
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2014

A Comparative Analysis of Different Dilemma Zone A Comparative Analysis of Different Dilemma Zone

Countermeasures at Signalized Intersections based on Cellular Countermeasures at Signalized Intersections based on Cellular

Automaton Model Automaton Model

Yina Wu
University of Central Florida

 Part of the Transportation Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation

Wu, Yina, "A Comparative Analysis of Different Dilemma Zone Countermeasures at Signalized

Intersections based on Cellular Automaton Model" (2014). Electronic Theses and Dissertations,

2004-2019. 4586.

https://stars.library.ucf.edu/etd/4586

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/1329?utm_source=stars.library.ucf.edu%2Fetd%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4586?utm_source=stars.library.ucf.edu%2Fetd%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A COMPARATIVE ANALYSIS OF DIFFERENT DILEMMA ZONE

COUNTERMEASURES AT SIGNALIZED INTERSECTIONS BASED ON

CELLULAR AUTOMATON MODEL

by

YINA WU

B.S. Beijing Jiaotong University， 2012

A dissertation submitted in partial fulfillment of requirements

for the degree of Master of Science

in the Department of Civil and Environmental Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Fall Term

2014

Major Professor: Mohamed Abdel-Aty

ii

© 2014 Yina Wu

iii

ABSTRACT

In the United States, intersections are among the most frequent locations for crashes. One of the

major problems at signalized intersection is the dilemma zone, which is caused by false driver

behavior during the yellow interval. This research evaluated driver behavior during the yellow

interval at signalized intersections and compared different dilemma zone countermeasures. The

study was conducted through four stages.

First, the driver behavior during the yellow interval were collected and analyzed. Eight variables,

which are related to risky situations, are considered. The impact factors of drivers’ stop/go

decisions and the presence of the red-light running (RLR) violations were also analyzed.

Second, based on the field data, a logistic model, which is a function of speed, distance to the

stop line and the lead/follow position of the vehicle, was developed to predict drivers’ stop/go

decisions. Meanwhile, Cellular Automata (CA) models for the movement at the signalized

intersection were developed.

In this study, four different simulation scenarios were established, including the typical

intersection signal, signal with flashing green phases, the intersection with pavement marking

upstream of the approach, and the intersection with a new countermeasure: adding an auxiliary

flashing indication next to the pavement marking. When vehicles are approaching the

intersection with a speed lower than the speed limit of the intersection approach, the auxiliary

flashing yellow indication will begin flashing before the yellow phase. If the vehicle that has not

passed the pavement marking before the onset of the auxiliary flashing yellow indication and can

see the flashing indication, the driver should choose to stop during the yellow interval.

Otherwise, the driver should choose to go at the yellow duration. The CA model was employed

iv

to simulate the traffic flow, and the logistic model was applied as the stop/go decision rule.

Dilemma situations that lead to rear-end crash risks and potential RLR risks were used to

evaluate the different scenarios.

According to the simulation results, the mean and standard deviation of the speed of the traffic

flow play a significant role in rear-end crash risk situations, where a lower speed and standard

deviation could lead to less rear-end risk situations at the same intersection. High difference in

speed are more prone to cause rear-end crashes. With Respect to the RLR violations, the RLR

risk analysis showed that the mean speed of the leading vehicle has important influence on the

RLR risk in the typical intersection simulation scenarios as well as intersections with the flashing

green phases’ simulation scenario.

Moreover, the findings indicated that the flashing green could not effectively reduce the risk

probabilities. The pavement marking countermeasure had positive effects on reducing the risk

probabilities if a platoon’s mean speed was not under the speed used for designing the pavement

marking. Otherwise, the risk probabilities for the intersection would not be reduced because of

the increase in the RLR rate. The simulation results showed that the scenario with the pavement

marking and an auxiliary indication countermeasure, which adds a flashing indication next to the

pavement marking, had less risky situations than the other scenarios with the same speed

distribution. These findings suggested the effectiveness of the pavement marking and an

auxiliary indication countermeasure to reduce both rear-end collisions and RLR violations than

other countermeasures.

v

To my parents

Hui Ma, Bin Wu

Who encourage me to realize my dream

vi

ACKNOWLEDGMENTS

I would like to thank all three members of my thesis committee, Dr. Aty, Dr. Lee and Dr. Eluru,

for their commitment to the successful completion of this research effort. In particular, Dr. Aty,

who is a respectable mentor, has given me countless help and guidance on both my academic and

individual development.

I would also like to express my thanks to Dr.Chen, Dr. Yan and Dr. Jia from Beijing Jiaotong

University, where I spent my first year as a master’s student. Dr. Chen, who is my mentor at

BJTU, has imparted knowledge and guidance to me. Dr. Yan has always donated his time to

provide his help and advice on both my career and individual development. Dr. Jia has provided

invaluable guidance with my cellular automata model and simulation work.

Meanwhile, I appreciate the help that I have received from the members of our research group,

who are always willing to share their ideas and their knowledge. I would also like to thank my

friends, Jiawei Wu, Binya Zhang and Vicki League, who have given me a great deal of

encouragement. I am thankful for the company of my boyfriend and all of the things he has done

for me while I pursued the research project.

In addition, the strong support of my family encourages me to complete my experience as a

master’s student. I would like to thank my parents for their support and contribution. Without

their support, I never could have flown overseas and fulfilled my dream of continuing my

education in the United States.

vii

TABLE OF CONTENT

LIST OF FIGURES .. x

LIST OF TABLES ... xiii

LIST OF NOTATIONS ... xiv

CHAPTER 1 INTRODUCTION .. 1

1.1. Background .. 1

1.2. Research Objectives ... 2

1.3. Organization of the Thesis ... 3

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 Dilemma Zone .. 5

2.2 Advanced Warning Measures ... 8

2.3 Intersection Simulation based on Cellular Automata Model .. 12

CHAPTER 3 DATA COLLECTION AND ANALYSIS ... 15

3.1 Observation Site Description and Data Collection ... 15

3.2 Observation Results and Data Analyses ... 19

3.2.1 Drivers’ Stop/Go Decisions ... 19

3.2.2 Red-Light Running Violation .. 28

CHAPTER 4 METHODOLOGY ... 34

viii

4.1 Stop/go Decision Rule .. 34

4.2 Cellular Automata Model ... 37

CHAPTER 5 SCENARIOS CONSTRUCTION AND ANALYSIS .. 46

5.1 Typical Intersection .. 46

5.2 Intersection with Flashing Green Signal ... 50

5.3 Intersection with Pavement Marking .. 56

5.4 Intersection with Pavement Marking and an Auxiliary Indication countermeasure........... 60

CHAPTER 6 COMPARATIVE ANALYSIS OF DIFFERENT DILEMMA ZONE

COUNTERMEASURES .. 68

6.1 Rear-end Crash Risk ... 68

6.2 Red –Light Running Risk ... 73

CHAPTER 7 CONCLUSIONS .. 75

7.1 Research Contributions ... 75

7.2 Recommendations ... 77

APPENDIX A C# CODE FOR THE TYPICAL INTERSECTION SCENARIO 79

APPENDIX B C# CODE FOR THE INTERSECTION FOR THE INTERSECTION WITH THE

FLASHING GREEN PHASES .. 100

APPENDIX C C# CODE FOR THE PAVEMENT MARKING SCENARIO 120

APPENDIX D C# CODE FOR THE PMAIC SCENARIO ... 140

APPENDIX E SIMULATION RESULTS-PROBABILITIES OF RISKY SITUATIONS 160

ix

LIST OF REFERENCES .. 162

x

LIST OF FIGURES

Figure 1.1 Organization of the thesis .. 4

Figure 3.1 Site location map (“google map”, 2014) ... 15

Figure 3.2 South approach of the studied intersection .. 16

Figure 3.3 Condition diagram ... 18

Figure 3.4 Number of observations in different speed intervals ... 20

Figure3.5 Number of observations in different distance intervals .. 23

Figure 3.6 Stop/go decisions with different distance to the stop-line ... 23

Figure 3.7 Number of observations by different types of vehicles ... 27

Figure 3.8 Mean of the speed by different vehicle types .. 27

Figure 3.9 Distribution of RLR violation by distance interval .. 32

Figure 3.10 Mean of the speed by the presence of RLR violation ... 32

Figure 3.11 Red-light running violations .. 33

Figure 4.1 Drivers’ stop/go decisions ... 36

Figure 4.2 Relationship of sensitivity and specificity in the logistic model 39

Figure 4.3 Dangerous situations ... 42

Figure 4.4 Output of Brake1 document .. 43

Figure 4.5 Output of DSZ1 document .. 44

Figure 4.6 Output of DSZ2 document .. 44

Figure 4.7 Output of tl1 document .. 45

Figure 4.8 Output of tl2 document .. 45

Figure 4.9 Output of stgo-error document .. 45

xi

Figure 5.1 Spatial and temporal distribution of risky situations at the typical intersection when

the expected speed of lead vehicles follow N~(50,5) ... 47

Figure 5.2 Impact of excepted mean speed of leading vehicles on Risky Situations at typical

intersection .. 49

Figure 5.3 Simulation process of intersection with the flashing green indication 51

Figure 5.4 Impact of excepted mean speed of leading vehicles on risky situations at the typical

intersection and the intersection with the flashing green .. 53

Figure 5.5 Spatial and temporal distribution of risky situations at the intersection with the

flashing green phases .. 55

Figure 5.6 Scenario of intersection with pavement marking .. 56

Figure 5.7 Comparative risky probabilities analysis of the typical intersection and the

intersection with pavement marking ... 58

Figure 5.8 Spatial and temporal distribution of risky situations at the intersection with the

pavement marking and an auxiliary indication countermeasure.. 59

Figure 5.9 Probabilities of red-light running violation at the intersection with pavement marking

... 60

Figure 5.10 Scenario of the PMAIC ... 61

Figure 5.11 Simulation processes of pavement marking & auxiliary flashing indication 62

Figure 5.12 The probabilities of different types of rear-end RS under pavement-marking scenario

and the PMAIC scenario ... 64

Figure 5.13 Spatial and temporal distribution of risky situations at the intersection with the

PMAIC .. 66

Figure 6.1 The probability of different kinds of rear-end RS under different scenarios 70

xii

Figure 6.2 Spatial and temporal distribution of risky situations when the mean excepted speed is

60mph ... 71

Figure 6.3 Spatial and temporal distribution of risky situations when the mean excepted speed is

30mph ... 72

Figure 6.4 the probability of RLR RS under different scenarios .. 74

xiii

LIST OF TABLES

Table 2.1 Different types of dilemma zone countermeasures ... 10

Table 3.1 Independent variables for the stop/go decision ... 19

Table 3.2 Descriptive statistics of stop/go decision by speed factor ... 22

Table 3.3 Descriptive statistics of stop/go decision by distance factor 25

Table 3.4 Descriptive statistics of stop/go decision by LD_FL factor .. 26

Table 3.5 Speed by different lane position ... 28

Table 3.6 Contingency table of stop/go decisions by different lane positions 28

Table 3.7 Descriptive statistics of RLR violation by different factors ... 30

Table 3.8 Parameter estimates of the logistic model for RLR violation 31

Table 4.1 Model estimation and odds ratios ... 35

Table 4.2 CA model parameters .. 38

Table 5.1 Impact of standard deviation of leading vehicles on risky situations at the typical

intersection .. 48

Table 5.2 RLR risk probabilities by different expected mean speed of leading vehicles at the

typical intersection .. 50

Table 5.3 P-RLR of the typical intersection and the intersection with the flashing green 56

Table 7.1 Comparative analysis of different dilemma zone countermeasures 77

xiv

LIST OF NOTATIONS

RLR Red-light running

CA Cellular Automata

PMAIC pavement marking and an auxiliary indication countermeasure 𝑥𝑛 Position of the 𝑛𝑡ℎvehicle 𝑣𝑛. Velocity of the 𝑛𝑡ℎvehicle 𝑑𝑛 Headway between the vehicle and the vehicle in front

RS Risky Situations

L Road length

t Number of time step

acc Maximum acceleration

dec Maximum deceleration 𝑣𝑖𝑛𝑡 Initial speed of vehicle

BRAKE Slam on the brake

RS1 Risk situations caused by stopped cars

RS2 Risk situations caused by non-stopped cars

1

CHAPTER 1 INTRODUCTION

1.1. Background

In the United States, intersections are among the most frequent locations for crashes. In 2012,

2,498,000 vehicles were involved in intersection or intersection-related crashes at signalized

intersections. Of all these crashes, about 4,460 vehicles were involved in fatal crashes, and

840,000 vehicles were involved in injury crashes. Moreover, about 1,333,000 rear-end crashes

occurred in 2012, representing approximately 24% of all crashes that took place in the U.S.

(Traffic safety facts 2012, 2012). In term of red-light running (RLR), 683 people were killed

while about 133,000 people were injured in crashes that involved red light running in 2012 (“Red

light running”, 2013). The engineers have estimated that at least 10 percent can be directly

attributed to RLR (Sunkari et al., 2003).

At the onset of the yellow indication, drivers who are approaching the intersection must make a

quick decision to either stop or cross the intersection. Among all the intersection-related crashes,

yellow-phase-related crashes caused by the dilemma zones are of significant concern to

transportation engineers. The dilemma zone, which is also known as the ‘indecision period’,

describes the region which begins at the position where most people choose to stop and ends at

the position where most people choose to cross the intersection at the onset of the yellow

indication of the signal. The indecision period of the driver may have a negative impact on crash

risks. Sometimes, RLR violations occur because of the drivers’ false stop/go judgment, and rear-

end crashes happen due to the different drivers’ decisions at the yellow duration. Many different

types of dilemma zone countermeasures have been proposed, including adding the flashing

yellow phases or the pavement marking at upstream of the intersection to help drivers’ make

better decisions during the yellow interval.

2

This research simulates traffic flow at signalized intersections based on the Cellular Automata

(CA) model. Scenarios were established based on different dilemma zone countermeasures. Risk

situations of both rear-end crash risks and potential red-light running violations risks are

estimated during the simulations.

1.2. Research Objectives

The principal objective of this research is to analyze the driver behavior during the yellow

interval and conduct a comparative study of different dilemma zone countermeasures based on

the CA model. The specific aims are to:

1) Analyze and model the driver behavior, especially the stop/go decisions and RLR

violations, during the yellow interval at a typical intersection.

2) Simulate the driver behavior based on the CA model under different scenarios.

3) Propose a new method to improve the previous pavement marking countermeasure.

4) Conduct the intersection’s high risk situations analysis of four different scenarios, which

include the typical intersection signal, the intersection with the flashing green phases, the

intersection with the pavement marking at the upstream of the stop line and the

intersection with a new countermeasure that have both pavement marking and an

auxiliary flashing yellow indication, which is referred to as " pavement marking and an

auxiliary indication countermeasure (PMAIC)".

3

1.3. Organization of the Thesis

This thesis contains seven chapters. The first chapter is an introductory chapter including

background, research objects and organization of the thesis.

Chapter 2 delves into the literature of critical issues related to the research topic. It highlights the

dilemma zone and different countermeasures, and also provides the driver behavior information

and countermeasures information for the scenario construction. In addition, chapter 2 also

presents the basic concepts of the CA models and its development.

Chapter 3 focuses on data collection and field data analysis. Eight variables, which were

extracted from the field data, were considered in this study. Meanwhile, impact factors of the

stop/go decisions and the red-light running violations were analyzed.

Chapter 4 focuses on methodology research, which includes the stop/go decisions model based

on the logistic regression and simulation model based on the CA model. General rules and

introduction of the simulation are developed in chapter 4.

Chapter 5 describes the design of each scenario and analyzes results of different scenarios.

Detailed information for each scenario is provided in this chapter. The impact of the expected

mean speed and the standard deviation of leading vehicles on risky situations at different

scenarios were analyzed in this chapter.

Chapter 6 conducts the comparative analysis between different scenarios. Based on the

simulation results, the effect of different dilemma zone countermeasures is evaluated in this

chapter.

4

Chapter 7 provides the conclusion and recommendations derived from the simulation and

analyses presented in previous chapters.

Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3

Data Collection and Analysis

Chapter 4

Methodology

Chapter 5

Scenarios Construction and Analysis

Chapter 6

Comparative Analysis of Dilemma

Zone Countermeasures

Chapter 7

Conclusion

Figure 1.1 Organization of the thesis

5

CHAPTER 2 LITERATURE REVIEW

Traffic signals are used to direct traffic to stop or to proceed, and separate conflict movement oat

intersections. Nowadays, the signal control systems are designed to increase the traffic safety of

the overall network. The regular sequence of traffic signal indications is green→yellow→red.

The yellow signals indicate the driver need to stop unless he/she cannot stop safely.

2.1 Dilemma Zone

In order to eliminate the conflict between vehicles of different directions, traffic lights were

introduced into the road traffic system. By clearing one traffic stream of the intersection before

the onset of the green signal of the conflicting stream, the yellow phases are designed to provide

an orderly transition. Steady yellow signal indications are displayed after every green phase

according to the MUTCD (Manual on uniform traffic control devices: for streets and highways,

2009). The yellow duration is calculated as the following equation (Pline, 1999)：

 CP = t + v2a ± 64.4g + w + LV
(2-1)

where:

CP = non-dilemma change period (Change + Clearance Intervals)

t = perception-reaction time (nominally 1 sec)

V = approach speed, m/s [ft/s]

g = percent grade (positive for upgrade, negative for downgrade)

a = deceleration rate, m/s2 (typical 3.1 m/s2) [ft/s2 (typical 10 ft/s2)]

6

W = width of intersection, curb to curb, m [ft]

L = length of vehicle, m (typical 6 m) [ft (typical 20 ft)]

Since the 1960s, traffic engineers have been studying yellow indication related problems. Two

types of Dilemma Zone occur due to the yellow phase at signalized intersections (Figure 2.1).

The first type of Dilemma Zone may arise because of the insufficient length of yellow as well as

all red intervals (Herman and Liu, 1996). In 1960, Gazis et al. (1959) defined the “amber Light

Dilemma” as the situation that a driver can neither stop safely nor be able to cross the

intersection before the red phase. The yellow interval is usually 3s to 6s duration or longer on

approaches with higher speed according to the Manual on Uniform Traffic Control Devices

(MUTCD, 2009).

Type I DZ

Cannot Stop

Cannot Stop

Type II DZ

Likely Go Likely Stop

Figure 2.1 Two type of dilemma zone

The second type of Dilemma Zone, which is known as the “indecision zone”, is caused by the

difference of the driver behavior (Zegeer and Deen, 1978). The problem of Type II Dilemma

Zone is more prevalent at high speed intersections because of the greater crashes potential which

encouraged studies of the driver behavior at high speed intersections (Hurwitz, 2009). The

7

increases of Type II Dilemma Zone length leads to a greater risk of rear-end crashes (Zaidel and

Klein, 1985; Liu et al., 2007; Newton et al., 1997). There are some attempts to locate the position

of Type II Dilemma Zone. In 1978, the Dilemma Zone was defined as in response to the yellow

indication the area upstream from the stop line between which 10 percent and 90 percent of the

drivers will stop(Zegeer and Deen, 1978). The length of this zone is typically between 2.5s and

5.5s upstream of the stop line (James et al., 2002). In this study, only the Type II Dilemma Zone

is considered.

Rear-end crashes and RLR violations are two types of risk situations that are related to the

dilemma zone. Some rear-end crashed studies have been conducted based on historical data

(Kostyniuk, 1998; Abdel-Aty and Abdelwahab, 2004;Yan et al, 2005). Previous research has

revealed that a greater number of rear-end crashes occurs with an increase in the Type II

dilemma length (Newton et al., 1997; Kikuchi and R. Riegner, 1992).In 2000, Bryan E. Porter

(Porter and England, 2000) observed 5,112 drivers who entered traffic controlled intersections in

three cities. The result shows that 35.2% of the observed light cycles had at least one red-light

running violation prior to the onset of the opposing traffic. A rear-end crash happens when two

successive drivers make conflicting decisions at the onset of the yellow signal (Lum and Wong,

2003).

In terms of driver behavior, some studies have investigated the driver behavior in the dilemma

zone. Specifically, classification analysis of drivers’ stop/go decisions and RLR violations

(Elmitiny et al., 2010) concentrated on predicting the drivers’ stop/go behavior when they

encountered a signal change from green to yellow and predicted the RLR violations. This project

provided evidence in understanding drivers’ stop/go decisions as well as providing the field data

8

to investigate related driver behaviors. The stop/go probability of the drivers was modeled as a

function of the distance or gap from the stop line using the logistic regression model technique

(Bader and Axhausen, 2004; Newton et al., 1997; Papaioannou, 2007; Yan et al., 2007).

2.2 Advanced Warning Measures

For decades, traffic engineers have come up with some different countermeasures to improve the

situation. There are two types of methods that were proposed to help solve the dilemma during

the yellow interval: advanced time-warning methods and advanced distance-warning methods.

The concept of advance warning is to alert drivers for the potential need to stop, in order to

reduce the risk situations.

During the 1960s, some countries introduced some kinds of traffic signal modifications, such as

adding flashing green or flashing amber phases, employing green signal countdown display and

using advanced warning flashers (Table 2.1). In terms of flashing green or flashing yellow, in

some countries, the flashing green/yellow phases are implemented at the end of green phases to

give drivers advanced coming yellow indication information. Instead of the regular signal-timing

program the overlapping signal would be set as green→/flashing green/flashing yellow→yellow

→red. The flashing green signals indicate that the green phases will end, but it is still part of the

green phases. In Israel, since the 1960s a flashing green measure has been put into practice,

which has 3s (minimum) flashing green signal at 2 Hz before the yellow indication (D. M. Zaidel

D. Mahadlel, 1985). The flashing green is regarded as part of the green phase in the signal

timing. In the United States, Chicago experimented green-amber and amber phases at some

intersections, and in Arizona, a new Traffic Light Change Anticipation System (TLCAS) was

carried out (Newton et al., 1997). Previous research found that the green flashing or flashing

9

yellow method might reduce right angle collision and severity of maximum accelerations and

decelerations. Nevertheless, because of the increase of the indecision duration, the flashing green

program has high variability in response time and decision, which may cause that rear-end crash

risk increases (Factor et al., 2012; Köll et al., 2004; Newton et al., 1997). Both statistical studies

and driving simulator studies were implement to analyze the driver behavior for the flashing

green or flashing yellow indication (Knodler. Jr and Huiwitz, 2007; Knodler Jr. et al., 2001) .

Meanwhile, some other advanced time-warning methods have been proposed in recent years,

The countdown device is widely used in Asia to provide countdown timing and help driver make

decisions (Chiou and Chang, 2010; Halim and Lum, 2006; Li and Ni, 2014). As for the

Advanced Warning Flashers (AWFs), previous research revealed the AWFs can reduced the

crash frequency and severity. However, there is no statically significant was found, and it might

increase the operation speed and RLR violations (Carroll et al., 2003). Of all the different types

of time-advanced warning methods, nowadays, only a few countries still use these systems

(Chiou et al., 2005).

