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ABSTRACT OF DISSERTATION 
 
 
 
 

CYCLOOXYGENASE-2-DEPENDENT REMODELING OF 
THE DUCTUS ARTERIOSUS 

 
Transition of the cardiopulmonary circulation at birth requires functional closure 

of the ductus arteriosus (DA). The DA is an arterial shunt that is vital in the fetus for 
diverting the pulmonary circulation away from the uninflated lungs. Failure of the vessel 
to functionally close after birth is known as patent DA, which is the second most 
common congenital heart disease. Patent DA may seriously compromise neonatal health 
and current pharmacological treatments are often limited by serious complications or a 
significant failure rate, thereby increasing the necessity for surgical intervention. 
Recently, we were the first to show that genetic or pharmacological inactivation of 
cyclooxygenase (COX) -2 produces postnatal patent DA in mice. We also demonstrated 
that the DA expresses high levels of COX-2 during normal closure after birth, suggesting 
novel contractile actions of COX-2-dependent prostanoids in the DA. In humans, patent 
DA is more common in preterm infants than those born at full-term, however, 
mechanism(s) responsible for the reduced DA closure have not been identified.  

In the current studies, we examined COX-1 and COX-2 expression in the DA at 
multiple stages of gestation to determine whether alterations in the expression of these 
enzymes contribute to patent DA in preterm mice. Using real-time PCR, analysis of the 
time-course of COX-2 mRNA in the fetal mouse DA indicated that COX-2 expression 
significantly increased with advancing gestational age. The preterm (day 17.5) neonatal 
mouse DA showed attenuated COX-2 expression, as compared to the full-term (day 19.5) 
neonatal DA at 3 hours after birth. Furthermore, the DA of preterm neonatal mice showed 
incomplete closure after 3 hours of birth, a time-point when the DA of full-term neonates 
was completely remodeled. These data indicate a correlation between reduced DA 
closure and attenuated COX-2 expression. 

Additionally, COX-2 expression was significantly attenuated in the DA of mice 
deficient in the prostanoid receptor EP4, which also show a patent DA phenotype, 
suggesting the importance of this receptor for the induction of COX-2 required for DA 
closure. Overall, these studies suggest that attenuated expression of COX-2 may 
contribute to increased patent DA at preterm gestation.  
 



KEYWORDS: cyclooxygenase-2, ductus arteriosus, prostanoid receptors, congenital 
heart defects, vascular remodeling 
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CHAPTER 1 

BACKGROUND 

 

THE DUCTUS ARTERIOSUS 

The ductus arteriosus (DA) is a muscular artery in the fetus which connects the 

main pulmonary artery and the descending aorta and functions in utero to divert greater 

than 90% of the right ventricular cardiac output to bypass the uninflated lungs.
1
 Loss of 

the maternal oxygen supply at birth necessitates rapid initiation of pulmonary function 

and transition of the cardiopulmonary circulation in the newborn. An essential component 

of this postnatal circulatory remodeling is the functional closure of the DA. In the healthy 

full-term infant, DA constriction begins after birth to initiate functional closure during the 

first few days of life.
2
 

 

Developmental Origin of the DA  

During embryonic development, the DA originates together with other great 

arteries, from the pharyngeal arterial system. Even though the cells forming the heart and 

circulatory system are of mesodermal origin, the arches of the pharyngeal arterial system 

are populated with cardiac neural crest cells, which also contribute to formation of the 

vessel wall. Studies in the chick and mammalian embryos have shown that cardiac neural 

crest derived cells contribute to a variety of cells in the arches, including the arterial 

smooth muscle cells (SMCs).
3
 Even though anatomical diversity exists in the aortic arch 

system in all vertebrates, the ancestral arterial system from which it is derived consists of 

6 aortic arches. It is known that lung-bearing vertebrates including lungfish, amphibians, 

reptiles, birds, marsupials and mammals, all possess a DA. Despite the diversity in the 

remodeling of the arterial system, the DA in all air-breathing vertebrates develops from a 

specific segment of the sixth arch of the pharyngeal arterial system. Throughout 

development, the DA undergoes a unique differentiation program, which prepares it for 

closure in the newborn at the stage involving lung respiration. This in utero 

differentiation of the DA occurs during the final one-third of gestation with full 

contractile ability occurring only at full-term. Particularly, in all mammals, when the 

transition to pulmonary respiration occurs, the DA rapidly closes after birth.
4
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Anatomic Closure of the DA. 

DA closure after birth occurs in two phases. The first phase involves constriction 

of smooth muscle, which obstructs the DA lumen. The second phase involves anatomical 

remodeling of the vessel, which results in permanent closure. In humans, permanent 

closure of the DA is complete within a few days of birth, whereas in mice, complete 

closure is achieved within 3 hours of birth. Permanent remodeling of the DA involves 

extensive intimal thickening and intimal cushion formation, which begins with the lifting, 

infolding and in-growth of the endothelial cells, followed by migration of SMC from the 

media, into the subendothelial space.
2, 4

 Increased production of specific extracellular 

matrix components such as hyaluronic acid, chondroitin sulfate and fibronectin is also 

associated with intimal cushion formation. DA remodeling also involves disassembly of 

the internal elastic lamina and loss of elastin to promote SMC migration.
5
 

Release of extracellular matrix is also an important component of DA remodeling. 

The DA smooth muscle is involved in complex interactions with molecules of the 

extracellular matrix such as laminin, fibronectin, growth factors (e.g. TGF-!), endothelial 

hyaluronic acid and chondrotin sulfate.
2
 Studies by Mason et al. demonstrated that 

inhibition of fibronectin production inhibited DA remodeling, emphasizing the 

importance of fibronectin in the intimal cushion formation during DA remodeling.
6
 The 

interaction of the DA smooth muscle to the components of the extracellular matrix is 

facilitated by the action of specific cell surface receptors. The integrin family of receptors 

is thought to play an important role in the remodeling of the endothelial and SMCs of the 

DA. Specifically, several studies in vitro have suggested a role for several members of 

the integrin family of receptors including, "v!1 and "v!3, in the attachment and 

migration of SMCs to the extracellular matrix, to produce obliteration of the DA lumen.
7
 

DA remodeling is also thought to require a significant degree of hypoxia of DA 

smooth muscle. Studies by Clyman et al. have demonstrated a significant contribution of 

vascular endothelial growth factor (VEGF) in producing neointimal expansion during 

hypoxia-induced remodeling of the DA.
8
 It was suggested that VEGF-induced cell 

migration in the DA may be mediated by the "v!3 integrin which is upregulated during 

DA closure.
7, 9

 In addition to the migration of SMCs, inflammatory cell infiltration into 
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the vessel may also contribute DA remodeling during closure. A recent study by Waleh et 

al. proposed that the remodeling of the DA involves processes similar to those observed 

during pathological remodeling in diseases such as atherosclerosis.
10

 These studies 

showed that postnatal DA remodeling involves an inflammatory response in which 

monocytes/macrophages and to some extent T-lymphocytes, are recruited in the DA 

lumen. 

Following remodeling of DA SMC, significant apoptosis and cytolytic necrosis 

are thought to be required for complete obliteration of the DA.
11, 12

 The inner intimal 

region of the DA has been shown to significantly express markers of apoptosis during 

anatomical remodeling of the DA. The SMCs in this region of the DA which are 

originally highly differentiated during initial DA constriction, then become de-

differentiated during complete DA closure and undergo cytolytic necrosis during the final 

stage of DA development.
12

 The SMCs in the inner and outer media have different 

apoptotic properties. The outer media has more prominent apoptosis in the beginning, 

which then changes into apoptosis of the inner media. It is suggested that the cytolytic 

necrosis or ischemic degeneration observed in the DA is a result of the sustained 

contraction of the SMCs and occurs following the apoptotic events. Following the 

apoptotic and necrotic events, there is a sustained and complete loss of blood supply and 

the vessel degenerates into the ligamentum arteriosum. which in the adult is only a 

remnant of the DA.  

 

Patent Ductus Arteriosus 

Infants born premature show an increased risk for developing a number of serious 

complications during the neonatal period, particularly those related to the 

cardiopulmonary circulation. One of the frequent complications of prematurity is patent 

DA, which is the second most common congenital heart disease.
13, 14

 Patent DA is the 

delay or complete failure of DA closure during the first few days after birth. The 

incidence of patent DA increases with the degree of infant prematurity and is often 

observed in combination with respiratory distress. For infants with symptoms of 

respiratory distress, patent DA occurs in one-quarter of neonates born from 30-33 weeks 

of gestation, whereas the incidence is greater than 75% in extremely premature infants 
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born less than 29 weeks of gestation.
15

 Alterations in systemic or pulmonary circulation 

produce three types of cardiovascular manifestations associated with patent DA.
16, 17

 

First, because of reduced pulmonary vascular resistance following birth, patent DA 

produces a left-to-right shunting of the circulation from the aorta into the pulmonary 

arteries. Recirculation of oxygenated blood through the lungs overburdens the heart and 

predisposes the infant to congestive heart failure. Second, diversion of blood flow in the 

aorta through a patent DA produces tissue specific deficits in perfusion, which increases 

susceptibility to intraventricular hemorrhage, necrotizing enterocolitis, cerebral ischemia 

and renal insufficiency. Third, blood flow through the patent DA into the lungs 

contributes to pulmonary hypertension and edema, thereby compromising lung 

compliance and gas exchange, and increasing pneumonia susceptibility.  

 

Current Treatments for Patent DA 

Surgical ligation or indomethacin administration are the most utilized methods of 

treating patent DA in preterm neonates.
18

 Although surgical ligation may be the initial 

treatment in complicated cases when cardiothoracic teams are available, DA ligation is a 

major operation which requires thoracotomy and may have complications of its own.
17

 

Because of these limitations, intravenous administration of indomethacin is most often 

the first-line treatment for patent DA in preterm neonates. Although indomethacin 

induces an initial constriction of the DA in a majority of treated neonates, it is 

significantly less effective in achieving permanent closure, with DA reopening reported 

to occur in from 30% to greater than 50% of the treated preterm neonates.
17, 19, 20

 The use 

of indomethacin may also compromise neonatal health by reducing intestinal, cerebral 

and renal blood flow.
21-25

 Novel approaches need to be developed that are more safe and 

effective than indomethacin to reduce the necessity for surgical ligation to permanently 

close the DA in preterm infants. 
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FIGURE 1.1 A. Illustration of the fetal circulation before birth.  

Arrows indicate the direction of the flow of blood from the right ventricle to the 

DA, bypassing the pulmonary arteries, thereby allowing majority of the blood to bypass 

the lungs. 
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Figure 1.1 B. Illustration of patent DA
26

 

Arrows indicate the back-flow of the oxygenated blood from the aorta to the DA, 

with some of the flow directed back through the pulmonary arteries to the lungs.  
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PROSTAGLANDINS and CYCLOOXYGENASES  

Prostaglandins (PGs) are bioactive lipid mediators derived from arachidonic acid 

(AA), that were originally extracted from the prostate, semen and seminal vesicles, early 

in the 1930s.
27

 They were first shown to cause contraction of smooth muscle and 

reduction in blood pressure. It is now known that prostaglandins are formed by most cells 

in the body and act as autocrine or paracrine lipid mediators. Prostaglandins are not 

stored but are synthesized de novo from membrane-released arachidonic acid, when cells 

are stimulated by specific cytokines, grown factors, mechanical trauma, or other stimuli. 

The release of arachidonic acid from membranes is controlled by a host of phospholipase 

A2 enzymes, and type IV cytosolic phospholipase A2 (cPLA2) shows preference for the 

release of phospholipids containing arachidonic acid. The activity of cPLA2 is tightly 

regulated by the control of translocation to the nuclear envelope, endoplasmic reticulum 

and the Golgi apparatus following agonist-dependent cell stimulation.
28-31

 

At the ER and nuclear membrane, arachidonic acid that is released by cPLA2 or 

other phospholipases, is acted upon by an enzyme known as prostaglandin H synthase 

(PGHS). The biosynthesis of prostaglandins is dependent upon PGHS, which catalyzes 

the first committed step in the pathway.
32

 The enzyme is also known as cyclooxygenase 

(COX), which was used to describe the first of two enzymatic activities of the protein, 

and is present as two isoforms, COX-1 and COX-2. The cyclooxygenase reaction 

involved in the synthesis of prostaglandins is a two-step reaction. The first step involves 

the oxygenation of arachidonic acid, which is enzymatically cyclized to yield 

endoperoxide-containing prostaglandin G2 (PGG2), by the insertion of two oxygen 

molecules. The protein also enzymatically reduces PGG2 to PGH2 via a separate 

peroxidase active site. PGH2 is then converted enzymatically or by non-enzymatic 

hydrolysis to yield the biologically active PGs, PGE2, PGF2", PGD2 and PGI2 

(prostacyclin), as well, as thromboxane A2, and collectively these are known as 

prostanoids. These biologically active prostanoids exit the cell to activate G-protein 

couple receptors to mediate their biological functions.
27, 30, 31, 33-38 
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COX-1  

COX-1 is constitutively expressed and is primarily localized in the endoplasmic 

reticulum. Traditionally, it was thought that prostanoids produced by this constitutively 

expressed COX-1 were responsible for mediating physiological housekeeping functions. 

