
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2015 

Drinking Water Infrastructure Assessment with Teleconnection Drinking Water Infrastructure Assessment with Teleconnection 

Signals, Satellite Data Fusion and Mining Signals, Satellite Data Fusion and Mining 

Sanaz Imen 
University of Central Florida 

 Part of the Civil Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Imen, Sanaz, "Drinking Water Infrastructure Assessment with Teleconnection Signals, Satellite Data 

Fusion and Mining" (2015). Electronic Theses and Dissertations, 2004-2019. 1138. 

https://stars.library.ucf.edu/etd/1138 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/252?utm_source=stars.library.ucf.edu%2Fetd%2F1138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1138?utm_source=stars.library.ucf.edu%2Fetd%2F1138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

 

DRINKING WATER INFRASTRUCTURE ASSESSMENT WITH 

TELECONNECTION SIGNALS, SATELLITE DATA FUSION AND 

MINING 

 
 
 
 
 
 
 
 
 
 

by 
 

SANAZ IMEN 
B.Sc. University of Science and Culture, 2005 

M.S. University of Tehran, 2007 
 
 

 
 

A dissertation submitted in partial fulfillment of the requirements  
of the degree of Doctor of Philosophy 

in the Department of Civil, Environmental, and Construction Engineering 
in the College of Engineering and Computer Science 

at the University of Central Florida 
Orlando, Florida 

 
 
 

Spring Term 
2015 

 
 
 
 
 
 
 

 
Major Professor: Ni-Bin Chang  



ii 

 

 

 

 

 

 

 

 

© 2015 Sanaz Imen 

 

  



iii 

ABSTRACT 
 

Adjustment of the drinking water treatment process as a simultaneous response to climate 

variations and water quality impact has been a grand challenge in water resource management in 

recent years. This desired and preferred capability depends on timely and quantitative knowledge 

to monitor the quality and availability of water. This issue is of great importance for the largest 

reservoir in the United States, Lake Mead, which is located in the proximity of a big 

metropolitan region - Las Vegas, Nevada. The water quality in Lake Mead is impaired by forest 

fires, soil erosion, and land use changes in nearby watersheds and wastewater effluents from the 

Las Vegas Wash. In addition, more than a decade of drought has caused a sharp drop by about 

100 feet in the elevation of Lake Mead. These hydrological processes in the drought event led to 

the increased concentration of total organic carbon (TOC) and total suspended solids (TSS) in 

the lake. TOC in surface water is known as a precursor of disinfection byproducts in drinking 

water, and high TSS concentration in source water is a threat leading to possible clogging in the 

water treatment process. Since Lake Mead is a principal source of drinking water for over 25 

million people, high concentrations of TOC and TSS may have a potential health impact. 

Therefore, it is crucial to develop an early warning system which is able to support rapid 

forecasting of water quality and availability.  

In this study, the creation of the nowcasting water quality model with satellite remote 

sensing technologies lays down the foundation for monitoring TSS and TOC, on a near real-time 

basis. Yet the novelty of this study lies in the development of a forecasting model to predict TOC 

and TSS values with the aid of remote sensing technologies on a daily basis. The forecasting 

process is aided by an iterative scheme via updating the daily satellite imagery in concert with 
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retrieving the long-term memory from the past states with the aid of nonlinear autoregressive 

neural network with external input on a rolling basis onward. To account for the potential impact 

of long-term hydrological droughts, teleconnection signals were included on a seasonal basis in 

the Upper Colorado River basin which provides 97% of the inflow into Lake Mead. 

Identification of teleconnection patterns at a local scale is challenging, largely due to the 

coexistence of non-stationary and non-linear signals embedded within the ocean-atmosphere 

system. Empirical mode decomposition as well as wavelet analysis are utilized to extract the 

intrinsic trend and the dominant oscillation of the sea surface temperature (SST) and 

precipitation time series. After finding possible associations between the dominant oscillation of 

seasonal precipitation and global SST through lagged correlation analysis, the statistically 

significant index regions in the oceans are extracted. With these characterized associations, 

individual contribution of these SST forcing regions that are linked to the related precipitation 

responses are further quantified through the use of the extreme learning machine. Results 

indicate that the non-leading SST regions also contribute saliently to the terrestrial precipitation 

variability compared to some of the known leading SST regions and confirm the capability of 

predicting the hydrological drought events one season ahead of time. With such an integrated 

advancement, an early warning system can be constructed to bridge the current gap in source 

water monitoring for water supply.  
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CHAPTER 1: INTRODUCTION 

Climate change will most likely increase the demand for water and decrease the supply. 

This shifting balance in lakes and reservoirs would challenge water managers to provide 

adequate water to the growing population, agricultural, ecological, and industrial sectors. 

Although much attention is focused on the impacts of climate change on the quantity of water 

supplies, the potential detrimental impacts of climate change on water quality also are of 

concern. Climate change can affect the quality and quantity of lakes and reservoirs by (1) 

changing the timing of snowmelt and inflow into the lake/reservoir, (2) changing the intensity 

and duration of precipitation events which cause washing more pollutants into water supply, (3) 

intensifying the concentration of contaminants during dry periods.  

Climate variability and extreme events have led decision makers to pursue the source 

water assessment on lakes and reservoirs for adaptation. In modern smart cities, there is a need to 

utilize advanced data science, computational intelligence, and satellite remote sensing to 

collectively promote the sustainable operation of drinking water treatment plants in response to 

climate variability and water pollution. This study advances sustainability science by tackling the 

complexity embedded in the dynamics of the coupled natural systems and the built environment 

using data fusion and mining, and hydroclimatic teleconnection to forecast the quality and 

availability of water, respectively. With the aid of satellite data fusion and data mining, such a 

forecasting scheme can be made possible to address the aforementioned concerns.  
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1.1. Data Fusion and Data Mining 

“More than 20,000 waterbodies across America have been identified as polluted 

waterbodies including more than 480,000 km (300,000 miles) of rivers and shoreline and 5 

million acres of lakes” (Ritchie and Cooper, 2001). These statistics highlights the importance of 

water quality monitoring, and considering the effects of different factors such as ocean-

atmosphere exchange, atmosphere decomposition, industrial outfalls, urban run-off, agricultural 

run-off, contaminant migration through groundwater, and sediment resuspension in water bodies. 

Among the aforementioned factors, ocean-atmosphere exchange, which includes the effects of 

global warming and consequences of extreme events such as droughts and floods, can increase 

different water quality parameters such as basic parameters (temperature, pH, dissolved 

oxygen,…), nutrients, dissolved organic matter (DOM), inorganic/organic micropollutants, 

pathogens, and cyanobacteria. For instance, water temperature can affect the internal lake 

process such as diffusion, mineralization, and vertical mixing, and lakes chemical process and 

increasing alkalinity and pH (Psenner and Schmidt, 1992; Malmaues et al., 2006). There is a 

positive correlation between temperature and nutrient concentrations in surface and groundwater 

(Delpa et al, 2009). Increase of both temperature and nutrient concentration leads to 

cyanobacteria blooms in water bodies (Hunter, 2003). In addition, higher precipitation intensity 

increases run-off and erosion which result in increase in external nutrient transports and TSS 

(Delpa et al., 2009). On the other hand, these hydrological parameters (i.e. precipitation and 

temperature) are the main climate drivers for changing the fate of organic micropollutants (Delpa 

et al., 2009).   

The traditional techniques to assess water quality parameters are time consuming for a 

large area of water bodies and costly as a result of travel expenses, sampling equipment, and 
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sample analysis. Therefore, remote sensing has gained attention, since they are able to solve the 

problems of traditional techniques by providing ground and ocean monitoring with larger spatial 

and temporal resolution. The backscattering characteristics of surface water can be varied by the 

existence of substances in surface water. Remote sensing techniques became an applicable tool 

to measure the variation of spectral reflectance backscattered (Ritchie et al., 2003).    

Since the 1970s, earth observations via remote sensing satellites have been providing 

enormous amount of information in the form of images for monitoring various environmental 

status and ecosystem state. Remote sensing can provide the images, such as (i) visible (i.e., in the 

range 0.4-0.7 μm); (ii) near infrared (NIR: 0.7-0.9 μm); (iii) shortwave infrared (SWIR: 1.0-2.5 

μm); (iv) thermal infrared (TIR: 3-14 μm); and (v) microwave (i.e., 3 mm-3 m). These images 

can be categorized into two classes on the bases of their spectral characteristics, including 

multispectral and hyperspectral remote sensing. The relatively high spatial resolution images 

would normally have low temporal resolution and vice versa. Some environmental issues (e.g., 

forest fires, agricultural droughts, urban flooding, harmful algal bloom, and irrigation 

management) require high spatial (e.g., 30 m), high temporal (e.g., daily), and high spectral (e.g., 

hyperspectral) resolutions due to the needs for rapid changes detection in emergency response 

and mitigation actions. To achieve such goals, data fusion and mining becomes an indispensable 

tool providing rapid hindcasting, nowcasting, and forecasting information for risk-informed 

decision making.  

The classical definition of data fusion produced by the Joint Directors of Laboratories is: 

“A process dealing with the association, correlation, and combination of data and information 

from single and multiple sources to achieve refined position and identity estimates, and complete 

timely assessments of situations and threats as well as their significance” (White, 1991) . The 
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major application of data fusion is related to image processing. Multiple images of the same 

scene are integrated by different fusion methods to present a more complete image entitled fused 

images.  

In the mid-1980s, image fusion has become a focal area in remote sensing community. 

These image fusion techniques were classified into two categories: (1) spatial domain fusion 

techniques, and (2) transform domain fusion techniques. The former deals with the image pixels 

whereas the latter transfers the image into frequency domain for feature extraction.  

The spatial domain fusion techniques can be further divided into (1) color composition-

based method (i.e., intensity-hue-saturation (IHS)), and (2) statistical/numerical method (i.e. 

Brovey transform, principle component analysis (PCA), high-pass filtering (HPF)). Gillespie et 

al. (1987) suggested the Brovey method which provides enhancement of color in the image. 

However, this method can cause major changes to the statistical parameters and colors of the 

original images. For example, IHS method was utilized in the field of remote sensing by Zhou et 

al. (1998) in the 1990s. They found out that although the fused images showed the ability of the 

IHS in providing an enhancement in spatial resolution, their original spectral information could 

be distorted. At the same time, the feature of dimensionality reduction of PCA was also 

employed for image fusion. The PCA is able to enhance image and benefit data compression. 

Given that information of the spectral bands cannot be conserved after applying PCA, there is a 

possibility of losing important information by using this method too. In 1991, Chavez et al. 

compared the fused images obtained from the PCA and the IHS methods with the HPF 

introduced by Schowengerdt (1980). Results showed that the HPF had the least spectral 

distortion. 
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Despite the spatial domain fusion methods present quite good visual effect, these 

methods resulted in spectral distortion in the fused images. As an alternative, the transform 

domain fusion technique was developed and applied due to their capability to decompose signals 

into frequency spaces and minimize the spectral distortion. This technique includes pyramid 

method, wavelet transform, and curvelet transform. Early work in image fusion using this 

method traces back to the 1980s. Burt and Kolczynski (1993) showed the application of pyramid 

method in image fusion can guarantee stability and noise immunity. In the late 1990s, the 

pyramid method was substituted with wavelet transform that can keep the spectral characteristics 

of multi-frequency images. However, among the transform domain fusion methods, curvelet 

method showed the best performance in keeping the spectral quality. Contrast to wavelet 

transform, curvelet is more powerful in delineating edges smoothly in two-dimensional platform 

and denoising in matching edges from images.   

Overall, on one hand, the ability of spatial domain fusion methods may provide high 

spatial resolution images, and on the other hand, the ability of the transform domain fusion can 

minimize the distortion of spectral contents of images. These pros and cons led the community to 

develop hybrid methods incorporating both characteristics in the fused images.  Even though 

these hybrid methods produce synthetic images with helpful spectral information and high spatial 

resolution by blending high spatial resolution of panchromatic bands, they are not able to 

enhance spatial and temporal resolutions simultaneously. To bridge the gap, in the early 2000s, 

the series of STAR-FM-based methods were developed to blend the coarse-resolution of MODIS 

with the high spatial resolution of Landsat and produce fused images with both high spatial and 

temporal resolution. The advantage and disadvantages of different STAR-FM-based methods are 

shown in Table 1-1.  
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Table 1-1. Advantages and disadvantages of different data fusion algorithms  

Method Advantage Disadvantage Reference 

STAR-FM 

Able to record the transition from 
one state to another. 

Cannot predict disturbance events  
Any changes that are too subtle to be 
observed by the MODIS observations 
are not predictable with this algorithm. 
STARFM method does not explicitly 
handle the directional dependence of 
reflectance.  
 

Gao et al., 
2006 

STAARCH 

More capable in detecting the 
spatial and temporal changes in the 
landscape. 
 

Prediction results degrade somewhat 
when used on heterogeneous fine-
grained landscapes. 
Its ability in detecting landscape 
disturbance is limited to specific types 
of land-cover change. 

Hilker et 
al., 2009 

ESTARFM 
 

ESTARM is more suitable for 
heterogeneous regions than 
STARFM owing to the use of 
“conversion coefficient” between 
the Landsat and MODIS data. 
Improve the accuracy of predicted 
fine-resolution reflectance  

It is built under the assumption that 
land-cover types and the proportion of 
each land cover type do not change 
during the observation period. 
It cannot accurately predict objects for 
which shape changes with time. 
It cannot accurately predict short-term, 
transient changes 
Sensors with different spectral band 
passes may lead to nonlinear 
relationships. 
Compared with the original STARFM 
algorithm, the ESTARFM may be more 
computationally intensive and require at 
least two pairs of fine- and coarse-
resolution images acquired at the same 
date 
Its automated processing is limited by 
necessity of setting the size of moving 
window and the number of classes 

Zhu et al. 
2010 

SPSTFM 

Accounts for all the reflectance 
changes during an observation 
period 
Capturing both the phenology and 
type change  

Longer computation time than STAR-

FM algorithm 

In many remote sensing applications, 

only one pair of prior images may be 

available. 

Huang and 
Song, 2012 

 

Data fusion methods create a new challenge of analyzing the massive data sets within 

fused images. For this purpose, data mining methods, as the automated, exploratory data analysis 

tool, were applied to identify the features of interest from fused images. The inversion models 

that are commonly used to find relationships between target environmental parameters and 



7 

remotely sensed data can be categorized into three types: empirical, analytical, and semi-

empirical/semi-analytical methods. Appropriate selection of these inversion models based on 

their applications contributes to higher accuracy in evaluating the environmental parameters. 

These methods vary in complexity from simplified statistical based to physically based models 

(Lek et al., 1996).  

Simplest methods started with empirical models which are based on the simple statistical 

relationship between the measured water quality parameters and spectral reflectance values. 

Since many parameters may change during remote sensing missions, these methods dependent 

on ground-truth data and their results does not have multi-temporal validity. On the other hand, 

analytical methods involve physical relationship between the target environmental parameters 

and the spectral reflectance values (Lek et al., 1996). Therefore, the hybrid methods entitled 

semi-empirical/semi-analytical methods were developed to improve the multi-temporal validity 

of relationships between the environmental parameters and spectral reflectance values. These 

hybrid models are based on the integration of empirical and analytical methods and can be 

expressed as empirical equations in which the optical theory in physics or radiative transfer 

theory can be employed (Chang et al., 2015).  

The application of empirical methods is limited to a specific water body for which 

sampling data were collected and the formulas were derived. Therefore, its accuracy will be 

degraded in a case of using the same empirical model for a water body with different types of 

water quality parameters (Yu, 2005; Wang et al., 2003). However, the results of analytical and 

hybrid methods are more reliable for the transferable cases between different water bodies and 
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variety types of water quality parameters (Dekker et al., 1996). The chronological order of 

different inversion models is presented in Figure 1-1.  

 

Figure 1-1. The chronological trend of inversion methods ( 1ANN: Artificial Neural Network, 2GP: Genetic 

Programming, 3RBFN: Radial Basis Function Neural Network Models, 4GEGA: Grammatical Evolution in 

Genetic Algorithm, 5GA-PLS: Genetic Algorithms and Partial Least Square( obtained from: Chang et al., 

2015) 

 

 

1.2. Hydroclimatic Teleconnection 

Climate change can intensify the global water cycle, which increases the intensity and 

frequency of extreme hydrological events and change the spatial and temporal availability of 

water resources (Huntington, 2006). The significant relationship between hydrological variables 

and the atmospheric circulation can be modeled through two different approaches: (1) simulation 

via General Circulation Models (GCMs), and (2) determining the statistical relationship between 
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hydrological variables and the atmospheric/oceanic variables separated by large distances, 

namely ‘hydroclimatic teleconnection’.  

Although GCMs have been widely utilized to detect and attribute changing climate, to 

some extent, they are still limited by several factors: (1) relevant feedbacks between the land 

surface and the atmosphere are not included in the initial scenarios derived from GCMs (Arnell 

et al., 1996), and (2) the spatial resolution of GCMs, usually with grid-size over 2.5º×2.5º, is too 

coarse to be applied in a regional study (Arnell et al., 1996). Due to the resolution limitation of 

GCMs, they cannot be used to model the terrain effects and mesoscale feedbacks in a case of 

complex terrain (Zhang et al., 2012). Within this context, various downscaling methods have 

been developed to improve the spatial/temporal resolution of GCMs output at the regional scale 

(Teutschbein et al., 2011). However, limitations and uncertainties of dynamical downscaling 

methods still exist, since they are not able to address the hydrological variability and extremes 

well (Chen et al., 2011). In addition, dynamical downscaling methods only can be applied for a 

short period of time (10-20 years) due to a large computational requirement, which are also 

limited to address a single or a few GCMs outputs. On the other hand, large bias has been 

reported between GCMs simulated scenario and the observations (Monckton et al., 2015).  

In recent years, hydroclimatic teleconnection has received significant attention because of 

its potential application in analyzing hydrologic variability and addressing uncertainty associated 

with hydrological variables (Government of India Ministry of Water Resources, 2008). 

Moreover, it provides a basis for understanding the response of local-scale meteorology to 

changing climate patterns (Hodson et al., 2009). However, the non-stationary nature of the real 

world signals makes it difficult to identify the teleconnection if only relying on simple linear 
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analysis across a wide region at sub-continental scale, as weak teleconnection signals might be 

overwhelmed by anthropogenic effects. This effect can be intensified in areas over the 

Continental United States in which the impacts of climate change are not homogenous across the 

regions. This heterogeneity makes it even much more challenging and complicated. 

Some statistical approaches such as multivariate Auto Regressive Moving Average 

(ARMA), Fourier, linear regression, and cross correlation are incapable of characterizing the 

non-linear and non-stationary nature of climatic signals. Such difficulties have triggered the use 

of models that can deal with non-stationarity such as maximum covariance analysis (MCA), 

wavelet analysis, wavelet empirical orthogonal function (WEOF), and Hilbert-Huang transform 

(HHT) (Mwale et al., 2004; Salim and Pawitan, 2007; Mullon et al., 2013; Shen et al., 2013).  In 

addition, machine learning models were applied as powerful tools to overcome the problem of 

non-linearity in hydrology (Abbot and Marohasy, 2012).  One of the most commonly used 

machine-learning models is artificial neural network (ANN) which has been in use in the field of 

water resources since the 1990s. Although ANN models are able to capture the complex non-

linear nature of hydrological problems, the weaknesses of their input time series causes limited 

forecasting success (Mullon et al., 2015). Therefore, earlier studies (Wang and Ding, 2003; 

Mwale et al., 2004; Cannas et al., 2005; Kisi , 2008; Partal and Cigizoglu, 2009; Elsanabary and 

Gan, 2014; Mullon et al., 2015) applied different methods such as wavelet analysis, WEOF, 

HHT, and MCA to pre-treat the input time series into machine learning models in order to 

improve forecasting success.  
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1.3. Research Objectives 

Creating secure, resilient, and sustainable infrastructure systems for fast growing urban 

regions is by no means an easy task. The novelty of this study lies at the intersection of the 

broadly-defined water resources engineering, environmental engineering, and earth system 

sciences, which assess a suite of diversified impacts on drinking water infrastructures. The major 

objectives of this dissertation are: (1) developing a remote sensing-based early warning system to 

predict TSS and TOC concentration at the drinking water intake in Lake Mead one day ahead, 

and (2) developing a diagnostic technique to assess hydrological extremes over the Upper 

Colorado River Basin one season ahead of time. The engineering community will benefit from 

having such early warning systems to manage the impact of a variety of natural hazards on water 

infrastructure systems at the same time. The developed algorithm would be beneficial for 

drinking water treatment plant operators to minimize the negative impacts on water quality 

before they occur, or otherwise achieves an actionable strategy either in plant or at the source 

water location due to unexpected events. The following specific objectives are formulated: 

(1) Developing a nowcasting model to monitor the spatiotemporal distribution of TOC and 

TSS concentration within Lake Mead on a daily basis. 

