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ABSTRACT 

 Research into the use of LiDAR data for purposes other than simple topographic 

elevation determination, such as urban land cover classification and the identification of forest 

biomass, has become prominent in recent years.  In many cases, alternative analysis 

methodologies conducted using airborne LiDAR data are possible because the raw data collected 

during a survey can include information other than the classically used elevation and coordinate 

points, the X, Y, and Z of the plane.  In particular, intensity return values for each point in a 

LiDAR grid have been found to provide a useful data set for wet and dry channel classification. 

LiDAR intensity return data are, in essence, a numeric representation of the characteristic light 

reflectivity of the object being scanned; the more reflective the object is, the higher the intensity 

return will be.  Intensity data points are collected along the course of the channel network and 

within the perceived banks of the channel.  Intensity data do not crisply reflect a perfectly wet or 

dry condition, but instead vary over a range such that each location can be viewed as partially 

wet and partially dry.  It is advantageous to assess problems of this type using the methods of 

fuzzy logic.  Specifically, the variance in LiDAR intensity return data is such that the use of 

fuzzy logic to identify intensity cluster centers, and thereby assign wet and dry condition 

identifiers based on fuzzy memberships, is a possibility.  Membership within a fuzzy data set is 

characterized by a value representing the degree of membership.  Typically, membership values 

range from 0 (representing non-membership) through 1 (representing full membership), with 

many observations found to be not at either extreme but instead at some intermediate value 

representing partial membership.  The ultimate goal of this research was to design and develop 

an automated algorithm to identify wet and dry channel sections, given a previously identified 
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channel network based on topographic elevation, using a combination of intensity return values 

from LiDAR data and fuzzy logic clustering methods, and to implement that algorithm in such a 

way as to produce reliable multi-class channel segments in ArcGIS.  To enable control of 

calculations, limiting parameters were defined, specifically including the maximum allowable 

bank slope, and a filtering percentage to more accurately accommodate the study area. 

 Alteration of the maximum allowable bank slope has been shown to affect the 

comparative quantity of high and low intensity centroids, but only in extreme bank slope 

conditions are the centroids changed enough to hamper results.  However, interference from 

thick vegetation has been shown to lower intensity values in dry channel sections into the range 

of a wet channel.  The addition of a filtering algorithm alleviates some of the interference, but 

not all.  Overall results of the tool show an effective methodology where basic channel 

conditions are identified, but refinement of the tool could produce more accurate results.   
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INTRODUCTION 

Lidar Analysis 

 Light detection and ranging (LiDAR) is a method of remote sensing where laser light is 

used to gauge distance to an object.  While the primary purpose of airborne LiDAR data is the 

generation of highly accurate elevation models (NOAA, 2012), research into the use of LiDAR 

data for the determination of alternate land characteristic identification models, such as urban 

land cover classification (Chen & Gao, 2014) and the estimation of forest biomass (Gleason & 

Jungho, 2012), has become prominent in a variety of scientific fields.  In many cases, the 

alternative analysis methodologies conducted using airborne LiDAR data are possible because 

the raw data collected during a survey can include information supplemental to the classically 

used elevation and coordinate points, the X, Y, and Z of the plane.  The inclusion of intensity 

return, the number of returns per area, the time of the returns and even the angle at which the 

scan was taken, can all help identify telling characteristics for a given survey area (NOAA, 

2012).  In particular, intensity values for each point have been found to be a useful data set for 

wet and dry channel identification (Kim, Wang, & Medeiros, 2015). 

Intensity Analysis 

 LiDAR intensity return data are, in essence, a numeric representation of the characteristic 

light reflectivity of the object being scanned; the more reflective the object, the higher the 

intensity will be when it returns to the sensor.  As with ordinary light, objects that are lighter in 

color are more reflective to LiDAR than those with darker colors and tend return higher intensity 

values.  Accordingly, and cover such as grass and tree tops have a high intensity return, while 
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building rooftops and road ways tend to have lower intensity returns because of their typically 

darker coloring.  

 Reflectivity is not the only factor affecting intensity returns.  In the case of treed areas or 

areas of thick vegetation, LiDAR laser signals which pass between the upper canopies can be 

partially obscured for their return, effectively lowering the intensity of what is detected at that 

point.  Water bodies, on the other hand, tend to scatter the LiDAR laser beam when it contacts 

the surface (Brzank & Heipke, 2006).  This leads to a low or null intensity return for water 

bodies.  It is because of this low intensity return for water surfaces, such as streams and rivers, 

that a methodology for identifying wet or dry channels was introduced by Kim et al. (2015). 

 Kim et al. (2015) proposed a methodology for identifying wet and dry channels using 

LiDAR intensity information.  Intensity data are collected from the LiDAR grid over the course 

of the channel network and within the perceived banks of the channel.  The distribution of the 

intensity points collected is then analyzed.  The intensity value, where the probability of a 

channel section being wet or dry is equal, represents the threshold where a channels state 

changes from being more likely to be wet to more likely to be dry, or vice versa.  Two other 

points representing when an intensity return would be considered fully dry or fully wet are 

identified from the distributions.   

 If the implementation of the method by Kim et al. (2015), as described above, into a 

computer model is the ultimate goal, certain alterations must be made for it to be viable.  The use 

of points known to be wet or dry, based on their location within the channel network or by 

visually identifying very low and very high intensity return points is difficult to implement 

within the logic structure of a computer, as the program would have to be taught what a 



3 

 

relatively high and relatively low set of intensity values would look like.  This level of subjective 

reasoning tends to be beyond a computer’s ability to understand.  For this reason, the inclusion of 

fuzzy logic, as a means of identifying intensity return patterns and clustering, was deemed 

advantageous.   

Fuzzy Logic 

 Originally introduced by Zadeh, in a paper titled “Fuzzy Sets,” fuzzy logic has grown 

into a computational methodology which does not rely on crisp data sets in order to identify 

likely outcomes (Zadeh, 1965).  In the paper, Zadeh states that, often times, real world problem 

sets do not have strict “precisely defined criteria for membership.”  In essence, Zadeh explains 

that membership within a fuzzy data set is characterized as a gradient, with 0 representing non-

membership and 1 representing full membership.  Decimals between 0 and 1 represent a gradual 

increase of membership with the group.  An item which has a value of 0.8, for example, is more 

a member of the group than an item with a value of, say, 0.2.  Furthermore, an item can be 

considered to be a member of two groups at one time.  A classic example is a window; when not 

fully open or closed, it may be considered to be partially open and partially closed at one and the 

same moment.  In contrast with classic statistical methods that consider a possibility that the 

window may be open or may be closed at a moment in time, fuzzy logic inherently positions the 

problem in a way that accounts for the simultaneous existence of both conditions to some degree 

at a moment in time.   

This characteristic makes fuzzy logic a useful way to approach the current problem, 

because in many cases rivers do not instantly transfer from a fully wet state to a fully dry state.  

Further, where they have a wet section and a dry section, the transition between them may not be 
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delineated by some sharp boundary.  It is often the case that somewhere along their length they 

transition from wet to dry over a distance, displaying intermittent wet or dry sections over that 

distance.  A segment of the river in this transition area has some wetness and some dryness.  Put 

another away, there is not always a sharp line below which the river is wet, and above which the 

river is dry.  In some cases, for example when the stream emerges from a spring, such a sharp 

boundary may be found; however, in many channel networks the existence of such a convenient 

demarcation is unlikely. 

This complicates the use of LiDAR data to determine which length of a stream is wet and 

which is dry.  The return values, in keeping with the physical problem, do not crisply define a 

point at which this transition can be said to occur.  Instead, values become fuzzy along some 

distance, making it difficult to define a point where the river can be said to be wet or dry, or even 

to be in some intermediate state.  Since it is of interest in some situations to estimate wet and dry 

reaches, it would be useful to have a method that can be used to estimate these conditions using 

LiDAR data.   

 In the confines of the intensity return problem, fuzzy logic can be used to identify the 

ranges of intensities for which a dry or wet channel could be included.  Because the intensity 

return values have no set identifying values for “wet” or “dry,” but a range of data where lower 

intensity returns are likely to be wet and higher intensity returns are likely to be dry, the use of a 

binary system where inclusion into a category is either true or false is challenging.  Furthermore, 

just as there is no defined set of values for “wet” or “dry” the variation between these two states 

has no clear demarcation.  The use of fuzzy logic changes what would be a binary “true” or 
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“false” response to “wet” or “dry” into an identification of membership for a specific data point 

into either condition. 

Goal 

 The ultimate goal of this research was to design and develop an automated methodology 

to identify wet and dry channel sections, given a known channel network from topographic 

elevation, using a combination of intensity return values from LiDAR data and fuzzy logic 

clustering methods and then to produce reliable multi-class channel shape files in ArcGIS using 

said method.  The classes to be identified were based on fuzzy logic membership to each data 

set.  The classes of the shape files identify a channel section as “wet,” “mostly wet,” “dry,” and 

“mostly dry” where “wet” and “dry” will have full membership into their respective clusters, but 

“mostly wet” and “mostly dry” will only have partial membership into their respective clusters. 
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LITERATURE REVIEW 

 LiDAR data are commonly used to determine land surface elevation, but beyond this 

have been found useful in a multitude of identification and classification techniques to determine 

characteristics other than elevation.  For instance, LiDAR technology has been useful in 

archaeological work to identify Roman water systems in Spain (Fernandez-Lozano, Gutierrez-

Alonso, & Fernandez-Moran, 2015).  Schumacher et al. has developed an integrated LiDAR and 

precipitation model for estimated tree canopy throughfall in Denmark (Schumacher & 

Christiansen, 2015).  In addition, LiDAR data were used to identify three previously unknown 

postglacial faults in Northern Finnish Lapland (Sutinen, Hyvonen, Middleton, & Ruskeeniemi, 

2014).  Classification methods for urban and natural land use have also been studied extensively 

for a variety of applications.  For instance, a method of filtering LiDAR intensity data to remove 

extraneous data points for land cover classification has been studied (Song, Han, Yu, & Kim, 

2002). 

 As airborne LiDAR is an infrared laser attached to an aircraft (NOAA, 2012), the 

intensity data derived from it are prone to variations based on incidence angle, range to target 

and the light absorbency of the surface the beam hits (Wolf & Zissis, 1978).  Because of this 

variance, methods for the correction of the recorded intensity have been studied.  Calibration of 

LiDAR data using commercially available substances, such as gravel, is one method that been 

shown to alleviate some error within the data (Kassalainen, et al., 2009). Another method is 

radiometric correction and normalization of LiDAR intensity returns for improving land cover 

classification by making corrections based on surface slope thresholds and normalizing 

overlapping intensity data, which was shown to result in a 16.5 percent increase in accuracy. 
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(Yan & Shaker, 2014).  Furthermore, Jutzi and Gross (2009) showed that normalization of range 

and incidence angle can improve accuracy when using intensity values for analysis.  However, 

Yoon et al (2008) showed that range is a major factor in the variance of intensity for most 

surfaces, and that normalization of vegetation without accounting for range would cause an over 

correction.  This information corroborates a study in 2002 showing that an increase in vegetation 

density decreases the accuracy of the identification of terrain types (Bowen & Waltermire, 

2002). 

