA NA NA NA NA NA 

Florida 

and Ohio 
NA NA NA NA NA NA 

SV 

Florida NA NA NA NA NA NA 

Ohio 0.227 0.17 0.249 0.168 0.228 0.17 

California 0.585 0.406 0.247 0.168 0.427 0.249 

Florida 

and Ohio 
0.228 0.17 0.25 0.168 0.23 0.17 

MV 

Florida 2.234 9.049 1.289 3.53 1.55 4.614 

Ohio 1.249 3.341 1.251 3.285 1.064 2.421 

California 1.495 4.901 1.292 3.691 1.389 4.154 

Florida 

and Ohio 
1.249 3.332 1.25 3.292 1.066 2.41 

 NA : Measure not calculated because of corresponding SPF failure to converge 
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Table 7.8: Comparison of Predicted, Calibrated and Expected Crash Frequencies in California – 
Average Conditions Rural Four-Leg Signalized Intersections 

Crash 

Type or 

Severity 

SPF 

Application Data: California 2010 

MAD MSPE 

MAD 

Calculated 

Using 

HSM 

Calibration 

Factor 

MSPE 

Calculated 

Using 

HSM 

Calibration 

Factor 

MAD 

Calculated 

Using 

Modified 

EB 

MSPE 

Calculated 

Using 

Modified 

EB 

KABCO 

Florida 2.193 9.468 1.958 5.965 2.118 8.377 

Ohio 2.148 5.956 1.784 4.922 1.932 6.652 

California 1.973 5.788 1.88 5.54 1.933 6.618 

Florida 

and Ohio 
2.383 10.201 1.795 4.974 2.059 7.893 

KABC 

Florida 1.22 2.989 1.052 2.137 1.094 2.594 

Ohio 1.157 2.384 1.085 2.238 1.214 2.317 

California 1.031 1.961 1.007 1.962 1.031 1.961 

Florida 

and Ohio 
0.985 2.213 1.051 2.137 1.256 2.654 

KAB 

Florida 0.56 0.734 0.696 0.68 0.595 0.729 

Ohio 0.82 0.939 0.713 0.723 0.816 0.865 

California 0.676 0.645 0.691 0.655 0.676 0.645 

Florida 

and Ohio 
0.668 0.661 0.697 0.684 0.812 0.991 

KA 

Florida 0.168 0.101 0.224 0.102 0.168 0.101 

Ohio 0.19 0.1 0.23 0.101 0.214 0.124 

California NA NA NA NA NA NA 

Florida 

and Ohio 
NA NA NA NA NA NA 

SV 

Florida NA NA NA NA NA NA 

Ohio 0.223 0.214 0.337 0.221 0.238 0.221 

California 0.458 0.291 0.343 0.232 0.423 0.287 

Florida 

and Ohio 
0.173 0.225 0.335 0.219 0.173 0.225 

MV 

Florida 2.059 8.508 1.856 5.676 1.985 7.642 

Ohio 2.134 6.075 1.669 4.615 1.896 6.251 

California 1.832 5.469 1.794 5.362 1.813 5.812 

Florida 

and Ohio 
2.241 9.107 1.68 4.666 1.94 7.239 

 NA : Measure not calculated because of corresponding SPF failure to converge 
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The MADs and MSPEs are not calculated for California’s SPF for KA crashes, the joint SPF for 

KA crashes and Florida’s SPF for SV crashes since the corresponding models failed to converge. 

