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ABSTRACT 

The main goal of this dissertation is to develop a seasonal water balance model for 

evaporation, runoff and water storage change based on observations from a large number of 

watersheds, and further to obtain a comprehensive understanding on the dominant physical 

controls on intra-annual water balance.  Meanwhile, the method for estimating evaporation and 

water storage based on recession analysis is improved by quantifying the seasonal pattern of the 

partial contributing area and contributing storage to base flow during low flow seasons.   

A new method for quantifying seasonality is developed in this research.  The difference 

between precipitation and soil water storage change, defined as effective precipitation, is 

considered as the available water.  As an analog to climate aridity index, the ratio between 

monthly potential evaporation and effective precipitation is defined as a monthly aridity index.  

Water-limited or energy-limited months are defined based on the threshold of 1.  Water-limited 

or energy-limited seasons are defined by aggregating water-limited or energy-limited months, 

respectively. 

Seasonal evaporation is modeled by extending the Budyko hypothesis, which is originally 

for mean annual water balance; while seasonal surface runoff and base flow are modeled by 

generalizing the proportionality hypothesis originating from the SCS curve number model for 

surface runoff at the event scale.  The developed seasonal evaporation and runoff models are 

evaluated based on watersheds across the United States.  For the extended Budyko model, 250 

out of 277 study watersheds have a Nash-Sutcliff efficiency (NSE) higher than 0.5, and for the 

seasonal runoff model, 179 out of 203 study watersheds have a NSE higher than 0.5.   
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Furthermore, the connection between the seasonal parameters of the developed model 

and a variety of physical factors in the study watersheds is investigated.  For the extended 

Budyko model, vegetation is identified as an important physical factor that related to the 

seasonal model parameters.  However, the relationship is only strong in water-limited seasons, 

due to the seasonality of the vegetation coverage.  In the seasonal runoff model, the key 

controlling factors for wetting capacity and initial wetting are soil hydraulic conductivity and 

maximum rainfall intensity respectively.  As for initial evaporation, vegetation is identified as 

the strongest controlling factor.  Besides long-term climate, this research identifies the key 

controlling factors on seasonal water balance: the effects of soil water storage, vegetation, soil 

hydraulic conductivity, and storminess.    

The developed model is applied to the Chipola River watershed and the Apalachicola 

River basin in Florida for assessing potential climate change impact on the seasonal water 

balance.  The developed model performance is compared with a physically-based distributed 

hydrologic model of the Soil Water Assessment Tool, showing a good performance for seasonal 

runoff, evaporation and storage change.  
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CHAPTER 1 INTRODUCTION 

 

The hydrologic water cycle is the fundamental concept in hydrology.  At watershed scale, 

the complex hydrologic system is mainly controlled by climate and landscape factors.  Rainfall 

partition into runoff, evaporation, and soil water storage change and the physical controls of 

climate, soil, topography, and vegetation on the partition at different temporal and spatial scales 

are fundamental questions for hydrologists.  As shown in Figure 1, within catchment scale, water 

balance involves the water and energy exchange between land and atmosphere, namely 

precipitation and evaporation; as well as the spatial movement of water at the land surface and 

within the land, namely surface runoff and base flow; and also the soil storage and discharge 

interaction, namely storage dynamics.  A comprehensive understanding of the complex 

catchment water system would be of great value.  

 

1.1 Long-Term Water Balance and Budyko Framework 

 

With the increase of the temporal scale, the complexity of rainfall partition decreases 

since the temporal variability of hydrologic variables is filtered out in the time-averaged values.  

Budyko [1958; 1974] postulated that mean annual water balance, represented by the ratio 

between evaporation and precipitation (E/P), is dominantly controlled by the climate aridity 

index, which is the ratio between potential evaporation and precipitation (Ep/P).  The time scale 

in the Budyko framework is defined as the long-term average over far more than one year 

[Donohue et al., 2010].  Various functional forms have been developed for quantifying the 
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relation between E/P and Ep/P [Turc, 1954; Pike, 1964; Fu, 1981; Choudhury, 1999; Zhang et 

al., 2001; Porporato et al., 2004; Yang et al., 2008; Gerrits et al., 2009].  Furthermore, the 

effects of rainfall seasonality and soil water storage capacity [Milly, 1994a and 1994b; Potter et 

al., 2005; Hickel and Zhang, 2006; Yokoo et al., 2008; Gerrits et al., 2009; Feng et al., 2012], 

and vegetation dynamics [Zhang et al., 2001; Donohue et al., 2007] on mean annual water 

balance have been discussed as a complementary to the climate aridity index.  The Budyko 

framework provides a useful tool to assess the impacts of climate and watershed characteristic 

changes on annual runoff [Donohue et al., 2011; Roderick and Farquhar, 2011; Wang and 

Hejazi, 2011; Yang and Yang, 2011]. 

 

Figure 1: The hydrologic cycle. (1) Exchange between water and energy; (2) Runoff generation; 

(3) Storage dynamics; and (4) Human/water interaction. 
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1.2 Annual and Intra-Annual Scale Water Balance 

 

The Budyko framework has been applied to inter-annual variability of rainfall partition in 

many studies [Koster and Suarez, 1999; Sankarasubramanian and Vogel, 2002; Yang et al., 

2007; Potter and Zhang; 2009; Cheng et al., 2011].  Soil water storage changes have been found 

to be a significant component on the inter-annual variability of water balance at some study 

watersheds [Milly and Dunne; 2002; Zhang et al., 2008; Donohue et al., 2010; Istanbulluoglu et 

al., 2012; Wang, 2012a].  Wang and Alimohammadi [2012] estimated water storage changes as 

water balance residuals using remote sensing-based evaporation estimations and found that water 

storage carry-over is significant particularly for watersheds in arid regions.  To consider the 

inter-annual soil water storage changes in the Budyko framework, Wang [2012a] suggested that 

effective rainfall, which is the difference between rainfall and soil water storage change, is taken 

as available water supply; and therefore rainfall in both the climate aridity index and the 

evaporation ratio is replaced by the computed effective rainfall.  

Both rainfall seasonality and soil water storage change play a significant role on inter-

annual variability of hydrologic responses [Donohue et al., 2012].  Soil water storage capacity, 

which filters the seasonal rainfall variability, can lower the runoff ratio [Milly, 1993; 

Sankarasubramanian and Vogel, 2002 and 2003; Porporato et al., 2004; Fang et al., 2012].  

Zhang et al. [2008] extended the limit concept of Budyko hypothesis to generalized water 

demand and supply framework and the framework was applied to the water partition at two 

stages for developing monthly and daily water balance models.  Yokoo et al. [2008] incorporated 

storage capacity index and drainability index to model water balance at the seasonal scale.  

Jothityangkoon and Sivapalan [2009] examined the effects of storminess on inter-annual 
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variability of water balance through the simulation of annual runoff in three semi-arid 

watersheds.  Zanardo et al. [2012] studied the within-year rainfall variability controls on annual 

water balance in a diagnostic and data-driven approach. 

 

1.3 Runoff Simulation and Proportionality Hypothesis 

 

The mechanism of runoff generation is strongly related with hydrologic partitioning but 

with a higher timing sensitivity. L’vovich [1979] presented the two-stage hydrologic partitioning 

theory, which separated the water balance partitioning into surface runoff generation and base 

flow generation.  To model surface runoff, curve number method was developed by the USDA 

Soil Conservation Service [USDA SCS, 1985].  As a widely used method to quantify surface 

runoff based on precipitation, curve number method described water balance partitioning with an 

empirical proportionality hypothesis [Ponce and Hawkins, 1996].  Based on L’vovich’s two-

stage theory, Ponce and Shetty [1995] proposed to use the proportional relation derived from 

curve number method to describe annual scale water balance.    Following Ponce and Shetty’s 

study, Sivapalan et. al. [2011] further explored the potential of proportionality in annual scale 

water balance.  Wang and Tang [2014] showed that the proportionality is independent on time 

scales.   

 

1.4 Discharge-Storage Interaction and Recession Analysis 

 

The difficulties involved in measurement of water storage are due to the spatial 

variability of soil moisture and groundwater storage.  Terrestrial water storage changes can be 
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identified by monitoring the variability in gravity field through Gravity Recovery and Climate 

Experiment (GRACE) satellite [Swenson et al., 2006].  However, the spatial resolution of 

GRACE is too large to be applicable for watershed scale studies.  Water storage changes can also 

be estimated by using point-based observations of groundwater level and soil moisture [Wang, 

2012a] or water balance closure [Sayama et al., 2011; Wang and Alimohammadi, 2012].  These 

methods are constrained by the data availability of soil moisture, groundwater and actual 

evaporation. 

As a simple approach, the conceptual storage-discharge function derived from base flow 

recession has been used to estimate storage changes [e.g., Kirchner, 2009; Teuling et al., 2010; 

Ajami et al., 2011; Krakauer and Temimi, 2011], evaporation [e.g., Szilagyi et al., 2007; 

Palmroth et al., 2010], and leakage from and to bedrock [Wang, 2011].  The estimated 

evaporation and water storage dynamics from the lumped storage-discharge relationship are 

usually treated as the total values of the entire watershed.  The underlying assumption is that all 

the subsurface storage in the watershed contributes to the streamflow observed at the outlet 

[Wang, 2012b].  The violation of this assumption may affect the evaporation and storage change 

estimation significantly, especially in large watersheds with considerable spatial heterogeneity of 

soil water storage. 

However, the storage/discharge connectivity of a watershed varies spatially and 

temporally, especially during recession events.  As a result, the storage-discharge function may 

also vary when total watershed storage is used in the lumped discharge model.  The variable 

characteristic of storage-discharge function has been reported by several studies [e.g., Rupp et 

al., 2009].  Using a linearized distributed model, Sloan [2000] found that total water storage and 

groundwater discharge is not a one-to-one relationship.  Hysteresis relation between storage and 
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streamflow has been reported due to the variable hydrologic connectivity of water storage 

[Spence et al., 2010].  Clark et al. [2011] demonstrated that a multi-valued storage-discharge 

relationship could be replicated by a simple lumped conceptual model with two parallel stores 

representing the saturated zone.  Krakauer and Temimi [2011] reported that storage change 

estimated from base flow recession is underestimated compared with GRACE based estimation.  

A systematic investigation on the potential and limitation of one-to-one storage-discharge 

recession analysis in terms of evaporation and storage estimation would be beneficial as to 

improve the framework. 

 

1.5 The Strength and Limitation of the “Top-Down” Approach 

 

The development of hydrological model can be generally sorted into “top-down” 

approach and “bottom-up” approach.  The currently dominating “bottom-up” approach is 

physical-process-based, which require a variety of input data.  The approach focused in this 

study is “top-down” approach.  The fundamental theories in this study, namely Budyko 

framework, proportionality hypothesis and recession analysis, are all developed based on “top-

down” approach.  While the “top-down” approach have the advantages of simpler model and 

lower requirement for input data comparing with “bottom-up” approach, two important questions 

should be considered as applying the approach: (1) how far the conceptual system can go down, 

temporally and spatially, and remain valid; (2) the difficulty of generalization.  In fact, the 

limitation of the “top-down” approach is hard to be overcome without external assistance.  The 

same statement can be applied on “bottom-up” approach as well.  As a result, while the “top-

down” approach is focusing on the simple dominating process and “bottom-up” approach is 
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focusing on complex individual processes and their interactions, a combination of the two 

approaches will probably be required to further the understanding of the hydrologic prediction 

issues [Sivapalan, et al., 2003]. 

 

1.6 Human Impact and Socio-Hydrology 

 

The purpose of hydrological model is to understand the physical controls behind the 

complex hydrologic processes and therefore to simulate and predict the trend of processes.  As a 

result, the human impact is usually separated from all the natural factors and not included in the 

model, which is the case in this study. However, the interaction between natural water body and 

human activities is also one of the important aspects, if not the most, of the hydrologic system. In 

the large scale, climate change, which is potentially caused by human activities, is expected to 

change every aspect in the hydrological cycle. At the small scale, hydraulics projects and water 

management policies will have direct impact to local watersheds and the ecology system around 

them. With the idea of co-evolution of coupled human-water system, a new topic of socio-

hydrology is interested by the hydrology science society [Sivapalan, et al., 2012]. 

 

1.7. Research Objectives 

 

The main goal of this study is to use “top-down” approach to simulate catchment scale 

hydrologic processes, in terms of water partitioning, runoff generation and storage dynamics, and 

therefore to improve the understanding on intra-annual water balance of watersheds. 

The objectives of the study can be summarized as follow: 
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(1) To develop seasonal and monthly evaporation model based on Budyko framework; 

(2) To develop seasonal and monthly runoff model based on proportionality hypothesis; 

(3) To combine the newly developed evaporation model and runoff model to obtain the 

complete water balance model at watershed scale; 

(4) To investigate the feasibility of recession analysis in terms of evaporation and storage 

change estimation; 

(5) To apply the water balance model on practical case study in Chipola River Watershed 

and to combine the water balance model with Regional Climate Model (RCM) projection to 

predict the future trend of evaporation and runoff. 

 (6) To apply the Soil and Water Assessment Tools (SWAT) on the case study in 

Apalachicola River Watershed and to combine the hydrologic model with RCMs to project 

future streamflow and sediment load change under extreme events. 
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CHAPTER 2 EXTENDED BUDYKO FRAMEWORK 

 

The first step of the study is to develop intra-annual evaporation model based on Budyko 

framework. As the time scale shortened from long-term mean annual, which Budyko hypothesis 

was based on, to intra-annual scale of seasonal and monthly, the number of controlling factors of 

the process increases. Storage change and seasonality are the two additional factors in the 

modified Budyko type model. The development of the model is described in detail as follows. 

 

2.1 Methodology 

 

2.1.1 Data collection 

 

Daily precipitation, climatic potential evaporation, and runoff data from 1948 to 2003 are 

based on the Model Parameter Estimation Experiment (MOPEX) watersheds with low human 

interferences [Duan et al., 2006].  Daily actual evaporation and monthly potential evaporation 

from 1983 to 2006 are obtained from the data set provided by University of Montana [Zhang et 

al, 2010].  Actual evaporation data is derived from remote sensing data and provided at the 

gridded resolution of 8 km; and the potential evaporation was estimated using Priestley-Taylor 

method [Priestley and Taylor, 1972] at the same spatial resolution.  The daily evaporation and 

monthly potential evaporation data are spatially averaged to the watershed scale values.  This 

research is focused on the overlapped period of the two data sets from 1983 to 2003.  As shown 

in Figure 2, 277 watersheds, for which there is no missing data during the entire period of 21 

years, are selected as study watersheds for the model development.  
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Figure 2: The spatial distribution of study watersheds which are categorized by the number of 

months in dry seasons. 

 

2.1.2 Wet and dry months 

 

The monthly aridity index, which follows the concept of climate aridity index, is the ratio 

of available energy to available water.  For long-term water balance, water storage change is 

usually negligible compared with mean annual precipitation depth.  Available energy is 

represented by potential evaporation, and water availability is represented by precipitation.  