 The classification of urban objects, using a combination of various imaging methods and 

LiDAR data, has been studied extensively to determine its effectiveness as a means of data 

analysis.  Awrangjeb et al. (2010) for instance, used a combination of color orthoimagery and 

LiDAR data to identify residential buildings.  Alonzo et al. (2014) integrated LiDAR data with 

hyperspectral imaging to identify 29 different tree species within an urban setting.  In fact, urban 

land cover classification accuracy increases when a combination of LiDAR structural and 

intensity surface models is used.  In addition, a finer spatial resolution tends to produces a higher 

accuracy (Singh, Vogler, Shoemaker, & Meentemeyer, 2012).  Digital elevation models (DEM) 

derived from LiDAR data were consistently more accurate when compared to their reference 

data when the LiDAR cell size was smaller.  However, higher resolution DEM grids, when used 

with streamflow simulations, do not always increase accuracy of the models (Yang, et al., 2014).  

Land cover classification has been improved via integration of LiDAR Digital Surface Models 

with LiDAR intensity, where an accuracy of 90.7%, was attained for the classification of 

buildings, pavement, trees/shrubs and grass (Zhou, 2013).  A high degree of accuracy (80 to 100 

percent) was found when using airborne LiDAR data for urban land cover classification with no 
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other data sources (Chen & Gao, 2014).  A case study in 2014 in Nanjing, China found that 

urban vegetation extracted using LiDAR and intensity data also had a high degree of accuracy, at 

94.6% (Han, Zhao, Feng, & Chen, 2014).  Structure from motion and LiDAR was combined to 

model urban flooding where the addition of structure from motion increase accuracy as it 

identifies hidden objects otherwise missed by LiDAR (Meesuk, Vojinovic, Mynett, & Abdullah, 

2015).  Indeed, a multitude of processes involving LiDAR data for classification and 

identification purposes have been proposed in recent years.  

 Natural feature classification using LiDAR data has also been an extensively researched 

topic. Antonarakis et al. (2008) used a combination of elevation and intensity LiDAR data to 

classify ground and forest types.  Improvement of estimates of forest carbon stock in Kalimantan 

using LiDAR point clouds has proven effective (Kronseder, Ballhorn, Bohm, & Siegert, 2012).  

While it was only 75% accurate, LiDAR intensity data were used for mapping lichens in forest 

understories (Korpela, 2008).  Multispectral LiDAR data has improved accuracy when used to 

identify rock types in geological outcrops (Hartzell, Glennie, Biber, & Khan, 2014).  The 

monitoring of hydromorphology and human intervention in the River Carron and Forth estuary 

in Scotland, using a combination of hyperspectral imagery and LiDAR data, has been shown to 

be a useful tool (Gilvear, Tyler, & Davids, 2004).  Identification of morphologically distinct 

channel bed segments, using LiDAR data has been used to differentiate total river morphology 

(Cavalli, Tarolli, Marchi, & Fontana, 2008) and identify fluvial terraces (Val, Iriarte, 

Arriolabengoa, & Aranburu, 2014).  Roughness calculations for floodplains have been improved 

using LiDAR, as the data can be used to calculate spatially distributed roughness information as 

opposed to constant roughness for the floodplain (Abu-Aly, et al., 2014).  Water and land 
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boundaries have also been distinguished using LiDAR intensity data, for various river sections in 

Austria (Hofle, Vetter, Pfeifer, Mandlburger, & Stotter, 2009).  An automated method to 

determine riparian zone ecological health in Belgium and northern France was also found to be 

effective (Michez, et al., 2013). 

 It is clear that a number of classification methods, such as an expectation-maximization 

algorithm used to identify roads, grass, buildings and trees (Lodna, Fitzpatrick, & Helmbold, 

2007) or land cover classification using Maximum likelihood Gaussian process for use with 

hyperspectral imaging  (Jun & Ghosh, 2011) can be effective.  However, it is also clear variant 

conditions within a LiDAR dataset, including intensity changes as a consequence of changes in 

the incidence angle and range to target, can complicate the problem and lead to conditions where 

transition between one state and another is poorly defined, and it is difficult to confidently 

conclude a point on the surface is in one state (i.e. type of land cover) or another.  This can be 

addressed as a probability (i.e. the point is likely to have a certain cover) or by means of fuzzy 

logic (i.e. the point is to some degree has a certain type of cover, and to some degree does not).  

As noted above, this reality suggests consideration of fuzzy logic as a means of 

describing and analyzing the surface.  The introduction of fuzzy logic in 1965 by Lotfi Zadeh 

showed an alternate problem solving structure, which did not rely on crisp data sets to solve 

problems (Zadeh, 1965).  Zadeh posited that real world data do not typically have rigidly defined 

criteria and, as such, the methods used with the data should not have rigidly defined outputs.  

After the initial introduction to fuzzy logic, Zadeh and others have expanded upon the idea, 

identifying fuzzy logic based algorithms for use in a variety of fields.  Zadeh went on to 

introduce fuzzy algorithms as a methodology, in which algorithms that use crisp data sets could 
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be altered to include fuzzy data sets or fuzzy algorithms could be developed independently 

(Zadeh, 1968).  He then went on to introduce the concept of similarity relations and fuzzy 

orderings, in which a similarity relation is identified as reflexive, symmetric and transitive while 

a fuzzy order is a transitive fuzzy relation (Zadeh, 1971).  Type 2 fuzzy logic systems were 

developed where the rule set can also have uncertainty (Karnik & Mendel, 1998).  Type 2 fuzzy 

logic was expanded upon to help with the identification of clustering and pattern recognition 

where higher degrees of uncertainty compared to type 1 fuzzy logic systems exist. However, 

Type 2 fuzzy logic systems were found to be computationally time consuming (Melin & Castillo, 

2014).  A fuzzy logic based soil classification system using a similarity representation system 

was shown to improve soil survey efficiency (Zhu, Hudson, Burt, Lubich, & Simonson, 2001).  

Along a similar vein, fuzzy logic was used for reconnaissance-scale mapping of acid sulfate soils 

on the Finnish coast, where it was found to be a useful addition to large scale preliminary 

surveys (Beucher, Frojdo, Osterholm, Martinkauppi, & Eden, 2014).  A fuzzy logic approach 

was also implemented for habitat mapping, resulting in a robust methodology (Petrou, et al., 

2014). 

 As the transition between variant urban or natural objects can often be one which is not 

crisp, classification methods are a prime candidate for a fuzzy logic approach.  For instance, 

Shackelfor et al. (2003) used a combination of fuzzy logic and multispectral imagery for 

classification of urban and suburban areas.  The use of fuzzy logic was found to increase 

classification accuracy, when compared to a more traditional maximum-likelihood method.  In 

the case studied, the accuracy increase was found to be between 8 and 11 percent.  Fusion of 
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hyperspectral imagery with LiDAR data, with the inclusion of a fuzzy logic classifier system, has 

also proven to be effective (Bigdeli, Samadzadegan, & Reinartz, 2015). 

 As with the variance within LiDAR intensity return values for urban and natural objects, 

rigidly defined wet and dry conditions within a channel network are not feasible.  Brzank et al. 

(2006) implemented a fuzzy logic approach to the identification of coastal water or land points.  

Membership values are calculated using a combination of height, slope, intensity, missed points, 

segment length, and point density, where the thresholds are identified as strictly monotonic 

alteration to the basic function.  As the monotonic functions identify fully wet or dry conditions, 

these thresholds are set to 0 and 1 respectively.  Application of this method was then 

implemented in another study in which the Wadden Sea was a test case for the identification wet 

and dry transitional points within tidal channels and depressions (Brzank A. , Heipke, Goepfert, 

& Soergel, 2008).  While other methods of identifying water-land transitional points have been 

used and found to be effective (Smeeckaert, Mallet, David, Chehata, & Ferraz, 2013), the 

application of fuzzy logic has proven to be a useful tool within the context of LiDAR point 

identification and lends itself to the flexibility needed for use with intensity data.   

 While a combination of fuzzy logic and LiDAR intensity returns has been used for the 

identification of the transition point between wet and dry conditions within a model area, these 

methods have been used when there is a high degree of likelihood that a transition point between 

wet and dry exists.  In particular, these methods use membership criteria between both wet and 

dry conditions to identify a fuzzy boundary between the two states.  Applying fuzzy logic 

clustering techniques to definition of wet or dry sections within a channel network where there is 

no guaranty of either condition being prevalent is lacking.   
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Bezdek et al. (1984) introduced a clustering algorithm called Fuzzy c-means clustering in 

which a clustering analysis is performed using relative membership to the centroid of a given 

cluster.  By automating the calculation of the centroids of the clusters that identify wet or dry 

conditions within the channel network, using fuzzy c-means clustering, and staying within the 

channel bed boundaries to minimize intensity variance due to vegetation, then identifying the 

fuzzy membership that points along the channel network have to the cluster centroids, a 

relationship between what is considered a wet or dry condition and the points should be 

attainable and time efficient.  As no single method has been found to be effective for identify 

channel bank slopes (Vianello, Cavalli, & Tarolli, 2009), the method will rely on a known 

maximum allowable bank slope.  
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METHODOLOGY 

Initial Program Characteristics 

  The nature of computer programming is such that subjective elements are incredibly 

difficult to impossible to program as they require a flexibility of behavior that has yet to be 

achieved in mainstream computers.  In the case of channel network analysis, visually identifying 

channel sections from which to draw conditional data to test is difficult.  To this end, more 

objective methods were developed for initial intensity analysis test sites, bank slope 

determination, high and low intensity identification, and channel type partitioning.  While these 

alterations differ from the original methodology proposed by Kim et al. (2015), the basic premise 

of wet or dry stream identification based on LiDAR data should still hold. 

 Initial designs required three user inputs, a digital elevation model (DEM) raster file, an 

intensity raster file and a shape file of the channel network.  Subsequent calculations involving 

specific channel locations were conducted using the channel network map as a basis.  Any other 

data required from the surrounding area of individual channel locations were acquired using an X 

and Y coordinate system and the cell size of the intensity raster file as the step size. 

 As it is difficult to automatically identify certain conditions inherent to a specific channel 

network, the addition of three extra parameters designed to specify the output data to the region 

in which the program was run   First, the inclusion of a maximum bank slope parameter was 

identified as an effective user input, as it allows the user to distinguish specific identifying 

conditions within the region that could alter the outcome of the initial intensity analysis.  As 

bank characteristics are dependent on the geomorphology of a region, especially in ephemeral 

streams, the addition of this user defined parameter would help improve the final high and low 
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intensity analysis by more effectively defining the channel bank within the region being studied.  

Additionally, the bank slope will be calculated using consecutive cells, based on the intensity 

map.  This should help alleviate identifying minor variations in the channel bed as a bank. 

 Because the calculations to determine if a channel segment is wet or dry are based on the 

intensity return value of that segment, any object that is capable of absorbing the LiDAR light 

sufficient to lower the return value into the range of what is considered wet can cause channel 

sections, that would otherwise be identified as fully dry, to be seen as partially wet.  For this 

reason, the addition of a filtering algorithm based on the dry percentage of a channel segment 

was deemed to be a necessary addition to the program.  The user selects the percent threshold for 

which the channel segment will be considered to be all dry.  If the section exceeds this user 

defined percentage, the entire channel section will be considered dry.  

 Secondary to the inclusion of the bank slope and filter percentage user inputs, an input 

allowing the user to change the percentage of each channel segment that is used when identifying 

wet or dry conditions.  As each channel segment of the original channel network is of differing 

lengths, using small percentages while stepping through the line segments will give increased 

resolution when identifying wet and dry conditions.  It should be noted that this assumption 

holds true until the minimum pixel resolution is reached, at which point there is no increase.  

