
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2015 

Response of Streamflow and Sediment Loading in the Response of Streamflow and Sediment Loading in the 

Apalachicola River, Florida to Climate and Land Use Land Cover Apalachicola River, Florida to Climate and Land Use Land Cover 

Change Change 

Paige Hovenga 
University of Central Florida 

 Part of the Civil Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Hovenga, Paige, "Response of Streamflow and Sediment Loading in the Apalachicola River, Florida to 

Climate and Land Use Land Cover Change" (2015). Electronic Theses and Dissertations, 2004-2019. 5171. 

https://stars.library.ucf.edu/etd/5171 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/252?utm_source=stars.library.ucf.edu%2Fetd%2F5171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5171?utm_source=stars.library.ucf.edu%2Fetd%2F5171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

 

 

RESPONSE OF STREAMFLOW AND SEDIMENT LOADING IN THE APALACHICOLA 

RIVER, FLORIDA TO CLIMATE AND LAND USE LAND COVER CHANGE 

 

 

 

 

 

 

 

by 

 

 

 

PAIGE ADELLE HOVENGA 

B.S. University of Central Florida, 2013 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements  

for the degree of Master of Science  

in the Department of Civil, Environmental, and Construction Engineering 

in the College of Engineering and Computer Science 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

 

 

 

Fall Term 

2015 

 

 

 

 

Major Professor: Stephen C. Medeiros  



 

 

 

 

 

 

 

 

 

 

 

© 2015 Paige Adelle Hovenga 

 

 

 

 

 

 

 

 

 

 

  

ii 

 



ABSTRACT 

Located in Florida’s panhandle, the Apalachicola River is the southernmost reach of the 

Apalachicola-Chattahoochee-Flint (ACF) River basin.  Streamflow and sediment drains to 

Apalachicola Bay in the Northern Gulf of Mexico, directly influencing the ecology of the region, 

in particular seagrass and oyster production.  The objective of this study is to evaluate the response 

of runoff and sediment loading in the Apalachicola River under projected climate change scenarios 

and land use / land cover (LULC) change.  A hydrologic model using the Soil Water Assessment 

Tool (SWAT) was developed for the Apalachicola region to simulate daily discharge and sediment 

load under present (circa 2000) and future conditions (circa 2100) to understand how the system 

responds over seasonal and event  time frames to changes in climate, LULC, and coupled climate 

/ LULC.  These physically-based models incorporate a digital elevation model (DEM), LULC, soil 

maps, climate data, and management controls.  Long Ashton Research Station-Weather Generator 

(LARS-WG) was used to create downscaled stochastic temperature and precipitation inputs from 

three Global Climate Models (GCM), each under Intergovernmental Panel on Climate Change 

(IPCC) carbon emission scenarios for A1B, A2, and B1.  Projected 2100 LULC data provided by 

the United States Geological Survey (USGS) EROS Center was incorporated for each 

corresponding IPCC scenario.   Results indicate climate change may induce seasonal shifts to both 

runoff and sediment loading, acting to extend periods of high flow and minimum sediment 

loadings or altering the time at which these events occur completely.  Changes in LULC showed 

minimal effects on flow while more sediment loading was associated with increased agriculture 

and urban areas and decreased forested regions.  A nonlinear response for both streamflow and 

sediment loading was observed by coupling climate and LULC change into the hydrologic model, 
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indicating changes in one may exacerbate or dampen the effects of the other.  Peak discharge and 

sediment loading associated with extreme events showed both increases and decreases in the 

future, with variability dependent on the GCM used.  Similar behavior was observed in the total 

discharge resulting from extreme events and increased total sediment load was frequently 

predicted for the A2 and A1B scenarios for simulations involving changes in climate only, LULC 

only, and both climate and LULC. Output from the individual GCMs predicted differing responses 

of streamflow and sediment loading to changes in climate on both the seasonal and event scale.  

Additional region-specific research is needed to better optimize the GCM ensemble and eliminate 

those that provide erroneous output.  In addition, future assessment of the downscaling approach 

to capture extreme events is required.  Findings from this study can be used to further understand 

climate and LULC implications to the Apalachicola Bay and surrounding region as well as similar 

fluvial estuaries while providing tools to better guide management and mitigation practices. 
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CHAPTER 1: INTRODUCTION 

Climate change and the consequent long-term effects at both global and local scales have come to 

the forefront in the scientific, political, and public communities.  Agreed by most scientists to be 

the main source of current global warming, natural and human drivers alter the level of greenhouse 

gases, e.g., water vapor, carbon dioxide, and methane, in the atmosphere which restrict or prevent 

the release of heat to space.  Increased carbon dioxide concentrations are attributed largely to fossil 

fuel use and change in land use, while agriculture is principally credited with the increase in 

methane and nitrous oxide [IPCC, 2007].  Climate change is typically characterized by shifts in 

temperature and precipitation.  Response is region specific and includes alteration of extremes, 

intensities, frequencies, spatial distributions, and temporal patterns [Easterling et al., 2000; Karl 

and Knight, 1998; Pal et al., 2013; D Wang et al., 2013].  These changes impact the hydrologic 

cycle and have broad implications for fresh water resources in terms of both water quantity e.g., 

streamflow, and quality e.g., sediment and nutrient loading [Milly et al., 2008; D Wang and Hejazi, 

2011].   

 

While climate change policies often focus on atmospheric composition, another major driving 

force is land use change, which can affect climate both regionally and globally by shifting physical 

properties and altering the surface-energy budget and carbon cycle [Pielke et al., 2002].  Land 

coverage is altered progressively and abruptly as a result of socio-economic and biophysical 

drivers that are directed by human-environment conditions [Lambin et al., 2001].  Biophysical 

drivers include alterations brought on by climate change, e.g., drought and sea level rise, further 

complicating the interaction between changes in climate and land use.  Since land types differ in 
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physical and chemical properties, alterations as land classes expand, migrate, or change entirely 

can have an impactful influence on freshwater quantity and quality.  Agricultural irrigation alone 

accounts for 85% of the total consumptive use and is linked to increased erosion, sediment load, 

and introduction of chemicals and nutrients while urbanization results in decreased groundwater 

recharge, increased runoff and sediment loading, sedimentation, and eutrophication [Foley et al., 

2005; Gleick, 2003; Zimmerman et al., 2008].  

 

As population increases, recent changes have shown urban population to be growing more rapidly, 

especially for developing countries [Lambin et al., 2003].  The global population as of 2015 is 

estimated at 7.3 billion and is projected to reach 11.2 billion by the year 2100 [United Nations et 

al., 2015].  Of that, an estimated 23% of the present global population live within 100 km of the 

coast and developments are expected to grow [Small and Nicholls, 2003].  Increased water demand 

and wastewater effluent associated with population growth and related land use changes has 

implications for the ecology and health of coastal habitats.  While previous research into the effects 

of land use changes on hydrologic processes exists, many focus on historical land changes with 

interests typically isolated to water quantity or quality and those that do assess future conditions 

are often specialized and limited by the land class changes that are imposed, e.g., only urban 

development [Asselman et al., 2003; Johnson et al., 2012; Schilling et al., 2010; Schilling et al., 

2008b; Shi et al., 2007; Ward et al., 2009] 

 

The objective of this research is to assess the impacts of projected climate and land use land cover 

(LULC) change on streamflow and sediment loading, both seasonal and event scale, in the 

Apalachicola River, Florida.  To do so, a hydrologic model using the Soil Water Assessment Tool 
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(SWAT) was developed for the Apalachicola region to simulate daily discharge and sediment load 

under present (circa 2000) and future conditions (circa 2100).   

 

The physically-based SWAT model incorporates a digital elevation model (DEM), LULC, soil 

maps, climate data, and management controls.  Long Ashton Research Station-Weather Generator 

(LARS-WG) was used to create downscaled stochastic temperature and precipitation inputs from 

three Global Climate Models (GCM), each under Intergovernmental Panel on Climate Change 

(IPCC) carbon emission scenarios A1B, A2, and B1.  These scenarios represent potential future 

emissions resulting from a range driving forces, e.g. social, economic, environmental, and 

technologic.  Projected 2100 LULC data provided by the United States Geological Survey (USGS) 

Earth Resources Observation and Science (EROS) Center was incorporated for each corresponding 

IPCC scenario.  Streamflow and sediment loading response to changes in climate, LULC, and 

coupled climate / LULC was evaluated.   

 

This research is significant in that many species of this region, in particular seagrass and oyster 

beds, are sensitive to salinity and total suspended solids levels which can affect productivity and 

spatial distributions.  Streamflow and sediment from the Apalachicola River drain to Apalachicola 

Bay in the Northern Gulf of Mexico, and alterations resulting from climate change, e.g., changes 

in temperature and rainfall extremes intensities, frequencies, spatial distributions, and/or LULC 

change, e.g., changes in physical and chemical surface properties, will have in a direct influence 

on the ecology of the region by changing processes related to the hydrologic cycle including runoff, 

groundwater recharge, evapotranspiration, and sediment, nutrient and chemical loading.  Results 

from this study can be used to further understand climate and LULC implications to the 
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Apalachicola Bay and surrounding region as well as similar fluvial estuaries, while provide tools 

to better guide management and mitigation practices, and aid in future hydrologic assessments of 

climate and LULC change.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Historic Climate Change 

The Intergovernmental Panel on Climate Change (IPCC), established in 1988 by the United 

Nations Programme (UNEP) and the World Meteorological Organization (WMO), is a 

collaborative body that reviews and assesses scientific findings related to climate change.  The 

organization is divided into three Working Groups, a Task Force, and a Task Group.  Working 

Groups I, II, and III respectively focus on the physical science of climate change, impacts and 

vulnerability of socio-economic and natural systems, and mitigation strategies.  The joint effort of 

the working groups has resulted in a series of comprehensive reports that detail technical and 

scientific discoveries related to climate change for both the past, present, and future.   

 

The IPCC Fourth Assessment Report (AR4) Working Group I Report: The Physical Science Basis 

provides a detailed account of the observed changes in climate, including those related to the 

atmosphere, surface, ocean, and cryosphere [IPCC, 2007].  A prevalent theme is the alteration of 

global temperatures.  While the surface, ocean, and troposphere have shown an ever increasing 

warming trend, the stratosphere that provides the protective ozone layer has experienced cooling.  

Thermal expansion of the oceans and decreased snow and ice extents coincide with increases in 

temperature.  Precipitation has also been altered globally, though the ways in which it has changed 

is region specific.  In eastern parts of North America, rainfall has significantly increased and it is 

likely the frequency of heavy rainfall events will increase.  
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2.2 Modeling Climate Change Climate Models  

Global Circulation Models (GCM), synonymously used with Global Climate Models, simulate 

climate by representing physical processes in the atmosphere, ocean, cryosphere and land surface 

within a three dimensional grid.  To capture the global exchanges, the resolution is often quite 

coarse.  Typical resolution is between 250 – 600 kilometers in the horizontal direction, 10 to 20 

atmospheric vertical layers, and up to 30 ocean layers [IPCC, 2013].  Models usually provide 

monthly, 20 year, and 30 year means.  Despite applying the same boundary conditions, the varying 

structures of GCMs including the spatial resolutions, individual physical process models, and 

interacting feedback loops can result in differing outputs between GCMs.   Regardless of these 

differences, outputs typically agree on broad global warming.    

 

In addition to an assessment of the historically observed climate change, the IPCC AR4 evaluates 

future projected climate changes resulting from both natural variability and human activity and 

their short and long term implications.  The projections used were developed from a combined 

modeling effort of 18 groups worldwide, who performed a suite of simulations using GCM under 

various sets of driving scenarios [IPCC, 2007].  Driving forces reference possible future social, 

economic, environmental, and technological directions that alter carbon emissions as outlined in 

the Special Report Emission Scenarios (SRES) [IPCC, 2000].  IPCC-SRES, frequently referred to 

as carbon emission scenarios, are classified by four families, A1, A2, B1, and B2.  Generally 

speaking, the A1 scenario describes a rapidly changing world with population increasing to 2050 

and then decreasing by 2100.  A1 is broken down further into groups A1B, A1FI, A1T that 

represent various ways in which technological change might be driven.  A2 describes a more 

heterogeneous world with large gaps between economic and technologic constructs.  B1 represents 

19 

 



a convergent world with the same population dynamics as those described by the A1 scenario and 

economic, social, and environmental choices are driven by global sustainability and conservation.  