When the SPFs are applied to Florida’s validation data, the results indicate that the modified EB 

method outperforms the HSM calibration method except for SV and KA crashes. That is 

possibly due to lack of SV and KA crashes in the data based on which the corresponding SPFs 

are developed. When the SPFs are applied to the Ohio validation data, the MADs and MSPEs 

obtained from the modified EB method are lower relative to those obtained from the HSM 

calibration method. Exceptions are Florida’s KABCO crashes’ SPF, California’s KABC crashes’ 

SPF, California’s SV crashes’ SPF, Florida’s MV crashes’ SPF and California’s MV crashes’ 

SPF. When the California data are used for validation, the HSM calibration method outperforms 

the modified EB method. It is crucial to note that the EB method does not necessarily outperform 

the HSM calibration method for every SPF especially for intersections. That is because the EB 

weight is a function of the overdispersion parameter which is the same for every intersection. In 

the case of the divided segments, the overdispersion parameter varies from segment to segment. 

Also, it is not recommended to apply either the HSM method or the modified EB method to 

adjust for crash predictions that are in the distant future. 

 

7.2 Rural Four-Leg Signalized Intersections – Proposed Base Conditions’ Safety 

Performance Functions 

The data of the four-leg signalized intersections conforming to the base conditions are processed 

the same way as those of the average conditions. As previously stated, the proposed base 

conditions are: street lighting presence, skew angles within the range of 0o to 5o and no 

automated speed enforcement. The condition of no turning lanes is not proposed since there is an 
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inadequate number of intersections in all three states without turning lanes. The 2009 and 2010 

modified base conditions four-leg signalized intersection data of both Florida and Ohio are 

analyzed. The 2011 data of both states are kept for validation. However California’s four-leg 

intersection datasets are not processed since no data are available regarding the skew angles. 

Therefore, SPFs are developed for four-leg signalized intersections conforming to the proposed 

base conditions from the Florida data, Ohio data and the pooled data of both states. The SPF 

results are shown and discussed in the following subsections. 

 

7.2.1 Jurisdiction Specific Proposed Base Conditions Rural Four-Leg Signalized Intersections’ 

Safety Performance Functions    

The jurisdiction specific SPFs are estimated for Florida and Ohio. The results are presented in 

Tables 7.9 through 7.10. 

Table 7.9: Florida’s SPFs for Proposed Base Conditions Rural Four-Leg Signalized Intersections 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-15.1707 
(0.0088) 

Fail to 
converge 

Fail to 
converge 

Fail to 
converge 

23.7093 
(0.359) 

-17.3419 
(0.0032) 

Ln(AADT major) NA NA NA 

Ln(AADT minor) NA NA NA 

Ln(AADT total) 
1.4801 

(0.0132) 
-3.0647 
(0.2917) 

1.6977 
(0.005) 

k 1.8485 0 1.5029 

Goodness of Fit Measures 

-2LL 91.6 
Fail to 

converge 
Fail to 

converge 
Fail to 

converge 

7.7 88.9 

MAD 0.907 0.048 0.851 

MSPE 1.853 0.025 1.69 

 NA : not applicable variables 
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Table 7.10: Ohio’s SPFs for Proposed Base Conditions Rural Four-Leg Signalized Intersections  

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-4.9223 
(0.0002) 

-11.1361 
(0.0002) 

-15.7254 
(0.0001) 

Fail to 
converge 

2.2938 
(0.5956) 

-5.9217 
(<.0001) 

Ln(AADT major) 
0.4941 

(0.0005) 
NA NA NA 

0.6059 
(<.0001) 

Ln(AADT minor) 
0.171 

(0.0107) 
NA NA NA 

0.1619 
(0.0179) 

Ln(AADT total) NA 
1.1285 

(0.0004) 
1.5458 

(0.0004) 
-0.4776 
(0.3213) 

NA 

k 0.2067 0.6414 0.8953 1.1426 0.2139 

Goodness of Fit Measures 

-2LL 282.1 161.9 110.7 
Fail to 

converge 

81.7 274.2 

MAD 2.271 0.946 0.623 0.428 2.175 

MSPE 9.467 2.301 1.321 0.351 9.077 

 NA : not applicable variables 

 

The KABC, KAB and KA crashes’ SPFs of Florida failed to converge mainly because of the low 

crash frequencies. For SV crashes, the SPF converges but the constant is large while the natural 

logarithm of the total AADT is statistically insignificant on the 95th percentile confidence 

interval. Similarly that is due to the limited number of SV crashes. There are records of 15 