(2) Applying the nowcasting model to find the probable impacts of each pollutant source (i.e. 

transported sediments from Colorado River, forest fire events in the lower Virgin River 

Watershed, and transported urban stormwater runoff and treated wastewater effluent from 

Las Vegas Wash) on the increase of TSS and TOC concentration in the lake.  

(3) Developing a water-quality forecasting model to estimate water quality constituents (i.e. 

TSS and TOC) at the location of drinking water intake one day ahead of time.  
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(4) Developing a diagnostic technique based on hydroclimatic teleconnection to estimate the 

spatial distribution of precipitation for a season ahead of time and assess the potential of 

hydrological extremes over the Upper Colorado River Basin three months ahead. 

1.4. Dissertation Organization 

 The organization of this dissertation from the aspect of research objectives is shown in 

Figure 1-2. As shown in this figure, this study focuses on two topics including water quality and 

water quantity. Chapter 2 focuses on the first topic (i.e. water quantity) through three phases. 

Phase 1 is based on assessing the use of hydroclimatic-teleconnection to find the oceanic index 

regions which show a statistically significant correlation with precipitation variability in different 

seasons over the Upper Colorado River Basin. Then, the identified oceanic index regions are 

ranked and screened in phase 2 in order to find the index region which has the highest 

contribution on precipitation variability over this region. The last phase is associated with the 

seasonal precipitation forecasting which leads into estimating the potential occurrence of 

hydrological extremes in this region for a season ahead. The output of the second chapter of this 

dissertation will be a standardized precipitation index (SPI) map which is generated to visually 

identify the spatial distribution of hydrological events over the Upper Colorado River Basin in 

each upcoming season. In addition, this map is compared with the observed value of SPI in year 

2012 to validate the performance of the developed forecasting method. 
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Figure 1-2. Organizational framework of this dissertation from the aspect of the research objectives. 

   

Chapters 3 and 4 of this dissertation are associated with monitoring and forecasting TSS 

and TOC concentration in Lake Mead, respectively. As shown in Figure 1-2, the first phase of 

the water quality section is associated with the nowcasting model. The nowcasting model is 

based on the integrated data fusion and data mining method developed by previous studies 

(Chang et al., 2014a; Chang et al., 2014b) to fuse MODIS and Landsat images and generate a 

synthetic image which has both high spatial and temporal resolutions. Results of phase 1 create 

daily concentration maps to depict the spatial-temporal distribution of TOC/TSS within the lake. 

These concentration maps were applied to provide information about the main pollutant sources 

of TSS/TOC and the relationship of TSS/TOC with increase in volumetric flow rate. The trained 

machine learning model in the phase 1 provides us with the daily TOC/TSS time series which 

was applied as inputs into the forecasting model in phase 2 as well as meteorological variables 

and reservoir elevation. The developed forecasting model provides the operator of the water 

treatment plant with the concentration value of TOC/TSS one day ahead of time which enables 

the operator to tackle unexpected events before they occur.  
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CHAPTER 2: ATTRIBUTIONAL ASSESSMENT OF LOCAL 

TELECONNECTION SIGNALS DURING RECENT DROUGHTS IN THE 

UPPER COLORADO RIVER BASIN TOWARD LONG-TERM 

PRECIPITATION FORECASTING 

 

2.1. Introduction 

Changes in climate patterns and extreme events have potential environmental and 

socioeconomic effects and may lead to disasters. As a result of the importance of these 

challenges, the Intergovernmental Panel on Climate Change (IPCC) has focused on “managing 

the risk of extreme events and disasters to advance climate change adaption” (IPCC, 2012). This 

issue is of great importance in the Western United States which experienced a decade-long 

drought.  

The Bureau of Reclamation in the Phase 4 of the Colorado River Basin water supply and 

demand study stated that “based on preliminary assessments, large supply-demand imbalances 

greater than 3.5 million acre-feet are plausible over the next 50 years when considering a water 

supply scenario that incorporates changes in climate” (Bureau of Reclamation, 2011). This 

imbalance can be caused by a population growth of approximately 10 million from 1990 to 2008 

especially in Arizona, Utah, Las Vegas, and Tijuana  which leads to a rapid increase in water 

demand for municipal use, agriculture, and hydropower after signing the Colorado River 

Compact in 1922 (Cohen, 2011; Switanek et al., 2009). However, projections show a 10-30% 

decrease in runoff in the mid-latitude Western North America by the year 2050, and indicate 
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variation in the conditions of sub-basins in the Upper Colorado River Basin from semi-arid to 

arid conditions by the 2080s (Milly et al., 2005; Ficklin et al., 2013). 

The impact of droughts in the Colorado River Basin is reflected in the storage of the two 

largest reservoirs, Lake Mead and Lake Powell. The unregulated inflow into Lake Powel for the 

past 15 years (2000-2014) has been the lowest of any 15-year period, since Glen Canyon Dam 

went into operation in 1963. In fact, the unregulated inflow into Lake Powell was above average 

in only 3 of those 15 years (Bureau of Reclamation, 2015). In addition, the reservoir elevation in 

Lake Mead has dropped by 100 feet during 2000-2005. It is evident that the drought  which led 

to creation of the 2007 Guidelines did not end with their adoption and it is even projected that the 

shortage in the Lower Basin will reach 45% by the year 2026 (Bureau of Reclamation, n.d.). It is 

therefore necessary to develop a climate forecast model, which can be used as a warning 

mechanism, to support stakeholders in the decision making process for allocating this stressed 

resource in the Colorado River Basin. 

An external forcing which plays a key role in controlling the weather and climate change 

is oceans (NOAA, 2012). Inclusion of the interaction between land, ocean, and atmosphere into 

the climate forecast model can capture the teleconnection signals associated with sea surface 

temperature (SST) and can provide us with predictive, local scale, hydroclimate information. A 

significant number of studies in the Colorado River Basin focused on the relationship between 

the regional SST variability (i.e. El Nino-Southern Oscillation (ENSO), Pacific Decadal 

Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO)) and terrestrial responses (i.e. 

snowmelt, streamflow, and precipitation).  Partial lists of these studies are shown in Table 2-1.  
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Table 2-1. Partial list of references focusing on the effects of regional SST’s variability on 
hydroclimate variables in the Colorado River Basin 

Reference 
Teleconnection 

Pattern 

Hydroclimate 

variable 
Forecasting Method 

Hidalgo& 
Dracup, 2003 

ENSO, PDO 
Precipitation 
streamflow 

× 
Principle component 
analysis & linear correlation 

Kim et al., 
2006 

SOI, PDO Precipitation × 
Standardized precipitation 
index & conceptual 
influence index analysis 

McCabe et al., 
2007 

AMO, PDO, 
ENSO, Indian 
Ocean 

Streamflow × 
Monte Carlo, Linear 
Correlation, principle 
component analysis 

Thomas, 2007 AMO, PDO, SOI Streamflow √ 

1. Linear least square 
multiple regression analysis 
2. confidence intervals of 
the median 

Kim et al., 
2008 

SOI, ESOI, WA, 
PDO, NAO, 
ATNH, Nino1+2, 
Nino3, Nino4, 
Nino3,4 

Precipitation × 
Linear Correlation and 
conceptual influence index 
analysis 

Hurkmans et 
al., 2009 

ENSO, PDO, 
MEI, PNA 

Precipitation      
soil moisture     
outflow 

× Linear correlation 

Aziz et al., 
2010 

Hondo  34ºN-
24ºS 150ºE-
160ºW 

Snowpack × Single value decomposition 

Lamb et al., 
2011 

SOI, PDO, NAO, 
AMO 

Streamflow × 
Rank sum analysis & single 
value decomposition 

Karla et al., 
2012 

PDO, NAO, 
ENSO, Hondo 

Streamflow √ Support vector machine 

     
⃰ ENSO- El-Nino Southern Oscillation; PDO-Pacific Decadal Oscillation,: SOI- Southern 
Oscillation Index;  AMO-Atlantic meridional oscillation; ESOI- Equatorial Southern Oscillation 
Index; WA- West coast of America; NAO- North Atlantic Oscillation; ATNH-Average 
temperature at north hemisphere; MEI- multivariate ENSO index.  

 

Although prior studies have been able to gain insight into the influence of the known 

teleconnection patterns on hydroclimate variables in this region, there have been few studies 

done from the perspective of detecting non-leading teleconnection signals which may have 

https://www.google.com/search?newwindow=1&q=Atlantic+meridional+oscillation&spell=1&sa=X&ei=W7LrVM2QGc2zyAT4_YCQDw&ved=0CBwQvwUoAA
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influence on the hydroclimate variables of the Colorado River Basin (Baldwin et al., 2005; 

Switanek and Torch, 2009; Tootle and Piechota, 2005). Yet these studies tend to have large 

uncertainties in estimates by utilizing simple linear analyses to examine teleconnection 

relationships. The non-stationarity and non-linearity of the ocean-atmosphere system make the 

procedure of detecting teleconnection signals difficult at a local scale. One way to overcome the 

problem of non-stationarity in the ocean-atmosphere system is using wavelet analysis. 

Complementary to this, the application of a method for the removal of the long-term trend from 

non-linear and non-stationary time series will reduce the large uncertainty in linear correlation. 

To bridge the gap of previous studies, the aforementioned solutions will be applied in the current 

study.  

The hydrologic regime of a river basin is dependent on the spatial and temporal 

variability of run-off and soil moisture which are both highly affected by the precipitation trend. 

Accurate estimation of precipitation will shed more light on understanding the hydrologic cycle 

and monitoring the variability in climate extremes (Karla and Ahmad, 2011). The hydrological 

systems are predicted by regressive analysis and stochastic theory. Although the stochastic 

models, such as ARIMA and SARIMA (which is able to control stochastic seasonality), have 

long been used for forecasting in the sphere of hydrology, the fundamental assumptions of these 

models are stationary over time (Delleur and Kavvas, 1978; Thapaliyal, 1981; Kaushik and 

Singh, (2008); Abdul-Aziz et al., 2013).  The basic idea of these models based on the removal of 

trends from time series in order to transform them into a stationary time series, amplifies high 

frequency noise in the data (Coulibaly and Baldwin, 2005).  
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The non-linear characteristics of hydrological records have given rise to the use of the 

artificial intelligence (AI) type models, which is also known as machine-learning and data driven 

models (Karl et al., 2012). One of the most commonly used machine-learning models is artificial 

neural network (ANN) which has been in use in the field of water resources since the 1990s. 

ANN models are able to capture the complex non-linear nature of hydrological problems, 

consider the seasonal variability of data, and also show strong performance with limited data 

(Maier and Dandy, 1996). Although the application of ANN, fuzzy theory, and chaos theory has 

been broad in the field of hydrology and water resources, several studies, which applied these 

models, have pointed out a lack of precision with their forecasts (Wang and Ding, 2003).  

To solve this problem, Wang and Ding (2003) proposed a hybrid ANN model called 

wavelet neural network (WNN). Therefore, the weakness in input time series can be solved by 

decomposing time series into their fundamental signals prior to apply into ANN model (Mullon 

et al., 2015). Anctil and Tail (2004) showed that the forecasting performance can be highly 

improved using the WNN model in case of having input time series from different sources (e.g. 

precipitation and evapotranspiration). In this case, the classic ANN model combine information 

at various frequency scales and producing different dynamic which cause the system switches to 

different hydrologic sources. This problem can be solved by the WNN model which includes 

multi-scale wavelet analysis into a set of neural networks.  

Several water resources disciplines, which require forecasts, have successfully 

implemented WNN modeling (Rajaee, 2011), municipal water demand forecasting (Mohammed 

and Ibrahim, 2012), shallow groundwater level forecasting (Wang and Ding, 2003), daily 

discharge forecasting (Wang and Ding, 2003), streamflow forecasting (Cannas et al., 2005; 
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Cannas et al., 2006; Kisi, 2008; Kisi, 2009; Pramanik et al., 2011), and precipitation forecasting 

(Nourani et al., 2008 Partal and Cigizoglu, 2009; Ramana et al., 2013; Solgi et al., 2014).  

Comparing the results of WNN model with neuro-fuzzy model showed the better forecasting 

performance of the WNN model in both short and long-term prediction (Solgi et al., 2014).  

Among previous studies, Mwale et al. (2004) and Elsanabary and Gan (2014) applied the WNN 

model to forecast seasonal precipitation based on global sea surface temperature as predictor 

data. They applied the wavelet principle component analysis to individual scale-average wavelet 

power to find the dominant oscillations of variability in time series. This study goes one step 

further by quantifying the individual contribution of the detected SST forcing regions through 

nonlinear modeling with the aid of extreme learning machine. 

The main objective of this study is: (1) finding an oceanic index region which has 

statistically significant effect on precipitation over the Upper Colorado River Basin in each 

season, (2) develop a watershed-scale forecasting model to predict precipitation variability over 

the Upper Colorado River Basin one-season ahead using the historical precipitation data and the 

detected oceanic regions in step 1. (3)  Estimate the hydrological events given the predicted 

seasonal precipitation, and precipitation range for each category of SPI. Key science questions to 

be answered include (1) Is there any non-leading teleconnection patterns affect terrestrial 

precipitation more than the known leading teleconnection patterns in this region? If so, to what 

extent? (2) Is the ability of the developed method in predicting the hydrological extremes over 

the upper Colorado River Basin the same in different seasons?  
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2.2. Study Area 

The headwaters of Colorado River are located in Rocky Mountain National Park. The 

Colorado River flows toward west and it is joined by the Gunnison River at Grand Junction.  As 

it reaches Utah, it is joined by the Green River. Then, right before it flows into Lake Powell it is 

joined by San Juan River, which emanates from San Juan Mountains. As shown in Figure 2-1, 

waters within or from parts of four U.S. states including Colorado, New-Mexico, Utah, and 

Wyoming are drained into Upper Colorado River Basin.  

 

 

 

 

 

 

 

 

 

 

Figure 2-1. The location of Colorado River Basin in the U.S. The area marked by bold line is 

the present study area. The size of circles shows the magnitude of average annual flow at the 

location of different stations.  A larger circle shows large magnitude of average annual flow. 
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The snowmelt from precipitation in three states: Colorado, Utah, and Wyoming provide 

about 90% of the inflow into the Colorado River Basin (Jacobs, 2011). Therefore, precipitation 

over the Lower Colorado River Basin does not affect water storage of Lake Mead and Lake 

Powell, which are both indicators of the water storage capacity in the Colorado River Basin 

(Jacobs, 2011). Comparison of the average annual flow of gauges located at the upstream and 

downstream of Lake Powell, shown in Figure 2-1, confirms this matter. Hence, this study is 

focused on precipitation variability of the Upper Basin.  

Variations in temperature and precipitation which are caused by climate change have 

significantly impacted the streamflow timing and availability (Muller and Piechota, 2008). In 

2007, National Research Council (NRC) reported that “Temperature records across the Colorado 

River basin and the western United States document a warming trend over the past century. 

These temperature records, along with climate model projections, suggest that temperatures 

across the region will continue to rise in the foreseeable future”. However, there is less 

agreement on precipitation trend in future, and precipitation trend shows significant variability 

(NRC, 2007; U.S. Department of the Interior Bureau of Reclamation, 2012). As a result of this 

extreme variability in precipitation trend in the Colorado River Basin, estimating the amount of 

precipitation ahead of time would be beneficial for water managers in this basin.  Prior to 

describing the developed forecasting method, the following section is focused on precipitation 

regimes over the Upper Colorado River Basin.  

2.2.1. Precipitation Regimes over the Upper Colorado River Basin 

Precipitation in summer and winter seasons contributes significantly to the total annual in 

the Upper Colorado River Basin. Winter snow and summer monsoon are two main sources of 
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water in this region (Kim et al., 2006). Precipitation of these two seasons is affected by moisture 

content of frontal systems caused by atmospheric circulation patterns and sea surface 

temperature. In winter and spring, the frontal systems originating from the Pacific Ocean transfer 

a significant amount of moistures to the Colorado River Basin which increases precipitation over 

the elevated areas in this basin. In addition, cold front systems leads to snowpack at the elevation 

above 5,000 feet melted in the late spring or earlier by warm storm winters which causes high 

runoff on major rivers (USGS, 2004). In summer (especially during July-August), the North 

American Monsoon transfers moisture from east Pacific Ocean, Gulf of Mexico, and Gulf of 

California toward the Colorado River Basin which causes considerable precipitation in New 

Mexico, Utah, and Colorado during summer (USGS, 2004; U.S. Department of the Interior 

Bureau of Reclamation, 2012). 

To find the best time scale for precipitation forecasting, it would be beneficial to find the 

answer to several questions. The first question is whether there is annual cycle of precipitation in 

this basin. To answer this question, it is important to have information about the variability of 

precipitation in the Upper Colorado River Basin.  

 

 

 

 

 

 

 

Figure 2-2. Annual cycle of precipitation in the Upper Colorado River Basin (1997-

2014). Bars indicate monthly standard deviations. 
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Variation of precipitation within the time period of this study (Jan 1997-Dec2014) is 

presented in Figure 2-2 and Figure 2-3. Based on Figure 2-2, there is no substantial difference in 

the average of precipitation in different months. In addition, as shown in Figure 2-3, the average 

annual precipitation of all seasons is almost the same, and there is no season in which 

precipitation dominants the annual total precipitation.  

 

Figure 2-3. (a) winter season (December to February); (b) spring season (March to May); (c) summer season 

(June –August); (d) fall season (September to November); Dashed lines indicate ±1 stdv for the winter (8.58 

mm), spring (8.18 mm), summer (8.03 mm), fall (9.40 mm); Middle dashed line indicates average for winter 

(28 mm), spring (32 mm), summer (29 mm), fall (29 mm). 

 

Since the main objective of this study is forecasting precipitation in order to help water 

managers, the second question is whether there is any relationship between precipitation and 

reservoir storage? If so, at which scale (monthly/seasonal) it is more significant? To answer this 

question, the association between precipitation and inflow into several reservoirs located at the 

Upper Colorado River Basin is assessed during 18-year (1997-2014) for two different time scales 
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(i.e. monthly and seasonal). As shown in Table 2-2, the correlations between precipitation and 

the inflow into the reservoirs are more significant at seasonal time scale.  

Table 2-2. Correlation between precipitation and inflow into the reservoirs within different time scales 

 
Lake 

Powell 
Fontenelle 

Flaming 

Gorge 

Taylor 

Park 
Navajo 

Monthly 0.27 0.19 0.25 0.14 0.30 
Winter 
 (DJF) 

0.45 0.43 0.28 0.48 0.56 

Spring 
(MAM) 

0.52 0.45 0.65 0.08 0.33 

Summer 
(JJA) 

0.49 0.66 0.66 0.45 0.69 

Fall  
(SON) 

0.48 0.38 0.25 0.16 0.53 

 

One of the goals of this study is to find a linkage between the predicted precipitation and 

the severity of droughts in order to inform the water managers in advance. This poses a third 

question, whether or not there is a particular month or season associated with droughts? To 

answer this question droughts are quantified based on the precipitation deficit using the 

standardized precipitation index (SPI), which is described in the methodology section. McKee et 

al., (1993) defined the following classification system to quantify intensities of hydrological 

events based on the SPI value (Table 2-3). The calculated values of SPI for the period of (1997- 

2014) and their corresponding categories are shown in Figure 2-4. As shown in Figure 2-4, 

extremely dry conditions were detected in different months in fall, winter and summer.  

Therefore, there is not any particular month or season associated with droughts in this region.  
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Table 2-3. The SPI classification system (McKee te al., 1993) 

SPI category 

2 and more extremely wet 
1.5 to 1.99 Very wet 
1 to 1.49 Moderately wet 

-0.99 to  0.99 Near normal 
-1 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 
-2 and less Extremely dry 

 

 

 

Figure 2-4. Calculated SPI for monthly precipitation in the period of (1997-2014). Y-axis shows the defined 

category of SPI. The definition corresponding to each vale in y-axis are shown at the top of the diagram. 

 

Consequently, based on the results of precipitation analysis in this section, the seasonal 

scale was selected to be used in the developed precipitation forecasting model in this study. 