Particularly high levels of COX-1 are found in platelets, kidney, stomach and skin, 

tissues and organs in which prostanoids have particularly specialized signaling functions. 

COX-1 expression increases in cell lines that undergo differentiation, and changes in 

COX-1 expression are primarily thought to be associated with alterations in the 

developmental status of the cell. Ram seminal vesicles have long been use as a tissue for 

isolation of COX-1 protein for enzymatic studies, and in 1989 the COX-1 gene was first 

cloned from sheep, and later the complete amino acid sequence of the human COX-1 

gene was determined.
39-41

 The gene for COX-1 is approximately 22 kb in length with 11 

exons resulting in the protein consisting of 576 amino acids with a molecular mass of 

approximately 70 kDa. The 5' flanking region of the COX-1 gene does not contain a 

TATA box, which is characteristic of a housekeeping gene. There are several regulatory 

elements present in the COX-1 promoter, which include, two Sp1 motifs, two AP2 sites 

and an NF-IL6 motif.
42

 Studies with human umbilical vein endothelial cells (HUVEC), 

have shown that Sp1 cis-regulatory element, contributes to the constitutive expression of 

COX-1. It was shown that mutation of either Sp1 sites, resulted in a reduction of the 

promoter activity by 50%, as compared to the wild-type, whereas mutations in both the 

Sp1 sites, resulted in reduction of the basal activity by 75%.
27, 36, 42

 

 

COX-2 

COX-2 was discovered in the early 90s as primary response gene.
38, 43-50

 COX-2 

is an inducible enzyme, and is traditionally thought to play an important role in the 

production of prostanoids that primarily contribute to pathological conditions. The 

expression of COX-2 is known to increase in response to stimuli in various tissues and 

cells. COX-2 is primarily localized in the nuclear envelope, and various pro-

inflammatory factors such as IL-1, TNF-alpha, INF-gamma, lipopolysaccharide (LPS), 

TPA, hormones such as FSH and LH, and several growth factors including EGF, PDFG 

and FGF are known to stimulate expression of COX-2. The COX-2 gene is located on a 
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separate chromosome than COX-1, which for humans is chromosome 1.
51

 The COX-2 

promoter contains the TATA box, as well as binding sites for several transcription factors 

such as NF-#B, NF-IL6, as well as the cyclic AMP response element binding protein 

(CREB).
27, 51, 52

 The 3 main MAPK pathways, including ERK1/2, JNK/SAPK and p38 

are known to contribute to the induction of the COX-2 gene.
27, 36, 42

 

 

Inhibition of COX activity 

The amino acid sequence for COX-1 and COX-2 share a 60% identity.
53

 There 

are 3 distinct domains that comprise the structure of the COX proteins: an N-terminal 

epidermal growth factor domain, a membrane binding motif, and a C-terminal catalytic 

domain that consists of the COX and peroxidase active sites. The COX active site is 

situated at the end of a hydrophobic channel that runs from the membrane-binding 

surface of the enzyme into the interior of the molecule.
54, 55

 

Non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin have been 

prominent anti-inflammatory, analgesic and antipyretic medications since 1889 when 

aspirin was first marketed. NSAIDs act on the COX active site in several ways. Aspirin 

irreversibly inactivates both COX-1 and COX-2 (primarily COX-1) by acetylating an 

active serine site at residue 530.
56

 This is a covalent modification that interferes with the 

positioning of arachidonic acid into the active site. In contrast, drugs such as ibuprofen 

are reversible competitive inhibitors of both COX isoforms, that compete with 

arachidonic acid at the COX active site.
57

 Drugs such as flurbiprofen and indomethacin 

are a third class of NSAIDs that cause a slow, time-dependent irreversible inhibition of 

COX-1 and COX-2.
31, 56, 58

 

Traditional NSAIDs such as ibuprofen and indomethacin, which inhibit the 

activity of both COX-1 and COX-2, provide significant therapeutic efficacy. However, 

the chronic use of these medications is associated with severe side effects such as 

gastrointestinal ulcerations and bleeding. Because COX-1 is not up-regulated during 

inflammatory conditions and was thought to be involved in housekeeping functions such 

as cytoprotection of the gastric mucosa, the side effects of traditional NSAIDs were 

attributed to the inhibition of COX-1. Whereas, because COX-2 was known to be up-

regulated primarily during pathological conditions such as pain and inflammation, the 
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therapeutic effects of traditional NSAIDs were attributed to inhibition of COX-2. 

Because of this rationale, the identification of drugs that selectively inhibit COX-2 

activity, became the focus of NSAID development. 

The crystal structures for COX-1 and COX-2 are remarkably similar, and have 

provided insight into how specificity for COX-2 is achieved.
55, 59

 There is a single amino 

acid difference within the hydrophobic channel of the COX enzyme at position 523 

(isoleucine in COX-1 and valine in COX-2), which has been shown to be critical for the 

selectivity of several drugs for COX-2.
60

 It is thought that the smaller valine molecule in 

COX-2 creates a larger 'side-pocket' which gives substrate access to COX-2. This results 

in a 17% increase in NSAID binding by the COX-2 active site, and allows for 

development of more bulky inhibitors with COX-2 binding capability which are not 

efficiently bound by COX-1.
36

 Celecoxib and rofecoxib are examples of novel inhibitors 

that were developed from these binding studies which produce selective inhibition of 

COX-2 activity. 
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FIGURE 1.2. Illustration of the cyclooxygenase pathway
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COX-1 and COX-2 deficient mice 

The biological functions of the COX enzymes were originally hypothesized from 

in vivo and in vitro studies examining the pharmacological effects of NSAIDs. However, 

because of activity on non-COX targets, the lack of selectivity for an individual COX 

isoform, and only partial inhibition of either or both COX isoforms, the pharmacological 

effects of NSAIDs may not always reflect physiological or pathological functions of the 

COX isoforms. To better understand the physiological and pathological functions of the 

COX isoforms, mice deficient in either COX-1 or COX-2 were developed.
61-68

 Studies 

using these mice provided insight into the novel roles of both COX-1 and COX-2. These 

studies revealed that COX-1 in addition to COX-2 is involved in the development of 

various pathologies, whereas COX-2, in addition to COX-1 plays a significant role in 

development and the maintenance of homeostasis. 

Because COX-1 was traditionally thought to be responsible for maintaining 

housekeeping functions, it was surprising that the COX-1-deficient mice had very few 

phenotypic abnormalities.
61-63, 69

 The most unexpected finding was that these mice did not 

develop spontaneous gastric ulcerations, as it was thought that prostaglandins from the 

activity of COX-1 were responsible for maintaining the integrity of the gastric mucosa. 

Furthermore, these mice did not display kidney pathology and showed decreased ex vivo 

platelet aggregation without prolonged bleeding times in vivo. The most severe 

phenotype observed in the COX-1-deficient mice was the delayed onset of labor in 100% 

of the females. Studies by Tiano et al., using the COX-1-deficient mice showed that 

COX-1 plays an important role in skin tumorigenesis.
70

 Therefore, these knockout studies 

have determined that COX-1 is essential for providing only a limited number of house 

keeping functions but is capable of playing a significant role in pathological conditions.
61-

63, 66, 69, 70
 

In contrast to the COX-1-deficient mice, the COX-2-deficient mice exhibit overt 

phenotypes.
64

 All COX-2-deficient mice are born in the expected Mendelian ratios, 

however only about 65% of these mice survive up to weaning. Furthermore, the kidneys 

of these mice show a nephropathy, with poorly developed and reduced number of 

glomeruli, and pale and smaller kidneys. The female mice are infertile and have impaired 
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ovulation, implantation and decidualization.
71

 Thus, studies using the COX-2-deficient 

mice revealed that COX-2 plays an important role in normal physiological processes.
61-66

 

 

FACTORS REGULATING DA CLOSURE 

15-hydroxyprostaglandin dehydrogenase 

The dilation of the DA in utero is an active process maintained primarily by 

PGE2, circulating in the fetus.
72-75

 The placenta is a major source of PGE2 in the fetal 

circulation
76

 and traditionally it is thought that loss of this PGE2 source following birth, 

and the resultant decline in PGE2 levels, initiates contraction of the DA.
2
 PGE2 is 

catabolized into biologically inactive products by 15-hydroxyprostaglandin 

dehydrogenase (PGDH) and recently, mice deficient in PGDH were developed, and these 

mice exhibit a patent DA phenotype.
77

 Treatment of PGDH-deficient neonates with 

indomethacin, in the immediate postnatal period corrects the patent DA. Therefore, it was 

concluded that patent DA in PGDH-deficient mice resulted from elevated levels of PGE2 

after birth. It is known that PGDH expression increases late in gestation, particularly in 

fetal lungs.
78

 Because a majority of the fetal circulation is shunted away from the lungs 

through the DA; PGE2 is thought to be protected from being catabolized by PGDH in 

utero. However, after birth when the transition to pulmonary respiration occurs and blood 

flow to the lungs increases, PGE2 is broken down by PGDH, thereby resulting in a drop 

in PGE2 levels, and initiation of DA closure. 
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Figure 1.3. PGE2 maintains dilation of the DA in utero. 

The dilation of the DA in utero is active process maintained by primarily by 

PGE2, circulating in the fetus. The placenta is a major source of PGE2 in the fetal 

circulation. Loss of this PGE2 source following birth, together with induction of PGDH, 

the enzyme that catabolizes PGE2, is thought to initiate closure of the DA.  
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Cyclooxygenases 

To better understand the functions of both COX-1 and COX-2, we developed 

mice that were deficient in both enzymes. These mice were born alive in the expected 

Mendelian ratios, however 100% of these mice died within 12-24 hours after birth. After 

extensive pathological analysis, the only pathology that was found in these animals was a 

patent DA.
79

 Until our recent work, the predominant function of the COX isoforms 

expressed in the DA, was thought to be the synthesis of PGE2.
80, 81

 Numerous 

observations in humans and rodents indicate that maternal administration of NSAIDs 

constrict the DA in late-term fetuses.
82-85

 Therefore, the finding of patent DA in the 

COX-deficient mice was surprising because the lack of PG production in COX-deficient 

mice was expected to cause premature DA contraction, similar to the effects of NSAIDs. 

After the finding of patent DA in the COX-1/COX-2 double knockout mice, the COX-2-

deficient neonates were re-examined, and it was found that 35% of these mice also have a 

patent DA. Thus, our work using mice with targeted disruptions in the genes encoding 

COX-1 and COX-2 was the first report to identify a role for COX-2 in DA closure after 

birth. (Table 1) 
79

  

We extended these genetic studies to examine the effects of pharmacological 

inhibition, and found that specific inhibition of COX-2 during pregnancy also 

dramatically increases the incidence of patent DA in neonatal mice. (Table 1) 
86

 These 

findings are highly significant to human health because COX-2 inhibitors are currently 

being used in pregnant women in the United States and Europe to evaluate the efficacy of 

these medications for treatment of preterm labor.
87, 88

 Our work suggests that if the 

mechanisms of DA closure are conserved between species, the use of COX-2 inhibitors 

by women during pregnancy may impede normal closure of the DA after birth, thereby 

compromising neonatal health. We have also demonstrated that the DA expresses a 

greater level of COX-2 as compared to the adjacent aorta, suggesting the autocrine 

synthesis of vasoconstrictor prostanoids that may initiate DA closure after birth. 

However, to date, the identity of the specific COX-2-derived constrictor prostanoid or 

that of the specific contractile prostanoid receptor remains elusive.  
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Table 1. Incidence of patent DA with the genetic deficiency or pharmacological 

inactivation of COX-1 and/or COX-2 in mice.
79, 86 

Genetic deficiency of COX-2 results in patent DA in mice. This incidence increases when 

the gene copy number for COX-1 is reduced. Celecoxib treatment significantly increases 

patent DA incidence in neonates expressing COX-2 (*, P < 0.01, significantly different 

from vehicle treated). The patent DA incidence in the COX-2-deficient neonates 

following celecoxib administration does not increase significantly above the spontaneous 

patent DA incidence, indicating the selectivity of the drug for COX-2.  

 

                                                    Untreated                      Celebrex Treated

                                                                       Patent DA                     Patent DA

Offspring Genotype             % Incidence                 % Incidence           

COX-1(+/+)/COX-2(+/+)                          0                                        !                                          

COX-1(+/!)/COX-2(+/+)                          0                                        !

COX-1(!/!)/COX-2(+/+)                          0                                     100

COX-1(+/+)/COX-2(+/!)                          0                                        !