B2 describes an increasing population at a rate slower than A2 and while development is geared 

toward sustainability, decisions are focused on more local and regional scale goals.  While the 

scenarios may represent stark differences in future, global conditions, no one scenario is held to 

be more relevant than the other and all are viewed as equally probable outcomes. 

2.3 Downscaling Techniques 

While GCMs typically converge on global climate predictions, the coarse spatial and temporal 

resolutions typical of GCMs struggle to capture small scale processes occurring at regional or local 

scales [Semenov and Stratonovitch, 2010].  Several downscaling approaches, e.g., statistical, 

dynamic using regional climate models, and weather generators, have been developed to alleviate 

this dilemma.  The statistical downscaling approach is performed by creating relationships, e.g., 

regressions or neural networks,  that link large-scale climate “predictor” variables to regional or 

local variables or “predictands” [Wilby et al., 2004].  This technique produces relatively quick 

results and is computationally inexpensive, however a major disadvantage is the assumed constant 

empirical relationships [Mearns et al., 2004].  The issue of non-stationarity may be resolved using 

a stochastic approach [Richardson, 1981; Wilby, 1997].  Dynamic downscaling using regional 

climate models (RCMs) uses a nested high-resolution grid that is driven by boundary conditions 

derived from GCM.  While RCMs typically model spatial patterns, precipitation extremes, and 

variability of daily and monthly values better than GCMs, the downscaling technique is 

computationally expensive and therefore few scenarios are usually derived [Mearns et al., 2004].  

In an assessment of statistical and dynamical RCM methods for 976 stations in Europe, Murphy 
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[1999] found that while the skill levels were comparable, statistical methods performed better for 

summer temperatures and downscaling via RCM was superior for winter rainfall.  Stochastic 

weather generator (WG) algorithms develop climate change scenarios by adjusting present day 

parameters by monthly statistics derived from sampling distributions of the sums or averages of 

the daily values [Richardson, 1981; Wilks, 1992].  WGs are able to produce daily time series of 

indefinite lengths and capture changes in both climatic means and variability [Wilks, 1992].  WGs 

have been used in a number of studies to develop and asses climate change scenarios [Favis-

Mortlock and Boardman, 1995; Katz, 1996; Semenov and Barrow, 1997; Valdes et al., 1994; 

Wilks, 1992] 

2.4 Mapping Land Use Land Cover 

Artificial satellites have been used for decades to collect information about the earth.  While an 

estimated 6,600 satellites have been launched into orbit, only near 1000 are operational [ESA, 

2013].  Satellites equipped with data collecting instruments are able to capture images of earth at 

various regions of the electromagnetic scale.  These data are used by scientists and engineers to 

assess and monitor land cover changes, urban sprawl, natural resources, toxic waste dumping, 

phytoplankton blooms, and flood inundation extent [Binding et al., 2012; Chaouch et al., 2012; 

Taillant and Picolotti, 1999].   

 

In satellite imagery, a band constitutes a specific region of the electromagnetic spectrum, typically 

with respect to wavelength.  Since materials reflect and absorb energy differently at various 

wavelengths, processing techniques can be used to extract or magnify signature traits of materials, 

making them easier to differentiate from one another.  Techniques include visual interpretation, 
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vegetative indices, supervised classification, unsupervised classification, and band ratio-ing.  For 

these reasons satellite imagery is used to identify, map, and evaluate historical change in land cover 

types and distributions.   

2.5 Historical LULC Change 

Efforts to quantify historical population and land use patterns over the past 300 years have led to 

the development of HYDE, the History Database of the Global Environment.  An analysis of 

HYDE data by Klein Goldewijk [2001] suggests that from 1700 – 1990, global cropland and 

pasture have increased  from 265 – 1471 and  524 – 3451 mega hectares (Mha), respectively, while  

forest / woodland loss is estimated at nearly 24%.   In the United States, agriculture and pasture 

have increased 70-fold and 100-fold, respectively.  Improved irrigation systems have resulted in 

the loss of numerous wetlands, especially within the Midwest and semi-arid regions.   

 

To understand Earth’s physical, biological, and chemical processes and their interactions with 

human influence on both regional and global scales, collaborative research efforts have been 

launched, including the International Geosphere-Biosphere Program (IGBP). A core research 

project of IGBP is Past Global Changes (PAGES) (http://www.pages-igbp.org/).  Focus 4 of 

PAGES studies human-climate-ecosystem interactions to understand past states and better predict 

future conditions.  One project of PAGES, the Land Use and Cover project, aimed to recreate past 

land cover maps from fossil pollen records and has since been replaced by LandCover6k.  Building 

on the Land Use and Cover initiative, the project addresses climate induced, natural, and human 

induced land changes resulting from anthropogenic use.   Outputs from this program will be 

improved HYDE and Kaplan and Krumhardt (KK), used to estimate anthropogenic deforestation 
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in Europe,  models as well as reconstructed LULC for the Holocene periods [Kaplan et al., 2009; 

Klein Goldewijk, 2001].   

 

With particular focus on the United States, the USGS Land Cover Trends project was developed 

to understand patterns, rates, trends, causes, and consequences of LULC change.  Initiatives set by 

the USGS Land Cover Trends resulted in modeled land use changes from 1973 - 2000 for the 

conterminous U.S.  Change rates were developed for 84 ecoregions using Landsat imagery and a 

statistical sampling approach [Loveland et al., 2002].  The Land Cover Trends project ran from 

1999 through 2011.  Research has since been continued by the Land Change Research Project. 

 

In the Apalachicola region, Pan et al. [2013] used satellite imagery from Landsat Thematic Mapper 

(TM) to identify changes in land class from 1985 to 2005.  From 1985 – 2005 the growth rate of 

urban areas was 79% and was typically convert from forest / woody wetland.  From 1985 – 1996 

shrub and barren land decreased. Forest / woody wetland also increased during this period before 

declining from 1996 - 2005 as a result of increased cropland / pasture from 1996 – 2005.  

2.6 Modeling Future Land Use Land Cover Change 

The effect land use changes have on the surface-energy budget and carbon cycle make accurate 

representation of historical and projected changes an important input for regional and global 

climate models.  LULC change is fueled by biophysical (e.g., slope, soil properties, altitude) and 

socio-economic drivers (e.g., social, political, and economic factors) [Lambin et al., 2003].  While 

data on the former is easier to quantify and more accessible, the latter can be more difficult to 

capture.  Often correlated rather than causal metrics serve as a proxy to project changes e.g., 
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population density used to estimate the allocation of cropland [Klein Goldewijk, 2001].  The detail 

of interaction between drivers is dependent on the spatial and temporal scales at which it is being 

modeled.  Intricate relationships seen at the local scale become more difficult to identify at 

increasing extents.  When modeling land changes, two points must be addressed, with the first 

often being easier to assess: 1) where do the changes take place and 2) what are the rates in which 

these changes progress [Veldkamp and Lambin, 2001].  Lastly, since biophysical processes are 

both affected and effect land use change, built in biophysical feedback loops are important to 

capture the dynamic interaction. 

 

A well-known model used for projecting land cover is the FORecasting SCEnarios of Land-use 

Change (FORE-SCE).  Originally developed to model regional land cover change in the Western 

Great Plains, FORE-SCE uses data from the Land Cover Trends project and theoretical, statistical, 

and deterministic modeling techniques to project future land cover [T L Sohl et al., 2007].    The 

model incorporates various modules to address different characteristics of change, i.e., non-spatial 

proportions of land use change are provided by the DEMAND module and physical distributions 

are provided by a spatial allocation module.  Since its original version, FORE-SCE has been 

adapted to include forest cutting and resultant changes in forest type and age [T Sohl and Sayler, 

2008] 

 

FORE-SCE has been used by researchers at the USGS Earth Resources Observation and Science 

(EROS) to create spatially and thematically detailed annual LULC maps for 2006 – 2100 [USGS, 

2014a].  The maps were developed by implementing historic data from the Land Cover Trends 

project and information considering downscaled economic and environmental policies and 
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regional vs. global development that align with IPCC-SRES (Figure 1).  Historical and future 

scenario maps contain 17 LULC classes and are available to the public to download in raster format 

(250 meter pixel resolution) for the conterminous U.S. (http://landcover-

modeling.cr.usgs.gov/projects.php).   

 

 

Figure 1 Adaptation of International Panel on Climate Change (IPCC) Special Report on 

Emission Scenarios (SRES) for projected LULC change [USGS, 2014b]. 

2.7 Climate / LULC Change and Hydrologic Modeling  

This study focuses on impacts of climate and land use change on water quantity and quality in the 

southeastern United States, particularly the Apalachicola River Basin using the hydrologic model 

Soil and Water Assessment Tool (SWAT).  Many studies have incorporated climate projections 

from regional climate models (RCMs) or downscaled global climate models into SWAT for this 

purpose [Narsimlu et al., 2013; Phan et al., 2011; Shrestha et al., 2013].  Additionally, research 
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has assimilated land use change only and the coupling of climate and land use change into SWAT 

[J Chen et al., 2005; Park et al., 2011; Schilling et al., 2008a; Semadeni-Davies et al., 2008; Yan 

et al., 2013].  Dependent on the study, climate vs. land use change impacts have been found to be 

more significant than the other and changes in one may amplify the effects of the other [Praskievicz 

and Chang, 2009]. 

 

Previous studies of climate and land use change that assess streamflow and sediment loading exist 

for the Apalachicola region.  X Chen et al. [2014] evaluated both seasonal and event scale response 

of runoff and sediment loads using climatic data from two RCMs (HRM3-HADCM3 and RCM3-

GFDL) using the Soil and Water Assessment Tool (SWAT).  Seasonal response was determined 

to be only slight with contrasting behavior produced from the individual models.  At the event 

scale, peak flow increased from the baseline by 8% for HRM3-HADCM3 and 50% for RCM3-

GFDL.  Peak sediment load increase was negligible for HRM3-HADCM3 and 89% for RCM3-

GFDL.  Johnson et al. [2012] used SWAT to investigate the sensitivity of streamflow and water 

quality to climate change and urban / residential development.  Sensitivity of flow (both average 

and extreme) and sediment loading differed in response to climate change among the climate 

models and downscaling approaches used.  While climate induced both increases and decreases in 

flow, the sediment was increased overall.  Climate was also determined to be more impactful than 

land development at the large scale simulation.  Gibson et al. [2005] focused on changes in flow 

regime (magnitude, duration, frequency, timing, and rate of change) under downscaled GCM 

change and projected human demand.  Decreased flow variability and lower high and low flows 

were reported.  Hay et al. [2014] studied the accuracy of downscaled climate data from three 

GCMs using an asynchronous regional regression model (ARRM), to simulate historical 

26 

 



conditions of streamflow using the Precipitation-Runoff Modeling System (PRMS).  Based on the 

model skill evaluation, results indicated streamflow may be best evaluated at weekly or longer 

time steps.  Additionally, model outputs can be significantly biased, and therefore relative change 

from historical conditions might be better suited to evaluate future conditions. 

2.8 Ecologic and Hydrologic Studies 

Many species found in the Apalachicola Estuary are affected by the alteration of streamflow and 

sediment loading.  H Wang et al. [2008] coupled an oyster population model and hydrodynamic 

model to assess the response of oyster growth rates in Apalachicola Bay to changes in freshwater 

inflow.  Growth rates, significantly correlated to salinity levels, were lowest during mid spring in 

times of high freshwater flow and consequent low salinity in the Bay while higher growth rates 

occurred during the summer when temperatures were warm and food supply was high.  