10

Table 2.1 Different types of dilemma zone countermeasures

Type
Dilemma Zone

Countermeasures
Description Application

Advanced Time-

Warning Method

flashing

green/yellow phases

Add a flashing

green/yellow phase at the

end of the green phase

In Israel, the countermeasure

has been used for more than

40 years(Factoret al., 2012)

Green Signal

Countdown Display

(GSCD) or Red

Signal Countdown

Display (RSCD)

Provide a green or red

countdown timing

Widely installed in Asian

countries and areas, such as

Malaysia, Singapore,

mainland of China, Taiwan,

etc.(Li and Ni, 2014)

Advanced Warning

Flasher (AWF)

Provide warning of the

signal changing with a

flasher

Have been used in the United

States and Canada

Advanced

Distance-Warning

Method

Pavement marking

Add a pavement marking

“SIGNAL AHEAD”

upstream of the intersection

A few practical use in the

United States

Others Red light camera

Effective in reducing RLR

violations, but some

additional rear-end crashes

might happen

Widely used in many

countries as a supplement to

police efforts to enforce

traffic signal laws

(Retting et al, 1999)

With respect to the distance-warning methods, a pavement marking was introduced into one

intersection in Florida in order to help the drivers make correct decisions during yellow periods.

Yan et al. (2009) studied driver behavior at the intersection where has a pavement marking with

11

a word message “SINGAL AHEAD” to help drivers decide whether to stop or go at the onset of

the yellow indication (Figure 2.2).

Figure 2.2 Pavement marking countermeasure

At the onset of the yellow indication, if the vehicle is located the upstream of the pavement

marking, he/she is encouraged to stop during the yellow interval. Otherwise, if the vehicle is

located downstream of the pavement marking, he/she can cross the intersection safely. The

driving simulator experiment results indicated that the pavement marking countermeasure has

positive effect on intersection safety and can help reduce the indecision region. The smaller

indecision region will normally imply a reduction of rear-end crashes risk and RLR violations.

(Yan et al., 2007).

Other countermeasures are also been widely used, such as the red light camera enforcement,

which is applied as a supplement to police efforts to enforce traffic signal laws (Retting et al, 1999).

A major disadvantage of those dilemma zone countermeasures is the assumption of the static

dilemma zones. In recent years, transportation researchers realized the location and the length of

the dilemma zone are dynamic and may be affected by many factors, such as the different speed

12

of the approaching vehicles, driver reaction times, vehicle acceleration and deceleration rates,

and the yellow phase duration (Liu et al., 2007). Based on this finding, some new

countermeasures are proposed, which use the measured speed to determine the individual

dilemma zone instead of using the assumed speed (Bonnesonet al., 2002; Tarko et al., 2006).

However, most of the practical countermeasures have not considered this disadvantage.

2.3 Intersection Simulation based on Cellular Automata Model

Using traditional traffic models to describe the microscopic behavior of vehicles can be a very

time consuming and complex process. Recently, with the rapid development of the computation

technologies, many Cellular Automata (CA) based models were developed.

In 1980s, Wolfram (Wolfram, 1983) developed the first well recognized CA model and

introduced the well-known “184 model”. Negal and Schreckenberg (1992) developed a CA

models for traffic flow simulation, which are easier to implement on computers for numerical

investigations. In this model, a lane is consisted by a number of one-dimensional cells, and is

updated according to pre-defined transition rules, which includes acceleration step, deceleration

step, randomization step and updating step. When employing the CA model into traffic flow

simulation, a lane is represented by a series of one-dimensional cells, and the cell are all equal

size. The underlying structure is composed by a discrete lattice of cells with one type of

topology, such as rectangular and hexagonal (Maerivoet and Moor, 2005). Each cell may either

empty or be occupied by one vehicle. The cell’s neighborhood determines the evolution of the

cell. Position and velocity of the 𝑛𝑡ℎvehicle are represented by 𝑥𝑛 and 𝑣𝑛. Also, the headway

between the vehicle and the vehicle in front is 𝑑𝑛, which equals to 𝑥𝑛+1 − 𝑥𝑛. The velocity of

13

each vehicle is between 0 and 𝑣𝑚𝑎𝑥. Successful application has been employed to simulate the

urban traffic flow (Clarridgea and Salomaab, 2010; Jiang and Wu, 2006; Han and Ko, 2012).

In order to evaluate the crash risks, Boccara et al. (1997) represented the Risky Situations (RS)

using a CA model. Jiang et al.’s studies (Jiang et al., 2003; Jiang et al., 2004) demonstrated that

RS reflected well the occurrence of rear-end crashes. Two types of rear-end crashes are analyzed

in this study: risks caused by a stopped car, risks caused by a non-stopped car. High deceleration

was also described in this situation.

However, of all the previous findings, relatively few studies use the drivers’ stop/go decision

database and compare different countermeasures to explore the propensity of accidents and

violations. There is a critical need for research to quantify driver stop/go behavior and analyze

the advantage as well as disadvantages of different countermeasures. Ding et al. (2014)

employed a CA model into the intersection’s RS analysis where decision tree model was used to

predict the drivers’ stop/go decisions based on field inventory data. The CA model’s main

parameters’ calibration was based on the results of the decision tree modeling. Since the

dependent variable (stop/go decision) is dichotomy, a logistic regression model is proper to

analyze the relation between the dependent variable and the factors, to rank the relative

importance of the independent factors, and to predict the stop/go decisions. The research applies

logistic regression model to predict drivers’ stop/go decisions, and compares three types of

scenarios (the typical intersection signal, the intersection with the flashing green indication as

well as the intersection with pavement marking before the stop line) Also, a new countermeasure

(PMAIC) that combined both time and distance solution is proposed and its effectiveness is

evaluated to further improve the intersection’s safety during the yellow interval.

14

15

CHAPTER 3 DATA COLLECTION AND ANALYSIS

3.1 Observation Site Description and Data Collection

The data collection conducted in Orlando, Florida. The studied intersection is located at the

Northwest corner of the University of Central Florida, which plays a major role in stimulating

economic and residential development in Orlando. The studied intersection is a four-legged

intersection between Corporate Blvd. & Gemini Blvd. running from east-west and Alafaya Trail

running north-south (Figure 3.1). The intersection is a signalized intersection. The yellow

interval is 4.3 seconds and the all-red interval is 1 second.

Figure 3.1 Site location map (“google map”, 2014)

The northbound approach is specifically considered for the study (Figure 3.2).

Studied Intersection

16

(a)

(b)
Figure 3.2 South approach of the studied intersection

(a) View from the intersection (b) View into the intersection

When off the intersection, the southbound of Alafaya Trail are five-lane divided traffic: three for

direct movements, one exclusive left turn lane and one exclusive right turn lane. The northbound

is three-lane divided traffic. The eastbound on Corporate Blvd. and the northbound on Gemini

Blvd. are two-lane divided traffic. The existing posted speed limit on Alafaya Trail is 45 miles

per hour (mph) (Figure 3.3).

Thirty-six hours of video, which includes 28 off-peak hours (1:30pm-4:30pm) and 8 peak hours

(4:30pm-6:00pm), were filmed during the weekdays. Using Adobe Premiere Pro software to

extract data from videos, 1292 vehicles’ behavior was recorded, which does not include the

17

vehicles forced to stop by the vehicle in front. Due to the small sample size of light truck

vehicles, data of this vehicle type were excluded from the database in this study.

Eight variables were obtained from the video:

 DISTANCE (in ft): car’s distance from the intersection at the onset of the yellow

indication;

 SPEED (in mph): car’s operating speed at the onset of the yellow indication;

 ST_GO: driver’s stop/go decision (stop = 0; go = 1);

 Y_TIME (in seconds): time elapsed from the onset of the yellow until the car entered the

intersection, if the car crossed the intersection;

 RLR: whether the going car ran a red light or not (no = 0; yes = 1);

 LD_FL: whether the car was in a leading position or a following position in the traffic

flow (leading = 0; follow= 1); if headway was shorter than 1 s the car was considered

following in the platoon;

 L_POSITION: the car’s lane position (left lane = 0; middle lane = 1; right lane = 2);

 V_TYPE: vehicle type [passenger car (PC) =0; light truck vehicle (LTV)=1; ;lager size

vehicle (LSV)=2].

18

Figure 3.3 Condition diagram

19

3.2 Observation Results and Data Analyses

3.2.1 Drivers’ Stop/Go Decisions

The ST_GO variable describes the drivers’ decisions at the onset of the yellow indication. “Stop”

means the driver chose to stop during the yellow interval, while “go” means the driver decided to

cross the intersection at the yellow interval. Five hundred and eight-five go decisions as well as

six hundred and seventy-nine stop decisions were observed. Both of the decisions account for

about 50% of all observations.

A logistic model was employed to analyze the importance of different independent variables for

the drivers’ stop/go decisions (Table 3.1). Five variables were considered during the variable

selection, which include SPEED, DISTANCE, LD_FL, L_POSITION and V_TYPE.

Table 3.1 Independent variables for the stop/go decision

Parameter Estimate Standard Error Wald 𝛘𝟐 Pr > ChiSq

SPEED 0.2118 0.0183 134.302 <.0001

DISTANCE -0.0246 0.00145 286.449 <.0001

LD_FL 1.0327 0.1622 40.5204 <.0001

L_POSITION 0.0201 0.0991 0.0413 0.8389

V_TYPE 0.2209 0.1577 1.9624 0.1613

According to the results of the logistic regression analysis, SPEED, DISTANCE and LD_FL

variables have significant impact on drivers’ stop/go decisions at 0.05 significance level;

however, the other 2 variables (L_POSITION & V_TYPE) do not have significant influence on

20

drivers’ stop/go decisions. Thus, three significant variables (SPEED, DISTANCE and LD_FL)

were chosen to be the main factors for predicting the drivers’ decisions. The results are

consistent with the results of the previous study (Elmitiny et al., 2010).

3.2.1.1 Main Factors of Drivers’ Stop/Go Decisions

1) Speed Variable

The speed limit of the north approach is 45 mph. The mean speed is 48.2 mph, which is slightly

higher than the speed limit and lower than the lead vehicles’ mean speed 49.0mph. The range of

the operating speed is 25mph to 63mph, and the standard deviation of the speed is 5.0mph. Most

of the operating speeds of the vehicles are at the 45mph to 55mph interval, which accounts for

73.2% observations (Figure 3.4). The leading vehicle speeds follow Normal Distribution N~

(49.5,4.92), which is considered to be the expected speed distribution for leading vehicles in this

simulation research.

Figure 3.4 Number of observations in different speed intervals

0

100

200

300

400

500

600

700

800

900

1000

0-<35 35-<45 45-<55 55-<66

N
u

m
b

e
r

o
f

O
b

s.

speed (mph)

21

The mean operating speed of vehicles that made go decisions (Mean=49.93, SD=4.99) is

statistically higher (p-value=0.000) than the mean operating speed of vehicles that made stop

decisions (Mean=47.79 SD=4.83).

In this study, the speed variable is divided into 3 groups.

Group 1: (0 mph, 45mph),

Group 2: [45 mph, 53 mph),

Group 3: [53 mph, 66mph).

Table 3.2 lists the descriptive statistics of drivers’ stop/go decisions at the onset of the yellow

signal by speed factor. Statistical results show that people who drive in different speed groups

make the stop/go decisions differently (χ3,1264 = 407,173, p=0.000). With the increase of the

speed, the probability that driver choose to stop will also increase.

22

Table 3.2 Descriptive statistics of stop/go decision by speed factor

Level Statistics Stop/go Decision

 Stop Go Total

0-<45

 Count 158 78 236

% Within SPEED 66.95 33.05 100.00

% Within stop/go 23.27 13.33 18.67

45-<53

 Count 456 369 825

% Within SPEED 55.27 44.73 100.00

% Within stop/go 67.16 63.08 65.27

53-<66

 Count 65 138 203

% Within SPEED 32.02 67.98 100.00

% Within stop/go 9.57 23.59 16.06

Total

 Count 679 585 1264

% Within SPEED 53.72 46.28 100.00

% Within stop/go 100.00 100.00 100.00

In Group 1, 33.05% drivers only choose to go. The percentage increases to 44.72 when the driver

travels at 45 mph to 53 mph. When the vehicle’s speed is 53 mph to 66 mph, the probability to

go is 67.49%, which is significantly higher than the probabilities of group 1 and group 2.

Regardless of the distance factor and other factors, about 50% of the drivers who drive at the

speed of 45 mph to 53mph will choose to stop.

2) Distance Variable

The mean distance of the vehicles to the stop line is 319.3ft at the beginning of the yellow phases

and the standard deviation is 80.2ft. The minimum distance is 160.0ft and the maximum speed is

480.0ft. As we can see in Figure 3.5, most of the observations were in 200ft to 400ft distance

region.

23

Figure3.5 Number of observations in different distance intervals

The distance to the stop line has a negative effect on the percentage of drivers who decide to

cross the intersection. About 90% drivers chose to go if they are within 220ft to the stop-line.

Also, when the distance is more than 400ft, the probability will drop to below 10% (Figure 3.6).

Figure 3.6 Stop/go decisions with different distance to the stop-line

0

50

100

150

200

250

300

>150-200 >200-250 >250-300 >300-350 >350-400 >400-450 >450-500

N
u

m
b

er
 o

f
O

b
s.

Distance Interval (ft)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

P
er

ce
n

ta
g

e
o

f
d

ri
v

er
 c

h
o

o
se

 t
o

G
O

Distance (ft)

24

The vehicles’ distance to the stop line is divided into 4 groups (ft.):

Group 1: (0,280);

Group 2: [280,390);

Group 3: [390,430);

Group 4: [430,480)

Table 3.3 lists the descriptive statistics of drivers’ stop/go decisions at the onset of the yellow

signal by distance factor. The statistical test demonstrates a significant difference from the

different speed groups (𝜒2,1264 = 55.863, p=0.000). In Group 1, most of the drivers will choose

to cross the intersection instead of stop. The number drop significantly in group 2, which only

about 40% drivers will decide to go. The go percentage of drivers who is more than 390ft away

from the stop line is below 10%. The trend is logical that the driver is more likely to cross if

he/she is closer to the stop line at the onset of the yellow signal.

25

Table 3.3 Descriptive statistics of stop/go decision by distance factor

Level Statistics Stop/go Decision

 Stop Go Total

0-<280

 Count 75 349 424

% Within DISTANCE 17.69 82.31 100.00

% Within stop/go 11.05 59.66 33.54

280-<390

 Count 348 217 565

% Within DISTANCE 61.59 38.41 100.00

% Within stop/go 51.25 37.09 44.70

390-<430

 Count 120 11 131

% Within DISTANCE 91.60 8.40 100.00

% Within stop/go 17.67 1.88 10.36

430-<480

 Count 136 8 144

% Within DISTANCE 94.44 5.56 100.00

% Within stop/go 20.03 1.37 11.39

Total

 Count 679 585 1264

% Within DISTANCE 53.72 46.28 100.00

% Within stop/go 100.00 100.00 100.00

3) LD_FL Variable

Driver behavior of the leading and following vehicle is different. Hurwitz (2009) analyzed the

driver responses and pointed out the difference between lead and follow vehicles. During the

data collection, 565 leading vehicles and 699 following vehicles were recorded.

Table 3.4 lists the descriptive statistics of drivers’ stop/go decisions at the onset of the yellow

signal by LD_FL factor. The position in platoons also has a significant difference on driver

behavior (𝜒1,1264 = 93.104, p=0.000). The table 3.4 also indicates that the following vehicles

are more prone to cross the intersection compared with the leading vehicles.

26

Table 3.4 Descriptive statistics of stop/go decision by LD_FL factor

Level Statistics Stop/go Decision

 Stop Go Total

Lead

 Count 388 176 564

% Within LD_FL 68.79 31.21 100.00

% Within stop/go 57.14 30.09 44.62

Follow

 Count 291 409 700

% Within LD_FL 41.57 58.43 100.00

% Within stop/go 42.86 69.91 55.38

Total

 Count 679 585 1264

% Within LD_FL 53.72 46.28 100.00

% Within stop/go 100.00 100.00 100.00

The speeds of vehicles at different positions are significantly different. The mean speed of

leading vehicles (Mean=49.52, SD=4.93) is statistically higher than the following vehicles

(Mean=48.19 SD=5.01) with p-value equal to 0.000.

3.2.1.2 Other Factors of Drivers’ Stop/Go Decisions

1） Y_TIME Variable

If the vehicle chose to enter the intersection at the onset of the yellow indication, the time

elapsed from the onset of the yellow until the car entered the intersection was recorded. The

mean time is 3.9 seconds and the standard deviation is 0.8 second. The minimum time is 2.1

seconds, while the maximum time is 7.2 seconds. Detailed analysis of Y_TIME will be

conducted at chapter 3.2.2 (Red-Light Running Violation).

2) V_TYPE Variable

27

There were 538 light trucks and 726 passenger cars were observation during the data collection

(Figure 3.7). The statistical analysis does not show significant difference between passenger car

and light truck vehicles (𝜒1,1264 = 1.576, p=0.209).

Figure 3.7 Number of observations by different types of vehicles

The mean speed of passenger car is 49.0mph and the mean speed of light truck is 48.4mph

(Figure 3.8). Significant difference has been found by statistical analysis at 0.05 significance

level (p-value=0.031).

Figure 3.8 Mean of the speed by different vehicle types

726 (57%)

538 (43%)

PC light truck

28

 3) L_Position Variable

There are three lanes at the studied approach. The middle lane has the highest mean speed, while

the left lane has the lowest mean speed. However, the right lane has the lowest standard

deviation of the operating speed (Table 3.5).

Table 3.5 Speed by different lane position

 Left Lane Middle Lane Right Lane

Mean (mph) 47.59 49.77 49.07

Std. Deviation (mph) 5.28 4.80 4.63

Table 3.6 shows the contingency table of different lane positions. There is no significant

difference of the drivers’ stop/go decisions between vehicles at different lanes (𝜒2,1264 = 1.287,

p=0.525).

Table 3.6 Contingency table of stop/go decisions by different lane positions

 Go Stop

Left Lane 202 255

Middle Lane 215 235

Right Lane 168 189

3.2.2 Red-Light Running Violation

Typically, there are two types of Red-light running violations (RLR) (Federal Highway

Administration). The first type of RLR, which is referred as “permissive yellow” rule, means the

driver can enter the intersection legally during the yellow interval. The second type is called

29

“Restrictive yellow” rule, which forbid the driver enter or in the intersection on red interval. The

first type of rule is more commonly used in the United States.

Two hundred and seventeen red-light running violations were observed during the data

collection. Table 3.7 shows the descriptive statistics of RLR violations. The speed group 2,

distance Group 2, following vehicles, vehicles in the right lane has relatively higher percentage

of RLR violations. Most of the vehicles that have the RLR violation need about 4 seconds to 5

seconds to cross the intersection at the onset of the yellow indication, which indicates driver are

more prone to make false stop/go decisions when they has 4s to 5s elapsed time to enter the

intersection.

30

Table 3.7 Descriptive statistics of RLR violation by different factors

Factor Statistics RLR

speed group 0-<45 Count 35

 Percentage (%) 16.1

 45-<53 Count 129

 Percentage (%) 58.9

 53-<66 Count 53

 Percentage (%) 24.4

Distance group 0-<280 Count 39

 Percentage (%) 18.0

 280-<390 Count 160

 Percentage (%) 73.7

 390-<430 Count 10

 Percentage (%) 4.6

 430-<480 Count 8

 Percentage (%) 3.7

Lead/Follow lead Count 52

 Percentage (%) 24.0

 follow Count 165

 Percentage (%) 76.0

Lane position Left Lane Count 71

 Percentage (%) 32.7

 Middle Lane Count 88

 Percentage (%) 40.6

 Right Lane Count 58

 Percentage (%) 26.7

Vehicle type Passenger Car Count 124

 Percentage (%) 57.1

 Light Truck Count 93

 Percentage (%) 42.9

Elapse time >4-5 Count 163

 Percentage (%) 75.1

 >5-6 Count 52

 Percentage (%) 24.0

 >6-7 Count 2

 Percentage (%) 0.9

Table 3.8 demonstrates the logistic regression analysis for RLR violations. Five factors are

considered. Three factors (follow or lead, speed and distance) show a significant impact on the

presence of RLR violations. Distance variable has the highest impact on the presence of RLR

31

violations, while the lead or follow position has the least impact on the presence of the RLR

violations. However, the vehicles’ lane position and the vehicle type do not show significant

relationship with the present of the red-light running violation. The parameter estimates indicates

the follow vehicles are more prone to have RLR violations. Also, the distance has a negative

effect on reducing RLR violations, while the speed has a positive effect on reducing RLR

violations. Compared the RLR violations of the leading vehicles and following vehicles,

significant statistically difference has been observed (𝜒1,1264 = 45.239, p=0.000), which

indicates the following vehicles are more prone to have a RLR violations than the leading

vehicles.

Table 3.8 Parameter estimates of the logistic model for RLR violation

Parameter Estimate Standard Error Wald 𝛘𝟐 Pr > ChiSq

SPEED 0.0578 0.0164 12.4733 0.0004

DISTANCE 0.00331 0.00103 10.2341 0.0014

LD_FL 1.3737 0.1836 55.9846 <.0001

L_POSITION 0.0486 0.0980 0.2453 0.6204

V_TYPE 0.0527 0.1558 0.1143 0.7353

The distance of 340ft to 370ft has the most RLR violations. Nearly 60 red-light running

violations were observed in that distance region. The number of RLR violations shows an

increasing trend in the distance interval of 220ft to 370ft, and shows a decreasing trend when the

distance to the stop line is larger than 370ft away from the stop line (Figure 3.9). However, the

lane position does not have significant difference on RLR violations (𝜒2,1264 = 2.873, p=0.238).

32

Figure 3.9 Distribution of RLR violation by distance interval

The RLR vehicles (Mean=49.67, SD=5.42) have a higher (p-value=0.008) mean speed than the

vehicles without RLR violations (Mean=48.60, SD=4.91). The results indicate that the drivers

who have an RLR violation can be more aggressive than the other drivers (Figure 3.10).

Figure 3.10 Mean of the speed by the presence of RLR violation

0

10

20

30

40

50

60

70

220 250 280 310 340 370 400 430 460 490

n
u

m
b

e
r

o
f

R
e

d
-l

ig
h

t
ru

n
n

in
g

 v
io

la
ti

o
n

Distance Threholds (ft)

33

Compared the presence of the RLR violations by different position in a traffic platoon, there is

significant difference between the lead vehicles and the following vehicles (𝜒1,1264 = 32.532,

p=0.000).