COX-1(+/!)/COX-2(+/!)                          0                                       79 

COX-1(!/!)/COX-2(+/!)                          0                                     100

COX-1(+/+)/COX-2(!/!)                        33

COX-1(+/!)/COX-2(!/!)                        74

COX-1(!/!)/COX-2(!/!)                      100                                                                    

                                                                   Patent Da % Incidence        
                                                                       

Offspring Genotype                      Vehicle                     Celecoxib        

COX-1(+/+)/COX-2(+/+)                          0                                      59*                                          

COX-1(+/!)/COX-2(+/+)                          0                                      70*

COX-1(!/!)/COX-2(+/+)                          0                                     100*

COX-1(+/!)/COX-2(+/!)                          0                                       79*

COX-1(!/!)/COX-2(+/!)                          0                                     100*

COX-1(+/+)/COX-2(!/!)                        33     39

COX-1(+/!)/COX-2(!/!)                        74    77

COX-1(!/!)/COX-2(!/!)                      100                                            !                        
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Other factors regulating DA closure 

In addition to vasodilatory prostaglandins, nitric oxide has been known to have an 

accessory role in dilation of the DA. Nitric oxide is known to be a dilator of DA smooth 

muscle. Studies in the lamb DA have shown that nitric oxide donors such as sodium 

nitroprusside and glyceryl trinitrate, both of which increase intracellular concentrations of 

cGMP, are capable of dilating the DA.
2
 It has been shown previously in vitro that 

treatment of the DA with inhibitors of nitric oxide synthase, caused constriction of the 

DA, however the effect was minimum.
89

 Other studies have shown that treatment of the 

DA with inhibitors of nitric oxide synthase in combination with a COX inhibitor such as 

indomethacin, is more effective than either class of agents used alone.
90

 Thus, even 

though nitric oxide is involved in dilating DA in utero, it only plays an accessory role.  

Physiological increases in oxygen tension have been known to influence closure 

of the DA. It has traditionally been thought that a decrease in circulating PGE2 

concentrations after birth, together with an increase in arterial oxygen tension that 

follows the first breath, both trigger postnatal DA closure.
2
 Oxygen is known to increase 

intracellular calcium concentrations and cause contraction of DA smooth muscle. Studies 

in vitro have shown that treatment of the DA with antagonists for potassium and calcium 

channels, together with oxygen exposure resulted in inhibition of delayed rectifier 

potassium channels, causing membrane depolarization and increased entry of calcium, 

thereby resulting in DA constriction.
2
 Although potassium channels are involved in 

oxygen-dependent DA constriction, a role for this ion channel in contributing to patent 

DA has not been shown. Furthermore, studies in our laboratory have found that treatment 

of COX-1/COX-2 or COX-2 -deficient neonates with inhaled oxygen does not enhance 

DA closure.
86

 Thus, even though increased oxygen tension may normally be involved in 

DA closure, oxygen-dependent stimulation is not sufficient to produce DA closure in the 

absence of the COX isoforms.  

The SMCs and endothelial cells in the DA are known to synthesize endothelin-1 

(ET-1) and exogenous ET-1 is a potent constrictor of the DA. In vitro studies have shown 

that fetal DA synthesis of ET-1 is regulated by oxygen tension
2
, and ET-1 receptor type 
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A antagonists partially dilate DA constriction induced by oxygen.
91

 Although there are 

conflicting reports on the ability of ET-1 receptor antagonists to affect DA closure,
92, 93

 

the deficiency of the ET-1 receptor type A does not affect normal postnatal DA closure in 

mice.
94

  

 

PROSTANOID RECEPTORS 

Individual prostanoids act through specific membrane bound receptors to mediate 

their biological responses.
95-98

 To date, eight types of prostanoid receptors have been 

identified and are highly conserved between mice and humans. These receptors include: 

the PGD2 receptors, DP1, DP2 (CRTH2- chemoattractant receptor homologous 

molecule expressed on Th2 cells); the PGE2 receptors, EP1, EP2, EP3 and EP4; the 

PGF2" receptor FP, the prostacyclin receptor IP; and the TXA2 receptor TP.
97, 98

 All 

prostanoid receptors are G protein-coupled rhodopsin-type receptors with distinct 

intracellular signaling pathways (Table 2). Among these prostanoid receptors, DP, EP2, 

EP4 and IP have been termed as the relaxant receptors that mediate a rise in intracellular 

cAMP. Whereas, TP, EP1 and FP are termed the contractile receptors, as they contribute 

to calcium mobilization. EP3 is also considered a contractile receptor, but it mediates a 

reduction in cAMP levels, and thus is termed as an 'inhibitory' receptor. Mice deficient in 

each of these receptors have been developed and studies using these mice have revealed 

novel physiological and pathophysiological functions of prostanoids.
96, 98
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Table 2. Prostanoid receptors, signaling and vascular function. 

 

Prostanoid Receptor  Subtype Signaling Vascular 

Function 

PGD2 DP DP1 $ cAMP Dilation 

  DP2 

(CRTH2) 

% cAMP, Phospholipase C 

activation 

Undetermined 

PGE2 EP EP1 $ Ca
2+

 Constriction 

  EP2 $ cAMP Dilation 

  EP3 % cAMP Constriction 

  EP4 $ cAMP Dilation 

PGF2" FP  Phospholipase C activation, 

$ Ca
2+

 

Constriction 

PGI2 IP  $ cAMP Dilation 

TXA2 TP  Phospholipase C activation, 

$ Ca
2+

 

Constriction 
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Dilatory prostanoid receptors and the DA  

It is well known that the dilation of the DA in utero is an active process that is 

maintained by actions of PGE2. Therefore, most of the studies to date have focused on 

investigating the role of the PGE2 receptors in the regulation of DA dilation. Studies by 

Smith et al. examined the expression of the dilatory receptors in the rabbit DA using ex 

vivo techniques.
99

 These studies utilized pharmacological agonists and antagonists, to 

examine the effect of these drugs on dilation of the pre-constricted DA ex vivo. These 

studies showed that an agonist for the EP4 receptor was equipotent to PGE2 in dilating 

the DA, whereas the EP1 and EP3 agonist sulprostone, failed to mediate DA relaxation. 

Furthermore, an antagonist specific for the EP4 receptor blocked the dilatory effect of 

PGE2 on the DA. Therefore, it was concluded that the primary PGE2 receptor in the 

rabbit DA was EP4. However, studies by Nguyen et al., and Segi et al., showed that mice 

deficient in the EP4 receptor surprisingly had a postnatal patent DA phenotype.
100, 101

 

These findings suggested a role of PGE2 receptors other than EP4 in maintaining DA 

dilation and/or a novel previously unidentified function of EP4 that is required for DA 

closure. Studies by Smith et al., extended their findings to the ovine and baboon DA and 

found that EP3 and EP4 were expressed, however the expression of EP4 decreased with 

advancing gestational age.
102

 

Studies by Bhattacharya et al. examined the expression of the EP receptors in the 

porcine DA.
103

 These studies suggested that EP1 was not expressed in the porcine DA, 

but EP2, EP3 and EP4 were present. Furthermore, they suggested that the expression of 

EP3 and EP4 decreased with advancing gestation, whereas the expression of EP2 

remained unchanged. From these studies, it was concluded that the primary dilatory 

receptor in the porcine DA was EP2. This group extended their studies in the ovine DA 

and found that similar to the porcine DA, EP2, EP2 and EP4 were expressed in the fetal 

DA, whereas only EP2 was expressed in the newborn DA. Furthermore, stimulation of 

both EP2 and EP4 caused DA relaxation by mediating a rise in cAMP levels. They also 

suggested that although stimulation of the EP3 receptor caused a decline in cAMP levels, 

activation of this receptor produced DA relaxation. These studies were the first to suggest 

a role for the known contractile EP3 receptor in dilation of the ovine DA. The relaxant 
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effect of EP3 was attributed in part to the stimulation of KATP channels.
104

 A more recent 

study by Waleh et al., also examined EP receptor expression in the immature and mature, 

sheep and baboon DA.
105

 They found that in contrast to the studies by Smith et al.,
102

 the 

expression of EP4 remained unchanged in the DA, and EP2 was expressed in the DA at 

all stages of gestation. 

Thus, from the multitude of reports to date describing the various functions of EP 

receptor expression in the DA of different species, there have been several discrepancies 

in the findings. Although the significance of alterations in EP receptor expression has yet 

to be determined, the most consistent observation in the reports to date is the presence of 

the EP4 receptor in the DA and the ability of the DA to dilate in response to EP4-specific 

agonists. We have also recently shown that endogenous treatment of wild-type neonatal 

mice with an EP4-selective agonist, results in DA patency.
86

 So the question as to why 

the EP4-deficient mice exhibit a patent DA phenotype remains to be answered.  

A recent report by Yokoyama et al. has shed some light into this paradoxical 

finding of patent DA in EP4 knockout mice.
106

 These studies proposed an additional role 

for EP4, other that mediating DA dilation. First, they examined the expression of EP4 in 

the rat DA and found that EP4 expression significantly increased with advancing 

gestational age. Smooth muscle migration from the vascular media into the endothelial 

layer is an important vascular remodeling process involved in complete closure of the 

DA. These studies examined migration of the DA smooth muscle in response to EP4 

agonist stimulation and found that similar to the effects of PGE2, an EP4 agonist 

successfully resulted in migration of DA smooth muscle cells. Furthermore, they showed 

that EP4 stimulation resulted in induction of the hyaluronic acid gene. Hyaluronic acid is 

an important component of the extracellular matrix, and is involved in intimal cushion 

formation, and smooth muscle cell migration during DA remodeling. The DA of EP4-

deficient mice had reduced expression of hyaluronic acid. Thus, it was concluded that 

hyaluronic acid production is stimulated by EP4 receptor activation and production of 

this extracellular matrix component is an essential process in DA remodeling, without 

which, results in patent DA.
106
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Contractile prostanoid receptors and the DA  

Few studies have been reported to date, examining the effects of contractile 

prostanoids, and the characterization of contractile receptors in the DA. The prostanoid 

receptors known to mediate contraction of vascular smooth muscle are EP1, EP3, FP and 

TP. Studies by Smith et al., investigated the effects of agonists for the receptors on 

contraction of the rabbit DA ex vivo.
107

 The EP1/EP3 agonist, sulprostone, as well as the 

TP agonist U46619, caused concentration-dependent contraction of the DA, in the low 

nanomolar range, as examined by the isometric tension technique. The FP agonist had no 

effect on DA contraction, but in contrast caused DA relaxation at higher concentrations, 

which may be due to the non-specific binding of the agonist to other receptors. The 

endogenous ligand for EP1/EP3 is PGE2, and the primary effect of this ligand on the DA 

is known to be dilation. Therefore, it is not clear how the same endogenous ligand can 

have different effects on ductal tone when binding either the contractile or relaxant 

receptors. Furthermore, the authors themselves question these findings by saying that the 

contractile effects of sulprostone on the DA may have a non-specific effect by binding to 

either TP or other prostanoid receptors. Therefore, in these studies, it was concluded that 

the TP receptor might have a role in mediating DA contraction. 

We recently reported the endogenous effects of prostanoid receptor agonists on 

DA contraction in vivo. Mice that are deficient in both COX-1 and COX-2 show a 100% 

incidence of patent DA, and thus provide an advantageous model for examining the 

effects of different prostanoids or analogs on DA closure.
86

 COX-1/COX-2 double 

knockout mice were treated with sulprostone, an FP agonist, an EP4-specific agonist, 

PGE2, carbaprostacyclin (IP agonist), U46619 (a TP agonist and a PGH2 mimetic) or 

IBOP (TP agonist and TXA2 mimetic). Of all the compounds examined, only the two 

structurally distinct TP agonists, U46619 and IBOP, induce DA closure in the COX-

1/COX-2 double knockout mice in vivo, which is histologically indistinguishable from 

normal DA closure that occurs in wild-type mice. Treatment of COX-1/COX-2 double 

knockout mice with agonists selective for all other prostanoid receptors has no effect on 

DA closure. Thus, these studies suggest a role for the TP receptor in mediating DA 

closure. However, genetic deficiency of the only known TP receptor in mice does not 

alter DA closure
108

, suggesting the role for a novel prostanoid receptor in DA closure. 
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Furthermore, the possibility of an unidentified TP isoform has been suggested 

previously.
97, 109, 110

 Thus; it is possible that a currently uncharacterized contractile 

receptor is present, which may be responsible for mediating the actions of COX-2-

derived prostanoid(s) on the DA. 
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 METHODS 

Animals 

The wild-type mice used in these studies (8 to 10 weeks of age) were on a mixed 

background of C57BL/6J and 129/Ola and have been maintained by continuous 

intercrossing with mice from the same colony, as we have reported previously.
64, 65, 69

 

EP4 wild-type, heterozygous and homozygous -deficient mice were generated by 

crossing EP4 heterozygous mice that were backcrossed ten times to C57BL/6CrSlc 

(Japan SLC, Shizuoka, Japan). EP4 mutants were genotyped by PCR as previously 

described.
101

 The morning after pairing was designated as gestation day 0.5 upon 

detection of a copulation plug. Preterm wild-type mice were delivered by Cesarean 

section on gestation days 16 (82% gestation) or 17 (87% gestation). Full-term wild-type 

mice were delivered either by Cesarean section or natural birth on gestation day 19.5 

(100% gestation). Mice were housed under barrier conditions with food and water 

provided ad libitum. Experiments were conducted in accordance with the Institutional 

Animal Care and Use Committee at the University of Kentucky.  

