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ABSTRACT 

Since the transportation sector still relies mostly on fossil fuels, the emissions and overall 

environmental impacts of the transportation sector are particularly relevant to the mitigation of 

the adverse effects of climate change. Sustainable transportation therefore plays a vital role in the 

ongoing discussion on how to promote energy insecurity and address future energy requirements. 

One of the most promising ways to increase energy security and reduce emissions from the 

transportation sector is to support alternative fuel technologies, including electric vehicles (EVs). 

As vehicles become electrified, the transportation fleet will rely on the electric grid as well as 

traditional transportation fuels for energy. The life cycle cost and environmental impacts of EVs 

are still very uncertain, but are nonetheless extremely important for making policy decisions. 

Moreover, the use of EVs will help to diversify the fuel mix and thereby reduce dependence on 

petroleum. In this respect, the United States has set a goal of a 20% share of EVs on U.S. 

roadways by 2030. However, there is also a considerable amount of uncertainty in the market 

share of EVs that must be taken into account. This dissertation aims to address these inherent 

uncertainties by presenting two new models: the Electric Vehicles Regional Optimizer (EVRO), 

and Electric Vehicle Regional Market Penetration (EVReMP). Using these two models, decision 

makers can predict the optimal combination of drivetrains and the market penetration of the EVs 

in different regions of the United States for the year 2030. 

First, the life cycle cost and life cycle environmental emissions of internal combustion 

engine vehicles, gasoline hybrid electric vehicles, and three different EV types (gasoline plug-in 

hybrid EVs, gasoline extended-range EVs, and all-electric EVs) are evaluated with their inherent 
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uncertainties duly considered. Then, the environmental damage costs and water footprints of the 

studied drivetrains are estimated. Additionally, using an Exploratory Modeling and Analysis 

method, the uncertainties related to the life cycle costs, environmental damage costs, and water 

footprints of the studied vehicle types are modeled for different U.S. electricity grid regions. 

Next, an optimization model is used in conjunction with this Exploratory Modeling and Analysis 

method to find the ideal combination of different vehicle types in each U.S. region for the year 

2030. Finally, an agent-based model is developed to identify the optimal market shares of the 

studied vehicles in each of 22 electric regions in the United States. The findings of this research 

will help policy makers and transportation planners to prepare our nation’s transportation system 

for the future influx of EVs. 

The findings of this research indicate that the decision maker’s point of view plays a vital 

role in selecting the optimal fleet array. While internal combustion engine vehicles have the 

lowest life cycle cost, the highest environmental damage cost, and a relatively low water 

footprint, they will not be a good choice in the future. On the other hand, although all-electric 

vehicles have a relatively low life cycle cost and the lowest environmental damage cost of the 

evaluated vehicle options, they also have the highest water footprint, so relying solely on all-

electric vehicles is not an ideal choice either. Rather, the best fleet mix in 2030 will be an 

electrified fleet that relies on both electricity and gasoline. From the agent-based model results, a 

deviation is evident between the ideal fleet mix and that resulting from consumer behavior, in 

which EV shares increase dramatically by the year 2030 but only dominate 30 percent of the 

market. Therefore, government subsidies and the word-of-mouth effect will play a vital role in 

the future adoption of EVs. 
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CHAPTER ONE: INTRODUCTION 

1.1.      Research Problem Statement* 

Climate change is real and as we increasingly altering the planet, we make ourselves in 

danger of outcomes of this change. Our society more likely will be overwhelmed by this change 

and cannot be adapted. It is already late to stop the climate change. Human-induced climate 

change continues to result in extreme weather conditions, [1]. Other effects of climate 

change include major shortage in water supply, dramatic loss of Arctic sea ice, more 

extreme winter and spring weather, and a higher amount of vaporized water in the air 

causing more heavy rainfalls and an increase in short-term precipitation. [2–10]. Almost 97 

percent of scientists believe in human-induced climate change [11], contributing to an 

increasing amount of attention given to the mitigation and adaptation of its effects. 

Policymakers around the globe are tackling how to curb the causes of climate change at 

both national and international scales. One of the ways to mitigate the effects of climate 

change is to reduce greenhouse gas (GHG) emissions. The reduction of GHGs has become a 

policy-driver for many societies due to the growing threat of global temperature and storm 

intensity increase.  

United States Environmental Protection Agency (EPA) points out the rise in 

temperature, changes in the pattern and amount of rainfalls, decrease in the amount of ice, 

sea level rise, and rise in the oceans acidity as the future effects of climate change [10]. The 

                                                 
* Parts of this dissertation will appear in peer-reviewed journal papers co-author by 

dissertation author. 
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US average temperature will increase between 4 and 11 Fahrenheit by 2100, with the 

number of days warmer than 90 degrees rising throughout the United States (See Figure 1). 

This increase will lead to more intense extreme climate events. 

 

Figure 1. Observed and Projected U.S. Temperature [10] 

With researchers and policy makers pay more attention to this issue, the extreme 

weather conditions, the rising temperature, and probable outcomes are better studied, 

predicted and understood. One of the ways to mitigate the effects of climate change and 

alleviate global warming, is to reduce greenhouse gas (GHG) emissions. The reduction of 

GHGs has become a main goal for the society due to significance of global warming and 

climate change threat.  

The environmental and emissions impacts of the transportation sector are directly 

relevant to ameliorating the effects of climate change. The transportation sector still relies mostly 
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on fossil fuels. Transportation is responsible for almost 75 percent of oil imports and consumes 

70 percent of the all oil used in the US [12], with obvious energy security and environmental 

implications. Globally, the transportation sector emits around 25 percent of GHGs and a 

considerable amount of other air pollutants,[13]. According to the Inventory of U.S. Greenhouse 

Gas Emissions and Sinks, 28 percent of total U.S. GHG emissions was emitted by the 

transportation sector in 2011 [14]. In the International Energy Agency’s (IEA) 2C scenario in 

reduction of global temperature by 2050 (2DS), the transportation share of CO2 reduction would 

be 21 % [15]. Managing transportation-related emissions will therefore play a significant role in 

reducing total emitted GHGs. Sustainable transportation plays a vital role in the ongoing 

discussion on energy insecurity and addressing future energy requirements. With demand for 

passenger vehicles continuing to grow, one way to mitigate transportation sector emissions is to 

increase the proportion of alternative fuel vehicles in the fleet. Among these new technologies, 

electric vehicles (EVs), including hybrid and all-electric vehicle types, have stimulated 

tremendous interest both in the United States and globally. Electric Vehicles help to diversify the 

fuel mix and reduce dependence on petroleum. The share of EVs in the transportation fleet has 

increased dramatically in recent years, mainly due to battery improvements and because 

electricity will be the most efficient and cheapest transport fuel in the future [16,17]. Also, 

compared to other alternative fuel technologies, battery electric vehicles establish the most 

promising transport integration technology [18]. These technology improvements, coupled with 

the potential to store electricity in vehicles as an integral part of the modernization of the electric 

grid, continue to increase the importance of EVs for our transportation future.  
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Figure 2. Inventory of U.S. Greenhouse Gas Emissions and Sinks [14] 

By diversifying the fuel mix of the U.S. transportation sector, the electric vehicle industry 

helps to increase energy security and reduce dependence on petroleum. Moreover, the 

transportation industry has an enormous effect on greenhouse gas (GHG) emissions, and is 

responsible for 27% of all GHG emissions in the U.S. as of 2013 [19]. In the International 

Energy Agency’s (IEA) 2C scenario regarding global temperature reduction by 2050 (2DS), the 

transportation share of CO2 reduction would be 21% [15]. Although Internal Combustion Engine 

Vehicles (ICEV) replaced electrified transportation by 1930, electric vehicles have been around 

for more than 100 years. The EV market shares have greatly increased in recent years due to 

energy insecurity concerns, the increasing trends in oil prices, improvements in electrical power 

storage, and electricity’s current status as the cheapest and most efficient energy source for 

the transportation sector in the foreseeable future [16,17]. Governments are now embracing 

the development of EVs on the road by setting goals to improve the EV industry. Although the 

Obama administration has backed off of its goal of one million electric vehicles on the road by 

2015 [20], others have set a goal of an EV share of 20% in the U.S. transportation new sales fleet 
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by 2030 [21]. In another example, California has implemented a Zero Emission Vehicle (ZEV) 

mandate that requires automobile companies to produce for sale a certain percentage of zero 

emission vehicles, including EVs and hydrogen fuel cell vehicles; by 2025, approximately 15% 

of all new light-duty vehicles sold in the state of California must be either electric or fuel-cell 

powered [22]. The U.S. Government now also offers financial incentives to consumers to lower 

first-time costs, offering up to $7,500 in tax credits for EVs purchased in or after 2010; this 

incentive will be phased out after 200,000 vehicles from the qualified manufacturers [23]. 

Furthermore, the U.S. Government also supports research and development for new technologies 

to accommodate the movement towards a more electrified vehicle fleet. Moreover, 

manufacturers and consumers are supporting this technological shift by designing EVs that are 

more reliable and by helping to mitigate GHG emissions. Additionally, significant cost 

reductions for EV components such as batteries have further stimulated this market share growth. 

However, despite all of these efforts and the current collective movement to facilitate the 

electrification of the U.S. transportation fleet, there are still barriers hindering the widespread 

adoption of EVs as a viable transportation option, including various technological, financial 

market, and policy challenges to the full deployment of EVs. The United States currently has the 

largest number of electric vehicles on the road, with almost 43 percent of all EVs sold in the U.S. 

However, EVs only comprised less than 1% of new car sales in the U.S. as of 2014 [24]. 

Therefore, greater adoption rates must be met in order to achieve the mid-term and long-term 

market share goals for EVs as described previously [25]. In light of these challenges, it is 

increasingly necessary to study EV market shares in more detail. Market forecasting is currently 

a well-developed and well-studied field with implications in various other fields (economics, 
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business, finance, systems engineering, etc.), but often fails to consider uncertainties in the 

different factors affecting market shares. For this reason, market evaluations of new EV 

technologies is facing increasing degrees of complexity due to difficulty in modeling the relevant 

system factors [26].  

This trend makes it vital to study EVs in further detail. Policy-makers, scientists, and 

manufacturers typically understand the importance of life cycle cost (LCC) and life cycle 

environmental emissions (LCEE) of EVs in their ongoing discussions. However, often missing 

from the dialogue is the environmental damage cost (EDC) and water footprint (WFP) of EVs. 

EDC is estimated using LCEE and the unit cost of environmental degradation for each air 

pollutant. In fact, access to more comprehensive information might result in a completely 

different policy direction. On the other hand, there are many uncertain variables in evaluating the 

LCC, EDC, and WFP of EVs. This study first aims to improve upon the life cycle analysis of 

different EV technologies by addressing primarily the uncertainties in these metrics 

simultaneously. Then, using the most probable range of values, this study aims to predict the 

most appropriate combination of EVs and ICEVs that should be on the road in 2030, considering 

economic costs, environmental damage costs, and water footprint. Second, this study aims to 

evaluate the market penetration of the EVs considering its inherent uncertainty. In order to 

achieve this goal, first the purchase price, maintenance and refueling cost (M&R), environmental 

damage cost (EDC), and water footprint (WFP) of the studied vehicle are estimated, considering 

their uncertainty ranges. Then, an agent-based model (ABM) is developed to simulate the market 

penetration of the EVs in the U.S. market. Finally, different scenarios are applied and the 

plausible outcome is analyzed using the exploratory modeling and analysis (EMA) concept. 
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Here, five different vehicle types are compared and analyzed: Internal Combustion 

Engine Vehicle (ICEV), Gasoline Hybrid Electric Vehicle (HEV), Gasoline Plug-in Hybrid 

Electric Vehicle (PHEV), Gasoline Extended Range Electric Vehicle (EREV), and All-Electric 

Vehicle (BEV). For PHEVs, when the battery is preliminarily used and especially in hard 

acceleration conditions, the gasoline engine facilitates driving the vehicle. An EREV is a type of 

PHEV with a larger battery that powers the vehicle until depleted, at which point the vehicle 

switches to gasoline power. Therefore, PHEVs consume gasoline during charge depleting mode, 

while EREVs do not. For the purposes of this study, it is assumed that PHEVs have an all-

electric range of 10 miles and EREVs have an all-electric range of 40 miles. 

1.2.     Aims and Objectives 

The outreaching goal of this study is to fill the above mentioned gap by answering the 

following research questions using different methodologies such as Agent-based modeling and 

Exploratory Modeling and Analysis: 

What are the uncertain variables in studying the life cycle cost, life cycle environmental 

emissions, and water footprint of electric vehicles and what are their varying ranges? 

How can we quantify the above mentioned vehicle attributes? 

What are the environmental damage costs of different electric vehicle technologies? 

How can we optimize the share of the electric vehicles in the market for the future, 

considering their life cycle cost, environmental damage cost, and water footprints? 
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How consumers respond to the current market situations? 

What will be the actual market penetration of the electric vehicles in the United States? 

How can we integrate the uncertainties of the system in the decision making and market 

penetration evaluation of electric vehicles?  

This study distinguishes itself from previous efforts in several ways. First, the Alternative 

Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) tool, developed by the 

Argonne National Laboratory (ANL), is used to find the LCC of different EVs. This tool was 

recently released and has yet to be used extensively by the research community. This study 

builds on AFLEET to create a new model called the Electric Vehicles Regional Optimizer 

(EVRO), which considers all possible uncertainties of LCC to account for the whole picture of 

EV costs. Second, although there have been some efforts to analyze the environmental damage 

costs of EVs, this effort integrates uncertainties into the EDC using the variability in the LCEE 

as well as the unit environmental damage cost of each air pollutant. Third, previous studies 

frequently use an average U.S. electricity mix in their analysis. Here, the LCC, EDC, and WFP 

of EVs is estimated for different electricity generation mixes, based on 22 U.S. electric grid 

regions. In addition, a stochastic optimization tool is coupled with Exploratory Modeling and 

Analysis (EMA) to find the best EV drivetrain mix for each U.S. electric grid region for the year 

2030. Finally, an agent-based model (ABM) is developed with the Exploratory Modeling and 

Analysis (EMA) method to integrate the relevant uncertainties into the market share of EVs in 

the year 2030.  
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The rest of the dissertation is structured as follows: First, the existing literature on the 

LCC, LCEE, WFP, EMA, and ABM of EVs is described. Second, the methodology and general 

assumptions are described, the concept of EDC is discussed and added to the analysis through 

consideration of the LCEE of different EV drivetrains, and the mathematical content of the 

Electric Vehicles Regional Optimizer (EVRO) and Electric Vehicle Regional Market Penetration 

(EVReMP) models is discussed. Then, the uncertainties are presented and explained. Finally, the 

results and implications of the EVRO and EVReMP models are illustrated and ideas for future 

study are presented. 

1.3.     Organization of Dissertation 

To answer the defined research questions, the dissertation is organized as follows: 

1st Chapter: Introduction and Literature Review 

This chapter will present the general information about the U.S. Electric Vehicle industry 

and market, and importance of studying the life cycle cost, life cycle environmental emissions, 

and water footprint of EVs. In addition, it will include the research problem statement, aims and 

objectives, and organization of the dissertation. 

2st Chapter: Introduction and Literature Review 

This chapters described the existing literature on life cycle cost, life cycle environmental 

emissions, water footprint, exploratory modeling and analysis, and agent based models used in 

the electric vehicles area. 
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3nd chapter: Methodology 

This chapter explains the mathematical content of the developed electric vehicle regional 

optimizer and electric vehicle market penetration models. 

4nd chapter: Analysis Results 

This chapter involves the analysis results of the two developed models for the electric 

vehicles in the United States. 

5nd chapter: Conclusion, discussion, and future studies 

In this chapter the results of the proposed methodologies and their significance for the 

U.S. Electric Vehicle Industry will be discussed. Then, the limitations of the study will be 

explained and the conclusion of the dissertation will be made. Finally, the recommendations for 

the future studies will be indicated.  
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CHAPTER TWO: LITERATURE REVIEW 

2.1.     Introduction 

In this chapter, the previous literature on life cycle cost, life cycle environmental 

emissions, water footprint, exploratory modeling and analysis, and agent based models used in 

the electric vehicles area is described. 

    2.2.     Life Cycle Cost, Life Cycle Environmental Emissions, and Water Footprint 
of EVs 

The Life Cycle Cost (LCC) and Life Cycle Environmental Emissions (LCEE) of EVs 

have been extensively studied, and there are several studies on the Water Footprint (WFP) of 

EVs in the literature. A summary of the existing literature is described in the following 

subsections. 

2.2.1.     Life Cycle Cost (LCC) of EVs 

Often cited in the literature is the detailed LCC analysis of EVs by the Argonne National 

Laboratory (ANL). ANL compares several vehicle cost, fuel price, and government subsidy  

scenarios to understand the future role of EVs in the vehicle market [27]. However, they admit 

that predicting the future role of EVs in the market has some complexities, due to the inherent 

uncertainty of oil prices, lack of knowledge about future customers’ behavior toward new 

technologies, the performance and cost of future technologies, and future governmental action. 