However, as the percentage decreases the number of segments analyzed increases, which lead to 

increased program run times.  For instance, if a channel network shape file originally has 1000 

polyline segments and the code is set to step through each line segment at 1% intervals to 

identify wet or dry conditions, each polyline segment has 100 intervals to analyze.  This results 

in a final tally of line segments in the output files of 100,000.  While computers can run through 
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analysis quickly, 100,000 line segments would take approximately two and a half hours to 

complete on currently available consumer computer hardware.  The addition of a user percentage 

adjustment would allow for less accurate, shorter analysis times. 

Initial Intensity Analysis 

 As channel network shape files are typically made up of a large number of line segments, 

finding a test site for each line segment produces a relatively large population of intensity values.  

Sites were chosen at distances of 50% of the total length of the line segment.  As data points are 

taken from each line segment, intensity returns for the entire channel network are more likely to 

be representative of conditions in the channel network, as a whole.   

 After the initial points within the stream network were identified, each point was 

analyzed using a cluster analysis technique called fuzzy C-means (Bezdek, Ehrlich, & Full, 

1984).  The use of a fuzzy logic method for identification of the centroids of the intensity clusters 

was decided upon because of the nature of the intensity values.  As stated on the ArcGIS 

resources website by ESRI, “Intensity is relative, not quantifiable, therefore you cannot expect 

the same value off the same target from flight to flight or from elevation to elevation” (ESRI, 

2014).  In short, the expectation that the intensity values will be the same between maps does not 

hold, because the intensity values are only relative to themselves and no other dataset, even a 

dataset of the same area.  The use of fuzzy logic allows for the approximate and relative nature 

of each dataset by identifying the relative membership of an intensity value to the cluster instead 

of a binary membership whereby the individual intensity values are either included in one group 

or another (Ross, 2010). 
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 In the case of intensity classification, fuzzy C-means cluster analysis was used to identify 

a predefined number of intensity centroids within the dataset collected from the channel network 

and intensity raster files.  As the intensity values required for analysis are the relative high 

intensity and relative low intensity within the channel network, the number of centroids to be 

identified is permanently set to two for the program.  Unlike K-means cluster analysis, one of the 

more popular cluster analysis methods which identifies a data point as belonging entirely to the 

centroid it is closest to, C-means identifies the membership of a data point to the clusters that 

surround it (Ross, 2010).   

 The fuzziness (𝑚) of the calculation will be set to 2, which will allow for a high degree 

of fuzziness between the datasets.  As previously stated, the number of centroids (𝑗) to be 

identified, in this instance, is 2.  As a starting location is required to begin the calculations, the 

maximum and minimum intensity values found within the dataset are used as starting centroids.  

Because there is only one parameter to calculate, the intensity, the cluster analysis is simplified 

into two dimensional space.  The distance (𝑑𝑖𝑗) between the calculated centroid (𝑐𝑗) and the 

current intensity value (𝑥𝑖) is a two dimensional line, and is the absolute difference between the 

two values (equation 1).   𝑑𝑖𝑗 = |𝑐𝑗 − 𝑥𝑖|           (1) 

The membership between any given intensity value and the maximum and minimum centroids is 

given as the membership of an intensity value to a specific centroid, divided by the sum of the 

individual memberships to the intensity value to each centroid (equation 2). 𝑢𝑖𝑗 = 1∑ (𝑑𝑖𝑗𝑑𝑖𝑘) 2𝑚−1   𝑐𝑘=1           (2) 
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The each centroid is then calculated as the sum of the memberships, to the power of the 

fuzziness, of a point to that centroid, times the intensity value, divided by the sum of the 

memberships, to the power of the fuzziness (equation 3). 

𝑐𝑗 = ∑ 𝑢𝑖𝑗𝑚𝑥𝑖𝑛𝑖=1∑ 𝑢𝑖𝑗𝑚𝑛𝑖=1            (3) 

These three equations form an iterative process that alters the centroids until ending conditions 

are met.  When the difference between the new centroids and the previous set of centroids is 

minimal, 0.01 in this case, the maximum and minimum centroids are considered determined 

(Ross, 2010). 

 After the local maximum and minimum centroids are determined for a channel line 

section, the values are placed in an array.  Upon completion of the calculations for the final 

channel line section, a second fuzzy C-mean cluster analysis is applied, using the collected local 

maximum and minimum centroids, to determine the ultimate maximum and minimum centroids, 

for the channel network.   

 Figures 1 through 2 are program flowcharts depicting the initial intensity analysis logic 

path.  Figure 1 shows the details of the program section.  More specifically, Figure 1 exhibits a 

visual representation of the initial point selection section of the program.  The program first 

identifies the output file name and if it exists, ends the program.  Next, the program finds the 

mid-point of each line section, finding the elevation and intensity values for each cell, as it 

moves out from the center.  Finally, the code exits the loop after the final line segment has been 

tested and identifies the local maximum and minimum intensities.  Figure 2 shows the specific 

steps of the fuzzy C-means cluster analysis, as it is used in the program.  The program uses 

equations (1) and (2) in an iterative format, stepping through each intensity value in the array, 
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until each data point has been accounted for.  Next, the program identifies the centroids and 

determines if the difference between the current centroid and the last centroid are less than or 

equal to 0.01, at which point the code exits out of the loop and continues on to the next section of 

code.  The full code can be found in the appendix if a more in depth view of the program 

functions is desired.  
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Figure 1: Program Flow Chart, Section 1  
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Figure 2: Program Flow Chart, Section 2  
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Channel Network Analysis 

 After the ultimate maximum and minimum centroids are determined for the channel 

network, the program returns to the beginning of the channel network to begin analyzing the 

likely condition of the channel.  Each step through the line sections are classified as one of 4 

categories: wet, dry, mostly wet or mostly dry.  Each category is accounted for separately and 

creates individual shape files after the program finishes. 

 As seen in Figure 3, from the beginning of the channel network, the program begins by 

stepping through each line segment at a user specified increment, set as a percentage.  For 

instance, if the user sets the step through percentage as 10 percent the line segment will be 

sectioned into 10 parts.  Starting with the beginning of each line increment a node is tested to 

determine the intensity value at that point.  The intensity value is then compared to the maximum 

and minimum intensity centroids.  If the current intensity is larger than the maximum intensity 

centroid, the line increment will be identified as dry.  Conversely, if the current intensity return is 

smaller than the minimum intensity centroid, then the line increment will be identified as wet.  

At this point, the same fuzzy logic algorithm for determination of membership into the maximum 

and minimum centroids is used for classification as either mostly wet or mostly dry.  As the 

membership values returned from equation (1) are decimal values between 0 and 1, where a 

value has a higher inclusiveness to the centroid as the number reaches 1, and there are only two 

centroids to test against, the sum of the membership values for both the maximum and minimum 

centroids equal 1.  If the membership equation, when applied to the minimum centroid, showed 

greater than or equal return value of 0.5, the section interval was identified as mostly wet 
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whereas.  However, if the membership equation, when applied to the maximum centroid, showed 

a return value greater than 0.5, the section interval was identified as mostly dry.   

 The addition of a dry channel filtering algorithm was deemed to be beneficial, as it allows 

the user to select the level at which the program stratifies the dry channel sections.  As trees and 

dense flora can absorb LiDAR, the returns can appear as low as wet or mostly wet, when being 

identified by the program.  Because of this, the dry channel filtering algorithm was designed to 

help alleviate small errors, in forested channel sections, by simply identifying a channel section 

that is more than a predefined percentage dry or mostly dry as entirely dry.  Unfortunately, dense 

groups of trees directly over the channel section can still be identified as wet, as the percentage 

of the channel section covered by trees will exceed the filtering amount, unless the user sets it 

very low. 
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Figure 3: Program Flow Chart, Section 3 
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Sensitivity Analysis 

 Alongside analysis of the overall outputs of the tool to determine the effectiveness of the 

results, an analysis of the various alterable elements of the program was performed to ascertain 

the effectiveness and variance that each element contributes to the overall output.  Analyses of 

four aspects of the tool were of primary concern:   

1. alterations of the minimum allowable cluster analysis data set length, 

2. local cluster analysis vs. global cluster analysis, 

3. alterations of the user defined bank slope, and 

4. river segment filtering. 

 First, given the variable nature of the available number of data points within the banks of 

a channel section, identifying a minimum acceptable number of data points, per channel section, 

becomes necessary.  While there is no consensus on an effective minimum number of points for 

a cluster analysis, a small number of data points have the potential to alter the local cluster 

analysis and thus, skew the overall maximum and minimum intensity results.  For each test 

location the minimum acceptable number of data points were tested at 5 point increments until 

the program failed to return results, i.e. no channel sections existed were the number of data 

points exceeded the minimum acceptable number of data points.  Additionally, the slope was set 

at a constant five percent, for each run, to keep data acquisition consistent between runs. 

 Second, to help alleviate errors caused by potential outliers in the intensity data, two 

cluster analyses were performed.  One analysis at a local channel section level and another 

analysis at a global channel network level.  A sensitivity analysis was performed to identify if 

any errors were incurred by using a cluster analysis on the outputs of a previous cluster analysis.  
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The local cluster analysis was removed from the program and the same tests were performed as 

previously shown to identify the minimum allowable data set length.  The results of both sets of 

tests were then compared to identify the difference between the two data sets. 

 Third, multiple channel networks were tested to determine what alterations of the bank 

slope would have on the outcome of the cluster analysis and the global maximum and minimum 

intensities obtained.  Bank slopes of 0.5, 1, 3, 5, 10, 15 and 20 percent were run in the model.  In 

addition to the four shape files output by the program, the raw intensity values used for the 

cluster analysis were captured and output.  Histograms for each data set were plotted, as well as 

the cumulative percentage and percent distribution.  

 Finally, as previously discussed, Aerial LiDAR data are dependent on a clear return to be 

an effective measurement or identifying device.  In the case of wet or dry channel identification, 

where the intensity of the return is the measurement medium, the accuracy of the process is 

specifically dependent on the intensity return from a dry or wet point originating from within a 

channel section.  However, thick fauna coverage or inaccurate channel network points can lead 

to inaccuracies in the output files.  For this reason, the inclusion of a filtering option within the 

program was implemented.    
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RESULTS 

 The developed methodology and program flowchart was realized using the Python 

programming language with the addition of the ESRI ArcGIS programming package, ArcPy.  A 

variety of testing conditions were implemented to identify coding weaknesses.  Comparisons of 

the individual components to hand calculated results, especially for the fuzzy logic elements, 

were conducted and found to be the same in each case. 

 Four test sites were analyzed: Clover, South Carolina; Basin 15, Stateline, Nevada; Basin 

13, Oregon; Homewood, California.  A total of 116 runs were performed for the previously 

mentioned sensitivity analyses.  Because four shape files are produce for each run, this leads to a 

total number of 464 shape files.  Additional testing criteria required additional data outputs, in 

the form of lists of intensity values which were used by each cluster analysis.  Completion time 

for each run varied based on the size of the site being tested, if the filtering algorithm was in use, 

the set percentage length for analysis and maximum allowable bank slope.  Completion times 

were as short as 1 hour to as long as 9 hours. 

 It was found that the nature of the data collected and the analysis performed using the 

aforementioned methodology complicates discussion of the results if developed separately from 

identification of the results themselves, and demands frequent cross-references and duplications 

if so separated.  Because of this, the majority of the sensitivity analysis will be discussed in 

conjunction with identification of the sensitivity results. 
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DISCUSSION 

Minimum Allowable Cluster Analysis Data Set Length 

 Tables 1 - 4 show the global maximum and minimum intensities for the four test cases.  