 

Tissue Collection 

Mice for the 0 hour time point were euthanized immediately following birth 

whereas all mice that were be analyzed at the 3 hour time point, were placed in an 

atmosphere of 100% oxygen for the first 10 minutes following birth to improve survival. 

At the designated time points, animals were be euthanized in a CO2 chamber followed by 

thoracotomy, to expose the heart and great vessels. The DA extends from the main 

pulmonary artery and connects to the proximal descending aorta just after the origin of 

the left subclavian artery. DA tissue was excised carefully without contamination of 

surrounding vessels, and lysed immediately in tissue lysis buffer from the RNA isolation 

kit.  

 

RNA Isolation 

Total RNA was isolated from tissues using the RNAqueous Kit from Ambion, 

which uses a modified version of the traditional Chomczynski and Sacchi method.
111

 The 

RNAqueous method utilizes the ability of nucleic acids in concentrated chaotropic salt 
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solutions, to bind glass fibers. DA tissue was first lysed in a glass micro-mortar and 

pestle apparatus, using a buffer containing a high concentration of guanidium salt, which 

also inactivates RNAses. The lysate was then diluted with an ethanol solution, which 

allowed the RNA to bind the glass fibers in the filter cartridge. The solution was passed 

through the filter cartridge, and the filter pad, where the RNA remained bound while the 

other cellular components flowed through. The filter cartridge was washed 3 times using 

wash buffer to allow removal of contaminating materials. RNA was then eluted using a 

hot elution solution of low ionic strength. RNA concentrations were measured using the 

Nano Drop system.  

 

cDNA Preparation 

Total RNA (~150 ng per DA) was reverse transcribed using the following 

components: random hexamers, 10X reverse transcription buffer, deoxynucleotide 

triphosphate mix (dNTPs), RNAse inhibitor, and Superscript II reverse transcriptase. The 

reverse transcription was carried out using a thermal cycler (Eppendorf) with the 

following conditions: RNA + hexamers + dNTPs at 65°C for 5 min followed by placing 

the mixture on ice for 5 min. This was followed by addition of the remaining components 

to the tube and back into the thermal cycler for the following conditions: 25°C for 10 

minutes, 42°C for 50 minutes and 70°C for 15 minutes to terminate the reaction. This 

cDNA was stored at -20°C until utilized for gene expression analysis. 

 

Quantitation of mRNA expression 

Gene expression quantitation was performed in a two-step RT-PCR (ABI Prism 

7000 system) in which the PCR step is coupled with fluorogenic 5' nuclease chemistry 

(Taqman chemistry). Primer/probe assays for COX-1, COX-2, EP2, EP3, EP4, and TP 

were purchased from Applied Biosystems (Foster City, CA). mRNA encoding the 

housekeeping gene, hypoxanthine phospho-ribosyl transferase (HPRT) was also 

quantitated for an internal normalizing control.
112

 There was no significant difference in 

HPRT mRNA levels throughout gestation, when compared to other housekeeping genes 

(data not shown). A relative standard curve using cDNA from TPA-treated skin or lung 

tissue was run within the same reaction. The quantity of mRNA for the gene of interest 
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was extrapolated from its respective standard curve, followed by normalization with the 

HPRT levels. Because the expression analysis for each gene of interest was performed on 

separate reaction plates, and because the primers for each gene of interest were of 

different efficiencies, comparison of expression levels between genes of interest was not 

performed.  

 

 

Histology 

At the designated time points, neonates were sacrificed followed by fixation of 

torsos in 10% neutral buffered formalin. As we have described previously
79, 86

, upper 

torsos were transected above the rib cage and processed (paraffin embedded) for 

histological analysis. Analyses were performed on transverse sections of the upper 

thorax. The entire length of the DA from the descending aorta to the bifurcation of the 

pulmonary arteries was serial sectioned, followed by immunohistochemical analysis for 

COX-2 (primary antibody from Cayman Chemical, Ann Arbor, MI), smooth muscle cell 

marker "-actin (Dako Cytomation, Carpentaria, CA), endothelial cell marker PECAM 

(Santa Cruz) and the intermediate filament protein, desmin (Chemicon). Antigen retrieval 

was carried out in citrate buffer by heating to 96°C in a microwave oven, followed by 

cooling for 20 min at room temperature. Sections were first blocked with 1% BSA, 1% 

nonfat dried milk, and 1% normal serum. Incubations with the primary antibodies were 

carried out overnight at room temperature in a humidity chamber. Antibody binding was 

detected using the Vectastain Elite ABC kit (Vector laboratories, Burlingame, CA), using 

the manufacturer's instructions. DA sections were also stained with hematoxylin (H) and 

eosin (E) for morphological analysis of DA closure.  

 

Statistics 

Data are expressed as mean ± SEM. Data were analyzed using GraphPad Prizm 

software and tested for normality. Statistically significant differences in the expression of 

COX-1, COX-2, EP2, EP4 and TP, at multiple stages of gestation were determined by 

one-way ANOVA. Two-way ANOVA was utilized in the measurement of gene 

expression differences between the DA and aorta, at different time-points. Unpaired 
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Student's t-test was used to determine difference of means in the experiments involving 

gene expression at 2 different time-points after birth, or two different gestational time-

points.  
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CHAPTER 2 

CHARACTERIZATION OF THE CELL TYPES IN THE MOUSE DA  

 

Introduction 

Morphology of the DA. 

The wall of the DA is composed of three layers: 1) The intima which is comprised 

of endothelial cells 2) intimal cushions which consist of cellular and elastic layers 

between the endothelial cells and the internal elastic lamina and 3) the medial layer which 

consists of SMCs which are oriented longitudinally, circularly and spirally. At early 

gestation, the medial SMC layer in the DA is similar to that of the adjacent great vessels. 

In order to achieve permanent closure after birth, the DA develops in utero such that it 

acquires a highly muscular phenotype. With advancing gestation, the intimal cushions in 

the DA progressively become thicker than those in the adjacent arteries. The internal 

elastic lamina becomes fragmented and prominent and thin layers of elastin and collagen 

line the layers in the intimal cushions.
4
 

 

Differences between the DA and Adjacent Great Vessels. 

Despite the similarities between the developmental origin of the DA and adjacent 

arterial beds, the DA unlike its neighboring arteries, becomes highly muscular as 

development progresses. Even though the internal lamina of the DA consists of an elastin 

layer, as compared to the adjacent arteries, the DA has significantly less elastin.
4, 5, 113

 In 

normal vascular smooth muscle, two types of smooth muscle type myosin heavy chain 

isoforms SM1 and SM2, and two other non-muscle type MHC isoforms are expressed. Of 

the two smooth muscle type isoforms, SM2 is associated with the contractile phenotype 

of SMCs. Several studies have shown that as compared to the adjacent aorta and 

pulmonary artery, the DA expresses a greater level of SM2.
4, 114, 115

 The increased 

expression of SM2 in the DA as compared to the adjacent great vessels is thought to 

contribute to the contractile nature of DA smooth muscle. Furthermore, myofilament 

structures, indicative of contractile function, were more abundant in the DA as compared 

to adjacent vessels.
4
 Studies in our laboratory (unpublished) as well as by others have 

shown that expression of the intermediate filament protein desmin, indicative of the 

Susanne Fries
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advanced differentiation and development of contractile function, is greater in the DA of 

mice, as compared to adjacent aorta.
4
 Thus, the DA is a muscular artery, which consists 

of highly differentiated SMCs and possesses a contractile machinery which is unique to 

this artery.  
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Results 

We utilized the mouse DA as a model for studying the morphology of this vessel. 

We employed the periodic acid/Schiff's staining method to identify the basement 

membrane and to distinguish between the layers of cells in the DA. As shown in figure 

2.1, the DA is comprised of multiple layers of cells. The media of the DA is primarily 

formed of smooth muscle cells (Figure 2.2). The inner media appears to be comprised of 

radially oriented smooth muscles cells, whereas the middle and outer layers of the media 

contains more closely packed, circularly oriented smooth muscle cells. These medial 

smooth muscle cells are encompassed with a layer of fibroblast like cells in the 

adventitia. Endothelial cells comprise the inner lining of the intimal layer, as shown in 

Figure 2.3. The formation of intimal cushions has been thought to be an important event 

in remodeling of the DA. When comparing figures 2.2 and 2.3, it appears as if the 

endothelial cells have separated from the internal elastic lamina, and smooth muscle cells 

have migrated to occlude the lumen. Progressive development of the intimal cushions is 

accompanied by fragmentation of the internal elastic lamina, as shown in (Figure 2.4). In 

contrast, in the patent DA, the internal elastic lamina appears to be intact with apparent 

distinct layers (Figure 2.5). 

We also examined expression of the contractile filament protein desmin in the DA 

and the adjacent vessels. Our studies show that the DA expresses a dramatically greater 

level of desmin in the SMCs of the DA as compared to SMCs of the aorta and adjacent 

arteries (Figure 2.6). This increased desmin expression contributes to the contractile 

nature of the DA, as opposed to the neighboring elastic arteries.  
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Figure 2.1 Basement membrane staining 

This figure represents a completely remodeled DA, from a neonatal mouse at 3 

hours after birth. Sections were stained with periodic acid/Schiff reagent (Newcomer 

supply).  
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Figure 2.2 Smooth muscle cell staining 

Slides were stained with an antibody against "-actin, which is a marker of smooth 

muscle cells. The slides are counter stained with periodic acid/Schiff's reagent, which 

allows distinguishing between the different layers of cells. Brown staining (DAB reagent) 

indicates smooth muscle cells.  
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Figure 2.3 Endothelial cell staining 

 

Slides were stained with an antibody against PECAM, which is a marker of 

endothelial cells. As shown in the figure, it is apparent that the endothelial cells (as 

indicated by the brown staining) have detached from the internal elastic lamina, and have 

segregated in the lumen.  

 

 

 

 

 Endothelial cells 

 

Basement membrane 

 

 



 34 

Figure 2.4 Elastin staining 
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Figure 2.5 Desmin staining 

 

Sections were stained with an antibody against the contractile filament protein, 

desmin. The brown staining (DAB reagent) indicates greater desmin expression in the 

DA as compared to the adjacent aorta. Figures shown are representative of DA from a 

minimum of 5 mice. DA, ductus arteriosus, Ao, descending aorta.  
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CHAPTER 3 

ANALYSIS OF INDOMETHACIN-INDUCED CONSTRICTION OF  

THE DA IN UTERO 

 

Introduction 

The role of PGs in the regulation of DA tone was initially determined from the 

observation that NSAIDs such as indomethacin modulate DA tone following birth. The 

dilation of the DA in utero is active process maintained by prostaglandins PGs, primarily 

PGE2, circulating in the fetus. The placenta is thought to be the major source of the 

circulating PGE2 in the fetus. It has been shown that in humans and rodents, maternal 

administration of indomethacin results in the reduction of the circulating PGE2 levels, 

possibly by inhibiting the placental PGE2 source, thereby resulting in DA constriction.
2
 

Studies in sheep and rats have shown that maternal administration with 

indomethacin, late in gestation results in premature constriction of the fetal DA.
82-85

 

Similar to the effects of indomethacin, we and others have shown previously, that the 

COX-2-selective inhibitor, celecoxib, when administered acutely to late gestation fetuses 

in utero, results in premature constriction of the fetal DA.
86, 116

 In contrast to the effect of 

the COX inhibitors on late gestation fetuses, studies have shown that the preterm fetuses 

are less responsive to the constricting effects of COX inhibitors.
82, 117

 This suggests that 

the development of the DA with advancing gestation may be related to the contractile 

function of the DA. In the current studies, we utilized maternal indomethacin treatment as 

a method to investigate the relationship between the ontogeny of the DA and the 

development of DA contractile function.  
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Results 

It is known that the DA of fetuses remains patent, thereby allowing the blood flow 

in the heart to bypass the uninflated lungs. We examined DA closure in mouse fetuses on 

gestation day 18.5 following maternal treatment with vehicle. Similar to our previous 

findings, the DA of fetuses treated with vehicle in utero, was completely patent. (Figure 

3A) 

As we have previously reported, we utilized indomethacin treatment to examine 

the ability of the fetal DA to close prematurely. Indomethacin was administered to 

pregnant female mice on gestation day 18.5. Four hours after dosing, fetuses were 

analyzed for premature DA constriction by histology. As compared to the completely 

patent DA of vehicle-treated controls (Figure 3A), indomethacin treatment induced 

complete occlusion of the DA of late term fetal mice on gestation day 18.5 (Figure 3B). 