KABC crashes, 6 KAB crashes, 1 KA crash and 1 SV crash in Florida’s four-leg signalized 

intersections satisfying the proposed base conditions. For Ohio’s case, the KA crashes’ SPF 

failed to converge since there are only 3 KA crashes sampled. Also, in Ohio’s SV crashes’ SPF, 

the constant is positive and the natural logarithm of the AADT is insignificant at the 95th 

percentile confidence interval. Likewise, that may be because of the low SV crash frequency. 

There are only 17 SV crashes sampled from Ohio’s four-leg signalized intersections conforming 

to the proposed base conditions. 
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7.2.2 Florida and Ohio’s Joint Proposed Base Conditions Rural Four-Leg Signalized 

Intersections’ Safety Performance Functions 

The joint Florida and Ohio SPFs are estimated for KABCO, KABC and MV crashes. The models 

for KAB, KA and SV crashes failed to converge possibly because of the low crash frequencies. 

The joint SPF results are shown in Table 7.11. 

Table 7.11: Florida and Ohio’s Joint SPFs for Proposed Base Conditions Rural Four-Leg 
Signalized Intersections 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-7.3298 
(<.0001) 

-9.5407 
(0.0012) 

Failed to 
converge 

Failed to 
converge 

Failed to 
converge 

-8.4582 
(<.0001) 

Ln(AADT major) 
0.5352 

(0.0002) 
NA 

0.6575 
(<.0001) 

Ln(AADT minor) 
0.1804 

(0.0077) 
NA 

0.1735 
(0.0119) 

Ln(AADT total) NA 
0.9264 

(0.0035) 
NA 

OH 
1.9745 

(<.0001) 
- 

1.9934 
(<.0001) 

OH ×Ln (AADT 

major) 
- NA - 

OH ×Ln (AADT 

minor) 
- NA - 

OH ×Ln (AADT 

total) 
NA - NA 

P 
2.2116 

(0.0660) 
1.8256 

(0.2727) 
1.9050 

(0.0835) 

Q 
-2.0035 
(0.0962) 

-1.0740 
(0.5523) 

-1.6885 
(0.1258) 

Goodness of Fit Measures 

-2LL 375.6 235.8 
Failed to 
converge 

Failed to 
converge 

Failed to 
converge 

365.5 

MAD 1.805 0.839 1.729 

MSPE 6.696 1.819 6.450 

 

NA : not applicable variables 
-  : statistically insignificant variables at alpha = 0.05 removed from the 
SPF 
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As shown in Table 7.11, the interaction terms between the dummy variable representing Ohio, 

OH, and the natural logarithm of the entering AADTs are statistically insignificant at the 95 

percentile confidence interval for all crash classifications. It is an indication that for all crash 

types and severity levels, the impact of the entering AADTs on crashes in Ohio is the same as 

that in Florida. It should also be noted that the insignificance of the dummy variable, OH, in the 

KABC crashes’ SPF indicates that for the same entering AADTs, in both states, Ohio’s 

intersections experience the same KABC crash counts as Florida’s. That is a consistent result 

with the KABC SPF of the joint Florida and Ohio average conditions four-leg signalized 

intersections data. For KABCO and MV crashes’ SPFs the dummy variable is statistically 

significant implying that the intersections in Ohio experience more KABCO and MV crashes 

relative to those of Florida given the same entering AADT. 