ANL’s costs are based on a “technology success” scenario. Argonne has used a model called 
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Automotive System Cost Model (ASCM), developed by the Oak Ridge National Lab [28]. It 

gives the costs of 5 different vehicle types using 35 different components. For the vehicle size, 

weight, power, and energy, they have used the ANL’s vehicle simulation tool, Powertrain 

System Analysis Toolkit (PSAT). These two models are used as the  base models for Argonne’s 

GREET tool [29]. ORNL mentions there are three different main uncertainties in the cost 

analysis of EVs: uncertain design evolution including new technologies, effects of learning and 

scale in mass production, and unpredictable changes in material costs. Another main assumption 

that the GREET model makes is that overhead and auto dealer fees make up as much as 50% of 

the manufacturing costs. This is another uncertainty in their life cycle cost analysis. 

ANL also uses the National Energy Modeling System (NEMS) for their projections. 

NEMS is a large scale computational-based model of the U.S. energy economy through the year 

2030 [30]. It forecasts various factors such as energy and fuel pricing using a variety of different 

factors, including consumption, production, imports and exports of energy, cost and performance 

of different energy technologies, and demographic data [31]. Due to its specialized structure and 

difficulty of use, NEMS has only been used by EIA and a few other organizations. In another 

study, the design of EVs was optimized using both the ANL study and an integer programming 

method to consider annualized life cycle cost and annualized GHG emissions [32]. The result 

was that the high price of gas caused PHEVs to dominate the future market and in turn, 

petroleum consumption.  

Aguirre et al. conducted a LCC analysis of conventional gasoline, hybrid, and all-electric 

vehicles. They presented their results in two different categories: initial and usage costs. Their 
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results indicate that overall, the studied BEV has more net present cost value than the ICEV and 

HEV. However, the usage costs of the studied electric vehicle are lower than the studied ICEV 

and HEV. They concluded the HEV is the cheapest option over its lifetime [33]. Ghosh 

compared the total lifetime cost associated with PHEVs and BEVs based on their initial, lifetime 

fuel, and lifetime maintenance costs. He assumed a 10 year lifetime for the vehicles. They found 

the BEV to have a lower total lifetime cost than the PHEVs, and that the PHEV with 10 mile 

electric range cost less than the EREV [34]. 

2.2.2.     Life Cycle Environmental Emissions (LCEE) of EVs 

The LCEE of EVs has received substantial attention in the literature. However, various 

authors have made differing assumptions about vehicle weights, battery sizes, propulsion and 

fuel efficiency, how broadly to draw a boundary around the life cycle analysis (LCA), and 

electricity mix. For instance, in one of the most recent publications from the University of 

Central Florida, a state-based carbon and energy footprint analysis was performed for 

conventional, hybrid, plug-in hybrid, and electric vehicles [35]. Moreover, The Union of 

Concerned Scientists published an informative report that investigated emissions from charging 

electric vehicles on a regional scale, including upstream emissions from building power plants, 

extracting and transporting fuel, converting fuel into electricity, and delivering electricity to the 

point of use [36]. In addition, Viñoles-Cebolla et al. developed an integrated model to estimate 

the life cycle emissions of different vehicles using primary vehicle data such as weight, engine 

technology, and fuel type [37]. Zhang et al. proposed a simulation model to analyze the 

economic and environmental performance of EVs, testing different conditions such as the 
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electricity generation mix, smart charging control strategies, and real-time pricing mechanisms 

[38].  

Additionally, different studies report their assumptions and results using a range of 

metrics, including per fuel volume, per kW of battery, or per-distance-traveled. Some authors 

don’t specify the emissions intensity of the electricity used to charge. Treatment of the 

production, operation and disposal life cycle stages also varies, with some studies reporting on 

each stage individually and some rolling all stages into one life cycle value. One commonality is 

the emphasis on the battery as the primarily distinguishing attribute of EVs relative to ICEVs. 

Battery manufacture, usable state of charge, degradation rate, replacement requirements, and 

environmental impacts, are all relevant to life cycle analysis of EVs [33,34,39–41]. In order to 

address the existing literature on the emissions of electric vehicles with the most clarity, we have 

divided the remaining discussion into production, operation, and disposal life cycle phases.  

Production Emissions: Trucking, shipping and rail transportation methods are required 

for the movement of batteries and vehicle parts before manufacturing, as well as the movement 

of whole vehicles after manufacturing, and these transportation emissions contribute to the 

LCEE.  The production phase often also includes the sourcing of raw materials and assembly of 

the vehicle. Production stage emissions for ICEVs range from 4 t CO2e to 10 t CO2e [41–44]. 

HEVs, PHEVs, and BEVs contain batteries which vary in size and material depending upon the 

vehicle’s characteristics such as fuel economy and all-electric range. The manufacture of 

batteries typically increases vehicle production stage emissions for these electric vehicles relative 

to an ICEV [33]. For example, Notter et al. conclude that the battery causes between 7% and 
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15% of the energy or environmental impact of the overall lifecycle of an EV and Aguirre et al. 

concluded that the battery production alone is responsible for 3-24% of life cycle emissions, 

based on the battery capacity  [33,40]. Helms et al. provided the low estimate in the literature of 

6.5 t-CO2Eq for production emissions of EVs  (Helms et al., 2010). 

Operation Emissions: For mid-sized ICEVs more than three quarters of lifecycle 

emissions result from the use phase of vehicle life, causing emissions of 18-27 t-CO2e [44]. 

Emissions during the use phase currently account for the majority of lifecycle vehicle emissions, 

although as fuel efficiencies improve across the vehicle fleet, emissions created in the production 

of vehicles will make up a greater share of total lifecycle vehicle emissions for new vehicles.  

Operational emissions are a function of the emissions intensity of the fuel (or combination of 

fuels used) and the fuel efficiency of the vehicle. Fuel-based emissions for gasoline include 

emissions from direct burning of gasoline and upstream emissions from crude oil extraction, 

transportation, refining and distribution. Fuel-based emissions for electricity include the pre-

combustion, upstream GHG emissions of the power plant fuel mix. Emissions from gasoline 

were estimated at a range of 2.90 – 2.99 kg CO2e/L [42,45,46], which is essentially the 

operational emissions of ICEVs. Similar to ICEVs, HEVs also rely completely on gasoline, but 

have higher fuel efficiency [45].  

PHEVs present challenges for estimating operational emissions because they rely on a 

combination of electricity and gasoline. Driver behavior assumptions are therefore important 

factors, as once the battery is drained of grid-sourced electricity, a PHEV drives as if it had a 

normal hybrid engine. Some PHEVs will even drive in blended (using some gasoline) mode 
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before the battery is drained of grid-sourced electricity. The assumptions surrounding the 

availability of charging stations and the number of times PHEVs are charged are also important 

for calculating the share of emissions from electricity or gasoline (Davies & Kurani, 2013; 

Samaras & Meisterling, 2008). The U.S. Department of Transportation National Household 

Travel Survey (NHTS) has been used by many to estimate the relative electricity and gas usage 

of PHEVs, typically on a national average basis with one charge assumed per day [45,48]. 

Individual behaviors like commute distance and charging at the workplace could have marked 

effects on any individual’s emissions. 

BEVs, meanwhile, are assumed to be solely powered by grid-sourced electricity. Electric 

vehicle emissions are highly dependent on generation source. Pre-combustion and upstream 

GHG emissions of the power plant fuel mix for the U.S. can contribute an extra 9% above direct 

power plant emissions on average (calculated using an assumption of 8-14% upstream emissions 

for coal and 13-20% upstream emissions for natural gas), resulting in an additional 54 g 

CO2e/kWh for the average U.S. mix [45]. Most authors have assumed a U.S. national electricity 

mix, with some authors performing sensitivity analyses to investigate low carbon or high carbon 

generation sources. For instance, the Union of Concerned Scientists published a report that 

investigated emissions from charging electric vehicles by region, and shows how integral electric 

generation mix is to the operational emissions of EVs [36]. In Europe, Based on the average 

electricity production mix, which had more than 50% generation from fossil fuels at the time of 

the study, Notter et al. calculated that an internal combustion engine breaks even with an EV if 

its fuel economy is more than 60 mpg [40]. One study developed a model to estimate the life 
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cycle emissions using the primary vehicle data such as weight, year of manufacture, engine 

technology, and fuel type used [37]. 

Disposal Emissions: Disposal and end of life scenarios have been extensively evaluated 

in other field of studies such as in pavement sustainable materials [49–51], green power [52], and 

automotive industry [53]. Largely, the disposal stage of the lifecycle has been ignored in the 

literature. Most authors exclude these emissions because they represent such a small fraction of 

the overall total lifecycle emissions. In the European Union, legislation has mandated recycling 

and recovery rates of batteries at 85% by 2006 and 95% by 2015 [40]. It is estimated that natural 

resource savings from recycling Li-ion batteries are 51%. Batteries are not currently recycled in 

the U.S. because it is not technologically or economically feasible, as recycling currently uses 

more energy and costs than using raw materials to make new batteries. Aguirre et al. conclude 

that if a battery were recycled emissions of 0.68 t-CO2e would result. Ultimately, disposal of the 

vehicle parts and battery causes less than 1% of the lifecycle vehicle emissions in their analysis 

[33]. 

EV emissions are highly dependent on generation source. Most authors have assumed a 

U.S. national electricity mix, with some authors performing sensitivity analyses to investigate 

low carbon or high carbon generation sources. For instance, the Union of Concerned Scientists 

published a report that investigated emissions from charging electric vehicles by region, and 

showed how integral electric generation mix is to the operational emissions of EVs [36]. Pre-

combustion and upstream GHG emissions of the power plant fuel mix for the U.S. can contribute 

an extra 9% above direct power plant emissions on average, resulting in an additional 54 g 
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CO2e/kWh for the average U.S. mix [45]. Additionally, transforming the transport fuel system to 

100 percent renewable energy sources would require multiple measures and close integration of 

transport within the larger energy system [54]. Therefore, understating the future trend of 

transport and electricity fuel sources plays a vital role in the decision-making surrounding 

alternative fuel vehicles. Please see Table 1 for a summary of literature on LCEE of the studied 

vehicle types. 

2.2.3.     Water Footprint of EVs 

The concept of “water footprint” analysis is to understand and address freshwater 

consumptive use by considering production and supply chains as a whole. Water Footprint 

focuses on blue water because water withdrawal from surface and groundwater sources 

constitutes a majority of the water use in electricity generation. The water use of power plant 

operations is an important aspect of the LCCA because use of water in electricity production 

prevents others from using the water for other purposes, and this resource is highly constrained 

in some parts of the U.S. The freshwater footprint of water withdrawal becomes a key factor in 

the siting of new plants and in water resource planning [55]. The concept of water and energy is 

fundamentally connected. 49% of the total fresh water withdrawals in the U.S. is caused by the 

thermoelectric power generation. The transportation industry is not heavily reliant on water so 

far, since 95% of the transportation fuels is supplied through petroleum fuels. However, as 

mentioned earlier, the share of the EVs are increasing in the fleet and reliance on water for 

generating electricity will increase in the near future [56]. Therefore, considering the WFP as a 

decision variable is one of the goals of this research. 
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Table 1. Summary of the literature on life cycle cost and life cycle environmental 
emissions 

Life Cycle Cost of EVs 

Oak Ridge National Lab [28] 

Automotive System Cost Model (ASCM). 

It gives the costs of 5 different vehicle types using 35 different components. 

It uses ANL’s Powertrain System Analysis (PSAT). 

Energy Information Agency 
[31] 

National Energy Modeling System (NEMS). 

A large-scale computational-based model of the U.S. energy economy. 

It forecasts various factors (i.e. energy and fuel pricing) using a variety of different factors. 

It has a specialized structure and is very sophisticated to use. 

Traut [32] 

Design of EVs was optimized using both the ANL study and an integer programming 
method considering annualized LCC and annualized GHG emissions. 

High price of gas caused PHEVs to dominate the future market and, in turn, petroleum 
consumption. 

Aguirre et al. [33] 

Conducted a LCC analysis of conventional gasoline, hybrid, and all-electric vehicles. 

Determined that the BEV has more net present cost value than the ICEV and HEV studied. 

The usage costs of the BEV are lower than the ICEV and HEV. HEV is the cheapest 
option. 

Zhang et al. [38] 

They developed a model to analyze economic and environmental performance of EVs 

It is applied to case studies in Tokyo, Japan in 2030. 

Considered different electricity mix options, smart charging control strategies, real-time 
pricing mechanisms. 

Kiviluoma and Meibom  

[57] 

They estimate PHEV cost in the future power system, as well as benefits from smart EVs. 

Stochastic model was used to achieve more accurate operational cost results. 

The system cost to charge an EV was around 36 €/vehicle/year, In the case of smart EVs. 

Ghosh [34]. 
Compared the total lifetime cost associated with PHEVs and BEVs. 

BEV to have a lower total lifetime cost, PHEV-10 cost less than the EREV. 
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Life Cycle Environmental Emissions 

Production Emissions 

Carbon Trust [44] 
A mid-size ICEV sold today has emissions of 6 t-CO2Eq from manufacture and another 3 t-
CO2e from making the raw materials such as steel and aluminum. 

Shiau et al. [42] 
Estimated 8.5t-CO2Eq for the life cycle GHG emissions associated with any vehicle 
production (excluding battery production). 

MacLean & Lave [41] Provided the highest estimate, at 10 t-CO2Eq, for production stage emissions of an ICEV. 

Helms et al. [43] 
Provided estimates on the low end, with ICEVs contributing approximately 4 t-CO2Eq and 
EVs 6.5 t-CO2Eq including battery emissions. 

Operation Emissions 

Carbon Trust [44] 
For mid-sized ICEVs more than three quarters of LCEE result from the use phase (18-27 t-
CO2Eq) 

Shiau et al. [42] Emissions from gasoline estimated at a level of 2.99 kg CO2Eq/L 

Samaras & Meisterling  [45] Emissions from gasoline estimated at a level of 2.97 kg CO2Eq/L 

Jaramillo et al. [46] Emissions from gasoline estimated at a level of 2.90 kg CO2Eq/L 

Disposal Emissions 

Aguirre et al. [33] 
Concluded that if a battery were recycled. Emissions of 0.68 t-CO2e would result. 

Disposal of the vehicle parts and battery causes less than 1% of the LCEE. 

2.3.     Exploratory Modeling and Analysis 

There are plenty of uncertain variables in the life cycle cost assessment of EVs. 

Uncertainty and variability are two different concepts. Variability in the input data means the 

ranges and the behavior of the system is known. But in uncertainty, the ranges are known; 

however the behavior of system to the uncertain variables is unknown. Uncertain situations do 

not necessarily imply the lack of knowledge, as increasing knowledge about the areas of high 
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uncertainty, may lead to a more knowledge about the uncertainty and therefore increases the total 

uncertainty [58].  

There are a few efforts done in the research community in order to address the 

uncertainties in the life cycle of electric vehicles. Aguirre et al. applied Monte Carlo simulation 

to account for the variability in the sensitivity analysis of their conventional gasoline vehicle and 

EVs comparison [59]. In their study, they assumed the most uncertain phase for the CV cars is 

the use phase. On the other hand, for the EVs the battery manufacturing along with use phase is 

considered to be uncertain. They pointed out that the effect of carbon incentives on EVs is also 

uncertain and needs further study. Based on their analysis, they concluded that hybrid cars are 

more cost effective than CVs. The EVs have the highest net present costs compared to two other 

comparison alternatives. Also, the breakpoint of CVs and EVs is reported where the gasoline 

price is increasing by rate of 13 percent. Considering the gasoline price is not changing, the cost 

breakpoint happens when the electricity price decreases by 5%. 

One of the goals of this study is to apply the concept of Exploratory Modeling and 

Analysis (EMA) to the developed ABM model to account for the inherent uncertainty levels of 

the system. In one study by Kwakkel and Yücel, EMA as applied to a developed ABM model in 

the case of Dutch electricity transition [60], exploring plausible transition trajectories and their 

conditions for occurring. The mathematical content of the developed Electric Vehicle Regional 

Market Penetration (EVReMP) Model is described in the next section. 
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2.4.     Agent Based Modeling 

If we divide simulation methods in discrete-event and continuous approaches, Agent-

Based Modeling (ABM) is a discrete-event simulation method that creates a virtual environment 

to model the interactions between different agents. Discrete event simulation is suitable in a 

situation where the variables change in discrete times and events are in discrete steps [61]. In the 

literature, other approaches are utilized in discrete-event simulation such as in automated storage 

and retrieval systems [62,63], in assignment problems [64], and queuing systems [61]. The ABM 

method has been applied to several fields of study, including population dynamics, 

epidemiology, biomedical applications, consumer behavior, vehicle traffic, and logistic 

simulations [65–69]. ABM is also used to model vehicle technology adoption, with different 

agents (consumers, automakers, policy makers, fuel suppliers, etc.) interacting in a virtual 

environment [68,70–72]. Consumers are the primary agents in some aspect of the vehicle 

technology adoption portrayed with the ABM method, whereas more current models have 

expanded this environment by considering automakers, policy makers, and fuel suppliers as 

agents as well. One of the advantages of the ABM method is its ability to use both hypothetical 

and data-driven consumer behavior during the modeling process [26]. 