Figure 3.11 Red-light running violations

Figure 3.11 illustrates the elapse time and the distance to the stop line of the vehicles, which had

the RLR violations. From Figure 3.11 we can see, most of the violation happen at the 4s to 6s

elapse time to enter the intersection and 250ft to 370ft away to the stop line. The results consist

with previous studies (Bonneson et al., 2002).

4

4.5

5

5.5

6

6.5

7

7.5

150 200 250 300 350 400 450 500

Y
_

ti
m

e
 (

s)

Distance (ft)

34

CHAPTER 4 METHODOLOGY

4.1 Stop/go Decision Rule

In statistics, a logistic regression is a type of statistical classification model and a model to

predict a binary or categorical dependent variable based on one or more independent variables. A

logistic regression analysis can be employed to describe the relationship between explanatory

variables and a response variable. Previous studies have appropriately applied logistic regression

analysis to test the significance of observable factors and drivers’ characteristics and grouped

drivers into different categories (Papaioannou, 2007).

A binary logistic regression is proper to use to explain drivers’ stop/go decisions as a function of

several factors. According to the analysis in Chapter 3.2, a logistic model can also be used to

predict driver behavior. Three factors, which include speed group, distance group and

lead/follow position, are used as variables in the logistic regression analysis to predict the

drivers’ stop/go decisions.

The probability that a driver will decide to cross the intersection is modeled as logistic

distribution in (4-1) where g(x)=0 stands for stopping and g(x)=1 stands for crossing:

 π(x) = eg(x)1 + eg(x) (4-1)

The Logit of the logistic regression model is given by Eq. (2):

 g(x) = ln π(x)1−π(x)=𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3+. … . . +𝛽𝑛𝑥𝑛 (4-2)

35

Statistical analysis was performed using SAS and the hypothesis testing was based on a 0.05

significance level (Table 4.1). The logistic model is found to be appropriate for the data

(Hosmer-Lemeshow goodness of fit Chi-Square =2.7349, d.f.=8, p-value=0.9499). The ROC

area of 0.874 indicated that 87.4% of (go, stop) pairs of decisions were classified correctly by the

model, which means that the predictive accuracy is good. The odds ratio of the lead/follow

vehicles mean the odds of go decision for follow vehicles is 2.547 times the odds of the go

decision for lead vehicles. Meanwhile, according to the Table 4.1, ratio of the odds for distance

group 2 and distance group 3 relative to distance group 1 is 4.479 and 26.629 separately. Also,

the odds of go decision for speed group 2, speed group 3 as well as speed group 4 are 0.090,

0.011 as well as 0.005 times the odds of go decision for the speed group 1.

Table 4.1 Model estimation and odds ratios

Parameter Estimate Odds Ratio 95% Wald Confidence Limits Wald 𝛘𝟐 Pr > ChiSq

Follow vs.

Lead

0.9458 2.547 1.870 3.469 35.8336 <.0001

Speed group

2 vs. 1 1.4994 4.479 2.974 6.746 51.4817 <.0001

3 vs. 1 3.2820 26.629 14.837 47.793 120.9566 <.0001

Distance group

2 vs. 1 -2.4108 0.090 0.063 0.128 174.7836 <.0001

3 vs. 1 -4.5557 0.011 0.005 0.022 141.3785 <.0001

4 vs. 1 -5.2498 0.005 0.002 0.013 122.3220 <.0001

36

Assuming that the speed of a vehicle is 45mph to 53 mph (Group 2), as we can see from Table

4.1, the probability of the lead vehicle driver choosing to go is always lower than the following

vehicle and it also drops quicker than the follow group with the increase of the distance. When

the lead position car is more than 430ft from the stop line, the probability of the driver choosing

to go is only about 10%.

(a)

(b)

Figure 4.1 Drivers’ stop/go decisions

Figure 4.1 shows that the go probability for the following vehicle in different speed and distance

groups. The driver prefers to go when he/she travels at a higher speed. Even if the car is only

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Group 1 Group 2 Group 3 Group 4

G
o
 P

ro
b

a
b

il
it

y

Distance Group

Lead Follow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Group 1 Group 2 Group 3 Group 4

G
o
 P

ro
b

a
b

il
it

y

Distance Group

Speed Group 1 Speed Group 2 Speed Group 3

37

390ft away from the stop line, the relative probability for vehicles below 45mph is only nearly

20%. Vehicles in the following position in the platoon are more prone to go compared with the

leading vehicles. Meanwhile, drivers who are in speed Group 1 will be prone to choose to stop if

he or she is more than 280ft away from the stop line. If the vehicle is in distance group 4, the

drivers would be prone to stop no matter how fast the vehicle is traveling (Figure 1(b)).

4.2 Cellular Automata Model

Previously, microscopic simulation of driver behavior is very complex and time consuming. As

the rapid development of the computer technology, a number of simulation systems, which

includes different types of CA models, have been developed. According to characteristics of the

CA model, it is widely used for the traffic flow simulation once it was introduce to the traffic

field.

1) Simulation Environment

During the simulation, the lane is made up of cells, which could be empty or occupied by one

car. Each cell corresponds to 1.5m, each car occupies 5cells (standard value in CA models). In

this study, the simulation environment is set up as an open boundary one-dimensional lattice.

2) Model parameters and variables

A series of parameters are defined in the CA model. Some variables are from the literature, and

some variables are calibrated by the field data.

The length of the road is set as 5000 cells, which mean 7500m. t is the number of time step, and

1 time step represents 1 second during the simulation. The simulation covers 1500 seconds (time

38

steps). The maximum acceleration is 1.5m/s2 (1 cell/s2), and the maximum deceleration is 3m/s2

(2 cell/s2). The initial operating speed of the vehicles follows normal distribution, which is

calibrated by the field data. The expected mean speed of the leading vehicles is set as the input.

Table 4.2 CA model parameters

Notation Description Value

L Road length 5000 (cells)

t Number of time step 1500 (s)

acc Maximum acceleration 1 (cell/s2)

dec Maximum deceleration 2 (cell/s2) 𝑣𝑖𝑛𝑡 Initial speed of vehicle Normal~ (49.5,4.92),

3) Driver Behavior

 General Rules

The response time is referred to the time interval of signal changing and the brake (or

acceleration) response. Wortman (1983) found that the average reaction time is between 1.09s

and 1.55s, which is consistent with the results of other studies (Chang et al., 1985; Newton et al.,

1997; Gates et al., 2006). The Institute of Transportation Engineer’s (ITE, 1989) recommended

1.0 second as the brake-response time for yellow interval. In the simulation, the default value for

the yellow interval reaction time is 1.0 second.

39

Figure 4.2 Relationship of sensitivity and specificity in the logistic model

Drivers’ stop/go decisions are based on the probabilities calculated by the logistic regression.

The sensitivity and specificity reach the same value when the probability is equal to 0.48 (Figure

4.2). Therefore, if the probability value is larger than 0.48, the driver will choose to go.

Otherwise, the driver will choose to stop. Other driver behavior rules follow the CA model rules

(Y. Ding et al., 2014; Jia et al., 2007).

 Randomization

For the drivers who neither have an obvious speed up behavior nor slow down. We assume the

slowing down of the speed is caused by the randomization. For all the non-stopping cars’

acceleration reveals a normal distribution. Ding et al. (2014) has calibrated the randomization

probability at the intersection is 𝑝 = 0.16.

4) Updating Rules

The position and velocity of the vehicles are updated according to the following transition rules:

50

55

60

65

70

75

80

85

90

95

100

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Sensitivity Specificity

40

Step1: Acceleration: If 𝑣𝑛 < 𝑣𝑚𝑎𝑥, the speed is advance by one, unless the distance to the next

vehicle ahead is smaller than 𝑣𝑛 + 1.

 𝑣𝑛→min(𝑣𝑛+1, 𝑣𝑚𝑎𝑥) (4-3)

Step 2: Deceleration: If the 𝑛𝑡ℎvehicle’s speed will exceed the front vehicle at the next time step

(∆t), the velocity of the 𝑛𝑡ℎ vehicle is reduced by 1.

 𝑣𝑛 → min (𝑣𝑛, 𝑑𝑛/∆𝑡 − 1) (4-4)

Step 3: The velocity of each vehicle (if 𝑣𝑛 > 0) is decreased by one with probability p.

 𝑣𝑛 → (𝑣𝑛 − 1,0) (4-5)

Step 4: Update vehicle movement

 𝑥𝑛 → 𝑥𝑛 + 𝑣𝑛 × ∆𝑡 (4-6)

4) Signal Timing

A fixed time signal control program is set at the intersection. To simplify the simulation process,

the intersection signal is set as a fixed timing program with a relatively short circle of 60s

including a 25s green phase, a 4s yellow phase and a 31s red phase. In the fixed signal time

41

program, when signal change from green to amber drivers will make stop/go decision and

behave differently under different countermeasures.

4) Risky Situation

Two types of the dangerous situations are considered during the simulation, which includes the

rear-end crashes and the red-light running violations. There is no rear-end crash happens during

the simulation based on the CA model, thus a concept of risky situation was proposed to describe

the rear-end crashes caused by the false behavior of the drivers. Sometimes, the drivers’ false

behaviors are caused by the false expectations of other drivers. In this study, risky situations can

be divided into two types, one is risky situations caused by a stopped car, and the other one is

caused by non-stopped cars. Also, a criterion of slam on the brake is defined to describe the

situation when the former car encounter emergency (such as signal turning from green to

yellow), a risky situation may present because of the inefficient response time. Meanwhile, the

presence of RLR violations is also caused by the false decision of the drivers. Thus, another

criterion, which described the percentage of drivers’ false go decisions, is proposed to compare

the potential RLR risk.

42

Dangerous

situations

Rear-end crash Red-light running

P-Brake P-RS1 P-RS2 P-RLR

Figure 4.3 Dangerous situations

Four risky situations are analyzed in this study, which includes slam on the brake (situations

caused by stopped car, non-stopped cars and Red-Light Running Rate (RLR).

Slam on the brake (BRAKE)

 (𝑎1)𝑣𝑛𝑡 − 𝑣𝑛𝑡+1 > 2 (4-7)

RS caused by stopped cars (RS1)

(𝑎1)𝑣𝑛𝑡 − 𝑣𝑛𝑡+1 > 2𝑎𝑛𝑑 𝑑𝑛𝑡+1 = 0, (𝑏1)𝑣𝑛+1𝑡 > 0, (𝑐1) 𝑣𝑛+1𝑡+1 = 0 (4-8)

RS caused by non-stopped cars (RS2)

 (𝑎1)𝑣𝑛𝑡 − 𝑣𝑛𝑡+1 > 2𝑎𝑛𝑑 𝑑𝑛𝑡+1 = 0, (𝑏1)𝑣𝑛+1𝑡 > 0, (𝑐1) 𝑣𝑛+1𝑡+1≠ 0

(4-9)

43

False go decision (RLR)

 𝑣𝑛𝑡 ∗ 𝑡𝑌 < xnt (4-10)

Where,

𝑡𝑌 is the yellow interval

 xnt is the gap of the vehicle and the vehicle in front

In this research we denote the probability of occurrence of rear-end RS caused by stopped cars,

non-stopped cars or slam on the brake as 𝑃 − 𝑅𝑆1, 𝑃 − 𝑅𝑆2 and 𝑃 − 𝐵𝑅𝐴𝐾𝐸 . The probability

of occurrence of RLR is 𝑃 − 𝑅𝐿𝑅.

7) Simulation Output

The simulation conducted based on C#. The output contains six documents.

The contents of the six documents are described as follow:

 Brake1-Contains data of emergency brake (BRAKE).

Each number in the Brake1 document represents the 𝑃 − 𝐵𝑅𝐴𝐾𝐸 during each simulation

process (Figure 4.4).

Figure 4.4 Output of Brake1 document

 DSZ1- Contains data of risky situations caused by stopped cars (RS1).

44

Each number in the Brake1 document represents the 𝑃 − 𝑅𝑆1 during each simulation

process (Figure 4.5).

Figure 4.5 Output of DSZ1 document

 DSZ2- Contains data of risky situations caused by non-stopped cars (RS2).

Each number in the Brake1 document represents the 𝑃 − 𝐵𝑅𝐴𝐾𝐸 during each simulation

process (Figure 4.6).

Figure 4.6 Output of DSZ2 document

 tl1-Contains the spatial and temporal information of RS1 and RS2 (Figure 4.7).

The first line represents the time when the RS1 or RS2 happens;

The second line represents the location of the risky situation;

 The third line records in which simulation process does the risky situation presents;

The last line shows the expected speed of the vehicles

45

Figure 4.7 Output of tl1 document

 tl2- Contains the spatial and temporal information of emergency brake (Figure 4.8).

The first line represents the time when the emergency brake happens;

The second line represents the location of the risky situation;

The third line records in which simulation process does the risky situation presents;

The last line shows the expected speed of the vehicles.

Figure 4.8 Output of tl2 document

 stgo-error- Contains the information about drivers’ false decisions 𝑃 − 𝑅𝐿𝑅.

Each number in the Brake1 document represents the 𝑃 − 𝑅𝐿𝑅 during each simulation

process (Figure 4.9).

Figure 4.9 Output of stgo-error document

46

CHAPTER 5 SCENARIOS CONSTRUCTION AND ANALYSIS

5.1 Typical Intersection

A typical simulation will follow the general rules which are described in Chapter 4.2. The spatial

and temporal information of the risky situations is depicted in Figure 5.1, when the expected

mean speed of the leading vehicles follows the normal distribution N~ (50,5). Figure 5.1(a)

shows the RS1 and RS2 risky situations, which represent the possible rear-end crashes. Most of

this type of risky situation is present at the end of yellow phases and the beginning of red phases.

One possible reason for these situations is the difference of the driver behavior during the yellow

interval and their false judgments of other drivers’ decisions (Yan et al., 2005). Meanwhile, most

of the risky situations are located 10ft to 45ft away from the intersection. Figure 5.1(b) describes

the distribution of the presence of the emergency brake. Different from the rear-end crash’s

risky situations, most of this type of risky situations are present closer to the intersection and

begin to present soon after the onset of the yellow indication. Thus, most risky situations happen

at the beginning of the yellow indication until 10 seconds after the onset of the red indication,

and located at 7.5m (5cells) to 60m (40cells) away from the stop line.

47

(a)

(b)

Figure 5.1 Spatial and temporal distribution of risky situations at the typical intersection when the

expected speed of lead vehicles follow N~(50,5)
(a) RS1 and RS2 (b) emergency brake

Figure 5.2 shows that the impact of increasing expected mean speed of leading vehicles on the

presence of the risky situations. Significantly increasing trends of risky probabilities with the

speed can be found. When the expected mean speed increased from 40mph to 50mph, the risky

situations caused by stopped car will significantly increase, which indicates that many of the

risky situations are due to the drivers’ different stop/go decisions. When the expected mean

48

speed increased from 50mph to 60mph, the percentage of drivers who choose to stop will drop

significantly because of the relatively larger parameter estimate of Speed Group 3 in the logistic

model, which is equal to 3.2820. Thus, there is no significant increase of the risky situations

caused by stopped cars (RS1) when the expected speed increased from 50mph to 60mph.

When increasing the standard deviation of the leading vehicles, the risk probabilities also show

an increasing trend, especially during the standard deviation increased from 2mph to 5mph. If the

standard deviation has already increased to 5mph, the probability of the risky situations will be

more sensitive to the increase of the expected mean speed (Table 5.1).

Table 5.1 Impact of standard deviation of leading vehicles on risky situations at the typical

intersection

Speed Distribution

Risky Situation (*10-5)
(50,2) (50,5) (50,10)

P-BRAKE 9.32 64.41 67.58

P-RS1 6.44 43.97 43.09

P-RS2 0.31 2.88 2.75

49

(a)

(b)

(c)

Figure 5.2 Impact of excepted mean speed of leading vehicles on Risky Situations at typical

intersection

(standard deviations=5mph)
(a) P-RS1 (b) P-RS2 (c) P-BRAKE

30 35 40 45 50 55 60
2

2.5

3

3.5

4

4.5

5
x 10

-4

Mean expected speed (mph)

P
-R

S
1

30 35 40 45 50 55 60
1.5

2

2.5

3

3.5

4

4.5
x 10

-5

Mean expected speed (mph)

P
-R

S
2

30 35 40 45 50 55 60
4

5

6

7

8

9

10
x 10

-4

Mean expected speed (mph)

P
-B

R
A

K
E

50

Table 5.2 shows the potential RLR violations by different expected mean speed of the leading

vehicles the typical intersection. When the expected mean speed lower than 50mph, there is an

increasing trend of the percentage of false decisions with the increase of speed. If the expected

mean speed increased from 50mph to 60mph, the percentage will be reduced. The definition of

P-RLR is the percentage of false stop/go decisions of the drivers. From Chapter 3.2.2, vehicles

traveling at a speed about 50mph are more prone to have the false go decision. Thus, the

simulation scenarios that have more vehicles drive at this operating speed will have higher

percentage of false decisions, and will lead to high P-RLR.

Table 5.2 RLR risk probabilities by different expected mean speed of leading vehicles at the typical

intersection

Speed Distribution (30,5) (40,5) (50,5) (60,5) (50,2) (50,10)

RLR risk probability (*10-4) 37 56 166 52 323 134

5.2 Intersection with Flashing Green Signal

 Scenario Construction

In some countries, flashing green phases are implemented at the end of green phases to give

drivers advanced warning for the upcoming yellow indication and it is still part of the green

phases. Newton et al. (1997) found that about 80% of drivers make acceleration or deceleration

decisions during the flashing phases in the Change Anticipation System (TLCAS) program.

Many of them will decelerate, but some of the drivers will choose to accelerate. Also, the

TLCAS maximum deceleration value (2.5m/s2) is significantly different from the regular

program (3.1 m/s2), which does not include flashing indication phases. The maximum

51

acceleration is 1.6m/s2 in the TLCAS program instead of 2.0 m/s2 for the regular program. As for

the reaction time, the mean value for the TLCAS is 2.05s, which is much larger than the regular

program. Based on the results of the TLCAS program, the simulation process of intersection

with the Flashing Green is shown in Figure 2. Four seconds before the onset of the yellow

indication, the flashing green indication begins. To simplify the simulation, 75% of the drivers

will decelerate with 2.0 m/s2, 5% of the drivers will accelerate with 1.0 m/s2,the other 20% of the

drivers will approach the intersection with the same speed during the simulation. The default

value for the flashing green reaction time in this simulation is 2 seconds. The rules of driver

behavior after the onset of the yellow indication are same as the typical intersection (Figure 5.3).

Onset of

flashing green

signal

Decelerate

(p=75%)

Onset of

yellow signal

Make decisions based on

results of

logistic regression

Keep speed

(p=20%)

Accelerate

(p=5%)

Stop

Go

Figure 5.3 Simulation process of intersection with the flashing green indication

 Simulation Results

Figure 5.4 shows the comparative study of the intersection with the flashing green and the typical

intersection. The flashing green phase leads to longer indecision interval of drivers, and the

drivers’ behaviors will be more various, which makes drivers harder to predict other drivers’

behaviors and may lead to rear-end crashes. No significant improvement has been found.

However, when the vehicles have high operating speed or low variance of the speed between

52

vehicles, relative higher risk probabilities have presented. The different acceleration or

deceleration decisions during the flashing green phases are the reason for the increasing of the

risky probabilities in some cases. The results are consistent with the results of the previous study

(Factor et al., 2012)

53

(a)

(b)

(c)

x axis- (mean speed (mph), standard deviation(mph))

Figure 5.4 Impact of excepted mean speed of leading vehicles on risky situations at the typical

intersection and the intersection with the flashing green
(a) P-RS1 (b) P-RS2 (c) P-BRAKE

0

0.0005

0.001

0.0015

0.002

30,5 40,5 50,5 60,5 50,2 50,10

P
-B

R
A

K
E

Speed distribution (mean, standard deviation)

Typical Flashing Green

0

0.0002

0.0004

0.0006

0.0008

0.001

30,5 40,5 50,5 60,5 50,2 50,10

P
-R

S
1

Speed distribution (mean, standard deviation)

Typical Flashing Green

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

30,5 40,5 50,5 60,5 50,2 50,10

P
-R

S
2

Speed distribution (mean, standard deviation)

Typical Flashing Green

54

Figure 5.5 shows the spatial and temporal information of the risky situations of the intersection

with flashing green phases. When the expected mean speed is 30mph, most of the risky

situations present during 25 seconds to 45 seconds with 7.5m (5 cells) to 60m (40 cells) away

from the stop line. When the expected mean speed increased from 30mph to 60mph, the time

range increase to 25 seconds to 50 seconds and the distance range increase to 7.5m (5 cells) to

75m (50 cells). Thus, both the time and the distance range of the risky situations’ distributions

were increased with the increase of the expected mean speed.

55

(a) (b)

(c) (d)

Figure 5.5 Spatial and temporal distribution of risky situations at the intersection with the flashing

green phases

(standard deviation=5mph)
(a) RS1 and RS2 when the expected mean speed is 30mph (b) RS1 and RS2 when the expected mean

speed is 60mph (c) emergency brake when the expected mean speed is 30mph (d) emergency

brake when the expected mean speed is 60mph

The RLR risk of the flashing green does not have a significant difference compared to the typical

intersection, because both of the drivers in the scenarios make their stop/go decisions based on

the logistic model, which can be effect by speed, distance or the lead/follow position of the

vehicles (Table 5.3).

56

Table 5.3 P-RLR of the typical intersection and the intersection with the flashing green

Expect Speed Distribution

Scenario
(30,5) (40,5) (50,5) (60,5) (50,2) (50,10)

Typical intersection scenario (*10-4) 37 56 166 52 323 134

Flashing green scenario (*10-4) 37 84 205 85 300 138

5.3 Intersection with Pavement Marking

 Scenario Construction

The rules of pavement marking is depicted in Figure 5.6, two cars (A & B) face the change of

yellow indication. Since car B has passed the pavement marking, he/she should choose to go

while the car A should choose to stop.

Figure 5.6 Scenario of intersection with pavement marking

ITE’s Engineering handbook suggests the distance from the marking to stop bar is (Pline, 1999),

(B)

(A)

57

 𝑋 = 𝑉0𝑡 + 𝑉022𝑎+19.6𝑔 (5-1)

Where V0 is the 85th percentile speed or speed limit; t is the reaction time; a is the average

deceleration rate; g is the grade of the intersection. In this study, the pavement marking is

designed with a 45 mph speed limit.