 

7.2.3 Transferability Assessment for Rural Four-Leg Signalized Intersections’ Proposed Base 

Conditions 

The Florida SPFs are applied to Ohio and vice versa. Also, the joint SPFs are applied to both 

states and the transfer indices are calculated accordingly. The transfer index results are shown in 

Table 7.12.  
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Table 7.12: Proposed Base Conditions Rural Four-Leg Signalized Intersections - Transfer 
Indices 

  Application Data 

Crash Type or 

Severity 
SPF Florida Ohio 

KABCO 

Florida 1 -16.381 

Ohio -25.964 1 

Florida and Ohio -1.033 0.994 

KABC 

Florida NA NA 

Ohio NA 1 

Florida and Ohio NA 0.755 

KAB 

Florida NA NA 

Ohio NA NA 

Florida and Ohio NA NA 

KA 

Florida NA NA 

Ohio NA NA 

Florida and Ohio NA NA 

SV 

Florida 1 NA 

Ohio -160.880 1 

Florida and Ohio NA NA 

MV 

Florida 1 -14.973 

Ohio -18.918 1 

Florida and Ohio -0.318 0.993 

 
NA : Transfer index not calculated because of corresponding SPF 
failure to converge 

 

The transfer indices are negative indicating that the Florida four-leg signalized intersection SPFs 

are not transferable to Ohio and vice versa. That is a consistent result with the case of four-leg 

signalized intersections conforming to the average conditions. 
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7.2.4  Application of the Modified Empirical Bayes Method to Proposed Base Conditions Rural 

Four-Leg Signalized Intersections 

The modified EB method is applied for correcting crash predictions of SPFs of four-leg 

signalized intersections conforming to the base conditions. All developed SPFs are applied to 

Florida and Ohio jurisdictions to obtain the predicted crash frequencies. Then, the average of the 

observed crash frequencies of the years 2009 and 2010 are calculated for every intersection. That 

is to be able to apply the average observed crash frequencies to obtain the expected ones. Also, 

the HSM calibration factors are obtained using the average observed crash frequencies and the 

predicted ones. Then, the MAD and MSPE measures are calculated by comparing the predicted 

crash frequencies with the observed ones of the validation data. The measures are also calculated 

to compare the predicted crash frequencies adjusted by the HSM calibration factors with the 

observed crash frequencies of the validation data. Finally, the comparison is made between the 

expected and observed crash frequencies of the validation data. The comparison results are 

shown in Tables 7.13 and 7.14.  
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Table 7.13: Comparison of Predicted, Calibrated and Expected Crash Frequencies in Florida – 
Proposed Base Conditions Rural Four-Leg Signalized Intersections 

Crash 

Type or 

Severity 

SPF 

Application Data: Florida 2011 

MAD MSPE 

MAD 

Calculated 

Using 

HSM 

Calibration 

Factor 

MSPE 

Calculated 

Using 

HSM 

Calibration 

Factor 

MAD 

Calculated 

Using 

Modified 

EB 

MSPE 

Calculated 

Using 

Modified 

EB 

KABCO 

Florida 2.221 15.531 2.218 15.487 2.19 15.029 

Ohio 2.404 9.004 2.303 16.611 2.175 10.545 

Florida 

and 

Ohio 

2.309 16.765 2.298 16.543 2.236 15.532 

KABC 

Florida NA NA NA NA NA NA 

Ohio 0.95 2.425 0.969 3.812 0.965 2.941 

Florida 

and 

Ohio 

0.988 3.037 0.979 3.872 0.953 3.361 

KAB 

Florida NA NA NA NA NA NA 

Ohio 0.488 0.407 0.483 0.855 0.501 0.58 

Florida 

and 

Ohio 

NA NA NA NA NA NA 

KA 

Florida NA NA NA NA NA NA 

Ohio NA NA NA NA NA NA 

Florida 

and 

Ohio 

NA NA NA NA NA NA 

SV 

Florida 0.139 0.127 0.139 0.127 0.139 0.127 

Ohio 0.211 0.115 0.138 0.125 0.203 0.116 

Florida 

and 

Ohio 

NA NA NA NA NA NA 

MV 

Florida 2.096 14.352 2.096 14.349 2.065 14.078 

Ohio 2.324 8.186 2.2 15.582 2.11 9.867 

Florida 

and 

Ohio 

2.203 15.734 2.193 15.499 2.121 14.646 

 NA : Measure not calculated because of corresponding SPF failure to converge 
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Table 7.14: Comparison of Predicted, Calibrated and Expected Crash Frequencies in Ohio – 
Proposed Base Conditions Rural Four-Leg Signalized Intersections 