EV market penetration has been extensively studied due to its importance in policy 

analysis. One of the more advanced agent-based models for evaluating the market share of EVs 

is the Virtual Automotive Market Place Model (acronym VAMPM) developed by the University 

of Michigan Transportation Research Institute (UMTRI) [70]. This model characterizes the 

market share of new technologies under different consumer, economic, and policy conditions, 
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and considers four different agent types: consumers, governments, fuel producers, and vehicle 

producers/dealers. The unit cycle of the analysis is one month, and the agents communicate in 

each cycle based on their needs and benefits. The results indicate that, by 2015, sales of PHEVs 

could reach up to 3%. By 2020, sales could potentially reach up to 5 % and up to 20% in 30 

years, with a final market penetration of 16% by 2040. As stated in [70], the ABM model should 

consider the income, addresses, transportation budget, vehicle preferences, driving needs, 

preferred travel times, and other relevant parameters. The VAAMP model considers some of 

these factors in a hypothetical “neighborhood” in which some assumptions are still made, such as 

the assumptions that and wage levels stay the same, that the effect of foreign currency changes 

on the price of exported vehicles does not affect the market, and there are no distinctions 

between cars and trucks. 

Most of the ABM models in current literature were developed based on utility theory, in 

which the agent purchases a vehicle that maximizes his/her utility. For instance, Ting Zhang et 

al. proposed a novel ABM methodology to investigate factors that can facilitate the penetration 

of the alternative fuel technologies into the market [73], considering four different agents in their 

analysis: manufacturers, vehicles, consumers, and governments. The manufacturing agent tries to 

maximize its profit in each run by changing the vehicle design or its mark up. The Corporate 

Average Fuel Economy (CAFE) regulations are applied by the government agents, and affects 

manufacturer profit. Consumers choose vehicles with higher utility levels based on different 

vehicle attributes and consumer preferences. The mathematical content of this study is now used 

as a basis for the formulation of the developed ABM in this research. Moreover, a consumer 

choice probability model is developed for evaluating the market share of EVs in Iceland by 
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Shafiei et al. [74], with consumers weighing different vehicle attributes based on their own 

specific preferences. Sets of vehicle alternatives compete in each run based on the social 

influences as well as the attractiveness of consumers. The behavior of other agents also affects 

the decision of the agent. The mathematical content of the consumer choice model is also used to 

form the developed ABM in this analysis. 
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CHAPTER THREE: METHODOLOGY 

3.1.     Electric Vehicle Regional Optimizer (EVRO) Model 

In this chapter, the methodology framework of the developed Electric Vehicle Regional 

Optimizer is explained. This Model is currently published and available in Journal of Energy 

[75]. The following subsections describe the conceptual basis and mathematical contents of the 

methodology. First, the developed Electric Vehicle Regional Optimizer (EVRO) and its 

relationship to the other parts of the methodology are illustrated. Second, in section 3.2, the 

concept of LCC is explained and the AFLEET model and its relationship to the EVRO model are 

described. Third, in section 3.3, the concept of Exploratory Modeling and Analysis (EMA) and 

the compromise programming optimization model are explained and their application within the 

EVRO model is described. Fourth, in section 3.4, the uncertainties in the LCC, LCEE, and WFP 

of EVs are presented and discussed, and the concept of Environmental Damage Cost (EDC) is 

presented using the LCEE of EVs and the unit damage cost of air pollutants. Finally, in section 

3.5, the mathematical content of the Electric Vehicle Regional Optimizer (EVRO) is presented. 

Figure 1 illustrates the methodology used to develop the EVRO model. The core of EVRO is an 

optimization model, which is coupled with the concept of Exploratory Modeling and Analysis to 

account for the uncertainties in the input variables. Basically, the EVRO model is a combination 

of several different methodologies (those described in section 3), which enables the decision 

maker to see what would be the appropriate combination of drivetrain for different LCC, EDC, 

and WFP weights. 
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Figure 3.Illustration of EVRO model. 

3.1.1.     Life Cycle Cost Analysis (LCCA) 

LCCA is a process to analyze the economic value of a project through evaluation of its 

fixed and variable costs over the life cycle of the project [76]. All of the costs associated with a 

project are considered, including the initial costs and the likely future costs associated with an 

activity over time. This tool is effective in conveying alternative investment scenarios to decision 

makers. LCCA incorporates discounted long-term agency costs, user costs, and performance 

periods. LCCA is used in different disciplines such as sustainable materials in pavement 

engineering [77]. The discount rate used for an LCCA can have significant influence on the 

results. In this research, the discount rate is considered to range between 0.65-1.15 percent, based 

on a one-year certificate of deposit rate [78]. The inflation rate, which affects future costs, is 

taken from the Congressional Budget Office’s (CBO) yearly report, The Budget and Economic 

Outlook [79]. 
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There are a few tools available to find the LCC of alternative fuel drivetrains. For 

instance, NREL has developed a tool called “Future Automotive Systems Technology 

Simulator” whose primary aim is to estimate the fuel economy, cost, and performance of a 

vehicle with specified powertrain components over standard drive cycles [80]. This tool takes a 

highly detailed approach, which does not match the scope of this study. AFLEET, a tool 

developed by Systems Assessment Group, Energy Systems Division, at the Argonne National 

Laboratory (ANL), is a more general tool better suited to the aim of this study [81]. AFLEET is 

developed for The Department of Energy’s Clean City program and is able to estimate the 

petroleum use, GHG emissions, and cost of ownership of different alternative fuel technologies. 

The tool utilizes the background and methodology of the GREET (The Greenhouse Gases, 

Regulated Emissions, and Energy Use in Transportation) model [29]. For the cost analysis, 

AFLEET uses a variety of sources, such as Clean Cities Alternative Fuel Price Report and 

American Recovery and Reinvestment Act awards [81]. The EVRO model developed here uses 

AFLEET as a tool to estimate the LCC and the LCEE of the studied drivetrains. The outputs of 

AFLEET become the inputs of EVRO.  

In the AFLEET model, two types of maintenance costs are considered for each vehicle 

type: scheduled and unscheduled. The developer team mentions that maintenance costs of 

different vehicle types are usually assumed the same. AFLEET does not take the battery 

replacement costs into account, due to the lack of data availability. In practice, battery 

replacement is possible, if not probable, at some point during the operational phase of the 

lifecycle and would cause a bump in costs and emissions for EV drivetrains. The battery 

replacement cycle is highly affected by technology improvements, and over time it is likely that 



28 
 

battery replacement cycles will decrease, approaching the model’s assumption of no 

replacement. Another key factor in the LCC of vehicles is the mileage per year assumption. 

AFLEET uses the same average mileage per year for all of the different vehicles. In reality, a 

vehicle is driven more miles per year earlier in its lifecycle. This correction is made in the EVRO 

model. AFLEET provides the total cost of ownership (TCO), which is the net present value of 

the fixed and variable costs associated with vehicle ownership. TCO is reported on a yearly 

basis, and includes the cost of financing, depreciation, insurance, licensing, and registration, as 

well as the cost of lifetime petroleum use, operation and maintenance. The inflation and discount 

rate values affect the TCO. Thus, in this study the costs are converted into 2012 dollars using the 

Consumer Price Index to calculate the net present cost of different EV technologies [82]. 

3.1.2.     Optimization Model 

3.1.2.1.     Compromise Programming 

A multi-objective optimization model is critical for finding a feasible alternative that 

yields the most preferred set of values for the objectives. Multi criteria decision making is used 

in different disciplines to find optimal policies and solutions such as in water resources [83], 

green power [84], and layout configuration [85]. Here, the objectives were to minimize Life 

Cycle Cost, Environmental Damage Cost, and Water Footprint within a regional analysis. The 

overarching goal was to find the most appropriate combination of drivetrains for each U.S. 

region based on these three metrics. In order to realize this goal, an optimization model, which is 

widely used for solving multi-objective linear, nonlinear or integer programming problems, was 

developed. This approach is based on applying the compromise programming process to select 
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the ideal combination of drivetrains in each region given the three objectives (LCC, EDC, and 

WFP) and uses Exploratory Modeling and Analysis (EMA) to account for uncertainties in the 

input parameters. However, since the policy-makers might have different points of view 

regarding the importance of each objective, a weighting factor is applied to each objective. Eq.1. 

shows the general formulation of the optimization model: 

La =  Min {∑πk (Zk∗ − Zk(x))}     ( 1 ) 

La represents the general objective function used, where Zk∗  is the ideal solution for 

objective function k, Zk(x) is the value of the objective function for parameter x, and πk is the 

weight of each objective function [86]. Each of the objective functions is in monetary amounts. 

Therefore, normalization may not seem necessary. However, since the unit of LCC and EDC is 

different from WFP, normalization is performed. Therefore, the new optimization model can be 

written as: 

Min La =  Min {∑πk (Zk∗ − Zk(x)Zk∗ )}  ( 2 ) 

Subject to:   

∑πk𝑝
𝑘=1 = 1  ( 3 ) 

The decision maker can assign the weight of each objective function accordingly, to show 

the importance of each type of cost over the others. The weights range between zero and one, 
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with a sum equal to one. Similar methodologies are used for optimization under uncertainty and 

variability [84,87–90] . Therefore, the optimization model is represented as follows: 

Index: 

𝑖: 𝐶𝑎𝑟 𝑡𝑦𝑝𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 
𝑗: 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟  

 Parameters: 

𝐿𝐶𝐶𝑖𝑗: 𝑇ℎ𝑒 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑎𝑟 𝑡𝑦𝑝𝑒 𝑖 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗  
𝐸𝐷𝐶𝑖𝑗: 𝑇ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑚𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑎𝑟 𝑡𝑦𝑝𝑒 𝑖 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗  
𝑊𝐹𝑃𝑖𝑗: 𝑇ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑜𝑓 𝑐𝑎𝑟 𝑡𝑦𝑝𝑒 𝑖 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 

Decision Variable: 

𝑋𝑖: 𝑇ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐𝑎𝑟 𝑡𝑦𝑝𝑒 𝑖 
Objective Functions: 

𝑍1(𝑥) =∑𝐿𝐶𝐶𝑖𝑗  ×  𝑋𝑖𝑖                        ∀ 𝑗           ( 4 )                  

𝑍2(𝑥) =∑𝐸𝐷𝐶𝑖𝑗  ×  𝑋𝑖𝑖                      ∀ 𝑗            ( 5 ) 

𝑍3(𝑥) =∑𝑊𝐹𝑃𝑖𝑗  ×  𝑋𝑖𝑖                     ∀ 𝑗           ( 6 )  
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Subject to: 

∑𝑋𝑖 = 1𝑖                                           ( 7 ) 

𝑋𝑖 ≥ 0                                        ∀ 𝑖           ( 8 ) 

The life cycle cost objective function is represented by Z1(x), the environmental damage 

cost objective function is represented by Z2(x), and Z3(x) represents the water footprint 

objective function. Hence, using the stochastic multi-objective decision-making approach, the 

ideal percentage of each drivetrain in each U.S. region is calculated. MATLAB® programming 

software along with Visual BASIC for Applications in Microsoft Excel is used for coding the 

stochastic optimization model [91,92]. The model is then run for 100,000 replications for each 

region. 

3.1.2.2.     Exploratory Modeling and Analysis 

Actions today will contribute to the outcomes of the future. High interactions among 

economic, social, environmental and technological factors add to the uncertainty of the future. 

Most of the decisions today have to be made in a deep uncertain situation [93] where decision 

makers cannot agree on or do not know the relationships among the main factors of the system, 

the probability distribution of these varying factors, and the plausible alternative outcomes [94]. 

In these situations, uncertainty can be found in the initial inputs of the system, the relationships 

between the parameters inside the model, the logic of these relationships, the system boundaries, 

the model structure, and the variance between real and estimated behavior of the system.  
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EMA is a research methodology to deal with deep uncertainty and is based on the 

prominent work of Bankes [95]. It uses computational experiments to form an ensemble of 

plausible future outcomes, and assists in reasoning about situations where there is deep 

uncertainty. It builds a model based on available knowledge and data and uses it as a surrogate 

for the actual system to predict the system’s behavior. The series of computational experiments 

are utilized to evaluate the implications of different changing assumptions and hypotheses. By 

exploring these implications, one can discover which of the system’s behaviors is more 

reasonable and generally true [96].  

EMA is used here to form all the plausible outcomes of LCC, EDC, and WFP of EVs. 

Integration of EMA and optimization enables us to generate, explore, and deeply analyze a large 

number of plausible future outcomes. Decision makers can then foresee the future outcomes of 

today’s actions and can effectively take action in the inherently complex present. The general 

steps of applying EMA to a deeply uncertain problem are: understanding the uncertainties of the 

system of interest, developing an easily controllable computational model of the system’s 

behavior, generating numerous plausible future outcomes, data analysis through the generated 

outcome, and defining and testing different policies [97,98]. All of these steps have been 

undertaken in this study. The use of EMA allows the estimation of the impact of the variability 

of input variables on the optimization model outputs. Applying this approach allows exploration 

of more than just the expected case and results in a set of combinations selected with different 

probabilities.     
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3.1.3.     Assumptions and preliminary data 

Dealing with uncertainties is crucial for an analysis of EV market penetration. The range 

of each uncertainty for this study was taken from the databases associated with each tool 

mentioned in sections 2.1 and 2.2. In the following subsections, the assumptions made when 

defining the uncertainties are presented and explained. The general assumptions and the range of 

uncertainty used as the input parameters in EVRO are provided in Table 2. Except for electricity 

and gasoline price, which are selected through a rectangular random function, it was assumed 

that each input parameter is uniformly distributed between the upper and lower limits.  

Table 2. Model Parameters 

Parameter Source Range 

Analysis Period [99] 2014-2030 

Discount Rate [78] 0.65-1.15 

Inflation Rate [79] -10% , +10% of CBO’s projections 

Fuel Economy [100] Represented in section 2.3.1 

Vehicle Miles Traveled (VMT) [100] -10% , +10% of EIA’s projections 

Electricity Price [101] Represented in section 2.3.1 

Gasoline Price [100,102] Represented in section 2.3.1 

Battery Production & Recycling Emissions [103] Represented in section 2.3.2 

EDC Existing literature Table 5 

WFP of Fuels Existing literature Tables 6, 7, and 8 
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3.1.3.1.     Uncertainties in the Life Cycle Cost 

GREET 1-2013 reports the passenger car engine efficiency for each vehicle type, with 

adjustments of EPA estimated miles per gallon (mpg) for on-road performance. It considers the 

Vehicle Miles Traveled (VMT) proportion as 43% city and 57% highway [29]. The engine 

efficiency of gasoline-powered vehicles are taken from the EIA’s projected mpg for light duty 

vehicles [100]. Using this data, the effect of future changes in engine efficiency is taken into 

account. The fuel economy for the other drivetrains is based on the DOE and EPA’s available 

data on vehicle drivetrains. The fuel economy of the non-ICEV drivetrains is a multiplication 

factor applied to the ICEV fuel economy. The mpg of HEV cars is assumed to be 1.3-1.4 times 

greater than regular gasoline-powered vehicles. For the PHEVs, AFLEET uses the GREET 

efficiencies of the PHEV-10. The mile per gallon equivalent (MPGe) for this type of vehicle is 

assumed to be 1.5-1.6 times greater than regular gasoline-powered cars. The MPGe of EREV 

cars is based on the PHEV-40 and is assumed to be 1.2-1.3 times greater than ICEVs, as 

increasing the battery size may decrease the charge sustaining fuel economy due to its higher 

weight [29]. The MPGe of different light duty EVs is assumed to be 3-3.4 times greater than 

regular gasoline-powered vehicles, as charging efficiency equals 85%. 

According to the Transportation Energy Data Book, the average annual VMT for a 

gasoline-powered passenger vehicle is 12,400 miles [99]. For this study, the EIA’s Vehicle Miles 

Traveld (VMT) projections are used for future VMT of light duty vehicles [100]. The average 

yearly mileage is assumed to vary within a 10% range of the EIA’s reported VMT. 
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Of note is that the U.S. national electricity mix has changed a lot during the years covered 

by the literature, and the generation mix at any given time and location is highly dependent on a 

variety of factors, including the vehicle and charger design; time of day and time of year; 

geographic climate region; and load growth patterns and associated generation expansion [48]. 

Due to the importance of electricity mix, this study compares the LCC and LCEE of EVs in 

different electricity mix scenarios. The electricity market module regions from the National 

Energy Modeling System (NEMS) regional analysis were used. The energy mix as a source for 

the PHEVs, EREVs, and EVs is considered to follow the energy mix in each region. This 

regional configuration is a more appropriate approach than some other regional delineations 

(such as the North American Reliability Corporation regions) because the NEMS regions reflect 

a narrower range of electric generation types within each region. This results in a more accurate 

and more granular analysis of the effect electricity mix has on the LCEE of electric drivetrains. 

These regions also better reflect the cost to the consumer of charging an EV, an important aspect 

of the LCC. 