 Simulation Results

Figure 5.7 demonstrates the risky probabilities of pavement-marking scenarios. Significantly

improvement can be observed of the three different types of risky situations, especially the risky

situations caused by the non-stopped vehicles. The pavement marking countermeasures have

more positive effect when the operating speeds of the vehicles are relatively higher. When the

expected mean speed is 30mph, little effect can be found in reducing the risk probabilities. The

probabilities of risky situations under the pavement-marking scenario increase with the

increasing of the standard deviation and the expected mean speed.

58

(a)

(b)

(c)

Figure 5.7 Comparative risky probabilities analysis of the typical intersection and the intersection

with pavement marking
(a) P-BRAKE (b) P-RS1 (c) P-RS2

0

0.0002

0.0004

0.0006

0.0008

0.001

30,5 40,5 50,5 60,5 50,2 50,10

P
-B

R
A

K
E

speed distribution (mean speed, standard deviation)

Typical Pavement Marking

0

0.0001

0.0002

0.0003

0.0004

0.0005

30,5 40,5 50,5 60,5 50,2 50,10

P
-R

S
1

speed distribution (mean speed, standard deviation)

Typical Pavement Marking

0

0.00001

0.00002

0.00003

0.00004

0.00005

30,5 40,5 50,5 60,5 50,2 50,10

P
-R

S
2

speed distribution (mean speed, standard deviation)

Typical Pavement Marking

59

Figure 5.8 depicted the presence of risky situation at the intersection with the pavement marking

countermeasure. Compared with the simulation with the expected mean speed of 30mph and the

simulation with 60mph, the pavement marking countermeasure can effectively prevent the

expand of the distance range.

(a) (b)

(c) (d)

Figure 5.8 Spatial and temporal distribution of risky situations at the intersection with the

pavement marking and an auxiliary indication countermeasure

(standard deviation=5mph)
(a) RS1 and RS2 when the expected mean speed is 30mph (b) RS1 and RS2 when the expected mean

speed is 60mph (c) emergency brake situations when the mean speed is 30mph (d) emergency

brake situations when the expected mean speed is 60mph

However, the pavement marking significantly increase the risk of RLR violations when the

vehicles with a low operating speed or a high variance. The reason for this phenomenon is that

60

the design speed for the pavement marking is 45mph. If the vehicle’s speed is lower than the

design speed, there will be high risk of red-light running violation. Thus, the pavement marking

countermeasure have positive effects on reducing rear-end crashes risks. When the vehicles have

low operating speed, the safety of the intersection will be dramatically decreased (Figure 5.9).

Figure 5.9 Probabilities of red-light running violation at the intersection with pavement marking

5.4 Intersection with Pavement Marking and an Auxiliary Indication countermeasure

 Scenario Construction

The flashing yellow signal beside the pavement marking is a warning signal, which will be onset

if the speed of the vehicles is below the speed limit. The flashing yellow signal begins to flash a

few seconds (about 1s to 3s) before the onset of the yellow indication and continues until the end

of the red interval. Because of this disadvantage of pavement marking, a new countermeasure is

proposed to solve this problem, which is installing an auxiliary flashing yellow signal next to the

pavement marking. Thus, we propose a fourth scenario with both pavement marking and the

auxiliary flashing yellow indication (PMAIC).

0

0.05

0.1

0.15

0.2

0.25

0.3

(30,5) (40,5) (50,5) (60,5) (50,2) 50,10

P
-R

L
R

Speed distribution (mean, standard deviation)

61

(a)

(b)

Figure 5.10 Scenario of the PMAIC
(a) approaching the intersection with a speed below the speed limit (b) approaching the intersection

with a speed not below the speed limit

In Figure 5.10(a), when vehicles are approaching the intersection with a speed lower than the

speed limit of the intersection approach (45mph), the auxiliary flashing yellow indication will

begin flashing at n seconds before the yellow phase. If the vehicle that has not passed the

pavement marking before the onset of the auxiliary flashing yellow indication and can see the

flashing indication, the driver should choose to stop during the yellow interval. Otherwise, the

driver should choose to go at the yellow duration. In Figure 5.10(b), when the operation speed of

the vehicle is not below the speed limit (45mph), the driver should follow the rules that are

similar to the pavement-marking scenario.

62

n seconds before onset of yellow

signal

If car speed>speed

limit

Follow

the rules of pavement marking

 Onset

the auxiliary flashing yellow

indication

Go through pavement

marking

Go Stop

Go through pavement

marking

Go Stop When onset of yellow

indication

Yes YesNo No

Yes No

 seconds before onset

of yellow indication

Figure 5.11 Simulation processes of pavement marking & auxiliary flashing indication

The processes of the PMAIC scenario simulation are shown in Figure 5.11. The value 𝑡𝐹 is

based on the vehicles’ current speed at 5 seconds before the onset of the yellow indication.

 𝑉𝑐𝑡𝐹 = 𝑉0𝑡𝑌-𝑉𝑐𝑡𝑌 (5-2)

 Then,

 𝑡𝐹 = V0𝑡𝑌−Vc𝑡𝑌Vc (5-3)

Where,

63

𝑉0 denotes the speed limit or 85th percentile speed

𝑉𝑐 denotes speed when n seconds before the onset of the yellow indication

𝑡𝑌 denotes the yellow interval

Also, the value for the judgment time n is,

n = V0𝑡𝑌−Vmin𝑡𝑌Vmin + 1 (5-4)

Where,

Vmin denotes the expected minimum speed of vehicles

For example, if a vehicle approaches the intersection with 30mph (13.4m/s), which is lower than

the speed limit 45 mph (20m/s). Then 2.3 seconds before the yellow phase, the auxiliary flashing

yellow indication next to the pavement marking will begin to flash.

 Simulation Results

64

(a)

(b)

(C)

Figure 5.12 The probabilities of different types of rear-end RS under pavement-marking scenario

and the PMAIC scenario
(a) RS1 (b) RS2 (c) BRAKE

0

0.0002

0.0004

0.0006

0.0008

0.001

30,5 40,5 50,5 60,5 50,2 50,10

P
-B

ra
k

e

Speed distributiion (mean, standard deviation)

0

0.0001

0.0002

0.0003

0.0004

0.0005

30,5 40,5 50,5 60,5 50,2 50,10

P
-R

S
1

Speed distributiion (mean, standard deviation)

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

30,5 40,5 50,5 60,5 50,2 50,10

P
-R

S
2

Speed distributiion (mean, standard deviation)

65

The PAMIC scenario simulation results are shown in Figure 5.12. Compared with the pavement

marking scenarios, the intersection with the PMAIC has less rear-end risk situations. The

decrease of probability of rear-end RS under the PMAIC becomes much less apparently when

the average speed is above 45mph, because the cars will follow the rules of pavement marking if

their speeds are larger than 45mph. Like other scenarios, the probability of risky situations under

the PMAIC scenario increases with the standard deviation of speed. However, compared with

other scenarios, it can also decrease the probability of rear-end crash risks under the situation of

high variance operating speed.

Figure 5.13 demonstrates the risky situations with different expected mean speed. The number of

risky situations will increase with the increasing of expected mean speed. Similar with the

pavement marking countermeasure, the PMAIC can also effectively prevent the increase of the

distance range.

66

(a) (b)

(c) (d)

Figure 5.13 Spatial and temporal distribution of risky situations at the intersection with the PMAIC

(standard deviation=5mph)
(a) RS1 and RS2 when the expected mean speed is 30mph (b) RS1 and RS2 when the expected mean

speed is 60mph (c) emergency brake situations when the mean speed is 30mph (d) emergency

brake situations when the expected mean speed is 60mph

67

In addition, during the new-countermeasure scenario simulation, rare RLR violations happen.

Therefore, the PMAIC can effectively reduce both the rear end risky situations and the RLR

violation.

68

CHAPTER 6 COMPARATIVE ANALYSIS OF DIFFERENT DILEMMA

ZONE COUNTERMEASURES

6.1 Rear-end Crash Risk

Figure 6.1 demonstrates the rear-end crash risks of the different intersection scenarios. A clear

trend can be found: the mean speed or standard deviation can influence the BRAKE & RS2 risk

probabilities. The RS1 risks for scenarios do not increase obviously when the speed rises from

50mph to 60mph. Low standard deviation shows a positive effect on safety improvement. In all

of the four scenarios, the (50, 2) speed distribution simulations have the lowest risk probabilities.

The results reveal that the main contributing causes to accident risk are high mean speed and

high standard deviation of the speed distribution. Figure 4 also illustrates that the standard

deviation will not have a significant impact on rear-end RS when it is greater than 5mph.

From the comparison, the results also show that the flashing green countermeasure does not

improve safety significantly, especially under the situations of a high mean speed or a low

standard deviation of speed distribution. The rear-end risk probabilities of the flashing green

countermeasure are even higher than the probabilities of the typical intersection. Distinction

between the typical intersection scenario and the flashing green scenario is probably due to the

increase of the indecision period when drivers behave differently. Even though previous studies

found that many drivers will decelerate during the flashing green interval and will somehow

decrease the probability of rear-end crash risky situations, some of the flashing green

intersections still suffer from high-risk probabilities for all of the three types of risk situations. In

2004, Köll et al. (2014) found that the flashing green phases is associated with a substantial

increase of early stop. However, it also produces a larger indecision zones and lead to longer

69

period of uncertainty, where following drivers cannot easily predict the front vehicles’ stop/go

decision (Factor et al., 2012). With respect to the pavement-marking scenario, it can decrease the

rear-end crash risks, all of the risk probabilities of the intersection with pavement marking are

lower than the typical intersection and the intersection with flashing green phases especially the

rear-end crashes caused by non-stopped cars, which means the front vehicles in the crashes chose

to cross the intersection during the yellow interval. The PMAIC can effectively reduce the rear-

end crash risk probabilities especially at the low expected mean speed as well as the scenario

with a high standard deviation.

70

(a)

(b)

(c)

x-axis (expected mean speed (mph), standard deviation (mph))

Figure 6.1 The probability of different kinds of rear-end RS under different scenarios

(a) RS1 (b) RS2 (c) BRAKE under the scenarios of typical intersection, the intersection with flashing

green and the intersection with pavement marking

0

0.0005

0.001

0.0015

0.002

30,5 40,5 50,5 60,5 50,2 50,10

P
-B

ra
k

e

Speed Distribution of Lead Vehicles

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

30,5 40,5 50,5 60,5 50,2 50,10

P
-D

S
1

Speed Distribution of Lead Vehicles

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

30,5 40,5 50,5 60,5 50,2 50,10

P
-D

S
2

Speed Distribution of Lead Vehicles

71

Compared with the typical intersection scenario, the flashing green scenario have larger range of

the emergency brake risk of both time and distance distribution. Because of the difference of the

driver behavior during the flashing green phases, there are more risky situations present at the

flashing green interval (Figure 6.2).

(a) (b)

(c) (d)

Figure 6.2 Spatial and temporal distribution of risky situations when the mean excepted speed is

60mph

(standard deviation=5mph)
(a) RS1 and RS2 of the typical intersection scenario (b) RS1 and RS2 of the flashing green scenario

(c) emergency brake situations of the typical intersection scenario (d) emergency brake situations

of the flashing green scenario

72

Compared with the spatial and temporal distribution of pavement marking, fewer risky situations

can be observed at the PMAIC scenario, especially when during the yellow interval and the

beginning of the red interval. The results indicate the PMAIC can effectively mitigating the

problem of the dilemma zone (Figure 6.3).

(a) (b)

(c) (d)

Figure 6.3 Spatial and temporal distribution of risky situations when the mean excepted speed is

30mph

(standard deviation=5mph)

(b) RS1 and RS2 of the pavement marking scenario (b) RS1 and RS2 of the PMAIC scenario (c)

emergency brake situations of the pavement marking scenario (d) emergency brake situations of

the PMAIC scenario

73

6.2 Red –Light Running Risk

At the yellow duration, drivers’ false stop/go decisions can lead to red-light running (RLR)

violations. During the simulation, the percentage of false decisions, which is the potential red-

light running violations, is calculated. The results are shown in Figure 6.4. In the scenarios of

typical intersection signal and the intersection with the flashing green phases, comparison

between different lead vehicles’ speed distribution illustrates that the mean speed is an important

factor for the decision-making. The highest risk probabilities occur at 50mph mean speed

distribution. It can also be found that the standard deviation has little impact on the drivers’

typical stop/go decision.

It is pointed out in previous studies that the drivers would be more prone to stop at the

intersection with the flashing green/yellow phases (Newton et al., 1997), This is because that

many of the drivers will decelerate during the flashing green phases and lead to lower speed at

the onset of the yellow indication. These driver behaviors will increase the stop decisions

according to the logistic regression model of stop/go decisions. However, drivers will still make

decisions based on their own judgment, which means the percentage of false go decisions will

not decrease. The simulation results suggest that the flashing green phase measure cannot

effectively decrease the percentage of false decisions by drivers.

74

x-axis (Mean Speed (mph), Standard Deviation (mph))

Figure 6.4 the probability of RLR RS under different scenarios

From the analysis of rear-end crash risk, it seems that the pavement marking is an effective

countermeasure to improve rear-end risk. However, Figure 6.4 demonstrates that the RLR

violation is significant when the mean speed of the leading vehicles’ speed distribution is lower

than 50mph or the standard deviation of the speed distribution is high. The disadvantage of the

pavement marking is that if a driver encounters the yellow signal at a speed lower than the speed

limit, even though he/she has passed the pavement marking, there is still a high chance for RLR

and he/she cannot execute the go maneuver safely. Such a negative situation may result in red-

light running due to the lower approaching speed. Therefore, the pavement marking can

effectively improve the intersection’s safety only when the vehicles are approaching the

intersection with high speed and low speed differences between vehicles. Otherwise, the

pavement marking countermeasure can also lead to high chance of RLR violations. Rear RLR

violations happen during the simulation of the PMAIC scenario.

0

0.05

0.1

0.15

0.2

0.25

0.3

30,5 40,5 50,5 60,5 50,2 50,10

P
-R

L
R

Speed Distribution

typical scenario flashing green senario pavement-marking senario

75

CHAPTER 7 CONCLUSIONS

7.1 Research Contributions

Driver behavior during the yellow interval is influenced by the operating speed, the distance to

the stop line, and the lead or follow position of the vehicle in a platoon. Vehicles with a higher

speed, closer to the stop line or follow position vehicles are more prone to cross the intersection.

A logistic regression model was used to predict the stop/go decision of drivers as a function of

distance to the stop line, the operating speed and the lead/follow position. Most of the RLR

violations are caused by drivers’ false stop/go decisions during the yellow interval. The three

variables, which include speed, distance and lead/follow position, have a significant impact on

the RLR violations.

A logistic model can be employed to predict the drivers’ stop/go decisions during the yellow

interval. Vehicles with a larger distance from the stop line, a lower speed or a lead position are

more prone to stop during the yellow interval.

From the simulation results, the mean speed and the standard deviation play a significant role in

rear-end crash risk situations, where a lower speed and lower standard deviation could lead to

less rear-end crash risk situations at the same intersection. High differences in speed are more

prone to cause rear-end crashes.

According to the comparative analysis (Table 7.1), the flashing green countermeasure has little

influence on rear-end crash risk reduction. The difference between drivers’ deceleration or

acceleration decisions might be the major reason for the presence of the accident risk in the

flashing green scenarios. Meanwhile, the pavement marking countermeasure can effectively

decrease the rear-end crash risk in most situations, especially the rear-end crashes caused by non-

76

stopped cars, which means the front vehicles in the crashes chose to cross the intersection during

the yellow interval. The PMAIC, which is adding an auxiliary flashing yellow indication next to

the pavement marking, can further reduce the rear-end crash risks when the expected mean speed

of the leading vehicles is relatively low.

With respect to the RLR violations, the RLR risk analysis shows that the mean speed of the

leading vehicles has important influence on RLR risks in the typical intersection simulation

scenarios as well as intersections with flashing green phases simulation scenarios. The results

indicate that the flashing green phases cannot reduce the percentage of false go decisions,

because the drivers make the stop/go decisions based on their own speed and position instead of

the other drivers’ approaching speeds. The pavement marking can effectively reduce the RLR

risk situations when the vehicles are approaching the intersection with high speed and low speed

differences with other vehicles. Otherwise, the intersection will suffer from a high potential of

RLR violation. The PAMIC has rare RLR violations. Therefore, PAMIC can effectively improve

safety at signalized intersections.

77

Table 7.1 Comparative analysis of different dilemma zone countermeasures

 Flashing Green

Countermeasure

Pavement Marking

Countermeasure
PMAIC

Rear-end

crash risk

Increase the risk of rear-

end crash

Decrease the risk of

rear-end crash

Decrease the risk of

rear-end crash,

especially when the

expected mean speed

is relatively lower

RLR

violations

No significant impact

on reducing RLR risk

Significantly increase

the RLR with low

expected mean speed

Effectively reduce the RLR

violations’ probabilities

Spatial and temporal analyses of the risky situations indicate that both the distance and the time

range of the risky situations will be increased with the increase of the operating speed of the

vehicles. The pavement marking countermeasure and the PMAIC can effectively prevent the

increase of the distance range with the increase of the operating speed. Comparative analyses of

different scenarios demonstrate the effectiveness of the PMAIC in reducing the probabilities of

risky situations.

7.2 Recommendations

The simulation and the conclusions of this research effort have made several recommendations

for further enhancement and improvement.

78

 More field data collection or driving simulator experiments of the driver behavior at the

intersections with different countermeasures could be conducted to analyze the real driver

response to the countermeasures.

 Further simulation could be conducted for the comparative analyses. In this study, each

simulation scenario only contains one lane. Multi-lane scenarios could be constructed.

Also, other countermeasures could be tested in the CA developed simulation.

 Further research could be developed for the PMAIC. A multi-lane scenario simulation

and driving simulator experiments are recommend. Meanwhile, the fluctuation and the

difference of the operating speed should also be considered. In the future, similar

solutions under the Vehicle to Infrastructure Integration (VII) initiative could be adopted

by replacing the external yellow indication with a sound or indication inside the car.

 Although the CA model has its advantage in traffic flow simulation, few software can

apply the CA model. User-friendly software that uses the CA model to simulate the

traffic flow is recommended.

79

APPENDIX A C# CODE FOR THE TYPICAL INTERSECTION

SCENARIO

80

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
namespace No_Countermeasure
{
 class Program
 {
 Random random = new Random();
 static void Main(string[] args)
 {
 Random random = new Random();
 int Road_Length = 5000;
 int Vmax = 20;
 int Vfast = 20;
 double[] P = { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 };
 int t0 = 0;
 int TT1 = 10000;
 int TT = 5000;
 double alpha;
 int L_veh = 5;
 int green = 25;
 int C = 60;
 int red = 25;
 int ki;
 int kii = 0;
 int error = 0;
 int D = 2;
 int t_safe = 3;
 int Vlimit = 15;
 double[,] t_l1 = new double[4, 5000];
 double[,] t_l2 = new double[4, 5000];
 int t_l11 = 0;
 int t_l22 = 0;
 double[] DSZ11 = new double[100];
 double[] DSZ22 = new double[100];
 int[] Flux11 = new int[100];
 double[] Slam_Brake11 = new double[100];
 double[] stgo_error = new double[10000];
 int stgo_para = 0;
 int CC = 1;
 int k = 0;
 for (int mm = 0; mm < CC; mm++)
 {
 double[] DSZ1 = new double[100];
 double[] DSZ2 = new double[100];
 int[] Flux = new int[100];
 double[] Slam_Brake = new double[100];
 int[,] Time_Location = new int[300, Road_Length];
 int[,] ArrTL = new int[240, 2000];

 int M = 0;
 int Dis = 0;
 int para_signal = 0;
 Program pm = new Program();
 for (alpha = 0.01; alpha < 0.401; alpha += 0.01)
 {

81

 #region
 int[] Location = new int[Road_Length];
 int[] Velocity = new int[Road_Length];
 double[] DS1 = new double[TT];
 double[] DS2 = new double[TT];
 double[] Slam_Brake1 = new double[TT];
 int[] Desired_speed = new int[5000];
 int[] Desired_speed_1 = new int[5000];
 int[] Velocity_1 = new int[Road_Length];
 int[] stgo_1 = new int[Road_Length];
 int[] Velocity_2 = new int[Road_Length];
 int[] stgo = new int[5000];
 int signal_control = 1;
 int tt = 0;
 #endregion
 for (int t = t0; t < (TT1 + TT); t++)
 {
 if (tt == green + 5)
 {
 for (int ii = 0; ii < Road_Length; ii++)
 {
 stgo[ii] = 0;
 }
 }
 #region
 if (t > t0)
 {
 if (tt >= C)
 {
 tt = tt - C;
 }
 tt = tt + 1;
 if (tt <= green)
 {
 signal_control = 1;
 }
 else
 {
 if (tt <= green + 4)
 {
 signal_control = 2;
 }
 else
 {
 signal_control = 3;
 }
 }
 }
 #endregion
 #region
 if (t % 60 == 0)
 {
 double cs = random.Next(3, 6);
 int born_number = (int)(Math.Floor(cs));
 int dspeed = pm.NormalRandom();
 ki = born_number;
 for (int ii = 0; ii < born_number; ii++)
 {

82

 Location[ii * (dspeed + L_veh)] = 1;
 Velocity[ii * (dspeed + L_veh)] = dspeed;
 Desired_speed[ii * (dspeed + L_veh)] = dspeed;
 }
 }
 else
 ki = 0;
 #endregion

 #region

 int N = 0;
 for (int j = 0; j < Road_Length; j++)
 {
 if (Location[j] == 1)
 {
 N++;
 }
 }
 if (N == 0)
 {
 continue;
 }
 if (t == 3000)
 {
 t = 3000;

 }
 int[] Location_1 = new int[N];
 int[] Num_Location_1 = new int[N];
 #endregion

 #region
 if (tt > green && tt < green + 5)
 {
 for (int j = 0; j < Road_Length; j++)
 {
 stgo_1[j] = stgo[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 stgo[j] = 0;
 }
 for (int j = 0; j < Road_Length - 1; j++)
 {
 stgo[j + ki] = stgo_1[j];
 }
 }
 #endregion
 #region

 int[] Distance = new int[N];
 int[] Num_Location = new int[N];
 int[] Num_Velocity = new int[N];
 int[] Virtual_Velocity = new int[N];
 int[] kkk = new int[N];
 int Number = 1;
 int i = 0;

83

 while (i < Road_Length)
 {
 int[] a = new int[2];
 int c = 0;
 while (i < Road_Length && c < 2)
 {
 if (Location[i] == 1)
 {
 a[c] = i;
 c++;
 }
 i++;
 }
 if (c == 2)
 {
 i--;
 c = 0;
 Distance[Number - 1] = a[1] - a[0] - L_veh;
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 Number++;
 }
 else
 {
 if (a[0] >= 4995)
 {
 Distance[Number - 1] = Vmax;
 switch (signal_control)
 {
 case 1:
 Distance[Number - 1] = Vmax;
 break;
 case 2:
 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 case 3:
 if (tt <= green + 5)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 }
 }
 else
 {
 if (signal_control == 1)
 {
 Distance[Number - 1] = Vmax;
 }
 else
 {
 if (signal_control == 2)
 {
 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;