Crash 

Type or 

Severity 

SPF 

Application Data: Ohio 2011 

MAD MSPE 

MAD 

Calculated 

Using 

HSM 

Calibration 

Factor 

MSPE 

Calculated 

Using 

HSM 

Calibration 

Factor 

MAD 

Calculated 

Using 

Modified 

EB 

MSPE 

Calculated 

Using 

Modified 

EB 

KABCO 

Florida 2.245 8.673 1.498 4.494 1.574 4.222 

Ohio 1.286 3.177 1.29 3.133 1.019 2.022 

Florida 

and 

Ohio 

1.287 3.169 1.289 3.146 1.016 1.987 

KABC 

Florida NA NA NA NA NA NA 

Ohio 0.779 1.295 0.783 1.265 0.699 1.081 

Florida 

and 

Ohio 

0.785 1.459 0.788 1.291 0.716 1.193 

KAB 

Florida NA NA NA NA NA NA 

Ohio 0.606 0.862 0.61 0.854 0.543 0.701 

Florida 

and 

Ohio 

NA NA NA NA NA NA 

KA 

Florida NA NA NA NA NA NA 

Ohio NA NA NA NA NA NA 

Florida 

and 

Ohio 

NA NA NA NA NA NA 

SV 

Florida 0.137 0.107 0.239 0.251 0.137 0.107 

Ohio 0.211 0.102 0.25 0.106 0.212 0.101 

Florida 

and 

Ohio 

NA NA NA NA NA NA 

MV 

Florida 2.155 8.17 1.516 4.723 1.625 4.479 

Ohio 1.246 3.092 1.245 3.08 0.999 1.918 

Florida 

and 

Ohio 

1.245 3.102 1.245 3.108 0.99 1.876 

 NA : Measure not calculated because of corresponding SPF failure to converge 
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When Florida’s validation data are applied, the results of the modified EB method are superior to 

those of the HSM calibration method except for KAB, KA and SV crashes. The case is not the 

same when Ohio’s validation data are applied. Instead, the MADs obtained using the modified 

EB method are higher than those obtained from the HSM calibration method only for Florida’s 

KABCO crashes’ SPF and Florida’s MV crashes’ SPF.   
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CHAPTER 8: CONCLUSIONS 

The SPFs are indispensable for enhancing traffic safety by enabling the prediction of crash 

frequencies and screen road networks for hot spots. The SPFs may be applied to predict crash 

frequencies for any road user, whether vehicle driver, pedestrian or bicyclist. Also, the predicted 

crashes may be of any type or severity level whether fatal crashes K, incapacitating injury 

crashes, A, non-incapacitating injury crashes, B, possible injury crashes, C, or property damage 

only crashes, O. In the HSM, several NB SPFs are provided for different types of roadway 

facilities. The HSM SPFs are applied particularly for regions where jurisdiction specific SPFs are 

not developed. The HSM SPFs, applied to the region of interest, are modified by calibration 

factors. The factors are calculated based on the ratio of the sum of the observed crashes to that of 

the predicted crashes for every segment or intersection. This approach has been active lately in 

traffic safety research. However, there has been limited research in the exploration of the 

soundness of SPF transferability. 

Considering an intricate assessment of transferability of SPFs among multiple regions 

contributes to the evolving literature of SPF transferability. Specifically, in this study, 

jurisdiction specific SPFs of Florida, Ohio and California are applied to each state and the 

prediction accuracies of the SPFs are compared to fulfill the objective of assessing the 

transferability of SPFs among the three states. Jurisdiction specific SPFs are estimated for 

KABCO, KABC, KAB, KA, SV and MV crashes. Then, each state’s data are pooled in different 

combinations to develop two-state and three-state joint SPFs for all crash classifications. That is 

performed for rural divided multilane highway segments and four-leg signalized intersections. 