When graphed, the only discernable pattern is a sudden change in values at or around a minimum 

allowable point number of 25 to 30 (Figures 4 - 7).  Tables 5 - 8 confirm that the standard 

deviation for the first 25 points is significantly lower in almost all cases, when compared to the 

standard deviation for the entire dataset.  While it is clear, based on the figures, that the data are 

not normally distributed, the standard deviation can still be a useful parametric identifier 

representative of the central tendency of the data.  However, a useful non-parametric indicator of 

central tendency can also be found via the absolute spread of the data, i.e. the difference between 

the maximum and minimum values.  Both were therefore considered in this work.  The reduction 

in the spread found for the first 25 points confirms the results found using standard deviation.  

The only standard deviation increase between the first 25 points and the full data set is the 

maximum intensity standard deviation for Homewood, where the difference is small enough to 

be overlooked. 
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Table 1: Clover Maximum and Minimum Intensities 

Clover, South Carolina 

Minimum 

Number 

Maximum 

Intensity 

Minimum 

Intensity 

85 N/A N/A 

80 52.743 33.833 

75 48.62 25.692 

70 48.113 23.403 

65 46.962 21.71 

60 46.22 21.79 

55 45.066 20.007 

50 44.85 19.754 

45 45.627 22.318 

40 45.484 22.112 

35 45.443 22.299 

30 45.751 22.814 

25 45.698 22.763 

20 46.531 24.224 

15 47.062 25.074 

10 47.301 25.877 

5 46.186 25.499 

 

Table 2: Basin 15, Maximum and Minimum Intensities 

Basin 15, Stateline, NV 

Minimum 

Number 

Maximum 

Intensity 

Minimum 

Intensity 

25 N/A N/A 

20 127.664 56.49 

15 126.305 59.346 

10 122.022 54.537 

5 122.413 57.136 

 

  



29 

 

 

Table 3: Basin 13, Maximum and Minimum Intensities 

Basin 13, Oregon 

Minimum 

Number 

Maximum 

Intensity 

Minimum 

Intensity 

75 N/A N/A 

70 61.596 5.464 

65 61.596 5.464 

60 61.596 5.464 

55 61.596 5.464 

50 61.596 5.464 

45 52.097 15.192 

40 51.002 10.747 

35 51.002 10.747 

30 97.587 34.384 

25 117.128 28.226 

20 112.623 29.813 

15 95.191 28.141 

10 103.485 27.959 

5 106.291 28.05 

 

Table 4: Homewood, Maximum and Minimum Intensities 

Homewood, California 

Minimum 

Number 

Maximum 

Intensity 

Minimum 

Intensity 

45 N/A N/A 

40 122.837 103.786 

35 122.837 103.786 

30 122.837 103.786 

25 114.575 56.22 

20 112.929 60.52 

15 121.042 45.125 

10 121.621 45.18 

5 122.314 58.215 
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Figure 4: Clover, Intensity vs. Minimum Allowable Number of Points 

 

 

Figure 5: Basin 15, Intensity vs. Minimum Allowable Number of Points  
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Figure 6: Basin 13, Intensity vs. Minimum Allowable Number of Points 

 

 

Figure 7: Homewood, Intensity vs. Minimum Allowable Number of Points  
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Table 5: Clover, Intensity Statistical Analysis 

Clover, South Carolina 

Test 
Maximum 

Intensity 

Minimum 

Intensity 

All Data Points 

Maximum Value 52.74 33.83 

Minimum Value 44.85 19.75 

Standard deviation 1.92 3.28 

First 25 Data Points 

Maximum Value 47.30 25.88 

Minimum Value 45.70 22.76 

Standard deviation 0.67 1.35 

Second 25 Data Points 

Maximum Value 46.22 22.32 

Minimum Value 44.85 19.75 

Standard deviation 0.48 1.18 

 

Table 6: Basin 15, Intensity Statistical Analysis 

Basin 15, Stateline, Nevada 

Test 
Maximum 

Intensity 

Minimum 

Intensity 

All Data Points 

Maximum Value 127.66 59.35 

Minimum Value 122.02 54.54 

Standard deviation 2.81 1.98 
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Table 7: Basin 13, Intensity Statistical Analysis 

Basin 13, Oregon 

Test 
Maximum 

Intensity 

Minimum 

Intensity 

All Data Points 

Maximum Value 117.13 34.38 

Minimum Value 51.00 5.46 

Standard deviation 27.48 10.20 

First 25 Data Points 

Maximum Value 117.13 34.38 

Minimum Value 95.19 27.96 

Standard deviation 8.48 2.52 

Second 25 Data Points 

Maximum Value 61.60 15.19 

Minimum Value 51.00 5.46 

Standard deviation 17.92 4.05 

 

Table 8: Homewood, Intensity Statistical Analysis 

Homewood, California 

Test 
Maximum 

Intensity 

Minimum 

Intensity 

All Data Points 

Maximum Value 122.84 103.79 

Minimum Value 112.93 45.13 

Standard deviation 4.01 26.84 

First 25 Data Points 

Maximum Value 122.84 103.79 

Minimum Value 112.93 45.13 

Standard deviation 4.31 21.74 

 

 Based on this analysis, a minimum allowable number of points per river section was set 

to 10.  The data show that a value between 5 and 25 will have a more consistent outcome, when 

compared to a larger minimum allowable number of points.  In addition, Table 9 shows that the 

lower the minimum allowable number of points, the more overall data there is for the cluster 
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analysis.  Because of this, a number on the lower end of the 5 to 25 point spectrum will generate 

more points for analysis while still retaining enough points per channel section for local cluster 

analysis.  A minimum number of 10 points was chosen for a calculation limit. 

 

Table 9: Minimum allowable number of points and the total points for analysis 

Number of Data Points in Data Set: Minimum allowable points 

Location Minimum 
Number of 

Data Points 
Location Minimum 

Number of 

Data Points 

Basin 13 

75 N/A 

Clover 

85 N/A 

70 70 80 1375 

65 70 75 2679 

60 70 70 3319 

55 70 65 3930 

50 70 60 4362 

45 115 55 4988 

40 159 50 5201 

35 159 45 5483 

30 290 40 5904 

25 534 35 5978 

20 954 30 6518 

15 3226 25 6736 

10 7830 20 7267 

5 20868 15 7924 

Homewood 

45 N/A 10 8805 

40 43 5 10077 

35 43 

Basin 15 

25 N/A 

30 43 20 43 

25 71 15 60 

20 160 10 131 

15 327 5 267 

10 694 

   5 2458 
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Local Cluster Analysis vs Global Cluster Analysis 

 The difference as well as the percent error of the maximum and minimum intensities, 

with and without the local cluster analysis, was calculated (Tables 10 – 13).  Results show that, 

except for rare cases, the difference between the two-cluster method and the one-cluster method 

is small.  If the previously chosen minimum calculation limit of 10 points is taken, the difference 

is less than 4 in all study cases for the high intensity centroid and less than 5 for the low intensity 

centroid, in all but the Basin 15 test case.   

 The overall close nature of most of the differences between the two- and one-cluster 

analyses, even considering the relatively large difference found in the minimum intensity 

centroid of Basin 15, at the minimum calculation limit of 10, is such that it is not substantial 

enough to forgo using the two-cluster analysis method.     
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Table 10: Clover, Global Only Statistical Analysis 

Clover, South Carolina 

Minimum 
Number 

Maximum 
Intensity 

Minimum 
Intensity 

Max % 
Error 

Min % 
Error 

Max 
Difference 

Min 
Difference 

85 N/A N/A N/A N/A N/A N/A 

80 52.01 35.65 1.40 5.10 0.73 1.82 

75 47.50 27.57 2.35 6.82 1.12 1.88 

70 46.23 24.65 4.07 5.04 1.88 1.24 

65 44.97 21.37 4.43 1.57 1.99 0.34 

60 44.40 21.15 4.09 3.05 1.82 0.65 

55 44.15 19.57 2.07 2.22 0.91 0.44 

50 43.89 19.28 2.18 2.45 0.96 0.47 

45 44.11 19.34 3.44 15.37 1.52 2.97 

40 44.34 19.20 2.59 15.14 1.15 2.91 

35 44.28 19.33 2.64 15.34 1.17 2.97 

30 44.52 19.67 2.76 16.01 1.23 3.15 

25 44.64 19.84 2.37 14.76 1.06 2.93 

20 45.02 20.44 3.36 18.49 1.51 3.78 

15 45.29 20.98 3.91 19.50 1.77 4.09 

10 45.55 21.58 3.85 19.91 1.75 4.30 

5 45.36 21.96 1.82 16.13 0.83 3.54 

 

Table 11: Basin 15, Global Only Statistical Analysis 

Basin 15, Stateline, NV 

Minimum 

Number 

Maximum 

Intensity 

Minimum 

Intensity 

Max % 

Error 

Min % 

Error 

Max 

Difference 

Min 

Difference 

25 N/A N/A N/A N/A N/A N/A 

20 133.09 57.39 4.08 1.56 5.43 0.90 

15 131.16 67.02 3.70 11.45 4.85 7.67 

10 125.94 69.83 3.11 21.90 3.92 15.30 

5 124.60 65.69 1.75 13.02 2.18 8.55 
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Table 12: Basin 13, Global Only Statistical Analysis 

Basin 13, Oregon 

Minimum 
Number 

Maximum 
Intensity 

Minimum 
Intensity 

Max % 
Error 

Min % 
Error 

Max 
Difference 

Min 
Difference 

75 N/A N/A N/A N/A N/A N/A 

70 61.60 5.46 0.00 0.00 0.00 0.00 

65 61.60 5.46 0.00 0.00 0.00 0.00 

60 61.60 5.46 0.00 0.00 0.00 0.00 

55 61.60 5.46 0.00 0.00 0.00 0.00 

50 61.60 5.46 0.00 0.00 0.00 0.00 

45 43.00 9.01 21.15 68.69 9.10 6.19 

40 42.25 7.00 20.71 53.48 8.75 3.75 

35 42.25 7.00 20.71 53.48 8.75 3.75 

30 103.33 22.71 5.55 51.40 5.74 11.67 

25 109.81 21.87 6.66 29.07 7.32 6.36 

20 113.86 24.85 1.08 20.00 1.24 4.97 

15 97.87 24.52 2.74 14.78 2.68 3.62 

10 105.20 25.56 1.63 9.40 1.71 2.40 

5 107.29 26.50 0.93 5.85 1.00 1.55 

 

Table 13: Homewood, Global Only Statistical Analysis 

Homewood, California 

Minimum 

Number 

Maximum 

Intensity 

Minimum 

Intensity 

Max % 

Error 

Min % 

Error 

Max 

Difference 

Min 

Difference 

45 N/A N/A N/A N/A N/A N/A 

40 122.84 103.79 0.00 0.00 0.00 0.00 

35 122.84 103.79 0.00 0.00 0.00 0.00 

30 122.84 103.79 0.00 0.00 0.00 0.00 

25 116.70 57.03 1.82 1.41 2.12 0.81 

20 112.19 59.18 0.66 2.27 0.74 1.34 

15 122.89 46.73 1.50 3.44 1.85 1.61 

10 122.09 43.94 0.39 2.82 0.47 1.24 

5 122.40 55.97 0.07 4.02 0.09 2.25 
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Altering Bank Slope 

  The global high and low intensity values shown in Tables 14 - 17 identify how the alteration of 

the maximum allowable bank slope can affect the overall intensity values.  