Dekshenieks et al. [2000] also found increased oyster larval growth rate associated with lower 

freshwater inflow and higher salinity while high levels of total suspended solids caused increased 

mortalities of oysters in larval development and decrease oyster filtration rates.  R.J. Livingston et 

al. [2000] linked a hydrodynamic circulation model and oyster population dynamics for the 

Apalachicola Estuary and reported increased oyster mortality associated with high salinity, low-

velocity current patterns, and proximity of oyster bars to high saline water from the Gulf.  Findings 

by Dutterer et al. [2012] suggest flow regimes occurring in spring and summer that reduced the 

frequency and duration of floodplain inundation may reduce stream fish recruitment in the 

Apalachicola River.   Seagrass growth, abundance, and morphology has been shown to be affected 

by nutrient-carrying sediment [Short, 1987].  Field / experimental and lab studies by Robert J. 

Livingston et al. [1998]  of water quality, qualitative and quantitative light factors and sediment 
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characteristics indicate the distribution of submerged aquatic vegetation in the Northern Gulf of 

Mexico is controlled by salinity, temperature, depth, light attenuation, and sediment and nutrient 

supply.  Alteration of seasonal patterns, extremes, and/or frequencies of both riverine freshwater 

inflow and sediment loading to the Apalachicola Bay has implications for shifting the ecology of 

the system.   

 

The research developed herein comprehensively assesses the isolated and coupled impacts of 

climate and land use land cover change in the Apalachicola River region.  Located in Florida’s 

panhandle, the streamflow and sediment from the Apalachicola River drains to Apalachicola Bay 

within the Northern Gulf of Mexico, resulting in a direct influence on the ecology of the region, in 

particular seagrass and oyster production.  Response to changes are evaluated at the seasonal and 

event scale.  Downscaled climate data for three GCMs and LULC maps, detailing changes for 

sixteen distinct land classes, are both characterized by the IPCC-SRES A2, A1B, and B1 circa 

2100.  Previous studies for Apalachicola have limited climate change to one carbon emission 

scenarios and have focused singularly on anthropogenic changes in land use / land cover.  In using 

IPCC-SRES correlated data, the forcing factors that drive climate change align with those that 

drive land use and cover change, providing a congruent foundation from which inter-comparisons 

can be made.    
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CHAPTER 3: DESCRIPTION OF STUDY DOMAIN 

Located in the southeastern United States, the Apalachicola-Chattahoochee-Flint (ACF) River 

Basin extends to north Georgia, includes southeast Alabama, and covers part of Florida’s 

Panhandle.  Shown Figure 2 by the yellow boundary, the entire region covers a drainage area of 

approximately 51,282 km2 (19,800 mi2)[U.S.G.S., 2014].  The Flint and Chattahoochee Rivers 

converge at Lake Seminole near the Florida-Georgia state line.  The Jim Woodruff Lock and Dam 

marks the beginning of the Apalachicola River, a meandering river with extensive floodplains.  

Flowing to the south, it ultimately drains to Apalachicola Bay in the Northern Gulf of Mexico.   

 

The Apalachicola Bay system is a shallow estuary divided into 4 sections, shown in Figure 3.  

Having a combined area of 44,608 hectares (110,228 acres), the average depths of East Bay, St. 

Vincent Sound, Apalachicola Bay, and St. George Sound are 0.7, 1.0, 2.1, 2.5 meters (2.3, 3.3, 6.9, 

and 8.2 feet), respectively [Huang and Jones, 1997].  The Bay is bounded by three offshore barrier 

islands: St. Vincent, St. George, and Dog Islands.  The series of passes between the islands from 

east to west are East Pass, Sikes’ Cut, West Pass, and Indian Pass. These passes allow the exchange 

of fresh and salt water, sediment, and nutrients between the Bay and Gulf.   
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Figure 2 Apalachicola-Chattahoochee-Flint River Basin in yellow and study domain in 

white.  
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Figure 3 Apalachicola Bay system 

 

This study focuses on the southern portion of the ACF River basin.  The domain, indicated in white 

in Figure 2 and in more detail in Figure 4, includes the Apalachicola River, beginning in the north 

at the Jim Woodruff Lock and Dam near Chattahoochee, FL and extends south to the Apalachicola 

Bay.  The tributary to the west, the Chipola River, is also included and stretches to the north as far 

as Dothan, Alabama.  The Chipola River contributes 11% of Apalachicola River’s total flow [Elder 

et al., 1988].  The entire watershed study area is 575,930 hectares (1,423,154 acres) and is divided 

into a total of 99 subbasins.  Elevation ranges from around 0 to 110 meters (0 to 361 feet), 

(NAVD88).  Developed regions included in the domain, aside from Chattahoochee and Dothan, 

are Marianna, Bristol, Wewahitchka, Sumatra, Port St. Joe, and Apalachicola, Florida (Figure 4).    
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Figure 4 Study domain extending from Dothan, Alabama to Apalachicola Bay.  

32 

 



The Apalachicola River basin has a subtropical, humid climate, with mean annual temperature 

around 20° C (68° F) [R.J. Livingston, 1984].  Within the ACF, low temperatures in January vary 

from 4° - 13° C (39° - 55° F) and high temperatures vary from 24° - 27° C (75° - 81° F) in July 

[Couch et al., 1996].  Average annual rainfall is approximately 150 centimeters (59 inches), though 

there is an uneven distribution with regions to the west of the river receiving one-third less rainfall 

that those to the east [R.J. Livingston, 1984].  Further, rainfall amount increases moving from the 

upstream (Chattahoochee) to midstream (Blountstown) and finally to downstream (Apalachicola) 

with an average annual rainfall of 116, 129, and 137 centimeters (46, 51, and 54 inches), 

respectively [D Wang et al., 2013].  Seasonally there are two peaks, one in March and another 

occurring in late summer / early fall from July to September.  Thunderstorms are frequent in 

Florida’s Panhandle, occurring around 70 days out of the year, typically during the warm season 

around the afternoon and early evening [Fuelberg and Bigger, 1994].   

 

The Apalachicola river has the largest discharge of all rivers in Florida and is ranked 21st in 

magnitude within the conterminous United States.  It accounts for 35% of the freshwater inflow 

on the western coast of Florida [McNulty et al., 1972].  Measured at Sumatra, Florida the average 

annual discharge from 1978 to 2012 was 24,000 cubic feet per second (680 cubic meters per 

second) with fluctuations ranging from 10,000 to 37,000 cubic feet per second (283 – 1048 cubic 

meters per second) [USGS, 2012].  The river experiences large seasonal fluctuations in flow, with 

peaks occurring January through April and lower flows experienced September through November 

[R.J. Livingston, 1984].  Tidal influences from the Bay do not extend upstream more than 25 miles 

or 40 kilometers [Couch et al., 1996].   

 

33 

 



The Apalachicola River floodplain has three major types of soils: silt-clays (approximately 90%), 

sandy soils (approximately 8%), and organic soils (approximately 3%).  Sandy soils are typically 

found on levees where high flows occur, greater than 80,000 cubic feet per second or 2,265cubic 

meters per second, and organic soils are more commonly found in swamp areas in the northern 

reach [Light et al., 1996].  Sediment that does not settle out is ultimately discharged into 

Apalachicola Bay.  The deposition rates for the Apalachicola system are greater than other 

estuaries in the Gulf Coast with relatively high sand content and low silt content.  Samples from 

1825 to 1900 indicate that historically silt was more prevalent in this system and while the quantity 

of sediment delivered to the Bay has remain unchanged since the 1950s, it is suggested that the 

abrupt changes in the sediment regime may have been caused by anthropogenic factors such as the 

implementation of dams [Isphording, 1986].  Once within the Bay, fine sediments are carried out 

to the Gulf of Mexico while sand is moved within the Bay by tidal currents [R.J. Livingston, 1984]. 

 

Significant to both the ecology and economy, the coastal estuarine system provides a habitat for 

many types of flora and fauna including salt marshes, seagrasses, and oyster beds, many of which 

are threatened or endangered.  Salt marshes and seagrasses provide shelter and reproductive 

grounds for many terrestrial and aquatic species.   Oysters beds are highly productive in this region 

and provide over 90% of Florida’s and 8-10% of the nation’s oysters [R.J. Livingston, 1984].  

Many of these species are sensitive to salinity and total suspended solids which affect both their 

productivity and spatial distribution [R.J. Livingston, 1984; Scavia et al., 2002].  Additionally, 

changes to flow and sediment can affect channel connectivity and alter floodplain extents, making 

the riverine influx an important component of the system [Gibson et al., 2005].  Previous studies 

have found changes in climate and land use / land cover may affect both streamflow and sediment 
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loading by altering peaks and total quantities associated with extreme events, result in increases 

and decreases at the seasonal scale, shift flow variability, and that changes in one may amplify the 

effects of the other [X Chen et al., 2014; Gibson et al., 2005; Johnson et al., 2012; Praskievicz and 

Chang, 2009].  Seasonal shifts have implications for threatening the phenology of the system, 

affecting migration, breeding, and distributions.  As urban areas are expected to increase in coastal 

regions, sediment loading may also be increased, offsetting the sensitive balance at which 

seagrasses and oyster bed survive.  Lastly, changes in extreme events may affect flooding and 

erosion rates.   To better adapt to and mitigate adverse effects of climate and LULC change for 

this region, a comprehensive assessment and understanding of the response of streamflow and 

sediment to said changes is required.  
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CHAPTER 4: MODELING APPROACH 

4.1 Simulation and Modeling Structure 

From henceforth, the terms “present” will refer to circa 2000 and “future” will refer to circa 2100.    

The simulations can be broken into four distinct categories that are characterized by the climate 

and LULC data used: 1) baseline, 2) climate only, 3) LULC only and 4) climate and LULC (Table 

1).  The baseline incorporates present day climate and LULC.  Climate only incorporates future 

climate and present land cover.  LULC only implements present climate and future LULC.  

Climate and LULC uses both future climate and LULC.  

Table 1 Dataset applied for simulation categories 

 Baseline Climate Only LULC Only Climate & LULC 

Climate Present Future Present Future 

LULC Present Present Future Future 

  

 

Future climate is characterized by three IPCC carbon emission scenarios: A2, A1B, and B1.  

Climatic data for each scenario is predicted by three global climate models (GCMs): HadCM3 

(HADCM3), IPSL-CM4 (IPCM4), and ECHAM5-OM (MPEH5).  Therefore, when referring to 

climate change, a total of nine datasets are evaluated.  Future LULC is also characterized by the 

three carbon emission scenarios, A2, A1B, and B1.  LULC projections for individual GCMs do 

not exist and are therefore not assessed.  Thus, when referring to LULC change, there are a total 

of three datasets that are evaluated.  Further detail on the climate and LULC change datasets are 

discussed in subsequent chapters.  When climate and LULC changes are both implemented in the 
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model, the datasets are matched according to the carbon scenarios, that is, A2 climate will be 

paired with A2 LULC.  Therefore, when assessing the climate and LULC change simulations, 

there are a total of nine.  

 

The modeling structure used has two main components which consist of the Long Ashton Research 

Station-Weather Generator (LARS-WG), used to downscale and prepare climate data and the Soil 

and Water Assessment Tool (SWAT), which was used to simulate hydrologic processes (Figure 

5).  Climate data created by LARS- WG serves as an input to the SWAT model. 

4.2 Model Development 

A hydrologic model using SWAT was developed for historical conditions (1984 – 1994) for the 

purpose of calibration and validation.  This is represented by the box labeled “SWAT MODEL” 

in Figure 5.  Inputs reflect the historical time period and include LULC, a digital elevation model 

(DEM), soil maps, weather, and boundary conditions.  Datasets are described further in Chapter 5.  

The model performance was assessed via calibration and validation for the historical period. Once 

completed, the SWAT model was used to run all simulations under present and future conditions.   