The analysis is undertaken once more for proposed base conditions. That allows for controlling 

for roadway characteristics such as the lane width, shoulder width, median width and lighting 
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conditions for divided segments. For the four-leg signalized intersections, the controlled 

variables are the skew angle and street lighting presence only. These are not the defined base 

conditions of the HSM since there is an inadequate sample of divided segments that satisfy the 

HSM base conditions. Also, there are currently no base conditions defined in the HSM for four-

leg signalized intersections. There are two other objectives in this study.  One is to investigate 

the effect of pooling data from multiple states and estimating joint SPFs on the SPF 

transferability. The results of the joint SPFs are compared with those estimated from data of 

single states. The transfer index, a measure that was previously applied in transportation research 

is used to assess transferability. The superior transfer indices of the two-state and three-state joint 

SPFs relative to those of the one-state SPFs clearly indicate that pooling data to develop SPFs 

improves SPF transferability. Among the three states under study, Florida’s SPFs for divided 

segments conforming to the average conditions are more transferable to California and vice versa 

compared to those of Ohio’s. The final objective is to explore the applicability of the proposed 

disaggregate adjustment procedure that corrects predictions of SPFs being transferred to the 

region of interest. It is the modified EB method. Results of the comparison between the modified 

EB method with the HSM calibration method demonstrate the validity of the proposed method. 

Also according to the results, the disaggregate EB method outperforms the HSM aggregate 

calibration method especially for segments. For four-leg signalized intersections, the EB method 

performs better than the HSM calibration method in most cases possibly because the 

overdispersion parameter is fixed for every intersection.  
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8.1 Key Findings 

The key findings of this study are summarized as follows. 

 The transfer indices obtained using joint SPFs are higher than those obtained from 

jurisdiction specific SPFs. As previously stated in the introduction chapter, the HSM’s 

SPFs for rural four-leg signalized intersections are developed from data of Minnesota 

while the SPFs of rural divided multilane highway segments are developed from pooled 

data of California and Texas to satisfy a reasonable sample size. Even though the sample 

size of Minnesota’s four-leg signalized intersections is sufficient it is recommended to 

pool the data with those of another state. Likewise, the Texas and California rural divided 

segments data can be pooled with a third state before estimating the SPFs. The resulting 

joint SPFs capture characteristics of multiple states and therefore become more 

transferable to a particular jurisdiction of interest especially if the jurisdiction is near 

states of which data are used for estimation of the joint SPFs. 

 Florida’s SPFs of rural divided segments conforming to average conditions are not 

transferable to Ohio and vice versa. On the other hand, the case is opposite for Florida 

and California’s SPFs except for SV crashes. 

 Ohio’s average conditions divided segments KABCO, SV and MV crashes’ SPFs are 

transferable to California. Similarly, those of California are transferable to Ohio. 

 Under the modified base conditions, Ohio’s KABC and KAB crashes’ SPFs are 

transferable to California and vice versa. The corresponding transfer indices are higher 

than their counterparts for divided segments conforming to average conditions. 
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 Adding coefficients for the dummy variable representing the state in the overdispersion 

parameter formula accounts for differences in crash patterns among states when 

estimating joint SPFs. 

 According to the transfer index results of both average and proposed base conditions of 

four-leg signalized intersections, neither jurisdiction specific SPFs are transferable to any 

state for all crash classifications. That is also true for the joint SPFs. 

 Even though Florida’s rural divided segments’ SPFs are transferable to California and 

California’s are transferable to Florida, both states are different in many dimensions. 