However, water storage dynamics is significant at the monthly and seasonal scales, and therefore 

storage change needs to be considered for accounting available water supply.  The available 

water supply in dry months includes not only precipitation but also the depletion of stored water 

in the watershed; while watershed storage is replenished by infiltrated rainfall in wet months, and 

the increased storage needs to be subtracted from precipitation.  Following Wang [2012a], water 

availability is defined as effective precipitation 𝑃𝑚 − ∆𝑆𝑚, and monthly aridity index (𝐴𝑚) is 

defined as: 
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𝐴𝑚 =
𝐸𝑃𝑚𝑃𝑚−∆𝑆𝑚                                                                      (2.1) 

2.1.3 Seasonal aridity index 

 

With the wet and dry months identified by equation (2.2), seasonal depths of 

precipitation, potential evaporation, runoff, and storage change are computed for each year by 

aggregating monthly values.  For example, precipitation depth in the wet season (𝑃𝑤) and the dry 

season (𝑃𝑑) is computed by:     𝑃𝑤 =  ∑ 𝑃𝑤𝑖  𝑛𝑤𝑖=1                                                                                                                         (2.3.1) 𝑃𝑑 =  ∑ 𝑃𝑑𝑖  𝑛𝑑𝑖=1                                                                             (2.3.2) 

where 𝑛𝑤 and 𝑛𝑑 are the numbers of wet and dry months in a year and are constants for a given 

watershed.  Similarly, the seasonal values for potential evaporation depth (𝐸𝑃𝑤 and 𝐸𝑃𝑑), runoff 

depth (𝑄𝑤 and 𝑄𝑑), and storage changes (𝛥𝑆𝑤 and 𝛥𝑆𝑑) are computed based on the monthly 

values in wet and dry seasons.   

Following the definition of monthly aridity index, seasonal aridity indices for individual 

years are defined as: 𝐴𝑤 =
𝐸𝑃𝑤𝑃𝑤−𝛥𝑆𝑤                                                                   (2.4.1) 

𝐴𝑑 =
𝐸𝑃𝑑𝑃𝑑−𝛥𝑆𝑑                                                                                                (2.4.2) 

where 𝐴𝑤 and 𝐴𝑑 are the seasonal aridity indices for wet and dry seasons, respectively.  

Climate seasonality is explicitly modeled in the seasonal aridity index since seasonal rainfall 

and potential evaporation depths are included in 𝐴𝑤 and 𝐴𝑑.  Seasonal water storage changes in 

equation (2.4) are hydrologic variables which are controlled by many factors such as soil water 

storage capacity and infiltration potential.  The defined seasonal aridity indices are 
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hydroclimatic variables reflecting both climate seasonality and hydrologic characteristics of 

watersheds.   

The values of seasonal aridity index for individual years are usually less than 1 for wet 

seasons and higher than 1 for dry seasons.  It should be noted that this may not be valid for all 

the years, since the definition of dry and wet months is based on the mean monthly aridity index 

(equation 2.2).  If the monthly aridity index for a year deviates significantly from its mean 

value, it is possible that the seasonal aridity indices are higher than one in wet seasons (or lower 

than one in dry seasons).  It is possible that the mean monthly aridity indices for all 12 months 

are larger or smaller than 1 for some watersheds where the seasonality is not strong.  For these 

watersheds, there is only one season (wet or dry), and the seasonal aridity index is the exact 

equivalent of the annual aridity index. 

 

2.1.4 Seasonal evaporation ratio 

 

In the Budyko framework, evaporation ratio is defined as the ratio between actual 

evaporation and water supply.  Following the definition of seasonal aridity index, water supply 

is represented by the seasonal effective precipitation, and evaporation ratios for wet and dry 

seasons are modified as 
𝐸𝑤𝑃𝑤−𝛥𝑆𝑤 and 

𝐸𝑑𝑃𝑑−𝛥𝑆𝑑, respectively.  In the next section, a Budyko-type 

function is extended to model the inter-annual relationship between the seasonal evaporation 

ratio and the seasonal aridity index defined above. 
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2.1.5 Budyko-type models at the seasonal scale 

 

The semi-empirical equation proposed by Budyko [1974] is a non-parametric model for 

long-term water balance.  To incorporate the effects of other factors on water balance, Budyko-

type functions with a single parameter have been developed in the literature [Fu, 1981; Zhang et 

al., 2001; Yang et al., 2008].  One of the functional forms is the Turc-Pike equation: 

𝐸𝑃 = �1 + �𝐸𝑃𝑃 �−𝑣�−1 𝑣⁄
                                                                                                                (2.5) 

where 𝑣 is the parameter which represents the effects of other factors such as vegetation, soil, 

and topography on the partition of precipitation.  In this study, the Turc-Pike equation will be 

extended to model the dependence of the seasonal evaporation ratio on the seasonal aridity 

index.  

The following two factors are considered in the extension of Budyko-type model to the 

seasonal scale: (1) the lower bound of the seasonal aridity index for a given watershed; and (2) 

the differentiation between dry and wet seasons.  The Budyko equation provides an inter-

comparison of water balance among watersheds.  E/P approaches to zero when climate aridity 

index approaches to zero in equation (2.5).  However, for a given watershed, the lower bound of 

seasonal aridity index may be a positive value or even higher than 1 in dry seasons.  To 

characterize the possible non-zero lower bound of the seasonal aridity index, a shift along the 

horizontal axis is introduced to equation (2.5).  On the other hand, two different sets of parameter 

values in equation (2.5) are used for wet and dry seasons for the purpose of differentiating the 

precipitation partitioning behavior in wet and dry conditions.   

As a result, the following modified Turc-Pike equations are proposed to model the 

seasonal evaporation ratio in wet and dry seasons, respectively: 
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𝐸𝑤𝑃𝑤−𝛥𝑆𝑤 = �1 + � 𝐸𝑃𝑤𝑃𝑤−𝛥𝑆𝑤 − 𝜙𝑤�−𝑣𝑤�−1 𝑣𝑤⁄
                                                             (2.6.1) 

𝐸𝑑𝑃𝑑−𝛥𝑆𝑑 = �1 +  � 𝐸𝑃𝑑𝑃𝑑−𝛥𝑆𝑑 − 𝜙𝑑�−𝑣𝑑�−1 𝑣𝑑⁄
                                                                          (2.6.2) 

where 𝑣𝑤 and 𝑣𝑑 are the Turc-Pike coefficients in wet and dry seasons, respectively; and 𝜙𝑤 and  𝜙𝑑 are the corresponding lower bounds for the seasonal aridity indices.  For the seasonal 

evaporation model, it is assumed that the functional form of the Budyko curve is applicable to 

seasonal time scale with the following modifications: (1) seasonal climate aridity index is 

defined as the ratio of potential evaporation to effective precipitation; (2) seasonal evaporation 

ratio is defined as the ratio of evaporation to effective precipitation; (3) the lower bound of 

seasonal climate aridity index can be more than zero.   

For purposes of demonstration, Figure 3 plots the seasonal evaporation ratio versus 

seasonal aridity index for 4 selected watersheds, in which the parameters in equation (2.6) are 

estimated by fitting the observed data points.  The Rocky River watershed located in North 

Carolina (Panel A) and the Auglaize River watershed in Ohio (Panel B) include both wet 

(diamond) and dry (circle) seasons.  However, the Oostanaula River watershed located in 

Georgia (Panel C) only includes wet seasons, and the Clear Fork Brazos River watershed located 

in Texas (Panel D) only includes dry seasons.  As shown in Figure 3, the data points in the wet 

and dry seasons in Panel A and Panel B do not follow the same Budyko-type curve.  Two 

separate curves are necessary to model the evaporation ratio for the two seasons, respectively.  If 

there is only one season for a watershed (Panel C or Panel D), one extended Budyko-type curve 

is used to model the annual evaporation ratio.  Particularly for the Clear Fork Brazos River 

watershed, which is located in a dry region, the lower bound of seasonal aridity index is more 

than 2, and a Budyko-type curve with a horizontal shift fits the observations well. 
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Two parameters are needed to be estimated in the modified Budyko-type functions for 

each season.  The values of 𝑣𝑤 and 𝑣𝑑 represent the physical controls of intra-seasonal rainfall 

(such as storminess) and watershed properties on seasonal evaporation and storage changes.  The 

values of 𝜙𝑤 and  𝜙𝑑 can be interpreted as the lower limits of aridity index for wet and dry 

seasons.  For a given watershed the value of 𝜙𝑑 should be higher than that of 𝜙𝑤.  Given the 

same seasonal aridity index in a watershed, the evaporation ratio in dry seasons should be higher 

than that in wet seasons.  The values of 𝜙𝑤 and 𝜙𝑑 also represent the shifts of the 1:1 limit lines 

due to energy-limits.  In the seasonal model of Hickel and Zhang [2006], when mean monthly 

rainfall exceeds potential evaporation during wet seasons, evaporation is assumed to occur at the 

potential rate for enabling a minimum-parameter formulation.  The effect of this assumption 

appears to be minimal since they focus on mean annual water balance.  However, this study 

focuses on the seasonal variability of evaporation and storage change, so the evaporation in wet 

seasons is modeled by equation (2.6.1).  When a seasonal aridity index is smaller than 1 in the 

wet season, the upper bound of evaporation is equal to 𝐸𝑃𝑤 − 𝜙𝑤(𝑃𝑤 − ∆𝑆𝑤), which is usually 

smaller than 𝐸𝑃𝑤.  On the other hand, in dry seasons with 𝐴𝑑 < 1 + 𝜙𝑑, the upper limit of 𝐸𝑑 is 𝐸𝑃𝑑 − 𝜙𝑑(𝑃𝑑 − ∆𝑆𝑑), which is smaller than the water supply (𝑃𝑑 − ∆𝑆𝑑).  As a result, there is a 

smaller upper bound on seasonal evaporation in “energy-limited” conditions.   
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Figure 3: Seasonal evaporation ratio versus seasonal aridity index and the fitted Turc-Pike lines 

for the Rocky River watershed located in North Carolina at the USGS gage 02126000 (Panel A), 

the Auglaize River watershed in Ohio at the USGS gage 04191500 (Panel B), the Oostanaula 

River watershed located in Georgia at the USGS gage 02387500 (Panel C), and the Clear Fork 

Brazos River watershed in Texas at the USGS gage 08085500 (Panel D). 

 

2.1.6 Modeling annual storage changes 

 

Once the four parameters (𝑣𝑤, 𝑣𝑑, 𝜙𝑤 and 𝜙𝑑) for the seasonal evaporation model are 

obtained, the seasonal Budyko-type model developed in this study can be used to estimate annual 

storage changes and evaporation if precipitation, potential evaporation and runoff observations 

are available.  Substituting 𝐸𝑤 = 𝑃𝑤 − 𝑄𝑤 − ∆𝑆𝑤 into equation (2.6), the following equations are 

obtained and can be used to estimate storage changes in wet and dry seasons: 
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1 − 𝑄𝑤𝑃𝑤−𝛥𝑆𝑤 − �1 + � 𝐸𝑃𝑤𝑃𝑤−𝛥𝑆𝑤 −𝜙𝑤�−𝑣𝑤�−1 𝑣𝑤⁄
= 0                                        (2.7.1) 

1 − 𝑄𝑑𝑃𝑑−𝛥𝑆𝑑 − �1 + � 𝐸𝑃𝑑𝑃𝑑−𝛥𝑆𝑑  − 𝜙𝑑�−𝑣𝑑  �−1 𝑣𝑑⁄
= 0                                        (2.7.2) 

The values of ∆𝑆𝑤 and ∆𝑆𝑑 can be solved numerically using equation (2.7), and annual storage 

changes (∆S) can be computed as a summation of seasonal storage changes: ∆𝑆 =  ∆𝑆𝑤 +  ∆𝑆𝑑                                                                                                                      (2.8) 

The annual evaporation can be computed as a residual of water balance once storage changes are 

estimated. 

 

2.1.7 Model performance evaluation 

 

The model performance is evaluated using two indicators: root mean square error 

(RMSE) and Nash-Sutcliffe efficiency (NSE).  RMSE is calculated as: 

𝑅𝑀𝑆𝐸 =  �∑ �𝑋𝑜,𝑖−𝑋𝑚,𝑖�2𝑛𝑖=1 𝑛                                                           (2.9) 

where  𝑋𝑜,𝑖 and  𝑋𝑚,𝑖  are the observed and modeled values in the i
th

 year, respectively; n is the 

number of years.  NSE shows the extent to which observed and modeled values follow the line 

with 1:1 slope [Moriasi et al., 2007].  NSE is calculated as: 

𝑁𝑆𝐸 = 1−  
∑ �𝑋𝑜,𝑖−𝑋𝑚,𝑖�2𝑛𝑖=1∑ �𝑋𝑜,𝑖−𝑋�𝑜,𝑖�2𝑛𝑖=1                                                                                                       (2.10) 

NSE ranges from −∞ to 1.  Values close to 1 indicate higher model efficiency in predicting 

actual values [Legates and McCabe, 1999].  A positive NSE value is usually acceptable for a 

model [Moriasi et al., 2007]. 
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RMSE and NSE are applied to evaluate the fitness of the extended Budyko-type model 

and the performance of the model in estimating annual storage changes from equations (3.7) and 

(3.8).  The fitness of the seasonal Budyko-type model is computed for all the watersheds in each 

season, and is compared among watersheds.   

 

2.2 Results and Discussion 

 

As formerly described, the seasonal Budyko type model is applied to the 277 case study 

watersheds shown in Figure 2.  Based on the definition of wet and dry months, 203 watersheds 

have both wet and dry seasons, and 191 watersheds have consecutively dry months in summer 

seasons.  The duration of dry seasons ranges from 1 to 11 months in these watersheds.  51 

watersheds only have wet seasons, and most of them are located in the northeastern corner of the 

United States and the Appalachian Mountain area.  23 watersheds only have dry seasons and 

most of them are located in the High Plains.   

 

2.2.1 Storage change impact on inter-annual water balance 

 

The impact of storage change from year to year on the representation of Budyko 

hypothesis is assessed for the study watersheds.  Figure 4 presents the water balance in the 

annual scale of all the study watersheds in the Budyko’s framework with three different 

computations of aridity index or evaporation ratio.  In Panel A, evaporation is estimated as the 

difference between precipitation and runoff.   This representation is usually used when 

evaporation data is not available.  Panel B represents E/P versus Ep/P.  Such approach to 
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describe inter-annual water balance was presented by Cheng et al. [2011].  As shown in Panel B, 

if P is considered as water supply in the annual scale, E/P is higher than 1 in many cases.  The 

uncertainty of E may contribute to this but is not enough to explain the high evaporation in 

extreme dry years.  This result highlights the fact that available water supply is not limited to 

precipitation only, but storage changes also play a significant role in maintaining evaporation, 

especially for years with aridity indices higher than 1.  Panel C shows the plot of E/(P-∆S) versus 

Ep/(P-∆S) when P-∆S is used to represent available water instead of P.  From this comparison, it 

can be interpreted that the Budyko hypothesis is applicable at the interannual scale, if the supply 

of energy and water are described accurately.   

 

Figure 4: Three presentations of annual water balance: a) 1-Q/P versus Ep/P; b) E/P versus Ep/P; 
c) Ep/(P-∆S) versus E/(P-∆S). 

 

2.2.2 Performance of the modified seasonal Turc-Pike model 

 

The developed seasonal model based on the Budyko-type function in equation (3.6) is 
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Figure 3 shows the modified Turc-Pike curves in wet and dry seasons that fit to the data points 

for 4 watersheds from the 277 case study watersheds.  As shown in Figure 3A for the Rocky 

River watershed, parameters in wet seasons are estimated as 𝜙𝑤=0.13 and 𝑣𝑤=2.40, and 

parameters in dry seasons are estimated as 𝜙𝑑=0.14 and 𝑣𝑑=7.39.  As shown in Figure 3B for the 

Auglaize River watershed, wet season parameters are estimated as 𝜙𝑤=0.16 and 𝑣𝑤=1.34, and 

dry season parameters are 𝜙𝑑 = 0.26 and 𝑣𝑑 = 6.10.  To evaluate the performance of the model, 

NSE values are calculated for the Rocky River watershed and the Auglaize River watershed.  