4.3 Present Conditions 

To appropriately compare future with present conditions, climate data for both were prepared in 

an analogous way.   The present day climate data used by SWAT was prepared by inputting 

observed weather from 1970 – 1999 into the Long Ashton Research Station-Weather Generator 

(LARS-WG).  This is represented in Figure 5 by the box labeled “LARS- WG”.  The output was 
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30 years of stochastically developed weather data representative of present conditions, referred to 

as the “baseline”.  The present LULC data used by SWAT refers to the same dataset used in the 

model development, referencing 1992. 

4.4 Future Conditions 

To create future climate data, the same observed weather from 1970 – 1999 was input into the 

LARS- WG along with a scenario file, which includes the changes in climate parameters from 

2000 to 2100.  The changes refer to carbon emission scenarios, A2, A1B, and B1, as predicted by 

the three different GCMs.  One scenario file exists for each carbon emission scenario and GCM, 

for a total of nine.  The development of the scenario files is described in Chapter 6.  Each scenario 

file was used by the LARS- WG to perturb the observed weather data and the output was 30 years 

of stochastically developed weather data, referred to as “future”, and representative of future 

conditions.  The future LULC data used by SWAT refers to the three carbon emission scenarios 

and is indicated by the box labeled 2100 LULC.   

 

The climate and LULC data were incorporated into SWAT and outputs consisted of daily 

streamflow (cms) and daily, total sediment loading (tonnes/day), measured at single location near 

the watershed outlet.  In the case where climate change was included in the simulation, a total of 

nine sets (each containing streamflow and sediment) were produced.    When LULC change was 

included in the simulation, a total of three sets (each containing streamflow and sediment) were 

produced and when climate and LULC was included in the simulation, a total of nine sets (each 

containing streamflow and sediment) were produced. 
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Figure 5 Modeling structure.
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CHAPTER 5: HYDROLOGIC MODEL DEVELOPMENT 

5.1 Model Description 

The hydrological model selected for this study was the Soil and Water Assessment Tool (SWAT), 

a physically based, continuous time model that is designed to simulate long-term hydrologic 

processes within large watersheds [Neitsch et al., 2011; Srinivasan and Arnold, 1994].  SWAT is 

an open source model capable of simulating both water quantity and quality on monthly and daily 

time scales.  Surface runoff is simulated using the Soil Conservation Service (SCS) curve number 

method:  

𝑸𝑸𝑺𝑺 =
�𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅−𝟎𝟎.𝟐𝟐𝑺𝑺�𝟐𝟐𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅+𝟎𝟎.𝟖𝟖𝑺𝑺    ( 1 ) 

 

where QS is the accumulated surface runoff (mm), Rday is the rainfall depth (mm), and S is the 

retention parameter (mm) defined by:   

𝑺𝑺 = 𝟐𝟐𝟐𝟐.𝟒𝟒�𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝑪𝑪𝑪𝑪 − 𝟏𝟏𝟎𝟎� ( 2 ) 

 

where CN is the curve number [SCS, 1972].  The curve number is an empirical parameter based 

on land cover and soil type used to estimate runoff generated from rainfall.  Sediment yield is 

related to the surface runoff and is computed from the Modified Universal Soil Loss Equation 

(MUSLE): 

𝒔𝒔𝒔𝒔𝒅𝒅 = 𝟏𝟏𝟏𝟏.𝟖𝟖 ∗ �𝑸𝑸𝒔𝒔 ∗ 𝒒𝒒𝒑𝒑𝒔𝒔𝒅𝒅𝒑𝒑 ∗ 𝒅𝒅𝒂𝒂𝒔𝒔𝒅𝒅𝒉𝒉𝒂𝒂𝒉𝒉�𝟎𝟎.𝟐𝟐𝟓𝟓 ∗ 𝑲𝑲𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼 ∗ 𝑪𝑪𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼 ∗ 𝑷𝑷𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼 ∗ 𝑼𝑼𝑺𝑺𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼 ∗ 𝑪𝑪𝑪𝑪𝑹𝑹𝑪𝑪   ( 3 ) 

40 

 



where sed is the sediment yield (tonnes/day), qpeak is the peak runoff rate (m3/s), areahru is the 

hydrologic response uunit (hru) area (ha), KUSLE is the Universal Soil Loss Equation (USLE) soil 

erodibility factor, CUSLE is the USLE cover and management factor, PUSLE is the USLE support 

practice factor, LSUSLE is the USLE topographic factor and CFRG is the coarse fragment factor 

[Williams, 1995].  The peak runoff rate is calculated using: 

𝒒𝒒𝒑𝒑𝒔𝒔𝒅𝒅𝒑𝒑 =
𝑪𝑪∗𝒊𝒊∗𝑨𝑨𝒂𝒂𝒔𝒔𝒅𝒅𝟑𝟑.𝟓𝟓  ( 4 ) 

 

where C is the runoff coefficient, i is the rainfall intensity (mm/hr), and Area is the subbasin area 

(km2).  KUSLE describes the individual ability of soils to erode and is computed by:  

𝑲𝑲𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼 =
𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐𝟏𝟏∗𝑴𝑴𝟏𝟏.𝟏𝟏𝟒𝟒∗(𝟏𝟏𝟐𝟐−𝑶𝑶𝑴𝑴)+𝟑𝟑.𝟐𝟐𝟐𝟐∗(𝒄𝒄𝒔𝒔𝒔𝒔𝒊𝒊𝒔𝒔𝒔𝒔𝒔𝒔𝒂𝒂−𝟐𝟐)+𝟐𝟐.𝟐𝟐∗(𝒄𝒄𝒑𝒑𝒔𝒔𝒂𝒂𝒑𝒑−𝟑𝟑)𝟏𝟏𝟎𝟎𝟎𝟎  ( 5 ) 

 

where M is the particle size parameters which is a function of percent silt, sand, and clay contents 

of the soil, OM is the percent organic matter (%), csoilstr is the soil structure code used in soil 

classification, and cperm is the profile permeability class [Wischmeier et al., 1971].  CUSLE is the 

ratio between soil loss caused by land cropped for specific conditions and loss from clean-tilled 

continuous fallow, computed by: 

𝑪𝑪𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼 = 𝒔𝒔𝒆𝒆𝒑𝒑� �𝒔𝒔𝒍𝒍(𝟎𝟎.𝟖𝟖) − 𝒔𝒔𝒍𝒍�𝑪𝑪𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼,𝒑𝒑𝒊𝒊𝒍𝒍�� ∗𝒔𝒔𝒆𝒆𝒑𝒑�−𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟐𝟐 ∗ 𝒂𝒂𝒔𝒔𝒅𝒅𝒔𝒔𝒉𝒉𝒂𝒂𝒔𝒔�+ 𝒔𝒔𝒍𝒍�𝑪𝑪𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼,𝒑𝒑𝒊𝒊𝒍𝒍�� ( 6 ) 

 

where CUSLE,min is the minimum value for the cover and management factor and rsdsurf is the residue 

on the soil surface (kg/ha) [Wischmeier and Smith, 1978].  PUSLE is the ratio between soil loss 
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resulting from a specific support practice, e.g., contour tillage, and the up-and-down slope culture.  

The default value implemented in SWAT is one.  LSUSLE is the ratio between soil loss per unit area 

from a field slope and the soil loss from a 22.1 meter length of uniform 9% slope calculated by: 

𝑼𝑼𝑺𝑺𝑼𝑼𝑺𝑺𝑼𝑼𝑼𝑼 = �𝑼𝑼𝒉𝒉𝒊𝒊𝒔𝒔𝒔𝒔𝟐𝟐𝟐𝟐.𝟏𝟏�𝒑𝒑 ∗ (𝟓𝟓𝟐𝟐.𝟒𝟒𝟏𝟏 ∗ 𝒔𝒔𝒊𝒊𝒍𝒍𝟐𝟐(𝜶𝜶𝒉𝒉𝒊𝒊𝒔𝒔𝒔𝒔) + 𝟒𝟒.𝟐𝟐𝟓𝟓 ∗ 𝒔𝒔𝒊𝒊𝒍𝒍𝜶𝜶𝒉𝒉𝒊𝒊𝒔𝒔𝒔𝒔 + 𝟎𝟎.𝟎𝟎𝟓𝟓𝟐𝟐) ( 7 ) 

 

where Lhill is the hill slope length (meters), m is a function of the HRU slope, and αhill is the angle 

of the slope [Williams, 1995].  Finally CFRG is computed by: 

𝑪𝑪𝑪𝑪𝑹𝑹𝑪𝑪 = 𝒔𝒔𝒆𝒆𝒑𝒑 (−𝟎𝟎.𝟎𝟎𝟐𝟐𝟐𝟐 ∗ 𝒂𝒂𝒔𝒔𝒄𝒄𝒑𝒑) ( 8 ) 

 

where rock is the percentage of rock in the first soil layer (%) [Williams, 1995].  SWAT has been 

extensively used in hydrologic studies including those that assess climate and LULC change 

impacts [Gassman et al., 2007; Johnson et al., 2012; Krysanova and Srinivasan, 2015; R Wang et 

al., 2014]. 

5.2 Model Inputs 

The SWAT model was prepared using ArcSWAT, an ArcGIS-ArcView extension and graphical 

user interface.  Model development, calibration, and validation periods were from 1984 – 1989 

and 1990 – 1994.  Model inputs include spatially distributed LULC, digital elevation model, and 

soil maps. The watershed is delineated into subbasins and can then further be broken into 

hydrological response units (HRUs) for which the land use, topography, soil type and management 

practices may be assumed relatively homogeneous.   HRUs aid in the simplification of simulations 
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and increase accuracy with regard to sediment loading as it can more appropriately capture plant 

diversity contained within a single subbasin [Neitsch et al., 2011]. 

5.2.1 LULC 

LULC data for 1992 was obtained from the National Land Cover Database (NLCD) and is shown 

in Figure 6 [Vogelmann et al., 2001].  Full class names for the abbreviated land covers and their 

percentage of the watershed are provided in Table 2.    The study region is primarily undeveloped 

and has minimal urban areas.   Forested wetlands are prominent along the Apalachicola River and 

become more abundant, along with non-forested wetlands, closer to the mouth of the river. 

Agriculture and hay is typical of the northern region.  There are heavily forested regions and 

significant range lands within the middle sections.  Urban areas (low density, high density, and 

commercial) are minimal, having a combined area that makes up less than 1% of the total 

watershed.   Wetlands account for 32% of the total watershed area while agriculture and hay 

coverage is around 20%.  Forests are the most prevalent land coverage, making up 39% of the total 

area.   
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Figure 6 National Land Cover Database (NLCD) LULC c2000 within the study domain. 

Full class names for each abbreviated land cover are provided in Table 2.  
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Table 2 c.2000 NLCD LULC class abbreviations, full name, and percentage of the 

watershed. 

c.2000 Abbreviation c.2000 full name Percent of watershed 

WETN Wetlands – non-forested 0.70 

WETF Wetlands - forested 31.23 

WATR Water 1.97 

URLD Urban low density 0.49 

URHD Urban high density 0.04 

UCOM Commercial 0.27 

SWRN Southwestern US (Arid Range) 6.17 

RNGE Range - grasses 0.00 

HAY Hay 6.62 

FRST Forest - mixed 11.84 

FRSE Forest - evergreen 18.53 

FRSD Forest - deciduous 8.38 

AGRR Agricultural land-row crops 13.77 

5.2.2 Digital Elevation Model 

A digital elevation model (DEM) is comprised of topographic and bathymetric data.  This study 

uses a DEM that was derived from online accessible, topographic data provided by the Northwest 

Florida Water Management District and surveyed bathymetry provided by the U.S. Army Corps 

of Engineers, Mobile District (http://www.nwfwmdlidar.com/).  At 5 meter resolution, the extent 

spans from the bay to as far north as Marianna, FL.  For the remaining part of the basin, 1/3 arc-

second (~10 meter) resolution obtained from the National Elevation Dataset (NED) was used [U.S. 