2.3. Data and Method 

In this study, empirical approaches are integrated to identify the dominant oceanic 

forcing regions and quantify the contribution of each oceanic index regions associated with 

precipitation responses over the Upper Colorado River Basin. Then, the extracted data are 
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applied to predict precipitation and estimate the intensity of the hydrological events over the 

study area for a season ahead of time. As shown in Figure 2-5, the proposed methodology 

includes three phases. The main objective of Phase I is based on identifying possible index 

regions by big data analytics which mainly consists of 6 steps. Firstly, SST and precipitation data 

are collected. Then, seasonal time series of each dataset are calculated. The long-term trends of 

each time series are removed, namely detrending, which is necessary prior to obtaining any 

meaningful results from the correlation analysis (Wu et al., 2007). After detrending, time series 

are decomposed at time-frequency domain to determine localized variation of wavelet power and 

dominant modes. Then, pixel-wise linear lagged correlation analysis is performed between the 

isolated dominant modes of SST and precipitation time series in order to identify the significant 

oceanic index regions. Next, in Phase II which is designed for screening and ranking the 

dominant index regions, extreme learning machine (ELM) is applied to simulate the possible 

nonlinear relationships between precipitation and the extracted SST index region. Finally, the 

contribution of each identified oceanic index region to precipitation responses is calculated 

through the sensitivity analysis. Lastly, in phase III the extracted data are applied as inputs into 

the ANN model to predict precipitation over the study area for a season ahead of time and to 

predict the hydrological extremes based on the SPI-based algorithm.  

2.3.1. Data Collection 

Precipitation data is acquired from Global Precipitation Climatology Project (GPCP) 

dataset produced based on an optimal merge of estimates calculated from microwave, infrared 

and sounder data observed by the international constellation of precipitation-related satellites and 

precipitation gauge analysis. 
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Figure 2-5. The study framework 

Since 1996, GPCP data provides higher resolution estimates using the geo-synchronous-

satellite operators around the world in order to collect histograms of infrared radiometers on 

geosynchronous satellites (geo-IR) brightness temperature (Tb) on a 1º×1º grid covering 40ºN-

40ºS at 3-hourly intervals (Huffman et al., 2001). However, outside the geo-IR coverage, the 

sounding data is used. To estimate precipitation from the 3-hourly geo-IR histograms, the 

threshold-matched precipitation index (TMPI) is applied to compare the infrared brightness 

temperature (IR Tb) with threshold Tb(rain). All pixels colder than Tb(rain) are labeled as 

“precipitating”. It should be mentioned that both geo-IR and sounder data are responding to 

clouds instead of hydrometeors which cause some algorithmic uncertainties at the finest scales 

(Huffman et al., 2001). However, comparison between the GPCP 1DD data with rain gauge data 
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showed considerable agreement in both cold and warm seasons (Rubel and Rudolf, 1999). In 

addition, results of this comparison indicated excellent agreement at seasonal scale (Huffman et 

al., 2001). The daily GPCP data with spatial resolution of (1-degree) are employed in this study. 

This product estimates precipitation over the entire globe at 1-day for the period 1996 – 2014 and 

can be acquired via Global Precipitation Analysis home page (Global Precipitation Analysis, 

2015).  To meet the requirements of this study, monthly precipitation data is calculated based on 

summation of daily values in each month. 

SST data is obtained from the latest ERA-Interim reanalysis products, which is generated 

by the European center for medium-range weather forecast (ECMWF). It includes hourly to 

monthly SST data which extends back to 1979 and continues to present time with spatial 

resolution of 1.5 degree latitude to 1.5 degree longitude. This product is produced by a 2006 

version of the integrated forecast system (IFS).  ERA- 40 was replaced with ERA-Interim, as a 

result of its improved atmospheric model and data assimilation system which can eliminate or 

significantly remove the several observed inaccuracies of ERA-40. The ERA-Interim SST data 

from Jan. 1996 through Dec. 2014 applied in this study is obtained from the ECMWF’s 

homepage (ECMWF, 2015). 

As a result of precipitation regimes in the Upper Colorado River Basin on one hand, and 

the significant seasonality revealed between terrestrial precipitation variability and SST forcing 

on the other hand, seasonal time series of each variable are thus calculated and used instead of 

monthly time series to assess the associations between the global SSTs and terrestrial 

precipitation. Seasonal time series are calculated by computing every 3 months averages, namely 

March-April-May (MAM) for spring, June-July-August (JJA) for summer, September-October-
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November (SON) for fall, and December-January-February (DJF) for winter. In order to 

establish the possible associations between SSTs forcing and precipitation responses, lag 

correlation analysis is performed. Earlier studies in this region suggested selected lag time 

between 1-12 months as possible time for SSTs signal propagation to affect precipitation regime 

(Hidalgo and Dracup, 2003; Kim et al, 2006;  Kim et al., 2008). Therefore, 13 different SSTs 

time series are computed with time lags from 0 to 12 months. For instance, to find the lagged 

correlation between precipitation of MAM, the associated SST time series are averaged for three 

month periods starting with MAM (0 lag), FMA (1 month lag), JFM (2 months lag), ..., MAM 

(12 months lag). 

2.3.2. Phase I: Identification the Possible Index Regions 

As a result of complexity in climate systems, non-stationary and non-linearity 

characteristics of climate time series is expected (Wu et al., 2007). One of the important 

preprocessing steps prior to the further analysis is to remove long-term trend as it can lead to 

large uncertainty in linear correlation analyses (Pouzols and Lendasse, 2010).  The most 

common approach to determine the trend is to fit a straight line to the time series.  Since the 

aforementioned common approach is not suitable for non-linear signals, the empirical mode 

decomposition (EMD) was applied in this study. Earlier studies showed the ability of EMD 

approach in determining the global trend relative to wavelets, classical filtering average, and 

computational intelligence models (Pouzols and Lendasse, 2010; Amar and Guennoun, 2012). 

EMD approach was first suggested by Huang et al. (1998), and it has the ability of extracting the 

intrinsic and adaptive trends from non-linear and non-stationary time series. The procedure of 

EMD to extract adaptive trends is as follows (Huang et al., 1998):  
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(1) Determine all the minima and maxima of input time series x(k), 

(2) Calculate the signal envelope passing through the minima emin(k) and maxima emax(k), 

(3) Compute the local mean time series, M(k): M(k) = emin(k)+emax(k)2          (1) 

(4) Obtain the intrinsic mode function IMF candidate, S(k): S(k) = X(k) − M (k)         (2) 

(5) If the properties of S(k) is not the same as an IMF, replace X(k) with S(k) and repeat the 

procedure from the first step. Otherwise calculate the residual “r(k)” as follows: r(k) = X(k) − S(k)         (3) 

(6) Repeat step 1-5 till the residuals “r(k)” is monotonic. The monotonic r(k) is defined as a 

trend. 

(7) Once the trend is extracted, it will be removed from the original time series, which can be 

shown as: 

x′(k) = x(k) − r(k)                     (4) 

To overcome the non-stationarity problem of the ocean-atmosphere systems, wavelet 

analysis is applied to find the significant oscillations in time series of SST and precipitation at a 

seasonal time scale, and the range of dominant oscillations is then averaged into a scale-average 

wavelet power (SAWP) which depicts the modulation of many frequencies within a single time 

series. This analysis is performed through the following steps for all grids of precipitation within 

the Upper Colorado Basin and SST individually (Mwale et al., 2004):  

(1) Wavelet Power Spectrum (Figure 2-6b): For each grid of precipitation and SST, time 
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series of these variables are decomposed into two-dimensional time-frequency domain 

using the continuous wavelet transform (CWT) process. Black solid line areas show 

statistical significant regions at 95% confidence level. As a result of applying finite 

length time series in this study, errors may occur at the beginning and the end of the 

wavelet spectrum which is padded with sufficient zeroes. To avoid these edge effects, all 

the regions inside the cone of influence (COI), which is shown by the inverted dashed 

blue arch shape line, are considered.  This figure shows dominant oscillation in time 

series of SST in fall season as an example.  

(2) Global Wavelet Spectrum (Figure 2-6c): It represents the variation of dominant 

oscillations with time. Peaks of time series which is above the dashed curve areas show 

statistically significant region with the 95% confidence level,  

(3) Scale-average time series (Figure 2-6d): It depicts how the dominant oscillations defined 

in the previous steps in a certain band (2-4 years) vary with time. It is defined by 

calculating the weighted sum of the wavelet spectrum power over the defined band which 

is named as SAWP.  

Singular value decomposition (SVD) is an applicable tool to analyze multivariate data. In 

this study, SVD is applied to the precipitation SAWPs in order to extract the common spatial and 

temporal variability of precipitation SAWPs and consolidate them into a single time series (i.e. 

principle component) without loss of information.  
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Figure 2-6. Wavelet decomposition example of a single SST grid in fall season; (a) seasonal anomaly SST data 

with the X and Y axes representing time and SST in degrees, respectively. (b) SST wavelet power spectrum; 

(c) global wavelet spectrum; (d) SAWP time series which was calculated based on the 2-4 year period band. 

The dashed blue lines show the boundary of cone of influence. 

 

To find the association between precipitation over the Upper Colorado River Basin and 

global SST, linear lagged correlation between the SAWP of global SSTs and the PC1 of 

precipitation SAWP is calculated. The SAWP of SST and precipitation are applied to avoid 

using a wide range of unknown frequencies included in the raw data of SST and precipitation 

time series (Mwale et al., 2004). To compute the linear lagged correlation between terrestrial 

precipitation and global SST anomalies, the following Pearson correlation coefficient equation is 

applied:  
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𝑟 = ∑ [(𝑥𝑖−�̅�)×(𝑦𝑖+𝑑−�̅�)]𝑛𝑖√∑ [(𝑥𝑖−�̅�)]2𝑛𝑖  × √∑ [(𝑦𝑖+𝑑−�̅�)]2𝑛𝑖         (5) 

where, r is the correlation coefficient, n is number of data, x and y are variables; in this 

study x represents the precipitation dataset and y represents the SST dataset; x̅ and y̅ are the 

mean; d is the time lag. Based on the calculated correlation coefficient of each pixel, the pixel-

wise linear correlation maps are computed for the study area in all four seasons to identify the 

oceanic regions in which SSTs show significant correlation (at 95% confidence level) with 

terrestrial precipitation in different seasons.  

From the pixel-wise correlation maps, regions with consistently statistical significance 

level in a long-term period (more than 3 month) are extracted. Besides extracting statistically 

significant regions, their corresponding time lags are determined. While the magnitude of 

correlation represents the intensity of SST forcing precipitation, the corresponding time lags 

indicate the possible time for the precipitation responding to SST forcing (Wu et al., 2008). 

Therefore, the lag corresponding to the maximum or minimum correlation coefficients between 

precipitation and each extracted SST region from 0-12 lags is determined. Therefore, each SST 

index region is extracted from the SAWP of global SST regarding to the determined time lag and 

then averaged to get individual SST indices.  

2.3.3. Phase II. Screening and Ranking the Identified Index Regions 

As several oceanic regions may show statistically significant relationship with 

precipitation in each season, it proposes a question of which one can be consider as a predictor 

for forecasting precipitation in the next step. To find the answer of this question, the advanced 
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machine learning tool, ELM, is applied to explore the nonlinear relationships between the 

extracted SST indices and precipitation. Although the backpropagation learning algorithm (BP) 

plays a significant role in training feedforward neural networks, it also comes with some 

challenges such as local minima, intensive human intervene, and slow learning speed (Huang, 

2014). To overcome these challenging issues, ELM was proposed by Huang et al. in 2006. The 

structure of the single layer feedforward neural network is shown in Figure 2-7. For N arbitrary 

samples (xi , yi), the mathematically modeled ELM is as follows (Huang et al., 2006): 

∑ vig(ai ∙ xj + bi) = yj                         j = 1, … , NNi=1      (6) 

Equation (5) can be written as:  

HV = Y          (7) 

where  

V = [v1T⋮vLT]L×m                           Y = [y1T⋮yNT]N×m                                (8) 

H = [g(a1, b1, x1) g(a2, b2, x1) … … g(aL, bL, xL)⋮ ⋮ ⋮g(a1, b1, xN) g(a2, b2, xN) … … g(aL, bL, xN)]    (9)  

where g(.) is an activation function which is sigmoid function g(x) = 1 (1 + e−x)⁄  in this 

study; ai is the weight vector connecting the ith hidden node and input nodes; vi is the weight 

vector connecting the ith hidden node and output nodes; bi is the biases of the ith hidden node; yj 
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is the expected value of jth output node. The procedure of ELM algorithm is as follows (Huang et 

al., 2006): 

 

 

 

 

 

 

Figure 2-7. Typical scheme of single layer feedforward neural networks (Chang et al., 2010) 

 

(1) Given a training set, activation function g(.), and hidden node number (L), 

(2) Randomely assign input weights ai and bias bi, 

(3) Calculate the hidden layer output matrix H, 

(4) Calculate the output weight V from Equation (9), 

V = YH+          (10) 

where  H+ is the Moore-Penrose generalized inverse of matrix H. Therefore, V is the 

only parameter which needs to be solved. To establish a robust ELM algorithm in this study, all 

samples (xi , yi) are randomly separated into two datasets. First, 70% of samples are applied to 

train the model. Then, the rest 30% of samples (i.e. unseen data) are applied to validate the 

trained ELM model. In the training stage, the correlation coefficient between the model outputs 
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(yj) and the observed data (xi) is calculated as stopping criterion. If the correlation coefficient 

reaches to 90%, the simulated ELM model will be considered as robust enough for predicting. 

Otherwise, training process will be repeated until it meets the stopping criterion. In this study, 

extracted SSTs and precipitation are considered as inputs and target of the ELM algorithm. The 

ELM was performed using MATLAB, with code developed by Nanyang Technological 

University in Singapore (Extreme Learning Machine, 2013). 

Once robust ELM models are simulated, the contribution of each identified oceanic index 

region to precipitation at each site is calculated through the sensitivity analysis. For this purpose, 

two precipitation time series are simulated simultaneously based on the following scenarios:  

(1) Including all the identified oceanic index regions, 

(2) Excluding one of the identified oceanic index regions and including the rest indices, 

Residuals between the two simulated precipitation time series are defined as the 

precipitation responses to the excluded index. To reduce the stochastic error, this procedure is 

repeated for 200 times for each index, and the average of these results is considered as the 

contribution of each index to precipitation at each site. 

2.3.4. Phase III. Seasonal Precipitation Forecasting 

A traditional feedforward ANN model is applied in this study to forecast precipitation 

one season ahead for all precipitation grids located in the study area. The structure of ANN 

consists of interconnected nodes arranged in three layers: input, hidden, and output layer. Input 

layer only distributes inputs to the hidden layer; after processing data in this layer, they are 

transferred to the output layer. The backpropagation algorithm which is the most common 

http://www.ntu.edu.sg/
http://www.ntu.edu.sg/
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algorithm to train the feed forward ANNs is applied in this study. The main objective in the 

backpropagation algorithm is modifying the weights in the network by minimizing the error 

between a target and computed output (Tokar and Johnson, 1999). The forward pass phase of 

training is started by connecting nodes within neighboring layers by links and assigning initial 

weights to each link. Then, a neuron j, sums the value of all inputs based on the following 

equation (Dawson and Wilby, 1998): 

𝑆𝑗 = ∑ 𝑊𝑖𝑗𝑈𝑗 + 𝑊𝑜𝑗𝑛𝑖=1         (11) 

where, 𝑊𝑜𝑗 is the bias, i is number of inputs to a neuron U1 to Uj, j is associated to 

neuron, 𝑊𝑖𝑗 is a weight associated to each input. The activation function is applied to the value 𝑆𝑗 

to produce the output of a neuron, and it is then transferred to the output layer. If the difference 

between the trained outputs of ANN and the desired ultimate outputs (error) is less than the 

selected value, the training procedure is stopped. Otherwise, the reverse pass phase is started by 

modifying the weights and biases of each neuron using a factor based on derivative of activation 

function, error, and actual neuron outputs (Dawson and Wilby, 1998).  

The MATLAB ANN toolbox with feed forward neural network scheme trained by 

“trainscg” activation function is applied in this study. This function updates weights and bias 

values based on the scale conjugate gradient method. The selected oceanic index region and 

seasonal precipitation data at each grid were applied as inputs and target, respectively. The 

MATLAB ANN toolbox was modified by adding a loop to check Pearson correlation coefficient 

and P-value for each iteration. This iterative process is repeated until the Pearson correlation 

coefficient value reaches the selected value (more than 80%) while the P-value satisfies a 95% 

confidence interval.  
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Once precipitation is predicted for all grids within the study area for a season ahead of 

time using the ANN model, the predicted values are applied to predict hydrological extremes 

based on SPI-based algorithm shown in Figure 2-8. To calculate an index based on precipitation 

deficit for assessing hydrological extremes, the SPI index is calculated based on the following 

procedure:  

Let 𝑃𝑖𝑗 (i=1,2,……,N , j=1,2,…,K) be the observed time series of monthly precipitation 

over the Upper Colorado River Basin, where N is the number of precipitation grids and K is the 

number of precipitation observations. First, an individual Gamma distribution is fitted to 

precipitation data of each grid to determine the parameters of this distribution including shape 

parameter (𝛽𝑖) and scale parameter (𝛼𝑖) via Equations (11) to (12) (Kumar et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8. The framework of the applied SPI-based algorithm to determine the intensity of 

hydrological droughts a season ahead of time. 
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𝛽𝑖 = 1+√1+43(𝐿𝑛(�̅�𝑖𝑗)− ∑ 𝑙𝑛(𝑃𝑖𝑗)𝐾𝑗=1 𝐾4(ln(�̅�𝑖𝑗)− ∑ ln(𝑃𝑖𝑗)𝐾𝑗=1 𝐾 )                              (12) 

𝛼𝑖 = �̅�𝑖𝑗𝛽𝑖           (13) 

where, �̅�𝑖𝑗 is the mean of precipitation in grid i.  

Then, the mathematical cumulative probability function can be assigned to the observed 

precipitation event at each grid via Equation (13):  

𝐹(𝑥) =  ∫ 𝑥𝛼−1𝑒−𝑥𝛽  𝑑𝑥𝑥0 𝛽𝛼 Γ (𝛼)         (14) 

Since the observed precipitation (i.e “x” in Equation (13)) can be zero, the gamma 

function is modified as Equation (14): 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐹(𝑥)        (15) 

where, q is the probability of zero.  

In order to take advantages of SPI in comparing precipitation of different grids which 

have different precipitation characteristics, the calculated cumulative probability functions of 

each grid is transformed into a standard normal random variable z with mean of zero and 

standard deviation of one. Transferring the calculated cumulative probability of all precipitation 

grids in this way puts the transformed variants in the same units, and makes the comparison of 

different grids possible.   



44 

Based on the aforementioned procedure, the series of 𝑆𝑃𝐼𝑖𝑗 is calculated and the time 

series of states is obtained based on the categories defined by McKee et al. (1993). 

Consequently, the range of precipitation value in different states is defined for each grid. By 

knowing the range of precipitation value at each grid corresponding to different states, the 

hydrological extremes at each pixel can be estimated given the predicted value of precipitation. 

2.4. Results 

2.4.1. Results of Phase I: Identification the Possible Index Regions 

Prior to obtaining any meaningful results from the correlation analysis, the long-term 

trend of each time series needs to be removed (Wu et al., 2007). As an example, the detrended 

time series of SST and precipitation are compared with the raw time series for a single grid in 

Figure 2-9.  

As shown in this figure, the detrending process has well removed the long-term trends 

while reserved the oscillation characteristics of original signals. Once the long-term trend is 

removed from the time series of all grids of SST and precipitation, the wavelet analysis is 

applied to capture the dominant oscillation of the detrended time series. 

In addition, the differences between SAWP with the raw time series and detrended times 

are shown in this figure for a single grid of precipitation and SST. This figure shows that the 

SAWPs are totally different from the original and detrended time series, as they are 

reconstructed from the significant wavelet power at selected frequency band (i.e., 2-4 years), 

which is dedicated to maximize the dominant oscillation embedded in the raw time series. The 

reconstructed SAWP shown in Figure 2-9 fully demonstrate the significant long-term variability 
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of precipitation and SST, which is much intuitive and clear to capture the dominant oscillation of 

each index. 

 

 

As mentioned earlier, the SAWP was calculated for all 35 precipitation grids in the Upper 

Colorado River Basin. To consolidate all these precipitation grids into a single time series, SVD 

is applied to calculate the principle component. The first principle component (PC1) was able to 

describe 92% of precipitation variability in fall. In addition, PC1s of spring, summer, and winter 

were able to represent 87%, 82%, and 86% of the overall variability, respectively. The spatial 

  

  

Figure 2-9. Comparison between the raw and detrended time series for a single grid in fall 

season: (a) Precipitation data; (b) SST data 
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correlation patterns between PC1 of precipitation and the SAWP in all seasons is shown in 

Figure 2-10. 

 

 

 

 

 

 

 

 

Figure 2-10. Spatial correlation between PC1 of seasonal precipitation and the SAWP of individual 

grid: (a) DJF, (b)MAM, (c) JJA, (d) SON.  