The NSE values for the estimated seasonal evaporation ratio in wet seasons are 0.98 and 0.97 for 

the two watersheds, respectively; and the NSE values in dry seasons are 0.96 and 0.90.  Figure 

3C shows a fitted curve for the Oostanaula River watershed in which all the 12 months are 

classified as wet seasons, and the value of NSE is 0.99.  The estimated values are 0.11 and 3.19 

for 𝜙𝑤 and 𝑣𝑤 respectively.  The Clear Fork Brazos River watershed in Figure 3D only includes 

the dry seasons and the values of 𝜙𝑑 and 𝑣𝑑 for the fitted curve are 2.44 and 4.89, with a NSE 

value of 0.67.   

To evaluate the overall performance of the model, the frequency distribution of NSE for 

all 277 case study watersheds was calculated and is presented in Figure 5.  In wet seasons 

(Figure 5A), NSE values in 99% of watersheds are higher than 0.5, and NSE values in 81% of 

watersheds are higher than 0.9.  In dry seasons (Figure 5B), NSE values in 90% of watersheds 

are higher than 0.5, and NSE values in 40% of watersheds are higher than 0.9.  The model 

performance in wet seasons is generally better than that in dry seasons.  The number of 

watersheds at the peak frequency is 139 with NSE value around 0.925~0.975 in wet seasons 

(Figure 5A); while the number of watersheds at the peak frequency is 59 with NSE value of 
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0.875~0.925 in dry seasons (Figure 5B).  In general, the seasonal model in equation (2.6) works 

very well for the inter-annual water balance at the seasonal scale. 

 

Figure 5: Histograms of coefficient of efficiency for the modified Ture-Pick model in wet season 

(Panel A) and dry season (Panel B). 

 

2.2.3 Estimated model parameters 

 

In the seasonal model, the evaporation ratio is a function of the seasonal aridity index and 

the parameters 𝑣𝑤 and 𝜙𝑤 in wet seasons or 𝑣𝑑 and 𝜙𝑑 in dry seasons.  The values of the 

parameters reflect the dependence of seasonal evaporation and storage changes on other factors 

such as intra-seasonal rainfall, vegetation, soil properties, and topography in the watershed.  

Figure 6 shows the histograms of the four parameters (Panel A for the shift parameter 𝜙𝑤 in wet 

seasons and Panel B for the Turc-Pike parameter 𝑣𝑤; Panel C for 𝜙𝑑 and Panel D for 𝑣𝑑).  The 

maximum value of 𝜙𝑤 is 0.42 but the maximum value of 𝜙𝑑 is 2.74.  Values of 𝜙𝑤 have the 

highest frequency around 0.1 while values of 𝜙𝑑 have the highest frequency around 0.25.  This is 

due to the higher value of minimum aridity index in dry seasons compared with wet seasons.  

Values of 𝑣𝑤 have the highest frequency around 1.5, though, in some cases, values higher than 

10 were observed; values of 𝑣𝑑 have the highest frequency around 5.  The value of 𝑣𝑑 is usually 
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larger than that of 𝑣𝑤 for a given watershed.  The parameter values of 𝑣 in dry seasons are more 

dispersed compared with those in wet seasons.  

 

 

Figure 6: Histogram of parameters of wet and dry seasons. 

 

2.2.4 Vegetation control on seasonal evaporation ratios 

 

Climate seasonality and vegetation adaption controls on annual water balance have been 

one of the focused research areas in recent years [Feng et al., 2012; Gentine et al., 2012; Xu et 

al., 2012].  Vegetation control on seasonal evaporation and storage change is explored in wet and 

dry seasons separately in this study.  Normalized Difference Vegetation Index (NDVI) is used as 

a proxy for vegetation.  Bimonthly NDVI data based on the Advanced Very High Resolution 
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Radiometer (AVHRR) imagery from the Global Inventory Modeling and Mapping Studies 

(GIMMS) can be downloaded at http://glcf.umiacs.umd.edu/data/gimms/ [Tucker et al., 2005].  

Averaged values of NDVI at the monthly and seasonal scales are computed for each of the study 

watersheds. 

Vegetation affects the seasonal water balance through both evaporation and soil moisture 

dynamics.  Strong correlations exist between monthly average NDVI and evaporation.  The 

percentage of watersheds where the correlation coefficients (𝑟) between monthly NDVI and 

evaporation are higher than 0.5 is 96% in wet seasons and 73% in dry seasons.  To quantify the 

potential interaction between vegetation and evaporation in wet and dry seasons, a bivariate 

Granger causality test [Granger, 1969; Engle and Granger, 1987; Detto et al., 2012] is 

conducted between monthly NDVI and evaporation.  A 10% significance level is used in the 

Granger test.  In dry seasons, evaporation is the cause and NDVI is the effect in 71% of the 

watersheds, and NDVI is the cause and evaporation is the effect in 59% of the watersheds.  In 

wet seasons, evaporation is the cause and NDVI is the effect in 92% of the watersheds, and 

NDVI is the cause and evaporation is the effect in 81% of the watersheds.  These results on the 

Granger causality test show the interaction and feedback between vegetation and evaporation. 

Vegetation controls seasonal water balance not only by evaporation but also by soil moisture 

dynamics.  In the developed seasonal model of equation (2.6), seasonal storage changes have 

been included into the seasonal aridity index.  The controls of other factors such as vegetation, 

rainfall intensity and infiltration capacity are reflected by the parameters, and the corresponding 

controls may be different with wet and dry seasons.  To evaluate the vegetation control on 

seasonal water balance, Figure 7 plots the dependence of 𝜙𝑑, 𝑣𝑑, 𝜙𝑤, and 𝑣𝑤 as a function of 

long-term average seasonal NDVI values for all 277 watersheds.  Strong correlation between 

http://glcf.umiacs.umd.edu/data/gimms/
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NDVI and dry season parameters is identified.  As shown in Figure 7A, when NDVI is smaller 

than 0.5, 𝜙𝑑 is not sensitive to NDVI (r=-0.273).  The absolute value of correlation coefficient 

between NDVI and 𝜙𝑑 increases when NDVI is larger than 0.5 (r=-0.679).  As discussed earlier, 𝜙𝑑 corresponds to the lower bound of the dry season aridity index.  According to Figure 7A, 

watersheds with higher NDVI have lower bounds of aridity index in dry seasons.  This is due to 

the fact that higher vegetation coverage has a greater potential to deplete soil water storage 

during drought periods, which in turn induces smaller values of the dry season aridity index, 

𝐸𝑃𝑑𝑃𝑑−𝛥𝑆𝑑.  As shown in Figure 7B, 𝑣𝑑 increases with NDVI and the correlation coefficient between 

NDVI and 𝑣𝑑 is 0.557.  Higher values of 𝑣𝑑 correspond to higher evaporation ratios, 
𝐸𝑑𝑃𝑑−𝛥𝑆𝑑.  

However, the relationships between NDVI and the wet season parameters are non-monotonic as 

shown in Figures 7C and 7D.  The correlation coefficient is -0.24 in Figure 7C and 0.01 in 

Figure 7D, respectively.  It seems that a maximum value of 𝜙𝑤 occurs around NDVI = 0.4.  

 

2.2.5 Estimation of annual storage changes 

 

As mentioned before, once the values of parameters for each watershed are estimated, the 

seasonal model developed in this study can be used to estimate annual evaporation and storage 

changes when precipitation, potential evaporation and runoff data are available.  Storage changes 

are estimated by equations (2.7) for wet and dry seasons, which are then aggregated to annual 

storage changes by equation (2.8).  The model’s performance on modeling storage changes is 

evaluated by dividing the historical data into calibration (1983-1992) and validation (1993-2002) 

periods.  The four parameters in equation (2.6) are estimated based on observations during the 
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calibration period.  The annual storage changes during the validation period are computed and 

compared with the “observed” annual storage changes estimated by water balance closure.  The 

comparison is presented in Figure 8: Panel A for watersheds with both wet and dry seasons, 

Panel B for watersheds with dry seasons only, and Panel C for watersheds with wet seasons only.  

In panel A, the average RMSE is 27 mm for dry seasons and 21 mm for wet seasons.  The 

average value of RMSE is 54 mm for Panel B and 18 mm for Panel C.  The overall average 

RMSE of annual storage changes for these 277 watersheds is 24 mm.  The performance in wet 

seasons is better than in dry seasons, especially when comparing wet season only watersheds to 

dry season only watersheds.   

 

Figure 7: Seasonal parameters of the modified Turc-Pike equation and the long-term average 

NDVI in dry seasons and wet seasons. 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Mean NDVI in Dry Season

φ d

A

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Mean NDVI in Dry Season

V
d

B

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Mean NDVI in Wet Season

φ w

C

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Mean NDVI in Wet Season

V
w

D



       

 

26 

 

 

Figure 8: Observed and estimated values of annual storage changes during the validation period 

(1993-2002) in watersheds with both wet and dry seasons (Panel A), dry seasons only (Panel B), 

and wet seasons only (Panel C). 

 

2.2.6 Impacts of evaporation data uncertainty 

 

The uncertainties in observations, particularly evaporation estimation from remote 

sensing data, may contribute to the unrealistic storage change and further decrease the 

performance of the extended seasonal Budyko model.  The observed storage changes are up to 

800 mm in a few watersheds as shown in Figure 8 and this may be unrealistic.  To evaluate the 

impacts of evaporation data uncertainty on the results, 158 watersheds from the total 277 

watersheds discussed by Wang and Alimohammadi [2012], where the difference of long-term 

average annual evaporation between remote sensing-based and water balance-based estimation is 

within ±10%, are selected for further investigation.  The magnitude of observed annual storage 

changes in the 158 watersheds decreases significantly and the storage change values range from -

400 mm to 400 mm.  The average value of NSE over the 277 watersheds is 0.958 for wet seasons 

and 0.878 for dry seasons (Figure 5).  The average value of NSE over the 158 watersheds 

increases to 0.968 for wet seasons and 0.882 for dry seasons.  It indicates that the impact of the 

evaporation data uncertainty is not very significant on the seasonal model performance. 
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2.2.7 Physically-based processes versus co-evolution 

 

The Budyko hypothesis on mean annual water balance results from the co-evolution of 

watershed vegetation and soils with climate [Gentine et al., 2012; Troch et al., 2013].  As 

demonstrated in Figure 9, the strength of co-evolution (Darwinian view) will become weaker 

with reducing time scales, and physical processes-based models (Newtonian view) for 

evaporation will take over at the small time scale (e.g., daily).  Harman and Troch [2013] review 

the success of Darwinian method in hydrologic science and call for synthesis of the Darwinian 

and Newtonian approaches as a remaining goal.  Great progresses are expected if the Newtonian 

approach can be reconciled with the Darwinian view [Sivapalan, 2005; Troch et al., 2013].  One 

purpose of this work is to assess the strength of co-evolution view, presented by Budyko 

framework, on modeling evaporation at the shorter time scale.  Figure 10 shows the monthly 

evaporation ratio versus monthly aridity index for the four watersheds shown previously in 

Figure 3.  From seasonal to monthly scale, NSE values decrease from 0.98 to 0.90 (wet) and 0.97 

to 0.84 (dry) for Rocky River watershed, from 0.98 to 0.64 (wet) and 0.95 to 0.46 (dry) for 

Auglaize River watershed.  NSE values for Oostanaula River watershed decrease from 0.99 to 

0.92 at all the wet months; particularly NSE values for Clear Fork Brazos River decrease from 

0.68 to -2.09 for all the dry months.  The performance of the extended Turc-Pike equation 

declines significantly from seasonal to monthly scales.  Therefore, the strength of Darwinian 

approach for modeling evaporation may be not compelling at the monthly scale. 
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Figure 9: Strength of the Newtonian view and the Darwinian method on modeling evaporation at 

varying time scale. 

 

 

 

Figure 10: Monthly evaporation ratio versus monthly aridity index and the fitted Turc-Pike lines 

for the Rocky River watershed (Panel A), the Auglaize River watershed (Panel B), the 

Oostanaula River watershed (Panel C), and the Clear Fork Brazos River watershed (Panel D). 
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CHAPTER 3 RUNOFF GENERATION AND PROPORTIONALITY 

HYPOTHESES 

 

The runoff simulation model at seasonal and monthly scale is developed based on the 

proportionality hypothesis, which is derived from SCS curve number method originally by 

Ponce and Shetty [1995]. 

 

3.1 Methodology 

 

3.1.1 SCS curve number method and proportionality hypothesis 

 

The SCS curve number method was developed for estimating surface runoff at the event 

scale [USDA SCS, 1985].  At the early stage of a rainfall event, rainfall (P) is abstracted by 

interception and surface retention and denoted as initial abstraction Ia.  The remaining rainfall 

(P-Ia) is partitioned into continuing abstraction (Fa) and surface runoff (Qs).  Based on the data 

from a large number of observed watersheds, this partition follows the following proportionality 

formula: 

 
𝐹𝑎𝑆 =

𝑄𝑠𝑃−𝐼𝑎                                                                                         (3.1) 

where S is the potential value of Fa and dependent on the capacity of soil wetting; similarly 𝑃 − 𝐼𝑎 is the potential value of 𝑄𝑠 when 𝐹𝑎 approaches to zero.  Substituting 𝐹𝑎 =  𝑃 − 𝐼𝑎 − 𝑄𝑠 
into equation (3.1) and assuming than 𝐼𝑎 is a percentage of S (i.e., 𝐼𝑎 = 𝜆𝑠), the SCS equation for 

computing surface runoff is obtained: 
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𝑄𝑠 =
(𝑃−𝜆𝑠)2𝑃+(1−𝜆)𝑆                                                                                                                          (3.2) 

The basis of the curve number method is the proportionality relationship in equation 

(3.1).  The time scale for the SCS curve number method is the duration of a rainfall-runoff event.  

Since the duration of rainfall event varies, the underlying assumption of the SCS curve number 

method is that equation (3.1) is independent on the time interval over which the partition occurs.  

This proportionality hypothesis can be generalized as follows.  For a given time interval, the total 

amount of available water Z is allocated to X and Y.  The potential values of X and Y are Xp and 

Yp, respectively.  The allocation is determined by the following proportionality equation: 

𝑋𝑋𝑝 =
𝑌𝑌𝑝                                                                                                                                                  (3.3) 

For example, the proportionality relationship has been shown to be appicable at the annual scale 

[Ponce and Shetty, 1995; Sivapalan et al., 2011].  In this study, the proportionality relationship is 

tested at the seasonal scale considering water storage change in the quantification of available 

water. 

 

3.1.2 Modeling runoff generation at annual scale using proportionality hypothesis 

 

At the annual scale, precipitation is partitioned into runoff and evaporation when soil 

water storage change is negligible compared with other fluxes: 

𝑃 = 𝑄 + 𝐸                                                                                 (3.4)                                             
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L’vovich [1979] decomposed this partition into two stages.  At the first stage, precipitation is 

partitioned into surface runoff and soil wetting (W): 

𝑃 = 𝑄𝑠 + 𝑊                                                                                                                              (3.5) 

At the second stage, the soil wetting is partitioned into base flow (Qb) and evaporation (E): 

𝑊 = 𝑄𝑏 + 𝐸                                                                                                                              (3.6) 

The total runoff Q is the sum of Qs and Qb.  By applying this empirical theory to many 

watersheds across the world, L’vovich [1979] observed a pattern: during the generation of Qs and 

Qb, an initial abstraction will occur until a certain amount of water has been supplied, in other 

words, the flow generation will not occur until the water supply reach a certain level; on the 

other hand, the amount of W and E from rainfall partitioning has a upper limit while the 

generation of Qs and Qb does not have upper limit.  