Geological Survey, 2013].  These datasets were processed and combined using ArcGIS to develop 

a seamless DEM [Medeiros et al., 2011] (Figure 7).  Elevation and relief are relatively low near 
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the bay, where expansive wetlands are indicated by LULC data (Figure 6).  Elevation increases 

moving north.  The range is around -23 in the river to 110 meters referenced to NAVD88.   Due 

to the fine resolution of the DEM, the Apalachicola and Chipola Rivers, as well as smaller 

tributaries throughout the domain are accurately captured.   
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Figure 7 Digital elevation model (DEM) in meters (NAVD88) within study domain. 
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5.2.3 Soil 

The soil data were acquired from the Soil Survey Geographic Database (SSURGO) [US 

Department of Agriculture (USDA), 2007].  Data for the Florida counties: Bay, Calhoun, Franklin, 

Gadsden, Gulf, Jackson, Liberty, and Washington, Alabama counties: Geneva and Houston, and 

Georgia counties: Decatur were downloaded and merged within ArcGIS.  Within ArcSWAT the 

code map unit MUKEY was used to merge individual units with soil attributes in the U.S. 

SSURGO Soils Database (http://swat.tamu.edu/software/arcswat/).  

 

The hydraulic conductivity and percent of silt, sand, and clay are some of the physical properties 

that are defined by the SSURGO Soils Database.  Values of hydraulic conductivity within the 

study domain range from 3 to 890 mm/hr with the lowest hydraulic conductivity, less than 10 

mm/hr, seen along the floodplains of the Apalachicola River (Figure 8).  Additionally, lower 

hydraulic conductivity is seen in the northern region near Dothan, AL.  Sand is the most dominant 

soil type throughout the domain, with the exception along the Apalachicola River and surrounding 

floodplain (Figure 9).  Along the river the percentage of silt and clay is larger and moving closer 

to the bay, the soil becomes mostly comprised of silt.  It should be noted that the identifiable 

discontinuity in soil classification in the northern region of the domain occurs at the Florida – 

Alabama state line and is believed to be caused by differences in classifying / processing 

techniques by the states.   
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Figure 8 Hydraulic conductivity (mm/hr) of soils within the study domain.
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Figure 9 Percent (a) silt, (b) sand and (c) clay of soils within the study domain.

(a)         (b)      (c) 
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For each subbasin, a single or multiple HRUs can be assigned.  In the case of multiple HRUs, 

which was the method selected for this study, user defined thresholds for land use, soil class and 

slope class are selected to guide discretization.  This study applied a 5% threshold for each, 

meaning that land use, soils, and slopes that covered less than 5% of the subbasin area were 

eliminated and the remaining reapportioned.  From the total 99 subbasins for the watershed, 4,187 

HRUs were created.   

5.2.4 Climate Data 

SWAT climatic data includes precipitation, temperature, solar radiation, relative humidity, and 

wind speed.  Observed daily data can be used singularly or in conjunction with a weather generator 

that creates values in place of missing data.  The National Centers for Environmental Prediction 

(NCEP) developed the Climate Forecast System Reanalysis (CFSR) which provides weather data 

in SWAT file format [National Centers for Environmental Prediction, 2015].  Values from CFSR 

were generated for missing daily rainfall and temperature data and for all other climatic variables.  

Climatic data (precipitation and temperature) was downloaded for five stations (Table 3) from the 

National Centers for Environmental Information (NCEI) for 1/1/1984 – 12/31/1989 [Menne et al., 

2012].  This period will be referred to as the ‘historic’ period. The stations, as they are located in 

the study domain, are represented by the red circles in Figure 10.   
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Table 3 Climate station NCEI codes, downloaded data type, location, and elevations. 

Station NCEI Code Data Type Lat, Long (deg) Elev (m) 

Apalachicola 

Airport, FL GHCND:USC00080211 

Precip & 

Temp 29.72, -85.02 6.1 

Wewahitchka, FL GHCND:USC00089566 

Precip & 

Temp 30.12, -85.20 12.8 

Woodruff Dam, FL COOP:089795 Precip 30.72, -84.87 23 

Bristol, FL COOP:081020 Precip 30.42, -84.99 48.8 

Dothan, AL COOP:012377 Precip 31.19, -85.37 83.8 
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Figure 10 Location of stream gages (orange), weather stations (red) and outlet (cyan). 
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5.2.5  Boundary Conditions 

The model applies one boundary condition for daily streamflow and sediment loading at the Jim 

Woodruff Dam.  The boundary is applied at the same location as the U.S. Geological Survey 

(USGS) station 02358000 and is shown in Figure 10 by the orange diamond near Chattahoochee, 

FL [USGS, 2001].  Observed daily streamflow and sediment load were downloaded from the 

USGS station.  Due to the limited number of observed sediment records occurring within the 

historic period, a power law regression analysis was performed between the observed daily 

streamflow and observed sediment load to establish a relationship that was used to derive an 

empirical sediment load.   

 

 

Figure 11 Power law regression analysis of sediment yield and stream flow at USGS 

01247000 near Jim Woodruff Dam. 
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Several approaches were taken to develop the best fitting relationship.  One method was to use 

multiple equations that would describe the data points at the extremes.  Another was applying 

slight variations to the equation shown in Figure 11.   The relationship that was finally 

implemented for this study was 

𝒔𝒔𝒔𝒔𝒅𝒅𝒔𝒔𝒑𝒑𝒑𝒑𝒊𝒊𝒂𝒂𝒊𝒊𝒄𝒄𝒅𝒅𝒔𝒔 = (𝟑𝟑𝑼𝑼 − 𝟗𝟗)𝑸𝑸𝒔𝒔𝒃𝒃𝒔𝒔𝒔𝒔𝒂𝒂𝒃𝒃𝒔𝒔𝒅𝒅𝟏𝟏.𝟐𝟐𝟐𝟐𝟖𝟖
 ( 9 ) 

 

where sedempirical (tonnes/day) is the empirically derived daily sediment load and Qobserved is the 

observed daily streamflow measured at USGS station 02358000 (m3/sec).  The empirically derived 

sediment load and observed streamflow were ultimately applied at the boundary.  Observed daily 

values for streamflow and sediment load were also downloaded for a USGS station near Sumatra, 

FL (02359170), to be used for the model calibration / validation (Figure 10).   

5.3 Assumptions and Limitations 

The U.S. Army Corps currently regulates flow from the Jim Woodruff Dam and Lock.  In the case 

of the future scenarios, the boundary conditions of streamflow and sediment load were assumed to 

remain unchanged from present conditions.  Elevations and soil distributions were also assumed 

to remain constant from c.2000 to c.2100.  In addition, tidal influences near the mouth of the river, 

while also important, are beyond the scope of this study.  

5.4 Calibration and Validation 

The model calibration and validation periods are 01/01/1985 – 12/31/1989 and 01/01/1990 – 

12/31/1994, respectively.  To reach stable conditions and avoid erroneous outputs, a one year ramp 
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up or warm up period was applied, therefore results from 1984 were excluded.  The Nash-Sutcliffe 

efficiency (NSE) and percent bias (PBIAS) were used to assess the model’s performance of daily 

output, with optimal scores being equal to 1 and 0, respectively.  The Nash-Sutcliffe efficiency 

measures the residual variance to the variance of the observed data; an NSE equal to zero indicates 

the model predictions are as accurate as the measured data average and less than zero indicates the 

mean of the observed data is a better predictor than the model results [Nash and Sutcliffe, 1970].  

Percent bias measures the model’s average tendency to predict higher or lower values than the 

observed data; a positive PBIAS indicates the model tends to under predict values and a negative 

PBIAS indicates the model overestimation bias [Gupta et al., 1999]. The NSE was the primary 

statistic used during the model calibration and the PBIAS served as a secondary measure. 

 

Simulated results were compared with observed data from the USGS station near Sumatra, FL 

(02359170).  Prior to any calibration, the streamflow NSE values for the calibration and validation 

periods were 0.57 and 0.43, respectively.  The model was manually calibrated.  Simulated sediment 

yield is reliant on the model’s ability to capture surface runoff and peak discharge, therefore 

calibration of water quantity was made the primary focus.  To help guide the process, a preliminary 

series of trials were run where parameters related to surface runoff, baseflow, and sediment yield 

were altered to their extreme values allowed by the model or believed to be scientifically 

defensible.  The parameters that proved to affect model results most significantly were then 

categorized according to their main contribution to influence either streamflow or sediment 

quantity.  Those parameters that affected both were grouped with the streamflow class.  A second 

distribution broke up those parameters that altered streamflow into a primary and secondary 

hierarchy, based on the model sensitivity that was observed.   The classification was then used to 
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develop the flow chart shown in Figure 12.  The NSE calibration values shown in the red decision 

shapes were based on acceptable values found in the literature, the initial NSE values prior to 

calibration, and the sensitivity that was observed during the initial trial runs.   

 

The list of the calibrated parameters, their descriptions, and adjusted values are listed in Table 4.  

The calibration adjustments with percentages describe the percent change of the parameter value 

from the original, default value.  A single number reported for the calibration adjustment represents 

the ultimate value assigned for the parameter within the SWAT model.  

57 

 



 

 

 

 

 

Figure 12 Calibration flow chart for streamflow and sediment loading. 
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Table 4 Calibrated SWAT parameters, descriptions, and adjustments. 

 

 

The model performance statistics are provided in Table 5.  The calibration and validation NSE 

values for streamflow were 0.84 and 0.69 and the PBIAS was -2.42 and -9.32.  The negative PBIAS 

indicates the model has an over prediction bias for the streamflow.  While the boundary condition 

at the Jim Woodruff Dam applied the empirically derived sediment loading, the model sediment 

loading was calibrated and validated using observed data collected at USGS station.  The 

calibration and validation NSE values for sediment loading were 0.42 and 0.44.  The PBIAS for 

the sediment calibration period was 15.97 indicating an under estimation bias and for the validation 

Parameter Description 
Calibration 

Adjustment 

CN2 SCS runoff curve number -21.0% 

CH_N2 Main channel Manning’s “n” 0.019 

CH_K2 Main channel effective hydraulic conductivity (mm/hr) 110 

ALPHA_BF Baseflow alpha factor (1/days) 0.25 

CH_S2 Main channel average slope (m/m +6.0% 

ESCO Soil evaporation compensation factor 0.75 

SURLAG Surface runoff lag coefficient 0.5 

GW_DELAY Groundwater delay time (days) 13 

EPCO Plant update compensation factor 0.54 

GW_REVAP Groundwater “revap” coefficient 0.2 

RCHRG_DP Deep aquifer percolation fraction 0 

HRU_SLP Average slope steepness (m/m) -15.0% 

USLE_P USLE equation support practice factor 0.055 

SLSUBBSN Average slope length (m) +50.0% 

OV_N Manning’s “n” for overland flow +50% 
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period the PBIAS was -29.74, indicating an over estimation bias.  According to the literature and 

guidelines set by Moriasi et al. [2007], the model performance for both streamflow and sediment 

was determined above satisfactory, and can be considered good or very good for the application 

of daily time steps.  The graphical time series of observed vs. simulated streamflow (m3/s) and 

sediment load (tonnes/day) for both the calibration and validation periods are shown in Figure 12.  

The model adequately reproduces baseflow and events, both in magnitude and timing.  Despite the 

difficulties often associated with modeling sediment, seasonal and event fluctuations are 

sufficiently captured by the model. 

Table 5 Daily model performance statistics. 