We also utilized indomethacin treatment to examine the ability of the DA of 

preterm fetuses to contract in utero. Our results show that in contrast to the DA of late 

gestation fetuses, indomethacin resulted only in partial constriction of the preterm fetal 

DA of mice on gestation day 16 (Figure 3C). These studies show that in mice, the 

preterm gestation fetal DA is less responsive to pharmacologically-induced constriction, 

and suggest that near full-term maturation is required for complete development of DA 

contractile function.  
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Figure 3  

Incomplete indomethacin-induced constriction of the DA in preterm fetal 

mice. Indomethacin was administered to pregnant dams on gestation day 16 or 18.5 (50 

mg/kg, oral gavage 5% gum arabic). Four hours after dosing, fetuses were delivered by 

Cesarean section and sacrificed for DA analysis. n & 5 per group. DA, ductus arteriosus, 

Ao, descending aorta. DA of fetal mice treated with vehicle A) or indomethacin B) on 

gestation day 18.5. C) DA of fetal mice treated with indomethacin on gestation day 16. 

Sections are stained with H&E.  
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Discussion 

Fetal DA constriction induced by the non-selective COX inhibitor indomethacin 

has long been used to study pharmacologically-induced contractile responses in the 

DA.
105, 118

 Maternal treatment with the non-selective COX inhibitor indomethacin, is 

known to induce two paradoxical effects on the DA. In both humans and rodents, 

maternal administration of indomethacin results in premature constriction of the DA by 

inhibiting the synthesis of prostanoids important for DA dilation.
2, 85, 117

 Alternatively, it 

has also been shown that indomethacin treatment during pregnancy can increase the risk 

for postnatal patent DA.
119-121

 Our recent report has shown that similar to previous studies 

with indomethacin, acute administration of a COX-2-selective inhibitor but not a COX-1-

selective inhibitor, results in premature constriction of the DA.Whereas chronic 

administration with a COX-2-selective inhibitor, results in postnatal patent DA.
86

 A 

recent report by Reese et al., replicated our findings in mice and showed similar 

results.
122

 The contrasting effects of COX-2 inhibition that we showed recently, and the 

paradoxical effects of indomethacin shown by others, suggest opposing actions of 

different prostanoids on the regulation of DA tone. The dilation of the DA in utero is 

active process maintained by prostaglandins PGs, primarily PGE2, circulating in the fetus. 

The placenta is thought to be the major source of the circulating PGE2 in the fetus. 

Therefore, it is possible that the constriction of the DA that is observed following acute 

administration of indomethacin or a COX-2-selective inhibitor results from the reduction 

of circulating PGE2 levels by inhibiting COX activity in the placenta. In contrast, the 

patent DA observed with indomethacin treatment or with chronic treatment with a COX-

2 inhibitor may be due to sufficient inhibition of synthesis of contractile prostanoids 

produced by COX-2 in the DA. Although we do not completely understand the two 

opposing effects on the DA resulting from indomethacin treatment, particularly at the 

time of peak COX-2 expression, nonetheless we can use this agent as a convenient 

functional marker for the ability of COX-2 to induce DA closure.  

Previous studies in rats and humans have shown that the preterm fetal DA is less 

responsive to indomethacin-induced constriction, in contrast to the DA of full-term 

fetuses.
82, 117

 In the current studies, we examined the effect of gestational age on 
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indomethacin-induced fetal DA constriction in mice. Our results show that the preterm 

fetal DA on gestation day 16 was less responsive to the constricting effects of 

indomethacin, as compared to the late gestation fetal DA on day 18.5. Therefore, in mice 

the contractile nature of the DA develops late in gestation.  
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CHAPTER 4 

ANALYSIS OF COX-1 AND COX-2 EXPRESSION IN THE FETAL AND 

NEONATAL MOUSE DA 

Introduction 

Previous studies in higher species such as pigs and sheep, have examined the 

developmental regulation of the COX isoforms in the DA. Studies by Guerguerian et al., 

measured COX-1 and COX-2 expression in fetal and newborn porcine DA and 

determined that COX-1 expression was constitutive in the fetal and newborn DA.
80

 In 

contrast, COX-2 expression was only detected in the newborn DA. They also examined 

the relative contribution of the COX isoforms in the synthesis of PGE2 and found that 

COX-2 was responsible for synthesizing greater than 90% of PGE2 in the newborn DA. 

Based on these findings, Guerguerian et al. concluded that COX-2 does not play a role in 

regulating DA tone after birth. 

Another study by Clyman et al., examined the expression of the COX isoforms in 

the late-gestation fetal lamb DA.
1
 These studies suggested that both COX-1 and COX-2 

were expressed in the fetal lamb DA. The expression of COX-1 was detected in the 

endothelial cells lining the DA lumen, as well as the smooth muscle cells of the media. 

However, COX-2 expression was only detected in the endothelium lining the DA lumen. 

These studies also examined the relative contributions of COX-1 and COX-2 for PGE2 

synthesis, using selective inhibitors of each isoform, and suggested that both COX 

isoforms contributed equivalently to the production of PGE2 in the DA. 

 

A more recent study by Baragatti et al. examined the expression of the COX 

isoforms in the full-term gestation fetal mouse DA.
123

 They showed that both COX-1 and 

COX-2 mRNA were expressed in the DA of full-term fetal mice. These studies also 

suggested that COX-2 co-localized with microsomal PGE2 synthase-1, an enzyme 

downstream of the COX isoforms, which converts the intermediate prostanoid PGH2 into 

PGE2. Based on these findings, Baragatti et al. suggested that in the full-term fetal DA, 

COX-2 is the isoform responsible for synthesizing PGE2. 

Recently, studies by Rheinlaender et al. examined COX isoform expression in the 

human DA and suggested that COX-1 is the predominant isoform expressed in the DA 

Susanne Fries



 43 

throughout gestation, whereas the expression of COX-2 was weak.
124

 These studies also 

suggested that that the cellular expression pattern of the COX isoforms changed with 

advancing gestation. 

All these previous reports have focused on the role of the COX enzymes in 

synthesizing PGE2 important for DA dilation. Furthermore, there are several 

discrepancies regarding the expression of the COX enzymes in the fetal DA. The factors 

involved in ontogenic changes in COX expression seem to vary between tissues and cells, 

and thus far remain elusive. Our previous studies have shown that about 35% of mice 

genetically deficient in COX-2 show a postnatal patent DA and resulting mortality. The 

patent DA incidence increases as the gene copy number for COX-1 and COX-2 

decreases, reaching a 100% in mice doubly deficient in both COX-1 and COX-2.
65, 79

 We 

extended these findings and showed that wild-type neonatal mice born after exposure of 

pregnant mice with a COX-2 selective inhibitor, show an increased postnatal patent DA 

incidence.
86

 These studies indicated the importance of COX-2-derived prostanoids in 

postnatal closure of the DA. Our studies were the first to suggest that COX-2-derived 

prostanoid(s), other than PGE2 play an active role in closure of the DA after birth. 

Our previous studies also indicated the importance of COX-2 in constriction of 

the DA in utero. We utilized indomethacin treatment to assess the ability of the fetal DA 

to constrict. Our studies showed that all fetuses genetically deficient in COX-2 were 

resistant to indomethacin-induced premature DA constriction.
79

 This suggested that the 

expression of COX-2 is required for the contractile function of the DA in utero. In the 

current studies, we examined the expression of COX-1 as well as COX-2 in the fetal DA 

at multiple stages of gestation, as well as the neonatal DA at full-term gestation. These 

studies will provide a better understand of the role of the COX isoforms in DA closure 

after birth.  
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Results 

Expression of COX-2 mRNA in the fetal DA at multiple stages of gestation.  

We examined the time-course of COX-2 expression in the DA of fetal mice at 

multiple stages of gestation. To perform these studies, fetuses were obtained by Cesarean 

section on days 16, 17 and 19.5 of gestation, and DA tissue was excised immediately (0 

hours) for analysis of mRNA expression. Comparative quantitative analysis of COX-2 

mRNA expression showed that COX-2 expression significantly increased with advancing 

gestation, with the highest expression in the DA on day 19.5 (Figure 4.1). Furthermore, 

the gestation day 16 time-point with the lowest level of COX-2 mRNA coincided with 

the time at which we observed incomplete indomethacin-induced constriction of the fetal 

DA (Figure 3C). These data demonstrate a correlation between reduced DA constriction 

and attenuated COX-2 expression in the DA of preterm mice.  
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Figure 4.1  

Expression of COX-2 increases in the fetal DA with advancing gestation. 

Preterm (gestation days 16 and 17) and full-term (gestation day 19.5) mice were 

obtained at 0 hr (sacrificed immediately after birth) for analysis of mRNA expression for 

COX-2 in the DA by real-time PCR. The housekeeping gene HPRT was used as an 

internal control for normalizing mRNA levels. Data represented as mean COX-2 mRNA 

levels +/- SEM. **, significantly different from 0 hour day 16, P < 0.01 (one-way 

ANOVA), n & 10. ***, significantly different from 0 hour day 16 and 0 hour day 17, P < 

0.001 (one-way ANOVA), n & 10  
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Expression of COX-1 mRNA in the fetal DA at multiple stages of gestation.  

We also quantitated COX-1 mRNA expression in the DA on gestation days 16, 17 

and 19.5 of gestation. We found that in contrast to COX-2 expression, the expression of 

COX-1 did not significantly change with advancing gestational age (Figure 4.2). This 

finding suggests that alterations in COX-1 mRNA expression are not associated with in 

utero development of fetal DA contractile function.  
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Figure 4.2 

Expression of COX-1 remains constitutive in the fetal DA with advancing gestation. 

Preterm (gestation days 16 and 17) and full-term (gestation day 19.5) mice were 

obtained at 0 hr (sacrificed immediately after birth) for analysis of mRNA expression for 

COX-1 in the DA by real-time PCR. The housekeeping gene HPRT was used as an 

internal control for normalizing mRNA levels. Data represented as mean COX-1 mRNA 

levels +/- SEM. 
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Analysis of COX-1 and COX-2 expression in the DA of neonatal mice at full-term 

gestation 

We examined COX-2 mRNA expression in the DA of full-term neonates, 

immediately after birth (0 hours) when the DA was patent, and 3 hours after birth when 

the DA was completely closed. Quantitative real-time PCR analysis indicated that COX-2 

mRNA dramatically increased (approximately 10 fold) in the DA when compared 

between 0 and 3 hours after birth on gestation day 19.5 (Figure 4.3-A). This increase in 

COX-2 mRNA expression from 0 to 3 hours after birth was unique to the DA, as no such 

increase in COX-2 expression was observed in the adjacent aorta. We also examined 

COX-2 protein expression by immunohistochemistry and found that significant COX-2 

protein was localized in the smooth muscle cells of the DA with evidence of perinuclear 

expression, but not in the smooth muscle cells of the adjacent aorta (Figure 4.3-B). 

Therefore, a significant increase in smooth muscle cell expression of COX-2 

accompanies closure of the DA after full-term birth.  

We also compared COX-1 expression in the full-term neonatal mouse DA 

between 0 and 3 hours of birth. In contrast to COX-2 expression, the expression of COX-

1 mRNA was constitutive with no significant difference between the two time-points 

(Figure 4.3-C).  
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Figure 4.3 

Induction of COX-2 expression in the DA of full-term neonatal mice.  

A) Full-term mice were delivered by Cesarean section or natural birth on 

gestation day 19.5 and sacrificed at 0 or 3 hours after birth for analysis of COX-2 mRNA 

in the DA or aorta. Data represented as mean COX-2 mRNA levels +/- SEM. *, 

significantly different from 0 hour DA and 3 hour Ao. P < 0.001 (two-way ANOVA), n & 

10. B) Immunohistochemical analysis of COX-2 expression. Full-term mice were 

delivered by Cesarean section or natural birth on gestation day 19.5 and sacrificed at 2 or 

3 hours after birth. Brown staining (di-amino benzidine, DAB) indicates COX-2 

expression. Figure shown is representative of neonatal DA from a minimum of 5 mice 

after 2 hours of birth. Inset shows perinuclear staining. DA, ductus arteriosus, Ao, 

descending aorta. C) Real-time PCR analysis of COX-1 mRNA expression in the DA at 0 

and 3 hours after birth on gestation day 19.5. Data represented as mean COX-1 mRNA 

levels +/- SEM.  
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Discussion 

Several groups have examined the developmental regulation of the COX isoforms 

in the DA in multiple species. There have been significant inconsistencies in these 

reports, showing that either COX-2 is not expressed, is expressed weakly or increases 

during gestation.
1, 80, 123

 Furthermore all these reports together focus on the role of COX-2 

in synthesizing the dilatory PGE2 responsible for maintaining a dilated DA in utero and 

suggest that the withdrawal of the dilatory PGE2 after birth may allow for DA closure. It 

is also suggested that COX-2 does not play a role in regulating DA closure after birth. 

These studies by other groups investigating the ontogeny of the COX isoforms in the 

DAs of other species do not explain our findings of the role of COX-2 in mediating DA 

closure. The present investigation was carried out to resolve the apparent inconsistencies 

in previous reports and gain, at the same time, a better insight into the functional 

organization of the COX enzymes in the DA.  

We have previously reported that the DA of COX-2-deficient fetuses fails to 

constrict in response to indomethacin, suggesting the importance of COX-2 expression 

for in utero contractile function.
79

 Therefore, in the current study, we investigated the 

relationship between the ontogeny of COX-2 expression and the developmental 

regulation of fetal DA constriction. COX-2 expression in the DA was significantly 

greater in full-term fetuses than that in preterm fetuses. Our previous report, together with 

our current study suggest that the contractile function of the DA that develops towards 

the end of term requires the in utero increase in COX-2 expression with advancing 

gestational age. 