U.S. Energy Information Administration publishes the Annual Energy Outlook (AEO) 

every year. This report contains information on the energy sector in the United States, with 

projections for the future. Figure 1 represents the variation in the electric generation mix for each 

of the NEMS regions, based on the EIA database [104] (Please see Figure 4 for the color codes). 

The y-axes in Figure 1 represent the percentage of each energy source in the electric generation 

mix in each U.S. electric region, from 2014 through 2030. These projected values are from  AEO 

2014 [105]. As indicated, the source type percentage varies dramatically by time for some of the 

regions. This variation is modeled by EVRO. 
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Figure 4. Electric generation mix variation by time, in different regions [105] 

(Please see Figure 4 for the color code) 

 The levelized cost of new generation resources is considered to estimate electricity 

generation costs in the different electricity regions [101]. Here, the levelized cost of energy 

(LCOE) is used to compare the different energy sources. LCOE is the cost of generating 

0%

20%

40%

60%

80%

2014 2018 2022 2026 2030

Year 

Coal 

0%

1%

2%

3%

4%

5%

6%

2014 2018 2022 2026 2030

Year 

Residual Oil 

0%

20%

40%

60%

80%

100%

2014 2018 2022 2026 2030

Year 

Natural Gas 

0%

10%

20%

30%

40%

2014 2018 2022 2026 2030

Year 

Nuclear 

0%

1%

1%

2%

2%

3%

3%

4%

2014 2018 2022 2026 2030

Year 

Biomass 

0%

10%

20%

30%

40%

50%

60%

70%

2014 2018 2022 2026 2030

Year 

Other (Wind, Solar, Hydro...) 



37 
 

electricity per kWh, including all of the capital, maintenance and operation costs of a power 

plant during its entire life cycle. In other words, LCOE is an annuity per kWh electricity, which 

has the same present value as the total cost of a power plant [106]. EIA publishes the regional 

variation in the LCOE for different electricity generation sources by NEMS electric regions, with 

future projections. This data is available for the power plants entering service in 2016, 2017, 

2018, 2019, and 2040. The variation in LCOE for different electricity sources for the analysis 

period is estimated through an interpolation between the available data. Table 3 shows an 

example of regional variation for power plants entering service in 2019 [101]. 

Table 3. Regional variation in levelized cost of new generation resources [101] 

Plant Type 

Range for total system levelized costs (2012 $/MWh) for plants 
entering service in 20191 

Minimum Average Maximum 

Residual oil2 73.2 83.2 95.7 

Natural gas 81.44 90.84 104.72 

Coal 87 95.6 114.4 

Nuclear power 92.6 96.1 102.0 

Biomass 92.3 102.6 122.9 

Others (Wind, Solar, Hydro, etc.) 115.96 148.4 217.58 

1 Government subsidies are not considered in these ranges 

2 EIA does not report the electricity price for residual oil power plants. Data from the 2009 New York State 

Energy Plan is used for this plant type. 

EIA reports the LCOE of Wind, Solar, Hydro, etc. separately. However, the projections 

data for the electric generation mix is not available, and the LCOE of these plants types is 
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combined. Since the regional variations in LCOE of the “Others” section is considerable, the 

renewable energy supply in each region is used to find a weighted average LCOE range for this 

plant type. The yearly renewable energy mix in each region is taken from Short-Term Energy 

Outlook and Winter Fuels Outlook, and the Emissions & Generation Resource Integrated 

Database (eGrid), which is a source of emissions data for U.S. electric power generation 

[107,108]. Therefore, by multiplication of the matrix of electricity generation mix and the matrix 

of LCOE, the electricity price ranges for different U.S. regions during the analysis period can be 

calculated. In order to take transmission losses into account, eGrid’s transmission loss factor for 

each region is used to estimate the cost of electricity after transmission losses [107]. Figure 2 

shows the estimated cost of electricity for each year by region. Either each line represents the 

minimum, average, or maximum calculated electricity price for all U.S. electric regions. As 

indicated, the variation in electricity price decreases through the analysis period. Region 13 

(Gateway) is responsible for the highest LCOE for most of the analysis period. The lower bound 

of electricity price switches between a few regions during the analysis period including region 7 

(Long Island), region 8 (Upstate New York), and region 20 (California). These ranges are used to 

calculate the Total Cost of Ownership (TCO) of EVs. 
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Figure 5. Electricity price ranges for different U.S. electric grid regions ($/MWh) 

Gasoline prices vary from region to region. Regional gasoline prices are reflected in the 
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2). 

Then the projected price of each PADD region is estimated by multiplication of the 
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the US average. Figure 3b represents the gasoline price projections for the reference, high price, 

and low price cases. 

 

 

Figure 6. a. Average gasoline price in PADD regions [102] b. U.S. gasoline price 
projections [100] 
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 Table 4. Correction factors for regular gasoline price in PADD regions based on [102] 

PADD Region Correction Factor 

New England (PADD 1A) 1.02 

Central Atlantic (PADD 1B) 1.01 

Lower Atlantic (PADD 1C) 0.98 

Midwest (PADD2) 0.99 

Gulf Coast (PADD3) 0.95 

Rocky Mountain (PADD4) 0.99 

West Coast (PADD5) 1.09 

California 1.11 

 

Insurance, license and registration costs, taken from the AFLEET model, changed 

according to the variation in the inflation and discount rate. These costs are selected randomly in 

each replication for each vehicle type.  

Finally, a programming code capturing all of the above assumptions is written using 

Visual Basic for Applications and is linked to the AFLEET model. This code chooses a 

randomly selected fuel economy, VMT, gasoline price, electricity price, discount rate, and 

inflation rate for each replication, in each year of the analysis period. However, during each 

replication, the gasoline escalation rate, electricity escalation rate, and VMT are constant and 

only the fuel economy varies from one vehicle type to another. All of the variables are assumed 

to be mutually exclusive of each other, meaning a change in one factor does not cause any 

change in another.  
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3.1.3.2.     Uncertainties in Environmental Damage Costs 

In the LCCA of alternative fuel vehicles, the externality and societal costs are often 

singled out [13]. These types of costs, which are commonly called “Environmental Damage 

Costs (EDC),” include costs that are associated with GHGs and local air pollutants. In this 

research, two steps are undertaken in order to find the EDC of different EV types: estimating the 

LCEE of different EV types, and assigning a cost value per unit mass of emissions [109]. The 

AFLEET model reports the LCEE of different EV types.  

In the EDC analysis, there are considerable inherent uncertainties, including the 

uncertainties in the air pollutant damage costs and GHG costs, the variability in the oil costs, oil 

supply insecurity costs, and projected costs of mass-producing future vehicles [13]. These 

uncertainties make the LCC comparisons difficult. Table 5 shows ranges of environmental 

damage costs based on some previous studies [109–115]. These values have been adjusted for 

inflation and converted to 2012 values using the consumer price index, since the available data 

on LCOE for electric generation was available in 2012 dollars [82].  
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Table 5. Environmental Damage Costs per ton of emissions 

Pollutant Cost, $ (2012)/ton pollutant 

Volatile Organic Compounds (VOC) 2,655 - 4,722 

Carbon Monoxide (CO) 61 - 3,586 

Oxides of Nitrogen (NOx) 132 - 11,425 

Particulate Matter ≤ 10 µm (PM10) 1,784 - 12,500 

Oxides of Sulfur (SOx) 825 – 5,632 

Carbon Dioxide (CO2) equivalent 2-104 

 

The EDC can be calculated based on the following formula [109]: 

𝐸𝐷𝐶 =∑(𝐶 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠)𝑖𝑘 × 𝑉𝑀𝑇 × 𝐿𝑖𝑓𝑒      
( 9 ) 

Where; 

EDC = Environmental Damage Cost, in $/vehicle 

C = Cost per unit mass emissions, in $/g (See Table 5) 

Emissions = Vehicle Emissions, in g/mile 

VMT = Vehicle Miles Traveled, in miles/vehicle-year 

Life = Average vehicle life time, in years 

k= pollutant index 
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The direct emissions of a vehicle are estimated using the AFLEET tool. eGRID provides 

gross grid loss factors that can be used to estimate the indirect emissions associated with 

transmission and distribution losses [107]. Equation 2 below can then be used to calculate an 

emissions factor which covers both the indirect emissions and the line losses from the purchase 

of electricity [116]. The electricity purchases can then be multiplied by the emission factor to 

estimate the emissions associated with using electricity as the energy source for the EVs. eGrid 

only reports the amount of GHG and NOx emissions in different US grid regions. To account for 

upstream CO, PM10, and VOC air pollutants, the well to pump emissions for different power 

plants are extracted from GREET. These emissions are multiplied by EIA’s regional energy mix 

projections to calculate the upstream air pollutant emissions (Equation 3). GREET’s well to 

pump emissions of gasoline are used for the upstream emissions of gasoline. The annual 

upstream emission rate of different power plants and gasoline is assumed to stay the same during 

the analysis period, due to lack of data availability.  

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑘𝑗 = (𝑒𝐺𝑟𝑖𝑑)𝑘𝑗(1 − 𝐺𝐺𝐿𝑗)   ( 10 ) 

Parameters: 

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑘𝑗: 𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡 𝑘 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 (𝑙𝑏/𝑘𝑊ℎ)  
𝑒𝐺𝑟𝑖𝑑𝑘𝑗: 𝑒𝐺𝑅𝐼𝐷 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 𝑓𝑜𝑟 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑘 (𝑙𝑏/𝑘𝑊ℎ) 
𝐺𝐺𝐿𝑗: 𝑒𝐺𝑟𝑖𝑑 𝑔𝑟𝑖𝑑 𝑙𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 

Indexes: 
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𝑘: 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑖𝑛𝑑𝑒𝑥, 𝑓𝑜𝑟 𝐺𝐻𝐺 𝑎𝑛𝑑 𝑁𝑂𝑥 

𝑗: 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑘𝑗𝑦 =∑(𝑊𝑇𝑃)𝑘𝑝𝑝 × (𝐸𝑛𝑒𝑟𝑔𝑦𝑀𝑖𝑥)𝑝𝑗𝑦   ( 11 ) 

Parameters: 

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑘𝑗𝑦: 𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑘, 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗, 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝑦 (𝑙𝑏/𝑘𝑊ℎ) 
𝑊𝑇𝑃𝑘𝑝:𝑊𝑒𝑙𝑙 𝑡𝑜 𝑃𝑢𝑚𝑝 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑠 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 𝑝 (𝑙𝑏/𝑘𝑊ℎ) 
𝐸𝑛𝑒𝑟𝑔𝑦𝑀𝑖𝑥𝑝𝑗𝑦: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑛𝑔𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑏𝑦 𝑝𝑜𝑤𝑒𝑟𝑝𝑙𝑎𝑛𝑡 𝑝, 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗, 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝑦 

Indexes: 

𝑘: 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑖𝑛𝑑𝑒𝑥, 𝑓𝑜𝑟 𝐶𝑂, 𝑃𝑀10, 𝑎𝑛𝑑 𝑉𝑂𝐶 

𝑗: 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥  

𝑦: 𝑦𝑒𝑎𝑟 𝑖𝑛𝑑𝑒𝑥 

𝑝: 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 

The average age of vehicles in the U.S. is reported differently in the literature, ranging 

from 11.4 years [117] to over 20 years [118]. In this study, the average lifetime of a vehicle is 

considered to be 16 years, based on the Transportation Energy Data Book [99]. Neither of the 

emissions equations includes the discount rate. Thus, the effect of the time value of money was 

taken into account separately using the one year certificate of deposit rate [78]. 
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It is assumed that recycling for all of the drivetrains is handled in the same way with the 

exception of the battery recycling. The recycling emissions of vehicle parts are not reported in 

the overall environmental impacts. Even though some believe that battery recycling is not cost 

effective in the current US economy [33], here it is assumed that all of the electric-powered 

vehicles use lithium-ion batteries and the production and recycling emissions of batteries are 

accounted for using the values in EPA’s report on LCCA of lithium-ion batteries for EVs [103]. 

These values take the material extraction and processing, component and product manufacturing; 

product use, and end of life emissions of EV batteries into account. 

3.1.3.3.   Uncertainties in Water Footprint of Energy 

The WFP of electricity reported in Wu & Peng, 2010 is used for this analysis (Please see 

Table 6). The data in the ANL’s report on the water consumption of transportation fuels and the 

results of water consumption and water withdrawal of U.S. transportation fuels in Scown’s 

University of California, Berkeley dissertation are used for the water footprint of gasoline 

[119,120]. The petroleum burned in the U.S. is mainly derived from crude oil production from 

conventional, shale, and oil sand resources. Although the water footprint of shale resources is 

higher than that of the other sources, it is assumed that the gasoline is extracted from 

conventional and oil sands resources, due to data availability.  

Due to differences in the source of crude oil and the age of the wells, different 

technologies are used, which adds to the uncertainty of estimating water consumption and 

withdrawal. Moreover, the water consumption and withdrawal associated with the conversion of 

crude oil to gasoline varies from region to region. Lampert et al. suggested 0.5-2.5 gallons of 
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water consumed per gallon of crude oil processed at refineries [119]. Table 5 shows the summary 

of ANL’s reported water consumption (extraction, production, and refining). Scown has added 

the feedstock transportation, fuel transportation, storage, and distribution water footprint into her 

estimates. She has also performed a sensitivity analysis considering three different low, average, 

and high cases for water consumption and withdrawal. Her results indicate that water 

consumption ranges from 0.57 to 1.42 L/Km travelled and water withdrawal ranges between 0.96 

and 1.85 L/Km travelled (See Table 6). These ranges as well as the ANL’s reported data for 

water footprint are used for estimating the associated life cycle water footprint of each vehicle 

type, in each PADD region. 

Table 6. Water Footprint (Withdrawal + Consumption) in Electricity Generation [55] 

Plant Type Water Footprint (gal/kWh) 

Residual oil 22.63-22.83 

Natural gas 1.32-22.52 

Coal 17.83-18.26 

Nuclear power 20.24-24.741 

Biomass 0.99-1.211 

Others (Wind, Solar, Hydro, etc.) 1.68-6.4 

1 Due to lack of data availability, these ranges are based on (-10%, +10%) of reported values.  
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Table 7. Water consumption (extraction, production, and refining) of gasoline production 
[119] 

PADD Region Water Consumption (gal/gal gasoline) 

East Coast (PADD 1) 3.9-5.9 

Midwest (PADD2) 2.6-4.6 

Gulf Coast (PADD3) 2.8-4.8 

Rocky Mountain (PADD4) 3.9-5.9 

West Coast (PADD5) 5.9-7.9 

 

Table 8. Water footprint of Oil to Gasoline [120] 

Pathway 
Water withdrawal (L/Km travelled) 

Minimum Average Maximum 

Crude Oil to Gasoline 1.53  2.55  3.27  

Oil sands to Gasoline 2.27  2.82  3.43  

 

3.2.      Electric Vehicle Regional Market Penetration Model 

This section will serve to explain the methodology framework in greater detail, and the 

following subsections will describe the conceptual basis and mathematical content of the 

methodology. First, the developed Electric Vehicle Regional Market Penetration (EVReMP) 

model and its relationships to other parts of the methodology are illustrated. Second (Section 

2.1), a summary of the previously developed Electric Vehicle Regional Optimizer (ERVO) is 

explained. Third, (Section 2.2), the concept of Exploratory Modeling and Analysis (EMA) and 
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the mathematical content of the agent-based model (ABM) developed in this study are explained. 

Fourth, Section 2.3 presents the inherent uncertainties in the purchase prices, maintenance and 

refueling cost, and water footprints of the studied vehicles as applicable. Figure 1 below 

illustrates the methodology used to develop the EVReMP model. The core of the EVReMP 

model is an agent-based model used in conjunction with the concept of Exploratory Modeling 

and Analysis to account for the relevant uncertainties in the input variables. Additionally, the 

EVReMP model used the outcome of the previously developed EVRO model. In short, the 

EVReMP model is a combination of several different methodologies (see Section 2) that will 

enable decision-makers to see what the market penetration of the studied drivetrain would be in 

the year 2030. The related research report at University of Central Florida is under review in the 

journal of Energy [121]. 

 

Figure 7. Illustration of EVReMP model 
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3.2.1.     Electric Vehicle Regional Optimizer (EVRO) 

EVRO is an optimization model previously developed by the authors; the related research 

report at University of Central Florida has recently been accepted for publication and will soon 

be available online [75]. This tool uses several previously established methodologies in Life 

Cycle Assessment, Decision Making Under Uncertainty, and Stochastic Optimization [52,84,87–

89,122–124], and builds on the Argonne National Lab’s Alternative Fuel Life-Cycle 

Environmental and Economic Transportation (AFLEET) model to estimate the life cycle cost 

(LCC) and life cycle environmental emissions (LCEE) of the studied vehicle types, after which 

the output of the AFLEET model will be used as the input of the EVRO model. The 

environmental damage cost (EDC) is taken into the account, including the costs associated with 

the mitigation of GHG and local air pollutant emissions. The water footprint (WFP) of the 

studied drivetrain is also estimated in the EVRO model, considering the first-tier and higher-tier 

withdrawals of petroleum extraction and/or electricity generation. Finally, an optimization model 

is coupled with the concept of Exploratory Modeling and Analysis, and is subsequently applied 

to the estimated LCCs, EDCs, and WFPs of the studied drivetrain to find the optimal drivetrain 

combination for the year 2030. Here, the EVReMP model builds on the EVRO model to estimate 

the maintenance and refueling costs, EDCs, and WFPs of each of the studied vehicles. 