84

 else
 Distance[Number - 1] = Road_Length - a[0] - L_veh;
 }
 else
 {
 Distance[Number - 1] = Road_Length - a[0] - L_veh;
 }

 }
 }
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 break;
 }
 }
 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }
 #endregion

 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }

 for (int j = 0; j < Number - 1; j++)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 error++;
 }
 }

 #region
 if (t > TT1)
 {
 for (int j = ki + kii; j < Number - 1; j++)
 {
 if (ki > 0)
 error++;
 if (kii > 0)
 error++;

 if (Num_Velocity[j] < Vmax && Distance[j] == 0)
 {
 if (Velocity_2[j + 1 - ki - kii] >= 0)
 {
 if (Velocity_2[j - ki - kii] - Num_Velocity[j] >
2)

85

 {

 if (Num_Velocity[j + 1] == 0)
 {
 DS1[t - TT1 - 1] += 1;
 }
 else
 {
 DS2[t - TT1 - 1] += 1;
 }
 if (t_l11 < 5000)
 {
 t_l1[0, t_l11] = tt;
 t_l1[1, t_l11] = Num_Location[j];
 t_l1[2, t_l11] = alpha;
 t_l1[3, t_l11] =
Desired_speed[Num_Location[j]];
 t_l11++;
 }
 }
 }
 }

 }
 DS1[t - TT1 - 1] /= (Number);
 DS2[t - TT1 - 1] /= (Number);
 }
 #endregion

 Program pp = new Program();

 #region
 if (tt == green + 2)
 {
 for (int j = 0; j < Number; j++)
 {
 if (Num_Location[j] > 4900 && Num_Location[j] < 4995)
 {
 double sj = random.Next(0, 999);
 sj /= 1000;
 bool lead = false;
 if (j == Number - 1)
 lead = true;
 double jj = pp.ST_GO_LogitRegression(lead,
Num_Velocity[j], 4995 - Num_Location[j]);
 if (jj > 0.48)
 stgo[j] = 1;
 else
 stgo[j] = 2;

 }
 else
 {
 stgo[j] = 2;
 }
 int d2 = 0;
 if (j == Number - 1)

86

 {
 if (Num_Velocity[j] % 2 == 0)
 d2 = Num_Velocity[j] * (Num_Velocity[j] - 2) / 4;
 else
 d2 = (Num_Velocity[j] - 1) * (Num_Velocity[j] - 1) / 4;
 if (d2 < 4995 - Num_Location[j])
 stgo[j] = 1;
 }
 else
 {
 stgo[j] = 2;
 }
 if (4995 - Num_Location[j] <= 2 * Num_Velocity[j] && Num_Velocity[j] > 12)
 stgo[j] = 1;
 if (Num_Velocity[j] >= 13 && Num_Location[j] >= 4960)
 stgo[j] = 1;

 if (4995 - Num_Location[j] > 4 * Num_Velocity[j])
 {
 stgo[j] = 2;
 }
 }
 if (Number >= 3)
 {
 for (int j = Number - 2; Num_Location[j] > 4920 && j > 1;
j--)
 {
 if (Num_Velocity[j] > Distance[j])
 stgo[j] = stgo[j + 1];
 }
 }
 }
 if (tt > green + 2 && tt < green + 4)
 {
 for (int j = 0; j < Number; j++)
 {
 if (Num_Location[j] > 4920 && Num_Location[j] - Num_Velocity[j] <=
4920)
 stgo[j] = 2;
 }
 }
 if (tt == green + 2)
 {
 for (int j = Number - 1; stgo[j] > 0 && j > 0; j--)
 {
 if (stgo[j] == 2 && j > 0)
 {
 for (int jj = j; stgo[jj] > 0 && jj > 0; jj--)
 {
 stgo[jj] = 2;
 }
 break;
 }
 }
 }

 #endregion
 #region

87

 if (tt == green + 2)
 {
 int Num_stgo_error = 0;
 int Num_pdcar = 0;
 for (int j = Number - 1; Num_Location[j] > 4900; j--)
 {
 Num_pdcar++;
 if (stgo[j] == 1 && ((5000 - Num_Location[j]) > 4 *
Num_Velocity[j]))
 Num_stgo_error++;
 }
 if (Num_pdcar > 0)
 {
 stgo_error[stgo_para] = (double)Num_stgo_error /
Num_pdcar;
 stgo_para++;
 }
 }
 # endregion

 #region

 int[] r = new int[N];
 for (int j = 0; j < Number; j++)
 {
 if (t == t0 || Number < 3)
 {
 r[j] = 1;
 }
 else
 {
 if (j < Number - 2)
 {
 if ((Num_Velocity[j] <= Num_Velocity[j + 1] &&
Num_Velocity[j + 1] <= Num_Velocity[j + 2]) || Num_Velocity[j + 2] >=
Math.Max(Desired_speed[Num_Location[j + 2]], 19))
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;
 }
 }
 else
 {
 if (j == Number - 2)
 {
 if (Num_Velocity[j] < Num_Velocity[j + 1])
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;
 }
 }
 else

88

 {
 r[j] = 0;
 }
 }
 if (Num_Location[j] > 4920 && tt > 29)
 r[j] = 1;
 }

 #endregion

 #region
 int[] Delta = new int[N];
 int[] t_f = new int[N];
 int[] t_l = new int[N];
 int[] aa = new int[N];
 for (int j = 0; j < Number; j++)
 {
 t_l[j] = (int)Math.Floor(r[j] * (double)(Num_Velocity[j]) / D
+ (1 - r[j]) * Math.Min((double)(Num_Velocity[j]) / D, t_safe));
 Delta[j] = Num_Velocity[j] * 2;
 }
 #endregion

 #region

 int[] C_n = new int[N];
 int[] C_n1 = new int[N];
 int[] left = new int[N];
 int[] C_n_limit = new int[N];
 int VC_n;
 for (int j = 0; j < Number; j++)
 {
 if (j < Number - 1)
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0); C_n[j] <=
Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] * (double)(C_n[j]) /
D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) - 1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {

89

 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 else
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 if (signal_control == 1)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 if (signal_control == 2)
 {
 if (Distance[j] == Vmax && Num_Location[j] >= 4995)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2,
0); C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {

90

 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0);
C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {

91

 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 }
 }

 #endregion

 #region
 int[] ad = new int[5000];
 if (tt > green && tt < green + 5)
 {
 int cc = 0;
 for (int j = Number - 1; j > 0; j--)
 {
 if (stgo[j] == 2)
 cc++;
 if (Num_Location[j] > 4920 && Num_Location[j] < 4995 &&
(j == Number - 1 || (stgo[j] == 2 && cc == 0)))
 {
 {
 double gap = (double)Distance[j] / Num_Velocity[j];
 int stbar = 4995 - Num_Location[j];
 ad[j] = pp.AccDec(gap, stgo[j], stbar,
Num_Velocity[j]);
 }
 }

92

 }
 }

 #endregion
 #region
 int[] Num_Velocity_Last = new int[N];
 for (int j = 0; j < Number; j++)
 {
 switch (ad[j])
 {
 case 0:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 1:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 2:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 3:
 Num_Velocity_Last[j] = Num_Velocity[j];
 break;
 case 4:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 5:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 2, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 }
 }

 #endregion
 #region
 for (int j = 0; j < Number; j++)
 {
 double sj = random.Next(0, 999);
 sj /= 1000;
 if (((signal_control == 1 || signal_control == 2) &&
Num_Location[j] >= 4995) || kkk[Number - 1] == 1)
 {
 continue;
 }
 if (sj < 0.16)
 {
 Num_Velocity_Last[j] = Math.Max(0,
Math.Max(Num_Velocity[j] - D, Num_Velocity_Last[j] - 1));
 }
 }

93

 for (int j = 0; j < Number; j++)
 {
 Num_Velocity[j] = Num_Velocity_Last[j];
 }
 #endregion
 for (int j = Number - 1; j >= 0; j--)
 {
 if (j < Number - 1)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 Num_Velocity[j] = Num_Velocity[j + 1] + Distance[j];
 }
 }
 else
 {
 if (Num_Velocity[j] > Distance[j])
 {
 if (j == Number - 1 && Distance[j] < 0)
 Num_Velocity[j] = 0;
 else
 Num_Velocity[j] = Distance[j];
 }
 }
 }

 for (int j = 0; j < Number; j++)
 {
 if (Num_Velocity[j] < 0)
 {
 error++;
 }
 }
 #region
 k = 0;
 kii = ki;
 if (t >= TT1 - 2)
 {
 for (int j = 0; j < Number; j++)
 {
 Velocity_2[j] = Velocity_1[j];
 }
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location_1[j] = Num_Location[j] + Num_Velocity[j];
 Velocity_1[j] = Num_Velocity[j];

 if (j <= Number - 1 && j >= ki)
 {
 if (t > TT1 && Velocity_2[j - ki] - Num_Velocity[j] > 2)
 {
 Slam_Brake1[t - TT1 - 1]++;
 if (t_l22 < 5000)
 {
 t_l2[0, t_l22] = tt;
 t_l2[1, t_l22] = Num_Location[j];
 if (Num_Location[j] < 4900)

94

 error++;
 t_l2[2, t_l22] = alpha;
 t_l2[3, t_l22] = Desired_speed[Num_Location[j]];
 t_l22++;
 }
 }
 }
 if (Num_Location_1[j] >= Road_Length)
 {
 k++;
 if (t >= TT1)
 {
 Flux[(int)Math.Round(100 * (alpha - 0.01))]++;
 }
 }

 }
 if (t > TT1)
 {
 Slam_Brake1[t - TT1 - 1] /= Number;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Desired_speed_1[Num_Location_1[j]] =
Desired_speed[Num_Location[j]];
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location[j] = 0;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Num_Location[j] = Num_Location_1[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Location[j] = 0;
 Velocity[j] = 0;
 Desired_speed[j] = 0;
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Desired_speed[j] = Desired_speed_1[j];
 }
 for (int j = 0; j < Number - k; j++)
 {
 Location[Num_Location[j]] = 1;
 Velocity[Num_Location[j]] = Num_Velocity[j];
 }
 #endregion

 #region
 #region
 #endregion

 if (Number > 5)
 {
 for (int j = 0; j < Number - Math.Max(1, k); j++)

95

 {
 if (Num_Location[j] >= Num_Location[j + 1] &&
Num_Location[j + 1] != 0)
 {
 error++;
 }
 }
 }
 }
 #region

 for (int j = 0; j < TT; j++)
 {
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] += DS1[j];
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] += DS2[j];
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] +=
Slam_Brake1[j];
 }
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] /= TT;

 #endregion
 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] += DSZ1[j];
 DSZ22[j] += DSZ2[j];
 Flux11[j] += Flux[j];
 Slam_Brake11[j] += Slam_Brake[j];
 if (DSZ11[j] == 0 || DSZ22[j] == 0)
 {
 error++;
 }

 }

 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] /= CC;
 DSZ22[j] /= CC;
 Flux11[j] /= CC;
 Slam_Brake11[j] /= CC;
 }
 FileStream dsz1 = File.Create("E:\\DSZ1.txt");
 FileStream dsz2 = File.Create("E:\\DSZ2.txt");
 StreamWriter swdsz1 = new StreamWriter((System.IO.Stream)dsz1);
 StreamWriter swdsz2 = new StreamWriter((System.IO.Stream)dsz2);
 for (int j = 0; j < 100; j++)
 {
 swdsz1.Write("{0} ", DSZ11[j]);
 swdsz2.Write("{0} ", DSZ22[j]);
 }
 swdsz1.Close();
 swdsz2.Close();
 FileStream flow = File.Create("E:\\FLUX.txt");
 StreamWriter swflow = new StreamWriter((System.IO.Stream)flow);

96

 for (int j = 0; j < 100; j++)
 {
 swflow.Write("{0} ", Flux11[j]);
 }
 swflow.Close();

 FileStream brake = File.Create("E:\\Brake1.txt");
 StreamWriter swbrake = new StreamWriter((System.IO.Stream)brake);
 for (int j = 0; j < 100; j++)
 {
 swbrake.Write("{0} ", Slam_Brake11[j]);
 }
 swbrake.Close();
 FileStream st1 = File.Create("E:\\tl1.txt");
 StreamWriter stw1 = new StreamWriter((System.IO.Stream)st1);
 FileStream st2 = File.Create("E:\\tl2.txt");
 StreamWriter stw2 = new StreamWriter((System.IO.Stream)st2);
 for (int jj = 0; jj < 4; jj++)
 {
 for (int j = 0; j < 5000; j++)
 {
 stw1.Write("{0} ", t_l1[jj, j]);
 stw2.Write("{0} ", t_l2[jj, j]);
 }
 stw1.Write("\n");
 stw2.Write("\n");
 }
 stw1.Close();
 stw2.Close();
 FileStream stgo_Error = File.Create("E:\\stgo_error.txt");
 StreamWriter sger = new StreamWriter((System.IO.Stream)stgo_Error);
 for (int j = 0; j < stgo_para; j++)
 {
 sger.Write("{0} ", stgo_error[j]);
 }
 sger.Close();
 #endregion

 Console.WriteLine("OVER");
 Console.ReadLine();
 }

 public int StopGo(int di, int sp, bool lf)
 {

 #region
 Random aa = new Random();
 if (di > 4941)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.191)
 return 2;
 else
 return 1;
 }
 else
 if (di < 4924)
 {

97

 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.922)
 return 2;
 else
 return 1;
 }
 else
 if (sp < 15)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.604)
 return 2;
 else
 return 1;
 }
 else

 if (lf)// leading 为ture following 为flase
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.488)
 return 2;
 else
 return 1;
 }
 else
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 59.6)
 return 2;
 else
 return 1;
 }
 #endregion
 }

 public int AccDec(double gap, int stopgo, int Dtostopbar, int speed)
 {
 Random pa = new Random();
 if (stopgo == 1)
 {
 if (gap <= 3)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.7686)
 return 2;
 else
 return 3;
 }
 else if (gap >= 3.6)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.07)
 return 1;
 else
 return 3;

98

 }
 else
 return 3;
 }
 else
 {
 int d1, d2;
 d1 = speed * (speed - 1) / 2;
 if (speed % 2 == 0)
 d2 = speed * (speed - 2) / 4;
 else
 d2 = (speed - 1) * (speed - 1) / 4;
 if (Dtostopbar > d1)
 {
 if (Dtostopbar - speed > d1)
 return 0;
 else if (Dtostopbar - speed - 1 > (speed - 1) * (speed - 2) / 2)
 {
 return 4;
 }
 else
 {
 return 5;
 }
 }
 else if (Dtostopbar > d2)
 return 5;
 else
 return 5;
 }
 }

 public double ST_GO_LogitRegression(bool lead, int spe, int dis)
 {
 int x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0;
 if (lead)
 x1 = 1;

 if (spe > 14 && spe < 16)
 x2 = 1;
 else
 if (spe < 20)
 x3 = 1;
 if (dis > 57 && dis < 79)
 x4 = 1;
 else
 if (dis >= 79 && dis < 88)
 x5 = 1;
 else
 if (dis >= 88 && dis < 98)
 x6 = 1;

 double y = Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 -
2.4108 * x4 - 4.5557 * x5 - 5.2498 * x6) /
 (1 + Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 - 2.4108
* x4 - 4.5557 * x5 - 5.2498 * x6));
 return y;
 }

99

 public double AverageRandom(double min, double max)
 {
 double aa = random.Next(0, 1001);
 aa = aa / 1000;
 return min + aa * (max - min);
 }

 public double Normal(double x, double mu, double sigma)
 {
 return 1.0 / Math.Sqrt(2 * Math.PI * sigma) * Math.Exp(-1 * (x - mu) * (x -
mu) / (2 * sigma * sigma));
 }

 public int NormalRandom()
 {
 double x;
 double y;
 double dScope;
 do
 {
 x = AverageRandom(34, 66);
 dScope = Normal(x, 50, 5);
 y = AverageRandom(0, 0.14);
 }
 while (y >= dScope);
 x = (int)Math.Round(x * 0.44704 / 1.5, 0);
 return (int)x;
 }
 }
}

100

APPENDIX B C# CODE FOR THE INTERSECTION FOR THE

INTERSECTION WITH THE FLASHING GREEN PHASES

101

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
namespace Amber_Flash
{
 class Program
 {
 Random random = new Random();
 static void Main(string[] args)
 {
 Random random = new Random();
 int Road_Length = 5000;
 int Vmax = 20;
 int Vfast = 20;
 double[] P = { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 };
 int t0 = 0;
 int TT1 = 10000;
 int TT = 5000;
 double alpha;
 int L_veh = 5;
 int green = 25;
 int C = 60;
 int red = 25;
 int ki;
 int kii = 0;
 int error = 0;
 int D = 2;
 int t_safe = 3;
 int Vlimit = 15;
 double[,] t_l1 = new double[4, 5000];
 double[,] t_l2 = new double[4, 5000];
 int t_l11 = 0;
 int t_l22 = 0;
 double[] DSZ11 = new double[100];
 double[] DSZ22 = new double[100];
 int[] Flux11 = new int[100];
 double[] Slam_Brake11 = new double[100];
 double[] stgo_error = new double[10000];
 int stgo_para = 0;
 int CC = 1;
 int k = 0;
 for (int mm = 0; mm < CC; mm++)
 {
 double[] DSZ1 = new double[100];
 double[] DSZ2 = new double[100];
 int[] Flux = new int[100];
 double[] Slam_Brake = new double[100];
 int[,] Time_Location = new int[300, Road_Length];
 int[,] ArrTL = new int[240, 2000];

 int M = 0;
 int Dis = 0;
 int para_signal = 0;
 Program pm = new Program();
 for (alpha = 0.01; alpha < 0.401; alpha += 0.01)
 {

102

 #region
 int[] Location = new int[Road_Length];
 int[] Velocity = new int[Road_Length];
 double[] DS1 = new double[TT];
 double[] DS2 = new double[TT];
 double[] Slam_Brake1 = new double[TT];
 int[] Desired_speed = new int[5000];
 int[] Desired_speed_1 = new int[5000];
 int[] Velocity_1 = new int[Road_Length];
 int[] stgo_1 = new int[Road_Length];
 int[] Velocity_2 = new int[Road_Length];
 int[] stgo = new int[5000];
 int signal_control = 1;
 int tt = 0;
 #endregion
 for (int t = t0; t < (TT1 + TT); t++)
 {
 if (tt == green + 5)
 {
 for (int ii = 0; ii < Road_Length; ii++)
 {
 stgo[ii] = 0;
 }
 }
 #region
 if (t > t0)
 {
 if (tt >= C)
 {
 tt = tt - C;
 }
 tt = tt + 1;
 if (tt <= green)
 {
 signal_control = 1;
 }
 else
 {
 if (tt <= green + 4)
 {
 signal_control = 2;
 }
 else
 {
 signal_control = 3;
 }
 }

 }
 #endregion

 #region
 if (t % 60 == 0)
 {
 double cs = random.Next(3, 6);
 int born_number = (int)(Math.Floor(cs));
 int dspeed = pm.NormalRandom();
 ki = born_number;

103

 for (int ii = 0; ii < born_number; ii++)
 {
 Location[ii * (dspeed + L_veh)] = 1;
 Velocity[ii * (dspeed + L_veh)] = dspeed;
 Desired_speed[ii * (dspeed + L_veh)] = dspeed;
 }
 }
 else
 ki = 0;
 #endregion

 #region
 int N = 0;
 for (int j = 0; j < Road_Length; j++)
 {
 if (Location[j] == 1)
 {
 N++;
 }
 }
 if (N == 0)
 {
 continue;
 }
 if (t == 3000)
 {
 t = 3000;

 }
 int[] Location_1 = new int[N];
 int[] Num_Location_1 = new int[N];
 #endregion
 #region
 if (tt > green && tt < green + 5)
 {
 for (int j = 0; j < Road_Length; j++)
 {
 stgo_1[j] = stgo[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 stgo[j] = 0;
 }
 for (int j = 0; j < Road_Length - 1; j++)
 {
 stgo[j + ki] = stgo_1[j];
 }
 }
 #endregion
 #region

 int[] Distance = new int[N];
 int[] Num_Location = new int[N];
 int[] Num_Velocity = new int[N];
 int[] Virtual_Velocity = new int[N];
 int[] kkk = new int[N];
 int Number = 1;
 int i = 0;

104

 while (i < Road_Length)
 {
 int[] a = new int[2];
 int c = 0;
 while (i < Road_Length && c < 2)
 {
 if (Location[i] == 1)
 {
 a[c] = i;
 c++;
 }
 i++;
 }
 if (c == 2)
 {
 i--;
 c = 0;
 Distance[Number - 1] = a[1] - a[0] - L_veh;
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 Number++;
 }
 else
 {
 if (a[0] >= 4995)
 {
 Distance[Number - 1] = Vmax;
 switch (signal_control)
 {
 case 1:
 Distance[Number - 1] = Vmax;
 break;
 case 2:
 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 case 3:
 if (tt <= green + 5)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 }
 }
 else
 {
 if (signal_control == 1)
 {
 Distance[Number - 1] = Vmax;
 }
 else
 {
 if (signal_control == 2)
 {
 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;

105

 else
 Distance[Number - 1] = Road_Length - a[0] - L_veh;
 }
 else
 {
 Distance[Number - 1] = Road_Length - a[0] - L_veh;
 }

 }
 }
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 break;
 }
 }
 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }
 #endregion

 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }

 for (int j = 0; j < Number - 1; j++)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 error++;
 }
 }

 #region
 if (t > TT1)
 {
 for (int j = ki + kii; j < Number - 1; j++)
 {
 if (Num_Velocity[j] < Vmax && Distance[j] == 0)
 {
 if (Velocity_2[j + 1 - ki - kii] >= 0)
 {
 if (Velocity_2[j - ki - kii] - Num_Velocity[j] >
2)
 {

 if (Num_Velocity[j + 1] == 0)
 {
 DS1[t - TT1 - 1] += 1;

106

 }
 else
 {
 DS2[t - TT1 - 1] += 1;
 }
 if (t_l11 < 5000)
 {
 t_l1[0, t_l11] = tt;
 t_l1[1, t_l11] = Num_Location[j];
 t_l1[2, t_l11] = alpha;
 t_l1[3, t_l11] =
Desired_speed[Num_Location[j]];
 t_l11++;
 }
 }
 }
 }
 }
 DS1[t - TT1 - 1] /= (Number - 1);
 DS2[t - TT1 - 1] /= (Number - 1);
 }
 #endregion