The factors responsible for inducing normal closure of the DA after birth have not 

been clearly defined. Our previous studies using mice deficient in COX-2, clearly 

demonstrate the importance of this enzyme in postnatal DA closure. In mice, DA closure 

commences within 30 minutes after full-term birth, and is complete by 3 hours after birth. 

We have found that that COX-2 expression is induced in the neonatal DA at 3 hours after 

birth following full-term gestation, which coincides with the time at which the DA is 

completely remodeled. Thus, the induction of COX-2 in the DA may be required for 

normal closure of the DA after birth.  

The induction of COX-2 that we observe in the DA is unique to this vessel, as no 
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such increase is observed in the adjacent vessels such as the aorta. This suggests that 

autocrine production of prostaglandins in DA actively mediates DA closure. The vascular 

remodeling process involving intimal thickening, that occurs during closure of DA, are 

similar to the processes that occur in pathological process such as atherosclerosis and 

restenosis.
125

 In such pathological conditions, it has been reported previously that COX-2 

is significantly induced in the aorta. This induction of COX-2 in the aorta during 

atherosclerosis is associated with increase in production of prostanoids such as PGE2 and 

TXA2, together with macrophage accumulation and recruitment of inflammatory 

cytokines and chemokines.
126-128

 A recent study by Waleh et al. showed that similar to 

atherosclerosis, macrophage accumulation in the vessel wall plays an important role in 

DA remodeling.
10

 They found that this macrophage accumulation is associated with the 

induction of cytokines and adhesion molecules, and the extent of neointimal remodeling 

is directly related to the degree of mononuclear cell adhesion. Thus, the DA provides a 

physiological model of vascular remodeling, and studies on the DA may provide further 

insight into the development of treatments for vascular pathologies such as 

atherosclerosis.  
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CHAPTER 5 

ANALYSIS OF POSTNATAL DA CLOSURE AND COX EXPRESSION AT 

PRETERM AND FULL-TERM GESTATION IN MICE 

 

Introduction 

The initial phase of closure of the DA involves a contraction of its thick muscular 

wall. This is followed by anatomical remodeling of the vessel, which includes migration 

of the smooth muscle cells into the sub-endothelial space, creating intimal cushions. 

Following remodeling of DA SMC, significant apoptosis and cytolytic necrosis are 

thought to be required for complete obliteration of the DA. DA closure in humans is 

complete within a few days after birth. However, in other species such as mice, rats and 

rabbits, DA closure is complete within a few hours after birth. After permanent closure of 

the DA, a remnant of the vessel remains, which is known as the ligamentum arteriosum, 

which is formed by fibrosis of the closed vessel.
12

 

The factors responsible for inducing normal closure of the DA after birth have not 

been clearly defined. Our previous studies using mice deficient in COX-2, clearly 

demonstrate the importance of this enzyme in postnatal DA closure. In mice, DA closure 

commences within 30 minutes after full-term birth and is complete within 3 hours. Our 

current studies show that COX-2 expression is dramatically induced in the neonatal DA 

within 3 hours of birth at full-term gestation, which correlates with the time-point when 

the DA is completely remodeled. This suggests that induction of COX-2 expression in the 

DA may be required for achieving permanent closure after full-term birth. 

In humans, the incidence of patent DA is increased at premature gestation, 

however the mechanisms responsible for this increased incidence are not clear. Our 

previous study utilized indomethacin treatment as a functional marker of constriction of 

the DA in utero. We showed that the DA of premature fetuses failed to completely 

constrict in response to indomethacin, as opposed to the DA of full-term fetuses. We also 

examined the ontogeny of COX isoforms in the fetal DA at multiple stages of gestation. 

We found that the time-point of gestation when the DA of preterm fetuses failed to 

constrict in response to indomethacin, coincided with the time-point at which the 
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expression of COX-2 in the DA was the lowest. This suggests that the failure of DA to 

constrict prematurely may be due to a reduced expression of COX-2.  

In the current study, we utilized the mouse to establish a model of postnatal patent 

DA resulting from prematurity in gestation. To date, there has no animal model 

established to study the mechanisms of DA patency at preterm gestation. Because our 

previous study showed that the preterm gestation fetuses show incomplete indomethacin-

induced constriction, we hypothesized that neonatal mice born at preterm gestation may 

also show a post-natal patent DA. Furthermore, we compared the expression of COX-1 

and COX-2 in the DA from preterm and full-term neonatal mice. We hypothesized that 

similar to our observations in preterm fetal mice, the DA of preterm full-term neonatal 

mice will show attenuated COX-2 expression. 
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Results 

Morphological analysis of DA closure at 0 and 3 hours after birth at full-term gestation 

As shown in Figure 5.1, we found that that the DA was completely patent in 

neonatal mice at 0 hrs after birth at full-term gestation. This was indicated by the blue 

dye flowing through the widely open DA, with its diameter being similar to that of the 

adjacent aorta. The DA was completely occluded in neonatal mice at 3 hours after birth 

on gestation day 19.5. This was indicated by end of the blue dye at the point where the 

pulmonary artery ended and the DA began. The opaque white tissue is indicative of a 

completely closed DA.  
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Figure 5.1. Morphological Analysis of DA Closure 

A) The DA of a neonatal mouse, analyzed immediately after birth. The blue dye 

passing through the DA is indicative of DA patency. B) The DA of a neonatal mouse 

analyzed 3 hours after birth. The failure of the blue dye to pass through the DA is 

indicative of a closed DA. Arrow, DA. 

 

                 Patent DA                                                          Closed DA 
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Histological analysis of DA closure at 0 and 3 hours after birth at full-term gestation 

We also analyzed DA closure in mice using histological techniques. When 

analyzed at 0 hours after birth on gestation day 19.5, the DA was completely open, with 

no evidence of neointimal thickening, and the diameter of the vessel wall being similar to 

that of the adjacent aorta. (Figure 5.2A) In contrast, the DA was completely remodeled in 

all neonates sacrificed at 3 hours after birth at full-term gestation. (Figure 5.2B) This was 

indicated by significant neointimal formation and complete obliteration of the vessel 

lumen.  

 

Histological analysis of DA closure at 3 hours after birth at preterm gestation 

Our studies confirmed that the DA of mice born at full-term gestation closes 

completely at 3 hours after birth. In this study, we wanted to examine the effect of 

prematurity in gestation on DA closure in mice. In order to successfully accomplish these 

studies, it was important to determine the survival incidence of mice born at preterm 

gestation, and to ensure that the survival incidence was comparable to that of full-term 

gestation mice. Based on our previous studies, we know that the survival incidence of 

full-term wild-type neonates delivered by Cesarean section on day 19 is approximately 

98%. To determine the survival incidence of preterm wild-type neonates, we delivered 

litters on gestation day 17.5 by Cesarean section. The neonates were placed in an 

atmosphere of 100% oxygen for the first 10 minutes following birth and exposed to 

tactile stimulation using a vibrating heating pad and monitored for up to 5 hours after 

birth. A survival incidence of 83% (19/23) was observed in these preterm neonates. This 

level of survival was acceptable for the studies to examine the effect of prematurity on 

DA closure.  

Our findings indicate that in contrast to the complete DA closure observed in all 

neonates analyzed at 3 hours after full-term birth on day 19.5, significant lumen was 

visible in the DAs of all preterm neonates that were analyzed at 3 hours after birth on 

gestation day 17 (Figure 5.2C). These findings indicate that the DAs of neonatal mice 

born premature show incomplete closure. 
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Figure 5.2 Histological Analysis of DA Closure 

A) This figure is a representative transverse section of a completely patent DA of 

neonatal mice immediately after birth at full-term gestation. B) This panel is a 

representative transverse section of a completely closed DA of neonatal ice, 3 hours after 

birth at full-term gestation on day 19.5. C) Representative transverse section of an 

incompletely closed DA from neonatal mice, 3 hours after birth at preterm gestation on 

day 17. Sections are stained with H&E. DA, ductus arteriosus, Ao, descending aorta.  

Susanne Fries



 60 

Figure 5.2. Histological analysis of DA closure.  
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Postnatal expression of COX-1 and COX-2 in the DAs of preterm neonatal mice.  

To determine whether the incomplete closure of the DA in preterm neonatal mice 

that we observed (Figure 5.2) was associated with attenuated expression of COX-2, we 

compared COX-2 expression in the DA between preterm (day 17) and full-term (day 

19.5) neonates at 3 hours after birth. In comparison to the level of expression observed in 

the DAs of full-term neonates, COX-2 mRNA expression in the DAs of preterm 

neonates, was significantly lower (Figure 5.3A). The attenuated COX-2 expression 

coincided with the time-point at which we observed incomplete closure of the DA at 

preterm gestation (Figure 5.2C). In contrast to COX-2 expression, there was no 

significant difference in COX-1 mRNA expression between DAs from preterm and full-

term neonatal mice at 3 hours after birth (Figure 5.3B). Immunohistochemical analysis of 

COX-2 protein expression indicated that the DA of full-term neonatal mice showed 

significantly greater number of COX-2-positive cells than the DA of preterm neonatal 

mice (Figures 5.4C and 5.4D). Furthermore, the COX-2 expression was primarily 

localized in the smooth muscle cells of the DA (Figure 5.4E). Thus, these data establish a 

direct correlation between the attenuated COX-2 expression and increased patent DA.  
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Figure 5.3 Attenuated COX-2 mRNA expression in the DA of preterm neonatal 

mice.  

Preterm (gestation day 17) and full-term (gestation day 19.5) mice were delivered 

by Cesarean section or natural delivery, and sacrificed at 3 hours after birth for analysis 

of COX-1 and COX-2 expression. A) COX-2 mRNA expression is significantly greater 

in the DA of day 19.5 neonates as compared to the DA of day 17 neonates. *, P < 0.05 

(Student's t test), n & 5. B) COX-1 mRNA expression is not significantly different 

between the DA of preterm and full-term neonatal mice. Data are represented as mean 

COX-1 or COX-2 mRNA levels +/- SEM.  
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Figures 5.4 Attenuated smooth muscle COX-2 protein expression in the DA of 

preterm neonatal mice. 

C) The DA of a day 17 neonatal mouse at 3 hours after birth shows fewer COX-2-

positive cells as compared to D) the DA of a day 19.5 neonatal mouse at 3 hours after 

birth. Significant lumen is visible in C), indicative of partial DA closure due to 

prematurity. E) DA of a day 19.5 neonatal mouse at 3 hours after birth, stained for 

smooth muscle "-actin. Brown staining (DAB reagent) indicates COX-2 or actin 

expression and sections are counterstained with hematoxylin (blue). Figures shown 

(magnification, X300) are representative of immunohistochemical analysis of neonatal 

DA from a minimum of 5 mice.  
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Discussion 

In humans, patent DA is more common in premature infants, than those born at 

full-term, although mechanisms responsible for the increased incidence are poorly 

understood. We have previously reported that genetic or pharmacological inactivation of 

COX-2 results in patent DA in mice, indicating the importance of COX-2 in postnatal 

closure of the DA.
79, 86

 The current studies were aimed at better understanding the COX-

2-dependent mechanisms of DA closure and elucidating the factors responsible for patent 

DA at preterm gestation. Our findings are the first to suggest that reduced expression of 

COX-2 in the DA at preterm gestation contributes to increased patent DA. 

Our studies are the first to utilize the mouse as a model to examine patent DA at 

preterm gestation. Normal DA closure in mice at full-term gestation is complete within 3 

hours after birth. With our finding that incomplete development resulted in attenuated 

fetal DA constriction, we investigated whether prematurity in gestation also 

compromised normal DA closure after birth. We observed that at 3 hours after birth, DA 

closure was incomplete in preterm neonates, in contrast to the completely remodeled DA 

of 3 hour-old neonates born at full-term gestation. This suggests that similar to humans, 

premature birth compromises postnatal DA closure in mice. 

We have shown that COX-2 expression is induced in the DA of neonatal mice 

following full-term birth, and correlates with the time at which the DA is completely 

remodeled. This suggests that the increased expression of COX-2 is required for the 

normal closure of the vessel after birth. Therefore, we hypothesized that the incomplete 

closure of the DA in preterm gestation neonatal mice that we observed, may result from 

attenuated expression of COX-2. In support of this hypothesis, we found that COX-2 

expression was significantly lower in the DAs of neonatal mice delivered at preterm 

gestation, as compared to that expressed in the DAs of full-term neonates. The reduced 

COX-2 expression corresponded with the time-point at which we observed incomplete 

closure of the preterm neonatal DA. Thus, our studies demonstrate a direct correlation 

between the attenuated expression of COX-2 and the failure of complete closure of the 

DA at preterm gestation.  