Based on the two-stage runoff modeling concept by L’vovich [1979], Ponce and Shetty 

[1995] extended the SCS formula (equation 3.2) to the annual scale by generalizing the 

proportionality hypothesis.  Initial soil wetting is represented as a percentage (λs) of soil wetting 

capacity (𝑊𝑝).  𝜆𝑠𝑊𝑝 is the pereicpaition threshold for generating surface runoff.  When 𝑃 >λsWp,  

𝑄𝑠 =
(𝑃−𝜆𝑠𝑊𝑝)2𝑃+(1−2𝜆𝑠)𝑊𝑝                                                                                                                   (3.7) 

It should be noted that the functional difference between (1− 𝜆) in equation (3.2) and 

(1− 2𝜆𝑠) in equation (3.7) is due to the definition of S and Wp.  S is the maximum value of 

continuing wetting; while Wp is the maximum value of total wetting. 
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As an analog to surface flow, soil wetting threshold for base flow generation is 

defined as 𝜆𝑏𝑉𝑝.  When 𝑊 > 𝜆𝑏𝑉𝑝, base flow is computed by [Ponce and Shetty, 1995]: 

𝑄𝑏 =
(𝑊−𝜆𝑏𝑉𝑝)2𝑊+(1−2𝜆𝑏)𝑉𝑝                                                                                                                       (3.8) 

This similarity of runoff generation in terms of surface runoff and base flow has been discussed 

in Sivapalan et al. [2011].  As Sivapalan et al. pointed out, this hydrologic similarity, which is 

presented by equation (3.7) and (3.8), has the probability to be universally applicable to different 

temporal and spatial scales.  

 

3.1.3 Two-stage partition at the seasonal scale 

 

Different from annual scale, water balance and rainfall partitioning at the seasonal or 

shorter temporal scales are affected by soil water storage changes.  As described in Sivapalan et 

al. [2011], storage carryover between years is one of the reasons for the uncertainty of annual 

water balance variability.  For seasonal water balance, storage change (ΔS) becomes more 

significant, and therefore has to be considered as a part of the water balance.  As a result, the 

water balance in equation (3.4) becomes:  𝑃 = 𝑄 + 𝐸 + 𝛥𝑆                                                                                                                        (3.9) 

Soil water storage change is included into the definition of seasonality and the proportionality 

relationship.   

Seasonality is determined based on the monthly aridity index which is defined as 
𝐸𝑝𝑃−𝛥𝑆 

[Chen et al., 2013].  The monthly aridity index is an extension of the mean annual climate aridity 
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index �𝐸𝑝𝑃 � in the Budyko framework [Budyko, 1958; 1974].  Dry months (
𝐸𝑝𝑃−𝛥𝑆 > 1) and wet 

months (
𝐸𝑝𝑃−𝛥𝑆 ≤ 1) are determined by the mean monthly aridity index so that dry and wet months 

are fixed for a given watershed.  By aggregating all the dry months in each year, dry seasons are 

identified; similarly, wet seasons can be identified as well.   

The behavior of runoff generation in dry seasons and wet seasons can be different in a 

given watershed.  As a result, the two-stage rainfall partitioning concept by L’vovich [1979] is 

applied to dry seasons and wet seasons separately.  At the first stage, precipitation is partitioned 

into surface runoff and soil wetting, and the partitioning equation is same as equation (3.5) at the 

annual scale.  At the second stage, soil water storage change needs to be taken account into the 

available water, similar with seasonal aridity index.  The available water, represented by the 

difference between wetting and storage change, is partitioned into evaporation and base flow:  

𝑊 − 𝛥𝑆 = 𝑄𝑏 + 𝐸                                                                                                                   (3.10) 

The seasonal precipitation partition can be modeled based on the generalized proportionality 

hypothesis.  

 

3.1.4 Modeling seasonal runoff based on the proportionality hypothesis 

 

The simplified surface runoff generation process is illustrated in Figure 11.  The 

precipitation is partitioning into wetting W and surface runoff Qs, while initial abstraction λsWp is 

the amount of water that is not competing with Qs.  Continuing soil wetting and surface runoff 
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competes for the available water of 𝑃−𝜆𝑠𝑊𝑝, and this partition is quantified by the following 

proportional relationship: 𝑃−𝜆𝑠𝑊𝑝−𝑄𝑠𝑊𝑝−𝜆𝑠𝑊𝑝 =
𝑄𝑠𝑃−𝜆𝑠𝑊𝑝                                                                                                            (3.11) 

Based on this porportional relationship, surface runoff at the seasonal scale can be computed 

for wet and dry seasons respectively.  For example, surface runoff in wet seasons can be 

computed by the following equation, of which the functional form is same as equation (3.7): 

𝑄𝑠 = � 0 𝑖𝑓 𝑃 ≤ 𝜆𝑠𝑤𝑊𝑝𝑤
(𝑃−𝜆𝑠𝑤𝑊𝑝𝑤)2𝑃+(1−2𝜆𝑠𝑤)𝑊𝑝𝑤 𝑖𝑓 𝑃 > 𝜆𝑠𝑤𝑊𝑝𝑤                                                                                   (3.12.1) 

where superscript w is used to denote wet seasons; 𝑊𝑝𝑤 represents soil wetting capacities in 

wet seasons; 𝜆𝑠𝑤𝑊𝑝𝑤 represents initial soil wetting in wet seasons.  Correspondingly, surface 

runoff in dry seasons is computed by:            

𝑄𝑠 = � 0 𝑖𝑓 𝑃 ≤ 𝜆𝑠𝑑𝑊𝑝𝑑
(𝑃−𝜆𝑠𝑑𝑊𝑝𝑑)2𝑃+�1−2𝜆𝑠𝑑�𝑊𝑝𝑑 𝑖𝑓 𝑃 > 𝜆𝑠𝑑𝑊𝑝𝑑                                                                                      (3.12.2) 

where superscript d represents dry seasons, and 𝜆𝑠𝑑 and 𝑊𝑝𝑑 are corresponding parameters in dry 

seasons.  The equations are similar with the equations on the annual scale as shown in equation 

(3.7).  The only difference is that the seasonal surface runoff equations are seperated into dry 

seasons and wet seasons.  
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Figure 11: Conceptual scheme for the first-stage partition for modeling surface runoff. 

 

However, the base flow equation at the seasonal scale is different from base flow 

equation at the annual scale.  At the second stage, the available water for the competition 

between base flow and evaporation is 𝑊 − 𝛥𝑆 as shown in equation (3.10).  Analog to initial soil 

wetting, initial evaporation is defined as a percentage of potential evaporation: 𝜆𝑏𝐸𝑝.  Continuing 

evaporation and base flow compete for the available water of 𝑊 − 𝛥𝑆 − 𝜆𝑏𝐸𝑝.  The potential 

value for continuing evaporation is 𝐸𝑝 − 𝜆𝑏𝐸𝑝; the potential value for base flow is 𝑊 − 𝛥𝑆 −𝜆𝑏𝐸𝑝 when continuing evaporation approaches to zero.  Therefore, the second-stage partition is 

quantified by the following equation based on the proportionality relationship: 

𝐸−𝜆𝑏𝐸𝑝𝐸𝑝−𝜆𝑏𝐸𝑝 =
𝑄𝑏𝑊−𝛥𝑆−𝜆𝑏𝐸𝑝                                                                                          (3.13) 

Substituting 𝐸 = 𝑊 − 𝛥𝑆 − 𝑄𝑏 into the equation (3.13), the base flow equation is obtained: 

 𝑄𝑏 =
(𝑊−𝛥𝑆−𝜆𝑏𝐸𝑝)2𝑊−𝛥𝑆+(1−2𝜆𝑏)𝐸𝑝                                                                                                        (3.14) 
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Similarly, base flows can be modeled in wet and dry seasons respectively.  In dry seasons, base 

flow is computed by the following equation: 

𝑄𝑏 = � 0 𝑖𝑓 𝑃 ≤ 𝜆𝑏𝑑𝐸𝑝
(𝑊−𝛥𝑆−𝜆𝑏𝑑𝐸𝑝 )2𝑊−𝛥𝑆+�1−2𝜆𝑏𝑑�𝐸𝑝 𝑖𝑓 𝑃 > 𝜆𝑏𝑑𝐸𝑝                                        (3.15.1) 

Base flow in wet seasons is computed by: 

𝑄𝑏 = � 0 𝑖𝑓 𝑃 ≤ 𝜆𝑏𝑤𝐸𝑝
(𝑊−𝛥𝑆−𝜆𝑏𝑤𝐸𝑝 )2𝑊−𝛥𝑆+�1−2𝜆𝑏𝑤�𝐸𝑝 𝑖𝑓 𝑃 > 𝜆𝑏𝑤𝐸𝑝                                                                (3.15.2) 

As shown, two differences exist between equations (3.15) and (3.8): 1) Storage change is 

included into the equation (3.15); 2) The variable 𝐸𝑝 in equation (3.15) replaces 𝑉𝑝 in equation 

(3.8).   𝑉𝑝 is a fixed parameter, while 𝐸𝑝 is obtained from observed data that varies over time. 

Figure 12 illustrates the conceptual scheme of base flow generation. 

 

Figure 12: Conceptual scheme for the first-stage partition for modeling base flow. 
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 In summary, the seasonal surface runoff and base flow can be modeled by equations 

(3.12) and (3.15) obtained from proportional relationships.  There are three parameters for wet 

seasons (𝜆𝑠𝑤, 𝑊𝑝𝑤, and 𝜆𝑏𝑤) and three parameters for dry seasons (𝜆𝑠𝑑, 𝑊𝑝𝑑, and 𝜆𝑏𝑑).   

3.1.5 Data collection 

 

The daily data from 1983 to 2002 including precipitation and runoff are obtained from 

the Model Parameter Estimation Experiment (MOPEX) database [Duan et al., 2006].  Daily 

evaporation and monthly potential evaporation during the same period is obtained from Zhang et 

al. [2010].  The daily runoff data is separated into surface runoff and base flow using one-

parameter digital filter method with the filter parameter value of 0.925 [Nathan and McMahon, 

1990; Sivapalan, et. al., 2011].  Daily precipitation, actual evaporation, surface runoff and base 

flow are aggregated to monthly values.  The monthly values of storage change are estimated as 

residuals of water balance closure (𝛥𝑆 = 𝑃 − 𝑄 − 𝐸).  On the other hand, monthly values of soil 

wetting are computed by equation (3.5).  Energy-limited and water-limited months are 

aggregated into seasonal values on annual bases, respectively.   

Based on the definition of seasonal aridity index, the study watersheds are classified into 

three categories:  1) all the twelve months are energy-limited; 2) all the twelve months are water-

limited; and 3) both energy-limited and water-limited seasons exist  [Chen et al., 2013].  Since 

water balance at the watersheds with single season is equivalent to annual water balance, 203 

watersheds with both seasons are selected for analysis in this study.   

In order to identify the rainfall variability control on seasonal water balance, the 

following storminess characteristics are quantified based on the daily rainfall data: the number of 

rainfall event per year (N), the maximum rainfall intensity (imax) [mm/day], the average rainfall 
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intensity (i) [mm/day]; the average duration of rainfall events (Tr) [day], and the average 

between-event period (Tb) [day].  A rainfall event, based on which the storm duration and the 

between-event duration is computed, is defined as a period with continuous rainfall depth greater 

than 5 mm/day [Robinson and Sivapalan, 1997; Jothityangkoon and Sivapalan, 2009].    The 

number of event per year is counted for the two seasons respectively.  The maximum rainfall 

intensity is obtained by identifying the maximum intensity event for each year (in energy-limited 

season or water-limited season) and then taking the average value over the years.  

Watershed properties including vegetation, topography and soil are analyzed based on the 

available databases.  The seasonal average value of Normalized Difference Vegetation Index 

(NDVI), as an indicator of vegetation coverage, is computed for both seasons.  The slope is 

computed based on the 30 m Digital Elevation Model (DEM) from National Elevation Dataset 

[Gesch, 2007].  The following data from SSURGO [USDA, 2007] are calculated and aggregated 

to the watershed scale: the top layer porosity (ϕs) [%], the soil depth (D) [mm], the total soil 

water storage capacity (C) [mm], the saturated hydraulic conductivity (Ks) in the top soil layer 

[mm/hour] and the vertical average saturated hydraulic conductivity (Ka) [mm/hour].  The soil 

depth and saturated hydraulic conductivity are obtained directly from the soil database.  Porosity 

for each soil layer is calculated based on the bulk density.  The value for Ka is obtained by 

computing the depth weighted average saturated hydraulic conductivity for each horizontal soil 

unit (called “component” in SSURGO database), which is aggregated to the watershed value 

through the soil map unit. 
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3.2 Results and Discussion 

 

The proposed two-stage seasonal runoff model is applied to the study watersheds.  The 

parameter values are estimated during the calibration period (1983-1992).  Nash-Sutcliffe 

efficiency coefficient (NSE) [Nash and Sutcliffe, 1970] is computed as an indicator of model 

performance:    

𝑁𝑆𝐸 = 1− ∑ (𝑄𝑜𝑏𝑠𝑖 −𝑄𝑒𝑠𝑡𝑖 )2𝑛𝑖=1∑ (𝑄𝑜𝑏𝑠𝑖 −𝑄𝑎𝑣𝑒)2𝑛𝑖=1                                                                                                    (3.16) 

where Qobs is the observed runoff; Qave is the average value of observed runoff; Qest is the 

modeled runoff ; n is the number of years during the calibration period.  The values of NSE can 

range from -∞ to 1.  NSE=1 corresponds to a perfect model performance, and NSE=0 indicates 

that the model estimations are as accurate as the mean of the observed data.  The set of 

parameters are estimated by maximizing the NSE values during the calibration period.  NSE is 

also computed during the validation period of 1993-2002.   

 

3.2.1 Model performance 

 

The exceedance probability of the NSE values for surface runoff (Qs), base flow(Qb), and 

total runoff (Q) for the study watesheds are shown in Figure 13, respectively.  The exceedance 

probability corresponding to the NSE value of 0.5 is 46% (75%) in water-limited seasons and 

51% (84%) in energy-limited seasons for surface runoff (base flow), whereas the exceedance 

probability of NSE=0.5 for total runoff increases to 88% in water-limited seasons and 95% in 

energy-limited seasons.  In general, the NSE values for base flow are higher than those for 
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surface runoff; the performance in energy-limited seasons, which is usually in the summer when 

the rainfall intensity is high, is higher than that in water-limited seasons. 

 

Figure 13:  NSE values during the validation period in different seasons: (a) direct runoff 

simulation, (b) base flow simulation, and (c) total runoff simulation. 

 

3.2.2 Estimated model parameters for seasonal water balance 

 

The values of the model parameters (𝜆𝑠𝑤, 𝑊𝑝𝑤, and 𝜆𝑏𝑤 for water-limited seasons and 𝜆𝑠𝑒, 𝑊𝑝𝑒, and 𝜆𝑏𝑒  for energy-limited seasons) are estimted through the calibration procedure.  As 

examples, the parameter values for 18 watersheds from different geographic regions are shown 
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in Table 1.  The values of these parameters, as well as their dependence on rainfall characteristics 

and watershed properties, are discussed in the following sections. 