 Program pp = new Program();

 #region

 int[] Dec = new int[5000];
 if (tt == green + 2)
 {
 for (int j = 0; j < Number; j++)
 {
 int Num_pdcar = 0;
 int Num_stgo_error = 0;

 if (Num_Location[j] > 4900 && Num_Location[j] < 4995)
 {
 Num_pdcar++;

 double sj = random.Next(0, 999);
 sj /= 1000;
 bool lead = false;
 if (j == Number - 1)
 lead = true;
 double jj = pp.ST_GO_LogitRegression(lead,
Num_Velocity[j], 4995 - Num_Location[j]);
 if (jj > 0.48)
 stgo[j] = 1;
 else
 stgo[j] = 2;

 if (stgo[j] == 1 && ((5000 - Num_Location[j]) > 4 *
Num_Velocity[j]))
 Num_stgo_error++;

 }
 else
 {

107

 stgo[j] = 2;
 }

 if (Num_pdcar > 0)
 {
 stgo_error[stgo_para] = (double)Num_stgo_error /
Num_pdcar;
 stgo_para++;
 }
 }
 }
 #endregion
 #region

 int[] r = new int[N];/
 for (int j = 0; j < Number; j++)
 {
 if (t == t0 || Number < 3)
 {
 r[j] = 1;
 }
 else
 {
 if (j < Number - 2)
 {
 if ((Num_Velocity[j] <= Num_Velocity[j + 1] &&
Num_Velocity[j + 1] <= Num_Velocity[j + 2]) || Num_Velocity[j + 2] >=
Math.Max(Desired_speed[Num_Location[j + 2]], 19))
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;
 }
 }
 else
 {
 if (j == Number - 2)
 {
 if (Num_Velocity[j] < Num_Velocity[j + 1])
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;
 }
 }
 else
 {
 r[j] = 0;
 }
 }
 }
 if (Num_Location[j] > 4920 && tt > 29)
 r[j] = 1;

108

 }
 #endregion
 #region
 int[] Delta = new int[N];
 int[] t_f = new int[N];
 int[] t_l = new int[N];
 int[] aa = new int[N];
 for (int j = 0; j < Number; j++)
 {
 t_l[j] = (int)Math.Floor(r[j] * (double)(Num_Velocity[j]) / D + (1 - r[j]) *
Math.Min((double)(Num_Velocity[j]) / D, t_safe));

 Delta[j] = Num_Velocity[j] * 2;
 }
 #endregion

 #region
 int[] C_n = new int[N];
 int[] C_n1 = new int[N];
 int[] left = new int[N];
 int[] C_n_limit = new int[N];
 int VC_n;
 for (int j = 0; j < Number; j++)
 {
 if (j < Number - 1)
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0); C_n[j] <=
Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] * (double)(C_n[j]) /
D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) - 1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {

109

 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 else
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 if (signal_control == 1)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 if (signal_control == 2)
 {
 if (Distance[j] == Vmax && Num_Location[j] >= 4995)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0);
C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;

110

 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0);
C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else

111

 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 }
 }

 #endregion
 #region
 int[] ad = new int[5000];
 if (tt > green && tt < green + 5)
 {
 int cc = 0;
 for (int j = Number - 1; j > 0; j--)
 {
 if (stgo[j] == 2)
 cc++;
 if (Num_Location[j] > 4920 && Num_Location[j] < 4995 &&
(j == Number - 1 || (stgo[j] == 2 && cc == 0)))
 {
 {
 double gap = (double)Distance[j] / Num_Velocity[j];
 int stbar = 4995 - Num_Location[j];
 ad[j] = pp.AccDec(gap, stgo[j], stbar,
Num_Velocity[j]);
 }
 }
 }
 }

 #endregion

 #region
 int[] Num_Velocity_Last = new int[N];
 for (int j = 0; j < Number; j++)
 {
 switch (ad[j])
 {
 case 0:

112

 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 1:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 2:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 3:
 Num_Velocity_Last[j] = Num_Velocity[j];
 break;
 case 4:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 5:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 2, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 }
 }

 #endregion
 #region

 for (int j = 0; j < Number; j++)
 {
 Num_Velocity_Last[j] = Num_Velocity_Last[j] -
Dec[Num_Location[j]];
 }
 #endregion
 #region
 for (int j = 0; j < Number; j++)
 {
 double sj = random.Next(0, 999);
 sj /= 1000;
 if (((signal_control == 1 || signal_control == 2) &&
Num_Location[j] >= 4995) || kkk[Number - 1] == 1)
 {
 continue;
 }
 if (sj < 0.16)
 {
 Num_Velocity_Last[j] = Math.Max(0,
Math.Max(Num_Velocity[j] - D, Num_Velocity_Last[j] - 1));
 }
 if (Num_Velocity_Last[j] > Num_Velocity[j] + 1)
 {
 Num_Velocity[j] = Num_Velocity[j] + 1;

113

 }
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Velocity[j] = Num_Velocity_Last[j];
 }
 #endregion

 for (int j = Number - 1; j >= 0; j--)
 {
 if (j < Number - 1)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 Num_Velocity[j] = Num_Velocity[j + 1] + Distance[j];
 }
 }
 else
 {
 if (Num_Velocity[j] > Distance[j])
 {
 if (j == Number - 1 && Distance[j] < 0)
 Num_Velocity[j] = 0;
 else
 Num_Velocity[j] = Distance[j];
 }
 }
 }

 for (int j = 0; j < Number; j++)
 {
 if (Num_Velocity[j] < 0)
 {
 error++;
 }
 }
 #region
 k = 0;
 kii = ki;
 if (t >= TT1 - 2)
 {
 for (int j = 0; j < Number; j++)
 {
 Velocity_2[j] = Velocity_1[j];
 }
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location_1[j] = Num_Location[j] + Num_Velocity[j];
 Velocity_1[j] = Num_Velocity[j];

 if (j <= Number - 1 && j >= ki)
 {
 if (t > TT1 && Velocity_2[j - ki] - Num_Velocity[j] > 2)
 {
 Slam_Brake1[t - TT1 - 1]++;
 if (t_l22 < 5000)
 {

114

 t_l2[0, t_l22] = tt;
 t_l2[1, t_l22] = Num_Location[j];
 if (Num_Location[j] < 4900)
 error++;
 t_l2[2, t_l22] = alpha;
 t_l2[3, t_l11] = Desired_speed[Num_Location[j]];
 t_l22++;
 }
 }
 }
 if (Num_Location_1[j] >= Road_Length)
 {
 k++;
 if (t >= TT1)
 {
 Flux[(int)Math.Round(100 * (alpha - 0.01))]++;
 }
 }

 }
 if (t > TT1)
 {
 Slam_Brake1[t - TT1 - 1] /= Number;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Desired_speed_1[Num_Location_1[j]] = Desired_speed[Num_Location[j]];
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location[j] = 0;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Num_Location[j] = Num_Location_1[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Location[j] = 0;
 Velocity[j] = 0;
 Desired_speed[j] = 0;
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Desired_speed[j] = Desired_speed_1[j];
 }
 for (int j = 0; j < Number - k; j++)
 {
 Location[Num_Location[j]] = 1;
 Velocity[Num_Location[j]] = Num_Velocity[j];
 }
 #endregion
 if (Number > 5)
 {
 for (int j = 0; j < Number - Math.Max(1, k); j++)
 {
 if (Num_Location[j] >= Num_Location[j + 1] && Num_Location[j + 1] != 0)
 {

115

 error++;
 }
 }
 }
 }
 #region
 for (int j = 0; j < TT; j++)
 {
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] += DS1[j];
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] += DS2[j];
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] += Slam_Brake1[j];
 }
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 #endregion
 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] += DSZ1[j];
 DSZ22[j] += DSZ2[j];
 Flux11[j] += Flux[j];
 Slam_Brake11[j] += Slam_Brake[j];
 if (DSZ11[j] == 0 || DSZ22[j] == 0)
 {
 error++;
 }
 }
 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] /= CC;
 DSZ22[j] /= CC;
 Flux11[j] /= CC;
 Slam_Brake11[j] /= CC;
 }
 // dangerous situation
 FileStream dsz1 = File.Create("E:\\DSZ1.txt");
 FileStream dsz2 = File.Create("E:\\DSZ2.txt");
 StreamWriter swdsz1 = new StreamWriter((System.IO.Stream)dsz1);
 StreamWriter swdsz2 = new StreamWriter((System.IO.Stream)dsz2);
 for (int j = 0; j < 100; j++)
 {
 swdsz1.Write("{0} ", DSZ11[j]);
 swdsz2.Write("{0} ", DSZ22[j]);
 }
 swdsz1.Close();
 swdsz2.Close();
 // flux
 FileStream flow = File.Create("E:\\FLUX.txt");
 StreamWriter swflow = new StreamWriter((System.IO.Stream)flow);
 for (int j = 0; j < 100; j++)
 {
 swflow.Write("{0} ", Flux11[j]);
 }
 swflow.Close();
 FileStream brake = File.Create("E:\\Brake1.txt");
 StreamWriter swbrake = new StreamWriter((System.IO.Stream)brake);

116

 for (int j = 0; j < 100; j++)
 {
 swbrake.Write("{0} ", Slam_Brake11[j]);
 }
 swbrake.Close();
 FileStream st1 = File.Create("E:\\tl1.txt");
 StreamWriter stw1 = new StreamWriter((System.IO.Stream)st1);
 FileStream st2 = File.Create("E:\\tl2.txt");
 StreamWriter stw2 = new StreamWriter((System.IO.Stream)st2);
 for (int jj = 0; jj < 4; jj++)
 {
 for (int j = 0; j < 5000; j++)
 {
 stw1.Write("{0} ", t_l1[jj, j]);
 stw2.Write("{0} ", t_l2[jj, j]);
 }
 stw1.Write("\n");
 stw2.Write("\n");
 }
 stw1.Close();
 stw2.Close();
 FileStream stgo_Error = File.Create("E:\\stgo_error.txt");
 StreamWriter sger = new StreamWriter((System.IO.Stream)stgo_Error);
 for (int j = 0; j < stgo_para; j++)
 {
 sger.Write("{0} ", stgo_error[j]);
 }
 sger.Close();
 #endregion
 Console.WriteLine("OVER");
 Console.ReadLine();
 }
 public int StopGo(int di, int sp, bool lf)
 {
 #region
 Random aa = new Random();
 if (di > 4941)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.191)
 return 2;
 else
 return 1;
 }
 else
 if (di < 4924)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.922)
 return 2;
 else
 return 1;
 }
 else
 if (sp < 15)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.604)

117

 return 2;
 else
 return 1;
 }
 else
 if (lf)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.488)
 return 2;
 else
 return 1;
 }
 else
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 59.6)
 return 2;
 else
 return 1;
 }
 #endregion
 }

 public int AccDec(double gap, int stopgo, int Dtostopbar, int speed)
 {
 Random pa = new Random();
 if (stopgo == 1)
 {
 if (gap <= 3)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.7686)
 return 2;
 else
 return 3;
 }
 else if (gap >= 3.6)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.07)
 return 1;
 else
 return 3;
 }
 else
 return 3;
 }
 else
 {
 int d1, d2;
 d1 = speed * (speed - 1) / 2;
 if (speed % 2 == 0)
 d2 = speed * (speed - 2) / 4;
 else
 d2 = (speed - 1) * (speed - 1) / 4;

118

 if (Dtostopbar > d1)
 {
 if (Dtostopbar - speed > d1)
 return 0;
 else if (Dtostopbar - speed - 1 > (speed - 1) * (speed - 2) / 2)
 {
 return 4;
 }
 else
 {
 return 5;
 }
 }
 else if (Dtostopbar > d2)
 return 5;
 else
 return 5;
 }
 }

 public double ST_GO_LogitRegression(bool lead, int spe, int dis)
 {
 int x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0;
 if (lead)
 x1 = 1;

 if (spe > 14 && spe < 16)
 x2 = 1;
 else
 if (spe < 20)
 x3 = 1;
 if (dis > 57 && dis < 79)
 x4 = 1;
 else
 if (dis >= 79 && dis < 88)
 x5 = 1;
 else
 if (dis >= 88 && dis < 98)
 x6 = 1;

 double y = Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 -
2.4108 * x4 - 4.5557 * x5 - 5.2498 * x6) /
 (1 + Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 - 2.4108
* x4 - 4.5557 * x5 - 5.2498 * x6));
 return y;
 }

 public double AverageRandom(double min, double max)
 {
 double aa = random.Next(0, 1001);
 aa = aa / 1000;
 return min + aa * (max - min);
 }

 public double Normal(double x, double mu, double sigma)
 {
 return 1.0 / Math.Sqrt(2 * Math.PI * sigma) * Math.Exp(-1 * (x - mu) * (x -
mu) / (2 * sigma * sigma));

119

 }

 public int NormalRandom()
 {
 double x;
 double y;
 double dScope;
 do
 {
 x = AverageRandom(34, 66);
 dScope = Normal(x, 50, 5);
 y = AverageRandom(0, 0.14);
 }
 while (y >= dScope);
 x = (int)Math.Round(x * 0.44704 / 1.5, 0);
 return (int)x;
 }

 public int Acc_NormalRandom()
 {
 double x;
 double y;
 double dScope;
 do
 {
 x = AverageRandom(-0.5, 2.5);
 dScope = Normal(x, 1, 0.7);
 y = AverageRandom(0, 0.18);
 }
 while (y >= dScope);
 return (int)(Math.Round(x, 0));
 }
 }
}

120

APPENDIX C C# CODE FOR THE PAVEMENT MARKING SCENARIO

121

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
namespace Pavement_marking
{
 class Program
 {
 Random random = new Random();
 static void Main(string[] args)
 {
 Random random = new Random();
 int Road_Length = 5000;
 int Vmax = 20;
 int Vfast = 20;
 double[] P = { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 };;
 int t0 = 0;
 int TT1 = 10000;
 int TT = 5000;
 double alpha;
 int L_veh = 5;
 int green = 25;
 int C = 60;
 int red = 25;
 int ki;
 int kii = 0;
 int error = 0;
 int D = 2;
 int t_safe = 3;
 int Vlimit = 15;
 double[,] t_l1 = new double[4, 5000];
 double[,] t_l2 = new double[4, 5000];
 int t_l11 = 0;
 int t_l22 = 0;
 double[] DSZ11 = new double[100];
 double[] DSZ22 = new double[100];
 int[] Flux11 = new int[100];
 double[] Slam_Brake11 = new double[100];
 double[] stgo_error = new double [10000];
 int stgo_para = 0;
 int CC = 1;
 int k = 0;
 for (int mm = 0; mm < CC; mm++)
 {
 double[] DSZ1 = new double[100];
 double[] DSZ2 = new double[100];
 int[] Flux = new int[100];
 double[] Slam_Brake = new double[100];
 int[,] Time_Location = new int[300, Road_Length];
 int[,] ArrTL = new int[240, 2000];
 int M = 0;
 int Dis = 0;
 int para_signal = 0;
 Program pm = new Program();
 for (alpha = 0.01; alpha < 0.401; alpha += 0.01)
 {
 #region

122

 int[] Location = new int[Road_Length];
 int[] Velocity = new int[Road_Length];
 double[] DS1 = new double[TT];
 double[] DS2 = new double[TT];
 double[] Slam_Brake1 = new double[TT];
 int[] Desired_speed = new int[5000];
 int[] Desired_speed_1 = new int[5000];
 int[] Velocity_1 = new int[Road_Length];
 int[] stgo_1 = new int[Road_Length];
 int[] Velocity_2 = new int[Road_Length];
 int[] stgo = new int[5000];
 int signal_control = 1;
 int tt = 0;

 #endregion
 //
 for (int t = t0; t < (TT1 + TT); t++)
 {
 if (tt == green + 5)
 {
 for (int ii = 0; ii < Road_Length; ii++)
 {
 stgo[ii] = 0;
 }
 }

 #region
 if (t > t0)
 {
 if (tt >= C)
 {
 tt = tt - C;
 }
 tt = tt + 1;
 if (tt <= green)
 {
 signal_control = 1;
 }
 else
 {
 if (tt <= green + 4)
 {
 signal_control = 2;
 }
 else
 {
 signal_control = 3;
 }
 }

 }
 #endregion

 #region

 if (t % 60 == 0)
 {

123

 double cs = random.Next(3, 6);
 int born_number = (int)(Math.Floor(cs));
 int dspeed = pm.NormalRandom();
 Console.WriteLine(dspeed);
 ki = born_number;
 for (int ii = 0; ii < born_number; ii++)
 {
 Location[ii * (dspeed + L_veh)] = 1;
 Velocity[ii * (dspeed + L_veh)] = dspeed;
 Desired_speed[ii * (dspeed + L_veh)] = dspeed;
 }
 }
 else
 ki = 0;

 #endregion

 #region

 int N = 0;
 for (int j = 0; j < Road_Length; j++)
 {
 if (Location[j] == 1)
 {
 N++;
 }
 }
 if (N == 0)
 {
 continue;
 }
 if (t == 3000)
 {
 t = 3000;

 }
 int[] Location_1 = new int[N];
 int[] Num_Location_1 = new int[N];

 #endregion

 #region
 if (tt > green && tt < green + 5)
 {
 for (int j = 0; j < Road_Length; j++)
 {
 stgo_1[j] = stgo[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 stgo[j] = 0;
 }
 for (int j = 0; j < Road_Length - 1; j++)
 {
 stgo[j + ki] = stgo_1[j];
 }
 }

124

 #endregion

 #region
 int[] Distance = new int[N];
 int[] Num_Location = new int[N];
 int[] Num_Velocity = new int[N];
 int[] Virtual_Velocity = new int[N];
 int[] kkk = new int[N];

 int Number = 1;
 int i = 0;
 while (i < Road_Length)
 {
 int[] a = new int[2];
 int c = 0;
 while (i < Road_Length && c < 2)
 {
 if (Location[i] == 1)
 {
 a[c] = i;
 c++;
 }
 i++;
 }
 if (c == 2)
 {
 i--;
 c = 0;
 Distance[Number - 1] = a[1] - a[0] - L_veh;
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 Number++;
 }
 else
 {
 if (a[0] >= 4995)
 {
 Distance[Number - 1] = Vmax;
 switch (signal_control)
 {
 case 1:
 Distance[Number - 1] = Vmax;
 break;
 case 2:
 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 case 3:
 if (tt <= green + 5)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 }
 }
 else

125

 {
 if (signal_control == 1)
 {
 Distance[Number - 1] = Vmax;
 }
 else
 {
 if (signal_control == 2)
 {
 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = Road_Length - a[0]
- L_veh;
 }
 else
 {
 Distance[Number - 1] = Road_Length - a[0] -
L_veh;
 }

 }
 }
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 break;
 }
 }
 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }
 #endregion

 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }

 for (int j = 0; j < Number - 1; j++)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 error++;
 }
 }

 #region
 if (t > TT1)
 {

126

 for (int j = ki + kii; j < Number - 1; j++)
 {
 if (Num_Velocity[j] < Vmax && Distance[j] == 0)
 {
 if (Velocity_2[j + 1 - ki - kii] >= 0)
 {
 if (Velocity_2[j - ki - kii] - Num_Velocity[j] >
2)
 {

 if (Num_Velocity[j + 1] == 0)
 {
 DS1[t - TT1 - 1] += 1;
 }
 else
 {
 DS2[t - TT1 - 1] += 1;
 }
 if (t_l11 < 5000)
 {
 t_l1[0, t_l11] = tt;
 t_l1[1, t_l11] = Num_Location[j];
 t_l1[2, t_l11] = alpha;
 t_l1[3, t_l11] =
Desired_speed[Num_Location[j]];
 t_l11++;
 }
 }
 }
 }

 }
 DS1[t - TT1 - 1] /= (Number - 1);
 DS2[t - TT1 - 1] /= (Number - 1);
 }
 #endregion

 Program pp = new Program();

 #region

 if (tt == green + 1)
 {
 int Num_stgo_error = 0;
 int Num_pdcar = 0;

 for (int j = 0; j < Number; j++)
 {
 if (Num_Location[j] > 4900 && Num_Location[j] < 4995)
 {
 Num_pdcar++;
 if (Num_Location[j] >= 4940)
 stgo[j] = 1;
 else
 stgo[j] = 2;
 if (stgo[j] == 1 && ((5000 - Num_Location[j]) > 4 *
Num_Velocity[j]))
 Num_stgo_error++;

127

 }
 else
 {
 stgo[j] = 2;
 }

 if (Num_pdcar>0)
 {
 stgo_error[stgo_para] = (double)Num_stgo_error /
Num_pdcar;
 stgo_para++;
 }
 }
 #endregion

 #region
 int[] r = new int[N];
 for (int j = 0; j < Number; j++)
 {
 if (t == t0 || Number < 3)
 {
 r[j] = 1;
 }
 else
 {
 if (j < Number - 2)
 {
 if ((Num_Velocity[j] <= Num_Velocity[j + 1] &&
Num_Velocity[j + 1] <= Num_Velocity[j + 2]) || Num_Velocity[j + 2] >=
Math.Max(Desired_speed[Num_Location[j + 2]], 19))
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;
 }
 }
 else
 {
 if (j == Number - 2)
 {
 if (Num_Velocity[j] < Num_Velocity[j + 1])
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;
 }
 }
 else
 {
 r[j] = 0;
 }
 }
 }

128

 if (Num_Location[j] > 4914 && tt > 29)
 r[j] = 1;
 }

 #endregion
 #region
 int[] Delta = new int[N];
 int[] t_f = new int[N];
 int[] t_l = new int[N];
 int[] aa = new int[N];
 for (int j = 0; j < Number; j++)
 {
 t_l[j] = (int)Math.Floor(r[j] * (double)(Num_Velocity[j]) / D
+ (1 - r[j]) * Math.Min((double)(Num_Velocity[j]) / D, t_safe));

 Delta[j] = Num_Velocity[j] * 2;
 }
 #endregion
 #region
 int[] C_n = new int[N];
 int[] C_n1 = new int[N];
 int[] left = new int[N];
 int[] C_n_limit = new int[N];
 int VC_n;
 for (int j = 0; j < Number; j++)
 {
 if (j < Number - 1)
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0); C_n[j] <=
Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] * (double)(C_n[j]) /
D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) - 1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }

129

 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 else
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 if (signal_control == 1)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 if (signal_control == 2)
 {
 if (Distance[j] == Vmax && Num_Location[j] >= 4995)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2,
0); C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else

130

 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0);
C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);