 Calibration Validation 

Statistic Streamflow Sediment Streamflow Sediment 

NSE 0.84 0.42 0.69 0.44 

PBIAS -2.42 15.97 -9.32 -29.74 
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Figure 13 Observed vs. simulated time series for streamflow (cms) and sediment loading (tonnes/day).
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CHAPTER 6: PROJECTED CLIMATE CHANGE 

6.1 IPCC Special Report Emission Scenarios 

Climate change projections refer to the Intergovernmental Panel on Climate Change (IPCC) Fourth 

Assessment Report (AR4).  The AR4 is based on an ensemble of global climate model (GCM) 

outputs resulting from a collaborative effort made by several modeling groups worldwide [IPCC, 

2007].  Future conditions impose A2, A1B, and B1 scenarios from the IPCC Special Report: 

Emissions Scenario (SRES), which represent potential future carbon emissions resulting from a 

range of driving forces (e.g., social, economic, environmental, technologic) [IPCC, 2000].  Briefly 

put, A2 describes a heterogeneous world, with uneven economic and technological growth and 

diversified social and political constructs.  A1B describes a rapidly changing world with economic 

growth, population increase that then declines by 2100, and balance between supply sources and 

technological advancements.  B1 is similar to A1B, describing a rapidly changing world with 

economic balance and but differs in that social and technological advancement is geared toward 

environmental conservation and sustainability.  Fully described storylines for each scenario can be 

found in the IPCC-SRES  [IPCC, 2000] 

6.2 Global Climate Model Selection 

While GCMs typically converge on global climate predictions, structural differences between 

GCMs can result in contradictory climate predictions at local scales [Semenov and Stratonovitch, 

2010].  Further, specific GCMs have been shown to perform better for particular regions.  Cai et 

al. [2009] assessed the performance of seventeen GCMs based on hindcasts of temperature and 
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precipitation for the periods of 1961 – 1990 and 1931 – 1960.  Skill scores, based on the root mean 

square error (RMSE) for each GCM, ranging 0.00 – 0.06, 0.06 – 0.10, 0.10 – 0.20, and >0.20 were 

plotted globally on a 2° x 2° grid.  The skill score as well as the model data availability to 

incorporate the maximum number of carbon emission scenarios guided the GCM selection process 

for this study.  For a more comprehensive assessment, a multi-model inter-comparison approach 

was taken.  The following three models were ultimately selected: (1) HadCM3 (HADCM3), (2) 

IPSL-CM4 (IPCM4), and (3) ECHAM5-OM (MPEH5) [Semenov and Stratonovitch, 2010].  The 

associated research centres and grid resolutions are provided in Table 6.  The temperature skill 

score for each of the models fell in the 0.06 – 0.10 range.  The precipitation skill score for IPCM4 

and MPEH5 was 0.06 – 0.10 while HADCM3 ranged 0.10 – 0.20, indicating the HADCM3 may 

be more suitable for predicting future climate for this region. 

Table 6 Selected global climate models, research centres, and grid resolutions [Semenov 

and Stratonovitch, 2010] 

Global Climate 

Model 

Model 

Acronym 
Research Centre Grid Resolution 

HadCM3 HADCM3 UK Meteorological Office 2.5 x 3.75° 

IPSL-CM4 IPCM4 Institute Pierre Simon Laplace 2.5 x 3.75° 

ECHAM5-OM MPEH5 Max-Planck Institute for Meteorology 1.9 x 1.9° 

6.3 Downscaling Approach 

Due to their coarse resolution, GCMs struggle to capture small scale processes that occur at local 

extents which can result in inaccurate climate predictions.  What’s more, GCMs often provide 

monthly averages or change rates, while many process based models, including SWAT, require 
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daily inputs.  Various temporal and spatial downscaling techniques have been developed to resolve 

these issues including the implementation of weather generators.  For this study, the Long Ashton 

Research Station-Weather Generator (LARS-WG) was used to generate daily, stochastic 

temperature and precipitation for the future climate change scenarios.  LARS- WG is capable of 

producing daily, synthetic weather time series, i.e., baseline scenario, developed from and having 

the same statistical characteristics as localized, observed daily data.  Similarly, future synthetic 

data can be generated for each carbon emission scenario, i.e., A2, and time period, i.e., 2081 – 

2100, as predicted by the GCMs.  Predictions from fifteen GCMs used in the AR4 have been built 

into the newest version of LARS-WG.  Computed monthly changes between the baseline scenario 

and future synthetic dataset can then be incorporated into a scenario file (.sce) that is used by 

LARS-WG to perturb the baseline parameters, i.e., minimum / maximum temperatures and 

rainfall, at each grid point (Table 6).  Data is interpolated across the study area between grid points 

using local and global interpolation procedures [Semenov and Brooks, 1999].  The final 

downscaled, daily climate data for temperature and rainfall is provided at each location for which 

the observed data was provided.  For a more detailed description of LARS-WG and the 

downscaling approach applied, see Semenov and Stratonovitch [2010]. 

 

Thirty years of observed data, 1970 – 1999, from the above mentioned five weather stations 

previously shown in Figure 10, were used to create the baseline scenario representative of present 

day conditions.  Weather was then generated under 2100 carbon emission scenarios (A2, A1B, and 

B1) as predicted by the GCMs (HADCM3, IPCM4, MPEH5) for the future conditions.  The 

relative monthly change in precipitation and the absolute monthly change in temperature for each 
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scenario was incorporated into the scenario file and outputs provided the downscaled 2100 weather 

data used by SWAT.   

 

Among the GCMs, there are stark dissimilarities in the relative change in rainfall (Figure 14).  

HADCM3 predicts wetter wet seasons and drier dry seasons.  IPCM4 overall predicts a decrease 

in rainfall, with the exception of August and September.  MPEH5 shows an increase in rainfall 

with the exception of August.  The relationship among the carbon emission scenarios is variable 

with no one prevailing in more or less relative change to rainfall.    On the other hand, the GCMs 

converge on the assumption that temperature will increase in this region from present to future 

conditions.   HADCM3 has the largest absolute increase, particularly during the dry season.  

IPCEM4 is generally consistent throughout the year with little seasonal fluctuation, and MPEH5 

shows an increase especially during May, June, October and November.  In regard to the carbon 

scenarios, A2 shows a dominant increase in temperature to all other scenarios.  A1B is secondary 

and the B1, while still showing an increase, is drastically smaller than A2 and A1B.  
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Figure 14 Monthly relative change in rainfall (a) HADCM3, (b) IPCM4 (c) MPEH5 and 

absolute change in temperature (°C) (d) HADCM3 (e) IPCM4 and (f) MPEH5 from 

present to future. 
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CHAPTER 7: PROJECTED LAND USE LAND COVER CHANGE 

In keeping with future IPCC carbon emission scenarios, projected 2100 A2, A1B, and B1 LULC 

provided by the United States Geological Survey (USGS) EROS Center was selected to asses 

LULC change impacts [USGS EROS Center, 2014].  The maps were developed by incorporating 

data from each SRES into a spatially explicit model.  Some land cover classes in the 2100 LULC 

are incongruent with those recognized by SWAT in the land cover lookup tables and were therefore 

adapted in a way that datasets could be incorporated into the SWAT model and were comparable 

with present day (c.2000) classifications.  The 2100 classes and their updated c.2000 class 

assignment are shown in Table 7. 

Table 7 Adaptation of 2100 to c.2000 LULC classes  

2100 original 2100 adapted  
Abbreviation for 

2100 adapted 

Herbaceous wetland Wetlands - nonforested WETN 

Woody wetland Wetlands - forested WETF 

Water Water WATR 

Developed Urban high density URHD 

Mining Southwestern US range SWRN 

Barren Southwestern US range SWRN 

Grassland Range - grasses RNGE 

Mechanically disturbed national forest Forest - mixed FRST 

Hay / pasture land Hay HAY 

Mechanically disturbed other public lands Forest - mixed FRST 

Mechanically disturbed private Forest - mixed FRST 

Mixed forest Forest - mixed FRST 

Shrubland Forest - mixed FRST 

Evergreen forest Forest - evergreen FRSE 

Deciduous forest Forest - deciduous FRSD 

Cropland Agricultural land-row crops AGRR 

Perennial ice / snow -- -- 
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The spatially distributed maps for the future 2100 A2, A1B, and B1 are shown in Figure 14 and 

the percentage of the study domain for each land cover type is listed in Table 8.  From present to 

2100 A2, forests yield to agriculture, a 109% increase, and urban areas, particularly Dothan, AL, 

Marianna, Wewahitchka, Port St. Joe and Apalachicola, FL, are predicted to increase.  The relative 

offsetting of sediment-producing land uses such as urban and agriculture by sediment-conserving 

forests is expected to increase sediment yield for the A2 LULC class compared with present day 

conditions.  A1B shows an increase in urban area with less emphasis near the coast for 

Apalachicola and Port St. Joe and less new agricultural area as compared to A2.  The A1B is most 

similar to the present conditions in regard to cumulative land allotted for urban, agriculture, and 

forest.  B1 shows similar urban development as A1B, however there is a 31% decrease in 

agriculture as it gives way to forested area, which is expected reduce the total sediment yield.  

From c.2000 to 2100 wetlands, both forested and non-forested, remain fairly consistent.  The 

changes occurring within the 2100 LULC sets align with the fundamental storylines developed by 

the SRES for which they are based on.
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Figure 15 LULC for 2100 (a) A2, (b) A1B, and (c) B1.  2100 classes have been adapted to match c.2000.  Full class names 

for each abbreviation are provide in Table 6. 

(a)             (b)                    (c) 
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Table 8 Percentage of land cover type in study domain for each LULC dataset 

LULC c.2000 2100A2 2100A1B 2100B1 

WETN 0.7 0.7 0.7 0.7 

WETF 31.2 30.6 31.2 31.5 

WATR 2.0 2.0 2.0 2.0 

URLD 0.5 0.0 0.0 0.0 

URHD 0.0 3.7 2.6 1.8 

UCOM 0.3 0.0 0.0 0.0 

SWRN 6.2 0.0 0.1 0.0 

RNGE 0.0 0.0 0.0 0.0 

HAY 6.6 6.2 8.4 7.6 

FRST 11.8 10.2 15.8 16.4 

FRSE 18.5 14.1 17.5 22.5 

FRSD 8.4 3.6 6.1 8.0 

AGRR 13.8 28.9 15.6 9.5 
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CHAPTER 8: ASSESSMENT OF CLIMATE AND LAND USE LAND 

COVER IMPACTS 

8.1 Simulation Ensemble 

Following is the assessment of streamflow and sediment response to changes in (1) climate, (2) 

LULC, and (3) coupled climate and LULC change.  Outputs are evaluated near the mouth of the 

river outside the bound of tidal influence prior to entering Apalachicola Bay as indicated by the 

cyan colored diamond in Figure 10.  When assessing the seasonal response of climate and LULC 

change, streamflow and sediment that are applied at the Jim Woodruff Dam boundary are 

excluded; daily influx values have been subtracted from the daily output values at the outlet prior 

to analysis.  This is done to further target alterations originating in the study domain and highlight 

changes that might otherwise be diluted by incorporating the total flow.  The baseline simulation 

represents present day conditions and serves as the constant to which the future simulations’ 

predictions are compared.   

 

Table 8 shows the total simulation ensemble detailing the climate and LULC implemented for 

each.  In the case of climate only, data are presented for each carbon emission scenario (A2, A1B, 

and B1) as predicted by each GCM (HADCM3, IPCM4, and MPEH5) and LULC represents 

present day conditions.  There are a total of nine simulations for this category.  For LULC only, 

climate is representative of present day and 2100 LULC for each carbon scenario is simulated, 

making for a total of three simulations.  Incorporating coupled climate and LULC change, a total 

of nine simulations capture the carbon scenarios for each GCM and corresponding 2100 LULC.  

71 

 



Table 9 Simulations and applied climate / LULC conditions.  