  

  

a b 

c d 
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As shown in this figure, except summer, statistically high positive correlation (greater 

than 50%) between PC1 and the SAWP occurs across the entire region, except the pixels located 

at the eastern and northern part of the region in which topography affects precipitation 

variability. As shown in Figure 2-10, the spatial correlation patterns between PC1 and 

precipitation in summer is different from other seasons. This could be caused by the moist air 

known as “North American monsoon” that occur in July and August. It delivers high-intensity 

rainfall to the elevation below 7,000 feet and lower-intensity rainfall at higher elevations (USGS, 

2004). 

To find the association between global SST and precipitation variability in the Upper 

Colorado River Basin, the pixel-wise linear lag correlation was calculated between the each grid 

of SST SAWPs and PC1 of precipitation SAWP. As an example, spatial distributions of the 

correlation value in fall is shown in Figure 2-11, where the shaded colors show statistically 

significant correlation at the 95% confidence interval. Here, areas with a consistent significant 

correlation (lasting for more than 3 months) were extracted as possible forcing regions. Based on 

this criterion, 18 different areas (outlined regions in Figure 2-11) were extracted for winter 

season. These areas are termed as oceanic index regions hereafter. The same procedure is 

performed for all other seasons to extract the significant oceanic index regions. Different selected 

time lags shown in Figure 2-11 indicates how long it takes for precipitation in this region to 

respond to SST. Once the oceanic index regions are determined, associated time lags for each 

oceanic index regions are also identified by selecting the corresponding time lags with the 

maximum correlation coefficient between the oceanic index regions and precipitation. 

Figure 2-12 is presented as an example for a selected index in fall season. As shown in 

Figure 2-12, the most significant correlation between the selected oceanic index region and 



48 

precipitation occurred at lag 7, which suggests that the oceanic index of this region should be 

extracted with a 7 month time-lag compared with precipitation. Following this procedure, the 

associated oceanic indices were extracted for each index regions in different seasons. These 

oceanic indices will be further screened and ranked by simulating the possible contribution of 

each indices associated with the precipitation responses.  

 

Figure 2-11. Pixel-wise linear correlations between PC1 of precipitation SAWPs and SST SAWP of each grid 

in fall season. Shaded color represents significant correlation at 95% confidence intervals. The areas marked 

with rectangles show the identified significant regions. 
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Figure 2-12. Example of determining time lag for each oceanic index region. Right figure shows the 

correlation of the Index7 with PC1 of precipitation SAWPs in different time lags. 

 

2.4.2. Results of Phase II: Screening and Ranking the Identified Oceanic Index Regions 

The main purpose of this phase of the study is finding the contribution of the identified 

oceanic index regions on precipitation variability over the study area in different seasons. For 

this purpose, the ELM algorithm is applied to assess the non-linear relationship between SST and 

precipitation. For each season, 200 trials were simulated, and the outputs of these 200 trials 

simulation were averaged to compare with the observed data as they were shown in Figure 2-13.  

Fair agreements are observed between the simulated and observed precipitation time 

series over each site, which suggests the capability of ELM to characterize the complex 

relationships between the oceanic index regions and terrestrial precipitations. In addition, the 

simulated models can be used with confidence to simulate the precipitation responses to each 

oceanic index. As the robust ELM model is simulated, the contribution of each identified oceanic 

index region associated with precipitation variability over the study area can be quantified. 
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Figure 2-13. Comparison between the output and the target of the ELM algorithm for (a) 

spring; (b) summer, (c) fall, (d) winter. 

 

For each season, the sensitivity analysis is repeated for at least 10 times in order to reduce 

the stochastic error. The oceanic index region with at least 70% contribution on precipitation 

variability in the most trials was selected. Based on this criterion, one index region was selected 

for each season. The locations of the selected index regions are shown in Figure 2-14. As shown 

in this figure, the same oceanic index region was detected for spring and summer seasons, which 

shows 84% and 75% contribution on precipitation variability over the study area, respectively.  
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Figure 2-14. Oceanic index regions which shows the highest contribution on precipitation variability. 

“S” stands for summer and spring, “F” and “W” stands for fall and winter, respectively. 

 

 

Comparing the location of the identified oceanic index region with the known 

teleconnection patterns indicates the compatibility of these indices with time series of Atlantic 

Multi-decadal Oscillation (AMO). The detected oceanic index region in summer and spring is 

consistent with the earlier studies by (McCable et al., 2007; Enfield et al., 2001; Sutton and 

Hodson, 2005; Curtis, 2008; Mo et al., 2009; Feng et al., 2010) which show the impacts of AMO 

on rainfall and river flow variability and droughts in the Southwest United States and the Upper 

Colorado River Basin. On decadal to multidecadal time scales, AMO has the most significant 

association with the flow variability in the Upper Colorado River Basin compared to 

combination effects of Indian Ocean and Pacific Ocean variability (McCabe et al., 2007). In 

addition, during the warm phase of AMO, the anomalous cyclonic circulation located in the East 

Coast of U.S. reduces the amount of moistures transfers to the Southwest from Gulf of Mexico. 

Lower amount of moisture and higher temperature during boreal summer cause scarce rainfall 
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and intensify the potential of droughts over the Western United States (Curtis, 2008; Sutton and 

Hodson, 2005). The influence of AMO on rainfall over the Colorado River Basin is large when 

the phase of AMO is opposite to the phase of ENSO. Warm phase of AMO in a negative phase 

of ENSO leads to drought over the Southwest and Colorado River Basin (Mo et al., 2009). As 

shown in Figure 2-15, the identified oceanic index region in the both summer and spring seasons 

are consistent with the time series of the corresponding known teleconnection pattern (i.e. 

AMO). This finding suggests the efficiency of the proposed integrated approach to detect the 

possible linkage between global SSTs and precipitation responses. 

 

 

 

 

 

 

 

 

 

Figure 2-15. Comparison between the SST of the identified oceanic index regions and the known 

teleconnection pattern in (a) fall; (b) summer; (c) spring 

 

As shown in Figure 2-15, the oceanic index region which shows significant compatibility 

with the time series of the tropical South Atlantic Ocean (TSA) indicates the highest contribution 

  

 

-2.0

-1.0

0.0

1.0

2.0

3.0

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

S
ta

nd
ar

di
ze

d 
S

S
T Index 9 TSA

-2.0

-1.0

0.0

1.0

2.0

3.0
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14

S
ta

nd
ar

di
ze

d 
S

S
T Index7 AMO

a 
c 

-0.2

0.0

0.2

0.4

0.6

-3.0

-2.0

-1.0

0.0

1.0

2.0

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

S
ta

nd
ar

di
ze

d 
S

S
T

AMO Index13b 



53 

(79%) on precipitation variability in fall. SST warm in this region of the ocean during spring 

makes the Atlantic inter-tropical convergence zone (ITCZ) sensitive to any changes in 

interhemispheric SST gradient. ITCZ moves toward north of the equator as a result of the 

development of the cold tongue during June–September. As a result of the large heat capacity of 

the ocean mixed layer, the oceanic ITCZ lags its movement over the continent and reaching its 

northernmost position in September (Xie and Carton, 2004).  

The non-leading teleconnection patterns located in the west coast of the South America 

shows the highest contribution (86%) on precipitation patterns over the Upper Colorado River 

Basin in winter. This region can be affected by “sea-saw” effect in sea level pressure between the 

Pacific Ocean and Indian Ocean (USGS, 2004). Concurrent with the low sea level pressure in the 

equatorial Pacific ocean and high pressure in the Indian Ocean, the trade winds over the Pacific 

Ocean are weaken which lead to spread the warm water from equatorial Pacific region to the 

west coast of South America, producing El-Nino. On the other hand, the inverse sea level 

pressure between two oceans intensifies the trade winds over the Pacific Ocean which leads to 

move the cold water along the west coast toward the eastern and central part of the Pacific 

Ocean, producing La-Nina (USGS, 2004).  

2.4.3. Results of Phase III: Seasonal Precipitation Forecasting  

The existence of 2-4 year period band of dominant oscillations in SST and precipitation 

time series, and the significant seasonal association between the PC1 of precipitation SAWPs 

and SST SAWPs suggests that precipitation over the Upper Colorado River Basin is predictable 

at intra-annual scale.  
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For each season, the significant oceanic index regions detected in the previous section are 

extracted from the raw SST data for the determined time lag. For instance, four-month time lag 

was selected for the detected index region in fall and spring, 3-month lag for winter index, and 

10-month lag for summer index. The extracted SST data are averaged and normalized by scaling 

between 0 and 1 to use as inputs into the ANN model. In addition, the averaged raw precipitation 

data is considered as target of the ANN model. To determine the spatiotemporal ability of the 

developed method in predicting hydrological droughts over the Upper Colorado River Basin, the 

ANN model was simulated for each single precipitation grid. Therefore, 35 ANN models were 

simulated. For each grid, the ANN model was run 30 times and the average of 30 predicted 

values was reported as the predicted value of each grid in order to reduce the stochastic errors of 

the model. The time period of the seasonal forecasting model starts from 1997 to 2014 (18 

years). All ANN models were trained based on 70% of inputs (12 years), and tested based on 

30% of input (6years). Since the main objective of this study is developing a forecasting model 

to predict the hydrological droughts ahead of time, the ability of model in detecting precipitation 

deficits is assessed by testing the capability of the model for the year in which the lowest 

precipitation is recorded in all seasons. The maximum and minimum amount of precipitation of 

all grids within the Upper Colorado River Basin during (1997 – 2014) is shown in Table 2-4.  
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Table 2-4. Minimum and maximum precipitation (mm/month) of all precipitation grids within the 

study area. The selected year is shown in gray. 

Season/ Winter Summer Spring Fall 

Year Min Max Min Max Min Max Min Min 
1997 24 115 26.8 65 16.8 49 28 56.6 
1998 17.7 57 13.8 60 23 57 29 49 
1999 10 65.7 21 55 20 57.7 3.9 21 
2000 16 62.6 11.7 31 17.7 45.5 16.5 44.5 
2001 12.5 33.5 14 37.6 15 36 9 36 
2002 7.8 49 5.7 37.7 6 43 20 60 
2003 16 43.5 13.8 33 17 47 12.8 33.8 
2004 19.5 64.7 10 53 16 39 30.5 66.7 
2005 13.6 68 15.7 55 23 68 14.9 67.6 
2006 9 85.6 12.9 37.6 15.6 57 24.8 65 
2007 11.7 52 13.5 43.6 13.7 40 11 53.5 
2008 22 70 10.4 29 13 52 14.6 38.6 
2009 12 50.7 11 66.9 17.9 46 11 31.8 
2010 9.8 53 16.9 48.6 22 55.9 14.5 50 
2011 12 53 12 35.4 18 81 15 37.5 
2012 5.9 32 9 27.6 7.5 36 9 31 
2013 6 36 11 30.5 14.6 32.4 21 54 
2014 10 41 21 47 15.7 39 17.8 38 

 

As shown in Table 2-4, although the lowest precipitation amount was recorded in one or 

two seasons of year 1999 and 2002, the year 2012 was the only year in which the low 

precipitation value was recorded in all seasons. Therefore, this year was selected to assess the 

ability of model in predicting the possible hydrological extremes. 

As shown in Table 2-4, precipitation has significant variability within the study area in all 

seasons. However, comparison between the averaged, minimum, and maximum values of 

predicted and observed precipitation for all grids within the study area indicates the ability of the 

model in predicting the variability of precipitation (Table 2-5).  
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Table 2-5. Comparison between the observed and predicted values over the study area in year 2012 

(mm/month) 

Season 
Average Min Max 

Observed Predicted Observed Predicted Observed Predicted 
Winter 17 22.8 5.9 7 31 31 
Spring 16.8 21 7.5  9 36 38 

Summer 15 19.8 9 8.8 27.6 33 
Fall 18 22 5.9 7 32 35.7 

 

Once, the predicted values of precipitation are calculated, their corresponding SPI values 

are determined based on the method described in the methodology section. The results of the 

predicted and observed SPI values are shown for all seasons in Figure 2-16. Results show the 

ability of the model in detecting the states including near normal, and moderately dry.  

 

 

 

 

 

 

 

 

 

 

Figure 2-16. Spatial comparison between predicted and observed SPI  
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As shown in Figure 2-16, the model was not able to detect the states of moderately dry 

for a few numbers of grids in all seasons, since the model overestimates the precipitation values 

of those grids. Also, in winter, for two pixels located on the boarder of the study area, the state of 

“severely dry” was predicted as “moderately dry”.  

The percent error formula as given in Equation (15) was applied to assess the precision of 

the prediction method.  

%𝑒𝑟𝑟𝑜𝑟 = 𝑛(𝑆𝑝≠𝑆𝑜)𝑁 × 100        (16) 

where 𝑛(𝑆𝑝 ≠ 𝑆𝑜) is the number of pixels in which the predicted state is not the same as 

the observed; N is the total number of pixels within the study area. A percentage closer to zero 

indicates the higher precision of the results. In this study, the percentage errors obtained for 

winter, spring, summer, and fall are 22%, 5%, 8.6%, and 8.6%, which confirm the reliability of 

the predicted method.  

2.5. Application 

Based on the latest report from the U.S. Bureau of Reclamation in 2012, use of Colorado 

River was exceeded the amount of water supply in multiple years as a result of increase in water 

demand and reduction in water supply related to the drought in the 2000’s (USRB, 2012). This 

issue leads to the creation of an interim operating agreement in 2007 to govern shortages and 

surpluses on the system by the year 2026 (USBR, 2007). The current procedure of forecasting 

water supply for Colorado Basin and reservoir operation management and planning models is 

described in Figure 2-17. As shown in this figure, the “24-month study” model is used in the 

U.S.  Bureau of Reclamation to plan monthly reservoir release for two years ahead of time using 
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the predicted streamflow ensembles provided by NOAA’s Colorado Basin River Forecast Center 

(CBRFC). However, there is an information gap between the current results of projections and 

stakeholders’ requirement (Werner, 2011). Some concern has been voiced by stakeholders over 

the projections of the second year of the 24-month study model having low skill, and the 10th 

and 90th percentile forecasted monthly runoff releases of this model are not able to provide 

adequate information for the risk-based decision making (Warner, 2011). These concerns have 

directed CBRFC to improve forecasts, and Bureau of Reclamation to apply the mid-term 

ensemble-based operation model (MTOM) parallel to the “24-month study” model since 2010. 

 

 

Figure 2-17. The current procedure of water supply forecasts on the Colorado River and the application of 

forecasts 

The developed methodology for forecasting precipitation in this study can be applied to 

predict precipitation as one of the inputs fed into the streamflow forecasting model by NOAA. 
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On the other hand, having knowledge about the condition of hydrological extremes in at least 

next three months can provide valuable information to achieve the goal of low impact 

development. Currently, at the beginning of each month, the “24-month study” model is updated 

based on the monthly inflow forecast from CBRFC. Therefore, the results of this study can be 

considered as another input along with the predicted monthly inflow to update the model at the 

beginning of each month. 

2.6. Conclusion 

To overcome the problem of non-stationarity of the ocean-atmosphere system, wavelet 

analysis and empirical mode decomposition are applied in this study to exclude a wide range of 

unknown frequencies and intrinsic trend embedded in raw data, respectively. Wavelet analysis 

decomposes a time-series at time-frequency domain to determine localized variation of wavelet 

power and dominant modes in time series of precipitation and SSTs. In this study, the dominant 

wavelet power period for both precipitation and SST mainly concentrates within the inter-annual 

frequency band (2-4 years). To find the significant oceanic index regions, pixel-wise linear 

correlation maps are calculated based on the linear correlation between the averaged SAWP of 

precipitation and the SAWP of each SST grid. While the magnitude of correlation represents the 

intensity of SST forcing on precipitation, it is important to indicate how quickly the precipitation 

responds to SST. For this purpose, the corresponding time lag of each identified oceanic index 

region is calculated and the identified oceanic index regions are extracted for the corresponding 

lag. Since the linear-lagged correlation can only be able to show the statistically significant 

regions, there is still a need to develop a method which considers the non-linear relationships 

between oceanic index regions and precipitation. For this purpose, the integrated approach of the 
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advanced machine learning tool (ELM) and sensitivity analysis is applied to screen the identified 

oceanic indices and to calculate their contributions.  

Assessing the impacts of different oceans on seasonal precipitation variability over the 

Upper Colorado River Basin showed the significant effects of AMO in both spring and summer. 

The impacts of the aforementioned teleconnection pattern on rainfall, streamflow, and moisture 

over the Upper Colorado River Basin was detected in earlier studies (McCable et al., 2007; 

Enfield et al., 2001; Sutton and Hodson, 2005; Curtis, 2008; Mo et al., 2009; Feng et al., 2010). 

In fall, the oceanic index region located in the tropical South Atlantic Ocean shows the highest 

contribution to precipitation variability. Comparing the detected oceanic index regions with time 

series of AMO and TSA confirms the consistency between the identified oceanic index regions 

and the known teleconnection patterns in most of the years within the selected time period. In 

addition, a non-leading teleconnection signals was detected in winter which points out the 

importance of considering the non-leading teleconnection signals as well as the known 

teleconnection patterns. Therefore, these oceanic index regions were extracted from the raw SST 

data to use as inputs into the ANN model. 

The capability of the ANN model in predicting the hydrological drought was assessed for 

the year 2012 in which the recorded precipitation in all seasons were low compare to the other 

years in 1997-2014. Although the model was successful in capturing the wide range of 

precipitation variability in all seasons, the model overestimated the precipitation values for some 

grids located in the eastern and northern boundaries of the basin adjacent to Rocky Mountains 

and San Juan Mountains. The highest prediction error occurred in winter which means sea 

surface temperature for this season may not suffice for good prediction of precipitation and other 
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variables such as temperature may improve forecasts. However, results show the capability of 

the model in predicting the hydrological states for a season ahead of time.  
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CHAPTER 3: DEVELOPING THE REMOTE SENSING-BASED EARLY 

WARNING SYSTEM FOR MONITORING TSS CONCENTRATIONS IN 

LAKE MEAD 

3.1. Introduction 

Generally, sustainable water resources management is often built on continuous water 

quality monitoring efforts and predictive analyses at regional and local scales (Kundzewicz et al., 

2007). Manual sampling or automatic sampling in a monitoring network of point measurements 

is costly, laborious, and time consuming (Chang and Xuan, 2013). In addition, it is not able to 

characterize dynamics of water quality parameters such as total suspended solids which has a 

wide range of spatiotemporal variability (Chen et al., 2015). Satellite remote sensing through 

rigorous ground-truthing in calibration and validation makes it possible to analyze 

spatiotemporal variability of TSS concentration in surface water bodies. Having information 

about the spatiotemporal variation of TSS is of great importance, since high TSS concentration 

increase water temperature, and decrease levels of dissolved oxygen (DO) in water (EPA, 2012). 

In addition, high level of turbidity scatters light in different directions and decreases the light 

penetration into the depth of water which inhibits photosynthesis (Chesapeake Bay Program, 

2012). Furthermore, pollutants can attach suspended particles and enter to water (Perlman, 

2014). In drinking water treatment process, treating turbid water is costly and can result in odor 

and taste problem (FONDRIEST, 2015). In addition, turbidity can cause clogging tanks and 

pipes (WHO, n.d.).  

Prior studies show the potential of high temporal and spatial resolutions of satellite 

sensors for TSS retrieval. Although several satellite sensors such as Landsat Thematic Mapper 
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(TM) (Khorram, 1985; Lavery et al. 1993; Mertes et al., 1993; Keiner and Yan, 1998; Panda et 

al. 2004; Wang  et al. 2008; Montanher et al., 2014), MODIS (Chang et al., 2009; Zhang et al., 

2010; Petus et al., 2010; Katlane  et al., 2012; Villar et al., 2013; Son et al., 2014; Chen et al., 

2015), and SeaWiFS (Tassan, 1994; Myint and Walker,  2002; Fettweis et al., 2007) can be used 

to retrieve TSS from remote sensed images, the retrieval of water quality is limited by the spatial, 

temporal, and spectral resolutions of the satellite sensors.  In other words, the water quality 

information and its usefulness depend on the fly-over time interval and types of the sensors used. 

For this purpose, the concept of data fusion, which was firstly introduced in the 1990s, 

was applied to monitor inland water bodies taking advantage of high spatial and temporal 

resolution available from different satellite sensors (Zhang et al. 2002; Koponen et al. 2002; 

Zhang et al., 2003). Although the recently developed integrated data fusion and mining (IDFM) 

technique provides a reliable near real-time monitoring system (Chang et al. 2014a; Chang et al. 

2014b), there is still an acute need to develop a forecasting capacity to assess the changing 

conditions of water quality for both watershed management and drinking water supplies. 