It is worth noting that there is a considerable amount of uncertainty in estimating vehicle 

attributes; for a thorough market penetration evaluation of EVs, dealing with these uncertainties 

is crucial. The EVRO model considers different uncertainty factors in order to evaluate the 
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attributes of each vehicle type. The overall range of each uncertainty factor in the EVRO model 

was taken from publicly available data, and these ranges are summarized in Section 2.4.  

3.2.2.     Exploratory Modeling and Analysis 

Most predictive models are designed so that known facts are consolidated to create a 

“best estimate” model. Such models are claimed to be an accurate case of that portion of the real 

world, but in reality they can only be considered valid when there is adequate useful data of 

sufficient quality that model designers can use empirical data to validate the model. This 

validation process is only possible when the situation is observable or measurable, the structure 

of the problem is constant over time, and sufficient data can be collected [60,125]; for many 

systems, however, these conditions are not met. Scientists use different terms to express such 

situations, and subsequent predictions under such conditions are largely rejected as wrong, bad, 

or useless [60,125–128]. On the other hand, our actions today affect the future behavior of the 

system. The degree of uncertainty with respect to the behavior of the system is directly 

proportional to the level of interaction among economic, social, environmental, and 

technological factors, and decision making with high levels of interaction involved in the system 

is said to be under deep (or severe) uncertainty [93,129–131]. This situation occurs when the 

overall relationships among the main components are the system cannot be agreed on by decision 

makers, when the probability distribution of these factors is uncertain, and/or when the most 

plausible outcome is not precisely predictable [94]. Uncertain aspects of these systems include 

the initial inputs of the system, the relationships among the parameters in the model, the logic 
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associated with these interactions, the system boundaries, the model structure, and the difference 

between the real behavior of the system and the estimation presented in the model. 

With all of this in mind, the Exploratory Modeling and Analysis (EMA) method is used 

to model the behavior of the system in this situation. The EMA methodology evaluates the 

behavior of the system under deep uncertainty, and is based on the prominent work of Bankes 

[95,96]. More specifically, the EMA method works by forming an ensemble of plausible 

outcomes using computational experiments based on available knowledge and data, and then 

using this set of plausible outcomes as a surrogate to predict the behavior of the system. In fact, 

instead of building one model and verifying it as a representation of the system, the EMA 

method creates an ensemble of models and explores the implications of these models [60]. By 

conducting such experiments, one can explore which of the determined plausible outcomes are 

more likely to occur given the system’s behavior. Although the EMA methodology is relatively 

new and still under development, it has already been applied to a wide variety of disciplines and 

research topics, including climate change, production planning, economic analysis, healthcare, 

sustainable development, and transportation [89,94,96,132–135]. 

In this research, the EMA method is used to evaluate all of the plausible outcomes of the 

developed agent-based model (ABM). This integration of the EMA and ABM methodologies 

thereby enables decision-makers to generate, explore, and deeply analyze a large number of 

plausible future outcomes, allowing them to better understand the effect(s) of current 

uncertainties on the future market shares of electric vehicles. The required steps to apply the 

concept of EMA to a deeply uncertain problem are as follows [97,98]: 
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Conceptualize the policy problem, 

Specify the relevant uncertainties, 

Develop an easily controllable computational model of the system’s behavior, 

Generate numerous plausible future outcomes as needed, 

Perform a data analysis with respect to the generated outcome(s), and Use the finalized 

model to define and test different policies as desired. 

These steps are taken into account while using EMA in this effort. The conceptualization 

of the policy problem in this study is explained in Section 1, the mathematical content of the 

ABM model is described in further detail in Section 2.3, and the results after the model is run for 

100,000 replications are discussed in Section 3. 

3.2.3.     Agent Based Modeling 

An Agent-Based Model (ABM) is used to evaluate consumer behavior and to estimate 

the market penetration of the studied drivetrain; the mathematical content of the developed ABM 

for this study is described in this section. Four different agents (consumers, regions, 

governments, and vehicles) are considered in this model. Consumers seek to purchase a vehicle, 

maximizing the utility of the vehicle(s) in question. Governmental policies can affect consumer 

behavior in various ways, depending on the implications of each specific policy and/or set of 

policies. Vehicle attributes are derived from the EVRO model, with the EVRO analysis 

performed for each U.S. electric grid region. An ABM enables us to model the behavior of 
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heterogeneous agents on a micro-level basis, although the effect(s) of macro-level policy 

implications can also be taken into account [73]. 

3.2.3.1.     Consumer Agent 

A group of vehicles compete for market penetration through a consumer choice 

algorithm. Figure 2 shows a general form of this part of the model, illustrating the transition 

between an agent who is potential buyer and an agent who buys a certain vehicle type. The 

purchase rate of a particular vehicle type depends on a variety of factors. Here, a combination of 

different existing methodologies is used to formulate the purchase price, and the word-of-mouth 

(WOM) effect, through which buyers can contact potential buyers and convince them to buy a 

particular vehicle type, is also taken into account. 

 

 

 

 

 

Figure 8. General illustration of the EVReMP model 

Following [74], the purchase probability of vehicle j by agent i, at time t is calculated as: 
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Pi,j,t = Wk,j,t. exp (∑ βi,a,t. Xa,j,tAa=1 )∑ Wk,j,t. exp (∑ βi,a,t. Xa,j,tAa=1 )Vj=1  ( 12 ) 

Parameters: 

Pi,j,t = the probability of agent 𝐢 purchasing vehicle 𝐣  at time 𝐭 
βi,a,t = the preference of customer 𝐢 with respect to attribute 𝐚  at time 𝐭 
Xa,j,t = Value of attribute 𝐚 for agent 𝐢  at time 𝐭 
Wk,j,t = the willingness of drivers of vehicle type 𝐤 to consider vehicle 𝐣 at time 𝐭 

Indexes: 

𝐢 = index for agents 
𝐣 = index for vehicles 
𝐤 = index for drivers of vehicle type 𝐤 

A = number of attributes 
V = number of vehicles 

The vehicle attributes are taken from the EVRO model, which generates the EDC, the 

WFP, and the total Maintenance and Refueling Cost, and provides the applicable ranges for each 

of these parameters. The results of this analysis are being published in the journal of Energy [75]. 

The values of the vehicle attributes are available for each region, based on the relevant 

parameters (electricity mix, electricity price, gasoline price, etc.) and their respective projections 
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until 2030, while the purchase prices of the studied drivetrain are likewise derived from publicly 

available data. The vehicle purchasing preference of each agent depends on the social and 

income categories of the agent in question, which are randomly selected from three different 

income categories and eight different social categories. The consumer preference is defined as 

how likely or unlikely a consumer is to buy a particular vehicle; for example, a customer with a 

higher income will tend to buy more expensive cars than a consumer with a lower income. The 

preferences of each agent with respect to each of the considered vehicle attributes are all taken 

from previous studies [74,136].  

For purposes of this study, it has been assumed that the consumer must be familiar with a 

given vehicle before he/she is willing to purchase said vehicle. The consumer willingness to 

purchase a vehicle is considered based on two separate reference studies [74,137], where the 

willingness varies from 0 to 1. The willingness to purchase ICEVs and/or HEVs is considered to 

be equal to 1, while the corresponding willingness to purchase EVs varies randomly from 0 to 1, 

unless the agent is being contacted by another EV buyer and is convinced to consider purchasing 

an EV, in which case the willingness to purchase an EV becomes equal to one. In short, the 

willingness to purchase an EV is a function of the WOM effect. As can be seen in Figure 2, EV 

buyers contact other agents randomly, after which another random variable function (in terms of 

the WOM effect) is used to determine whether or not the contacted agents” willingness to 

consider EV becomes equal to their pre-set willingness to consider ICEVs or HEVs.  

The availability of charging stations and the relatively low range of EVs will also affect 

the agents’ decision on whether or not to consider a certain vehicle type. Therefore, based on 
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previous studies [74,138], the following equation is used to take into account the refueling 

effects on EV shares: 

RFEj,j,t = { 1                                        j = ICE1 − DPi,t .  e−α.st              j = EV   ( 13 ) 

 

where; 

 RFEj,j,t: Refeuling effect for consumer i using vehicle j at time t 
DPi,t: Driving Pattern of cunsumer i 
st: Availability and Social Acceptability of Charging Facility at time t 
α > 0 ∶ Scaling factor to calibrate the model 

The parameter st, assumed to be equal to the proportion of consumers who have adopted 

EVs, is updated in each run based on the most current number of EV buyers. For model 

calibration purposes, α is considered to be equal to 3. In [74], DPi,t is considered to be 0.49, 

based on the total distance that a vehicle is driven per year. The average daily distance driven by 

U.S. drivers is estimated using data from the 2009 National Household Travel Survey (NHTS) 

[139], in which data was collected on daily trips taken in a 24-h period by over 150,000 

interviewed households and 300,000 people, providing information about trip characteristics 

such as trip length, trip duration, and vehicle type used. The data for which was obtained from 

the post-processed NHTS 2009 dataset of 294,407 automobiles, which only included cars, vans, 

SUVs, and pickup trucks. Since the VMT per capita in the U.S. is almost double that of [140], 



58 
 

the changing needs of consumers are likewise considered to be doubled. However, looking at the 

distribution of daily distance traveled in the U.S. as published by the NHTS, the weighted 

average of the VMT is 9.4 miles, meaning that approximately 70% of all trips are taken under 

this amount. Therefore, we assume that DPi,t is randomly selected in each replication, varying 

between 0.49 and 0.7. 

The probabilities estimated in the previous equation are therefore scaled by refueling 

effect factors, and the modified values are as follows: 

P̅i,j,t = Pi,j,t × RFEj,j,t∑ Pi,j,t × RFEj,j,tj  ( 14 ) 

After calculating the probability of each agent purchasing each vehicle, a cumulative 

distribution function is formed to calculate the sum of all of these purchase probabilities for 

buying all of the vehicles up to and including a particular vehicle [74]: 

Qi,j,t =∑ P̅i,h,t𝑗
ℎ=1  ( 15 ) 

A random variable Z is then generated from a uniform distribution function and 

compared to the cumulative distributed function in Formula 4. The vehicle type purchased by a 

particular agent is the type that ultimately has the closest outcome to the generated random 

variable Z such that the outcome is higher than Z.  In other words: 

𝐼𝑓 Qi,j−1,t ≤ 𝑍 ≤ Qi,j,t 𝑇ℎ𝑒𝑛 𝑎𝑔𝑒𝑛𝑡 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑗 ( 16 ) 

In summary, Figure 3 shows the algorithm of the vehicle purchasing process, and the 

overall decision-making process starts by looping over the analysis period, the regions, and the 
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agents in each region. The ABM model then assigns social and income category values to the 

agent, and based on these values, the purchase probability for the agent is estimated. Next, the 

vehicle’s life of the agent and the vehicle lifetime are randomly generated and compared; if the 

vehicle’s life of the agent is greater than the vehicle lifetime, the agent decides to buy a vehicle. 

However, if the vehicle’s life of the agent is not greater than the vehicle lifetime, the agent may 

still decide to buy a vehicle; whether or not this is actually the case is determined by comparing 

the agent’s purchase probability with the random variable A. If neither of these two simulation 

steps results in a vehicle purchase, then the agent in that particular iteration does not purchase 

any vehicle in that replication, and the analysis is repeated for the next agent. On the other hand, 

if the agent does decide to purchase a vehicle, the vehicle attributes are loaded from the Vehicle 

Agent, the agent’s preferences are loaded based on existing literature, and the refueling effect 

and the agent’s willingness to purchase a vehicle are estimated for the entire studied drivetrain. 

Next, the purchase probability of a given vehicle is estimated based on the aforementioned 

simulation process, and the cumulative distribution function (CDF) is calculated accordingly. 

Which vehicle type the agent ultimately buys is determined by comparing the generated random 

variable with the CDF as expressed in Equation 5. In this study, the AnyLogic software is used 

to formulate the ABM [141], and the generated data is then exported to Excel and Visual Basic 

for Application (VBA) is used for data analysis. 
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Figure 9. Algorithm of vehicle purchasing process 
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3.2.3.2.     Region Agents 

The analysis in this study is being performed entirely on a regional basis, and it must be 

noted that the U.S. national electricity mix has changed a lot during the years covered by the 

available literature. Moreover, the generation mix at any given time and location is highly 

dependent on a variety of factors, including the design of the vehicle and charger, time of day 

and/or the time of year, the relevant geographic climate region, and the applicable load growth 

patterns and associated generation expansion [48]. Due to the importance of electricity mix on 

M&R costs, EDC, and WFP, this study will compare these vehicle attributes under different 

electricity mix scenarios, using the electricity market module regions from the regional analysis 

provided by the U.S. National Energy Modeling System (NEMS). The energy mix used for 

recharging PHEVs and EVs is considered to follow the NEMS energy mix in each region. This 

regional configuration has been deemed more appropriate approach for this study than other 

regional delineations, such as those of the North American Reliability Corporation regions. The 

NEMS regions reflect a narrower range of electricity generation types within each region, 

resulting in a more accurate and more granular analysis of the effect(s) of the electricity mix on 

the market penetration of electric drivetrains. These regions also better reflect the refueling effect 

for an EV, which is an important aspect of the market share. Figure 5 in Section 3 shows the 

studied regions.  

The current market share of EVs in the United States differs from region to region, with 

Washington having the largest market of EVs in the U.S. as of today, followed by the states of 

Hawaii and California [142]. In fact, the number of active agents in each region depends on the 
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population and on the number of vehicles for said agent. Therefore, in this research, the number 

of agents in each region will be formulated as follows:  

ni,t = N × (1 + rp) pi,t. vi,t∑ Pi, t. Vi,t22i=1  ( 17 ) 

Where; 

ni,t: Population of region 𝐢 at time 𝐭 
N: Total number of agents in the first year of the analysis 
rp: U. S. population growth rate 

pi,t ∶ Population of region 𝐢 at time 𝐭 
vi,t ∶ Number of registered vehicles in region 𝐢 at time 𝐭 

U.S. census data and the Population Explorer tool are used to estimate the population of 

each NEMS region [143,144]; in this study, the number of agents changes based on the U.S. 

population growth, which for this study is assumed to have a value of 0.7 percent as indicated in 

[145]. To assume that the number of agents is equal to the population of United States is beyond 

the scope of this study, so instead we assume that there are 50,000 agents available as potential 

buyers, with these agents placed randomly in each region based on the indicator represented in 

Equation 6. 



63 
 

3.2.3.3.     Vehicle Agents 

Considering all currently available vehicle types in the market is beyond the scope of this 

study and would overly complicate this analysis. Moreover, each vehicle type has its own set of 

characteristics. Previous studies have considered a wide variety of vehicle characteristics 

(including vehicle weight, length, capacity, and acceleration), but we assume for purposes of this 

study that each agent has made his/her own decision regarding the class of vehicle to be 

purchased and is considering purchasing a passenger-sized vehicle from the same class. Within 

this class, there are 5 different vehicle types that the agent is trying to maximize his utilities to 

purchase, and so we will model the market penetration of the drivetrain once the customer has 

shortened his/her list to these 5 different vehicle types within the same class.  

For the vehicle life of the agent, we use the same distribution as used in [74]: a normal 

distribution with a mean (average) of 15.9 years and a standard deviation of 4.2 years. The 

considered average lifetime of the vehicles considered in this study matches the reported U.S. 

average lifetimes of vehicles as summarized in the Transportation Energy Data Book [99], while 

the vehicle lifetime is likewise randomly selected from the uniformly distribution function U 

(0,15.9). 

3.2.3.4.     Government Agent 

Government can affect the simulated system in several different ways. For instance, the 

applicable governing bodies can choose whether or not to support EV research and/or the 

development of new technologies to accommodate the movement towards an electrified fleet. 

However, the influence of the government on this system has not been modeled in this study; 
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instead, it is assumes that the government is offering financial incentives to consumers to lower 

the initial costs of EVs. The U.S. Government offers up to $7,500 in tax credits for EVs 

purchased in or after the year 2010, although the exact amount offered in incentives varies 

depending on factors such as battery capacity and vehicle body weight. This incentive is due to 

be phased out after 200,000 vehicles from the qualified manufacturers [23]. In addition, 

according to the EIA, several states offer additional incentives to further decrease the upfront 

purchasing costs of EVs for consumers; the state of California, for instance, offers rebates of 

$2,500 for BEVs and $1,500 for PHEVs. Therefore, the regional analysis performed in this study 

will also account for these regional incentives in the ABM model; a detailed summary of the 

considered incentives is provided in Section 2.4. Since the amount of paid incentives provided 

for EVs have not been consistent in recent years, and since the availability of these incentives is 

highly dependent on the overall political views of the current government during the analysis 

period, the developed ABM model uses a random variable to determine whether or not an agent 

receives these incentives, as well as whether or not the government decides to offer support for 

the adoption and/or development of EVs.  