131

 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 }
 }

 #endregion

 #region
 int[] ad = new int[5000];
 if (tt > green && tt < green + 5)
 {
 int cc = 0;
 for (int j = Number - 1; j > 0; j--)
 {
 if (stgo[j] == 2)
 cc++;
 if (Num_Location[j] > 4920 && Num_Location[j] < 4995 &&
(j == Number - 1 || (stgo[j] == 2 && cc == 0)))
 {
 {
 double gap = (double)Distance[j] / Num_Velocity[j];
 int stbar = 4995 - Num_Location[j];
 ad[j] = pp.AccDec(gap, stgo[j], stbar,
Num_Velocity[j]);
 }
 }
 }
 }

 #endregion

 #region
 int[] Num_Velocity_Last = new int[N];
 for (int j = 0; j < Number; j++)

132

 {
 switch (ad[j])
 {
 case 0:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 1:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 2:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 3:
 Num_Velocity_Last[j] = Num_Velocity[j];
 break;
 case 4:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 5:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 2, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 }
 }

 #endregion

 #region

 for (int j = 0; j < Number; j++)
 {
 double sj = random.Next(0, 999);
 sj /= 1000;
 if (((signal_control == 1 || signal_control == 2) &&
Num_Location[j] >= 4995) || kkk[Number - 1] == 1)
 {
 continue;
 }
 if (sj < 0.16)
 {
 Num_Velocity_Last[j] = Math.Max(0,
Math.Max(Num_Velocity[j] - D, Num_Velocity_Last[j] - 1));
 }
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Velocity[j] = Num_Velocity_Last[j];
 }
 #endregion

133

 for (int j = Number - 1; j >= 0; j--)
 {
 if (j < Number - 1)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 Num_Velocity[j] = Num_Velocity[j + 1] + Distance[j];
 }
 }
 else
 {
 if (Num_Velocity[j] > Distance[j])
 {
 if (j == Number - 1 && Distance[j] < 0)
 Num_Velocity[j] = 0;
 else
 Num_Velocity[j] = Distance[j];
 }
 }
 }

 for (int j = 0; j < Number; j++)
 {
 if (Num_Velocity[j] < 0)
 {
 error++;
 }
 }

 #region
 k = 0;
 kii = ki;
 if (t >= TT1 - 2)
 {
 for (int j = 0; j < Number; j++)
 {
 Velocity_2[j] = Velocity_1[j];
 }
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location_1[j] = Num_Location[j] + Num_Velocity[j];
 Velocity_1[j] = Num_Velocity[j];

 if (j <= Number - 1 && j >= ki)
 {
 if (t > TT1 && Velocity_2[j - ki] - Num_Velocity[j] > 2)
 {
 Slam_Brake1[t - TT1 - 1]++;

 if (t_l22 < 5000)
 {
 t_l2[0, t_l22] = tt;
 t_l2[1, t_l22] = Num_Location[j];
 if (Num_Location[j] < 4900)
 error++;
 t_l2[2, t_l22] = alpha;

134

 t_l2[3, t_l11] = Desired_speed[Num_Location[j]];
 t_l22++;
 }
 }
 }
 if (Num_Location_1[j] >= Road_Length)
 {
 k++;
 if (t >= TT1)
 {
 Flux[(int)Math.Round(100 * (alpha - 0.01))]++;
 }
 }

 }
 if (t > TT1)
 {
 Slam_Brake1[t - TT1 - 1] /= Number;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Desired_speed_1[Num_Location_1[j]] =
Desired_speed[Num_Location[j]];
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location[j] = 0;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Num_Location[j] = Num_Location_1[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Location[j] = 0;
 Velocity[j] = 0;
 Desired_speed[j] = 0;
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Desired_speed[j] = Desired_speed_1[j];
 }
 for (int j = 0; j < Number - k; j++)
 {
 Location[Num_Location[j]] = 1;
 Velocity[Num_Location[j]] = Num_Velocity[j];
 }
 #endregion

 if (Number > 5)
 {
 for (int j = 0; j < Number - Math.Max(1, k); j++)
 {
 if (Num_Location[j] >= Num_Location[j + 1] &&
Num_Location[j + 1] != 0)
 {

135

 error++;
 }
 }
 }
 }

 #region

 for (int j = 0; j < TT; j++)
 {
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] += DS1[j];
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] += DS2[j];
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] +=
Slam_Brake1[j];
 }
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] /= TT;

 #endregion
 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] += DSZ1[j];
 DSZ22[j] += DSZ2[j];
 Flux11[j] += Flux[j];
 Slam_Brake11[j] += Slam_Brake[j];
 if (DSZ11[j] == 0 || DSZ22[j] == 0)
 {
 error++;
 }

 }

 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] /= CC;
 DSZ22[j] /= CC;
 Flux11[j] /= CC;
 Slam_Brake11[j] /= CC;
 }
 FileStream dsz1 = File.Create("E:\\DSZ1.txt");
 FileStream dsz2 = File.Create("E:\\DSZ2.txt");
 StreamWriter swdsz1 = new StreamWriter((System.IO.Stream)dsz1);
 StreamWriter swdsz2 = new StreamWriter((System.IO.Stream)dsz2);
 for (int j = 0; j < 100; j++)
 {
 swdsz1.Write("{0} ", DSZ11[j]);
 swdsz2.Write("{0} ", DSZ22[j]);
 }
 swdsz1.Close();
 swdsz2.Close();
 FileStream flow = File.Create("E:\\FLUX.txt");
 StreamWriter swflow = new StreamWriter((System.IO.Stream)flow);
 for (int j = 0; j < 100; j++)
 {
 swflow.Write("{0} ", Flux11[j]);

136

 }
 swflow.Close();
 FileStream brake = File.Create("E:\\Brake1.txt");
 StreamWriter swbrake = new StreamWriter((System.IO.Stream)brake);
 for (int j = 0; j < 100; j++)
 {
 swbrake.Write("{0} ", Slam_Brake11[j]);
 }
 swbrake.Close();
 FileStream st1 = File.Create("E:\\tl1.txt");
 StreamWriter stw1 = new StreamWriter((System.IO.Stream)st1);
 FileStream st2 = File.Create("E:\\tl2.txt");
 StreamWriter stw2 = new StreamWriter((System.IO.Stream)st2);
 for (int jj = 0; jj < 4; jj++)
 {
 for (int j = 0; j < 5000; j++)
 {
 stw1.Write("{0} ", t_l1[jj, j]);
 stw2.Write("{0} ", t_l2[jj, j]);
 }
 stw1.Write("\n");
 stw2.Write("\n");
 }
 stw1.Close();
 stw2.Close();
 FileStream stgo_Error = File.Create("E:\\stgo_error.txt");
 StreamWriter sger = new StreamWriter((System.IO.Stream)stgo_Error);
 for (int j = 0; j < 10000; j++)
 {
 sger.Write("{0} ", stgo_error[j]);
 }
 sger.Close();

 #endregion

 Console.WriteLine("OVER");
 Console.ReadLine();
 }
 public int StopGo(int di, int sp, bool lf)
 {

 #region
 Random aa = new Random();
 if (di > 4941)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.191)
 return 2;
 else
 return 1;
 }
 else
 if (di < 4924)
 {

 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.922)
 return 2;

137

 else
 return 1;
 }
 else
 if (sp < 15)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.604)
 return 2;
 else
 return 1;
 }
 else
 if (lf)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.488)
 return 2;
 else
 return 1;
 }
 else
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 59.6)
 return 2;
 else
 return 1;
 }
 #endregion
 }

 public int AccDec(double gap, int stopgo, int Dtostopbar, int speed)
 {
 Random pa = new Random();
 if (stopgo == 1)
 {
 if (gap <= 3)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.7686)
 return 2;
 else
 return 3;
 }
 else if (gap >= 3.6)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.07)
 return 1;
 else
 return 3;
 }
 else
 return 3;
 }

138

 else
 {
 int d1, d2;
 d1 = speed * (speed - 1) / 2;
 if (speed % 2 == 0)
 d2 = speed * (speed - 2) / 4;
 else
 d2 = (speed - 1) * (speed - 1) / 4;
 if (Dtostopbar > d1)
 {
 if (Dtostopbar - speed > d1)
 return 0;
 else if (Dtostopbar - speed - 1 > (speed - 1) * (speed - 2) / 2)
 {
 return 4;
 }
 else
 {
 return 5;
 }
 }
 else if (Dtostopbar > d2)
 return 5;
 else
 return 5;
 }
 }

 public double ST_GO_LogitRegression(bool lead, int spe, int dis)
 {
 int x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0;
 if (lead)
 x1 = 1;

 if (spe > 14 && spe < 16)
 x2 = 1;
 else
 if (spe < 20)
 x3 = 1;
 if (dis > 57 && dis < 79)
 x4 = 1;
 else
 if (dis >= 79 && dis < 88)
 x5 = 1;
 else
 if (dis >= 88 && dis < 98)
 x6 = 1;

 double y = Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 -
2.4108 * x4 - 4.5557 * x5 - 5.2498 * x6) /
 (1 + Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 - 2.4108
* x4 - 4.5557 * x5 - 5.2498 * x6));
 return y;
 }

 public double AverageRandom(double min, double max)
 {
 double aa = random.Next(0, 1001);

139

 aa = aa / 1000;
 return min + aa * (max - min);
 }

 public double Normal(double x, double mu, double sigma)
 {
 return 1.0 / Math.Sqrt(2 * Math.PI * sigma) * Math.Exp(-1 * (x - mu) * (x -
mu) / (2 * sigma * sigma));
 }

 public int NormalRandom()
 {
 double x;
 double y;
 double dScope;
 do
 {
 x = AverageRandom(34, 66);
 dScope = Normal(x, 50, 5);
 y = AverageRandom(0, 0.14);
 }
 while (y >= dScope);
 x = (int)Math.Round(x * 0.44704 / 1.5, 0);
 return (int)x;
 }
 }
}

140

APPENDIX D C# CODE FOR THE PMAIC SCENARIO

141

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
namespace Amber_flash_add_Pavement_marking
{
 class Program
 {
 Random random = new Random();
 static void Main(string[] args)
 {
 Random random = new Random();
 int Road_Length = 5000;
 int Vmax = 20;
 int Vfast = 20;
 double[] P = { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 };
 int t0 = 0;
 int TT1 = 10000;
 int TT = 5000;
 double alpha;
 int L_veh = 5;
 int green = 25;
 int C = 60;
 int red = 25;
 int ki;
 int kii = 0;
 int error = 0;
 int D = 2;
 int t_safe = 3;
 int Vlimit = 15;
 double[,] t_l1 = new double[4, 5000];
 double[,] t_l2 = new double[4, 5000];
 int t_l11 = 0;
 int t_l22 = 0;
 double[] DSZ11 = new double[100];
 double[] DSZ22 = new double[100];
 int[] Flux11 = new int[100];
 double[] Slam_Brake11 = new double[100];
 double[] stgo_error = new double[10000];
 int stgo_para = 0;
 int CC = 1;
 int k = 0;
 for (int mm = 0; mm < CC; mm++)
 {
 double[] DSZ1 = new double[100];
 double[] DSZ2 = new double[100];
 int[] Flux = new int[100];
 double[] Slam_Brake = new double[100];
 int[,] Time_Location = new int[300, Road_Length];
 int[,] ArrTL = new int[240, 2000];

 int M = 0;
 int Dis = 0;
 int para_signal = 0;
 Program pm = new Program();
 for (alpha = 0.01; alpha < 0.401; alpha += 0.01)
 {

142

 #region
 int[] Location = new int[Road_Length];
 int[] Velocity = new int[Road_Length];
 double[] DS1 = new double[TT];
 double[] DS2 = new double[TT];
 double[] Slam_Brake1 = new double[TT];
 int[] Desired_speed = new int[5000];
 int[] Desired_speed_1 = new int[5000];
 int[] Velocity_1 = new int[Road_Length];
 int[] stgo_1 = new int[Road_Length];
 int[] Velocity_2 = new int[Road_Length];
 int[] stgo = new int[5000];
 int signal_control = 1;
 int tt = 0;
 #endregion
 for (int t = t0; t < (TT1 + TT); t++)
 {
 if (tt == green + 5)
 {
 for (int ii = 0; ii < Road_Length; ii++)
 {
 stgo[ii] = 0;
 }
 }

 #region
 if (t > t0)
 {
 if (tt >= C)
 {
 tt = tt - C;
 }
 tt = tt + 1;
 if (tt <= green)
 {
 signal_control = 1;
 }
 else
 {
 if (tt <= green + 4)
 {
 signal_control = 2;
 }
 else
 {
 signal_control = 3;
 }
 }

 }
 #endregion

 #region
 if (t % 60 == 0)
 {
 double cs = random.Next(3, 6);
 int born_number = (int)(Math.Floor(cs));
 int dspeed = pm.NormalRandom();

143

 ki = born_number;
 for (int ii = 0; ii < born_number; ii++)
 {
 Location[ii * (dspeed + L_veh)] = 1;
 Velocity[ii * (dspeed + L_veh)] = dspeed;
 Desired_speed[ii * (dspeed + L_veh)] = dspeed;
 }
 }
 else
 ki = 0;
 #endregion
 #region
 int N = 0;
 for (int j = 0; j < Road_Length; j++)
 {
 if (Location[j] == 1)
 {
 N++;
 }
 }
 if (N == 0)
 {
 continue;
 }
 if (t == 3000)
 {
 t = 3000;

 }
 int[] Location_1 = new int[N];
 int[] Num_Location_1 = new int[N];
 #endregion
 #region stopgo
 if (tt > green - 5 && tt < green + 5)
 {
 for (int j = 0; j < Road_Length; j++)
 {
 stgo_1[j] = stgo[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 stgo[j] = 0;
 }
 for (int j = 0; j < Road_Length - 1; j++)
 {
 stgo[j + ki] = stgo_1[j];
 }
 }
 #endregion

 #region

 int[] Distance = new int[N];
 int[] Num_Location = new int[N];
 int[] Num_Velocity = new int[N];
 int[] Virtual_Velocity = new int[N];
 int[] kkk = new int[N];

144

 int Number = 1;
 int i = 0;
 while (i < Road_Length)
 {
 int[] a = new int[2];
 int c = 0;
 while (i < Road_Length && c < 2)
 {
 if (Location[i] == 1)
 {
 a[c] = i;
 c++;
 }
 i++;
 }
 if (c == 2)
 {
 i--;
 c = 0;
 Distance[Number - 1] = a[1] - a[0] - L_veh;
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 Number++;
 }
 else
 {
 if (a[0] >= 4995)
 {
 Distance[Number - 1] = Vmax;
 switch (signal_control)
 {
 case 1:
 Distance[Number - 1] = Vmax;
 break;
 case 2:
 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 case 3:
 if (tt <= green + 5)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = 0;
 break;
 }
 }
 else
 {
 if (signal_control == 1)
 {
 Distance[Number - 1] = Vmax;
 }
 else
 {
 if (signal_control == 2)
 {

145

 if (stgo[Number - 1] == 1)
 Distance[Number - 1] = Vmax;
 else
 Distance[Number - 1] = Road_Length - a[0] - L_veh;
 }
 else
 {
 Distance[Number - 1] = Road_Length - a[0] - L_veh;
 }

 }
 }
 Num_Location[Number - 1] = a[0];
 Num_Velocity[Number - 1] = Velocity[a[0]];
 break;
 }
 }
 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }
 #endregion

 for (int j = 0; j < Number; j++)
 {
 if (Distance[j] < 0)
 {
 error++;
 }
 }

 for (int j = 0; j < Number - 1; j++)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 error++;
 }
 }

 #region
 if (t > TT1)
 {
 for (int j = ki + kii; j < Number - 1; j++)
 {
 if (Num_Velocity[j] < Vmax && Distance[j] == 0)
 {
 if (Velocity_2[j + 1 - ki - kii] >= 0)
 {
 if (Velocity_2[j - ki - kii] - Num_Velocity[j] >
2)
 {

 if (Num_Velocity[j + 1] == 0)

146

 {
 DS1[t - TT1 - 1] += 1;
 }
 else
 {
 DS2[t - TT1 - 1] += 1;
 }
 if (t_l11 < 5000)
 {
 t_l1[0, t_l11] = tt;
 t_l1[1, t_l11] = Num_Location[j];
 t_l1[2, t_l11] = alpha;
 t_l1[3, t_l11] =
Desired_speed[Num_Location[j]];
 t_l11++;
 }
 }
 }
 }

 }
 DS1[t - TT1 - 1] /= (Number - 1);
 DS2[t - TT1 - 1] /= (Number - 1);
 }
 #endregion

 Program pp = new Program();
 #region
 if (tt == green - 2)
 {
 for (int j = 0; j < Number; j++)
 {
 if (Num_Location[j] > 4900 && Num_Location[j] < 4940 &&
Num_Velocity[j] < 15)
 {
 stgo[j] = 2;
 }
 }
 }
 if (tt == green + 1)
 {
 for (int j = 0; j < Number; j++)
 {
 if (Num_Location[j] > 4900 && Num_Location[j] < 4995 &&
stgo[j] == 0)
 {
 if (Num_Location[j] >= 4940)
 stgo[j] = 1;
 else
 stgo[j] = 2;

 }
 else
 {
 stgo[j] = 2;
 }
 }

147

 }

 #endregion
 #region
 if (tt == green + 2)
 {
 int Num_stgo_error = 0;
 int Num_pdcar = 0;
 for (int j = Number - 1; Num_Location[j] > 4900; j--)
 {
 Num_pdcar++;
 if (stgo[j] == 1 && ((5000 - Num_Location[j]) > 4 * Num_Velocity[j]))
 Num_stgo_error++;
 }
 if (Num_pdcar > 0)
 {
 stgo_error[stgo_para] = (double)Num_stgo_error /
Num_pdcar;
 stgo_para++;
 }
 }

 #endregion
 #region

 int[] r = new int[N];
 for (int j = 0; j < Number; j++)
 {
 if (t == t0 || Number < 3)
 {
 r[j] = 1;
 }
 else
 {
 if (j < Number - 2)
 {
 if ((Num_Velocity[j] <= Num_Velocity[j + 1] &&
Num_Velocity[j + 1] <= Num_Velocity[j + 2]) || Num_Velocity[j + 2] >=
Math.Max(Desired_speed[Num_Location[j + 2]], 19))
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;
 }
 }
 else
 {
 if (j == Number - 2)
 {
 if (Num_Velocity[j] < Num_Velocity[j + 1])
 {
 r[j] = 0;
 }
 else
 {
 r[j] = 1;

148

 }
 }
 else
 {
 r[j] = 0;
 }
 }
 }
 if (Num_Location[j] > 4914 && tt > 29)
 r[j] = 1;
 }

 #endregion
 #region
 int[] Delta = new int[N];
 int[] t_f = new int[N];
 int[] t_l = new int[N];
 int[] aa = new int[N];
 for (int j = 0; j < Number; j++)
 {
 t_l[j] = (int)Math.Floor(r[j] * (double)(Num_Velocity[j]) / D
+ (1 - r[j]) * Math.Min((double)(Num_Velocity[j]) / D, t_safe));

 Delta[j] = Num_Velocity[j] * 2;
 }
 #endregion

 #region
 int[] C_n = new int[N];
 int[] C_n1 = new int[N];
 int[] left = new int[N];
 int[] C_n_limit = new int[N];
 int VC_n;
 for (int j = 0; j < Number; j++)
 {
 if (j < Number - 1)
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0); C_n[j] <=
Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] * (double)(C_n[j]) /
D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) - 1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }

149

 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] > (int)(Distance[j] +
Num_Velocity[j + 1] * t_l[j + 1] - 0.5 * (t_l[j + 1] + 1) * t_l[j + 1] * D + 0.5 *
(t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 else
 {
 if (Num_Location[j] >= 4900)
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 else
 {
 VC_n = Desired_speed[Num_Location[j]];
 }
 if (signal_control == 1)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 if (signal_control == 2 && stgo[j] != 2)
 {
 if (Distance[j] == Vmax && Num_Location[j] >= 4995)
 {
 C_n1[j] = Num_Velocity[j] + 1;
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2,
0); C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)

150

 {
 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else
 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1,
0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 else
 {
 for (C_n[j] = Math.Max(Num_Velocity[j] - 2, 0);
C_n[j] <= Math.Min(Num_Velocity[j] + 2, VC_n); C_n[j]++)
 {
 t_f[j] = (int)Math.Ceiling(r[j] *
(double)(C_n[j]) / D + (1 - r[j]) * Math.Max(0, Math.Min((double)(C_n[j]) / D, t_safe) -
1));
 if (t_f[j] == 0)
 {
 aa[j] = 0;
 }
 else

151

 {
 aa[j] = 1;
 }
 if (C_n[j] % D == 0)
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] + 1) * t_f[j] * D))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 else
 {
 if ((t_f[j] + 1) * C_n[j] >
(int)(Distance[j] + 0.5 * (t_f[j] - 1) * t_f[j] * D + aa[j] * (2 * t_f[j] - 1)))
 {
 C_n1[j] = Math.Max(C_n[j] - 1, 0);
 break;
 }
 else
 {
 C_n1[j] = C_n[j];
 continue;
 }
 }
 }
 }
 }
 }
 }

 #endregion

 #region
 int[] ad = new int[5000];
 if (tt > green - 4 && tt < green + 5)
 {
 int cc = 0;
 for (int j = Number - 1; j > 0; j--)
 {
 if (stgo[j] == 2)
 cc++;
 if (Num_Location[j] > 4920 && Num_Location[j] < 4995 &&
(j == Number - 1 || (stgo[j] == 2 && cc == 0)))
 {
 {
 double gap = (double)Distance[j] / Num_Velocity[j];
 int stbar = 4995 - Num_Location[j];
 ad[j] = pp.AccDec(gap, stgo[j], stbar,
Num_Velocity[j]);
 }
 }

152

 }
 }

 #endregion
 #region
 int[] Num_Velocity_Last = new int[N];
 for (int j = 0; j < Number; j++)
 {
 switch (ad[j])
 {
 case 0:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 1:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Num_Velocity[j] + 1,
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 2:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 3:
 Num_Velocity_Last[j] = Num_Velocity[j];
 break;
 case 4:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 1, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 case 5:
 Num_Velocity_Last[j] =
Math.Min(Desired_speed[Num_Location[j]], Math.Min(Math.Max(Num_Velocity[j] - 2, 0),
Math.Max(Math.Max(0, Num_Velocity[j] - D), C_n1[j])));
 break;
 }
 }
 #endregion
 #region
 for (int j = 0; j < Number; j++)
 {
 double sj = random.Next(0, 999);
 sj /= 1000;
 if (((signal_control == 1 || signal_control == 2) &&
Num_Location[j] >= 4995) || kkk[Number - 1] == 1)
 {
 continue;
 }
 if (sj < 0.16)
 {
 Num_Velocity_Last[j] = Math.Max(0,
Math.Max(Num_Velocity[j] - D, Num_Velocity_Last[j] - 1));
 }
 }
 for (int j = 0; j < Number; j++)