Table 1: Information of the chosen 18 watersheds 

Gage ID Region State Drainage 

Area (km
2
) 

Ep/P Wp
w
 

(mm) 

λs
w
 λb

w
 Wp

d
 

(mm) 

λs
d
 λb

d
 

01574000 Northeast PA 1321 0.81 1500 0.12 0.18 2100 0.07 0.59 

01127000 Northeast CT 1847 0.55 7400 0 0.08 2100 0 0.63 

01559000 Northeast PA 2113 0.78 4300 0.01 0.25 3500 0 0.68 

02018000 Appalachia VA 852 0.71 3300 0.03 0.46 1500 0.07 0.77 

01610000 Appalachia WV 8104 0.75 3200 0.07 0.48 1800 0.01 0.78 

02273000 Southeast FL 7475 0.94 3300 0 0.76 17400 0.01 0.63 

02228000 Southeast GA 7226 0.87 5700 0 0.54 4800 0.09 0.63 

02456500 Southeast AL 2292 0.65 2700 0.13 0.4 3100 0.03 0.68 

05570000 Midwest IL 4237 1.05 700 0.13 0.17 2600 0.12 0.41 

07183000 Midwest KS 9643 1.37 400 0 0.14 3500 0.1 0.28 

09497500 Southwest AZ 7379 2.11 1000 0.08 0.74 5400 0.02 0.18 

08172000 Southwest TX 2170 1.60 800 0.04 0.21 2300 0.26 0.19 

14113000 Northwest WA 3359 0.79 9200 0.02 0 14400 0.03 0.11 

14321000 Northwest OR 9539 0.53 6900 0 0.17 3600 0 0.43 

11530000 Northwest CA 7389 0.63 13000 0 0.16 2800 0 0.34 

06225500 High Plain WY 4898 1.55 20000 0 0.59 5700 0 0 

09251000 High Plain CO 8762 1.55 10400 0.01 0.28 10900 0 0.23 

09292500 High Plain UT 342 1.22 19700 0.02 0.07 5500 0 0 

 

3.2.2.1 Wetting capacity 

 

The spatial distribution of wetting capacity (Wp) is shown in Figure 14.  The values of 

wetting capacity in the Midwest are generally lower than those in other regions, which is the 

same as the pattern of annual values reported by Sivapalan et. al. [2011].  To quantify the 

dependence of wetting capacity on watershed properties and rainfall variabilities, the correlation 

between wetting capacity and the obtained phyiscal factors described in Section 3.1.5 are 

calculated.  In the energy-limited seasons, the wetting capacities are found to be correlated with 
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three factors: the saturated hydraulic conductivity (Ka) [mm/hour], the average duration of 

rainfall events (Tr) [day], and the average season length (L) [day]; whereas, the wetting 

capacities in the water-limited seasons are found to be correlated with Ka, L and NDVI.  Wetting 

capacity has a positive relationship with saturated hydraulic conductivity Ka in both seasons 

(Figures 15a and 15c).  This relationship shows that the potential value of soil wetting is 

positively correlated with the easiness of water going through soil layers vertically.  The wetting 

capacities in energy-limited seasons are positively related with the average durations of rainfall 

events, espacially when the wetting capacity is low (Figure 15b).  As mentioned before, water-

limited seasons are usually in the summer when vegetation coverage is maximum, and the 

wetting capacities have a negative relationship with the average NDVI (Figure 15d). 

 

Figure 14: Spatial distribution of wetting capacity in 203 study watersheds: (a) energy-limited 

seasons , and (b) water-limited seasons. 
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Figure 15: Relationships of 𝑊𝑝 vs. 𝐾𝑎 (a) and 𝑊𝑝 vs. 𝑇𝑟 (b) in energy-limited seasons; and 𝑊𝑝 vs. 𝐾𝑎 (c) and 𝑊𝑝 vs. 𝑁𝐷𝑉𝐼𝑎𝑣𝑒 (d) in water-limited seasons. 

 

The following equation is obtained for the energy-limited seasons through multiple 

regressions: 

𝑊𝑝𝑒 = � 297𝐿0.2 ∙ 𝑇𝑟1.9 ∙ 𝐾𝑎0.3 if 𝑊𝑝𝑒 ≤ 4000 mm

843𝐿0.2 ∙ 𝑇𝑟0.6 ∙ 𝐾𝑎0.4 otherwise
                                      (3.17.1) 

The regression equation for the water-limited seasons is:  

𝑊𝑝𝑤 = � 189𝐿0.4 ∙ 𝐾𝑎0.3 ∙ 𝑁𝐷𝑉𝐼−0.2 if 𝑊𝑝𝑤 ≤ 4000 mm

429𝐿0.4 ∙ 𝐾𝑎0.4 ∙ 𝑁𝐷𝑉𝐼−0.1 otherwise
                                     (3.17.2) 
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Figure 16 shows the comparison between estimated Wp values and the computed ones by the 

regression equations.  The regression equations capature the general trend of Wp well, 

especially when the Wp value is lower than 4000 mm.  The regression equation in energy-

limited seasons has a better performance (𝑅2 = 0.71) than that in water-limited seasons (𝑅2 

=0.57).   

 

Figure 16: Comparison of wetting capacity values from the runoff model and from the regression 

equations in (a) energy-limited seasons and (b) water-limited seasons. 
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Figure 17: Spatial distribution of intial wetting in the: (a) energy-limited seasons, and (b) water-

limited seasons. 

 

 

Figure 18: Relationships of (a) 𝜆𝑠𝑊𝑝 vs. 𝑖𝑚𝑎𝑥 in the energy-limited seasons, (b) 𝜆𝑠𝑊𝑝 vs. 𝑖𝑚𝑎𝑥 

and (c) 𝜆𝑠𝑊𝑝 vs. 𝑁𝐷𝑉𝐼𝑎𝑣𝑒  in the water-limited seasons. 
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in the water-limited seasons than those in the energy-limited seasons.  This seasonal change 

could be related with the seasonality of vegetation and rainfall characteristics.   

Correlation between initial wetting and physical factors is quantified through a multiple 

regression analysis.  The average season length (L) and the maximum rainfall intensity (imax) are 

positively correlated with initial wetting in both seasons (Figure 18a and 18b).  Besides these two 

factors, NDVI is found to be correlated with initial wetting in the water-limited seasons (Figure 

18c).  Through multiple regression analysis, the following equation is obtained for the energy-

limited seasons: 

 𝑊𝑜𝑒 = �0.1𝐿 ∙ 𝑖𝑚𝑎𝑥0.3   if 𝑊𝑜 ≤ 150 mm

0.32𝐿1.1 ∙ 𝑖𝑚𝑎𝑥0.1        otherwise
                                                                        (3.18.1) 

and for the water-limited seasons: 

 𝑊𝑜𝑤 = �0.79𝐿0.7 ∙ 𝑖𝑚𝑎𝑥0.3 ∙ 𝑁𝐷𝑉𝐼−0.01   if 𝑊𝑜 ≤ 150 mm

0.89𝐿0.8 ∙ 𝑖𝑚𝑎𝑥0.5 ∙ 𝑁𝐷𝑉𝐼−0.01        otherwise
                                     (3.18.2) 

Figure 19 compares the estimations of initial wetting through the two-stage runoff model and the 

the regression-based ones.  The 𝑅2 of the multiple regression is 0.79 in the energy-limited 

seasons and 0.82 in the water-limited seasons.    

 

Figure 19: Comparison of initial wetting estimated from the two-stage runoff model and the 

regression equations in: (a) the energy-limited seasons and (b) the water-limited seasons. 
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3.2.2.3 Initial evaporation 

 

Initial evaporation (E0) is represented as a fraction of potential evaproation, i.e., E0=λbEp.  

The average of initial evaporation is 289 mm in the water-limited seasons and 101 mm in the 

energy-limited seasons.  90% of watersheds in the water-limited seasons have an initial 

evaporation lower than 423 mm, while 90% of watersheds in energy-limited seasons have an 

initial evaporation lower than 261 mm.  The spatial distribution of initial evaporation is shown in 

Figure 20.  The average number of rainfall event per season (N), seasonal average NDVI, and the 

duration of the season (L) [day] are found to be correlated with initial evaporation in both 

seasons.  The higher value of initial evaporation in the water-limited seasons is due to the higher 

vegetation coverage and rainfall frequency compared with the energy-limited seasons.  As 

expected, initial evaporation is positively correlated with NDVI and N in both seasons (Figure 

21).  Figure 21d shows that in the water-limited season, the positive relationship between initial 

evaporation and NDVI is not clear.  This pattern is caused by the trade-off between the two 

components of initial evaporation: λb and Ep.  In the water-limited seasons, NDVI has a positive 

correlation with λb (R = 0.80) and a negative correlation with Ep (R = -0.66). 

The following regression equation is obatined for the energy-limited seasons: 

 𝐸𝑜𝑒 = �0.21𝑁0.1 ∙ 𝑁𝐷𝑉𝐼1.3 ∙ 𝐿1.2   if 𝐸𝑜 ≤ 150 mm

1.18𝑁0.2 ∙ 𝑁𝐷𝑉𝐼0.8 ∙ 𝐿0.9        Otherwise
                                       (3.19.1)  

and the following equation is obtained for the water-limited seasons: 

 𝐸𝑜𝑤 = �35.7𝑁0.6 ∙ 𝑁𝐷𝑉𝐼1.5 ∙ 𝐿0.1   if 𝐸𝑜 ≤ 150 mm

1.2𝑁0.2 ∙ 𝑁𝐷𝑉𝐼0.8 ∙ 𝐿0.9        Otherwise
                                       (3.19.2) 
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Figure 20: Spatial distribution of initial evaporation: (a) energy-limited seasons, and (b) water-

limited seasons. 

 

 

 

Figure 21: Correlation of (a) 𝐸0 vs. 𝑁 in the energy-limited seasons, (b) 𝐸0 vs. 𝑁𝐷𝑉𝐼 in the 

energy-limited seasons, (c) 𝐸0 vs. 𝑁 in the water-limited seasons, and (d) 𝐸0 vs. 𝑁𝐷𝑉𝐼 in the 

water-limited seasons. 
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Figure 22. Comparison of initial evaporation values from the two-stage runoff model and from 

the regression equations: (a) energy-limited seasons and (b) water-limited seasons. 

 

As shown in Figure 22, the regression equations for 𝐸𝑜 have good performance in both energy-

limited seasons (𝑅2 = 0.87) and water-limited seasons (𝑅2 = 0.84).  Different from initial 

wetting, initial evaporation has a strong positive relationship with vegetation coverage in both 

seasons, based on equation (3.19.1) and (3.19.2).  This result reveals the difference between 𝐸𝑜 

and 𝑊𝑜.  As discussed in the previous section, 𝑊𝑜 tends to have a negative relationship with 

vegetation coverage.   

It should be noted that not all the physical factors computed in Section 3.1.5, such as 

topography factors, are included in the regression analysis due to the non-significant correlation.  

 

 

 

0 100 200 300 400 500
0

100

200

300

400

500

Estimated  E
0

e
  (mm)

R
e
g
re

s
s
io

n
-b

a
s
e
d
  

E
0e
  

(m
m

) a)

0 200 400 600 800
0

200

400

600

800

Estimated  E
0

w
  (mm)

R
e
g
re

s
s
io

n
-b

a
s
e
d
  

E
0w
  

(m
m

)

b)



       

 

50 

 

CHAPTER 4 STORAGE DYNAMICS AND CONTRIBUTING AREA 

 

Because of the difficulty to obtain evaporation and storage data for watersheds, the 

feasibility of using base flow recession analysis to estimate evaporation and storage change is 

investigated in this study as well.  The evaporation estimation model used by many former 

studies [Szilagyi et al., 2007; Kirchner, 2009; Palmroth et al., 2010] was applied on 9 study 

watersheds in this study.  Spoon River Watershed in Illinois will be the focused study watershed 

because of the high data availability.  Furthermore, the performance and potential limitation of 

the model is also discussed with a focus on the newly developed concept: contributing area. 

Figure 23 shows the locations of the 9 study watersheds. 

 
 

Figure 23: Locations of the 9 study watersheds with Spoon River watershed located in Illinois 

highlighted with dark blue. 
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4.1 Methodology 

 

4.1.1 Recession analysis 

 

Hydrograph recession analysis is usually utilized to derive water storage-discharge 

functions at the watershed scale.  The recession analysis method proposed by Brutsaert and 

Nieber [1977] is to plot recession slope (-dQ/dt) as a function of discharge (Q).  This method 

facilitates the analysis on a collective of recession events, and the impact of recession starting 

time on parameter estimation is minimized.  As proposed by Brutsaert and Nieber [1977], the 

relationship between recession slope and discharge can be modeled as a power function: − 𝑑𝑄𝑑𝑡 = 𝑎𝑄𝑏                                                                      (4.1) 

Exponent b is dimensionless and the unit of a depends on the value of b.  Q (mm/day) is 

groundwater discharge per unit watershed area.  The data pairs (− 𝑑𝑄𝑑𝑡 , Q) can be computed by the 

difference of discharges in consecutive days (Qt-Qt+1) and the average discharge ((Qt-Qt+1)/2), 

respectively [Brutsaert and Nieber, 1977].  Recession periods were selected when there was no 

rainfall.  As an example, the data pairs (− 𝑑𝑄𝑑𝑡 , Q) for the Spoon River watershed are plotted in 

Figure 24. 
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Figure 24: -dQ/dt versus Q and the lower envelope for the Spoon River water based on daily 

streamflow data during 01/01/1983-12/31/2003. 

 

Based on the plot of − 𝑑𝑄𝑑𝑡  versus Q on log-log space, the function of − 𝑑𝑄𝑑𝑡 = 𝑓(𝑄) and 

further the storage-discharge function can be constructed.  Several methods have been used to 

estimate the parameters in the literature [Stoelzle et al., 2013].  Vogel and Kroll [1992] estimated 

the parameter values in equation (4.1) by linear regressions.  Kirchner [2009] proposed to use 

polynomial functions which fit the binned data points.  Therefore, the power function in equation 

(4.1) was not assumed a priori.  Since the recession rate of groundwater discharge is smaller than 

other storage components, Brutsaert and Nieber [1977] proposed to place the fitted line at the 

lower envelope of the data points.  The effect of evaporation on recession parameter estimation is 

minimal at the lower envelope.  In this study, the lower envelope method is used for estimating 

the recession parameters a and b.  Table 2 shows the values of parameters a and b of the 9 study 

watersheds. 
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Table 2: Watershed name, USGS gage number, drainage area, climate aridity index (Ep/P), and 

estimated recession parameters for the 9 case study watersheds 

Watershed USGS 

gage 

Drainage 

area 

(km
2
) 

Ep/P Recession parameter 

  a1        b1       a2        b2 

Spoon River, IL 05570000 4237 1.09 0.035 2.2 0.01 1.2 

Holston River, VA 03473000 785 0.61 0.02 2.3 0.03 1.4 

Nantahala River, NC 03504000 134 0.39 0.0015 2.9 0.01 1.5 

Little Sioux River, IA 06606600 6475 1.34 0.022 2.5 0.02 1.5 

Valley River, NC 03550000 265 0.38 0.004 3 0.017 1.5 

Clinch River, VA 03524000 1380 0.68 0.025 2.9 0.035 1.5 

Powell River, VA 03531500 827 0.60 0.025 2.9 0.035 1.5 

Nodaway River, IA 06817000 1972 1.17 0.05 2.8 0.025 1.5 

Big Nemaha River, NE 06815000 3468 1.34 0.15 3 0.025 1.3 

 

 When rainfall is zero and the net groundwater flux from outside the watershed is 

negligible, the water balance equation during recessions can be written as: 

𝑑𝑆𝑑𝑡 = −𝑄 − 𝐸                                                                      (4.2) 

where S (mm) is the depth of water storage per unit watershed area.  S is the water storage 

contributed to observed base flow at the outlet but normalized over the entire watershed area.  