 

Table 14: Clover, Maximum and Minimum Intensity Based on Bank Slope 

Clover, South Carolina 

Bank Slope (%) Maximum Intensity Minimum Intensity 

20 48.63 33.07 

15 49.79 33.26 

10 72.43 34.75 

5 46.53 24.22 

3 45.07 20.77 

1 43.10 15.60 

0.5 41.32 15.30 

 

Table 15: Basin 15, Maximum and Minimum Intensity Based on Bank Slope 

Basin 15, Stateline, NV 

Bank Slope (%) Maximum Intensity Minimum Intensity 

20 116.14 49.88 

15 116.56 53.81 

10 123.92 58.17 

5 127.66 56.49 

3 N/A N/A 

1 N/A N/A 

0.5 N/A N/A 
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Table 16: Basin 13, Maximum and Minimum Intensity Based on Bank Slope 

Basin 13, Oregon 

Bank Slope (%) Maximum Intensity Minimum Intensity 

20 103.56 30.24 

15 100.65 30.13 

10 93.07 28.52 

5 112.62 29.81 

3 115.18 23.74 

1 28.83 15.97 

0.5 N/A N/A 

 

Table 17: Homewood, Maximum and Minimum Intensity Based on Bank Slope 

Homewood, California 

Bank Slope (%) Maximum Intensity Minimum Intensity 

20 123.64 53.94 

15 124.61 55.16 

10 122.68 57.33 

5 112.93 60.52 

3 52.16 34.68 

1 47.46 31.94 

0.5 N/A N/A 

 

 An initial test of the program, using the raw intensity values, was a comparison length of 

each data set.  Limiting the maximum allowable bank slope lowers the pool from which data 

points can be drawn, meaning that progressively decreasing the maximum allowable slope 

should, in turn, decrease the length of the corresponding data sets.  Table 18 shows that, as 

expected, for the four basins tested there is a decrease in the number of points within the data 

sets, as related to a decrease in the maximum allowable bank slope.   
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Table 18: Number of Points Per Bank Slope, Per Location 

Number of Data Points in Data Set 

Location Bank Slope (%) Number of Data Points 

Clover 

20 31661 

15 22234 

10 14681 

5 7267 

3 5080 

1 1476 

0.5 451 

Basin 13 

20 17759 

15 10687 

10 4859 

5 954 

3 305 

1 20 

0.5 N/A 

Basin 15 

20 2534 

15 1479 

10 543 

5 43 

3 N/A 

1 N/A 

0.5 N/A 

Homewood 

20 4235 

15 2411 

10 984 

5 160 

3 22 

1 20 

0.5 N/A 

 

 This analysis also identified several cases where a maximum allowable bank slope would 

not return results.  In the case of Basin 13 and Homewood, a bank slope of 0.5 percent did not 

include enough points per line segment to be used as a test point and would return a divide by 
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zero error in the next code section.  Basin 15 would not return results for 0.5, 1 or 3 percent 

maximum allowable bank slope.  As can be seen in Table 18, for each test case with a non-

return, there are also bank slopes with minimal points in the data set.  For instance, in addition to 

a bank slope of 0.5% returning null results, the Homewood test case also shows a low number of 

data points for 1 and 3 percent maximum allowable bank slopes.  This leads to markedly skewed 

results for the maximum and minimum intensity values, indicated by Table 17, as a low number 

of channel sections could have been used for the calculations. 

 Bank slope testing also identified a limitation with the current design of the model.  In a 

case where the channel slope exceeds the maximum allowable bank slope, the program does not 

function as intended.  Basin 15 is located south east of Lake Tahoe where the channel network is 

on the side of a mountain.  The average channel slope for the network is close to 4 percent.  

Because of this, when the program identifies the slope for comparison to the maximum allowable 

bank slope, it confuses the channel slope with the bank slope, as it does not currently identify the 

channel slope.  This means that the program will not work for areas where the channel slope 

exceeds the maximum allowable bank slope, as the number of data points collected will be 

insufficient for later calculations. 

 Figure 8 shows the histogram distribution of intensity values for the Clover channel 

network.  The increase of the maximum allowable bank slope has had the desired effect of 

increasing the number of points within the dataset.  The dual mounding of the histogram 

indicates two clusters of data within the data set which correspond to low intensity returns and 

high intensity returns.  Increases in maximum allowable bank slope result in a corresponding 

increase in the high intensity return cluster.  This is as expected, as increasing the maximum 
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allowable bank slope beyond what the actual bank slope of the channel network is increases the 

number of “dry” or high intensity return values by allowing the program to identify points 

outside the true channel bank as points within the set boundaries of the program. 

 

 

Figure 8: Clover, Histogram of Intensity Data vs. Frequency 

 

 Figures 9 - 11 show the histograms of the three remaining test sites.  Clover and 

Homewood both show a double mounding that is expected.  However, neither Basin 13 nor 

Basin 15 shows this trend.  In the case of Basin 13, the majority of the intensity returns obtained 

are relatively low.  Upon inspection of the intensity data in ArcGIS, Basin 13 showed a high 

amount of null filled data for the channel network.  Figure 12 shows a section of Basin 13’s null 

filled data.  In essence, when the intensity return map was created, the areas with no or “null” 

data, were filled using a gradient from the last known point to next known point.  In the case of 

Basin 13, the known points were shown to have relatively low intensities.  Thus, the histogram 
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of the intensity return data set for every maximum allowable bank slow shows a large number of 

low intensity returns.  Taking the low degree of accuracy of the intensity return data into 

account, the variance between the low and high global intensity values is relatively large, as can 

be seen in Tables 16.  The use of fuzzy logic memberships for determination of the global 

intensity values allows for a degree of flexibility within the clustering of the data.  As the 

clustering algorithm is set on defining two clusters regardless of point density, and as the low 

intensity cluster is well defined, the high intensity cluster must be identified using the remainder 

of the data set. 

 

 

Figure 9: Basin 15, Histogram of Intensity Data vs. Frequency  
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Figure 10: Basin 13, Histogram of Intensity Data vs. Frequency 

 

 

Figure 11: Homewood, Histogram of Intensity Data vs. Frequency  
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Figure 12: Null Field Fill Areas 

 

 While Basin 15 shows the same peaking trend as expected and seen in the Homewood 

and Clover test cases, truncation of the data because of the high channel slope becomes evident.  

When a comparison (Figure 13 - 15) of the peak sections of Clover and Homewood was made 

with the full histogram of Basin 15, the same pattern becomes evident.  This shows that, while 

Basin 15’s channel slope does not allow for a fully accurate representation of the wet or dry 

conditions within the channel network, presence of the expected trend in the higher bank slope 
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percentages allows for an approximate representation.  In addition, given that cluster analysis 

methods focus on data cluster, and Basin 15 still has representative high and low clustering 

points, in much the same way as Homewood, calculation of high and low centroids is still a 

viable technique.   

 

 

Figure 13: Basin 15, Histogram Peak Comparison  
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Figure 14: Homewood, Histogram Peak Comparison 

 

 

Figure 15: Clover, Histogram Peak Comparison  
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 Analysis of the percent distributions of the test sites revealed another potential issue 

within the method that baseline histograms did not make readily apparent.   The maximum and 

minimum intensity values calculated in Table 14, for the Clover test site at a 1% and 0.5% slope 

are similar to each other, yet when a comparison of their percent distributions is made; it 

becomes evident that the intensity values calculated for a bank slope of 0.5% are false returns 

(Figure 16).  A percent distribution comparison shows that the intensity peaks for a bank slope of 

1% are roughly in line with the maximum and minimum intensity values of 43.1 and 15.6 

respectively, while the double peaks for a bank slope of 0.5% are both under an intensity value 

of 20 while clustering analysis identifies the peaks at 41.3 and 15.3.  In the 0.5% bank slope case 

the tailing end of the distribution drew the maximum intensity clustering analysis higher.  

Figures 17 and 18 show that similar instances to the Clover test case can be seen in both Basin 

15 and Homewood. 

 

 

Figure 16: Clover, Percent Distribution of Intensities  
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Figure 17: Basin 15, Percent Distribution of Intensities 

 

 

Figure 18: Homewood, Percent Distribution of Intensities  
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 Further analysis using the cumulative percentage shows that, when graphed together, 

bank slopes within an acceptable range all have similar patterns (Figures 19 - 22).  In the case of 

Clover, Basin 13 and Homewood, outliers from the group can be easily distinguishable from the 

whole, as they do not have similar slopes to the others.  

 

 

Figure 19: Clover, Cumulative Percentage of Intensities  
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Figure 20: Basin 15, Cumulative Percentage of Intensities 

 

 

Figure 21: Basin 13, Cumulative Percentage of Intensities  
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Figure 22: Homewood, Cumulative Percentage of Intensities 

 

River Segment Filtering 

 The function of the user defined filtering percentage is to attempt to smooth out the 

aforementioned inconsistencies in the output shape files.  For instance, Figure 23 is an 

incorrectly identified channel segment, where the channel line can clearly be seen to be traveling 

down a wet channel section.  In this case, the small blue line segments represent wet, the green 

represent mostly wet, the yellow is mostly dry and the red is dry.  The testing point was found to 

be within the bounds of a highly reflective surface, raising the intensity return to within a dry or 

mostly dry range.  The use of the filtering function removed the erroneous section and produced 

a line segment considered to be entirely wet (Figure 24).  It should be noted that, while this 

function will eliminate incorrect line segments, it will also remove correctly identified segments, 

if the percentage is set high enough to be considered incorrect. 
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Figure 23: Incorrectly Identified Channel Section  
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Figure 24: Filtered Channel Section 
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Overall Results 

 Using the Clover test case as an example, an average bank slope for the channel network 

was found to be close to seven percent.  In addition, a wet filtering of 10% and a dry filter of 

20% were implemented to smooth out inconsistences.  Figures 25 - 28 show the individual shape 

files, using the digital elevation model as a back drop. The wet channel sections are more 

concentrated along the main trunk of the channel network, while the dry channel sections are 

more concentrated in the peripheral channels.  This is in keeping with what is typical of channel 

networks, in geomorphological terms.  Increases in stream order as a channel network moves 

toward the central channel, then out of the watershed, corresponds to increases in flow conditions 

(Strahler, 1969).  When the Clover test case is examined, it can be seen that the transition points 

between each subsequently wetter condition roughly corresponds with increases in effective 

drainage area for each channel section.  In other words, the channel sections become wetter as 

they come closer to the main trunk of the channel network. 

 A combination of all four maps produces the overall moisture conditions for Clover 

(Figure 29)  Upon closer inspection, as seen in a close-up of a river segment with the LiDAR 

intensity map as a back drop (Figure 30), the darker shading, indicating wet channel sections, can 

be seen to match with the line representing wet channel sections.   
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Figure 25: Wet Channel Section 
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Figure 26: Mostly Wet Channel Section  
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Figure 27: Mostly Dry Channel Section  
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Figure 28: Dry Channel Section  
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Figure 29: All Channel Section  
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Figure 30: Close up of Channel Section 
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FUTURE RESEARCH 

 The method produced from this research has been found to be effective in identifying wet 

and dry channel segments.  It is suggested that future research consider improvements in several 

areas which might enable more accurate identification of wet and dry channels.   

One area of improvement is in the way trees are accounted for.  As noted in the main 

body of this work, high density trees have a tendency to obscure ground returns, thus lowering 

the intensity data for the LiDAR and producing low value locations that could be mistaken for 

wet or mostly wet conditions.  This potential influence on results is complicated by the fact that 

trees themselves in some circumstances behave in ways that do not lead to crisply defined areas; 

clustering or a ragged demarcation may exist.  The addition of an algorithm to identify tree 

clusters and adjust the intensity values accordingly would be beneficial to this method.   