Developing such new tools will require innovative creation of predictive methods leading to 

continuous evaluation of management outcomes.  

There are a wide range of quantitative forecasting methods to handle both linearity and 

non-linearity of time series. However, the developed forecasting methods can cause drawbacks 

in real-world applications. For instance, traditional statistical models are not able to handle 

highly non-linear patterns of time series in a powerful way. Therefore, evolutionary algorithms 

were developed to bridge the gap of traditional statistical models. Although the competence of 

evolutionary algorithms in forecasting the chaotic and nonlinear time series were established by 

several authors (Lion et al. 1995; Mahfoud and Mani 1996; Szpiro 1997; López et al. 2000), 
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these models cannot simultaneously capture both linear and non-linear patterns. For this purpose, 

the soft computing and hybrid methods were developed. Whereas soft computing is applicable to 

investigate the vague and unclear relationship between variable and results, the hybrid methods 

combine statistical and evolutionary algorithms to capture both linearity and non-linearity 

embedded in time series data. 

In this paper, the integrated data fusion and mining (IDFM) technique was applied to 

develop a near real-time monitoring system for daily nowcasting of the TSS concentrations.  

Then a nonlinear autoregressive neural network with external input (NARXNET) model was 

selected and applied for forecasting analysis of the changes of TSS concentrations over time on a 

rolling basis onward using the IDFM technique.  Forecasted information was utilized to develop 

an early warning system which provides the spatiotemporal variation of TSS in source water 

around the plant intake and leads to the assistance in the operations of water treatment plants 

during episodes of high TSS concentration. Implementation of this remote sensing-based early 

warning system was assessed by a case study at Lake Mead.   

The following scientific questions are explored: (1) Is the developed nowcasting model 

able to estimate TSS concentration at the inflows into the lake for the dates in which sampling 

was not performed? (2) Is there a linkage between the occurrences of high TSS concentration 

within the lake and the increase in the volumetric flow rate of inflows into the lake? 3) Does the 

applied nowcasting method have the capability of finding the probable impact of each source 

(i.e. transported sediments, forest fire events, and transported urban stormwater runoff and 

treated wastewater effluent) on the increase of TSS concentration in the lake on a daily basis? 4) 

What is the reliability of the developed forecasting method in estimating TSS concentration at 

the location of the drinking water intake? 
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3.2. Study Area 

Lake Mead, formed by the Hoover Dam along the Colorado River, is located on the 

border of Nevada and Arizona (Figure 3-1). The lake is the largest reservoir in the United States 

and the 16th largest reservoir in the world. There are three inflows into Lake Mead: the Colorado 

River in the east, the Muddy and Virgin Rivers in the north, and the Las Vegas Wash in the west. 

 

 

 

 

 

 

 

 

Figure 3-1. Location of Lake Mead and all rivers inflow into the lake 

 

Water quality in Lake Mead, Nevada in the arid western United States varies in response 

to areal forest fires on the northern side, the treated wastewater effluent discharge into the Las 

Vegas Wash on the western side, and sediments transported from the upper Colorado River on 

the eastern side. 98 percent of the inflow into Lake Mead is originated from the upper Colorado 

River which transports discharged sediments from the upper Colorado River Basin (Edward, 

1991). Although the amount of sediment transported into Lake Mead from the upper Colorado 
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Colorado 
River Arm 

Overton 
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Boulder Basin 

Virgin River 

Muddy River 

Colorado River 

Las Vegas Wash 
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River has declined by 90% since the completion of the Glen Canyon Dam in 1963, it is still 

necessary to assess the effects of the imported sediments into the lake on the water quality of the 

lake (National Park Service, 2014).  On the other hand, there are a number of forest fire events in 

the recent decade in the upper part of the lower Virgin River Watershed, having caused drastic 

land-use and land-cover changes (Figure 3-2). Higher rainfall and runoff caused by climate 

change may lead to considerable erosion and may affect the TSS concentration in Lake Mead 

(Megal et al., 2009). 

 

 

 

 

 

 

 

 

. 

Figure 3-2. Location of recorded forest fire events (right) and the percentage of forest fire events which 

occurred in each year (lower left) in the Virgin River Watershed – (Data source: USDA Forest Service, 2014) 

 

As shown in Figure 3-2, the majority of forest fire events occurred in 2005. Even though 

forest fires have not been documented as a cause for increases in TSS, the Lower Virgin River 

was identified in the 2006/2008 impaired waters list from the Arizona Department of 
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Environmental Quality due to the detection of contaminants which included TSS (Arizona 

Department of Environmental Quality, 2006).  

Another tributary, Las Vegas Wash, in the west (See Figure 3-1) transports urban 

stormwater runoff and treated wastewater effluent into Lake Mead and deteriorates the water 

quality in the lower Las Vegas Wash. In 2002, the lower Las Vegas Wash was included in the 

303(d) list of impaired waters in Nevada due to high TSS impact. “The term "303(d) list" is short 

for the list of impaired and threatened waters (stream/river segments, lakes) that the Clean Water 

Act requires all states to submit for EPA approval every two years on even-numbered years” 

(EPA, 2012b). Even though the lower reach was removed from the aforementioned list in 2004, 

TSS and other pollutants remain a concern for water quality of the Lake. 

In addition to the aforementioned factors, the water level in Lake Mead has declined by 

about 33 m (100 feet) from 2000 to 2008 as a result of a decade of drought. The hydrological 

processes and the aforementioned factors have led to the increased concentration of total 

suspended solid (TSS) in the lake.  Lake Mead is the principal source of water in the Las Vegas 

metropolitan region. The surface water is treated at two treatment facilities using the 

conventional flocculation, coagulation, and filtration processes.  Produced water is disinfected by 

chlorination or ozonation before being distributed to the region’s consumers. For any water 

treatment operations, high TSS and algal blooms in source water are always a threat leading to 

poor water treatment efficiency. At this moment, the development of early warning system for 

at-risk water quality conditions in surface water bodies as the drinking water source is not fully 

available by the use of an integrated satellite remote sensing and sensor networks.  

 

http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/glossary.cfm#cleanwateract
http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/glossary.cfm#cleanwateract
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3.3. Input Data 

3.3.1. Ground-truth Data Collection and Analysis  

Historical water quality data from collected samples at 10 local monitoring stations 

within the lake was obtained from the lower Colorado River Regional Water Quality Database. 

The locations of these stations are shown in Figure 3-3. In addition, the names of these stations, 

number of samples, and title of performing agencies are shown in Table 3-1. The mean, 

maximum, and minimum TSS concentrations at each station are also presented in this table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. TSS sampling stations by sampling agencies (Data source: Lower Colorado River regional water 

quality database) 

 

Based on the location of these stations, they can be geographically classified into three 

categories, Boulder Basin, Overturn Arm, and Colorado River Arm. The regions associated with 

these categories are shown in Figure 3-1. As shown in Table 3-1, the average TSS concentration 
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was calculated based on a limited number of samples (i.e. at most 17 samples) and in different 

time periods. According to this table, TSS concentration at Boulder Basin was relatively 

constant. However, the highest variation in TSS concentration was detected at the location of the 

inflows into the lake (i.e. LVB2.7, CRLM, and VR25.1). Therefore, it is necessary to develop a 

method to obtain a holistic overview of spatiotemporal variation of TSS within the lake. 

Table 3-1. Ground-truth data within the Lake utilized by this study (Source: lower Colorado River 

regional water quality) 

Location Station 

No. of 

Samp

les 

Time 

Period 
Sampling Agency 

value (mgL-1) 

Min Max Mean 

B
ou

ld
er

 B
as

in
 

BB-3 12 2005-2007 City of Las Vegas 5 5 5 
BB-7 6 2007 City of Las Vegas 5 5 5 

CR342.9 7 2007 City of Las Vegas 5 5 5 
CR344.9W0.2 7 2007 City of Las Vegas 5 5 5 

CR346.4 12 2005-2007 City of Las Vegas 5 5 5 
CR350.0SE0.55 12 2005-2007 City of Las Vegas 5 5 5 

CR361.8 7 2007 City of Las Vegas 5 6 5.3 

LVB2.70 2 2013 
U.S. Bureau of 

Reclamation (Boulder 
City) 

6.7 7.2 6.95 

C
ol

or
ad

o 
R

iv
er

 A
rm

 

CRLM 3 2003-2004 
Southern Nevada 

Water System 
6 12 9.3 

O
ve

rt
on

 
A

rm
 

VR25.1 17 2007-2009 
U.S. Bureau of 
Reclamation 

(Denver) 
3 44 8.3 

 

3.3.2. Remote Sensing Data Collection and Pre-processing  

Two types of satellite sensors, including MODIS and Landsat TM/ETM+, were applied 

in this study. Although the daily revisit time of MODIS provides high temporal resolution, land 

bands of MODIS have poor spatial resolution. On the other hand, Landsat TM/ETM+, with its 



75 

16-day revisit cycle, has a high spatial resolution of 30 m. Therefore, we applied the IDFM 

method developed by previous studies (Chang et al. (2014a); (2014b)) to fuse MODIS and 

Landsat images and generate a synthetic image which has both high spatial and temporal 

resolutions for nowcasting analysis. The number of images utilized in this study and their 

selected bands are shown in Table 3-2. Only cloud-free Landsat images close to the sampling 

dates were selected. In addition, cloud-free MODIS images corresponding to ground-truth dates 

and selected Landsat images were gathered.  

As the first step in the pre-processing satellite imagery, atmospheric correction should be 

done to remove the effects of atmospheric gases and aerosols on the reflectance values of the 

images. MODIS land surface reflectance (MOD09GA) and surface reflectance for climate data 

record (CDR) for Landsat 5 (TM) and Landsat 7 (ETM+) were obtained from the USGS MODIS 

reprojection tool web interface (MRTWeb, 2010) and the United States Geological Survey 

(USGS, 2014), respectively. MOD09 product has been radiomatrically and atmospherically 

calibrated (Vermote and Kotchenova, 2011). In addition, the surface reflectance CDR applied in 

this study for Landsat is generated from software in which the MODIS atmospheric correction 

routines are applied to Level-1 Landsat 4-5 (TM) or Landsat 7 (ETM+) data. Next, all satellite 

images were reprojected to UTM zone 11N and cropped to include only the study area. All 

images were visually compared in order to make sure they were co-registered. Lastly, the spatial 

resolution of the applied images needs to be the same to produce fused images. For this purpose, 

MODIS images were resampled to 30 m to be the same pixel size as Landsat images. 
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Table 3-2. Number of satellite images for data fusion with selected bands utilized in this study 

  

 

 

3.4. Methodology 

The proposed methodology includes two phases. The main objective of phase one is 

based on finding the relationship between TSS concentration data available in the lake and 

surface reflectance data embedded in satellite imagery from the years 2005 to 2009. For this 

purpose the IDFM method described by Chang et al., (2014a); (2014b) was applied to develop a 

near real-time monitoring system for daily nowcasting TSS concentrations. 

 

 

 

 

 

 

 

 

 

Figure 3-4. Schematic diagram of the developed human-machine system in this study 

Satellite Spatial Resolution 

(m) 

Band Number of  

Satellite 

Imagery 

MODIS 500 1-4, 6-7 139 
Landsat 5 TM 

Landsat 7 ETM+ 
30 1-5,7 27 
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Next, in phase II, which is designed for predicting TSS concentration for a day ahead of 

time, the NARXNET model was applied to forecast TSS concentration on a rolling basis onward 

using the meteorological data and the trained ANN model from the phase I. As shown in 

Figure 3-4, the forecasting model provides information for the water treatment plant operator in 

order to tackle unexpected events before they occur. 

3.4.1. Phase I: Nowcasting 

The framework of the IDFM method developed by Chang et al., (2014a); (2014b) is 

shown in Figure 3-5. First, all MODIS and Landsat images were collected and processed for the 

dates closest to those of ground-truth data. In the data fusion step in Figure 3-5, the processed 

pairs were defined as inputs to the spatial and temporal adaptive reflectance fusion model 

(STAR-FM) algorithm developed by the National Aeronautics and Space Administration 

(NASA) (Chang et al., 2014a; Chang et al., 2014b; Gao et al., 2006). Using two pairs of images 

for both before and after the desired date may increase the accuracy of the produced fused 

images (Gao et al., 2006). The STAR-FM algorithm produces fused images corresponding to 

ground-truth dates. Since ground-truth data were collected during 2005-2009, the fused images 

were produced for the same time period. Then, the spectral reflectance values of all bands were 

extracted at the location of the ground-truth data throughout the lake. The extracted spectral 

reflectance values of all bands corresponding to ground-truth dates and the ground-truth data 

were applied as the inputs and target of the artificial neural network model, respectively. The 

MATLAB ANN toolbox with feed-forward neural network trained by the Levenberge-Marquardt 

back propagation algorithm with 30 neurons in the hidden layer was applied in this study. In 

order to overcome the problem of overtraining which is caused by the ANN model's tendency to 



78 

adopt to any data, even noise, the model data was split into two datasets entitled training and 

testing (Lohninger, 1999). In this study, 60% of all input data were used for training, and 40% 

for testing the model. The net with the best performance which is called the trained ANN model 

from now on was saved to be applied in the forecasting procedure. 

 

 

 

 

 

 

 

 

 

Figure 3-5. Methodological flowchart of the integrated data fusion and data mining method 

(obtained from Chang et al., 2014a) 

3.4.2. Phase II: Forecasting  

3.4.2.1. Model Selection 

Brief description about the previous forecasting methods applied in the field of water 

resource management and their pros and cons are presented in Table 3-3. In this study, a 

forecasting method is needed to predict the TSS concentrations based on the long term memory 

Landsat and MODIS 

Data Acquisition

Landsat Reflectance 

Bands

 1-5, 7 (30m)

MODIS Reflectance 

Bands 

1-4, 6, 7 (250/500 m)

Image Processing Steps:

-Project to UTM 11N

-Resample to 30 m

-Crop out land

Image Processing Steps:

-Project to UTM 11N

-Resample to 30 m

-Crop out land

MODIS Reflectance Bands 

1-4, 6, 7 (30 m)

Landsat Reflectance Bands

 1-5, 7 (30m)

Data Fusion

Ground Truthing 

TSS Data

Fused Surface 

Reflectance Bands 

1-5, 7 (30m)

Data Mining

(Artificial Neural 

Network-ANN)

Estimate TSS 
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Do the estimated values 

match the ground 

truthing data?

Save the trained 

ANN Model
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of the spatiotemporal relationship between TSS concentration and extracted surface reflectance 

values within the lake. For this purpose, artificial neural network (ANN), which has powerful 

pattern classification and recognition capabilities by learning and generalizing from experience 

with memory effect, was applied in our forecasting scheme. Although the forecasting ability of 

ANNs can be improved by proposing a conjunction models via the hybrid approach, the 

complexity of hybrid model which may affect the prediction accuracy leads us to apply recurrent 

dynamic ANNs instead. The selected ANN is the NARXNET, which is able to learn the dynamic 

relationship of time series. The output of NARXNET not only depends on the current input, but 

also depends on the current and previous inputs and outputs of the network. The results of prior 

studies showed the higher forecasting accuracy of NARXNET, and its promising qualities for 

dynamic system applications (Arbain and Wibowo, 2012; Menezes and Barreto, 2006; 

Diaconescu, 2008).  
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Table 3-3. Selected forecasting methods in water resources management and their pros and cons 

Model Reference Advantage Disadvantage 

Traditional 
Statistical 

Model (AR⃰, 
MA⃰, ARMA⃰, 

ARIMA ⃰) 

 Islam and 
Sivakumal, 2002 

 Girmaldi et al., 
2005 

 Soltani et al., 2007 

 Chattopadhyay and 
Chattopadhyay, 2010 

 Simple and easy to 
use 

 Flexible 
 Multiple variables 

 Restrictive assumptions 
 Less accurate 
 Inappropriately for 
nonlinear cases 
 Sensitivity to outliers 
 They are only good for 
short-term prediction 

 

Evolutionary 
Computing 

(ANN ⃰ GP ⃰, 
GA ⃰ ) 

 

 Principe et al., 1992 

 Kuligowski and 
Barros, 1998 

 Oliveira et al., 2000 

 Silvermand and 
Dracup, 2000 

 

 Potential to solve 
pattern-recognition 

problems 
 Competence in 
forecasting chaotic 

time series 
 Robust with 
respect to noisy 

evaluation functions 
 Easy adoption 

 Inability to handle both 
linear and non-linear 
patterns equally well. 
 Premature convergence 
tolocal extreme 
 Time consuming 
 Configuration 
dependent 
 Over-fitting 
 Does not yield to a 
mathematical equation 

 

Soft Computing 
(Fuzzy theory, 
Grey system 
theory) 

 

 Yu et al., 2001 

 Mahabin et al., 
2003 

 Trivedi and Singh, 
2005 

Altunkaynak et al., 
2005 

 Fuzz y logic is 
applicable when the 
relationship between 
variable and results 
are vague. 
 Gray system 
theory investigate the 
relationship of 
variable and results 
with unclear linear 
relationship, uncertain 
mechanisms, and 
insufficient 
information 
 The ability to 
implement expert 

knowledge into the 
fuzzy rules 

 
 The lack of self-learning 
capability of fuzzy logic 
 Use of large number of 
data in the fuzzy logic 
 Gray forecast is not 
suitable for dealing with 
fluctuating data. 
 In long term forecast, 
gray theory does not show 
its advantage. 
  

*AR: autoregressive- MA: moving average- ARMA: autoregressive-moving-average; ARIMA: 
autoregressive integrated moving-average ANN: artificial neural network- GP: genetic programming, 
GA: genetic algorithm  
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Model Reference 
Advantage Disadvantage 

 

Hybrid Method 
(ARIMA -ANN, 
ARIMA-GP, 
Wavelet 
Transform and 
ANN, ANN and 
Fuzzy Logic, GP 
and Fuzzy Logic, 
and Grey system-
Fuzzy logic, and 
dynamic 
programming. 

 

 Chang et al., 2002 

 Cheng et al., 2002 

 Nayak et al., 2004 

 Dixon, 2005 

 Díaz-Robles et al., 
2008 

 Faruk, 2010 

 Lee and Tong, 2011 

 Adamowski and 
Chan, 2011 

 Kim and Valdés 
2003 

 Zhang 2003 

 Aladag et al. 2009 

Egrioglu et al. 2009 

 ARIMA-ANN can 
handle both linear and 
nonlinear patterns 
 ANN-Fuzzy eases 
the model building 
processes. 
 In contrast to most 
time series modeling 
techniques, ANN-Fuzzy 
does not require the 
model structure to be 
known priori. 
 Hybrid methods 
outperform evolutionary 
computing models in 
terms of computational 
speed, forecast errors, 
efficiency, and peak 
estimation. 

 Explaining the 
hidden layer of ANN is 
difficult in the 
ARIMA-ANN model, 
 ARIMA-ANN 
does not yield to a 
mathematical equation. 
 In wavelet 
transform-ANN, the 
accurate wavelet 
decomposition of 
series is still a problem 
and it depends heavily 
on the choice of 
wavelet basis function. 
 In wavelet 
transform-ANN, 
disregarding denoising 
may influence the 
prediction accuracy. 

*AR: autoregressive- MA: moving average- ARMA: autoregressive-moving-average; ARIMA: 
autoregressive integrated moving-average ANN: artificial neural network- GP: genetic programming, 
GA: genetic algorithm  

 

3.4.2.2. Forecasting Method 

Framework of the developed forecasting model in this study is shown in Figure 3-6. The 

essential steps include:  

Step (1) data acquisition: MODIS and Landsat images for a minimum of 30 days before 

the first forecasting date are collected and pre-processed according to the IDFM procedure 

described in the previous section. 

http://www.diazrobles.es/
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Step (2) data fusion: STAR-FM was applied to fuse high-frequency reflectance data 

from MODIS with fine spatial resolution data from Landsat for all cloud-free days for at least 30 

days prior to the forecasting date.  

Step (3) extract reflectance values: To retrieve TSS values from satellite imagery, the 

surface reflectance values of all 6 bands of fused images were extracted at the location of station 

(BB-7) which is the closest station to the drinking water intake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6. The framework of the developed water quality forecasting method 
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Step (4) train the ANN model: The trained ANN model, which was described in the 

IDFM section, was applied to estimate daily TSS values in the developed forecasting method 

using the extracted spectral reflectance values from Step (3). The main reason for using the 

trained ANN model in the developed forecasting model is to keep the long term memory (i.e. 