Therefore, E (mm) is also the depth of evaporation from the contributing storage but normalized 

by the watershed area.  Both S and E are not the corresponding total values in the entire 

watershed.  The storage-discharge function derived from hydrograph recession is a conceptual 

lumped model.  The unsaturated and saturated zones are modeled by one storage term.  

Therefore, evaporation in equation (4.2) is assumed for the total value from unsaturated and 

saturated zones [Szilagyi et al., 2007; Kirchner, 2009; Palmroth et al., 2010].  The recession 

parameters can be estimated at the lower envelope where the impact of evaporation is minimal 

(Figure 24).  Correspondingly, the storage-discharge relation is obtained: 𝑑𝑆 =
1𝑎𝑄1−𝑏𝑑𝑄                                                                      (4.3) 
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Substituting dS into equation (4.2), evaporation can be estimated based on the observed recession 

slope and discharge [Palmroth et al., 2010]: 𝐸 =
−𝑑𝑄/𝑑𝑡𝑎 𝑄1−𝑏 − 𝑄                                                                         (4.4) 

The effect of evaporation on hydrograph recession has been reported in many watersheds 

[Federer, 1973; Daniel, 1976].  The seasonal variability of recession rate is caused by seasonal 

pattern of evaporation [Wittenberg and Sivapalan, 1999].   

 During the late recession, the exponent, which is presented as b2, is usually less than 2, 

and the contributing storage is obtained by integrating equation (4.3):  

𝑆 = 𝑆𝑚 +
𝑄2−𝑏2𝑎2(2−𝑏2)

                                                                   (4.5.1) 

Sm is interpreted as the minimum storage for generating base flow.  During the early recession, 

the exponent, which is presented as b1, is usually larger than 2 and the contributing storage is 

computed as: 

𝑆 = 𝑆𝑐 +
𝑄2−𝑏1𝑎1(2−𝑏1)

                                                                  (4.5.2) 

Sc is interpreted as the storage capacity [Kirchner, 2009].  Storage and discharge functions by 

equation (4.5), which are estimated from recession analysis as shown in Figure 24, are usually 

assumed to be one-to-one relationships.   

Discharge at the transition point from early to late recessions is a function of recession 

parameters: 

𝑄0∗ = �𝑎2𝑎1� 1𝑏1−𝑏2                                                                                                                           (4.6) 
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For the parameters in Figure 24, 𝑄0∗ is 0.29 mm/day for the Spoon River watershed.  If Q>𝑄0∗, the 

recession is at the early stage.  Otherwise, it is at the late stage.  According to equation (4.5), the 

storage capacity can be computed given Sm and 𝑄0∗: 𝑆𝑐 = 𝑆𝑚 +
𝑄0∗2−𝑏2𝑎2(2−𝑏2)

− 𝑄0∗2−𝑏1𝑎1(2−𝑏1)
                                                        (4.7) 

Storages at the late and early recessions are computed by equation (4.5.1) and equation (4.5.2), 

respectively.   

As discussed earlier, due to the effect of partial contributing storage, S in these equations 

is the contributing storage normalized by the watershed area.  The ratio of contributing storage to 

total storage is represented by β: 𝛽 =
𝑆𝑇𝑆                                                                                                                                         (4.8) 

where TS (mm) is the total depth of water storage per unit watershed area.  Similarly, the ratio of 

evaporation estimated by equation (4.4) to total evaporation is represented by: 𝛼 =
𝐸𝑇𝐸                                                                                                                                         (4.9) 

where TE (mm) is the total evaporation per unit watershed area.  The variables 𝛼 and 𝛽 can be 

interpreted as the fraction of the watershed underlain by aquifers that contributes to streamflow 

[Brutsaert and Nieber, 1977].  The values of 𝛼 and 𝛽 are indicators of hydrologic connectivity 

among hillslope-riparian-stream zones.  The variability of 𝛽, such as seasonal variation, is one 

potential factor for variable storage-discharge functions, 𝑇𝑆 = 𝑓(𝑄), at the watershed scale. 
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4.1.2 Estimation of 𝛼 and 𝛽 

 

In order to explore the impact of the variable contributing storage on the storage-

discharge relationship, the values of 𝛼 and 𝛽 are estimated in the study watersheds.  At each 

individual recession event, 𝛼 is estimated as the ratio between estimated daily E by equation 

(4.4) and observed daily evaporation (E
obs

) based on remote sensing data at the watershed scale: 

α=E/E
obs

.  On the other hand, 𝛽 is estimated as the ratio between estimated storage and total 

storage.  For a recession segment, the value of 𝛽 is estimated by the water balance described as 

follows.  Storages at two consecutive days, S(t1) and S(t2), are computed by equation (4.5).  The 

total watershed storage change is equal to discharge and total evaporation: 𝑇𝑆(𝑡1) − 𝑇𝑆(𝑡2) = 𝑄(𝑡2) + 𝑇𝐸(𝑡2)                                                      (4.10) 

Combining equations (4.8) and (4.10), the contributing storage parameter at t2 is computed by: 𝛽(𝑡2) =
𝑆(𝑡2)

[𝑆(𝑡1) 𝛽(𝑡1)⁄ −𝑄(𝑡2)−𝑇𝐸(𝑡2)]
                                                                          (4.11) 

At the onset of the recession event (t1), the value of β is assumed to be equal to the average of 𝛼 

during the recession, since 𝛼 and β are both majorly controlled by the variation of contributing 

storage in the watershed.  This assumption is used to determining the initial value of β in a 

recession event.  The uncertainty of the initial β does not affect the generalization of the findings. 

 

4.1.3 Data selection and Sm 

 

The analysis in this study is based on recessions during the period from April to October 

in order to focus on the rainfall events.  The following criteria are used to filter recession 

segments: (1) declining streamflow; 2) no rainfall during recession; 3) recession event is longer 
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than 4 days.  The recession rate computed by 
𝑄(𝑡)−𝑄(𝑡+2)2  is used to compute S(t+1) associated 

with discharge Q(t+1).  The estimated storage in Eq. (4.5) is affected by the minimal storage Sm, 

which is set to 0. However, the estimation of evaporation in Eq. (4.4) is unaffected by Sm.  

 

4.2 Results and Discussion 

 

4.2.1 Recession analysis and parameter 𝛼 and 𝛽 

 

The values of 𝛼 and 𝛽 in the 9 case study watersheds shown in Table 2 are calculated 

using the method discussed formerly.  The Spoon River watershed will be discussed with more 

details as mentioned before.  As shown in Figure 24, the recession parameters for the Spoon 

River watershed are b1 = 2.2 and a1=0.035 mm
-2

 d for the early recession and b2 = 1.2 and 

a2=0.01 mm
-0.2

 d
-0.8

 for the late recession.  The values of recession parameters for the other 8 

watersheds are shown Table 2, and the corresponding plots of –dQ/dt ~ Q can be found in the 

support material.  

 
Figure 25: Comparison between estimated evaporation from recession analysis and evaporation 

from remote sensed data. 
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4.2.2 Underestimation of evaporation from base flow recession analysis 

 

The estimated daily evaporation from the lumped storage-discharge relationship is 

compared with the one estimated from remote-sensing and weather stations-based data.  For 

demonstration purpose, two recession events from: 1) the Spoon River watershed during May 

1994 in Table 3; 2) and the Nodaway River watershed during May 1994 in Table 4 are shown as 

below.  The estimated E by equation (4.4) and E
obs

 from remote sensing data are shown in 

columns 6 and 7, respectively.  As we can see in Table 3 and 4, the estimated evaporation from 

recession analysis is much smaller than E
obs

.  Figure 25 plots estimated E versus E
obs

 from all the 

9 watersheds.  Most of the estimated values of evaporation are smaller than the remote sensed 

ones, and 93% of data points are below the 1:1 line in Figure 25. 

Table 3: One recession event from the Spoon River watershed in Illinois 

Date P 

(mm/day) 

Q 

(mm/day) 

-dQ/dt 

(mm/day
2
) 

S 

(mm) 

Estimated E 

(mm/day) 

E
obs

 

(mm/day) 

α β 

05/15/1994 0.40 0.84       

05/16/1994 0.00 0.78       

05/17/1994 0.00 0.71 0.0665 76.22 2.18 3.33 0.656 0.437 

05/18/1994 0.00 0.65 0.0491 73.57 1.72 3.16 0.543 0.431 

05/19/1994 0.00 0.61 0.0373 71.55 1.33 3.08 0.432 0.429 

05/20/1994 0.00 0.57 0.0258 69.71 0.86 3.10 0.278 0.427 

05/21/1994 0.00 0.56 0.0255 68.72 0.92 3.35 0.274 0.431 

05/22/1994 0.00 0.52       

05/23/1994 0.81 0.50       

 

Table 4: One recession event from the Nodaway River watershed in Iowa 

Date P 

(mm/day) 

Q 

(mm/day) 

-dQ/dt 

(mm/day
2
) 

S 

(mm) 

Estimated E 

(mm/day) 

E
obs

 

(mm/day) 

α β 

06/14/1995 0.51 0.70       

06/15/1995 0.00 0.65       

06/16/1995 0.00 0.60 0.0497 61.87 1.90 4.37 0.436 0.384 

06/17/1995 0.00 0.55 0.0428 59.46 1.75 4.02 0.435 0.357 

06/18/1995 0.00 0.51 0.0329 57.28 1.33 3.75 0.353 0.330 

06/19/1995 0.00 0.49 0.0298 55.81 1.22 3.91 0.313 0.319 

06/20/1995 0.04 0.45       
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The mismatch between estimated E versus E
obs

 can be induced by two potential reasons. 

The values of E are underestimated, or the values of E
obs

 are overestimated.  However, E
obs

 is not 

biased toward overestimating evaporation as discussed earlier, and the average RMSE of E
obs

 is 

1.2 mm/day.  The detailed uncertainty assessment of E
obs

 is not discussed in this study and 

referred to [Zhang et al., 2010].  Even if 1.2 mm/day of overestimation in E
obs

 is assumed, the 

estimated E is still underestimated in most recession events.  As shown in Table 3 and 4, the 

estimated E decreased from 1.72 mm/day to 0.92 mm/day during a recession event in May in the 

Spoon River watershed while E
obs

 remained at the level of 3.08 mm/day to 3.35 mm/day.  The 

underestimation of E is also supported by the fact that potential evaporation of the Spoon River 

watershed is 6.20 mm/day and the land use is dominated by agriculture including corns and 

soybeans [ISWS, 2010].  It should be noted that the placement of lower envelope in Figure 24 

also affects the estimation of E.  If the lower envelope in Figure 24 was moved upward, the 

estimated evaporation will be even lower. 

The underestimation of evaporation from hydrograph recession analysis can be explained 

by two major reasons: 1) The storage contributed to the observed base flow in the outlet is 

mainly from riparian groundwater during dry periods, and therefore the estimated evaporation by 

equation (4.4) only accounts for evaporation from the riparian zone; 2) The linkage between 

water storage in the unsaturated zone and base flow becomes weak while the groundwater table 

declining.  As a result, evaporation from unsaturated zone is not included in the estimated E by 

recession analysis.  Because of these two reasons, the value of estimated E by equation (4.4) will 

be underestimated, since the estimated E from riparian zone or contributing storage to base flow 

is normalized by the entire watershed area. 
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4.2.3 Temporal variability of α 

 

The ratio between estimated E and E
obs

, which is described as α, reflects the significance 

of bias in the estimated evaporation.  As shown in Table 3, the value of α decreases by 58% from 

0.656 to 0.274 during the recession event; and the value of α decreases by 28% from 0.436 to 

0.313 during the event in Table 4.  The value of α decreases with declining discharge during 

individual recession events in all the study watersheds.  The value of α also varies with events 

and is dependent on the initial soil moisture and groundwater table.  For example, the water table 

rises after a heavy rainfall and therefore more groundwater area contributes to the base flow, 

which is corresponding to a higher value of α.  At the same time, higher discharge is 

corresponding to higher water table.  Figure 26 plots the relation between estimated α and 

observed discharge from the Spoon River watershed.  As it shows, the larger values of α 

correspond to higher discharges.   

 
Figure 26: Estimated α versus discharge (Q) from the Spoon River watershed. 
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are smaller than 1 and over 70.2% of the α values are smaller than 0.5.  This result indicates a 

significant underestimation of evaporation based on recession analysis.   

 

Figure 27: Cumulative distribution function of α from all the study watersheds. 

 

4.2.4 Temporal variability of β 

 

The underestimation of storage by storage-discharge relationship is reflected in the values 

of β which is the ratio of estimated storage to total storage.  Figure 28 plots the CDF curve of β 

values in the 9 study watersheds.  The values of β are less than 1.0 for 94.5% of data points, and 
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km
2
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Figure 28: Cumulative distribution function of β=S/TS from all the study watersheds. 

 

The underestimations of both evaporation and storage change based on recession analysis 

are due to the partial contributing storage to base flow.  Furthermore, the storage changes 

between two consecutive days (∆S and ∆TS) are computed, and the ratios between them, ∆S/∆TS, 

are obtained.  Figure 29 plots ∆S/∆TS versus α (i.e., E/E
obs

) from the Spoon River watershed.  

The correlation coefficient between ∆S/∆TS and E/E
obs

 is 0.84.  Therefore, the underestimations 

of evaporation and storage change are highly correlated. 

 
Figure 29: Correlation between ∆S/∆TS and α in the Spoon River watershed. 
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The value of β can also be interpreted as the percentage of water storage contributing to 

the base flow during low flow periods when riparian groundwater storage is the major source for 

base flow.  Column 5 in Table 3 and 4 shows the computed relative storage by equation (4.5.1), 

and the last column shows the estimated β by equation (4.11) from water balance.  As shown in 

the tables, β does not change significantly during a recession event.  The value of β is around 

0.43 for the Spoon River watershed and varies from 0.38 to 0.32 for the Nodaway River 

watershed.  Compared with the declining trend of α during a recession event, the value of β is 

relatively more stable.  The implication of stable value of β is that the ratio of riparian 

groundwater storage to total watershed groundwater storage is relatively stable during a 

recession event.    

On the other hand, β reflects the level of shallow groundwater connectivity in the 

watershed.  The groundwater storage connectivity is dependent on the groundwater table depth.  

Therefore, the value of β may be correlated with groundwater table depth.  It is fortunate that the 

observation of the shallow groundwater table depth in the Spoon River watershed is available 

[Wang, 2012a].  As shown in Figure 30, the values of β decrease as the groundwater table depth 

increases and the correlation coefficient is 0.41, which indicates that when the groundwater table 

drops down, the contributing storage to base flow will decrease.  The seasonal variability of 

water table depth is significant ranging from 86 mm to 510 mm as shown in Figure 30.  

Correspondingly, the seasonal variability of β is also significant ranging from 0.027 to 0.799 

(Figure 28), even though the variation of β is not significant during a recession event.   
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Figure 30: The relationship between estimated β and observed shallow groundwater table depth 

at the Spoon River watershed. 