Description 

Conditions 
Simulation Climate (Scenario – GCM) LULC 

Baseline 1 Present (c.2000) c.2000 

Climate Only 

2 A2 - HADCM3 

c.2000 

3 A1B - HADCM3 

4 B1 - HADCM3 

5 A2 – IPCM4 

6 A1B - IPCM4 

7 B1 – IPCM4 

8 A2 – MPEH5 

9 A1B – MPEH5 

10 B1 - MPEH5 

LULC Only 

11 Present (c.2000) 2100 A2 

12 Present (c.2000) 2100 A1B 

13 Present (c.2000) 2100 B1 

LULC and 

Climate 

14 A2 - HADCM3 2100 A2 

15 A1B - HADCM3 2100 A1B 

16 B1 - HADCM3 2100 B1 

17 A2 – IPCM4 2100 A2 

18 A1B - IPCM4 2100 A1B 

19 B1 – IPCM4 2100 B1 

20 A2 – MPEH5 2100 A2 

21 A1B – MPEH5 2100 A1B 

22 B1 - MPEH5 2100 B1 

8.2 Streamflow and Sediment Yield Response to Climate Change Only 

The average, monthly runoff (cms) and sediment loading (tonnes / day) were used to compare 

quantities and seasonal shifts from present (baseline) to future (Figure 16).  The future simulations 

include changes to climate only as predicted by each GCM.  Results for each GCM are assessed 

individually and general behaviors that are in agreement for each GCM are summarized. 
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Figure 16 Monthly average streamflow (cms) for (a) HADCM3, (b) IPCM4 (c) MPEH5 and 

sediment (tonnes / day) (d) HADCM3 (e) IPCM4 and (f) MPEH5.  The colors represent 

baseline (black), A2 (green), A1B (orange) and B1 (blue).  Only climate change is 

considered.   
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8.2.1 HADCM3 

HADCM3 predicts a more heterogeneous seasonal pattern than the baseline, with higher high 

flows (near January – April and September - November) and lower low flows (May – August).  

This pattern is closely correlated with the relative change in rainfall (Figure 14(a)).  For the 

majority of the year, the A2 scenario produces lower runoff than A1B and B1.  The highest runoff 

is predicted by B1 during the earlier months of the year (January – July) and then a shift occurs in 

the later months (August – December) when A1B is highest.  Compared to the baseline, future 

sediment will be amplified during high loading periods and decreased during low loading periods.  

In general, when streamflow is predicted to increase or decrease from present to future, sediment 

mirrors the behavior.  The exceptions to this trend occur later in the year (August – December) 

when sediment is predicted to increase despite some flow decreases for the A2 and B1 scenarios 

(Figure 16(d)).  The relationship between runoff and sediment is also nonlinear.  An example of 

this is seen for March when the A1B estimates a 60% increase in sediment loading relative to a 

16% increase in runoff. 

8.2.2  IPCM4 

IPCM4 forecasts a future decrease in runoff for all months and carbon scenarios, with the exception 

of September and October (Figure 16(b)).  The average monthly flows are more homogenous 

throughout the course of the year, similar to the absolute temperature increase for IPCM4, which 

had smoother seasonal transitions compared to other GCMs (Figure 14(e)).  Patterns emerging 

between the carbon scenarios are difficult to distinguish, though A1B tends to be higher than A2 

and B1 during the drier, summer months.  Near the wet season from January – May there was an 

average percent reduction of 54%, 43%, and 45% from the baseline to future for A2, A1B, and 
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B1, respectively.  Regarding the sediment loading, negative values in January, February, and 

December for A2 and A1B indicate more sediment is coming into the study domain at the 

Chattahoochee inlet than is exiting into the Bay (Figure 16(e)).  This implies sediment is settling 

or being deposited within domain before reaching the outlet.  There is also an estimated increase 

of loading during the months of August – October.  As with the flow, A1B tends to estimate higher 

values than A2 and B1 for the majority of months out of the year.   

8.2.3 MPEH5 

MPEH5 indicates runoff may increase, particularly during later months of the year (June – 

December) with A2 estimating the largest quantities (Figure 16(c)).  Earlier in the year during 

February and March, A1B is the dominant scenario and increases by 36% and 30%, respectively.  

In correspondence with this, the sediment loading also drastically increases 177% and 36% (Figure 

16(f)).  Within the wet seasons, A1B has the largest loadings and during the dry season, A2 is 

typically largest.  Minimum loadings are predicted by the MPEH5 model to occur in April and 

May. 

8.2.4 Convergence of Global Climate Models 

The dissimilarities in response to climate change as predicted by the GCMs highlight the structural 

differences that exist between each model.  Still, some general trends can be extracted where 

outputs are in agreeance for all three GCMs.  The GCM ensemble converges on streamflow and 

sediment loading increasing in September and October for each scenario.  With the accompanied 

flow, sediment loading will also be increased for these months.  Further, loading for the baseline 
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is at its minimum from July to September, however future minimal values occur earlier in the year 

near April to June.  

8.3 Model Response to Land Use Land Cover Change Only  

Figure 17 shows the average monthly flow and sediment loading under future LULC change only 

for each carbon emission scenario compared to the baseline.  Runoff is virtually unaltered by the 

changes made to land use; future quantities match the present baseline with monthly differences 

equaling no more than ± 20 cms, occurring from August – October.  Sediment loading is more 

significantly affected, with monthly averages differing from the baseline ± 185 tonnes / day (Figure 

17(b)).  Further, a distinct response to the specific carbon scenarios is more easily identifiable.  A2 

predicts an increase in loading for all months.  The largest increase (33%) occurs in March.  A1B 

produces similar monthly averages compared to the baseline, and B1 results in a decrease in 

sediment loading.  The largest deviation between the baseline and B1 also occurs in March, when 

the sediment loading is projected to reduce by 18%.  Over the course of the entire 30 year 

simulation, the sediment percent change for A2, A1B, and B1 from the baseline are +43.8, -0.4, 

and -20.8, respectively.  Percent change for runoff is < 1% for all three scenarios.  In general, the 

seasonal fluctuations of future streamflow and sediment loading remain consistent with present 

day conditions.   
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Figure 17 Monthly average (a) streamflow (cms) and (b) sediment (tonnes / day).  The 

colors represent baseline (black), A2 (green), A1B (orange) and B1 (blue).  Only LULC 

change is considered.   

8.4 Model Response to Coupled Climate and Land Use Land Cover Change 

The coupling of both future climate and LULC change was simulated for each GCM and monthly 

averages for runoff and sediment loading are shown in Figure 18.  The general behaviors of 

increasing or decreasing from the baseline to the future are similar to the changes in climate only 

simulations, both seasonally and for individual months.  Therefore, subtle differences observed by 

the coupling of climate and LULC change as opposed to applying one or the other are assessed.  

The object was to assess if changes in one would exacerbate or dampen the effects of the other.  

To do so, the deviations from the baseline to future for climate only, LULC only, and coupled 

climate and LULC are evaluated as they relate to one another.   
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Figure 18 Monthly average streamflow (cms) for (a) HADCM3, (b) IPCM4 (c) MPEH5 and 

sediment (tonnes / day) (d) HADCM3 (e) IPCM4 and (f) MPEH5.  The colors represent 

baseline (black), A2 (green), A1B (orange) and B1 (blue).  Climate and LULC change is 

considered.   
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8.4.1 Runoff 

Overall, modeled runoff is nearly unmoved by the coupling effect as compared to the climate only 

simulations, which reemphasizes the minimal effect of LULC change on flow for this particular 

study.  When both climate only and LULC only simulations estimated an increase in runoff from 

the baseline, the additive quantities resulted in a value that was greater than predicted when the 

two were coupled during the simulation.  For example, September A2 – HADCM3 flow is 

predicted to increase from the baseline by 14 cms for both the climate only and LULC only 

simulations, which combined would equal a 28 cms increase.  However, coupling the two results 

in only a 24 cms increase from the baseline.  Alternatively, for A2 in June and July when runoff 

was predicted to decrease for climate only and LULC only simulations, the coupled climate and 

LULC change resulted in a smaller reduction from the baseline. 

8.4.2 Sediment Loading 

A more dynamic interaction occurs in the response of sediment loading and nonlinearities resulting 

from the coupling of climate and LULC change are more detectable.  All models indicate sediment 

increase may be amplified by the coupled interaction when both climate only and LULC only 

simulations predict an increase, e.g. October A2 – HADCM3, November A1B – IPCM4, and 

August A2 – MPEH5.  When both climate and LULC are predicted to decrease from the baseline 

independently (April B1 – MPEH5 and June B1 – HADCM3) the combined interaction causes less 

of a decrease from the baseline than would be estimated by superposition.  In the instance when 

the loading for LULC only decreases and climate only increases (March A1B – HADCM3), 

sediment may result in larger values compared to a linear response.  Conversely, when LULC only 

increases and climate only decreases, e.g. April A2 – MPEH5 and February A2 – IPCM4, loadings 
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may be predicted as having overall lesser values than expected if the incremental increase / 

decrease from the baseline for isolated climate and LULC change simulations were added.   

8.4.3 Dynamic Response Case Study 

The monthly streamflow and sediment loading response to coupling changes in climate and LULC 

was further assessed for the HADCM3 model to evaluate if the processes might be modeled as 

isolated occurrences or if the interaction could result in a dynamic, non-linear response.  To do so, 

the deviations from the baseline for the climate only, LULC only, and climate and LULC 

simulations were plotted (Figure 19 (a), (b), and (c)).  To test if the simulated response to climate 

and LULC might be represented by modeling these processes separately and then estimated using 

methods of superposition, the additive deviation quantities for the climate only and LULC only 

simulations were then subtracted from the climate and LULC simulation (Figure 19(d)).  A value 

of zero represents a linear response.  A value greater than zero indicates a dynamic response where 

deviations from the baseline, regardless of being an increase or decrease, would be larger by 

simulating climate and LULC simultaneously in the model that was predicted using the results for 

the additive individual responses.  A values less than zero still indicates a dynamic response but 

one where the coupled climate and LULC change simulation predicted less of a deviation from the 

baseline for future conditions than would be estimated by the individual processes. 

 

Figure 19(d) shows near zero, positive, and negative values for the individual carbon emission 

scenarios.  A2 shows the coupling effect of climate and LULC changes may result in amplified 

response for the early months of the year (January – July) as well as for December while a 

dampened response was observed for August – November.  A polar response to the monthly 
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behavior seen for A2 was detected for the B1 scenario, while A1B was relatively close to zero 

differing no more that ±5 cms, suggesting the scenario may be predicted by superposition.  

 

 

Figure 19 Future streamflow deviations from the baseline for HADCM3 the A2 (green), 

A1B (orange) and B1 (blue) scenarios.  (a) Climate only, (b) LULC only, (c) climate and 

LULC, and (d) deviations climate and LULC – (deviations climate only + deviations LULC 

only) 

 

The same analysis was performed for the sediment loading (Figure 20).  A dynamic response to 

the coupled interaction of climate and LULC change was observed for the sediment loading.  For 

the A2 carbon scenario, response is amplified for the months of January – March and August – 
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December while during the summer months a de-amplification is shown.  The seasonal behavior 

aligns with those observed by the climate only simulation, with sediment predicted to increase for 

all months with the exception of April – July.  This indicates that the coupling effect may predict 

larger quantities of sediment loading that would be suggested by the modeling climate and LULC 

changes separately.  As seen with the streamflow, the A1B scenario is relatively small and might 

be estimated by superposition.  Further as with the streamflow, behavior experienced by the B1 

scenario is typically opposite, in regard to being positive or negative, to A2.  The seasonal 

fluctuation appears to be driven by changes in climate and that by incorporating both changes, 

sediment loading of B1 is made closer to the baseline.  That is, in instances where the climate only 

simulation predicted an increase in loading, the response was dampened, and when loading was 

predicted to decrease (summer months), the deviations from the coupled simulations were 

enlarged.  The behavior observed suggests a dynamic response for both streamflow and sediment 

loading to coupling changes in climate and LULC within the model simultaneously.   
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Figure 20 Future sediment loading deviations from the baseline for HADCM3 the A2 

(green), A1B (orange) and B1 (blue) scenarios.  (a) Climate only, (b) LULC only, (c) climate 

and LULC, and (d) deviations climate and LULC – (deviations climate only + deviations 

LULC only) 

8.4.1 Seasonality 

As seen with the climate only simulation, coupled climate and LULC change results show a large 

gradation in the results produced by different GCMs.  The behaviors of runoff and sediment are 

very similar to the climate only simulation in regard to their increase or decreasing behaviors from 

the baseline.  That is, the HADCM3 predicts higher high flows and lower low flows, IPCM4 

indicates overall lowered streamflow, and MPEH5 produces generally increased flow.  The general 
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seasonal behavior for sediment is also very similar.  Including both climate and LULC caused a 

significant increase sediment loading for the A2 scenario, followed by the A1B, and lastly B1. 