3.2.4.     Assumptions and preliminary data 

The assumed data and uncertainty ranges considered in this study are summarized in this 

section. Table 1 summarizes the uncertainty ranges considered in the EVRO model, assuming 

that all uncertain parameters are uniformly distributed between their respective lower and upper 

limits. The only exceptions to this assumption are the price(s) of electricity and/or gas, which are 

selected through a rectangular random function.  
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Table 9. Model Parameters in EVRO Model 

Parameter Source Range 

Analysis Period [99] 2015-2030 

Discount Rate [78] 0.65-1.15 

Inflation Rate [79] -10% , +10% of CBO’s projections 

Fuel Economy [100] 
EIA’s projected mpg for light duty 
vehicles & AFLEET 

Vehicle Miles Traveled (VMT) [100] -10% , +10% of EIA’s projections 

Electricity Price [101] 
EIA & proposed methodology in 
EVRO 

Gasoline Price [100,102] 
EIA & proposed methodology in 
EVRO 

Battery Production & Recycling Emissions [103] Represented in section 2.3.2 

EDC Existing literature Proposed methodology in EVRO 

WFP of Fuels Existing literature Proposed methodology in EVRO 

 

How often an agent purchases a vehicle depends on his/her social group. Therefore, 

different social groups are defined in this research, and each agent is randomly assigned to a 

social group. The level of income the agent is then randomly selected among the pre-set income 

levels, and the purchase probability for each social category is estimated as summarized in Table 

2 for different social and income categories. In 2014, 7.9 million passenger cars were sold in 

U.S., meaning that approximately 2.5 percent of Americans purchase a passenger car each year 

[146]. The vehicle purchase probabilities of each social group are taken from [74,136].  Since the 

data in both of these reports are based on different total populations (Iceland and Denmark, 

respectively), this study uses a scaled social group probability based on a purchasing rate of 

2.5% in the U.S. (Table 2). 
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Table 10. Scaled Probability of Purchase 

Social groups 
Probability of Purchase 

Low income Medium income High income 

Single female 0.4% 1.2% 4.8% 

Single male 0.6% 1.9% 10.1% 

Female living w. parents 0.6% 3.9% 7.8% 

Male living with parents 2.1% 3.5% 14.1% 

Couple without children (female buyer) 1.1% 2.9% 5.6% 

Couple without children (male buyer) 5.6% 8.2% 11.9% 

Couple with children (female buyer) 1.3% 2.8% 5.8% 

Couple with children (male buyer) 3.5% 7.0% 11.6% 

 

For vehicle purchase prices, AFLEET uses the average purchase price of different 

vehicle types in each category, but does not consider the regional average costs of vehicles. 

Instead, truecar.com is used to find the average MSRP of the studied vehicles [147]. The city 

with the highest population in each region is considered to estimate the purchase price for 

each region. Table 3 shows the minimum and maximum MSRPs of all studied regions for 

each vehicle type.  
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Table 11. Vehicle Purchase Price 

Vehicle Type Minimum Price ($) Maximum Price ($) 

ICEV 18,710 20,245 

HEV 22,041 24,349 

PHEV 29,810 32,707 

EREV 30,510 34,202 

BEV 31,812 35,318 

 

Preferences in terms of the purchase price and maintenance and refueling costs are 

derived from the values found in available literature [74,136]. Since the EDC and the WFP 

are not amongst the attributes that every single agent cares about, whether the agent cares 

about these attributes or is indifferent will be randomly determined for each agent. If the 

agent considers environmental factors when making his/her decision, the associated 

preference is assumed to follow the values in Tables 4-6. These preferences are estimated 

in a way that the overall purchase probability associated with each attributes falls in a 

same order of magnitude. Tables 4-6 summarize the preferences of agents of different 

social and income categories with respect to each vehicle attribute. 
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Table 12. Log of Preferences of Low Income Category 
Social Category Purchase Price Maintenance & Refueling EDC WFP 

Single female -3.68 -0.50 -0.03 -0.06 
Single male -3.35 -0.22 -0.01 -0.02 
Female living w. parents -3.12 -0.50 -0.03 -0.06 
Male living with parents -2.92 -0.25 -0.01 -0.03 
Couple without children (female buyer)  -4.60 -0.31 -0.02 -0.03 
Couple without children (male buyer)  -4.31 -0.41 -0.02 -0.05 
Couple with children (female buyer)  -4.26 -0.39 -0.02 -0.04 
Couple with children (male buyer)  -3.92 -0.35 -0.02 -0.04 

Table 13. Log of Preferences of Medium Income Category 
Social Category Purchase Price Maintenance & Refueling EDC WFP 

Single female -4.16 -0.40 -0.02 -0.04 
Single male -3.15 -0.29 -0.01 -0.03 
Female living w. parents -3.01 -0.38 -0.02 -0.04 
Male living with parents -2.86 -0.33 -0.02 -0.04 
Couple without children (female 
buyer)  

-3.20 -0.45 
-0.02 -0.05 

Couple without children (male buyer)  -3.89 -0.38 -0.02 -0.04 
Couple with children (female buyer)  -3.25 -0.44 -0.02 -0.05 
Couple with children (male buyer)  -3.64 -0.41 -0.02 -0.05 

Table 14. Log of Preferences of High Income Category 
Social Category Purchase Price Maintenance and Refueling EDC WFP 

Single female -2.25 0.00 0.00 0.00 
Single male -1.05 -0.29 -0.01 -0.03 
Female living w. parents -4.80 -0.23 -0.01 -0.03 
Male living with parents -2.15 -0.28 -0.01 -0.03 
Couple without children (female 
buyer)  

-1.01 -0.44 
-0.02 -0.05 

Couple without children (male buyer)  -1.81 -0.29 -0.01 -0.03 
Couple with children (female buyer)  -1.22 -0.33 -0.02 -0.04 
Couple with children (male buyer)  -1.36 -0.27 -0.01 -0.03 

 

The government also offers monetary incentives for purchasing EVs, so two types of 

government incentives (federal and regional) are considered in this analysis; these 
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incentives are summarized in Table 7. Federal incentives are applied first, after which any 

applicable regional incentives are added to the federal incentive amounts to obtain the 

total incentive amount provided for any given region. The incentive rates listed in Table 7 

are assumed to be constant for the entire analysis period, but whether or not the 

government actually offers these incentives is decided by the assumed scenario in the 

section 3 and also applying a random function to each analysis cycle. For instance, in the 

first scenario analysis in the results section, it is assumed that the government incentives 

are offered for the first 10 years and then randomly for the rest of analysis period (Please 

see section 3.4.). 

Table 15. Government Incentives [22,148] 

To model the willingness of an agent to purchase an EV, this study assumes that said 

willingness is influenced primarily by the word-of-mouth effect. Likewise, it is assumed that 

each agent contacts another agent once per month, and that the adoption fraction of the contacted 

agent is randomly selected as a value of up to 1%. Moreover, since there is no data available to 

definitively determine whether or not a specific individual within a particular household will 

Government Incentives   PHEV   EREV   BEV  

 Federal   $2,500   $4,000   $7,500  

 California   $1,500   $1,500   $2,500  

 Washington   -   -  6.5% of purchase price  

 Georgia   20% of the cost - Up to $5,000  

 Maryland   $550   $1,000   $3,000  
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decide upon a particular purchase [74], each agent is therefore defined as a household. 

Furthermore, each agent’s tendency to buy a car will differ from one income level to another. 

With this in mind, different scenarios can be applied in this analysis. In the developed 

model, for instance, gasoline and electricity prices are changed regularly using a random 

distribution given the estimated ranges from the EVRO model (Table 1), which are based on EIA 

projections. Moreover, government subsidies can be offered randomly any year. Finally, it is 

assumed that the economic situation simulated in the model stays the same, with no recessions or 

major economic improvements occurring during the analysis period. Based on the preliminary 

data and uncertainty ranges previously described, the ABM model is then run for 10,000 

replications to cover most of the possible interactions between the varying factors, and the results 

of this analysis are described in Section 3. 

3.2.5.     Verification and Validation of ABM 

One of the biggest challenges faced during the AB modeling process for this study is the 

verification and validation of the model and its results. Due to the heterogeneity of the agents in 

the model, there is a possibility of a new macro-level pattern emerging from the micro-level 

interactions between agents [149]. Thus, the main challenge in this effort is to determine how to 

properly validate the model and overcome the methodological obstacles associated with 

empirical validations. In general, validity for computational models is defined in terms of 

conceptual, internal, external, cross-model, data-related, and/or security-related validity [150]. 

Each of these types of validity are compared to an acceptable degree of confidence as defined by 
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the modeler or decision maker. These specific validity types are described in further detail 

below. 

The model is conceptually valid if it represents the conceptual and theoretical 

characteristics of the real world problem. 

The model is internally valid if its programming code runs without any errors. 

External validity means that the model output matches the real world data. 

Cross-model validation compares the developed model with a similar model to check 

whether or not their respective outcomes match. 

Data-related validity means that the data used in the model is adequate and accurate. 

Finally, security-related validity means that adequate safeguards have been provided in 

the model to minimize the impacts of any issues that may adversely affect the model and/or its 

results. 

This study uses the validation/verification process described in [73,151], in which four 

steps (grounding, calibrating, verifying, and harmonizing) are outlined to validate and verify 

computational models. After running the model for different numbers of agents, it was found that 

the number of agents does not significantly affect the market penetration results. 

First, the model is grounded based on the research currently being performed by the 

Electric Vehicle Transportation Center (EVTC) [152]. This project is aimed at preparing 

transportation systems for the future influx of electric vehicles. The grounding of a model 
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involves discussing why the model is reasonable, what its limitations and scope conditions are, 

and how it compares with current models. All of these steps have already been undertaken and 

summarized in previous sections. The grounding process can be enhanced by verbally explaining 

that the model demonstrates the key elements of a specific group and/or social process; in this 

case, different social and income categories are taken into account, and the model represents the 

involvement of each of these categories in the purchase of five different types of vehicles. 

Calibration is used to tune up the model to fit the real world data. This is usually an 

iterative process in which one or more model characteristics are altered as necessary to ensure 

that the model output come as close to reality as possible. In this study, the model is first 

calibrated using parameters from several studies; parameters related to the purchase probability 

of a vehicle are derived from [74], while those related to the refueling effect of EVs are derived 

from [74,138], and all parameters from both of these references have been calibrated for the U.S. 

by comparing the U.S. population with the respective populations of Iceland and Denmark, for 

which the parameters had originally been calculated. During the calibration process, it was 

observed that the model has a consistent tendency to accept HEVs as an appropriate option as 

well as ICEVs, so consumer willingness with respect to HEVs was adjusted accordingly to 

reflect the real data. The preferences of each agent with respect to the EDC and WFP are 

likewise calibrated to more accurately reflect customer behavior.  

The verification process is performed using a cross-model comparison with output data 

from the Light-duty Alternative Vehicle Energy Transitions (LAVE-Trans) model and with the 

Argonne National Lab’s VISION model [153,154]. Both models are used to represent a 
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business-as-usual (BAU) case in the National Research Council of the National Academies’ 

(NRCNA) report, “Transition to Alternative Vehicles and Fuels” [155]. Here, first, a base-case 

model is formed based on average values for the purchase price, M&R cost, EDC, and WFP, 

while also assuming that no government subsidies are given during the analysis period and that 

agents do not interact with each other. The comparison reveals that the generated data from the 

EVReMP’s base case model (Figure 4) does not differ significantly from the proposed BAU case 

as presented in [155]. A statistical verification method is used to compare the results of BAU 

case in NRCNA’s report with those from the developed EVReMP base case model. Both One-

Way ANOVA and two-tailed small-sampled matched pairs hypothesis tests reveal the 

significance level of less than 5 %. Statistical approaches are used in numerous studies to 

validate models and analyze data such as in pavement engineering [156–158], sustainable 

infrastructure [159–161], sustainable transportation [162], and process control [163]. 

 

Figure 10. Vehicle Sales by Vehicle Technology for the Base Case (1000s/year) 
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The goal of harmonization is to demonstrate that the assumptions made in the model are 

“in harmony with” (i.e. adequately correspond to) the real world. To this end, the model is first 

validated by comparing it with the model presented in [155], and is then tested by applying the 

relevant government subsidies and comparing the resultant model with the model presented in 

one of the LAVE-Trans’ reports [153].  

After applying these steps, we are confident that the developed ABM accurately fits the 

real world and can therefore be used to evaluate the future market share of electric vehicles. 

Thus, with the model duly verified and validated, the results of this analysis are presented in the 

next section. 

Moreover, we applied statistical verification and validation process as well. First, One 

Way Anova or Single Factor Anova test is applied to a set of sixteen data points from the NRC, 

BAU case and sixteen equivalent data points from the EVReMP model. Excel’s Anova test 

toolbox is used to perform the analysis. The hypothesis here is that these two data series have the 

same mean with the confidence interval of 95%, i.e. α equals to 5%. The Table 16, summarized 

the results: 
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Table 16. Anova test results 

Groups Count Sum Average Variance 

  EVReMP 16 271967 16997.94 397900.9 

  NRC’s BAU Case 16 265414 16588.38 654096.7 

  

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 1341932 1 1341932 2.551207 0.120691 4.170877 

Within Groups 15779963 30 525998.8 

    

As can been seen, P value is greater than 0.05 and therefore the hypothesis can be 

accepted. 

In addition, since these data points are matched pairs, the following two tailed small-

sample test of hypothesis about (µ1 - µ2 ) statistical test is applied. The test is two-tailed since an 

extreme value on either side of the sampling data would cause a rejections in the null hypotheses. 

𝐻0 = (𝜇1 − 𝜇2) = 𝐷0 ( 18 ) 

𝐻𝑎 = (𝜇1 − 𝜇2) ≠ 𝐷0 ( 19 ) 

 

𝑡 = �̅� − 𝐷0𝑠𝑑√𝑛  ( 20 ) 

 Where �̅� and 𝑠𝑑 represent the mean and standard deviation of the sample of differences. 
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𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑒𝑔𝑖𝑜𝑛: |𝑡| >  𝑡𝛼2  ( 21 ) 

The significance level is chosen to be 0.05 and the t distribution is based on a (n-1) 

degree of freedom. 

𝑡 = �̅� − 𝐷0𝑠𝑑√𝑛 = −409.56131146√16 = −0.0125 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒⇒        |−0.0125| < 2.13 ( 22 ) 

Therefore, the hypothesis is accepted.  
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CHAPTER FOUR: ANALYSIS AND RESULTS 

In this chapter, first the results of the developed Electric Vehicle Regional Optimizer 

(EVRO) are discussed. In this regard, the Life Cycle Cost (LCC), Environmental Damage Cost 

(EDC), and Water Footprint (WFP) of different Electric Vehicle (EV) drivetrains are presented, 

illustrating the ranges of uncertainty in the analysis. The most appropriate combination of EV 

drivetrains is shown for each U.S. National Energy Modeling System (NEMS) region. The 

NEMS regions and their abbreviations are indicated in Figure 3. Second, the results of the 

developed Electric Vehicle Regional Market Penetration (EVReMP) model are presented. 

4.1.     EVRO Results 

4.1.1.     Life Cycle Cost Results 

The net present value of the total cost of ownership of the five different vehicle types for 

the 16-year lifetime is presented in this section. Since a variety of results can be shown for the 22 

regions and five vehicle types, the LCC of vehicle types throughout the U.S. is explained and 

then the regional results of only the Internal Combustion Engine Vehicle (ICEV) and All-

Electric Vehicle (BEV) are represented. Figure 4 shows the average net present value of total 

cost of ownership (TCO) for all of the studied regions.  This value is the average of all captured 

LCCs for all of the replications in all U.S. regions. The error bars represent the ranges of data for 

each vehicle type. As discussed in section 2.1, the TCO includes the initial and depreciation 

costs, fuel costs (gasoline and electricity), maintenance and repair costs, and the insurance and 

registration costs.  
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Figure 11. NEMS Electricity Market Module Regions [164] 

The ICEV is the most cost effective vehicle type compared to the others, with an average 

TCO of $87,028. The lowest and highest LCC for the ICEV occurs in the Western Electricity 

Coordinating Council/Rockies (WECC) and Western Electricity Coordinating Council/ 

Southwest (AZNM) regions, with LCCs of $83,360 and $91,530 respectively. The BEV is the 
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next most cost effective, with an average LCC of $89,244. The lowest and highest LCC for the 

BEV occurs in the Northeast Power Coordinating Council/Long Island (NYLI) and SERC 

Reliability Corporation/Central (SRCE) regions, with LCCs of $87,460 and $91,248 

respectively. Hybrid Electric Vehicles (HEVs) and Extended Range Electric Vehicles (EREVs) 

are the next most expensive options, with similar average LCCs. The lowest LCC for these two 

occurs in region WECC with $86,422 for the HEV and $87,830 for the EREV. The highest LCC 

for the HEV and EREV happens in regions AZNM and SRCE, with LCCs of $93,596 and 

$92,229 respectively. Plug-in Hybrid Electric Vehicles (PHEVs) have the highest LCC among 

the vehicles studied, with an average LCC of $91,487. The lowest LCC of PHEVs, $88,362, can 

be found in region WECC, and the highest LCC, $94,546,is in region AZNM. Table 9 shows the 

summary of the LCC results. The uncertainty of the LCC decreases when moving from gasoline 

to electricity, due to higher data availability on electricity for the U.S. regions. 