 

4.2.5 Variability of storage-discharge relationship 

 

The effect of partial contributing storage induces variable storage-discharge relationship 
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equivalent to the case of β =1.  The blue circles represent the estimated total watershed relative 

storage by considering variable β values based on water balance at the watershed scale.  The data 

points (β<1) are below the red solid line (β=1).  From Figure 31, the TS-Q relation tends to 

follow a power law within a recession event but varies among different recession events due to 
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factors can also contribute to the multi-valued storage-discharge relationship [Rupp et al., 2009; 

Haught and Meerveld, 2011; Clark et al., 2011].  Sloan [2000] demonstrated that single-valued 

storage discharge functions are often incapable of representing the actual storage-discharge 

characteristics of a watershed and proposed an alternative discharge function based on hillslope 

groundwater hydraulics.  Therefore, the effect of partial contributing storage is one of potential 

contributions to the variable storage-discharge relationship. 

 
Figure 31: The impact of variable contributing storage on the total storage-discharge relationship 

at the Spoon River watershed.  
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CHAPTER 5 CASE STUDIES 

 

5.1 Case Study at Chipola River Watershed 

 

With the combination of the evaporation model, two-stage runoff model and water 

balance equations, a complete seasonal water balance model can be obtained.  Totally 8 

equations are included in the model: (2.6.1), (2.6.2), (3.5), (3.9), (3.12.1), (3.12.2), (3.15.1) and 

(3.15.2).  The parameters in this model are: ϕw, ϕd, Vw, Vd, 𝜆𝑑𝑤, 𝜆𝑑𝑑, 𝑊𝑝𝑤, 𝑊𝑝𝑑, 𝜆𝑏𝑤 and 𝜆𝑏𝑑.  The 

input will be precipitation and potential evaporation in wet and dry season respectively, namely 

Pw, Pd, Epw and Epd.  The output will be evaporation, storage change, surface runoff and baseflow 

in wet and dry season respectively, namely Ew, Ed, ΔSw, ΔSd, 𝑄𝑑𝑤, 𝑄𝑑𝑑, 𝑄𝑏𝑤 and 𝑄𝑏𝑑. 

 

5.1.1 General information of Chipola River Watershed 

 

Chipola River Watershed is located in the “Pan-handle” region of Florida as shown in 

Figure 32. The drainage area of the watershed is 2148 km
2
 and the aridity index (Ep/P) is 0.92.  

Based on the monthly aridity index developed in this study, the dry season of the watershed is 

from May to September, while the rest of the months are in wet season.  

The historical data of 1983-2000 of streamflow and rainfall data for Chipola River 

Watershed is collected from local USGS gages and NOAA gages respectively.  Evaporation and 

potential evaporation data of the same period are collected from remote-sensed database. The 

future projection of rainfall and temperature of the period of 2038-2070 are obtained from RCM 

and potential evaporation is calculated based on temperature using Hamon equation. 
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Figure 32: Chipola River Watershed. 

 

5.1.2 Seasonal water balance simulation 

 

Based on historical data of precipitation and evaporation during 1983~2000 in Chipola 

River Watershed (the information about data source is described in 4), the simulated evaporation, 

storage change and runoff are obtained and shown in Figure 33.  As the results show, the 

simulation accuracy of the water balance model is high for all three outputs. 
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Figure 33: Simulationg results in Chipola River Watershed in terms of evaporation (a), storage 

change (b) and runoff (c) and their comparison with the observed values respectively. 

 

5.1.3 Seasonal water balance projection 

 

Since the model had a high simulation accuracy of the seasonal water balance partioning, 

the potential of the model is further explored in terms of future water balance project.  By 

combining the seasonal water balance model with RCM, from where future precipitation and 

temperature projection from 2041 to 2068 are obtained, a water balance projection is conducted.  

The results of the projection are shown in Figure 34.  As the figure shows, a significant 

increasing trend of evaporation in the future is observed, comparing with presnet values, in both 

wet and dry seasons.  This increasing trend is expected since the temperature in the future will 

increase according to the RCM projection, which has strong positive relation with evaporation.  
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In terms of runoff, a slight increasing trend is shown as well, but not as significant as 

evaporation.  The storage change in dry seasons will increase significantly in the future, but the 

storage change in wet seasons have no significant trend. 

 

 
Figure 34: Projection results in Chipola River Watershed in terms of evaporation (a), storage 

change (b) and runoff (c) and their comparison with the present values respectively. 
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5.2 Case Study at Apalachicola River Watershed 

 

5.2.1 Study area and data sources 

 

The Apalachicola River is located at the lower part of the Apalachicola-Chattahoochee-

Flint (ACF) River basin.  It receives streamflow and sediment from Chattahoochee River and 

Flint River, and flows through the Florida Panhandle eventually draining into the Gulf of Mexico 

(Figure 35).  It is located in the semi-humid region with a long-term climate aridity index of 

0.89.  Based on a digital elevation model (DEM) with a resolution of 30 meters from National 

Elevation Dataset (Gesch, 2007), the average slope in the region is 5.8%.  As the source of 90% 

of the oyster production in Florida, Apalachicola Bay is an important marine nursery area 

(Livingston, 1984; Liu and Huang, 2009).  The streamflow and sediment load from the 

Apalachicola River have a direct impact on the ecosystem, particularly with respect to the 

commercial oyster production in Apalachicola Bay.  It is important to assess the impact of 

climate change on the Apalachicola River’s streamflow and sediment load in order to form a 

basis to identify potential ecological effects. 

The majority of the Apalachicola River basin is undeveloped nature lands.  As a result, 

there are not many stream gages or weather stations with a long period of data records.  A total 

of four stream gage stations monitored by the U.S. Geological Survey (USGS) are located in the 

area, which have a long period record of daily streamflow and sediment load (Figure 35).  

Among the four USGS stations, gages 2358000 and 2359000 are used as the inlet records from 

the Flint/Chattahoochee Rivers and the Chipola River, respectively.  Gage 2358700, located at 

midstream and gage 2359170, located at downstream are selected for observed streamflow data 
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for model performance evaluation and calibration.  In terms of rainfall and temperature data, 

three weather stations from National Climatic Data Center (NCDC) are located in the area with a 

long period of hourly data record (Figure 35).  Based on the availability of all the data records, 

the baseline period is selected from 1984 to 1994.  Data during 1984-1989 are used for model 

calibration and the last five years are used for model validation.   

 

Figure 35. The basin boundary, river network, ground surface elevations, and the locations of 

rainfall and streamflow observation in the Apalachicola River basin. 

 

Figure 36a shows the land use/land cover (LULC) map and the spatial distribution of soil 

types.  The LULC data is obtained from National Land Cover Database (NLCD).  Since the 

study period is from 1984 to 1994, LULC in 1992 is used in this study (Vogelmann et al., 2001).  

The dominating LULC types in the region are forest (35.9%), shrub (7.5%) and agricultural 
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(4.4%) in the upstream area and wetland (38.9%) in the downstream area (Figure 36a).  The soil 

data in the Apalachicola River basin, as shown in Figure 36b, is collected from Soil Survey 

Geographic Database (SSURGO) (USDA, 2007).  The dominating soil type is Aquent, under the 

soil order of Entisol.  With loamy or clayey-loamy texture, Aquent type soil is usually found in 

tidal marshes and floodplains along the rivers.  As a result, loam (30.3%) and clayey loam 

(37.3%) are the two soil texture types that cover the largest area in the region, as shown in Figure 

36b.   

 

Figure 36. Land use/land cover map in 1992 (a); and soil map (b) in Apalachicola River basin. 

 

Surrounding the Apalachicola River are the Chattahoochee River and Flint River, and the 

tributary Chipola River, all located upstream.  The Chattahoochee River and Flint River 

confluent at Lake Seminole and flow into the Apalachicola River, whereas the Chipola River 

directly flows into Apalachicola River.  In order to evaluate the contribution from the upstream 

(a) (b) 
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rivers and the tributary, the average daily values of observed streamflow and sediment load from 

the Chattahoochee River and Flint River (Gage ID: 2358000), the Chipola River (Gage ID: 

2359000) and downstream in the Apalachicola River (Gage ID: 2359170) are analyzed.  Results 

show that the Chattahoochee River and Flint River together contribute 84% of the streamflow 

and 46% of the sediment load in Apalachicola River, while the Chipola River contributes 6% of 

the streamflow and 3% of the sediment load.  Therefore, the streamflow in the Apalachicola 

River is majorly controlled by the upstream discharge, while the local watershed contributes 10% 

of annual streamflow at the downstream gage.  However, the local Apalachicola River basin 

contributes 51% of annual sediment load in the Apalachicola River.  Similar results have been 

reported in other studies (Mattraw and Elder, 1984; Stallins et al., 2010; Peterson et al., 2013).   

 

5.2.2 SWAT model parameter calibration and validation 

 

The SWAT model, which is recognized as a distributed, physically-based, daily time 

step, continuous-simulation model (Arnold et al., 1998), is selected to simulate the streamflow 

and sediment load in the Apalachicola River.  Additionally the model projects future streamflow 

and sediment load under climate change scenarios.  SWAT has been used in many studies with a 

wide range of climate and landscape conditions (Ghaffari et al., 2010; Wang et al., 2011; Perrin 

et al., 2012).  In SWAT, the study watershed is divided into sub-basins based on the input DEM; 

the sub-basins are further divided into hydrologic response units (HRUs) based on the overlaid 

maps of soil type, LULC and slope.  For this study, a total of 73 sub-basins and 3910 HRUs are 

delineated.  The parameters describing the physical processes are determined based on the HRUs 

characteristics; values of parameter sets may vary among HRUs.  The hydrologic computation in 
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SWAT starts from the HRU scale, and then aggregates into the sub-basin scale and the watershed 

scale.  SWAT has been applied in various applications due to its robustness on watershed scale 

hydrologic modeling. These applications include land use change impact assessments, water 

resources management, water quality control, and sediment yield estimations.  In this study, the 

SWAT model simulation will be focusing on streamflow and sediment yield at the seasonal and 

event scales. 

The SWAT model uses the Soil Conservation Service (SCS) curve number method 

(USDA-SCS, 1985) to simulate surface runoff.  Groundwater flow is simulated using a linear 

reservoir model.  The following are the two major equations used for runoff calculations. 

Equations (5.1) and (5.2) are derived from the SCS curve number method and a linear reservoir 

model, respectively (Neitsch et al., 2011): 𝑄𝑠 =
(𝑅−0.2𝑆)2𝑅+0.8𝑆                                                                                                                              (5.1) 

𝑑𝑄𝑔𝑤𝑑𝑡 = 𝛼𝑔𝑤 ∗ (𝑤𝑟 − 𝑄𝑔𝑤)                                                                                                         (5.2) 

where 𝑄𝑠 is surface runoff (mm/day); 𝑅 is daily rainfall (mm/day); S is the retention 

parameter (mm);  𝑄𝑔𝑤 is base flow (mm/day); 𝑤𝑟 is recharge rate (mm/day) to shallow 

groundwater; and 𝛼𝑔𝑤 is the base flow recession constant.  In equation (5.1), the parameter S is a 

function of the curve number (CN), 𝑆 =
1000𝐶𝑁 − 10.  Based on equations (5.1) and (5.2), CN and 𝛼𝑔𝑤 are the controlling factors for surface runoff and base flow, respectively.  The detailed 

explanation on selecting key parameters for model calibration is provided in the “Results and 

Discussion” part. 

For simulating sediment yield, the SWAT model uses the Modified Universal Soil Loss 

Equation (MUSLE) shown below (William, 1995): 
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𝑄𝑠 = 11.8 ∗ �𝑄𝑠𝑣 ∗ 𝑞𝑝𝑒𝑎𝑘 ∗ 𝑎𝑟𝑒𝑎ℎ𝑟𝑢� 
0.56 ∗ 𝐾𝑈𝑆𝐿𝐸 ∗ 𝐶𝑈𝑆𝐿𝐸 ∗ 𝑃𝑈𝑆𝐿𝐸* 𝐿𝑆𝑈𝑆𝐿𝐸*CFRG               (5.3) 

where 𝑄𝑠 is sediment yield (metric tons/day); 𝑄𝑠𝑣 is surface runoff depth per unit area 

(mm/ha); 𝑞𝑝𝑒𝑎𝑘 is peak runoff rate (m3/s); 𝑎𝑟𝑒𝑎ℎ𝑟𝑢 is area of the HRU (ha); 𝐾𝑈𝑆𝐿𝐸 is the soil 

erodibility factor of universal soil loss equation (USLE); 𝐶𝑈𝑆𝐿𝐸 is cover and management factor 

of USLE; 𝑃𝑈𝑆𝐿𝐸  is support practice factor of USLE; 𝐿𝑆𝑈𝑆𝐿𝐸 is topographic factor of USLE; and 

CFRG is coarse fragment factor.  Based on equation (5.3), the sediment yield is strongly related 

to surface runoff.  The detailed explanations of the equations and parameters used in runoff and 

sediment yield simulation are provided in the SWAT Theoretical Documentation (Neitsch et al., 

2011). 

To evaluate the performance of SWAT simulations in this study, the statistical 

measurement of Nash-Sutcliffe efficiency (NSE) is used. 

 

5.2.3 RCM selection and future climate change projection 

 

The projection of future climate change in terms of rainfall and temperature is conducted 

using RCMs from NARCCAP.  NARCCAP is an international program to serve the needs of 

climate change projection in the North America region covering northern Mexico, conterminous 

U.S. and most of Canada (Mearns et al., 2009).  The RCMs provide future climate projections at 

the regional scale for a time period of 2038-2070.  The simulation results of RCMs are presented 

at a grid resolution of 50 km.  Therefore, the Apalachicola River basin, which has a drainage area 

of 3589 km
2
, is covered by 2~3 grid points in each RCM.  Wang et al. (2013) compared the 

performance of seven RCMs in Apalachicola River basin with a focus on rainfall variation.  

Based on their results, HRM3-HADCM3 and RCM3-GFDL have good performance for rainfall 
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in the Apalachicola River basin.  Furthermore, the authors projected the future rainfall intensity-

duration-frequency (IDF) curves in the study area based on the two selected RCMs.  This study 

employs HRM3-HADCM3 and RCM3-GFDL for future rainfall and temperature projections.  

By combining the RCM projections with the calibrated SWAT model, the impact of climate 

change on streamflow and sediment load is investigated.  Furthermore, the future IDF 

projections generated in Wang et al. (2013) are applied in the SWAT model to evaluate the 

climate change impact on streamflow and sediment load under extreme rainfall events. 

 

5.2.4 Climate change projections 

 

To evaluate the performance of the two selected RCMs, the observed temperature and 

daily rainfall are sorted to mean monthly values and compared with the corresponding values 

from the RCMs during the baseline period of 1968-2000.  The monthly rainfall and temperature 

values illustrated in Figure 37 do not correlate very well with the observed values.  To reduce the 

bias caused by the RCM projections, the following method is applied to correct climate change 

projections in the future period.  Mean monthly rainfall and temperature are computed during the 

baseline and future periods for RCMs, respectively.  The climate change factors of rainfall and 

temperature for each month are calculated with the following equations (Cai et al., 2009): ∆𝑃𝑖 =
𝑃�𝑓,𝑖−𝑃�𝑏,𝑖𝑃�𝑏,𝑖                                                                                                                              (5.4) 

∆𝑇𝑖 =
𝑇�𝑓,𝑖−𝑇�𝑏,𝑖𝑇�𝑏,𝑖                                                                                                                              (5.5) 
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where ∆𝑃𝑖 and ∆𝑇𝑖 are the climate change factors of month i for rainfall and temperature, 

respectively; 𝑃�𝑓,𝑖 and 𝑇�𝑓,𝑖 are the mean monthly rainfall and temperature during the period of 

2038-2070, respectively; and 𝑃�𝑏,𝑖 and 𝑇�𝑏,𝑖 are the mean monthly rainfall and temperature at the 

baseline period, respectively.  A similar bias correction procedure using monthly values has been 

used in former studies (Wood et al., 2002; Wang et al., 2013).  