8.5 Model Response to Extreme Event 

An analysis of the simulated response of streamflow and sediment loading was performed for an 

extreme event.  The event was selected using the Weibull method to identify a 24 hour, 25 year 

return period for streamflow.  Once the streamflow quantity having a 24hr-25yr return period was 

established for each simulation, a streamflow representative of the event and corresponding 

sediment loadings were extracted from each dataset.   

 

The extreme event analyzes the both the peak and total quantities.  Figure 21 shows the peak 

streamflow and sediment loading for the extreme events.  The black bar indicates the present day 

peak streamflow and sediment at 5,353 cms and 58,420 tonnes/day, respectively.  In the case of 

LULC only, the values only represent scenarios A2, A1B, and B1, not individual GCMs.  The 

quantities shown in the graphs correspond with the scenarios labeling on the x-axis and are 

repeated for each GCM.  Changes in LULC only, as indicated by the gold bars, did not change the 

peak discharge.  Sediment loading was only mildly affected for A2, A1B, and B1, which were 

58,460, 58400, and 58380 tonnes/day, respectively.  The climate only simulation resulted in 

differing responses associated with the individual GCMs.  Where HADCM3 and IPCM4 generally 

estimated a decrease in the peak discharge, MPEH5 predicted an increase.  Despite the increase in 

streamflow for MPEH5, the sediment loading does not have a remarkable increase, and for A2 and 

A1B, the peak loading is actually expected to decrease.  Additionally, the sediment load for IPCM4 

is predicted to increase for A2, A1B, and B1 to 61,480, 61,820, 60,740 tonnes/day.   When 
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coupling both climate and LULC change, generally an increase in the peaks occurred compared to 

the climate only simulations however the trends between GCMs remained the same.  The average 

percent increase / decrease of peak streamflow from the baseline when simulating climate and 

LULC change was -0.8%, -0.5% and 2.0% for HADCM3, IPCM4, and MPEH5, respectively.  For 

sediment, the values changes by an average of -0.3%, 5.2%, and -0.1% for HADCM3, IPCM4, 

and MPEH5.   

 

 

Figure 21 (a) Peak streamflow and (b) sediment loading for 24 hour, 25 year event 

  

A 50 day period was extracted from each simulation dataset to incorporate the entirety of the event, 

including several days prior to the peak and the recession.  The sums for both the streamflow and 

sediment loadings from all climate, LULC, and coupled climate and LULC simulations are shown 

in Figure 20.  The baseline had a total discharge of 99,833 cms over the course of the event.  The 

change in total streamflow resulting from LULC only change was minimal, as compared to the 
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baseline, with the A2, A1B, and B1 scenarios showing resulting in 100,217; 99,895; and 99,775 

cms, respectively.  In response to climate only, total streamflow showed a decrease for HADCM3 

and IPCM4 whereas MPEH5 projected an increase.  The MPEH5 percent increase from the 

baseline for A2, A1B, and B1 was a 5.4%, 3.8%, and 5.8%, respectively.  The same patterns 

resulting from the climate only runs were displayed for the simulations that include climate and 

LULC change.  The difference between the two simulation types was, for scenarios A2 and A1B 

total streamflow was increased by the coupling effect while a decrease occurred for B1, as 

predicted by all GCMs.  Further, the increase from the baseline also responded in a nonlinear way.  

That is, for example, LULC only increased total streamflow from the baseline by 384 cms for A2, 

climate only increased by 5,429 cms for A2 MPEH5, and climate and LULC increased by 6,279 

cms for A2 HADCM3.   

 

Regarding the sediment loading, the baseline had a total amount of 640,649 tonnes/day over the 

50 day period.  Changes to LULC only caused sediment to increase for the scenarios A2 (644,832 

tonnes/day) and A1B (641,173 tonnes/day) and to decrease for B1 (638,576 tonnes/day).  The 

deviations from the baseline were more drastic for the sediment load however and for all GCMs, 

the A2 scenario produced the largest and B1 the smallest total sediment.  Response to changes in 

climate only differed among the individual GCMs and scenarios.  While HADCM3 and IPCM4 

showed mixed increasing and decreasing, MPEH5 modeled an average increase from present 

conditions of 1.8%.  For climate and LULC simulations, the response was similar to that of the 

streamflow, with total sediment load expected to be larger for A2 and A1B scenarios compared to 

the climate only simulations.  The largest increase occurred for A2 MPEH5, which increased from 

the baseline by 3.2%.  The largest decreased occurred for B1 IPCM4, which was a 0.4% decrease. 
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Where the increases or decreases in peak streamflow and sediment loading for the extreme event 

were not closely correlated, a more unified response was observed for the total amounts over the 

50 day period.  In general HADCM3 and IPCM4 predicted less streamflow for both the peak and 

totals where MPEH5 experienced larger values.  Sediment loading had mixed responses for the 

peak from each GCM but in general over the entirely of the event, loading increased for all GCM 

for the A2 and A1B scenarios.  The decreased sediment loading for the peak and increased loading 

over the 50 day period modeled by MPEH5 indicates a longer recession period.   

 

 

Figure 22 (a) Total streamflow (cms) and (b) total sediment loading (tonnes/day) over 50 

day period incorporating 24 hour, 25 year return period event. The colors represent LULC 

only (gold), climate only (red), climate and LULC (blue) and the baseline (black). 

  

87 

 



CHAPTER 9: DISCUSSION 

Climate change as predicted by the individual GCMs show noticeable differences in future rainfall 

seasonal patterns with no one carbon emission scenario resulting in higher values, emphasizing 

the structural differences among GCMs.  The general consensus for temperature is that it will 

increase, with A2 predicting the highest values and B1 the lowest.  When incorporating climate 

change into the SWAT model, output in terms of runoff and sediment loading showed large 

distinction between GCMs, implying that these parameters might be driven more by rainfall than 

temperature.  Both the streamflow and sediment loading respond to future climate change, yet the 

ways in which they respond may be conflicting between GCMs.  At present, high runoff occurs 

around October – December.  All GCMs agree runoff will increase for the months of September 

and October, implying the current wet season may occur earlier in the year and with greater 

magnitude. In accompaniment, sediment loadings are also expected increase for these months.   

Further, loading for the baseline is at its minimum from July to September, yet a seasonal shift 

may occur with minimal loading happening earlier in the year, around April to June.  This response 

may be driven by the lowered future precipitation that occurs within these months.   

 

Incorporating the LULC change had little to no effect on the runoff response.  Surface runoff is 

computed using the SCS curve number method, and the cumulative curve numbers for the c.2000, 

2100 A2, A1B, and B1 land cover within the study domain are 46.9, 48.7, 45.7, and 44.4.  The 

slight variability in curve number values might explain why streamflow is so minimally affected 

by LULC change.  An alternative future LULC class assignment different than that produced in 

Table 7 could result in a more significant response.  The slight increase that does occur from 
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August – October for the A2 land cover might be explained by the plant growth model that is 

incorporated into SWAT and associated evapotranspiration. 

 

Sediment loading was far more impacted by changes made to land cover than runoff.  The loading 

increase observed from the A2 LULC may be a result of the large increase in agricultural lands 

and loss of forested area.  Sediment loading decreased for all month as a result of the B1 coverage.  

Compared to the c.2000 coverage, B1 has more forested regions and less agriculture.  It is inferred 

that agricultural and forested lands are directly related to sediment loading and that an increase in 

agriculture and/or loss of forest may cause loading quantities to increase.  The negative values 

associated with the IPCM4 model indicate more sediment is entering the river at the Jim Woodruff 

Dam than is exiting near the bay, suggesting sediment may settle prior to reaching the outlet.  This 

may be caused by the decrease in rainfall and associated decline in runoff.  

 

Runoff response for simulations that coupled climate and LULC change produced streamflow 

values that were very similar to those produced by incorporating climate change only, suggesting 

future climate change may affect flow more than LULC change.  Coupling climate and LULC 

change caused future flow to deviate less from the baseline than combining results from isolated 

simulations, i.e. climate only and LULC only, indicating the interaction between projected changes 

to climate and land coverage may be more balanced in terms of runoff.   

 

Sediment loading response was more reactive.  Loadings for each GCM from largest to smallest 

was A2, A1B, and B1.  Overall coupling of both climate and LULC change caused sediment load 

to be larger than adding isolated responses.  When climate and LULC both independently modeled 
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sediment as increasing or as decreasing, the coupled response resulted in sediment values that were 

overall larger than would be estimated from the added, individual deviations from the baseline.  

This suggests climate and LULC change effects amplify one another, resulting in larger loadings 

than if estimated by the separately modeled responses.  When individual response of climate only 

and LULC only differed in increase or decrease from the baseline, deviations swayed more in the 

direction of the climate induced shift, indicating climate may ultimately affect sediment more than 

land cover for this region.  
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CHAPTER 10: CONCLUSIONS AND FUTURE WORK    

For this study, a hydrologic SWAT model was developed, calibrated and validated for the 

Apalachicola River Basin under historical conditions.  Projected climate and LULC data were 

prepared to represent future conditions related to IPCC-SRES A2, A1B, and B1 for 2100.  The 

datasets were assimilated into the model to assess the response of daily streamflow and sediment 

loading to changes in climate, LULC, and climate and LULC.   

 

The findings from this research showed differing behaviors for both streamflow and sediment 

loading predicted by the global climate models.  The variability in response to the GCMs further 

advocate the use of multi-model ensembles and additional research is needed to determine region 

specific performance of individual GCMs to better optimize model ensembles and eliminate 

erroneous outputs.   

 

Despite contrasting outputs associated with the GCMs, all models indicate climate change may 

induce seasonal shifts that could extend or completely alter periods of high and low streamflow 

and sediment loading.  Peak streamflow was predicted to occur earlier in the year, around 

September and October and minimum sediment loading also occurred earlier in the year, around 

April and June, as compared to present day conditions.  Seasonal shifts in streamflow and sediment 

may affect the phenology of the ecosystem including dynamics related to migration, breeding, 

productivities, and distributions.  Streamflow response to changes in LULC was minimal, however 

another classification scheme implemented other than that used for this study may result in a more 

significant reaction. Larger sediment loading was associated with increased agriculture, increased 
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urban areas, and decreased forested regions.  As coastal regions become more urbanized, the 

increase in sediment may result in higher levels of total suspended solids that may affect oysters 

and seagrasses.  A nonlinear response was observed when climate and LULC change were 

incorporated in the model simulation simultaneously, implying changes in one may exacerbate or 

dampen the effects of the other.  The dynamic interaction that exists suggests both should be 

incorporated into hydrologic models when studying future conditions.  Lastly, contrasting 

behaviors were observed for the peak and total quantity response of discharge and sediment load 

associated with a 24 hour, 25 year storm.  Alterations to these components may result in changes 

to flooding and erosions rates, and future assessment of the downscaling approach to capture 

extreme events is needed. 

 

The results from this study provide an improved understanding of the effects of climate and LULC 

change on water quantity and quality for the Apalachicola Bay and surrounding region as well as 

similar fluvial estuaries.  The outcomes from this research can better guide management practices 

that may pertain to regulatory actions, land use development and planning, and monitoring 

activities.  Outputs may be used in biological assessments as boundary conditions and inputs for 

models studying the ecology of this system, e.g., marshes, oysters, and seagrasses under present 

and future scenarios.  The validated SWAT model can also be used in additional hydrologic studies 

that assess, but are not limited to, changes in climate and LULC.  Future studies may address the 

assumptions held constant or omitted for this study including changes in human activities, e.g., 

future consumptive demand, dynamic response of habitats, e.g., marsh migration and freshwater-

sea interaction, e.g., sea level rise impacts. 
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