Previous studies examining developmental regulation of the COX isoforms in the 

DA have focused on the action of these enzymes in DA dilation. In other species, it has 
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been reported that COX-1 is the predominant isoform expressed in the premature fetal 

DA, whereas COX-2 is primarily expressed in the DA late in gestation.
80

 Our current 

findings in mice are in agreement with previous reports, and show that COX-1 is 

constitutively expressed in the DA throughout gestation, and COX-2 is induced in the DA 

from preterm to full-term gestation. It has also been suggested that the DA at preterm 

gestation is more sensitive to dilation in response to PGE2 derived from the activity of 

COX-1, a process which may contribute to increased postnatal patent DA.
80, 129

 Our work 

emphasizes the importance of COX-2 in mediating DA closure. Because of its potent 

dilatory effect, it is unlikely that PGE2 is the COX-2-derived prostanoid that induces DA 

closure. We propose that COX-2 expressed in the DA synthesizes a prostanoid other that 

PGE2, that directly mediates DA closure. Therefore, patent DA at preterm gestation may 

result from constitutive expression of COX-1 together with the attenuated expression of 

COX-2.  
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Figure 5.5. Proposed model of normal DA closure at full-term gestation and DA 

patency at preterm gestation.  

 At full-term gestation, COX-2 expression is induced, resulting in the 

synthesis of constrictor prostanoid(s); whereas the expression of COX-1 is constitutive in 

the DA, resulting in the synthesis of the dilatory PGE2. At this time-point, the effect of 

the vasoconstrictor overrides the vasodilator, the resultant effect being DA closure. 

However, at preterm gestation, the COX-2 is not induced, whereas the expression of 

COX-1 is constitutive, resulting in the predominant effect of the dilatory PGE2, resulting 

in patent DA.  
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CHAPTER 6 

PROSTANOID RECEPTORS IN THE MOUSE DA 

 

Introduction 

Individual prostanoids act through specific membrane bound receptors to mediate 

their biological responses.
97, 98

 To date, eight types of prostanoid receptors have been 

identified and are highly conserved between mice and humans. Prostanoid receptors are 

G protein-coupled rhodopsin-type receptors with distinct intracellular signaling 

pathways. Mice deficient in each of these receptors have been developed and studies 

using these mice have revealed novel physiological and pathophysiological functions of 

prostanoids.
96, 98

 

In numerous species including humans, PGE2 has long been known to be a potent 

dilator of the DA. There are four known genes that encode the PGE2 receptors, namely 

EP1, EP2, EP3 and EP4. Pharmacological studies have suggested that EP1 and EP3 are 

the contractile receptors, whereas EP2 and EP4 are the dilatory receptors.
104, 105, 110

 

Because of the known vasodilatory function of PGE2 on the DA, there has been 

considerable interest in identifying the major PGE2 receptor expressed in the DA to better 

understand the role of PGE2 in mediating ductal dilation. 

There have been several studies in a variety of animal species including lamb, 

baboon, rat, rabbit and pig, examining the expression of the EP receptors in the DA. Of 

all the EP receptors, EP4 is the one that is thought to be primarily expressed in the DA. 

However, there have been conflicting results regarding expression of the other EP 

receptors, as well the expression pattern of all the EP receptors in the DA during the 

transition from fetal to neonatal life. Studies using the rabbit DA suggest that only the 

EP4 receptor is present in the DA, whereas in the porcine DA, EP2, EP3 and EP4 are 

expressed in equivalent proportions. These studies using the porcine DA also suggest that 

expression of EP3 and EP4 is down-regulated in the newborn. Another study by Smith et 

al., utilized pharmacological agents to examine ligand-receptor binding, and suggested 

that expression of the EP4 receptor declined with advancing gestational age, whereas 

more recent studies using similar techniques have suggested that the expression of this 

receptor does not change.
102

 Thus overall, depending on the species, gene expression in 
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the DA for EP2, EP3 and EP4 does not change, decreases, or increases with advancing 

gestation.
99, 102, 103, 105, 107, 110

 

Most reports to date have focused on examining expression of prostanoid 

receptors responsible for maintaining DA dilation. Our recent studies using mice 

deficient in the COX isoforms indicated the importance of COX-2 expression for DA 

closure after birth. We also demonstrated that the DA expresses high levels of COX-2 

during normal closure after birth, suggesting novel contractile actions of COX-2-

dependent prostanoids in the DA. These studies suggested that a prostanoid in addition to 

the dilatory PGE2 was synthesized in the DA, which mediated DA closure. The report by 

Smith et al., for the first to suggest contractile actions of agonists for the TXA2 receptor 

TP, as well those for the PGE2 receptors EP1 and EP3.
107

 The studies were performed 

using pharmacological techniques to measure ex vivo contractile effects of prostanoid or 

prostanoid agonists. In our recent study, we utilized a variety of prostanoid analogs to 

examine the in vivo effects of these agents in mediating DA contraction. Of all the 

pharmacological agents that we examined, only the PGH2 analog U46619, and the TXA2 

analog, IBOP that are known to bind the TXA2 receptor TP, mediated DA contraction in 

vivo.
86

 Previous studies have suggested that the DA does not express TXA2 synthase, and 

therefore does not synthesize TXA2.
107

 Based on these studies together with our previous 

studies, it is possible that PGH2 may be the prostanoid that actively mediates normal DA 

closure. Furthermore, these studies implicated a role for the TP receptor in DA closure. 

The studies by Smith et al., showed that the TP receptor is expressed in the rabbit DA.
107

 

In the current studies, we utilized mouse DA to examine the expression of the various 

prostanoid receptors in the DA.  

In addition to the COX-deficient mice, mice deficient in the EP4 receptor also 

exhibit a patent DA phenotype,
100, 101

 which is a surprising finding based on the known 

dilatory role for PGE2. Based on our studies, we believe that an induction in COX-2 

expression is important for closure of the DA after birth in mice. However, the 

mechanisms responsible for the induction in COX-2 expression are not clear. Because of 

the known role of COX-2 in DA closure, we hypothesized that the failure of DA closure 

in the EP4-deficient mice may be due to attenuated expression of COX-2.  
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Results 

Quantitation of prostanoid receptors in the fetal DA at multiple stages of gestation.  

Previous reports have suggested that the prostanoid receptors EP2, EP3, EP4 and 

TP may be involved in modulating DA tone. In the current studies, we examined mRNA 

expression levels for these prostanoid receptors. As shown in Figure 6.1A, the fetal 

mouse DA expressed a significant level of TP, however, the level of expression did not 

significantly change throughout gestation. EP2 mRNA expression was nearly 

undetectable in the fetal DA (data not shown). The expression of EP3 mRNA was 

constitutive in the fetal DA, when examined on days 16, 17 and 19.5 of gestation (Figure 

6.1B). In contrast, expression of the EP4 receptor in the fetal mouse DA increased 

significantly from gestation days 16 to 19.5 (Figure 6.1C). 
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Figure 6.1 

Expression of EP4, but not EP3 or TP, increases with advancing gestational age.  

Preterm (gestation days 16 and 17) and full-term (gestation day 19.5) mice were 

obtained at 0 hours (sacrificed immediately after birth) for analysis of mRNA expression 

in the DA. Data represented as mean A) TP, B) EP3 and C) EP4 mRNA levels +/- SEM. 

EP4 mRNA expression in the DA significantly increased throughout gestation, P < 0.05 

(one-way ANOVA), n & 8. 
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Reduced COX-2 mRNA expression in the DA of EP4-deficient neonatal mice.  

In addition to the COX-deficient mice, mice deficient in the PGE2 receptor EP4 

also exhibit a patent DA phenotype.
100, 101

 This finding is surprising because it is well 

established that PGE2 produces dilation of the DA.
2
 Furthermore, there is no evidence 

that EP4 receptor activation is involved in constriction of the smooth muscle of the DA or 

any other vasculature. Having determined that the pattern of expression of EP4 receptor 

mRNA mimics that of COX-2 expression, we hypothesized that the expression of EP4 

may be required for the induction of COX-2 in the mouse DA. We therefore examined 

COX-2 expression in the DAs of EP4-deficient neonatal mice with a patent DA, as 

compared to EP4 expressing neonatal mice with a closed DA. Our results indicate that 

COX-2 expression was significantly attenuated in the DAs of EP4-deficient mice at 3 

hours after birth, as compared to that in the DAs of littermate EP4 heterozygous or wild-

type mice (Figure 6.2). These data suggest that an interplay between EP4 and COX-2 

may be required for the initiation of DA closure after birth.  
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Figure 6.2  

Reduced COX-2 expression in the DA of EP4-deficient neonatal mice.  

Full-term gestation (day 19.5) EP4 wild-type (EP4
+/+

), heterozygous (EP4
+/–

) and 

homozygous-deficient (EP4
–/–

) mice were obtained by natural delivery and sacrificed 3 

hours after birth for analysis of COX-2 expression in the DA. Data represented as mean 

COX-2 mRNA levels +/- SEM. *, significantly different from EP4
+/+

 and EP4
+/–

 DA, P < 

0.01 (one-way ANOVA), n & 8.  
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Discussion 

PGE2 mediates its biological functions by binding to 4 different receptors, namely 

EP1, EP2, EP3 and EP4. PGE2 mediates different biological responses depending on the 

expression of a specific receptor in a particular tissue. Traditionally, based mainly on 

pharmacological experiments, both EP2 and EP4 are thought to maintain relaxation 

responses through a cyclic AMP-dependent mechanism, whereas EP1 and EP3 are 

thought to be the contractile receptors.
97

 A recent study identified an additional 

contractile function of EP3 in the DA.
104

 Because PGE2 is a known potent dilator of the 

DA, several studies in numerous species have focused on examining EP receptor 

expression in the DA to better understand the role of PGE2 in modulating DA tone. 

Depending on the species, gene expression in the DA for EP2, EP3 and EP4 does not 

change, decreases, or increases with advancing gestation.
102, 103, 105

 Of the known PGE2 

receptors, EP4 expression in the DA is most conserved between species such as rabbits, 

mice, lambs, baboon and humans. Therefore, it has been thought that EP4 is the primary 

receptor through which PGE2 mediates its dilatory actions on the DA. 

Because of its known dilatory function on the DA, studies to date have focused on 

the targeting the EP4 receptor for the regulation of DA tone. A recent study utilized a 

pharmacological antagonist specific for the EP4 receptor, for causing constriction of the 

DA in rats.
130

 The EP4 receptor antagonist ONO-AE3 208 was administered to fetal rats 

in utero, or to neonatal rats pre-treated with a PGE2 analogue or vehicle. The EP4 

antagonist caused premature closure of the fetal DA, as well as induced closure of the DA 

in neonatal rats pre-treated with PGE2. From this study, the authors concluded the EP4 

was the primary dilatory receptor present in the rat DA, and targeting this receptor might 

be an alternate treatment for patent DA. 

Another study from the same group also examined the effect of EP4 activation for 

causing DA dilation in neonatal rats after birth.
131

 Similar to mice, DA closure in rats is 

complete within a few hours, whereas it takes a few days in human beings. There are 

certain congenital heart malformations in humans, such as coarctation of the aorta, that 

require keeping the DA patent after birth. Because of the potent dilatory function of PGE2 

on the DA, administration of a PGE2 analogue is most often used as treatment for such 

conditions, however it is associated with certain side effects. The rationale of this study 
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by Momma et al., was that targeting the EP4 receptor specifically might be better than a 

PGE2 analog, for treatment of defects such as coarctation of the aorta. In the study by 

Momma et al., the EP4 agonist was compared to the PGE2 analog, as well as to another 

agonist specific for EP2, and the potential dilatory effects of the drugs were examined on 

already closed DAs of neonatal rats.
131

 These studies showed that the EP4 agonist 

effectively caused DA dilation, and to a greater extent than that caused by the PGE2 

analog. Similar to their previous studies, the authors concluded that the EP4 receptor is 

the primary receptor responsible for mediating DA dilation. Furthermore, activation of 

the EP4 receptor might be a better treatment for congenital heart defects, where the DA is 

required to be open. 

Most studies to date have focused on the dilatory function of the EP4 receptor. 

Our current study proposes an alternate role for the EP4 receptor in the DA. Of the EP 

receptors that we examined in our current studies, only EP4 mRNA expression 

significantly increased with advancing gestation. Our studies also show that COX-2 

expression in the DA significantly increased with advancing gestation, and the induction 

in COX-2 expression is essential for mediating DA closure. Thus, the gestational 

expression pattern of EP4 mimicked that which we observed for COX-2. The co-

regulation of EP4 and COX-2 suggests a relationship between this prostanoid receptor 

and COX-2, for inducing DA closure. Our studies propose, that in addition to the dilatory 

role, activation of the EP4 receptor functions as a trigger for the induction of COX-2 

expression important for DA closure. However, the mechanism(s) responsible for 

mediating the induction of COX-2 in the DA are not clear. In other cell types, EP4 

activation is known to induce COX-2 expression.
132, 133

 Our studies indicate that the 

genetic deficiency of EP4 results in attenuated COX-2 expression in the DA. Thus, our 

results provide an explanation for the paradoxical finding of patent DA in the EP4-

deficient mice, and suggest that EP4 expression may be important for modulating the 

normal induction of COX-2 and resultant DA closure after full-term birth. We propose 

that EP4 receptor activation at full-term gestation initiates a signaling cascade modulating 

the up-regulation of COX-2 expression and resultant DA closure.  