As previously identified, channel slopes that exceed the minimum allowable slope falsely 

identify the channel slope as the bank slope, for a channel section.  The addition of a channel 

slope identifier would increase the effectiveness and usefulness of the method to include high 

slope channel conditions.  Finally, because the program is dependent on an accurate channel 

network, as an input, errors in the provided data will induce errors in the end results.  The 

inclusion of a channel location check to confirm that the channel network line is within the 

boundaries of the channel, based on the digital elevation model, would improve accuracy of the 

model, as a whole.   

The actual definition of ‘wet’ and ‘dry’ is also an area of interest from a biological point 

of view.  For some purposes (e.g. habitat suitability determinations), the degree of wetness that 

defines a point of demarcation may differ from a hydrologically oriented determination.  
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Consequently, it is of interest to consider how to incorporate criteria for defining ‘wet’ and ‘dry’ 

in differing ways to suit differing needs.  Coupled with this is the need to develop primary data 

sets, based on ground proofing that establishes ‘wet’ and ‘dry’ delineations based on observed 

physical criteria, and that are therefore useful in ground truthing the defined demarcation point. 
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CONCLUSION 

 LiDAR intensity data have been used in a multitude of alternate analysis methods, such 

as urban land use identification, forest biomass quantification and coast line identification.  The 

method proposed in this paper attempts to use a combination of LiDAR elevation and intensity 

data, coupled with fuzzy logic, to autonomously identify wet and dry channel segments, within a 

previously identified channel network.  Fuzzy logic is used as the LiDAR intensity values have 

no pre-defined ranges in which wet or dry conditions are dominant.  Thus, an independent 

analysis of the local high and low intensity values is necessary in order to identify the transition 

points between wet and dry conditions.  Given the fuzzy logic framework of the method, four 

conditions are identified: Dry, Wet, Mostly Dry, Mostly Wet. 

 A minimum allowable number of points to perform a cluster analysis was set to 10, for 

local cluster analysis instances.  While there is technically no minimum allowable number of 

points, when performing a cluster analysis, a sensitivity analysis shows that a minimum 

allowable number of points of 10 was within a range that produced the most consistent results.  

When the first 25 sets of data were compared to the entire set of data, it was found that the 

standard deviation for the first 25 sets of data was lower.  Given this information, supplemented 

with data showing that the lower the minimal allowable number of points, the higher the total 

number of points used, led the aforementioned minimum number of 10 points per cluster 

analysis. 

 The method, currently, produces results that identify the four conditions with a 

reasonable degree of accuracy, based on remote evaluations of the target areas.  When a 

comparison of the methods is made, the difference between a two-cluster method, where a 
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cluster analysis is performed at the local and global levels shows a small enough difference to the 

one-cluster method, where a cluster analysis is performed at only the global level, that the use of 

the two-cluster method is used.  The local cluster analysis is meant to reduce the effect outlier 

intensity data has on the global outcome.  Of course, a more robust methodology could be 

employed, at a later date, to eliminate outliers from the data entirely, but the current method is 

effective and will be used. 

 Alteration of bank slope has been shown to minimally affect the outcome of the 

maximum and minimum global intensity values, except in extreme slope ranges, where minimal 

data can be used for calculations.  Given this information, staying within a reasonable range of 

actual average bank slope of the area being tested will give the most reasonable results.  If the 

channel slope exceeds that of the bank slope, the method cannot distinguish between the slope of 

the channel and the bank slope.  Because of this, even though the program can produce results if 

a minimum bank slope is set greater than the channel slope, caution must be used when 

employing this method in highly sloped locations, such as mountain sides. 

 Overall, the results produced, using fuzzy logic cluster analysis and LiDAR intensity 

data, have been satisfactory.  Barring field tests to confirm results, the maps produced visually 

make sense, where it is typical for the main trunk of the channel network to be wet or mostly wet 

and the peripheral channels are dry or mostly dry.  The final results show that this model shows 

potential for effective use in the identification of channel conditions in a variety of terrain and 

has the potential to produce good final products when implemented.  
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APPENDIX: PYTHON CODE 
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import arcpy 

import os 
from timeit import default_timer 

import sys 
 

start = default_timer() 
# input file locations 

elevationrasterLocation = "C:/GISData/test_deck/KIM/01_09_basin/04_DEM/3_3ft.tif" 
intensityrasterLocation = 

"C:/GISData/test_deck/KIM/01_09_basin/03_intensity/02_intensity_6ft.flt" 
shapeLocation = 

"C:/GISData/test_deck/KIM/01_09_basin/02_draw_wet_channel/stream_network.shp" 

outpath="Clover_Filtering_dry20_wet10_Bankslope_7_Mincount_10.shp" 
 

# User Defined Inputs 
bankslopepercent= 7 

SegpercentLength =1 
percentoverride = 20 

wetfilterpercent = 10 
minintensitycount= 10 

 
#conversion to decimal for future calculations 

bankslope = float(bankslopepercent)/100 

segdecimalLength = float(SegpercentLength)/100 
decimaloveride = (100-float(percentoverride))/100 

wetfilterdecimal = (100-float(wetfilterpercent))/100 
 

#output location 
drive, path = os.path.splitdrive(shapeLocation) 

path, outputname = os.path.split(path) 
 

#test for duplicate files 
if arcpy.Exists(path + "/wet_"+outpath): 

    sys.exit("Output file name already exists, please choose another name") 

if arcpy.Exists(path + "/dry_"+outpath): 
    sys.exit("Output file name already exists, please choose another name") 

if arcpy.Exists(path + "/mostly_wet_"+outpath): 
    sys.exit("Output file name already exists, please choose another name") 

if arcpy.Exists(path + "/mostly_dry_"+outpath): 
    sys.exit("Output file name already exists, please choose another name") 

     
#location determination 

linePosition = arcpy.SearchCursor(shapeLocation) 
 

#check intensity resolution and cell size 

cellsizeArcOutput = 
arcpy.GetRasterProperties_management(intensityrasterLocation,"CELLSIZEX") 

cellsize = cellsizeArcOutput.getOutput(0) 
spatial_ref = arcpy.Describe(intensityrasterLocation).SpatialReference.linearUnitName 

totalintensity = [] 
highIntensity = [] 

allintensity=[] 
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linecounter= 0 

 
#cycle through shape file and use DEM to identify channel boundaries 

#record intensity points that are within channel boundaries 
for feature in linePosition: 

    linecounter= linecounter+1 
    #print linecounter 

    Midpoint = feature.shape.positionAlongLine(0.50,True).firstPoint 
    #set initial points 

    initialX = Midpoint.X 
    initialY = Midpoint.Y 

 

    initialCoords =str(initialX) + " " + str(initialY) 
    initialElevationArcOutput = 

arcpy.GetCellValue_management(elevationrasterLocation,initialCoords,"1") 
    initialElevation = initialElevationArcOutput.getOutput(0) 

    initialIntensityArcOutput = 
arcpy.GetCellValue_management(intensityrasterLocation,initialCoords, "1") 

    initialIntensity=initialIntensityArcOutput.getOutput(0) 
    if not initialIntensity == "NoData": 

        firstElevation = initialElevation 
        listofintensity = [float(initialIntensity)] 

     

    # 1    
        for x in range(1,11):    

            newX = initialX + x*float(cellsize) 
            newY = initialY 

            newCoords = str(newX) + " " + str(newY) 
            secondElevationArcOutput = 

arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 
            secondElevation=secondElevationArcOutput.getOutput(0) 

            if not secondElevation == "NoData": 
                #check the slope 

                if abs((float(secondElevation) - 

float(firstElevation))/float(cellsize)) > bankslope: 
                    highIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 
str(newY),"1") 

                    newHighIntensity = highIntensityArcOutput.getOutput(0) 
                    if not newHighIntensity == "NoData": 

                        highIntensity.append(float(newHighIntensity)) 
                    break 

                else: 
                    newIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newIntensity=newIntensityArcOutput.getOutput(0) 

                    if not newIntensity == "NoData": 
                        listofintensity.append(float(newIntensity)) 

                    else: 
                        break 

            else: 
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                break            

            firstElevation = secondElevation 
         

        # reset first elevation location 
        firstElevation = initialElevation 

     
    # 2         

        for x in range(1,11):    
            newX = initialX + x*float(cellsize) 

            newY = initialY - x*float(cellsize) 
            newCoords = str(newX) + " " + str(newY) 

            secondElevationArcOutput = 

arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 
            secondElevation=secondElevationArcOutput.getOutput(0) 

            if not secondElevation == "NoData": 
                #check the slope 

                if abs((float(secondElevation) - 
float(firstElevation))/float(cellsize)) > bankslope: 

                    highIntensityArcOutput = 
arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newHighIntensity = highIntensityArcOutput.getOutput(0) 

                    if not newHighIntensity == "NoData": 

                        highIntensity.append(float(newHighIntensity)) 
                    break  

                else: 
                    newIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 
str(newY),"1") 

                    newIntensity=newIntensityArcOutput.getOutput(0) 
                    if not newIntensity == "NoData": 

                        listofintensity.append(float(newIntensity)) 
                    else: 

                        break 

            else: 
                break          

            firstElevation = secondElevation 
     

        # reset first elevation location 
        firstElevation = initialElevation 

         
    # 3 

        for x in range(1,11):    
            newX = initialX + x*float(cellsize) 

            newY = initialY + x*float(cellsize) 

            newCoords = str(newX) + " " + str(newY) 
            secondElevationArcOutput = 

arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 
            secondElevation=secondElevationArcOutput.getOutput(0) 

            if not secondElevation == "NoData": 
                #check the slope 
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                if abs((float(secondElevation) - 

float(firstElevation))/float(cellsize)) > bankslope: 
                    highIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 
str(newY),"1") 

                    newHighIntensity = highIntensityArcOutput.getOutput(0) 
                    if not newHighIntensity == "NoData": 

                        highIntensity.append(float(newHighIntensity)) 
                    break  

                else: 
                    newIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newIntensity=newIntensityArcOutput.getOutput(0) 

                    if not newIntensity == "NoData": 
                        listofintensity.append(float(newIntensity)) 

                    else: 
                        break 

            else: 
                break          

            firstElevation = secondElevation 
     

        # reset first elevation location 

        firstElevation = initialElevation 
         

    # 4 
        for x in range(1,11):    

            newX = initialX - x*float(cellsize) 
            newY = initialY 

            newCoords = str(newX) + " " + str(newY) 
            secondElevationArcOutput = 

arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 
            secondElevation=secondElevationArcOutput.getOutput(0) 

            if not secondElevation == "NoData": 

                #check the slope 
                if abs((float(secondElevation) - 

float(firstElevation))/float(cellsize)) > bankslope: 
                    highIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 
str(newY),"1") 

                    newHighIntensity = highIntensityArcOutput.getOutput(0) 
                    if not newHighIntensity == "NoData": 

                        highIntensity.append(float(newHighIntensity)) 
                    break  

                else: 

                    newIntensityArcOutput = 
arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newIntensity=newIntensityArcOutput.getOutput(0) 

                    if not newIntensity == "NoData": 
                        listofintensity.append(float(newIntensity)) 

                    else: 
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                        break 

            else: 
                break          

            firstElevation = secondElevation 
     

        # reset first elevation location 
        firstElevation = initialElevation 

         
    # 5 

        for x in range(1,11):    
            newX = initialX - x*float(cellsize) 

            newY = initialY - x*float(cellsize) 

            newCoords = str(newX) + " " + str(newY) 
            secondElevationArcOutput = 

arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 
            secondElevation=secondElevationArcOutput.getOutput(0) 

            if not secondElevation == "NoData": 
                #check the slope 

                if abs((float(secondElevation) - 
float(firstElevation))/float(cellsize)) > bankslope: 

                    highIntensityArcOutput = 
arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 

                    newHighIntensity = highIntensityArcOutput.getOutput(0) 
                    if not newHighIntensity == "NoData": 