2005-2009) of the relationship between TSS concentration and spectral reflectance values in 

Lake Mead 

 

Step (5) apply the ANN model:  The MATLAB ANN toolbox entitled NARXNET 

model was applied for forecasting TSS values based on different combinations of three types of 

input variables, surface reflectance values, local meteorological parameters, and water level in 

the reservoir. The impact of climate change due to the long-term drought, which started in the 

year 2000, on water quality in Lake Mead is therefore considered in the last two aforementioned 

input variables. The time series of all input variables include a minimum of 30 days before the 

first forecasting date. NARXNET can be used to predict the TSS values for a day ahead of time. 

The output of NARXNET is dependent on not only time series of input variables but also the 

outcome of the model that may become the input of the model iteratively (Figure 3-7). This 

relationship can be written as follows (Cai et al., 2012):  

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … … . , 𝑦(𝑡 − 𝑑), 𝑥(𝑡 − 1), … . . , 𝑥(𝑡 − 𝑑))   (1) 

where y(t) is the predicted time series (TSS time series), x(t) is the time series for each of 

the input variables (i.e. spectral reflectance values, meteorological parameters, and reservoir 

elevation), d is the input and feedback delay node.  
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Figure 3-7. The diagram of NARXNET (Obtained from MATLAB R2013a) 

 

As shown in Figure 3-7, the NARXNET model consists of two layers. The number of 

neurons in the hidden layer was set to 30. Also, the “trainlm” training function was selected to 

update bias and weight values based on the Levenberg-Marquardt optimization. The model was 

trained using 70% of inputs. Also, 20% and 10% of inputs were selected for validation and 

testing the model, respectively. 

Step (6) Early warning system: The vast amount of information produced by the 

developed forecasting and nowcasting methods does not guarantee better decisions, since 

machines do not have the human ability of considering the implications of unexpected events and 

situations. On the other hand, human decision making is usually inconsistent and contains errors 

in judgment. Therefore, the early warning system in the current study is able to benefit from the 

results of the developed forecasting model to continuously generate forward-looking and risk-

informed data to make a reliable decision. The framework of the early warning system is shown 

in Figure 3-8.  
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Figure 3-8. The framework of the early warning system based on integrated nowcasting and 

forecasting analysis 

 

As shown in Figure 3-8, the early warning system consists of data module, processing 

module, and computational module. The data module is a database which contains current and 

historical ground-truth data and satellite imagery. The processing module is responsible for 

preparing and pre-processing satellite images to make them applicable for data fusion. The 

forecasting and nowcasting methods are embedded in these computational modules to form an 

integrated capacity. Based on the decision of the treatment plant operator, the results of 

nowcasting and forecasting of TSS values around the whole lake and nearby the water intake 

may be grouped together to realize the global trend for the requested date. Therefore, the water 

treatment plant operators will be benefit from such evaluation of water quality in the lake based 

on a suite of TSS concentration maps to minimize the water quality impact before the negative 

impact occurs, or otherwise achieves an actionable in-plant strategy to avoid cascading negative 

impacts. 
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3.5. Results and Discussion 

3.5.1. Nowcasting Results 

Surface reflectance values detected by satellite sensors can only estimate the 

concentration of water quality parameters at water surface. Since the main objective of this study 

is predicting TSS concentration at the location of drinking water intake, it is important to assess 

the vertical profile of TSS to assure that estimated values of TSS at the water surface are 

representative of TSS values at the intake’s depth. The lower Colorado River regional water 

quality database provided us with the TSS concentration at the location of the aforementioned 

stations in Table 3-1 at different depths from 0 to 130 m (0-430 ft). Based on this data, the 

vertical profile of TSS is prepared in Figure 3-9. 

 

 

 

 

 

 

 

Figure 3-9. Vertical profile of TSS at the location of drinking water intake in Lake Mead 
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concentration at the water surface can be applied to the location of intake at 300 m (1000 feet) 

below the lake surface.  

As mentioned in the previous section, the output of the nowcasting will be the net with 

the best performance which is saved to be applied in the forecasting procedure. Therefore, it 

would be beneficial to assess the accuracy of the nowcasting method. First, the reliability of the 

resulted fused images was assessed by calculating the correlation between the spectral 

reflectance values of each pixel in a fused image with its corresponding pixel in an actual 

Landsat image (Table 3-4).  According to Table 3-4, the calculated R-Squared values vary from 

0.64 in band 1 to 0.85 in band 4, which indicates a good fit. Therefore, the reliability of the 

resulting fused images is sufficient to support subsequent machine learning techniques for TSS 

estimation. 

Table 3-4. R_squared value between the spectral reflectance value of the fused image  

and the actual Landsat image 

Band Band1 Band2 Band3 Band4 Band5 Band7 

R2 0.64 0.76 0.80 0.85 0.83 0.81 

 

After assuring the reliability of the resulting fused images to be applied in machine 

learning techniques, the accuracy of the trained ANN model in estimating TSS concentration 

values were assessed. For this purpose, all fused images were applied and the spectral reflectance 

values of all 6 bands were extracted at the location of station BB-7 to use as inputs into the 

trained ANN model. First, 60% of data was applied to train the ANN model through an iterative 

process to find the best performance by comparing the outputs (i.e. estimated TSS values) 

against the desired outputs (observed TSS values). The ANN model with the best performance 

was saved and the testing dataset (i.e. unseen data) was used to validate the model. This 
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procedure is helpful in overcoming the overtraining issues with the ANN model. The results 

showed R2=0.98, RMSE=0.489 for training and R2=0.99, RMSE=1.066 for testing the model. In 

addition, to assess the reliability of the saved ANN model, the surface reflectance values at the 

location of all stations corresponding to ground-truth dates were used as inputs to the ANN 

model to estimate TSS values for those dates. Table 3-5 shows the comparison between the 

estimated TSS values with the observed data. As shown in this table, the model was capable of 

estimating TSS concentrations with high precision. 

Table 3-5. Comparison between the observed TSS values and the estimated values from the trained ANN 

model 

Sampling 

Station 
Date Observed Estimated 

Sampling 

Station 
Date Observed Estimated 

BB-3 

4/5/2005 5 5.00 
CR346.4 

7/3/2007 5 5.18 

7/12/2005 5 4.98 10/3/2007 5 4.99 

4/6/2006 5 4.99 

CR350.0SE0.55 

4/5/2005 5 4.99 

1/23/2007 5 5.00 1/23/2007 5 5.00 

4/10/2007 5 4.99 4/3/2007 5 5.017 

7/3/2007 5 5.11 10/17/2007 5 5.00 

10/9/2007 5 4.99 

CR342.9 

10/17/2007 5 5.00 

BB_7 

10/3/2007 5 5.00 10/31/2007 5 5.00 

10/17/2007 5 5.00 11/7/2007 5 5.00 

10/31/2007 5 5.00 

CR361.8 

9/25/2007 5 5.00 

11/7/2007 5 5.00 10/9/2007 5 4.99 

CR344.9W0.2 

10/3/2007 5 5.00 10/23/2007 5 4.99 

10/17/2007 5 5.00 11/7/2007 5 5.00 

10/31/2007 5 5.00 

VR25.1 

9/11/2007 25 25.00 

11/7/2007 5 5.00 10/17/2007 13 13.00 

CR346.4 

7/11/2006 5 4.98 1/17/2008 9.2 9.203 

1/23/2007 5 5.00 6/19/2008 9 6.55 

4/10/2007 5 5.00 10/14/2008 7.4 10.93 
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3.5.2. TSS Concentrations at the Location of Inflows into the Lake  

To find the time of abrupt increase in TSS concentration in the lake, it is necessary to 

assess the monthly variation of TSS values at three different arms of the lake (i.e. Colorado River 

Arm, Overton Arm, and Boulder Basin). Sampling data within Lake Mead is available for 

sporadic time periods and in limited numbers to support the local assessment (Table 3-1). For 

instance, in the Colorado River Arm only three ground-truth values were recorded (Table 3-1). 

Therefore, the trained ANN model was applied to estimate TSS concentration for all days for 

which Landsat cloud-free images were available, and to make the temporal distribution of TSS at 

three different arms (Figure 3-10). This figure shows the temporal distribution of TSS within the 

lake on a monthly basis at the location of stations CRLM, VR25.1, and LVB2.7. These stations 

are representatives of water quality at the location of inflows from Colorado River, Lower Virgin 

River Watershed, and Las Vegas Wash, respectively. Figure 3-10 was calculated based on the 

averaged TSS concentrations for each month at the location of each selected station using all 

available cloud free Landsat images. 

The U.S. EPA does not define any quantitative criteria for TSS. However, the water 

quality standards for Nevada are controlled by the Nevada Administrative Code (NAC). Based 

on the NAC 445A.194, the water quality standard for TSS for beneficial uses is limited to less 

than or equal to 25 mg.L-1 (Bureau of Reclamation, 2006). As shown in Figure 3-10, months in 

which the highest TSS concentration was detected are different for each station. Therefore, it is 

important to find the probable factors which may increase TSS concentration at the three 

different arms. As shown in Figure 3-10, TSS concentration values from the highest to lowest 

were detected at CRLM, VR25.1, and LVB2.7, respectively. In addition, the dates of detected 

hot spots (i.e. TSS concentration ≥ 25 mg.L-1) are shown in Table 3-6. As shown in this table, 
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there is not any evidence of high TSS concentration at any station in the years 2005 and 2008. In 

addition, during 2005-2009, there is no evidence of high TSS concentration (i.e more than 25 

mg.L-1) at LVB2.7 located at Boulder Basin. Therefore, results show the probable impacts of the 

inflows from Colorado River and Lower Virgin River Watershed on increasing TSS 

concentration within the lake. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10. Temporal distribution of TSS concentration at the location of inflows into the lake; 

white represents “no data” value as a result of inaccessibility of cloud-free Landsat images 
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Table 3-6. Detected dates of hot spots (TSS ≥ 25 mg.L-1) at the location of each station-  

Station Location 
Year 

2005 2006 2007 2008 2009 

CRLM 
Colorado River 

Arm 
- 

May, Jun-
Jul 

Feb - - 

VR25.1 Overton Arm - - - - Jul 

LVB2.7 Boulder Basin - - - - - 

 

Higher inflow rates may accelerate the rise in TSS concentration as a result of its impact 

on higher sediment transport and erosion rate. Therefore, it would be beneficial to assess the 

temporal variation of inflows into the lake. Figure 3-11 was calculated based on the monthly 

streamflow at the location of four USGS streamflow stations: 09419800, 09404200, 09419507, 

and 09415000. The first two stations are representatives of inflows into the Boulder Basin and 

the Colorado River, respectively. In addition, the summation of streamflow of the last two 

stations will demonstrate the inflow from Overton Arm. 

As shown in Figure 3-11, the associated color legend for each arm is different, and the 

majority of inflow into Lake Mead is coming from Colorado River. The attempt to find a linkage 

between increases in TSS concentration and the potential factors (transported sediments from the 

Colorado River, forest fire events, and transported urban stormwater runoff and treated 

wastewater effluent from the Las Vegas Wash) motivated the further observations of average 

mean monthly TSS load, which show the rate of discharge of the sediment from each inflow into 

the lake (Figure 3-12). These values were calculated by taking the average of TSS loads from the 

selected days in each month.  
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Figure 3-11. Temporal distribution of streamflow at the location of USGS stations with associated color 

legend for each arm 

 

As shown in Figure 3-12, TSS loads in Colorado River Arm and Boulder Basin are more 

correlated to TSS concentrations than inflows. However, in the Overton Arm, the TSS load is 

highly dependent to the inflows than TSS concentrations. 

Although consistency between high TSS concentration and high inflow rates were 

detected in some months in the Colorado River Arm (i.e July-Aug 2009), there are still some 

months in this part of the lake in which the highest TSS concentration occurred at the relatively 

low inflow rates (i.e. May 2006). In addition, the lower Virgin River Watershed and Las Vegas 

Wash does not reveal any evidence of a correlation between high inflow rates and increases in 

TSS concentration. In addition, increase in TSS concentration at the Overton Arm was not 

Colorado River Overton Arm 

Boulder Basin 
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detected during the year 2005 in which the largest forest fire event occurred. Although there is 

not any simultaneous impact from forest fire events on increasing TSS concentration in Lake 

Mead, the negative impacts of forest fire events on soil erosion may have lag time to show up.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12. Temporal distribution of the mean monthly TSS load (mg/s) at each arm; White color 

represents “no data” values as a result of inaccessibility of cloud-free Landsat images 
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level is decreasing. On the other hand, TSS concentration at the Boulder Basin (Figure 3-13c) 

indicates a decreasing trend as a result of construction of erosion control structures, restoration of 

wetland areas, and removal of invasive vegetation upstream of the Las Vegas Wash inflow into 

the lake. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13. Comparison between temporal variations of TSS concentration and Lake Mead at Hoover dam 

elevation at (A) CRLM (B) VR25.1 (C) LVB2.7. Green line shows the trend of TSS concentrations, and red 

line indicates the variation of elevation during (2005-2009). 

 

y = 0.0042x - 151.82

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

0

5

10

15

20

25

30

35

40

Ja
n-

05
M

ar
-0

5
M

ay
-0

5
Ju

l-
05

S
ep

-0
5

N
ov

-0
5

Ja
n-

06
M

ar
-0

6
M

ay
-0

6
Ju

l-
06

S
ep

-0
6

N
ov

-0
6

Ja
n-

07
M

ar
-0

7
M

ay
-0

7
Ju

l-
07

S
ep

-0
7

N
ov

-0
7

Ja
n-

08
M

ar
-0

8
M

ay
-0

8
Ju

l-
08

S
ep

-0
8

N
ov

-0
8

Ja
n-

09
M

ar
-0

9
M

ay
-0

9
Ju

l-
09

S
ep

-0
9

N
ov

-0
9

R
es

er
vo

ir
 E

le
va

ti
on

 
(F

ee
t)

T
S

S
 (

m
g/

L
)

TSS(mg/L) Elevation (Feet)

a

y = 0.0023x - 81.743

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

0

5

10

15

20

25

30

Ja
n-

05
M

ar
-0

5
M

ay
-0

5
Ju

l-
05

S
ep

-0
5

N
ov

-0
5

Ja
n-

06
M

ar
-0

6
M

ay
-0

6
Ju

l-
06

S
ep

-0
6

N
ov

-0
6

Ja
n-

07
M

ar
-0

7
M

ay
-0

7
Ju

l-
07

S
ep

-0
7

N
ov

-0
7

Ja
n-

08
M

ar
-0

8
M

ay
-0

8
Ju

l-
08

S
ep

-0
8

N
ov

-0
8

Ja
n-

09
M

ar
-0

9
M

ay
-0

9
Ju

l-
09

S
ep

-0
9

N
ov

-0
9

R
es

er
vo

ir
 E

le
va

ti
on

 
(F

ee
t)

T
S

S
 (

m
g/

L
)

TSS (mg/L) Elevation (Feet)

b

y = -0.0051x + 203.94

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

0

5

10

15

20

25

Ja
n-

05
M

ar
-0

5
M

ay
-0

5
Ju

l-
05

S
ep

-0
5

N
ov

-0
5

Ja
n-

06
M

ar
-0

6
M

ay
-0

6
Ju

l-
06

S
ep

-0
6

N
ov

-0
6

Ja
n-

07
M

ar
-0

7
M

ay
-0

7
Ju

l-
07

S
ep

-0
7

N
ov

-0
7

Ja
n-

08
M

ar
-0

8
M

ay
-0

8
Ju

l-
08

S
ep

-0
8

N
ov

-0
8

Ja
n-

09
M

ar
-0

9
M

ay
-0

9
Ju

l-
09

S
ep

-0
9

N
ov

-0
9

R
es

er
vo

ir
 E

le
va

ti
on

 
(F

ee
t)

T
S

S
 (

m
g/

L
) TSS (mg/L) Elevation (ft)

c



95 

To assess the reliability of the IDFM algorithm for early warning system, this algorithm 

was applied to create synthetic fused images and daily TSS concentration maps for the months 

with the high TSS concentration in each arm within the time period of 2005-2009. As an 

example, this algorithm was applied for three different dates in each arm (i.e. Figure 3-14 to 

Figure 3-16). As shown in these figures, this algorithm can provide daily TSS concentrations for 

at least a week reflecting the high TSS concentration in Figure 3-10. 

As shown in Figure 3-10, during June-Oct 2008, high TSS concentration was 

continuously detected at CRLM. Therefore, as an example, one of the weeks in September 2008 

was selected to prepare daily TSS concentration maps (Figure 3-14). As shown in this figure, 

high TSS concentration (greater than 30 mgL-1) was detected at the Colorado River Arm in the 

first day of the selected week. Also, the TSS concentration values for the rest of the days of the 

same week were estimated in the range of 10-20 mgL-1 at the Colorado River Arm. In addition, 

TSS values at Overton Arm and Boulder Basin were estimated to be less than 10 mgL-1 which is 

in consistent with Figure 3-10.  

Although the highest TSS concentration at Overton Arm was detected on July 9 of 2009, 

we were not able to demonstrate a continuous daily concentration maps for a week of the 

aforementioned date as a result of the existence of cloudy days. The Star-FM algorithms require 

cloud-free images in TSS concentration retrieval. Therefore, a week in May 2009 was selected. 

High TSS concentration (greater than 30 mgL-1) was detected at Overton Arm in two days of the 

selected week (Figure 3-15). High TSS concentration was also detected at the Colorado River 

Arm and Boulder Basin on 19 May 2009 (Figure 3-15), which is not consistent with Figure 3-10. 
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This inconsistency was caused by calculating Figure 3-10 based on only available cloud-free 

Landsat images.  

As shown in Figure 3-10, the highest TSS concentration at the Boulder Basin was 

detected in April 2005. However, as a result of the existence of cloudy days in this month, the 

continuous daily concentration maps were created for a week of February 2006 (Figure 3-16). As 

shown in Figure 3-16, the first day of the selected week showed the highest TSS concentration in 

Boulder Basin. Therefore, these figures can provide water treatment plant operators with 

information about not only the specific days of detected hot spots, but also the locations of high 

TSS concentration. 

 



97 

 

Figure 3-14. Estimating TSS concentration maps using IDFM Method from 19 Sep 2008 to 25 Sep 2008. The top row in this figure shows the available 

MODIS images and the second row indicates the available Landsat images in the Lake Mead for the cloud-free days of the selected time period.  Third 

and the last rows show fused images and daily TSS concentration maps, respectively. Since using the atmospheric correction algorithm changes the 

surface reflectance values in MOD09 to -100 –16,000 [27], pixels with negative surface reflectance values were categorized as white in this figure. 
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Figure 3-15. Estimating TSS concentration maps using IDFM Method from 12 May 2009 to 20 May 2009. The top row in this figure shows the available 

MODIS images and the second row indicates the available Landsat images in the Lake Mead for the cloud-free days of the selected time period.  Third 

and the last rows show fused images and daily TSS concentration maps, respectively. Since using the atmospheric correction algorithm changes the 

surface reflectance values in MOD09 to -100 –16,000 [27], pixels with negative surface reflectance values were categorized as white in this figure 
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Figure 3-16. Estimating TSS concentration maps using IDFM Method from 7 February 2006 to 13 February 2006. The top row in this figure shows the 

available MODIS images and the second row indicates the available Landsat images in the Lake Mead for the cloud-free days of the selected time 

period.  Third and the last rows show fused images and daily TSS concentration maps, respectively. 
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3.5.3. Forecasting Results 

The reliability of the developed forecasting model to foresee the impacts of high TSS 

concentration at the drinking water intake is investigated for the time period in which the highest 

concentration of TSS detected in the Boulder Basin. As shown in Table 3-1, the concentration of 

TSS in Boulder Basin for all the available ground-truth data (2005-2007) at the stations close to 

the drinking water intake (BB-3, BB-7) was constant (5 mgL-1), and  high TSS concentration 

was not detected during this period. Since the ground-truth data at the location of these stations 

were mostly collected in the year 2007, the performance of the developed forecasting model was 

assessed for the months of 2007 in which the TSS concentration was detected in the lake at the 

location of BB-7. Therefore, as an example, a time period of 11-Sep-2007 to 30-Oct-2007 was 

selected to train and validate the model and to investigate the ability of the model in forecasting 

TSS concentration for a day ahead of time (i.e.  31-Oct-2007). To develop the forecasting model, 

all cloud-free Landsat and MODIS images for more than 30-days (from 11-Sep-2007 to 30-Oct-

2007) before the forecasting date (31-Oct-2007) were downloaded and processed. Then, the 

STAR-FM algorithm was applied to produce fused images for those days during the 

aforementioned time period in which Landsat images were not available. The extracted 

reflectance values of all bands of the fused/Landsat images at the location of BB-7 were used as 

inputs into the trained ANN model to estimate the daily TSS concentration at the location of BB-

7 for the selected time period. Then, the sensitivity analysis was performed by comparing 

multiple scenarios in the context of big data analytics in order to make the forecasting outputs 

easier for implementation in the water treatment plants based on varying availability of different 

data. Three different scenarios were defined in this study (Table 3-7). The first scenario includes 
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both remote sensing and water level data; Scenario 2 includes all meteorological parameters and 

remote sensing data; Scenario 3 contains remote sensing, water level data, and meteorological 

data. To reduce the uncertainty, multiple runs (10 runs) for cross-validation were performed for 

each scenario, and the box-plot of each scenario was presented in (Figure 3-17). During the 

selected time period, three ground-truth data for days 2007276 (3-Oct-2007), 2007290 (17-Oct-

2007), and 2007304 (31-Oct-2007) were available at the location of BB-7. The first two dates 

were applied to test the performance of the developed forecasting model in training and testing 

periods, and the last date was applied to assess the precision of the model in forecasting TSS 

concentration for a day ahead of time.  