 

Figure 12. Life Cycle Cost of studied vehicles throughout U.S. (in Thousand Dollars) 
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Another way to look at the results is to compare the LCC of the five vehicle types in 

different U.S. regions. Here, the ICEV and BEV LCC results are presented. It is useful to 

compare the ICEV, which relies completely on gasoline, to the BEV, which relies completely on 

electricity. Figure 5a shows the LCC of driving an ICEV during its lifetime (16 years) in 

different U.S regions. On average, WECC is the cheapest ($85,597) and Western Electricity 

Coordinating Council/California (CAMX) is the most expensive ($88,922) region in which to 

drive an ICEV. The highest and lowest uncertainties happen in the SRCE and Southwest Power 

Pool/South (SPSO) regions respectively. 

Looking at the LCC of BEVs in different U.S. regions, the variation seems to be lower, 

with Reliability First Corporation/East (RFCE) being the cheapest ($88,731) and SERC 

Reliability Corporation/ Gateway (SRGW) being the most expensive ($89,751) region in which 

to drive a BEV, on average (Please see Figure 5b). The highest and lowest variation in the LCC 

occurs in the Reliability First Corporation/West (FRCW) and AZNM regions respectively. The 

changes in life cycle cost of the studied vehicle types might be due to a variety of reasons, such 

as changes in the future price of electricity, the future electricity mix in the region, or the future 

gasoline price in the region. Looking at the CAMX region, the average costs of the ICEV 

($88,922) and BEV ($88,948) are almost the same. However, the life cycle cost of ICEV varies 

in a larger range compared to BEV, because uncertainty in the future gasoline price is much 

higher than uncertainty in electricity price and electricity mix. 
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Figure 13a. Life Cycle Cost of Internal Combustion Engine Vehicle for different regions 
and 9b. Life Cycle Cost of All-Electric Vehicle for different regions, both in Thousand Dollars 
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5a. Life Cycle Cost of Internal Combustion Eengine Vehicle for different regions (k$) 

82

83

84

85

86

87

88

89

90

91

92

T
h

o
u

sa
n

d
s 

5b. Life Cycle Cost of All-Electric Vehicle by Region (k$) 



82 
 

4.1.2.     Environmental Damage Cost Results 

Figure 6a shows the Environmental Damage Cost (EDC) of the five vehicle types 

throughout the U.S. Compared to the LCC, the variation in EDC is much higher, due to the wider 

uncertainty ranges. Although the ICEV has the lowest LCC, it has the highest EDC relative to 

the alternatives, with an EDC of $5.19 million on average, over the vehicle lifetime. The lowest 

and highest EDC for the ICEV occur in the CAMX and Midwest Reliability Council/East 

(MORE) regions, with EDCs of $0.74 million and $10.75 million respectively. This is because 

the reported pollution emission from gasoline is the lowest in CAMX and highest in MORE. 

As can be seen from the results, moving towards electric technology reduces the EDC 

dramatically. The BEV has the lowest average lifetime EDC, of a little less than $1 million. The 

lowest and highest estimated EDC for the BEV occurs in the Northeast Power Coordinating 

Council/ NYC-Westchester (NYCW) and Western Electricity Coordinating Council/ Northwest 

Power Pool Area (NWPP) regions, with EDCs of $0.12 million and $3.27 million, respectively. 

The main driver for WFP is its use in electricity generation. This is why the BEV, EREV, and 

PHEV have higher water use. The gasoline life cycle is the next main driver of water 

consumption. The HEV consumes the least water because it uses less gasoline than the ICEV. 

The range of the results is much wider for the ICEV than the BEV and EREV. This 

difference in uncertainty range is mainly due to the higher variability in the gasoline-related 

EDC. At the same time, the lack of data availability in the unit EDC is another reason for this 

high difference. More data on environmental costs could potentially reduce uncertainty in future 

studies. 
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Figure 14a. Life Cycle Environmental Damage Costs for the studied vehicles (in Millions 
of Dollars), and 10b. Water Footprint of studied vehicles (in Thousand Gallons) 

4.1.3.     Water Footprint Results 

The WFP of each vehicle type over its lifetime is presented in Figure 6b. The main driver 

for water consumption is its use in electricity generation and the gasoline life cycle is the next 

main driver of water consumption. The BEV is responsible for the highest water footprint 

compared to the alternatives. It consumes approximately 852 thousand gallons (Tgal) of water 

during its lifetime on average, mainly due to upstream electricity generation water consumption 

and battery production. The highest and lowest water consumption and withdrawal for the BEV 

happens in the SERC Reliability Corporation/ Virginia-Carolina (SRVC) and NYLI regions, 

with 1,127 Tgal and 406 Tgal of water, respectively. HEVs consume and withdraw the least 

amount of water during their lifetime, using 119 Tgal of water, on average. The smaller WFP 

results because HEVs do not rely on grid-sourced electricity, have smaller batteries than BEVs, 

and use less gasoline than ICEVs. The region with the lowest water footprint for the HEV is 
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SERC Reliability Corporation/Delta (SRDA) with 71 Tgal of water used, while the highest water 

use occurs in CAMX, with 194 Tgal of water.  

In summary, Table 9 shows the LCC, EDC, and WFP calculated for the vehicle types 

studied here, and the region associated with each value. This table shows the variation in results 

throughout the U.S. There are several trends that emerge from the results. For instance, the 

southwestern region (AZNM) has the highest average LCC for the ICEV, HEV, and PHEV. This 

is because AZNM region is a part of PADD west coast region, which has the highest reported 

gasoline prices, and it has a relative high electricity price as well. Conversely, the Rockies region 

(WECC) has the lowest LCC for ICEVs, HEVs, PHEVs, and EREVs, because the price of 

gasoline and electricity is relatively low in this region. 

Table 17. Key Findings of LCC, EDC, and WFP for the studied vehicle types 

Decision 
Criteria  

Vehicle 
Type 

Average 
throughout 
U.S. 

Minimum 
throughout U.S. 

Maximum 
throughout 
U.S. 

LCC 

ICEV $87.03 K 
$83.36 K $91.53 K 

WECC AZNM 

HEV $89.89 K 
$86.42 K $93.60 K 

WECC AZNM 

PHEV $91.49 K 
$88.36 K $94.55 K 

WECC AZNM 

EREV $89.90 K 
$87.83 K $92.23 K 

WECC SPNO 

BEV $89.24 K $87.46 K $91.25 K 
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Decision 
Criteria  

Vehicle 
Type 

Average 
throughout 
U.S. 

Minimum 
throughout U.S. 

Maximum 
throughout 
U.S. 

NYLI SRCE 

EDC 

ICEV $5.19 M 
$741.07 K $10.75 M 

CAMX MORE 

HEV $3.89 M 
$563.84 K $8.05 M 

CAMX MORE 

PHEV $3.64 M 
$529.77 K $7.50 M 

CAMX MORE 

EREV $1.65 M 
$253.06 K $3.81 M 

CAMX NWPP 

BEV $1.05 M 
$121.26 K $3.27 M 

NYUP NWPP 

WFP 

ICEV 155.3 Tgal 
92.55 Tgal 252.25 Tgal 

SRDA CAMX 

HEV 119.5 Tgal 
71.19 Tgal 194.04 Tgal 

SRDA CAMX 

PHEV 191.5 Tgal 
106.09 Tgal 245.84 Tgal 

NYLI SRVC 

EREV 507.9 Tgal 
249.18 Tgal 663.10 Tgal 

NYLI SRVC 

BEV 852.6 Tgal 
405.64 Tgal 1126.84 Tgal 

NYLI SRVC 
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Turning to EDC, the California region (CAMX) has the minimum average EDC for the 

ICEV, HEV, PHEV, and EREV. The CAMX region has one of the lowest reliance on coal power 

plants and one of the highest hydro and renewable electricity sources, leading to a low 

environmental impact. The MORE region, in the Midwest, has the highest EDC for the ICEV, 

HEV, and PHEV; The EDC is high for the primarily electric drivetrains (EREV and BEV) in the 

NWPP region because the electricity mix is heavily reliant on fossil fuels in the mountain states. 

However, the values are lower than in the MORE region because of the hydro and renewable 

electricity sources of the Pacific Northwest. The New York (NYUP) region has the cleanest 

electricity mix from an environmental damage cost perspective, causing the BEV to have the 

lowest impact in that region. NYUP has the second highest hydro and renewable energy sources 

in the U.S. and a relative high nuclear power plant sources.  

The lowest WFP for the three electrified vehicles occurs in the NYLI (New York Long 

Island) region, whereas the highest WFP for those vehicles is in the SRVC (in the southeast) 

region. This is because NYLI is located in the east coast PADD region with a relative low gas 

production WFP. At the same time, it has the highest biomass and natural gas electricity sources 

with a relative low electricity generated WFP. Conversely, the electricity mix in SRVC is heavily 

reliant on nuclear power plants, which has almost the highest amount of WFP among other 

power plant types (Please see Table 6). 

4.1.4.     Regional Optimization Results 

One of the goals of this study was to incorporate all of the decision variables into one 

larger picture. Implementing a stochastic multi-objective decision-making approach finds the 
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most appropriate combination of drivetrains in each region. In this section, this combination is 

illustrated by region. To accomplish this goal, the Exploratory Modeling and Analysis (EMA) 

approach is applied to the optimization model, where the variables are the percentage of 

selection of each vehicle type in each region, and the objective function is to minimize their 

LCC, EDC, and WFP at the same time. Individual weights were assigned to these objective 

functions. The weight of each objective function changes in 0.1 intervals from 0 to 1. Therefore, 

there are 66 different weight combinations between the three objective indicators. Using the 

EMA approach, the optimization is performed for all of the weight combinations, in all of the 

regions, for all of the replications. Since representing all of the results is out of the scope of this 

study, the optimized combination of the drivetrain with weights of LCC = 0.4, EDC = 0.5 and 

WFP = 0.1 is shown. Figure 7 shows the U.S. electric regions, with each pie chart representing 

the ideal combination of drivetrain for the year 2030. As can be seen in Figure 7, the ideal 

combination consists of just EREVs and BEVs throughout the entire U.S. On the east coast, 

BEVs are more favorable, while in the Midwest and Southern parts of the country, EREVs are 

more likely to be the optimal choice. This is because the electricity mix on the east coast has 

fewer environmental damage costs than that of the Midwest and South. The east coast has more 

hydro and renewable generation and natural gas, whereas the Midwest and South has a high 

proportion of coal generation. This trend changes in the ERCT and AZNM regions, where BEVs 

are more likely the optimal option. AZNM has a larger proportion of hydro and renewable 

electricity compared to the other southern regions, making it more optimal from both a LCC and 

EDC perspective. Likewise, ERCT has a relative high proportion of renewable sources, which 

reduces LCC and EDC for all-electric transportation.  
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Figure 15. Ideal combination of drivetrain in year 2030, for weights of LCC=0.4, 
EDC=0.5, and WFP=0.1 

A sensitivity analysis can be performed for the assigned weights. Figure 8a shows the 

sensitivity of EREV selection for all possible weights for each of the regions (see Figure 3 for 

the color codes). It has been assumed that the weight of WFP is static at 0.1 and the weights of 

the LCC and EDC change in a range of 0 to 0.9. The result indicates that the chance of selection 

of EREV as the optimal option increases when the weight of LCC increases, and the weight of 

EDC decreases. However, for the highest LCC weights, the EREV decreases in optimality. 
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Looking at the selection probability for the BEV, it is not an optimal drivetrain option for LCC 

weights higher than 0.6 (EDC weight of 0.3). However, for the lower LCC weights (higher EDC 

weights) it competes with EREV for best choice (see Figure 8b). Of note is that for weight 

selections where only the LCC matters, neither the EREV nor the BEV are the best option, and 

EVRO indicates the HEV is the best option. Moreover, the variation in optimal choice is very 

sensitive to the changes in the weight selection, as can be seen in Figure 8. 

Another way to look at the results is to look at the entire optimization model outcome by 

combining all of the weight combinations, and getting an average of the percentage of selection 

for each vehicle type. In other words, the number of selection times in which a particular vehicle 

drivetrain is the optimal choice is summed, in all replications, for all weight combinations, and 

then the result is represented (Please see Figure 9). As indicated, some ICEVs still might be an 

optimal choice, in at least some of the weighting combinations (especially when the weight of 

LCC is very high). However, the share of ICEV is very low, with at most 7% of the optimal 

drivetrain selection within region SRDA. HEVs dominate most of the regions as an optimal 

choice, since they have better fuel efficiencies and have less environmental impact. More 

specifically, HEVs are a better option while the weight of the WFP is high (especially for WFP 

weight of more than 0.4). This trend changes dramatically in the west side of the country, where 

HEVs are replaced by PHEVs as the optimal choice. These vehicles are a better option when the 

weight of the LCC is very low (especially for LCC weight of less than 0.3). The percentage of 

EREVs and BEVs do not seem to change dramatically throughout the entire nation. These two 

vehicle types combined range between 40 and 51 percent of the fleet in all regions, for all of the 
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weighting combinations. Specifically, these vehicles are a good option when the weight of the 

WFP is less than 0.3. 

 

 

Figure 16a. Sensitivity of Extended Range Electric Vehicle Selection by changing LCC 
and EDC weights, and 8b. Sensitivity of All-Electric Vehicle Selection by changing LCC and 

EDC weights 
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8a. Sensitivity of Extended Range Electric Vehicle Selection by chaning LCC and EDC weights 
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8b. Sensitivity of Battery Electric Vehicle Selection by chaning LCC and EDC weights 
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Figure 17. Ideal combination of drivetrain in year 2030, for the average of all of the 
weight combinations 

4.2.     EVReMP Results 

4.2.1.     Maintenance and Refueling Cost 

The net present value of the Maintenance and Refueling (M&R) costs of the five different 

vehicle types are presented in this section for a 16-year lifetime. Due to the wide variety of 

possible results for all 22 regions and for all 5 vehicle types, these M&R costs are shown 
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throughout the U.S. with only the regional variations with respect to ICEVs and All-Electric 

Vehicles (BEVs) shown in this paper, since these two vehicle types represent opposite extremes 

in terms of gasoline versus electricity as fuel options. Figure 6 shows the average net present 

values of the M&R costs for all of the studied regions, calculated in this analysis as the average 

of all captured M&R costs for all of the replications in all of the considered U.S. regions, with 

the error bars in the figure representing the M&R cost ranges for each vehicle type. 

On average, the ICEV has the highest M&R cost with an average of $48,128. The lowest 

and highest M&R costs for the ICEV occur in the New York Up State (NYUP) region at $44,560 

and in the Western Electricity coordination council/Southwest (AZNM) region at $52,329, 

respectively. Obviously, the M&R cost decreases as the vehicles’ fuel economy rates (mpg) 

increase. The HEV has the second highest average M&R cost at $43,357, followed by the PHEV 

at $40,192, the EREV at $36,641, and finally the BEV at $33,582. The lowest and highest M&R 

costs of BEVs are found in the NYC-Westchester (NYCW) region at $31,743 and in the SERC 

Reliability Corporation/Central (SRCE) region at $35,471, respectively. The data uncertainty 

ranges decreases when moving from gasoline-powered vehicles to EVs due to better data 

availability on electricity for the U.S. regions. 
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Figure 18. Maintenance and Refueling Cost of studied vehicles throughout U.S. (in 
Thousand Dollars) 

A regional representation of the data is also possible; here, the regional variations in the 

M&R costs of ICEVs and BEVs are presented in Figures 7a and 7b, respectively, for a 16-year 

vehicle lifetime. This comparison is especially useful because ICEVs rely completely on 

gasoline as a fuel source while BEVs likewise rely completely on electricity. On average, driving 

an ICEV in the Texas Reliability Region (ERCT) has the cheapest M&R cost at $47,190, while 

California is the most expensive region to drive an ICEV with an M&R cost of $49,836 (Figure 

7a). 

The M&R costs of BEVs seem to have less variation, with NYWC being the cheapest 

($32,862) and SERC Reliability corporation/Gateway the most expensive ($34,195) regions in 

which to drive a BEV, on average (Figure 7b). There are a number of possible reasons for the 

changes in M&R costs for the studied vehicle types, including future price changes for 

electricity, future changes in the electricity generation mixes in each region, and/or uncertainties 

with respect to future gasoline prices in each region. 
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 Figure 19a. Maintenance and Refueling Cost of Internal Combustion Engine Vehicle for 
different regions and 7b. Maintenance and Refueling Cost of All-Electric Vehicle for different 

regions, both in Thousand Dollars 

4.2.2.     Agent Based Modeling Results 

As mentioned in section 2.3.2, there are 50,000 agents in each replication. Figure 9 shows 

how these agents are placed in each of the NEMS regions based on the population and number of 
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registered vehicles in each region. The Reliability First Corporation/West (FRCW) region has 

the most agents with the California (CAMX) region as a close second, both containing almost 43 

percent of the total number of agents in the model. Conversely, the NYC-Westchester (NYCW) 

has the lowest number of agents, followed by the Southwest Power Pool/North (SPNO) region.  