153

 {
 Num_Velocity[j] = Num_Velocity_Last[j];
 }
 #endregion
 for (int j = Number - 1; j >= 0; j--)
 {
 if (j < Number - 1)
 {
 if (Num_Velocity[j] - Num_Velocity[j + 1] > Distance[j])
 {
 Num_Velocity[j] = Num_Velocity[j + 1] + Distance[j];
 }
 }
 else
 {
 if (Num_Velocity[j] > Distance[j])
 {
 if (j == Number - 1 && Distance[j] < 0)
 Num_Velocity[j] = 0;
 else
 Num_Velocity[j] = Distance[j];
 }
 }
 }

 for (int j = 0; j < Number; j++)
 {
 if (Num_Velocity[j] < 0)
 {
 error++;
 }
 }

 #region
 k = 0;
 kii = ki;
 if (t >= TT1 - 2)
 {
 for (int j = 0; j < Number; j++)
 {
 Velocity_2[j] = Velocity_1[j];
 }
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location_1[j] = Num_Location[j] + Num_Velocity[j];
 Velocity_1[j] = Num_Velocity[j];
 if (j <= Number - 1 && j >= ki)
 {
 if (t > TT1 && Velocity_2[j - ki] - Num_Velocity[j] > 2)
 {
 Slam_Brake1[t - TT1 - 1]++;
 if (t_l22 < 5000)
 {
 t_l2[0, t_l22] = tt;
 t_l2[1, t_l22] = Num_Location[j];
 if (Num_Location[j] < 4900)
 error++;

154

 t_l2[2, t_l22] = alpha;
 t_l2[3, t_l11] = Desired_speed[Num_Location[j]];
 t_l22++;
 }
 }
 }
 if (Num_Location_1[j] >= Road_Length)
 {
 k++;
 if (t >= TT1)
 {
 Flux[(int)Math.Round(100 * (alpha - 0.01))]++;
 }
 }

 }
 if (t > TT1)
 {
 Slam_Brake1[t - TT1 - 1] /= Number;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Desired_speed_1[Num_Location_1[j]] =
Desired_speed[Num_Location[j]];
 }
 for (int j = 0; j < Number; j++)
 {
 Num_Location[j] = 0;
 }
 for (int j = 0; j < Number - k; j++)
 {
 Num_Location[j] = Num_Location_1[j];
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Location[j] = 0;
 Velocity[j] = 0;
 Desired_speed[j] = 0;
 }
 for (int j = 0; j < Road_Length; j++)
 {
 Desired_speed[j] = Desired_speed_1[j];
 }
 for (int j = 0; j < Number - k; j++)
 {
 Location[Num_Location[j]] = 1;
 Velocity[Num_Location[j]] = Num_Velocity[j];
 }

 #endregion

 if (Number > 5)
 {
 for (int j = 0; j < Number - Math.Max(1, k); j++)
 {
 if (Num_Location[j] >= Num_Location[j + 1] &&
Num_Location[j + 1] != 0)
 {

155

 error++;
 }
 }
 }
 }

 #region
 for (int j = 0; j < TT; j++)
 {
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] += DS1[j];
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] += DS2[j];
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] +=
Slam_Brake1[j];
 }
 DSZ1[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 DSZ2[(int)Math.Round(100 * (alpha - 0.01))] /= TT;
 Slam_Brake[(int)Math.Round(100 * (alpha - 0.01))] /= TT;

 #endregion
 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] += DSZ1[j];
 DSZ22[j] += DSZ2[j];
 Flux11[j] += Flux[j];
 Slam_Brake11[j] += Slam_Brake[j];
 if (DSZ11[j] == 0 || DSZ22[j] == 0)
 {
 error++;
 }
 }
 }
 for (int j = 0; j < 100; j++)
 {
 DSZ11[j] /= CC;
 DSZ22[j] /= CC;
 Flux11[j] /= CC;
 Slam_Brake11[j] /= CC;
 }
 // dangerous situation
 FileStream dsz1 = File.Create("E:\\DSZ1.txt");
 FileStream dsz2 = File.Create("E:\\DSZ2.txt");
 StreamWriter swdsz1 = new StreamWriter((System.IO.Stream)dsz1);
 StreamWriter swdsz2 = new StreamWriter((System.IO.Stream)dsz2);
 for (int j = 0; j < 100; j++)
 {
 swdsz1.Write("{0} ", DSZ11[j]);
 swdsz2.Write("{0} ", DSZ22[j]);
 }
 swdsz1.Close();
 swdsz2.Close();
 // flux
 FileStream flow = File.Create("E:\\FLUX.txt");
 StreamWriter swflow = new StreamWriter((System.IO.Stream)flow);
 for (int j = 0; j < 100; j++)
 {
 swflow.Write("{0} ", Flux11[j]);
 }

156

 swflow.Close();
 FileStream brake = File.Create("E:\\Brake1.txt");
 StreamWriter swbrake = new StreamWriter((System.IO.Stream)brake);
 for (int j = 0; j < 100; j++)
 {
 swbrake.Write("{0} ", Slam_Brake11[j]);
 }
 swbrake.Close();
 FileStream st1 = File.Create("E:\\tl1.txt");
 StreamWriter stw1 = new StreamWriter((System.IO.Stream)st1);
 FileStream st2 = File.Create("E:\\tl2.txt");
 StreamWriter stw2 = new StreamWriter((System.IO.Stream)st2);
 for (int jj = 0; jj < 4; jj++)
 {
 for (int j = 0; j < 5000; j++)
 {
 stw1.Write("{0} ", t_l1[jj, j]);
 stw2.Write("{0} ", t_l2[jj, j]);
 }
 stw1.Write("\n");
 stw2.Write("\n");
 }
 stw1.Close();
 stw2.Close();

 FileStream stgo_Error = File.Create("E:\\stgo_error.txt");
 StreamWriter sger = new StreamWriter((System.IO.Stream)stgo_Error);

 for (int j = 0; j < stgo_para; j++)
 {
 sger.Write("{0} ", stgo_error[j]);
 }
 sger.Close();

 #endregion

 Console.WriteLine("OVER");
 Console.ReadLine();
 }
 public int StopGo(int di, int sp, bool lf)
 {

 #region
 Random aa = new Random();
 if (di > 4941)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.191)
 return 2;
 else
 return 1;
 }
 else
 if (di < 4924)
 {

 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.922)

157

 return 2;
 else
 return 1;
 }
 else
 if (sp < 15)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.604)
 return 2;
 else
 return 1;
 }
 else
 if (lf)
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 0.488)
 return 2;
 else
 return 1;
 }
 else
 {
 double cc = aa.Next(0, 999) / 1000;
 if (cc < 59.6)
 return 2;//2stop
 else
 return 1;
 }
 #endregion
 }

 public int AccDec(double gap, int stopgo, int Dtostopbar, int speed)
 {
 Random pa = new Random();
 if (stopgo == 1)
 {
 if (gap <= 3)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.7686)
 return 2;
 else
 return 3;
 }
 else if (gap >= 3.6)
 {
 double aa = pa.Next(0, 1000);
 aa /= 1000;
 if (aa < 0.07)
 return 1;
 else
 return 3;
 }
 else
 return 3;

158

 }
 else
 {
 int d1, d2;
 d1 = speed * (speed - 1) / 2;
 if (speed % 2 == 0)
 d2 = speed * (speed - 2) / 4;
 else
 d2 = (speed - 1) * (speed - 1) / 4;
 if (Dtostopbar > d1)
 {
 if (Dtostopbar - speed > d1)
 return 0;
 else if (Dtostopbar - speed - 1 > (speed - 1) * (speed - 2) / 2)
 {
 return 4;
 }
 else
 {
 return 5;
 }
 }
 else if (Dtostopbar > d2)
 return 5;
 else
 return 5;
 }
 }
 public double ST_GO_LogitRegression(bool lead, int spe, int dis)
 {
 int x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0;
 if (lead)
 x1 = 1;

 if (spe > 14 && spe < 16)
 x2 = 1;
 else
 if (spe < 20)
 x3 = 1;
 if (dis > 57 && dis < 79)
 x4 = 1;
 else
 if (dis >= 79 && dis < 88)
 x5 = 1;
 else
 if (dis >= 88 && dis < 98)
 x6 = 1;
 double y = Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 -
2.4108 * x4 - 4.5557 * x5 - 5.2498 * x6) /
 (1 + Math.Exp(-0.1945 + 0.9350 * x1 + 1.4994 * x2 + 3.2820 * x3 - 2.4108
* x4 - 4.5557 * x5 - 5.2498 * x6));
 return y;
 }
 public double AverageRandom(double min, double max)
 {
 double aa = random.Next(0, 1001);
 aa = aa / 1000;
 return min + aa * (max - min);

159

 }
 public double Normal(double x, double mu, double sigma)
 {
 return 1.0 / Math.Sqrt(2 * Math.PI * sigma) * Math.Exp(-1 * (x - mu) * (x -
mu) / (2 * sigma * sigma));
 }
 public int NormalRandom()
 {
 double x;
 double y;
 double dScope;
 do
 {
 x = AverageRandom(34, 66);
 dScope = Normal(x, 50, 5);
 y = AverageRandom(0, 0.14);
 }
 while (y >= dScope);
 x = (int)Math.Round(x * 0.44704 / 1.5, 0);
 return (int)x;
 }
 }
}

160

APPENDIX E SIMULATION RESULTS-PROBABILITIES OF RISKY

SITUATIONS

161

P-BRAKE 30,5 40,5 50,5 60,5 50,2 50,10

Typical 0.000411 0.00052 0.000644 0.000951 9.32E-05 0.000676

Flashing Green 0.00044 0.000485 0.000647 0.001507 0.000139 0.000631

Pavement Marking 0.000382 0.000446 0.000522 0.000792 5.66E-05 0.000582

pavement marking and an

auxiliary indication 8.67E-05 0.000126 0.000144 0.000779 1.9E-05 0.000193

P-RS1 30,5 40,5 50,5 60,5 50,2 50,10

Typical 0.000208 0.000289 0.00044 0.000426 6.44E-05 0.000431

Flashing Green 0.000228 0.000265 0.000447 0.00081 0.000107 0.000421

Pavement Marking 0.000189 0.000229 0.000359 0.000371 3.84E-05 0.000382

pavement marking and an

auxiliary indication 3.93E-05 6.2E-05 8.28E-05 0.000345 9.72E-06 0.00011

P-RS2 30,5 40,5 50,5 60,5 50,2 50,10

Typical 1.9E-05 3E-05 2.88E-05 4.12E-05 3.08E-06 2.75E-05

Flashing Green 1.84E-05 2.88E-05 2.99E-05 4.9E-05 2.17E-06 2.54E-05

Pavement Marking 6.51E-06 9.41E-06 8.08E-06 1.22E-05 7.49E-07 9.45E-06

pavement marking

and an auxiliary

indication 1.07E-06 5.38E-06 5.6E-06 1.01E-05 7.88E-07 5.02E-06

P-RLR 30,5 40,5 50,5 60,5 50,2 50,10

Typical 0.0037 0.0056 0.0166 0.0052 0.0323 0.0134

Flashing Green 0.0037 0.0084 0.0205 0.0085 0.0300 0.0138

Pavement Marking 0.2724 0.2035 0.1072 0.0188 0.0114 0.2183

pavement marking and an

auxiliary indication 0 0.0006 0.0003 0.0001 0.0001 0.002

162

LIST OF REFERENCES

Clarridgea A. and Salomaab K. (2010). Analysis of a cellular automaton model for car traffic

with a slow-to-stop rule. Theoretical Computer Science, 411(38-39), 3507-3515. doi:

10.1016/j.tcs.2010.05.027

Federal Highway Administration. How red-light running is defined and how crash figures are

determined. Retrieved Aug.14, 2014, from

http://safety.fhwa.dot.gov/intersection/redlight/howto/

Boccara N., Fuks H. and Zeng, Q. (1997). Car accidents and number of stopped cars due to road

blockage on a one-lane highway. J.Phys.A:Math.Gen, 30, 3329-3332.

Messer C., Sunkari, S., Charara, H. and Parker, R. (2003). Development of advance warning

systems for end-of-green phase at high speed traffic signals: Texas Transportation

Institute.

Chang M., Messer C. and Santiago A. (1985). Timing traffic singal change intervals based on

driver behavior. Transportation Research Record: Journal of the Transportation Research

Board, 20-30.

Chiou Y. and Chang C. (2010). Driver responses to green and red vehicular signal countdown

displays: Safety and efficiency aspects. Accident Analysis and Prevention, 42(4), 1057-

1065. doi: 10.1016/j.aap.2009.12.013

Retting R., Williams A., Farmer C. et al. Evaluation of red light camera enforcement in Oxnard,

California, Accident Analysis & Prevention, Volume 31, Issue 3, May 1999, P169-174

Liu C. and Herman R. (1996). A review of the yellow interval dilemma. Transportation Research

Part A: Policy & Practice, 30, 333-348.

163

ITE Technical Committee. (1989). Determing vehicle change intervals: a propsed recommended

practice ITE Journal (Vol. 57). Washington D.C.: Institute of Transportation Engineers.

Huiwitz D. and Knodler M. (2007). Static and dynamic evaluation of the driver speed perception

and selection process. Paper presented at the Proceedings of the 4th International Driving

Symposium on Human Factors in Driver Assessment, Training & Vehicle Design,

Stevenson, Washington, USA.

Gazis D., Herman R. and Maradudin A. (1959). The porblem of the amber signal light in traffic

flow.

Ding Y., Wu Y., Abdel-Aty M. et al. (2014). Studying rear-end crash risk under countermeasures

of amber dilemma at signalized intersections based on cellular automaton model.

Manuscript under review in Accident Analysis & Prevention.

Google map. Retrieved Aug.01, 2014, from

https://www.google.com/maps/@28.56486,-81.238201,14z?hl=en

Elmitiny N., Yan X., Radwan E. et al. (2010). Classification analysis of Driver's Stop/go

Decision and Red-light Running Violation. Accident Analysis & Prevention, 42(1), 101-

111. doi: 10.1016/j.aap.2009.07.007

Porter B. and Kelli E. (2000). Predicting red-light running behavior: a traffic safety study in three

urban settings. Journal of Safety Research, 31, 1-8.

Factor R., Prashker J. and Mahalel D. (2012). The flashing green light paradox. Transportation

Research Part F: Traffic Psychology and Behaviour, 15(3), 279-288. doi:

10.1016/j.trf.2012.01.003

Hurwitz D. (2009). Application of driver behavior and comprehension to dilemma zone

definition and evaluation. (dissertation), University of Massachusetts

164

Bonneson J., Middleton D., Zimmerman K., Charara H. and Abbas M. (2002). Intelligent

detection-control system for rural signalized intersections: Texas Transportation Institute.

Jia B., Gao Z., Li K. et al. (2007). Models and simulations of traffic system based on the theory

of cellular automaton. Beijing.

Jiang R., Wang X., Jia B. et al. (2003). Dangerous situations within the framework of the Nagel-

Schreckenberg model. JOURNAL OF PHYSICS A-MATHEMATICAL AND

GENERAL, 36(17), 4763-4769.

Rui J., Bin J., Wang, X. and Wu Q. (2004). Dangerous situations in the velocity effect model.

Journal of Physics A: Mathematical and General, 37(22), 5777-5787. doi: 10.1088/0305-

4470/37/22/005

Knodler M., Noyce D., Kacir K. et al. (2001). Driver understanding of the green ball and

flashing yellow arrow permintted indications: a driving simulator Experiment. ITE

Journal.

Lum K. and Halim H. (2006). A before-and-after study on green signal countdown device

installation. Transportation Research Part F: Traffic Psychology and Behaviour, 9(1), 29-

41. doi: 10.1016/j.trf.2005.08.007

Köll H., Bader M. and Axhausen K. (2004). Driver behaviour during flashing green before

amber: a comparative study. Accident Analysis & Prevention, 36(2), 273-280. doi:

10.1016/s0001-4575(03)00005-8

Lidia K.and Eby D. (1998). Exploring rear-end roadway crashes from the driver's perspective:

The University of Michigan.

165

Liu Y. , Chang G., Tao R. et al. (2007). Empirical observations of dynamic dilemma zones at

signalized intersections. Transportation Research Record: Journal of the Transportation

Research Board, 122-133.

Lum K. and Wong, Y. (2003). Impacts of red light camera on violation characteristics. Journal of

Transportation Engineering. doi: 10.1061//ASCE/0733-947X/2003/129:6/648

Mahadlel D. , Zaidel D. and Klein T. (1985). Drivers decision process on termination of the

green light. Accident Analysis and Prevention, 17(5), 373-380.

Mahalel D. and Zaidel D. (1985). Safety evaluation of a flashing green light in a traffic signal.

Traffic Engineering & control, 26(2), 79-81.

Manual of Uniform Traffic Control Devices. (2009). Washington, DC: Federal Highway

Administration.

Manual on uniform traffic control devices: for streets and highways. (2009) (pp. 485): Federal

Highway Administration.

Abdel-Aty M. and Abdelwahab H. (2004). Modeling rear-end collisions including the role of

driver’s visibility and light truck vehicles using a nested logit structure. Accident

Analysis & Prevention, 36(3), 447-456. doi: 10.1016/s0001-4575(03)00040-x

Nagel K. and Michael S. (1992). A cellular automaton model for freeway traffic. journal de

physique, 2, 2221-2229.

Newton C., Mussa R. Sadalla E. et al. (1997). Evaluation of an alternative traffic light change

anticipation system. Accident Analysis and Prevention, 29(2), 201-209.

Papaioannou, P. (2007). Driver behaviour, dilemma zone and safety effects at urban signalized

intersections in Greece. Accident Analysis & Prevention, 39(1), 147-158. doi:

10.1016/j.aap.2006.06.014

166

Pline, J. (1999). Traffic Engineering Handbook fifth Edition: Institute of Transportation

Engineering.

Red light running. Retrieved Aug. 10, 2014, from http://www.iihs.org/iihs/topics/t/red-light-

running/topicoverview

Jiang R. and Wu Q. (2006). A stopped time dependent randomization cellular automata model

for traffic flow controlled by traffic light. Physica A: Statistical Mechanics and its

Applications, 364(15), 493-496. doi: 10.1016/j.physa.2005.10.038

Kikuchi S. and Riegner J. (1992). Methodology to analyze driver decision environment during

signal change: intervals application of fuzzy set theory. Transportation Research Board,

49-57.

Sunkai S., Messer C. and Charara H. (2005). Performance of advance warning for end of green

system for high-speed signalized intersections. Transportation Research Record: Journal

of the Transportation Research Board, 1925, 176-184.

Maerivoet S. and Moor B. (2005). Cellular auomata models of road traffic. Physics Reports. doi:

10.1016/j.physrep.2005.08.005

Andrew T., Wei L. and Luis L. (2006). A probabilistic approach to control dilemma zone

occurrence at signalized intersections Presented at 85th Annual Meeting of the

Transportation Research Board.

Gates T., Noyce D. and Luis L. (2006). Analysis of dilemma zone driver behavior at signalized

intersections. Transportation Research Record: Journal of the Transportation Research

Board, 2030, 29-39.

Traffic safety facts 2012. (2012). Washington, DC: National Highway Traffic Safety

Administration.

167

Stephen W. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics,

55(3), 601-644.

Wortman R. and Matthias J. (1983). Evaluation of Driver Behavior at Singalized Intersections.

Transportation Research Record: Journal of the Transportation Research Board, 10-20.

Yan X., Radwan E. and Abdel-Aty M. (2005). Characteristics of rear-end accidents at signalized

intersections using multiple logistic regression model. Accid Anal Prev, 37(6), 983-995.

doi: 10.1016/j.aap.2005.05.001

Yan X., Radwan E., Guo D. et al. (2009). Impact of “Signal Ahead” pavement marking on driver

behavior at signalized intersections. Transportation Research Part F: Traffic Psychology

and Behaviour, 12(1), 50-67. doi: 10.1016/j.trf.2008.07.002

Yan X., Radwan E. and Guo D. (2007). Effect of a pavement marking countermeasure on

improving signalized intersection safety. ITE Journal, 77(8), 30-39.

Ni Y. and Li K. (2014). Estimating rear-end accident probabilities at signalized intersections: a

comparison study of intersections with and without green signal countdown devices.

Traffic Injure Prevention, 15(6), 583-590. doi: 10.1080/15389588.2013.845752

Han Y. and Ko S.. (2012). Analysis of a cellular automaton model for car traffic with a junction.

Theoretical Computer Science, 450(7), 54-67. doi: 10.1016/j.tcs.2012.04.027

Zegeer C. and Deen R.(1978). Green-extension systems at high-speed intersections. ITE Journal,

48, 19-24.

	A Comparative Analysis of Different Dilemma Zone Countermeasures at Signalized Intersections based on Cellular Automaton Model
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF NOTATIONS
	CHAPTER 1 INTRODUCTION
	1.1. Background
	1.2. Research Objectives
	1.3. Organization of the Thesis

	CHAPTER 2 LITERATURE REVIEW
	2.1 Dilemma Zone
	2.2 Advanced Warning Measures
	2.3 Intersection Simulation based on Cellular Automata Model

	CHAPTER 3 DATA COLLECTION AND ANALYSIS
	3.1 Observation Site Description and Data Collection
	3.2 Observation Results and Data Analyses
	3.2.1 Drivers’ Stop/Go Decisions
	3.2.1.1 Main Factors of Drivers’ Stop/Go Decisions
	3.2.1.2 Other Factors of Drivers’ Stop/Go Decisions

	3.2.2 Red-Light Running Violation

	CHAPTER 4 METHODOLOGY
	4.1 Stop/go Decision Rule
	4.2 Cellular Automata Model

	CHAPTER 5 SCENARIOS CONSTRUCTION AND ANALYSIS
	5.1 Typical Intersection
	5.2 Intersection with Flashing Green Signal
	5.3 Intersection with Pavement Marking
	5.4 Intersection with Pavement Marking and an Auxiliary Indication countermeasure

	CHAPTER 6 COMPARATIVE ANALYSIS OF DIFFERENT DILEMMA ZONE COUNTERMEASURES
	6.1 Rear-end Crash Risk
	6.2 Red –Light Running Risk

	CHAPTER 7 CONCLUSIONS
	7.1 Research Contributions
	7.2 Recommendations

	APPENDIX A C# CODE FOR THE TYPICAL INTERSECTION SCENARIO
	APPENDIX B C# CODE FOR THE INTERSECTION FOR THE INTERSECTION WITH THE FLASHING GREEN PHASES
	APPENDIX C C# CODE FOR THE PAVEMENT MARKING SCENARIO
	APPENDIX D C# CODE FOR THE PMAIC SCENARIO
	APPENDIX E SIMULATION RESULTS-PROBABILITIES OF RISKY SITUATIONS
	LIST OF REFERENCES