                        highIntensity.append(float(newHighIntensity)) 
                    break  

                else: 
                    newIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 
str(newY),"1") 

                    newIntensity=newIntensityArcOutput.getOutput(0) 
                    if not newIntensity == "NoData": 

                        listofintensity.append(float(newIntensity)) 

                    else: 
                        break 

            else: 
                break          

            firstElevation = secondElevation 
             

        # reset first elevation location 
        firstElevation = initialElevation 

         
    # 6 

        for x in range(1,11):    

            newX = initialX - x*float(cellsize) 
            newY = initialY + x*float(cellsize) 

            newCoords = str(newX) + " " + str(newY) 
            secondElevationArcOutput = 

arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 
            secondElevation=secondElevationArcOutput.getOutput(0) 

            if not secondElevation == "NoData": 
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                #check the slope 

                if abs((float(secondElevation) - 
float(firstElevation))/float(cellsize)) > bankslope: 

                    highIntensityArcOutput = 
arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newHighIntensity = highIntensityArcOutput.getOutput(0) 

                    if not newHighIntensity == "NoData": 
                        highIntensity.append(float(newHighIntensity)) 

                    break  
                else: 

                    newIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 
str(newY),"1") 

                    newIntensity=newIntensityArcOutput.getOutput(0) 
                    if not newIntensity == "NoData": 

                        listofintensity.append(float(newIntensity)) 
                    else: 

                        break 
            else: 

                break          
            firstElevation = secondElevation 

     

        # reset first elevation location 
        firstElevation = initialElevation 

         
    # 7 

        for x in range(1,11):    
            newX = initialX 

            newY = initialY - x*float(cellsize) 
            newCoords = str(newX) + " " + str(newY) 

            secondElevationArcOutput = 
arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 

            secondElevation=secondElevationArcOutput.getOutput(0) 

            if not secondElevation == "NoData": 
                #check the slope 

                if abs((float(secondElevation) - 
float(firstElevation))/float(cellsize)) > bankslope: 

                    highIntensityArcOutput = 
arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newHighIntensity = highIntensityArcOutput.getOutput(0) 

                    if not newHighIntensity == "NoData": 
                        highIntensity.append(float(newHighIntensity)) 

                    break  

                else: 
                    newIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 
str(newY),"1") 

                    newIntensity=newIntensityArcOutput.getOutput(0) 
                    if not newIntensity == "NoData": 

                        listofintensity.append(float(newIntensity)) 



73 

 

                    else: 

                        break 
            else: 

                break          
            firstElevation = secondElevation 

     
        # reset first elevation location 

        firstElevation = initialElevation 
         

    # 8     
        for x in range(1,11):    

            newX = initialX 

            newY = initialY + x*float(cellsize) 
            newCoords = str(newX) + " " + str(newY) 

            secondElevationArcOutput = 
arcpy.GetCellValue_management(elevationrasterLocation,newCoords,"1") 

            secondElevation=secondElevationArcOutput.getOutput(0) 
            if not secondElevation == "NoData": 

                #check the slope 
                if abs((float(secondElevation) - 

float(firstElevation))/float(cellsize)) > bankslope: 
                    highIntensityArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newHighIntensity = highIntensityArcOutput.getOutput(0) 

                    if not newHighIntensity == "NoData": 
                        highIntensity.append(float(newHighIntensity)) 

                    break  
                else: 

                    newIntensityArcOutput = 
arcpy.GetCellValue_management(intensityrasterLocation, str(newX) + " " + 

str(newY),"1") 
                    newIntensity=newIntensityArcOutput.getOutput(0) 

                    if not newIntensity == "NoData": 

                        listofintensity.append(float(newIntensity)) 
                    else: 

                        break 
            else: 

                break          
            firstElevation = secondElevation 

       
        # Fuzzy c-means cluster analysis 

        if len(listofintensity) >=minintensitycount: 
            #add all intenstiy lists together 

            allintensity += listofintensity 

             
            centroidofIntensity = sum(listofintensity) / float(len(listofintensity)) 

            minofIntensity = min(listofintensity) 
            maxofIntensity = max(listofintensity) 

            fuzziness = 2 
             

            #initialize max and min centroids and other lists and variables 
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            MaxCentroid1 = maxofIntensity*(2) 

            MaxCentroid2 = maxofIntensity 
            MinCentroid1 = minofIntensity*(2) 

            MinCentroid2 = minofIntensity 
            listofMaxIntensity = [] 

            listofMinIntensity = [] 
             

            sumuCMaxPM = 0 
            sumuCMinPM = 0 

            sumuCMaxPMX = 0 
            sumuCMinPMX = 0 

             

            #continue until difference is only 1% 
            while abs((MaxCentroid1-MaxCentroid2)/MaxCentroid2) and 

abs((MinCentroid1-MinCentroid2)/MinCentroid2) >= .01: 
                MaxCentroid1 = MaxCentroid2 

                MinCentroid1 = MinCentroid2 
                for intensity in listofintensity: 

                    #check which centroid intensity is closer to 
                    distancetoMaxCentroid = abs(MaxCentroid1-intensity) 

                    distancetoMinCentroid = abs(MinCentroid1-intensity) 
                     

                    if distancetoMaxCentroid <= 0 or distancetoMinCentroid <= 0: 

                        if distancetoMaxCentroid <= 0: 
                            uCMax=1 

                            uCMin=0 
                        if distancetoMinCentroid <= 0: 

                            uCMax=0 
                            uCMin=1 

                    else: 
                        uCMax = (1/distancetoMaxCentroid**(1/(fuzziness-

1))/(1/distancetoMaxCentroid**(1/(fuzziness-
1))+1/distancetoMinCentroid**(1/(fuzziness-1)))) 

                        uCMin = (1/distancetoMinCentroid**(1/(fuzziness-

1))/(1/distancetoMaxCentroid**(1/(fuzziness-
1))+1/distancetoMinCentroid**(1/(fuzziness-1)))) 

                     
                    uCMaxPM = uCMax**fuzziness 

                    uCMinPM = uCMin**fuzziness 
         

                    uCMaxPMX = uCMaxPM*intensity 
                    uCMinPMX = uCMinPM*intensity 

                    sumuCMaxPM += uCMaxPM 
                    sumuCMinPM += uCMinPM 

                    sumuCMaxPMX += uCMaxPMX 

                    sumuCMinPMX += uCMinPMX 
                 

                MaxCentroid2 = sumuCMaxPMX/sumuCMaxPM 
                MinCentroid2 = sumuCMinPMX/sumuCMinPM         

                 
            #add values to intensity list if there is at least 30 values per list. 

            totalintensity.append(MaxCentroid2) 
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            totalintensity.append(MinCentroid2) 

             
    '''*********************TEST****************************** 

    totalintensitylength = len(totalintensity) 
    if totalintensitylength >= 1000: 

        break 
    *********************TEST******************************''' 

            
#determine transition points using fuzzy C 

centroidofTotalIntensity = sum(allintensity) / float(len(allintensity)) 
minTotalofIntensity = min(allintensity) 

maxTotalofIntensity = max(allintensity) 

fuzziness = 2 
     

#initialize max and min centroids and other lists and variables 
MaxTotalCentroid1 = maxTotalofIntensity*(2) 

MaxTotalCentroid2 = maxTotalofIntensity 
MinTotalCentroid1 = minTotalofIntensity*(2) 

MinTotalCentroid2 = minTotalofIntensity 
     

sumuCMaxPM = 0 
sumuCMinPM = 0 

sumuCMaxPMX = 0 

sumuCMinPMX = 0 
 

    #continue until difference is only 1% 
while abs((MaxTotalCentroid1-MaxTotalCentroid2)/MaxTotalCentroid2) and 

abs((MinTotalCentroid1-MinTotalCentroid2)/MinTotalCentroid2) >= .01: 
    MaxTotalCentroid1 = MaxTotalCentroid2 

    MinTotalCentroid1 = MinTotalCentroid2 
    for intensity in allintensity: 

        #check which centroid intensity is closer to 
        distancetoMaxCentroid = abs(MaxTotalCentroid1-intensity) 

        distancetoMinCentroid = abs(MinTotalCentroid1-intensity) 

             
        if distancetoMaxCentroid <= 0 or distancetoMinCentroid <= 0: 

            if distancetoMaxCentroid <= 0: 
                uCMax=1 

                uCMin=0 
            if distancetoMinCentroid <= 0: 

                uCMax=0 
                uCMin=1 

        else: 
 

            uCMax = (1/distancetoMaxCentroid**(1/(fuzziness-

1))/(1/distancetoMaxCentroid**(1/(fuzziness-
1))+1/distancetoMinCentroid**(1/(fuzziness-1)))) 

            uCMin = (1/distancetoMinCentroid**(1/(fuzziness-
1))/(1/distancetoMaxCentroid**(1/(fuzziness-

1))+1/distancetoMinCentroid**(1/(fuzziness-1)))) 
             

        uCMaxPM = uCMax**fuzziness 
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        uCMinPM = uCMin**fuzziness 

        uCMaxPMX = uCMaxPM*intensity 
        uCMinPMX = uCMinPM*intensity 

         
        sumuCMaxPM += uCMaxPM 

        sumuCMinPM += uCMinPM 
        sumuCMaxPMX += uCMaxPMX 

        sumuCMinPMX += uCMinPMX 
         

    MaxTotalCentroid2 = sumuCMaxPMX/sumuCMaxPM 
    MinTotalCentroid2 = sumuCMinPMX/sumuCMinPM 

 

position = 0.0 
averageHighIntensity = sum(highIntensity)/float(len(highIntensity)) 

 
'''****************************************TEST************************************ 

print MaxTotalCentroid2 
print MinTotalCentroid2 

print (default_timer() - start)/60 
end = "end" 

print end 
with open("C:/Other Data/School Work/Thesis/Output_intensities/" + outpath 

+"_allintensities.txt" , 'w') as f: 

    for s in allintensity: 
        f.write(str(s) + '\n') 

    f.close() 
sys.exit(0) 