 

Figure 20. Configuration of agents in the ABM model (NOTE: This illustration is for 
only 5,000 agents) 

The effect of different policies can be tested on the market penetration of the EVs; in this 

study, the effect of government subsidies was tested using the developed EVReMP model. This 

policy is aligned with one of the LAVE-Trans publications, in which government policies were 

mandated for the first 10 years [153]. As previously discussed in Section 2.4, two types of 
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government subsidies (federal and regional) are considered in this policy, and it is assumed that 

the government supports EVs penetration for the first 10 years, and a randomly generated factor 

is used to determine whether the government offers subsidies in each year thereafter. The model 

is then run for 10,000 replications. The results of this analysis can be shown in any number of 

forms, including the average market share of all vehicle types for every replication, the changes 

in the market share of a particular vehicle over time, and the regional variations of the market 

penetration of EVs. First, the average market penetrations of the studied vehicle types are 

illustrated in Figure 10; compared to the base case model (Figure 4), the market shares of the 

EVs have increased dramatically, and approximately 26 percent of the new sales fleet will be 

electrified on average by the year 2030, due to the provided government subsidies.  

At the end of analysis period, the BEV dominates the market among the EV technologies, 

with 11% of the total market share. This is because the M&R costs of the BEV are the lowest 

among the specific EV types while the offered government subsidies tend to favor all-electric 

vehicles. The EREV has the second largest market share at 8%, and the PHEV has the lowest 

market penetration among the electrified drivetrain with a 6% market share. The penetration of 

the HEV stays almost the same as in the base case, mainly because no incentives are offered to 

purchase an HEV. 
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Figure 21. Vehicle Sales by Vehicle Technology for the Government Subsidies Scenario 
(1000/year) 

Another way to look at the results is to illustrate the variations in market penetration for 

each vehicle type; Figure 11 shows the variations in the market penetration of the drivetrain for 

the first scenario. As this figure shows, the market share of the ICEV decreases while the market 

shares of all other alternatives increase. The variation in the results for the ICEV is lower than 

those for other alternatives, due to less variability in the relevant decision-making factors for 

purchasing an ICEV, while this variation increases over time for all other alternatives.   
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Figure 22. Variation in the Market Penetration of the studied vehicles, for government 
subsidies scenario (1000s/year) 

The next policy analysis tests the word-of-mouth effect (or the social acceptability of the 

EVs) in terms of its effect(s) on EV market penetration. To this end, this policy scenario assumes 
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that all agents are willing to consider purchasing an ICEV, meaning that the agents’ willingness 

to purchase an ICEV is always 1. However, agents who purchase any other vehicle alternative 

contact other agents once a month and try to convince these other agents to purchase the non-

ICEV vehicle type that they own. Whether or not the contacted agent is convinced to consider 

the non-ICEV vehicle type in question is simulated using a randomly generated function in 

which the probability of the contacted agent being convinced is 10%. Figure 12 represents the 

average market penetration results of the studied drivetrain under these conditions for the entire 

studied regions in the United States. 

 

 Figure 23. Vehicle Sales by Vehicle Technology for the Government Subsidies and 
WOM Scenario (1000/year) 
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As shown in the graph above, the overall market penetration of the EVs has significantly 

increased relative to the previous case (Figure 10), with EVs dominating approximately 30% of 

the total market share in 2030. The ICEV will still have the highest market penetration with a 

56% market share on average, but BEVs will have the second largest market share at 14%, 

followed by HEVs at 13%. Conversely, the PHEV will still have the lowest market share at 6% 

on average.  
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CHAPTER FIVE: CONCLUSION AND DISCUSSION 

The aim of this study was to first, develop the Electric Vehicle Regional Analyzer 

(EVRO) tool. This tool will enable policymakers and transportation planners to prepare our 

nation’s transportation system for the influx of Electric Vehicles (EVs). EVRO compares EV 

technologies with hybrid and internal combustion gasoline vehicles using a comprehensive 

analysis and optimizes the drivetrain combination for the year 2030, considering the life cycle 

cost, environmental damage cost, and water footprint as the objective functions. Second aim of 

this study was to develop Electric Vehicle Regional Market Penetration (EVReMP) tool to help 

policy makers and transportation planners to identify the future market shares of electric vehicles 

in the United States. The EVReMP model compares three different EV technologies with hybrid 

and internal combustion gasoline vehicles using a developed agent-based model, and predicts the 

market share of the studied vehicles for the year 2030, accounting for agent preferences in terms 

of the purchase prices, maintenance and refueling costs, environmental damage costs, and water 

footprints of all vehicle types in the drivetrain. The purchase price is estimated using current 

market data, while all other vehicle attributes are estimated using data from the Electric Vehicle 

Regional Optimizer (EVRO) model, which estimates the variability ranges with respect to the 

future maintenance and refueling costs, environmental damage costs, and water footprints of the 

electric vehicle types. An Exploratory Modeling and Analysis (EMA) approach was then applied 

to the data to properly account for the inherently deep uncertainty associated with market 

penetration. The EMA approach was also used in tandem with the developed ABM to investigate 

the future market shares of the considered vehicle types in twenty-two separate electricity grid 

mix regions in the U.S., after which the EVReMP tool was able to generate a variety of results. 
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In the EVRO model, first the Life Cycle Cost (LCC), Environmental Damage Cost 

(EDC), and Water Footprint (WFP) of five different drivetrains were estimated. Second, an 

Exploratory Modeling and Analysis approach was applied to take the concept of deep 

uncertainty into account. Third, stochastic optimization modeling was used to find the optimal 

combination of drivetrains for twenty-two U.S. electricity regions. Finally, the comprehensive 

stochastic optimization model optimized the most appropriate fleet combination in 2030 based 

on different LCC, EDC, and WFP priorities. A variety of different results can be obtained from 

the EVRO model using different weights for the objective functions. In summary, the following 

conclusions are highlighted: 

The Internal Combustion Engine Vehicle (ICEV) is the most cost effective vehicle type 

in terms of LCC, with an average LCC of $87,028 over vehicle lifetime. The lowest and highest 

LCC for the ICEV occurs in the Rockies and Southwest regions, respectively. 

Plug-in Hybrid Electric Vehicles (PHEVs) have the highest LCC among the vehicles 

studied, with an average LCC of $91,487. The lowest LCC of PHEVs can be found in the 

Rockies region and the highest LCC happens in the Southwest region. 

Movement towards electric technology reduces the EDC dramatically, with the lowest 

EDC (at a little less than $1 million on average) occurring for BEVs over the vehicle lifetime.  

Conversely, movement towards the electric options increases the WFP dramatically. 

BEVs consume the highest amount of water, mainly due to upstream electricity generation and 

battery production water consumption. HEVs have the smallest water footprint among the 
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alternatives because they do not rely on grid-sourced electricity and use less gasoline than 

ICEVs.  

The EVRO model reveals that for weights of LCC = 0.4, EDC = 0.5, and WFP = 0.1, 

only BEVs and EREVs are in the optimal fleet composition in the year 2030. 

Looking at the entire picture, by combining all of the weight combinations, EVRO 

predicts that an ICEV might be a good choice in very rare conditions (if policymakers weight the 

LCC very high, for example). HEVs dominate most of the regions since they have better fuel 

efficiency and less environmental impact. The HEVs are replaced with PHEVs in the regions 

with the cleanest electricity, and the combined share of EREV and BEV vehicles ranges between 

40 to 51 percent throughout the entire U.S. 

The main lesson learned from the EVRO analysis is that the ideal fleet composition will 

be based on a trade-off between the three types of criteria examined in this study: life cycle cost, 

environmental damage cost, and water footprint. How much weight is given to each of these 

criteria, dependent on the perspective taken (consumer, policymaker, environmentalist, oil 

company, car manufacturer, etc.), will determine the appropriate penetration of different vehicle 

technologies. Because the weighting of these various criteria will more than likely vary along 

regional lines (water use will be very important to the arid southwest, emissions from electricity 

generation will depend on how clean the generation fleet is within a region, etc.), the EVRO tool 

is highly suited to an analysis of the factors driving the various regions environmentally, 

politically, and economically. 
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One of the valuable lessons highlighted here is how important electricity generation fuels 

are to the effectiveness of BEVs in combatting climate change. In some scenarios, regions with a 

higher proportion of fossil fuels in the generation mix are better off with relatively more hybrid 

vehicles compared to regions with cleaner electricity. If the policy goal is to reduce GHG 

emissions, a transition to an electrified fleet must be coupled with the incorporation of 

renewables into the generation mix. Rethinking and redesigning the energy system is required to 

integrate renewable energy sources and replace fossil fuels, both on the generation and 

consumption sides [165]. 

Ultimately, this analysis shows that movement away from ICEVs is desirable from an 

environmental and water footprint perspective, and that even when focusing on life cycle costs 

alone, ICEVs are only barely less costly than the alternatives. Moreover, small increases in oil 

price can make the BEVs and EREVs more cost-effective compared to ICEVs. Hybrid and 

electrified vehicles make sense from many perspectives.  

Most recently, investigations into actual driving behavior have been carried out, 

examining some of the design and use assumptions commonly made about EVs. For example, 

the National Household Travel Survey has traditionally captured the behavior of ICEV drivers, 

when there is reason to believe that consumers will change their driving behavior once they 

introduce a PHEV or EV into their household [47].  Moreover, whether EVs are charged on peak 

or off peak will directly influence their associated emissions [45]. If an EV is charged on peak it 

will require increased use of marginal generators, which often have the highest emissions. If, on 
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the other hand, they can be used to even out peak loads through smart grid technologies, they 

could actually create efficiencies that benefit the grid.  

There are some limitations to the work presented in the EVRO model, including those 

associated with incorporating marginal electricity generation mix. Projecting marginal electricity 

can be very problematic, since the applied identification of marginal technologies is more 

difficult [166]. In addition, the time of day that drivers charge their electric vehicles plays a large 

role in determining the marginal load that is placed on the power grid. For a fuller analysis, it is 

critical to understand when drivers will typically charge their vehicles, and to associate these 

charging times with the corresponding power grid mix profiles. Another area for improvement is 

that surrounding renewable generation costs. Regions have a disproportionate penetration of a 

particular renewable technology due to favorable conditions for that technology, meaning that 

regional costs do and will continue to diverge. Due to data availability issues, all renewable 

generation was lumped into a single value for EVRO, even though there are varying costs and 

environmental impacts associated with each type of renewable. Moreover, there is not a single 

technology that can solve the problem of climate change -there have to be many initiatives to 

have sustainable transport [167]. In addition, we assumed all of the variables in EVRO model are 

mutually exclusive, meaning a change in one factor does not cause any change in another. In 

reality, changes in some of the assumed variables affect others as well. 

More alternative fuel options can be evaluated in future EVRO model extensions. 

Additionally, the optimization results presented here are recommendations for policy makers. 

Consumers are often not rational in their decision-making. In this regard, a market penetration 
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evaluation study using consumer choice models would be a worthwhile future analysis. The 

possibility for technological advancement, mass production, and participation in energy markets, 

and provision of ancillary grid services should also be explored. Future cost reduction of EVs 

through better design and production processes, as well as the potential for vehicle owners to 

earn money or reduce costs through smart integration of vehicles with the electric grid, would 

change the modeling results. For instance, in the future, EVs could provide energy storage, 

demand response functions, and generate power during outages. For further development of the 

EVRO model, these and other factors can be incorporated as more EVs are on the road, more 

studies specifically addressing marginal electricity and EV grid integration potential are carried 

out, and more data becomes available. 

EVReMP is able to generate a variety of the results. In summary, the following 

conclusions are highlighted: 

All-Electric Battery Vehicles (BEVs) are the most cost-effective vehicle type in terms of 

M&R costs, with an average M&R cost of $31,743 over vehicle lifetime. The lowest and highest 

M&R cost for the BEVs occur in the NYC-Westchester (NYCW) and SERC Reliability 

Corporation/Central (SRCE) regions, respectively. 

The Internal Combustion Engine Vehicle (ICEV) has the highest M&R cost among the 

studied vehicle types, with an average M&R cost of $48,128. The lowest LCC of ICEVs was 

found in the New York UpState (NYUP) region, while the highest M&R cost was found in the 

Western Electricity coordination council/Southwest (AZNM) region. 
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BEVs have the lowest lifetime EDC at approximately $1 million on average, and 

transitioning to a more electrified fleet reduced the EDC dramatically. 

On the other hand, BEVs consume/withdraw the largest amount of water on average over 

their lifetimes, owing mainly to the upstream electricity generation and water consumption 

during battery production. Conversely, HEVs have the smallest WFP on average, since they do 

not rely on the power grid for electricity, consume less gasoline than ICEVs, and have smaller 

batteries than BEVs. The WFP dramatically increased during transition toward an electrified 

fleet. 

The EVReMP model reveals that the government subsidies will play a vital role in the 

market adoption of EVs; compared to the business-as-usual scenario, when government subsidies 

were mandated for the first 10 years and then randomly granted or denied in subsequent years, 

the collective market share of the EVs increased from 1.5% to as high as 26% by the year 2030,. 

Social acceptability and the word-of-mouth effect will also have a significant effect on 

EV market shares; when with government subsidies, the combined effects of both policies can 

increase the market penetration of the EVs to as high as 30% on average case by the year 2030. 

The main lesson learned from this analysis is that the United States can feasibly meet the 

established goal of a 20% EV market share of new sales by 2030, but such a goal would require 

mandating government subsidies for at least the first 10 years and encouraging the social 

acceptability of the EVs via advertisement and other such means. In addition, establishing a 

regional subsidy policy for regions with more agents (such as the Reliability First 
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Corporation/West (FRCW) region) could potentially increase the social acceptability of EV and 

thereby improve the market penetration of EVs. 

Limitations to the work presented in the EVReMP model include the absence of the 

influence of manufacturers on EV market penetration; in addition to the policy initiatives 

previously discussed, EV manufacturers can also compete with each other in each analysis year 

and ultimately yield accelerated improvement in EV technology, resulting in an overall positive 

impact on EV market penetration. Governments can also enforce the Corporate Average Fuel 

Economy (CAFE) regulations and thereby influence the manufacturers’ benefits in terms of EV 

market shares; since manufacturers were not considered as an agent in this study, these potential 

benefits were not taken into account. In addition to the incentives previously discussed, some 

utility companies offer special discounts for EV consumers to charge their vehicles during off-

peak hours and/or during the evening, so the effect of lower electricity rates for the owners of 

EVs could be considered as a scenario in the analysis. Moreover, the time of day when an EV is 

charged has a considerable effect on the marginal load that is placed on the power grid; 

consequently, as more EVs are introduced to the market, the electricity market will most likely 

face a change in demand levels during on-peak and off-peak hours, which is likely to effect the 

rate structure of electricity, in turn eventually impacting the refueling costs of EVs. Thus, for a 

more thorough analysis, the times of day when EVs are charged should be also taken into 

account. Moreover, in the validation of the model, other approaches could be used as proposed in 

[168].  
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APPENDIX: ACRONYM LIST 
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ABM  Agent Based Modeling 

AFLEET Alternative Fuel Life-Cycle Environmental and Economic Transportation 

ANL  Argonne National Laboratory 

ASCM  Automotive System Cost Model 

BEV  All-Electric Vehicle 

CO2  Carbon Dioxide 

CO  Carbon Monoxide 

EDC  Environmental Damage Cost 

eGrid  Emissions & Generation Resource Integrated Database 

EIA  Energy Information Agency 

EMA  Exploratory Modeling and Analysis 

EREV  Gasoline Extended Range Electric Vehicle 

EV   Electric Vehicle 

EVRO  Electric Vehicles Regional Optimizer 

EVReMP Electric Vehicle Regional Market Penetration 

GHG  Green House Gas 

GREET Greenhouse Gases, Regulated Emissions, and Energy Use in 
Transportation 

HEV  Gasoline Hybrid Electric Vehicle 

ICEV  Internal Combustion Engine Vehicle 

LCA  Life Cycle Analysis 

LCC  Life Cycle Cost 

LCCA  Life Cycle Cost Analysis 

LCEE  Life Cycle Environmental Emissions 

LCOE  Levelized Cost of Energy 
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NEMS National Energy Modeling System (see Figure 3 for region acronyms and 
locations) 

NOx  Oxides of Nitrogen 

PADD  Petroleum Administration for Defense District 

PHEV  Gasoline Plug-in Hybrid Electric Vehicle 

PM10  Particulate Matter ≤ 10 µm 

PSAT  Powertrain System Analysis Toolkit 

SOx  Oxides of Sulfur 

TCO  Total Cost of Ownership 

VMT  Vehicle Miles Traveled 

VOC  Volatile Organic Compounds 

WFP  Water Footprint  
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