Table 3-7. Summary of database used in different scenarios 

Database Scenario 1 Scenario 2 Scenario 3 

Spectral reflectance Value * * * 

Meteorological Parameters1  * * 

Water Level in the Reservoir *  * 
1Average wind speed, average air temperature, and average humidity were considered as 

meteorological parameters. 

 

 

In Figure 3-17, the vertical distance between the smallest value to the largest one shows 

the spread of all data. As shown in this figure, scenario 1 has the least spread of data.  In 

addition, the middle half of the data set falls within the interquartile range shown with the width 

of the box. Therefore, for both scenario 1 and 2, the predicted value (date 2007304) is within the 

interquartile range. In addition to comparing scenarios using box plots, different statistical 

indices such as root mean squared error (RMSE), mean absolute error (MAE), percent bias 

(PBIAS), and R-Squared (R2) were used in this study.  
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Figure 3-17. Comparing ground-truth data with NARXNET results in different scenarios. The first two dates 

belong to training and validation period and the last date is the prediction date. 
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RMSE is the most suitable measurement tool amongst the four aforementioned error 

indices for calculating goodness of fitness. This error index is calculated based on the following 

equation (Willmott and Matsuura 2005):  

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑃𝑖−𝑌𝑂𝑖)2𝑁𝑖=1 𝑁             (2) 

where YPi is the ith predicted value, YOi is the ith observed value, and N is the total number 

of ground truth data.  

MAE is the average of absolute errors calculated based on equation (3) (Willmott and 

Matsuura 2005). Values of RMSE and MAE equal to zero would indicate a perfect fit.   

𝑀𝐴𝐸 = ∑ |𝑌𝑃𝑖−𝑌𝑂𝑖|𝑁𝑖=1 𝑁          (3) 

PBIAS indicates the average tendency of predicted data to be smaller or larger than the 

observed value. Its optimal value is zero and its positive/negative value indicates model 

underestimation/overestimation bias (Gupta et al. 2004).   

𝑃𝐵𝐼𝐴𝑆 = [∑ (𝑌𝑂𝑖−𝑌𝑃𝑖)∗100𝑁𝑖=1 ∑ 𝑌𝑂𝑖𝑁𝑖=1 ]        (4) 

R-squared value should be as close to one as possible which would indicate the best 

match between the model output and the target value (Legates and McCabe 1999). 

𝑅2 = [ ∑ (𝑦𝑂𝑖−�̅�𝑂𝑖)(𝑦𝑃𝑖−�̅�𝑃𝑖)𝑁𝑖=1√∑ (𝑦𝑃𝑖−�̅�𝑃𝑖)2 ∑ (𝑦𝑂𝑖−�̅�𝑂𝑖)2𝑁𝑖=1𝑁𝑖=1 ]2
       (5) 

The average of the calculated error indices over the multiple running of the model were 

reported in Table 3-8. As shown in this table, scenario 1 showed the highest R-squared value, 
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and the lowest estimation error. Adding additional inputs (i.e. meteorological parameters) 

decreased R-squared value and increased errors. Therefore, among the defined scenarios, 

scenario 1 shows the best result; this finding highlights the reservoir’s water level as a significant 

parameter in predicting TSS concentration in Lake Mead. 

Table 3-8. Summary of the results of error indices; Values of RMSE, PBIAS, and MAE equal to zero, and R-

squared value equal to one show a perfect fit. 

Scenario R2 RMSE MAE PBIAS (%) 

Scenario1 0.98 0.5 0.35 1.6 

Scenario2 0.76 2.13 1.59 6 

Scenario 3 0.94 1.16 0.77 6.3 

  

3.6. Final Remarks 

Taking advantage of the wide range of information provided by the aforementioned 

nowcasting and forecasting methods, an early warning system can be built including context 

aware pervasive sensor system, algorithms, and networks. As shown in Figure 3-8, treatment 

plant operators will be able to access the visual preview of TSS concentration throughout the 

lake for specific dates using the historical or current database. Besides visualizing spatial 

distribution, the early warning system will be capable of providing the plant operators with 

temporal variations of TSS concentration at the specific location (i.e., drinking water intake).  

The last but most important result of the early warning system is related to the forecasted TSS 

values at the drinking water intake or anywhere as needed to achieve an adaptation strategy for 

the water treatment plant or even the lake watershed management. It enables the operator of the 

water treatment plant to tackle unexpected events before they occur.  
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3.7. Conclusions  

With the aid of remote sensing imagery, local sensor networks, and machine learning 

techniques, the developed forecasting and nowcasting models are able to capture the spatial and 

temporal distributions of TSS concentrations throughout a lake and estimate TSS concentration 

at a designated location one day ahead of time. This capability is demonstrated in Lake Mead 

serving as the major water source for the Las Vegas metropolitan region.   

Comparing TSS concentration at the location of inflows into Lake Mead showed the 

importance of the Colorado River in the TSS brought into the lake. Although TSS concentration 

at the Colorado River and Overton Arm had an increasing trend, Las Vegas Wash indicates a 

decreasing trend as a result of the construction of erosion control structures, restoration of 

wetland areas, and removal of invasive vegetation upstream of the Las Vegas Wash inflow into 

the lake.   

Assessing the relationship between the higher inflow rates with TSS concentration does 

not show any impact from forest fire events on accelerating the rise in TSS concentration. 

However, comparing the trend of TSS concentration with reservoir level showed the probable 

impacts of a decade of drought on increasing the TSS concentration in the lake.  

As shown in the previous section, except for cloudy days, the applied nowcasting method 

is able to show the daily spatial distribution of TSS for at least a week in which the highest TSS 

concentration was detected at the location of the inflows into the lake. These concentration maps 

provide the reservoir management and monitoring system with TSS values for the dates in which 

sampling was not performed and for those locations which lack of sampling stations. This 

information can be used by the monitoring system to pin point hot spots within the lake which 
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are currently lacking sampling locations. Results showed the necessity of establishing more 

sampling locations at the Colorado River Arm, Overton Arm, and the southern section of the 

Overton Arm within Lake Mead.  

Comparing the results of the forecasting model with ground truth data showed the 

reliability of the developed forecasting model. Evaluating the obtained results of the developed 

forecasting model to build up the early warning system enables the water treatment plant 

operator to achieve an actionable strategy either in plant or at the source water location due to 

unexpected events. However, cloud contamination is a big hindrance in exploitation of satellite 

images retrieved from the visible and infrared spectral ranges, and the developed forecasting 

model is not able to forecast TSS concentration for cloudy days.  Therefore, the developed early 

warning system can be further improved in future studies by including the cloud removal 

algorithms developed by Chang et al. (2015). 
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CHAPTER 4: MULTI-SENSOR FUSION FOR MONITORING TOTAL 

ORGANIC CARBON CONCENTRATIONS IN LAKE MEAD TOWARD 

WATER QUALITY FORECASTING 

4.1. Introduction 

Only a small fraction of the Earth's total surface area is made up of reservoirs and lakes, 

yet they are considered important sources of water for the maintenance of ecosystems and human 

use. As the condition of reservoirs deteriorates throughout the world, it necessitates the 

requirement of forecasting water quality status to characterize the risk of water use in reservoirs. 

This is especially evident in Lake Mead, one of the most important water resources in the 

Western United States, as provides drinking water for 25 million people, irrigation water for 

10,000 square kilometers of land, and electricity for major cities. It is also considered a 

recreational area used by 8 million people and an important habitat for federally endangered fish 

and wildlife species. Consequently, monitoring and forecasting water quality in Lake Mead can 

be of great use for helping water quality management in the municipal water supply system and 

assuring the sustainability of this important natural resource. 

Reservoirs, including Lake Mead, cause increasing in hydraulic residence time which 

leads to more opportunities for elevated total organic carbon (TOC) concentrations and the 

possible formation of disinfection by products (DBPs) in the water treatment processes (AWWA 

2002). One of the most important types of DBPs detected in drinking water distribution networks 

is trihalomethanes (THMs) which have dangerous side effects on the human body when ingested 

through drinking water, inhaled while bathing, and from both inhalation and osmosis through the 

skin while swimming in waters that have been disinfected using chlorine (Nikolaou et al. 1999; 
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Mohamadshafiee and Taghavi, 2012). DBPs are formed when Natural Organic Materials 

(NOMs) in surface water come into contact with chlorine which is often used to disinfect the 

drinking water supply. Since TOC includes the majority of organic matter, and is easier to 

measure than NOM, it is applied as the indicator for controlling the formation of DBPs (USEPA 

1998).  

The goal of this chapter is to extend the current IDFM method developed by Chang et al. 

(2014a); (2014b) and elevate it to be a cost-effective, forward-looking, and risk-informed 

forecasting scheme for water quality monitoring in Lake Mead with respect to TOC 

concentration at the location nearby the drinking water intake. Since the IDFM technique is a 

case-based engineering approach, the current site-specific study was exclusively developed for 

Lake Mead via a two-stage analysis. The objective in the first stage is to train the machine 

learning model to interpret fused satellite imageries based on its ground truth data in the Lake 

Mead environment to verify the effective nowcasting via IDFM, and then the second stage 

advances IDFM to forecast TOC concentration onward with updated water quality parameters 

and satellite imagery on a daily basis. The following scientific questions are explored in this 

study: 1) How the water levels drop affect the TOC concentration in the lake? 2) Is there any 

linkages between forest fires and high TOC concentrations? (3) Is there any difference between 

the results of applying different machine learning techniques (i.e. artificial neural network and 

genetic programming)? (3)  What is the reliability of the developed forecasting method to predict 

TOC a day ahead of time in Lake Mead? 
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4.2. Problem Identification 

Majority of the inflow into Lake Mead is from the Colorado River, a small percentage of 

the inflow that is also deemed important in terms of water quality management is provided by the 

Muddy River and the Virgin River on its northern side and from the Las Vegas Wash on its 

western side. Las Vegas Wash transports stormwater, urban runoff, and treated wastewater 

effluent into Boulder Basin in Lake Mead and causes water quality impairment to the lower Las 

Vegas Wash. In addition, forest fires which occur on the northern side of the lake increase 

stormwater runoff and sediment load. The completion of the third drinking water intake at 

Saddle Island for the city of Las Vegas will make these potential factors even more sensitive 

(YSI 2006). 

In 2013, the maximum level of total THMs was reported greater than the official limit 

(i.e., 4 ppb) of United States Environmental Protection Agency (US EPA) due to the presence of 

high TOC concentration levels in the lake (Las Vegas Valley Water District 2013). Although this 

violation is allowable as long as either a running annual average or a locational running annual 

average does not exceed the US EPA permit, it highlights the importance of monitoring TOC in 

the lake as its concentration can be used as an indicator of DBP production. The US EPA advice 

note on DBPs in drinking water states that in the case of TOC concentrations greater than 4 

mgL-1, THMs will likely be high as well and remedial work will be necessary. In addition, in 

case of TOC concentrations between 2 and 4 mgL-1, more assessment is required to check if it 

results in unexpected increases in THMs levels. Finally, it is suggested to keep the TOC 

concentration in treated water at a level less than 2 mgL-1 prior to disinfection. To address the 

dynamic conditions of the target water body, this chapter focuses on both nowcasting and 
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forecasting of TOC concentrations in Lake Mead using both remote sensing and machine 

learning techniques.  

4.3. Data Collection and Analysis  

4.3.1. In-Situ Data 

For the purpose of assuring the availability and quality of water in Lake Mead, it has 

become one of the most intensely sampled water bodies in the United States (Tietjen et al. 2012). 

All the data sets used in this study were obtained from the lower Colorado River regional water 

quality database which has more than 2 million records of about 1,000 different water quality 

parameters provided by different sampling agencies. The titles of these performing agencies that 

have contributed to the data collection of TOC concentration are shown in Table 4-1. In addition, 

the number of stations, number of samples, and the maximum, minimum, and mean TOC 

concentration are listed in this table as well. 

Table 4-1. TOC Ground-truth data within the Lake utilized by this study 

No. of 

Samples 

No. of 

Stations 

Time 

Period 
Sampling Agency 

TOC Concentration  

(mgL-1) 

Min Max Mean 

1252 26 
2000-
2013 

1. City of Las Vegas 
2. Southern Nevada 
Water 
Authority(SNWA) 
3. U.S. Bureau of 
Reclamation (Denver) 
4. Southern Nevada 
Water System 

1.6 31.9 3.59 

 

The temporal and spatial changes for TOC in the Lake are shown in Figure 4-1 a and 

Figure 4-1b, respectively. It should be mentioned that Figure 4-1 was calculated based on the 

average TOC concentration within the lake. TOC values were compared to the thresholds of the 
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aforementioned EPA criteria to portrait a risk-based assessment. In Figure 4-1a, the highest 

concentration of TOC (>4 mgL-1) occurred during the 2000 to 2006 period, and during some 

isolated months in 2007 and 2012. In addition, the spatial variation of TOC shows that the 

concentration in Overturn Arm, Colorado River Arm, and Boulder Basin was in the range of 2-4 

mgL-1 (Figure 4-1b). 

 

  

 

 

 

 

 

Figure 4-1. TOC concentration compared to EPA advice note on DBPs in drinking water criteria. A) 

Temporal changes of TOC, white color show no data values; B) spatial variation of TOC,  Boulder Basin 

(square), Overturn Arm (diamond), and Colorado River Arm (triangle).     

a 

 

Overton Arm 

Boulder Basin 
C    Colorado River Arm 
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Satellite sensors can only detect surface reflectance emissions which can be applied to 

determine the concentration level of water quality parameters present in a water column. To 

assure that the water quality monitoring at the surface is representative of water quality at the 

drinking water intake’s depth at about 300 m (1000 feet) below the lake surface, the vertical 

profile of TOC was assessed according to Figure 4-2. This figure shows that the concentration of 

TOC is relatively stable from the surface to the depth of 100 m (i.e. the depth in which the TOC 

data were available) (Figure 4-2). Therefore, we can assume that the prediction of TOC 

concentration at the water surface can be applied to the location of drinking water intake. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. Vertical profile of TOC in Lake Mead at the location of the closest station to the drinking water 

intake 
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4.3.2. Satellite Data 

MODIS Terra (MOD09GA) surface reflectance images at 500 m resolution were 

obtained from the United States Geological Survey (USGS) MODIS reprojection tool web 

interface (MRTWeb, 2010). In addition, the surface reflectance climate data record (CDR) for 

Landsat 5 (TM) and Landsat 7 (ETM+) were obtained from the USGS site (USGS, 2014). All 

images were downloaded for cloud-free days consistent with the collection dates of ground-truth 

data. In Table 4-2, number of downloaded images and applied land surface reflectance bands are 

presented.  

 

Table 4-2. Number of satellite images and selected bands utilized in this study  

Satellite  

Spatial 

Resolution 

(m) 

Band 

No. of 

Satellite 

imagery 

MODIS 500 1-4, 6-7 1384 
Landsat 5 TM 

Landsat 7 ETM+ 
30 1-5,7 

381 

 

4.4. Data Synthesis Based On Remote Sensing Imageries  

4.4.1. Nowcasting Method 

The nowcasting method applied in this chapter is based on the IDFM technique 

developed by Chang et al.  (2014 a); (2014b), and it is consistent with the same conceptual 

framework described in the previous chapter (Figure 4-3). However, in this chapter, the ability of 

two different machine-learning techniques, including artificial neural network (ANN) and 

genetic programming (GP) were assessed to estimate surface water quality parameter (i.e. TOC) 

using extracted spectral reflectance values corresponding to ground-truth dates and the ground-

truth data. In both models, 70% of all samples were used to train the model, 15% were applied to 
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validate the model, and the remaining 15% of the samples were used for testing. The model 

which showed the best performance is applied to produce TOC concentration maps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-3. IDFM Methodological Flowchart 

 

4.4.1.1. Artificial Neural Network 

The MATLAB ANN toolbox with feed forward neural network scheme trained by the 

Levenberge- Marquardt back propagation algorithm was applied in this study. The MATLAB 

ANN toolbox was modified by adding a loop to check R-Squared and P-value for each iteration. 

All inputs (spectral reflectance values from 6 bands of the fused images) in the first layer are 

distributed to the hidden layer. Each input parameter is multiplied by its connection weight 

which is randomly determined to make prediction happen with respect to each water quality 

Fused Image 

TOC Estimation Data Mining 

Ground 

Truth Data 

Preprocessed Images 
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parameter. Suitable weights for each connection are found by processing the inputs and 

comparing the trained outputs of the ANN against the desired ultimate outputs. This comparison 

is performed through an iterative process, which assigns random connection weights for training 

and learning and calculates the corresponding P-value and R-squared value. This process is 

repeated until the highest R-Squared value is found while the P-value satisfies a 95% confidence 

interval. The ANN model is completed once the validation and testing steps can be successfully 

completed following a satisfactory performance from the training step. 

4.4.1.2. Genetic Programming 

The Discipulus™ software applied in this study consists of hundreds of genetic 

programming (GP) algorithms which are run sequentially for each project. Genetic programming 

is based on evolutionary computation techniques similar to those used by the genetic algorithm 

developed by Holand, (1975) with the difference of increasing the complexity of the structures 

undergoing adaption (Koza, 1992). Different parameters such as crossover rate, mutation rate, 

population size, instruction set, distribution of initial program size, termination criteria, and 

parsimony pressure can be adjusted by users in Discipulus (Foster, 2001). The procedure of a 

single run by Discipulus GP software package is based on the following steps (Francone, 1998):  

Step 1. Initialize the population size: The initial population size of this study was 80 with 

a maximum population size of 256. It indicates the size of the population of programs in each 

project. 

Step 2. Discipulus selects four programs from the population of programs, compares 

them based on fitness, and selects two winners and two losers. Fitness in calculated based on 

comparing the outputs of the evolved program with the target output in the training data.  
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Step 3. Discipulus applies search operators on the winners of the previous section to 

produce “Children” or “Offspring” as follows: 

a. Replace the losers of section 2 by copying the two winners 

b. Crossover the copies of the winners by the assumed crossover frequency  of 50% 

c. Mutate one of the programs by the assumed mutation frequency of 90% 

d. Mutate the other programs resulting from step 3a by the assumed mutation frequency.  

Step 4. Repeat the last two steps until the run is terminated. 

4.4.2. Forecasting Method 

The framework of the applied forecasting model, as shown in (Figure 4-4), is the same as 

the one described in the previous section for TSS. However, the sensitivity analysis is performed 

based on four different scenarios which are defined in Table 4-3. The first scenario only includes 

remote sensing data; Scenario 2 includes all meteorological parameters and remote sensing data; 

Scenario 3 contains both remote sensing and water level data; Scenario 4 contains all three types 

of input variables. Scenarios 2 and 3 help us in assessing the importance of meteorological 

parameters and reservoir water level in regard to the performance of the water quality forecasting 

model.  
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Figure 4-4. Water quality forecasting framework 

 

Table 4-3. Summary of database used in different scenarios 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Spectral reflectance Value * * * * 
Meteorological Parameters1  *  * 
Water Level in the Reservoir   * * 

1Average wind speed, average air temperature, and average humidity were considered as 
meteorological parameters.  

 

To compare multiple scenarios, several indices such as root mean squared error (RMSE), 

mean absolute error (MAE), percent bias (PBIAS), and R-Squared (R2), which were described in 

the previous chapter, were applied.  
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4.5. Results and Discussion 

4.5.1. Nowcasting Results 

The procedure of generating fused images in Lake Mead is described in Figure 4-5 by 

using two pairs of images taken before (11-Oct-2006) and after (27-Oct-2006) the ground-truth 

date (19-Oct-2006). All images in this figure are true-color RGB images. To generate fused 

image (B), two synthetic images for the pre- and post-condition were created. The pre-condition 

and post-condition synthetic images were generated using the group of images of A, D, and E as 

well as C, F, and E, separately. Then, these two synthetic images were used to create the fused 

image (B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-5. The ability of IDFM in gap-filling of Landsat images. The fused image is shown 

in the dashed box, and all images are true color (RGB) images. 