****************************************TEST************************************''' 
 

#create the shapefile 
wetarray = arcpy.Array() 

wetarray2 = arcpy.Array() 
dryarray = arcpy.Array() 

dryarray2 = arcpy.Array() 

mostlywetarray = arcpy.Array() 
mostlywetarray2 = arcpy.Array() 

mostlydryarray = arcpy.Array() 
mostlydryarray2 = arcpy.Array() 

wetFeaturelist = [] 
dryFeaturelist = [] 

mostlywetFeaturelist = [] 
mostlydryFeaturelist = [] 

linePosition2 = arcpy.SearchCursor(shapeLocation) 
altintensityCoords = arcpy.Point() 

altendIntensityCoords = arcpy.Point() 

wetexists = False 
dryexists = False 

mostlywetexists = False 
mostlydryexists = False 

 
linecounter=0 

for feature1 in linePosition2: 
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    position = 0.0 
    position2 = 0.0 

    position3 = 0.0 
    position4 = 0.0 

    drycount = 0 
    wetcount = 0 

    if not percentoverride == 0: 
        while position2 <= 1: 

            wet = False 
            dry = False 

            mostlywet = False  

            mostlydry = False                
     

            intensityLocation2 = 
feature1.shape.positionAlongLine(position2,True).firstPoint 

            intensityEndLocation2 = 
feature1.shape.positionAlongLine(position2+segdecimalLength,True).firstPoint 

            pointX2 = intensityLocation2.X 
            pointY2 = intensityLocation2.Y 

            pointEndX2 = intensityEndLocation2.X 
            pointEndY2 = intensityEndLocation2.Y 

            intensityCoords2 =str(pointX2) + " " + str(pointY2) 

            altintensityCoords2 = arcpy.Point(pointX2,pointY2) 
            endIntensityCoords2 = str(pointEndX2) + " " + str(pointEndY2) 

            altendIntensityCoords2 = arcpy.Point(pointEndX2,pointEndY2) 
            intensitytoCheckArcOutput2 = 

arcpy.GetCellValue_management(intensityrasterLocation,intensityCoords2, "1") 
             

            if not intensitytoCheckArcOutput2.getOutput(0) == "NoData": 
                 

                intensitytoCheck2 = float(intensitytoCheckArcOutput2.getOutput(0)) 
                distancetoMaxCentroid2 = abs(MaxTotalCentroid2-intensitytoCheck2) 

                distancetoMinCentroid2 = abs(MinTotalCentroid2-intensitytoCheck2) 

                     
                if distancetoMaxCentroid2 <= 0 or distancetoMinCentroid2 <= 0: 

                    if distancetoMaxCentroid2 <= 0: 
                        maxMembership2=1 

                        minMembership2=0 
                    if distancetoMinCentroid2 <= 0: 

                        maxMembership2=0 
                        minMembership2=1 

                else: 
     

                    maxMembership2 = (1/distancetoMaxCentroid2**(1/(fuzziness-

1))/(1/distancetoMaxCentroid2**(1/(fuzziness-
1))+1/distancetoMinCentroid2**(1/(fuzziness-1)))) 

                    minMembership2 = (1/distancetoMinCentroid2**(1/(fuzziness-
1))/(1/distancetoMaxCentroid2**(1/(fuzziness-

1))+1/distancetoMinCentroid2**(1/(fuzziness-1)))) 
                 

                if MaxTotalCentroid2 <= intensitytoCheck2: 
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                    wet = False  

                    dry = True 
                    mostlywet = False 

                    mostlydry = False 
                if MinTotalCentroid2 >= intensitytoCheck2: 

                    wet = True 
                    dry = False 

                    mostlywet = False 
                    mostlydry = False 

                     
                if MinTotalCentroid2 < intensitytoCheck2 < MaxTotalCentroid2: 

                    if maxMembership2 >= 0.5: 

                        wet = False 
                        dry = False 

                        mostlydry = True 
                        mostlywet = False 

                    if minMembership2 > 0.5: 
                        wet = False 

                        dry = False 
                        mostlydry = False 

                        mostlywet = True 
                         

                position2 += segdecimalLength 

                                            
                if dry == True: 

                    drycount += 1 
                    

                if mostlydry == True: 
                    drycount += 1 

     
                if wet == True: 

                    wetcount += 1 
                     

                if mostlywet == True: 

                    wetcount += 1 
     

            else: 
                position2 += segdecimalLength 

     
    # If the amount of dry sections exceeds the overide value, the entire section 

will be considered dry 
    if (drycount)/(1/segdecimalLength)>=decimaloveride: 

         
        while position3 <= 1:            

     

            intensityLocation3 = 
feature1.shape.positionAlongLine(position3,True).firstPoint 

            intensityEndLocation3 = 
feature1.shape.positionAlongLine(position3+segdecimalLength,True).firstPoint 

            pointX3 = intensityLocation3.X 
            pointY3 = intensityLocation3.Y 

            pointEndX3 = intensityEndLocation3.X 
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            pointEndY3 = intensityEndLocation3.Y 

            altintensityCoords3 = arcpy.Point(pointX3,pointY3) 
            altendIntensityCoords3 = arcpy.Point(pointEndX3,pointEndY3)                             

                                            
            dryarray2.add(altintensityCoords3) 

            dryarray2.add(altendIntensityCoords3) 
            drypolyline2 = arcpy.Polyline(dryarray2,shapeLocation) 

            dryarray2.removeAll() 
            dryFeaturelist.append(drypolyline2) 

         
            position3 += segdecimalLength 

        #skip position segment 

        position=1+segdecimalLength 
 

# If the amount of wet sections exceeds the overide value, the entire section will be 
considered wet 

    if (wetcount)/(1/segdecimalLength)>=wetfilterdecimal: 
         

        while position4 <= 1:            
     

            intensityLocation3 = 
feature1.shape.positionAlongLine(position4,True).firstPoint 

            intensityEndLocation3 = 

feature1.shape.positionAlongLine(position4+segdecimalLength,True).firstPoint 
            pointX3 = intensityLocation3.X 

            pointY3 = intensityLocation3.Y 
            pointEndX3 = intensityEndLocation3.X 

            pointEndY3 = intensityEndLocation3.Y 
            altintensityCoords3 = arcpy.Point(pointX3,pointY3) 

            altendIntensityCoords3 = arcpy.Point(pointEndX3,pointEndY3)                             
                                            

            wetarray2.add(altintensityCoords3) 
            wetarray2.add(altendIntensityCoords3) 

            wetpolyline2 = arcpy.Polyline(wetarray2,shapeLocation) 

            wetarray2.removeAll() 
            wetFeaturelist.append(wetpolyline2) 

         
            position4 += segdecimalLength 

        #skip position segment 
        position=1+segdecimalLength 

             
    while position <= 1: 

        wet = False 
        dry = False 

        mostlywet = False  

        mostlydry = False           
        intensityLocation = 

feature1.shape.positionAlongLine(position,True).firstPoint 
        intensityEndLocation = 

feature1.shape.positionAlongLine(position+segdecimalLength,True).firstPoint 
        pointX = intensityLocation.X 

        pointY = intensityLocation.Y 
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        pointEndX = intensityEndLocation.X 

        pointEndY = intensityEndLocation.Y 
        intensityCoords =str(pointX) + " " + str(pointY) 

        altintensityCoords = arcpy.Point(pointX,pointY) 
        endIntensityCoords = str(pointEndX) + " " + str(pointEndY) 

        altendIntensityCoords = arcpy.Point(pointEndX,pointEndY) 
        intensitytoCheckArcOutput = 

arcpy.GetCellValue_management(intensityrasterLocation,intensityCoords, "1") 
         

        if not intensitytoCheckArcOutput.getOutput(0) == "NoData": 
             

            intensitytoCheck = float(intensitytoCheckArcOutput.getOutput(0)) 

            distancetoMaxCentroid = abs(MaxTotalCentroid2-intensitytoCheck) 
            distancetoMinCentroid = abs(MinTotalCentroid2-intensitytoCheck) 

                 
            if distancetoMaxCentroid <= 0 or distancetoMinCentroid <= 0: 

                if distancetoMaxCentroid <= 0: 
                    maxMembership=1 

                    minMembership=0 
                if distancetoMinCentroid <= 0: 

                    maxMembership=0 
                    minMembership=1 

            else: 

 
                maxMembership = (1/distancetoMaxCentroid**(1/(fuzziness-

1))/(1/distancetoMaxCentroid**(1/(fuzziness-
1))+1/distancetoMinCentroid**(1/(fuzziness-1)))) 

                minMembership = (1/distancetoMinCentroid**(1/(fuzziness-
1))/(1/distancetoMaxCentroid**(1/(fuzziness-

1))+1/distancetoMinCentroid**(1/(fuzziness-1)))) 
             

            if MaxTotalCentroid2 <= intensitytoCheck: 
                wet = False  

                dry = True 

                mostlywet = False 
                mostlydry = False 

            if MinTotalCentroid2 >= intensitytoCheck: 
                wet = True 

                dry = False 
                mostlywet = False 

                mostlydry = False 
                 

            if MinTotalCentroid2 < intensitytoCheck < MaxTotalCentroid2: 
                if maxMembership >= 0.5: 

                    wet = False 

                    dry = False 
                    mostlydry = True 

                    mostlywet = False 
                if minMembership > 0.5: 

                    wet = False 
                    dry = False 

                    mostlydry = False 
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                    mostlywet = True 

     
    #this is an attempt to capture areas where there is no dry channels 

            if MaxTotalCentroid2/MinTotalCentroid2 <= 1.2: 
                wet = True 

                dry = False 
                mostlydry = False 

                mostlywet = False    
                     

            position += segdecimalLength 
                         

            if wet == True: 

                wetexists = True 
                wetarray.add(altintensityCoords) 

                wetarray.add(altendIntensityCoords) 
                arraynameprint = "Wet " 

                #print arraynameprint            
                wetpolyline = arcpy.Polyline(wetarray,shapeLocation) 

                wetarray.removeAll() 
                wetFeaturelist.append(wetpolyline) 

 
            if dry == True: 

                dryexists = True 

                dryarray.add(altintensityCoords) 
                dryarray.add(altendIntensityCoords) 

                arraynameprint = "dry " 
                #print arraynameprint 

                drypolyline = arcpy.Polyline(dryarray,shapeLocation) 
                dryarray.removeAll() 

                dryFeaturelist.append(drypolyline) 
 

            if mostlywet == True: 
                mostlywetexists = True 

                mostlywetarray.add(altintensityCoords) 

                mostlywetarray.add(altendIntensityCoords) 
                arraynameprint = "mostly wet " 

                #print arraynameprint 
                mostlywetpolyline = arcpy.Polyline(mostlywetarray,shapeLocation) 

                mostlywetarray.removeAll() 
                mostlywetFeaturelist.append(mostlywetpolyline) 

     
            if mostlydry == True: 

                mostlydryexists = True 
                mostlydryarray.add(altintensityCoords) 

                mostlydryarray.add(altendIntensityCoords) 

                arraynameprint = "mostly dry " 
                #print arraynameprint 

                mostlydrypolyline = arcpy.Polyline(mostlydryarray,shapeLocation) 
                mostlydryarray.removeAll() 

                mostlydryFeaturelist.append(mostlydrypolyline) 
 

        else: 
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            position += segdecimalLength 

 
 

#if the sections exist, create the shape files 
if wetexists==True: 

    arcpy.management.CopyFeatures(wetFeaturelist,path + "/wet_"+outpath) 
if dryexists==True: 

    arcpy.management.CopyFeatures(dryFeaturelist,path + "/dry_"+outpath) 
if mostlywetexists==True:  

    arcpy.management.CopyFeatures(mostlywetFeaturelist,path + "/mostly_wet_"+outpath) 
if mostlydryexists==True: 

    arcpy.management.CopyFeatures(mostlydryFeaturelist,path + "/mostly_dry_"+outpath) 

 
#delete excess data 

del wetFeaturelist 
del dryFeaturelist 

del mostlywetFeaturelist 
del mostlydryFeaturelist 

 
#print to screen the global max and min centroid results and time to completion 

print MaxTotalCentroid2 
print MinTotalCentroid2 

print (default_timer() - start)/60 

end = "end" 
print end 

 
'''****************************************TEST************************************ 

with open("C:/Other Data/School Work/Thesis/Output_intensities/" + outpath 
+"_allintensities.txt" , 'w') as f: 

    for s in allintensity: 
        f.write(str(s) + '\n') 

    f.close() 
****************************************TEST************************************''' 
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