The primary signaling pathway following EP4 activation that has been identified 

involves an increase in intracellular cAMP, and increased cAMP levels are known to 
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induce COX-2 expression.
31, 42, 97, 134

 The increase in cAMP activates protein kinase A 

(PKA) which phosphorylates the cAMP response element binding protein (CREB). 

CREB is a transcription factor known to induce COX-2 expression by binding to the 

cAMP response element (CRE) regulatory site present in the COX-2 promoter.
31, 42, 52

 

However, increased cAMP is associated with dilation of the DA.
104

 Because we know 

that increased COX-2 expression is important for DA closure, and because of the 

potential opposing dilatory action of cAMP, it is not likely that the cAMP-PKA pathway 

is the primary mechanism utilized by EP4 for induction of COX-2 in the DA. In addition 

to the traditional cAMP-dependent pathway, recently it has been shown that EP4 receptor 

activation initiates other signaling pathways which may be cAMP-independent.
132, 135-137

 

EP4 receptor stimulation activates phosphatidylinositol (PI) 3-kinase, resulting in 

activation of the transcription factor, T-cell factor 4 (Tcf-4).
136

 Transcriptional activation 

of Tcf-4 has been shown to up-regulate the expression of COX-2 by binding to a Tcf 

binding element (TBE) recently discovered in the COX-2 promoter.
138

 Therefore, it has 

been proposed that EP4 activation may be another mechanism by which COX-2 

expression is induced in pathological conditions (Figure 6.3).
132, 135

 Until our studies, the 

interplay between EP4 and COX-2-induced DA closure has not been investigated. The 

idea that PGE2 may induce the expression of COX-2 has been shown previously in 

various cell culture systems.
139, 140

 However, the EP4-deficient mice provide a unique in 

vivo model to study endogenous prostanoid signaling mechanisms resulting in the 

dramatic upregulation of COX-2 that we observe. Overall, these studies explain the 

mechanism by which an individual prostanoid, PGE2, may have opposing effects on DA 

physiology. One of the opposing effects is dilation, which is a well-characterized function 

of PGE2 in the DA; whereas in our studies we suggest an indirect effect of PGE2 leading 

to the induction of COX-2 and the resulting synthesis of constrictor prostanoid, possibly 

PGH2.  

A recent study examined the gestational expression pattern of the prostanoid 

receptors in the fetal rat DA. They showed that EP2, EP3 and EP4 were expressed in the 

fetal DA throughout gestation. However, the expression of EP4 was the greatest towards 

the end of term.
106

 These findings are in accordance with are current results showing that 

EP4 expression in the fetal DA increases with advancing gestation. Furthermore, these 
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studies by Yokoyama et al., also propose an additional active role for the EP4 receptor in 

mediating DA closure.
106
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Figure 6.3. Proposed model for the induction of COX-2 expression following EP4 

activation.  

Stimulation of the EP4 receptor by PGE2 activates phosphatidylinositol (PI) 3-

kinase, resulting in phosphorylation of AKT. This results in translocation of !-catenin 

(!cat) to the nucleus and activation of the transcription factor, T-cell factor 4 (Tcf 4). 

Transcriptional activation of Tcf 4 has been shown to up-regulate the expression of COX-

2 by binding to a Tcf binding element (TBE) recently discovered in the COX-2 

promoter.
132, 133, 136

 Therefore, we propose that EP4 activation may be another mechanism 

by which COX-2 expression is induced in the DA.  
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CHAPTER 7 

GENERAL DISCUSSION 

 

Summary and Conclusions  

Previous studies from our laboratory, in mice with the genetic or pharmacological 

inactivation of COX-2 have emphasized a role for this enzyme in the postnatal closure of 

the DA. The goal of the current studies was to determine the mechanisms responsible for 

increased patent DA at preterm gestation.  

First, the effect of gestational age on indomethacin-induced constriction of the 

fetal DA or wild-type mice was determined. It was demonstrated that administration of 

indomethacin to pregnant female mice on gestation day 18.5 resulted in premature 

constriction of the DA in utero. However, indomethacin induced only a partial 

constriction of the fetal mouse DA, when administered on gestation day 16. These 

findings were in accordance with several previous studies in other species. Therefore it 

was concluded that the contractile function of the DA developed late in gestation. These 

studies also showed that the expression of COX-2 significantly increased with advancing 

gestational age, whereas the expression of COX-1 remained constitutive. The time-points 

at which observed the lowest and greatest level of COX-2 expression in the fetal DA 

were observed, coincided with the time-points at which attenuated and increased in utero 

DA constriction were observed respectively. Therefore it was concluded that the 

expression of COX-2 was important for the in utero development of ductal contractile 

function. 

 

I then wanted to investigate the effect of gestational age on postnatal DA closure 

in wild-type mice. These studies showed that similar to humans, DA closure was 

compromised in neonatal mice born at preterm gestation. It was also found that COX-2 

expression was attenuated in the DA of neonatal mice born at preterm gestation, whereas 

the expression of COX-1 did not significantly change. These studies suggested that 

attenuated COX-2 expression might contribute to increased patent DA at preterm 

gestation. Thus, these studies also provide a novel animal model for studying the 

mechanisms of patent DA.  
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I also utilized another model of patent DA in mice resulting from the deficiency 

of the PGE2 receptor EP4. PGE2 has long been known to be a potent dilator of the DA; 

therefore the finding of a patent DA in EP4-deficient mice was surprising. Because of the 

current studies emphasizing a role for COX-2 in DA closure, it was hypothesized that a 

failure of induction in COX-2 expression resulting in patent DA in the EP4-deficient 

mice. In support of this hypothesis, it was found that COX-2 expression was significantly 

attenuated in neonatal mice deficient in the EP4 receptor. These studies suggested a role 

for EP4 in the induction of COX-2 in the DA. It was also found that in the fetal DA the 

expression of EP4 followed a pattern similar to that of COX-2, during advancing 

gestation. Thus, these studies provided evidence for an additional role for EP4 in the 

developmental regulation of DA contractile function.  

These studies have provided a better insight into the mechanisms responsible for 

patent DA and for the development of novel therapeutics for this serious congenital heart 

defect.  

 

Clinical Relevance and Future Directions 

Previous studies have demonstrated that in other species COX-1 is constitutively 

expressed in the DA of both full-term and preterm neonates
80, 123

. The current studies also 

show that COX-1 is constitutively expressed in the DA of fetal and neonatal mice at all 

stages of gestation and after birth. Even though COX-2 has been suggested to be 

responsible for synthesizing the majority of PGE2 in the fetal DA at the end of gestation, 

COX-1 is thought to be the major contributor of PGE2 synthesis in the DA of the 

premature fetus.
80, 141

 It has also been suggested that the preterm gestation fetal DA is 

more sensitive to the dilatory effects of PGE2 
105, 142, 143

, which may contribute to the 

increased patent DA at preterm. We believe that in preterm neonates with reduced 

expression of COX-2 in the DA, the dilatory effect of COX-1-derived PGE2 

predominates over COX-2-dependent DA constriction, thus resulting in the failure of DA 

closure. This hypothesis suggests that inhibition of COX-1-derived PGE2 in preterm 

neonates will increase postnatal DA closure. Therefore, future studies in the Loftin 

laboratory will examine the effect of postnatal administration of a COX-1-specific 

inhibitor on accelerating DA closure in preterm neonatal mice. Recently, a COX-1-
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specific inhibitor (SC-560) has been developed and surprisingly, it lacks the gastric 

toxicity of classical COX inhibitors such as indomethacin, which inhibit both COX-1 and 

COX-2.
144-146

 We have also recently shown that this COX-1 inhibitor does not adversely 

affect fetal or neonatal health like nonselective or COX-2-selective inhibitors.
86

 

Therefore, COX-1-specific inhibition may be more safe and effective than the current 

pharmacological or surgical treatments for patent DA in preterm infants (Figure 7).  
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Figure 7. COX-1 inhibitor treatment for patent DA at preterm gestation. 

At preterm gestation, the effect of COX-1-derived PGE2 predominates over the 

vasoconstrictor synthesized by the reduced COX-2, resulting in DA patency. At this time-

point, administration of a COX-1 inhibitor may accelerate DA closure by inhibiting the 

PGE2 and resulting in the vasoconstrictor overriding the vasodilator.  
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In utero gene therapy has long been proposed as a valuable therapeutic approach 

for treating congenital cardiovascular disease.
6, 147

 There are certain congenital heart 

defects that involve a malformed aorta, that require re-directing blood circulation to the 

descending aorta, through a patent DA. In such conditions PGE2 analogs are the first line 

treatment, followed by surgery. A recent study by Humpl et al. demonstrated a unique 

gene therapy approach which resulted in the efficacious transfer of the PGE2 synthase 

gene, to maintain patency of the DA and the production of PGE2.
148

 This novel method 

involved encapsulation of DNA in lipid membranes fused with UV-inactivated 

hemagglutinating virus for efficient transfection using a custom-made catheter based 

system.
148

 This study was the first to report successful gene transfer for maintaining DA 

patency in an animal model. Future studies in our lab will involve utilization of a similar 

technique for transfer of the COX-2 gene in the DA of preterm neonates in order to 

identify a novel treatment for patent DA. The main drawback of this gene therapy method 

is similar to that observed with adenovirus mediated gene transfer, which is the transient 

expression of the transgene.
149, 150

 However, the DA has a unique vascular physiology 

which involves rapid constriction and tissue remodeling, followed by matrix deposition 

and apoptosis that results in the formation of nonfunctional remnant scar tissue known as 

the ligamentum arteriosum.
151

 Once the ligamentum arteriosum is formed in the early 

postnatal period, COX-2 expression is no longer expected to be required. Therefore, in 

our system, transient expression of the COX-2 transgene will be advantageous, and is 

expected to be sufficient to correct this congenital cardiovascular defect, as it may mimic 

the endogenous pattern of perinatal COX-2 expression in the DA.  

Future studies in the Loftin laboratory will also utilize another method of gene 

therapy using the established adenovirus-mediated method. We have identified the 

intermediate filament protein, desmin, as a marker indicative of the advanced 

development of contractile machinery in DA smooth muscle. In addition to the DA, 

desmin is also known to be expressed in skeletal and cardiac muscle, as well as venous 

smooth muscle.
152-155

 However, it has recently been reported in mice that a distal 5' 

fragment together with a cis element enhancer of the desmin promotor can be utilized to 

direct reporter gene expression specifically to arterial SMCs in vivo, and prevent 
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expression in other types of muscle.
156

 Our studies in mice show a dramatically greater 

level of desmin expression in DA SMCs as compared to SMCs of the aorta and adjacent 

arteries. Therefore, in our future studies, we will utilize the specific regulatory regions of 

the desmin promotor to direct adenovirus-mediated COX-2 expression to DA smooth 

muscle.  

The COX-1/COX-2 double homozygous-deficient knockout mice, which show a 

100% incidence of postnatal patent DA
79

, as well as preterm COX-2 wild-type mice 

which show attenuated DA closure, are two mouse models of patent DA that we have 

already established. We will use these two unique models to determine the effectiveness 

of adenoviral COX-2 gene delivery to facilitate DA closure. Overall, these studies will 

provide insight into the development of potential gene therapy approaches for treating 

patent DA in premature infants, and thereby eliminate the requirement for surgical 

intervention. Preterm birth is the leading cause of neonatal morbidity and mortality 

worldwide, and the outcome of preterm infants is directly related to the gestational age at 

delivery. There are several agents including magnesium sulfate, oxytocin receptor 

antagonists, calcium channel blockers, and NSAIDs that are used to delay the onset of 

premature labor.
157-160

 These drugs have been shown to be effective in delaying labor in 

the short term from 24 to 48 hours, and in some rare cases up to 7 days; however, their 

efficacy for the long-term tocolytic maintenance necessary to significantly improve 

neonatal health has not been demonstrated. The goal of tocolytic therapy is to delay labor 

sufficiently to allow for the administration of corticosteroids to the neonate, thereby 

improving lung compliance and reducing the risk for respiratory distress. During this 

time of prolonged labor in the short term, administration of a pharmacological agent that 

triggers an induction in COX-2 expression in the DA would be advantageous. Increasing 

COX-2 expression in the DA at that time may promote development of the vessel and 

allow for normal closure after preterm birth, thereby reducing morbidity and mortality. 

Based on our current studies, we believe that the EP4 receptor performs a unique and 

previously un-identified function in the DA that involves the induction of COX-2 

expression that is important for the development of the contractile machinery in the 

vessel. Therefore, it is feasible to propose that treatment with an EP4-selective agonist 

during pregnancy may result in increased COX-2 expression and allow for normal 
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closure of the DA in preterm neonates. Although the idea that PGE2 may induce the 

expression of COX-2 has been shown previously in various cell culture systems, our 

model of DA closure is a unique in vivo model to study endogenous prostanoid signaling 

mechanisms resulting in the dramatic upregulation of COX-2 that we observe.  
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