 

Figure 37. Comparison of observed values and RCM baseline projections of mean monthly 

precipitation (a) and temperature (b). 

 

Projected daily rainfall and temperature are computed by applying the corresponding 

climate change factors to the observed daily values in each month: 
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𝑃𝑓 = 𝑃𝑜𝑏𝑠 + 𝑃𝑜𝑏𝑠 ∗ ∆𝑃                                                                                                               (5.6) 𝑇𝑓 = 𝑇𝑜𝑏𝑠 + 𝑇𝑜𝑏𝑠 ∗ ∆𝑇                                                                                                               (5.7) 

where 𝑃𝑓 and 𝑇𝑓 are the projected daily rainfall and temperature; 𝑃𝑜𝑏𝑠 and 𝑇𝑜𝑏𝑠 are the observed 

values of daily rainfall and temperature.  Based on the month of the observed daily data, the 

climate change factor of the corresponding month is applied.  Daily values of precipitation and 

temperature are generated for the future period and utilized as inputs for the continuous 

simulation of SWAT model. 

 

5.2.5 Projected climate changes 

 

The future average daily rainfall based on HRM3-HADCM3 projection is 3.60 mm/day, 

3.43 mm/day, and 3.40 mm/day at upstream, midstream, and downstream, respectively.  The 

RCM3-GFDL projections for upstream, midstream, and downstream are 4.09 mm/day, 3.67 

mm/day, and 3.53 mm/day, respectively.  Comparing the RCM projections with the current 

observed daily rainfall of 3.24 mm/day at upstream, 4.27 mm/day at midstream and 4.23 mm/day 

at downstream indicates future rainfall at upstream will increase, and at midstream and 

downstream will decrease.  Wang et al. (2013) found that the rainfall intensity will increase from 

upstream to downstream based on RCM3-GFDL and only increase significantly at downstream 

based on HRM3-HADCM3 projection.  Combining the average rainfall and rainfall intensity 

projections, the rainfall event in the future will have a higher intensity and lower frequency.  

Therefore, the average level of rainfall may not change significantly, but the rainfall during 

extreme events may increase.  For a better illustration, Figure 38a shows a comparison between 

the observed mean monthly values of precipitation and the future projections of the two RCMs.  
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As the figure shows, the maximum increase of rainfall may occur in July based on RCM3-GFDL 

projection.  

The future temperature projection shows that the daily average temperature will increase 

in the future for both HRM3-HADCM3 and RCM3-GFDL projections.  The peak average 

temperature occurs in April and May using the HRM3-HADCM3 projection, and in July and 

August using the RCM3-GFDL projection.  Figure 38b shows the mean monthly temperature of 

present level based on observation and projected future level based on the two RCMs.  

Comparing the projected temperature with the observed value reveals RCM3-GFDL correlates 

better than HRM3-HADCM3 in terms of temperature projection in the Apalachicola River basin. 

 

Figure 38. Comparison of observed values and RCM future projections of mean monthly 

precipitation (a) and temperature (b). 
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5.2.6 Model calibration and performance during the baseline period 

 

During the 11-year study period, the years 1984-1989 are selected for the calibration 

period and 1990-1994 are used for the validation period.  The selection of the calibration 

parameter for SWAT is based on the sensitivity of the simulation results to the parameter values.  

Fifteen parameters with the highest sensitivity are selected for calibration (Table 1).  Among 

these parameters, 12 are associated with runoff simulation, and 3 are connected with sediment 

yield simulation.  A similar list of parameters has been used in other studies for discharge 

simulations (Ghaffari et al., 2010; Zhang et al., 2011; Perrin et al., 2012) and sediment load 

simulations (Li et al., 2011; Phan et al., 2011; Khoi and Suetsugi, 2014).  The calibration 

procedure includes two steps: one for runoff and the other for sediment yield.  The runoff 

calibration is conducted first, followed by the sediment calibration based on the calibrated runoff 

(Santhi et al., 2001; Arnold et al., 2012).  The calibrated parameters are shown in Table 1.  The 

calibration adjustment with percentages in Table 1 is to describe the changing percentage of the 

parameters from the original values. 

The model performance during the calibration and validation periods is presented in 

Figure 39 and Figure 40.  Figure 39a shows the simulated and observed streamflow at the gage 

2359170 during the period from 1/1/1985 to 12/31/1994; Figure 39b shows the simulated and 

observed sediment load at the same gage station.  The ramping period in the SWAT model 

simulation is set to the year 1984, which is not shown in the figure.  The NSE values are 0.92 

and 0.88 during the calibration period of 1985- 1989 and validation period of 1990-1994, 

respectively, indicating good performance.  As shown in Figure 39b, the measurement of the 

sediment load is intermittent, which may affect model comparison.  Although the NSE values are 
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0.47 and 0.36 during the calibration and validation periods respectively, the model captures the 

trend variability.   

Table 5. Calibrated parameter values for the SWAT model 

Parameter Description Calibration adjustment 

Parameters Related to Runoff 

CN2 Curve number II -31.6% 

ESCO Soil evaporation compensation factor 0.51 

SOL_AWC Available soil water capacity -27.1% 

SURLAG Surface runoff lag coefficient (day) 1.2 

ALPHA_BF Base flow recession constant 0.21 

SOL_Z Soil depth (mm) +34% 

SOL_K Saturated hydraulic conductivity (mm/hr) +29% 

CH_K2 Channel effective hydraulic conductivity 

(mm/hr) 

115 

GW_REVAP Groundwater re-evaporation coefficient 0.16 

GWQMN Threshold depth of water in the shallow 

aquifer required for return flow to occur (mm) 

233 

REVAPMN Threshold depth of water in the shallow 

aquifer for re-evaporation to occur (mm) 

24 

GW_DELAY Groundwater delay (day) 5 

Parameters Related to Sediment 

USLE_P USLE support practice factor 0.042 

SPCON Sediment transport coefficient (m/s) 0.002 

SPEXP Exponent of sediment transport coefficient 1.9 
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Figure 39. (a) Time series of simulated and observed streamflow at the gage 2359170; (b) time 

series of simulated and observed sediment load at the gage 2359170.  

 

To further compare the simulated and observed results, Figure 40 shows the plots of 

observed values vs. simulated values of runoff and sediment load against the 1:1 line. The 

figures demonstrate that the discharge simulation performance is generally good and no 

significant bias is detected. The sediment load simulation results tend to underestimate the 

observed values when the sediment load is low.  Since the sediment load is positively related to 
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surface runoff, this bias may also be interpreted as the simulation underestimates the sediment 

load when the surface runoff is low.  A possible reason for this underestimation is that the 

sediment calculation in SWAT is primarily controlled by surface runoff, as shown in equation 

(5.3).  The contribution of groundwater flow and lateral flow is calculated by the following 

equation: 

𝑠𝑒𝑑𝑙𝑎𝑡 =
�𝑄𝑙𝑎𝑡+𝑄𝑔𝑤�∗𝑎𝑟𝑒𝑎ℎ𝑟𝑢∗𝑐𝑜𝑛𝑐𝑠𝑒𝑑10000                                                                                             (5.8) 

where 𝑠𝑒𝑑𝑙𝑎𝑡 is the sediment load from groundwater and lateral flow (metric tons/day); 𝑄𝑙𝑎𝑡 is 

the lateral flow (mm/day); and 𝑐𝑜𝑛𝑐𝑠𝑒𝑑 is the concentration of sediment in groundwater and 

lateral flow (mg/L). Comparing equation (5.3) with equation (5.8) shows the sediment load 

relation to groundwater flow is linear, while it has a power law relation with surface runoff; this 

may be a possible explanation for the underestimation of sediment load during low flow periods. 

  

Figure 40. (a) 1:1 plot of simulated runoff versus observed streamflow; (b) 1:1 plot of 

simulated and observed sediment load. 
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5.2.7 Runoff and sediment load under climate change scenarios 

 

The calibrated SWAT model is then used for assessing potential climate change impacts 

on runoff and sediment projection.  The average daily runoff increased by 5% from 702 m
3
/s to 

737 m
3
/s using HRM3-HADCM3 model, but slightly decreased by 0.9% using the RCM3-GFDL 

model.  Furthermore, the mean monthly runoff is computed for the two RCMs, and the results 

are shown in Figure 41a.  The maximum increase in rate of runoff occurs in July (34%) using the 

RCM3-GFDL model.  This indicates that in the RCM3-GFDL climate change scenario, the 

average runoff generation will slightly decrease although the peak flow will increase in the 

summer.  This result can be explained by the rainfall pattern change in the Apalachicola River 

basin, i.e., the rainfall event will have a lower frequency but a higher intensity (Wang et al., 

2013).  Sediment results are shown in Figure 41b.  The average daily sediment load in the future 

may slightly decrease from 1124 metric tons/day to 1123 metric tons/day using the HRM3-

HADCM3 projection. Using the RCM3-GFDL projection, the average daily sediment load may 

increase to 1189 metric tons/day.  As shown in equation (5.3), sediment yield is sensitive to the 

peak flows.  Therefore, the increase rate in the RCM3-GFDL projection is much more significant 

than in the HRM3-HADCM3 projection (Figure 41b). 

In general, the climate change impact on runoff and sediment is not very significant in 

terms of mean monthly level.  However, the rainfall pattern change illustrated in the RCM 

projections, especially with RCM3-GFDL, may cause the peak flow of runoff and the 

corresponding peak sediment load to significantly increase.  To investigate this issue further, the 

following section demonstrates the climate change impact on runoff and sediment during 

extreme rainfall events based on IDF curve projections. 
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Figure 41.  The mean monthly changing rate of discharge (a) and sediment load (b) under 

climate change impact based HRM3-HADCM3 and RCM3-GFDL. 

 

5.2.8 Runoff and sediment load during extreme events under climate change 

 

To evaluate the climate change impact during extreme events, a 24-hour rainfall event on 

March 2, 1991 with a return period of 25 years is selected as the baseline event.  The rainfall 

intensity distribution from upstream to downstream in the Apalachicola River basin on March 2, 

1991 is shown in Figure 42.  The future extreme event projection is conducted using the future 

IDF curve in the Apalachicola River basin generated by Wang et al. (2013).  This IDF curve is 

used to project the extreme event due to its ability to capture the characteristics of extreme events 

with much more detail.  For each RCM, three IDF curves were generated to represent different 
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locations in the river basin: upstream, midstream and downstream (Wang et al., 2013).  Based on 

the IDF curves, the future rainfall intensities at different locations during a 24-hour rainfall event 

with a return period of 25 years are computed.  The projected future extreme rainfall event is 

used as weather data input for the calibrated SWAT model.   

  

Figure 42. Hyetograph of the sample storms at three different locations in the Apalachicola 

River basin at 3/2/1991. 

 

The simulated runoff and sediment load during the projected extreme event are compared 

with the observed values during the baseline period.  As shown in Figure 43a, the peak flow 

based on the HRM3-HADCM3 model is 3621 m
3
/s, which is 8% higher than the baseline peak 

flow of 3360 m
3
/s; for the RCM3-GFDL projection, the peak flow is 5029 m

3
/s, which is 50% 

higher than the baseline value.  In terms of sediment load (Figure 43b), the peak load for the 

HRM3-HADCM3 projection is very close to the baseline peak load of 12,110 metric tons/day.  

However, for the RCM3-GFDL projection, the peak load is 22,830 metric tons/day, which is 

89% higher than the present level. 

These results indicate that the climate change impact on runoff and sediment load in the 

Apalachicola River basin may be much more severe during extreme rainfall events.  As shown in 
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previous section, the future projected average daily runoff and sediment load are similar to the 

current level with a change rate of less than 5%.  However, under the 24-hr event with a 25-year 

return period, the peak streamflow and peak sediment load may be dramatically increased by 

50% and 89%, respectively due to climate change.  One possible reason for this change is that 

the rainfall event in the RCM projections, especially for RCM3-GFDL, is less frequent but has 

higher intensity compared to the current rainfall pattern.  Another possible explanation is that the 

seasonality is altered due to the climate change impact, which will significantly affect the 

characteristics of the hydrologic system (Chen et al., 2013). 

 

  

Figure 43. Future projections of discharge (a) and sediment load (b) during the extreme event 

under climate change impact projection. 
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CHAPTER 6 SUMMARY 

 

The catchment scale hydrologic system is an important topic that directly relates to 

human’s daily life, in terms of drinking water, storm water, recreational water, agricultural water 

and many other aspects.  As a result, the complex watershed system has been studied with every 

angle and scale by hydrologists.  The purpose of this study is to use simple models that are 

developed based on the “top-down” approach to gain a comprehensive understanding on the 

watershed scale hydrologic system at the seasonal scale, which is a part that has not been fully 

studied yet.   

Three major processes in the hydrologic cycle are the foundation of this study, namely 

water/energy exchange, runoff generation and storage dynamics.  In the study, the model of 

water/energy exchange at the seasonal scale is developed based on the Budyko framework; the 

model of runoff generation at the seasonal scale is developed based on the proportionality 

hypothesis; and the model to describe seasonal storage dynamics is developed based on base 

flow recession analysis.  All the 3 models developed in this study show good performance.  The 

modified Budyko model and seasonal runoff model both have around 90% of the study 

watersheds with NSE higher than 0.5.  For the seasonal storage dynamics model, the simulated 

contributing area and contributing storage matches well with the observed streamflow and 

groundwater table depth respectively.   

Furthermore, at the seasonal scale, the effects of storminess, infiltration capacity, soil 

water storage, and topography becomes more significant.  Therefore, the relationship between 

the seasonal model parameters and the physical factors is also investigated.  Several key 
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controlling factors are identified in the study: vegetation, average rainfall duration, number of 

rainfall events, average saturated hydraulic conductivity and maximum rainfall intensity. 

Two case studies focusing on the seasonal hydrologic system modeling are conducted as 

well, namely the Chipola River Watershed case study and the Apalachicola River Watershed 

case study.  In the Chipola River Watershed case study, a complete seasonal water balance 

model is obtained by combining the modified Budyko model and seasonal runoff model.  The 

model has a good performance on seasonal hydrologic cycle simulation.  For the Apalachicola 

River Watershed, the SWAT model is used for hydrologic simulation.  Again, a good model 

performance on runoff and sediment load simulation is obtained in the study.  For both case 

studies, the future climate projections from RCMs are applied to the calibrated hydrologic model 

to evaluate the potential future climate change impact on the watershed systems.  The result 

shows that the climate change impact on runoff and sediment is not significant (<5%) on the 

seasonal average level for both cases.  However, the peak runoff and sediment load during 

extreme rainfall events may significantly increase under climate change scenarios. 

The methodology of this study provides a guideline for seasonal time scale hydrologic 

modeling, and the results of the study shows that the complex watershed system can be modeled 

with simple equations, as long as the key controlling factors are well defined. 
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