Both states are not only different in terms of geographic locations but also in terms of 

topography and weather conditions. Florida represents the southeast with its floundering 

vegetation and intense rainfall while California represents the southwest with its 

mountainous terrain and considerably less rainfall. However the majority of California’s 

population do not reside in mountainous territories. When it comes to similarities in both 

states, the inhabited areas in California do not experience snow as Florida does not either. 

Also, the roadway facilities at mountainous areas in California are not included in the 

data for this study. In addition, tourism is common in both states. On the other hand, 

Florida and Ohio are different especially in terms of weather conditions since Ohio 

experiences snow during Winter while Florida experiences intense rainfall in Summer 

and Fall. Crash reporting thresholds are different in all three states. In terms of property 

damage, the thresholds are $500 in Florida as per the Florida Statutes section governing 

traffic, $400 in Ohio as per the Ohio Bureau of Motor Vehicles and $750 in California 

(Xie et al., 2011). Yet, the minimum property damage, caused by traffic crashes, for the 

crashes to be reported in Ohio was changed to $1000 in 2011 as per the Ohio data 
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description in the HSIS. According to the Transportation Motor Vehicle Accidents and 

Fatalities Summaries of US Census Bureau, the national crash rate for 2009 is 330.9 total 

crashes per hundred million VMT. The national rate of fatal crashes for the same year is 

1.04 fatal crashes per hundred million VMT according to the Fatality Analysis Reporting 

System of the National Highway Traffic Safety Administration (NHTSA) Encyclopedia. 

As per the Florida Integrated Report Exchange System of the Department of Highway 

Safety and Motor Vehicles, the rates are 119.59 total crashes per hundred million VMT 

and 1.20 fatal crashes per hundred million VMT for 2009. Those of Ohio for the same 

year are 269.61 total crashes per hundred million VMT and 0.85 fatal crashes per 

hundred million VMT as per the Access Ohio 2040 program of the Ohio Department of 

Transportation. In California, the rate is 131.42 total crashes per hundred million VMT in 

2009 as per the National Center for Statistics and Analysis Data Resource. According to 

the General Statistics of the Insurance Institute for Highway Safety there are 2,816 fatal 

crashes reported in California the same year while the vehicle mileage traveled is 3,243 

hundred million VMT as per the California Traffic Safety Score Card. That is 0.87 fatal 

crashes per hundred million VMT. 

  

8.2 Future Work 

Unquestionably, there are limitations to this study. First, according to the key findings, the 

modified EB method, proposed, outperforms the HSM calibration method in the majority of 

cases but there is potential for improvement. That is, further research is required to enhance the 

performance of the proposed EB method. Also, with the availability of data of previous crash 

years, research may be conducted to examine the effectiveness of constructing Bayesian 
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informative priors to expand upon previous studies’ work such as that of Yu and Abdel-Aty 

(2013). In addition, it is recommended to examine the effect of applying joint SPFs, developed 

from three states, into data of a fourth state. That is because transfer indices corresponding to 

joint SPFs are greater than those that belong to SPFs developed from a single state according to 

the key findings of this study. In addition, the NB SPFs applied are of limited variables since 

only the AADT is considered as a variable. Variables not considered such as lane width, 

shoulder width, median width, grades, intersection skew angle, horizontal curvature, posted 

speed limits, roadside hazard rating, other geometric characteristics, alcohol or drug use, weather 

conditions or any other factors are not included in the SPFs. Including such variables will 

improve the estimated SPFs and most likely facilitate transferability. It would be convenient to 

extend the work carried out for rural divided multilane highway segments and four-leg signalized 

intersections to all other types of roadway facilities. Finally, in this study, the transferability of 

SPFs is conducted for distant states representing different regions. It would be recommended to 

re-conduct the assessment for neighbor states within the same region. Specifically, future 

research is suggested for the transferability assessment of jurisdiction specific SPFs to neighbor 

states in regions with similar demographic patterns, topography and weather trends. For instance, 

the transferability of SPFs of Ohio and Indiana may be examined since both states are adjacent to 

each other.   
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