 

To check the accuracy of the STAR-FM algorithm, R-Squared value between the spectral 

reflectance values of fused and actual images was calculated for each band (Table 4-4). As 
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shown in Table 4-4, the calculated R-Squared values vary from 0.95 for band 1 to 0.68 for band 

7, which indicates a sufficient reliability of the fused images for machine learning applications.  

Table 4-4. R_squared value between the spectral reflectance value of the fused image and the actual Landsat 

image on 19-Oct-2006 

Band Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

R2 0.95 0.94 0.94 0.89 0.71 0.68 
 

These fused images and ground truth data were integrated as inputs to feed in the GP and 

ANN models. Statistical plots between observed and estimated values (Figure 4-6) exhibit 

comparative advantages of each model. Based on this figure, the ANN model is more suitable 

than the GP model for estimating the global trend of TOC concentration, although the ANN 

model is not capable of estimating 3 peak values of TOC accurately. The calculated R-squared 

values are 0.6 for ANN model and 0.36 for GP model. In addition, the calculated RMSE for 

ANN and GP are 0.98 and 1.24, respectively. Therefore, results show a stronger correlation 

between the observed and estimated values in the ANN model as compared to the counterpart. 

Therefore, the trained ANN model may be fair enough for producing TOC concentration maps 

which present the spatiotemporal variability of this parameter within the lake. For instance, the 

resulting concentration maps for TOC reconstructed for two different days are shown in 

Figure 4-7. It should be mentioned that the surface reflectance values in MOD09 are between 0-

10,000. However, using the atmospheric correction algorithm changes this range to -100 to 

16,000 (Vermonte et al. 2011). As a consequence, white color in the legend of Figure 4-7 

represents pixels with negative surface reflectance values. Pixels with negative surface 

reflectance values were excluded from the modeling process.  
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To compare the estimated values with the observed values at the location of the stations 

for the aforementioned dates, the TOC concentration was categorized into three ranges based on 

the EPA advice note on DBPs in drinking water which was mentioned earlier. The results of this 

comparison are shown in Table 4-5. Figure 4-7 and Table 4-5 shows the consistency between the 

observed TOC values collected at the sampling locations and the categorized ranges estimated 

based on the fused images developed by the IDFM model. However, adding more ground truth 

data which are distributed all over the lake may further improve the reliability of the IDFM 

model developed for water quality estimation. 

 

 

 

 

 Figure 4-6. Comparison between the observed values and the estimated values of TOC concentration from 

2000-to 2013 via two data mining models (A) ANN model, (B) GP model  

A B 
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Table 4-5. Comparison between observed values at the sampling location with the estimated values 

for TOC on April 3rd, 2002 and June 20th, 2007. 

Date  TOC Measurement - (mgL-1) 

A
pr

il
 3

, 2
00

2 Station LWLVB-B  LVB6.7 LVB2.7 CR346.4 
Observed 

Value 
4.598  2.75 3.99 2.61 

Estimated 
Value 

TOC>4 2< TOC <4 

Ju
ne

 2
0,

 2
00

7 Station LWLVB LVB6.7 LVB3.5 CR346.4 CR348.4NW0.8 
Observed 

Value 
4.5 3.9 3.1 3.2 3.1 

Estimated 
Value 

                  TOC>4                2< TOC <4 

 

  

In addition to calculating TOC concentration maps for the ground truth dates, the applied 

nowcasting method is able to provide daily TOC concentration maps for at least a week in which 

the high TOC concentration was detected. As an example, a week in May 2001 in which the 

average TOC concentration within the lake was more than 4 mg.L-1 (Figure 4-1) was selected 

and the results were shown in Figure 4-8. Therefore, these daily concentration maps provide 

decision makers and water treatment plant operators with spatiotemporal distribution of TOC 

throughout the lake. 

Figure 4-7. Spatial variations of (A) TOC concentration on June 20th, 2007, (B) TOC concentration on 

April 3rd, 2002. TOC concentration is categorized based on the EPA advice note on DBPs in drinking 

water. Pixels with negative surface reflectance values were shown in white. 
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Figure 4-8. Estimating TOC concentration maps using IDFM Method from 6 May 2001 (DOY 126) to 14 May 2001(DOY 134). The top row in this 

figure shows the available MODIS images and the second row indicates the available Landsat images in the Lake Mead for the cloud-free days of 

the selected time period.  Third and the last rows show fused images and daily TSS concentration maps, respectively (Obtained from: Imen et al., 

2014) 

 

Cloudy Days 



129 

It should be mentioned that only cloud free images can be applied in STAR-FM 

algorithm. Therefore, STAR-FM algorithm was not able to generate fused images for cloudy 

days (i.e. DOY 132, 133). Therefore, cloud contamination is a big hindrance in the developed 

forecasting model.  

In addition to having information about spatiotemporal distribution of TOC within the 

lake, it is important to have an overall view of the impacts of each inflow into the lake on 

increasing TOC concentration. For this purpose, we need to access the continuous time series of 

TOC concentration at the location of each arm. However, sampling data within Lake Mead is 

available for sporadic time periods and in limited numbers to support the local assessment. 

Therefore, the trained ANN model was applied to estimate TOC concentration using the 

extracted reflectance values from Landsat or fused images at the location of stations CRLM, 

VR25.1, and LVB2.7, as shown in Figure 4-9. These stations are representatives of water quality 

of inflows from Colorado River, Lower Virgin Watershed, and Las Vegas Wash, respectively. 

As shown in Figure 4-9, the concentration of TOC is categorized into three ranges which were 

defined by EPA advice note on disinfection by-products in drinking water. Since more than one 

Landsat image may be available in a specific month, the average of all estimated TOC values for 

each month was reported in Figure 4-9. As shown in this figure, the frequency of detecting high 

TOC concentration values has increased since 2006 at all inflow locations, especially at the 

Colorado River Arm and Las Vegas Wash. As discussed in the previous chapter, the majority of 

forest fire events occurred in 2005 and only a small percentage occurred outside of the 2003-

2007 period (Figure 3-2). However, concentration of TOC within the aforementioned time period 

is less than the recent years in Overton Arm (i.e. station VR25.1).  
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Figure 4-9. Temporal distribution of TOC concentration at the location of inflows into the lake; white 

represents “no data” value as a result of inaccessibility of cloud-free Landsat images 

 

It would be beneficial to assess the temporal variation of inflows into the lake to 

investigate the probable linkage between the high rates of inflows with higher TOC 

concentration throughout the lake. For this purpose, the temporal distribution of streamflow is 

shown in Figure 4-10. Comparing Figure 4-9 to Figure 4-10 does not reveal any evidence of a 

linkage between high inflow rates and increases in TOC concentration. For instance, the high 

inflow rates detected during Jan-Apr 2005, which coincides with the largest forest fire events in 

the Virgin River Watershed, do not impact TOC concentration at Overton Arm. Therefore, there 
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is not any evidence which reveals the effects of forest fire events on increasing TOC 

concentration within the lake. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 Temporal distribution of streamflow at the location of USGS stations with associated color legend 

for each arm; white represents “no data” value 

 

One of the possible factors causing an increase in TOC concentration since 2005 in all 

arms of the lake could be the decade-long drought. The important parameter which can be used 

as a representative of the impacts of drought on Lake Mead is the lake’s elevation. For this 

purpose, the comparison between TOC concentration and reservoir elevation is shown in 

Figure 4-11. While the lake’s elevation has a drastic drop, TOC concentration has a gradually 
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increasing trend. Except some months which show abrupt increase in TOC concentration, the 

TOC concentration is almost constant within 2000-2013.  

Figure 4-11 Comparison between temporal variations of TOC concentration and Lake Mead elevation at 

Hoover dam at the location of stations: (A) CRLM (B) VR25.1 (C) LVB2.7. Green line shows the trend of TSS 

concentrations, and red line indicates the variation of elevation during (2000-2013). 
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4.5.2. Forecasting Results 

The successful fitting process resulted from the ANN nowcasting analysis is extended in 

this section to shape the forecasting model for TOC concentration on a daily basis onwards. This 

ANN nowcasting model is called the trained-ANN model hereafter. As the first step, fused 

images were produced for a minimum of 30 days before the first forecasting date using the 

STAR-FM algorithm as long as the available MODIS and Landsat images within the selected 

time period have no severe cloud coverage. These 30 days were selected from the years in which 

the higher concentration of TOC was detected (Figure 4-1). As an example, the time period from 

August 14, 2001 to October 14, 2001 was selected to assess the reliability of the forecasting 

model when tackling the high episodes of TOC concentration values. To apply the results of the 

forecasting model in the drinking water infrastructure assessment, the closest station to the 

drinking water intake was selected (i.e., station LVB6.7 in Figure 4-7). It should be mentioned 

that the last date of the selected time period was applied to assess the reliability of the forecasting 

model by comparing the forecasted value with the ground truth data on October 14, 2001. First, 

spectral reflectance values of all 6 bands were extracted from the Landsat and produced fused 

images in the aforementioned time period at the location the LVB6.7. These extracted values 

were applied as inputs into the trained-ANN model to estimate daily time series of TOC for 

selected time period. Comparison between the estimated and observed TOC values at the 

location of LVB6.7 during the selected time period is shown in Table 4-6. As shown in the table, 

although the trained-ANN model mostly underestimated TOC concentration, the difference 

between the estimated and observed values is not significant. 
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Table 4-6. Comparison between the estimated and observed values of TOC 

at LVB 6.7 during Aug14th –Oct 13th 2001 

Date 
Observed 

TOC (mgL-1) 

Estimated 

TOC (mgL-1) 

28-Aug-2001 4.69 3.9 
4-Sep-2001 3.98 3.86 
25-Sep-2001 3.83 3.44 
7-Oct-2001 3.74 4.13 

 

The subsequent step was to construct the NARXNET model to forecast TOC at the 

location of drinking water intake (i.e. station LVB6.7) for a day ahead of time (i.e. Oct 14, 2001). 

To reduce the uncertainty, multiple runs (10 runs) for cross-validation were performed for each 

scenario, and the average of calculated error indices over the rounds were reported in Table 4-7. 

As shown in this table, scenario 1 with having only spectral reflectance value of remote sensing 

showed the lowest R-squared value and the highest errors. Although adding the additional inputs 

such as meteorological parameters or reservoir level improved the results, scenario 4 which 

includes both of these environmental parameters cannot exhibit the best outcome. Among the 

whole group of 4 scenarios, scenario 3 shows the highest R-squared value and the lowest 

estimation errors. This finding indicates the importance of considering the water level in the 

TOC forecasting model which is consistent with the result obtained in the previous chapter for 

TSS. 

 

Table 4-7. Summary of the results of error indices; Values of RMSE, PBIAS, and 

MAE equal to zero, and R-squared value equal to one show a perfect fit. 

Scenario R2 RMSE MAE PBIAS (%) 

Scenario1 0.78 0.24 0.13 1.38 
Scenario2 0.81 0.26 0.12 -0.45 
Scenario 3 0.85 0.23 0.10 -0.91 
Scenario 4 0.83 0.35 0.13 -1.06 
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In addition to comparing scenarios based on statistical indices, the accuracy of predicted 

TOC values for each scenario was assessed by comparing the forecasting results with 

synchronous ground truth data at the same location. Since NARXNET was run 10 times for each 

scenario, the minimum, maximum, mean, and standard deviation of predicted values for each 

scenario are calculated (Table 4-8). As shown in Table 4-8, scenarios 1 and 4 show the highest 

standard deviation and the lowest minimum TOC concentration. Although the amount of the 

standard deviation in scenario 2 is lower than scenario 3, the range of predicted values in 

scenario 3 was mostly closer to the recorded ground truth data (4.74 mgL-1). Therefore, the 

results in Table 4-7 and Table 4-8 collectively confirm that scenario 3 is the most reliable 

scenario out of the 4 scenarios considered as inputs into the NARXNET model. 

 

Table 4-8. Comparison of predicted values in different scenarios 

Scenario Mean Min Max Standard 

Deviation 

1 3.89 2.76 4.68 0.71 
2 3.49 3.02 4.18 0.43 
3 3.67 2.91 4.79 0.50 
4 2.98 2.00 4.26 0.77 

 

4.6. Final Remarks  

The treatment technique for removal of TOC lessens the concentration of disinfection by-

product precursors (DBP-Ps) available to form DBPs during disinfection. Therefore, having 

information of probable increase of TOC a day ahead of time can help the water treatment plant 

operator in preventing the formation of THMS which may pose a risk to human health. 

Therefore, the main purpose of this study is to develop a water quality forecasting model which 

can be applied in an early warning system to help the water treatment plant operator achieve this 



136 

goal. This early warning system turns a broad range of information from multiple sources into a 

reliable decision.  

4.7. Conclusions 

The accuracy of the IDFM method for nowcasting of TOC concentrations was assessed 

with three steps. First, the reliability of the fused images was assessed and confirmed by 

examining the correlation between the spectral reflectance values of each pixel in a fused image 

with its corresponding pixel in an actual Landsat image. The resulting R-squared values varied 

between 0.68 and 0.95. After assuring the reliability of the resulting fused images for machine 

learning applications to retrieve the water quality information, the capability of the trained ANN 

and GP models for estimating TOC concentrations were assessed in comparison with the ground 

truth data. Results show that the trained ANN model has the higher correlation between the 

estimated and observed values for the ANN model. In the last stage, the accuracy of the 

developed concentration maps were evaluated by comparing some of the ground truth data with 

the estimated range of TOC concentration values to prove the fidelity of the trained ANN model 

for nowcasting. Besides the ability of the nowcasting method in providing information about the 

spatiotemporal variability of TOC concentration, this method can provide us with daily TOC 

concentration maps for at least a week in which high concentration of TOC was detected. The 

calculated monthly temporal distribution of TOC concentration in each arm showed increasing in 

TOC concentration since 2005. In addition, comparing these figures with the temporal 

distribution of inflows into the lake did not show any linkage between high inflow rates with 

increasing in TOC concentration. Furthermore, there is not any evidence of impacts of forest fire 

event on increasing TOC concentration at Overton Arm.   
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Forecasting TOC concentration is of great importance in drinking water treatment. It 

provides information for water treatment plant operators and makes them aware of the 

occurrence of DBP’s in drinking water ahead of time which is considered as a threat to human 

health.  The forecasting model developed in this study also showed the application potential by 

having a model-based iterative process which may be constantly updated by newly acquired 

satellite imagery, and reservoir elevation. Forecasting can be made possible periodically by 

retrieving the memory of past states of water quality to be in concert with the most updated 

information of the current state of water quality. Such a numerical scheme is formulated by the 

NARXNET model, which is able to predict TOC concentration one day ahead of the time using 

updated input and output values repetitively on a rolling basis onwards.  The reliability of the 

forecasting model developed herein was evaluated by comparing its forecasted results with the 

sampling data for those years in which the highest concentration of TOC was detected. The 

results confirmed the potential application associated with scenario 3 in forecasting TOC 

concentration. Such potential application is limited for the areas which are rarely overcast. This 

is caused by the STAR-FM algorithms requirement of cloud-free images. However, this problem 

can be remedied through the integration of this model with some cloud removal algorithms. 

Overall, this study develops a decision making framework for nowcasting and forecasting 

TOC concentrations at the location close to the drinking water intake in Lake Mead. With the aid 

of IDFM algorithm, the developed framework will be able to capture the spatial and temporal 

distributions of TOC concentrations at the finer scales throughout the lake. In addition, the 

iterative process for updating the data set in the model supports its forecasting processes and 

makes the model a cost-effective, forward-looking, and risk-informed decision support 

component for drinking water treatment processes. 
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CHAPTER 5: GENERAL CONCLUSIONS AND STUDY LIMITATIONS 

5.1. Conclusions 

Using empirical mode decomposition as well as wavelet analysis in this dissertation 

overcomes the problem of non-sationarity of the ocean-atmosphere system by excluding a wide 

range of unknown frequencies and intrinsic trends embedded in the raw data. The dominant 

oscillation of both SST and precipitation was detected within the inter-annual frequency band (2-

4 years). The process of screening the oceanic index regions led to the detection of two regions 

in the Atlantic Ocean which contribute more than 75% of the precipitation variability over the 

Upper Colorado River Basin. One of these regions is located adjacent to the known 

teleconnection pattern AMO, and another one is found in the tropical Atlantic Ocean. In 

addition, a non-leading teleconnection pattern located on the west coast of South America was 

detected which has a substantial contribution (86%) on precipitation variability in winter 

compared to all identified oceanic index regions.  This finding emphasizes the importance of 

considering non-leading teleconnection patterns as well as the leading teleconnection patterns. 

Results of the developed forecasting model demonstrate its capability in capturing the 

precipitation variability over the Upper Colorado River Basin. This model also showed 

negligible error in estimating the potential of hydrological droughts in fall, spring, and summer. 

The calculated error in winter (about 20%) implies that sea surface temperatures alone may not 

suffice for predicting precipitation in this season and other meteorological variables may need to 

be included to improve forecasts. Results of the developed precipitation forecasting model can be 

applied as inputs into the CBRFC streamflow forecasting model in order to improve the 

forecasted streamflow ensembles. In addition, the predictions produced by the developed model 
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for the intensity of hydrological droughts over the Upper Colorado River a season ahead, 

alongside the updated monthly inflow forecast, could be used at the beginning of each month to 

update the U.S. Bureau of Reclamation’s “24-Month Study” model.  

The creation of the nowcasting water quality model lays down a foundation for 

monitoring TSS and TOC, on a near real-time basis, using the integrated remote sensing data 

fusion and mining technique. Results demonstrated that the use of the nowcasting method was 

suitable for monitoring spatial and temporal variability of TSS and TOC in Lake Mead. The 

nowcasting results for TSS showed the importance of the Colorado River in bringing TSS into 

the Lake. Also, the decreasing trend of TSS at the Las Vegas Wash indicated the effects of the 

construction of erosion control structures upstream of the Las Vegas Wash. Results didn’t show 

any association between the increase in TSS/TOC concentration and the occurrence of forest fire 

events. However, the probable impacts of a decade of drought was obvious in the increase of 

TSS concentration compare to TOC in the Lake. Comparing the TOC concentration maps with 

the dates of recorded high TSS/TOC concentration showed the capability of the nowcasting 

model in detecting hot spots.  

The novelty of this study lies in the development of a forecasting model to predict TOC 

and TSS values with the aid of remote sensing technologies on a daily basis. Results showed a 

strong correlation of 94% and 85% between the observed and predicted values for TSS and TOC, 

respectively. In addition, the calculated error indices showed the capability of the forecasting 

model in capturing the range of both TSS and TOC. Among the defined scenarios, the scenario 

which includs both satellite spectral reflectance values and reservoir elevation was selected as 
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the best scenario for both TSS and TOC. This finding highlights the reservoir water level as a 

significant parameter in predicting the concentration of TSS and TOC a day ahead.  

5.2. Study Limitations and Recommendations 

Since the dominant oceanic forcing regions associated with precipitation responses are 

identified based on the integrated empirical approaches, the developed methodology is a case-

based approach. Therefore, the identified oceanic index regions cannot be applied for other 

regions in the continental United States; even for a region located within the Upper Colorado 

River Basin (i.e. Weminuche Wilderness area), the oceanic index regions which show the highest 

contribution to precipitation variability can be different (Chang et al., 2015).  

Furthermore, the detected dominant oscillation for SST and precipitation (i.e. 2-4 years) 

is highly dependent on the selected time period (1997-2014). Therefore, for time periods which 

are longer or shorter than the selected time period of this study, the wavelet analysis needs to be 

performed again.  

Data mining methods applied in this study to find the relationship between target 

environmental parameters and remotely sensed data are dependent on the range of ground-truth 

data, and their results do not have multi-temporal variability. Therefore, these methods are not 

able to predict the amount of TOC/TSS which is outside of the recorded ground-truth data range. 

This issue can be remedied with time by calibrating the data mining methods using the future 

ground-truth data. Hence, periodic sampling can calibrate the model for the gradual changes of 

TOC/TSS over long timespans. 
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Predictions of ELM and ANN models include uncertainties. To reduce the effects of 

these uncertainties and improve results, each model was run several times (e.g. 200 trials) and 

the average of the results of all trials is reported.   

Cloud contamination is a big hindrance in exploitation of satellite images retrieved from 

the visible and infrared spectral ranges, and the developed forecasting model is not able to 

forecast TSS/TOC concentration for cloudy days. The developed early warning system can be 

further improved by including a cloud removal algorithm developed by Chang et al. (2015) to be 

able to forecast TOC/TSS at the location of drinking water intake during cloudy days.  
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APPENDIX: MATERIALS UNDER REVIEW 
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