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ABSTRACT 

Water scarcity has been identified as a global issue. Both water harvesting and an 

efficient water piping system are some of the important factors to meet the water demand. In this 

study, high-density polyethylene (HDPE) pipes used as an underground storage was evaluated 

and a Microsoft EXCEL based model was developed, called PIPE-R Model. To study the 

structural integrity of the pipes, laboratory and field testing were conducted. For the water 

harvesting, UCF Stormwater Management Academy designed an EXCEL based model to 

simulate the system’s performance to store and redistribute water for an average year. 

The purpose of PIPE-R Model was to provide average yearly values such as groundwater 

recharge, hydrologic efficiency and make up water needed in order to guide the user in the 

design process. The PIPE-R Model consisted on evaluating specific pipe systems based on 

properties selected by the user. Input variables such as system dimensions, soil type and reuse 

water demand provided flexibility to the user while evaluating the system. Results of the study 

showed that the PIPE-R Model might be an effective tool while designing these pipe systems. A 

detailed example was shown to help visualize the process required to use the model. The PIPE-R 

model allowed the user a wide range of possibilities and obtain important performance data that 

will hopefully optimize the cost for its construction. 

For the evaluation of the structural integrity of the pipe system, laboratory testing was 

conducted in accordance with ASTM D2412 − 11 “Determination of External Loading 

Characteristics of Plastic Pipe by Parallel-Plate Loading”. This method helps evaluate the 

structural performance based on the pipe stiffness (PS) against the standard values stated by 

AASHTO M252. The test procedure consisted on establishing load-deflection relationship of a 
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single pipe under parallel plate loading. However, this research project involved the analysis of 

bundled pipes of different sizes and levels. Thus, modifications were added to the formula in 

order to evaluate multiple pipes by accounting the number of pipes in contact with the loading 

plate. Laboratory results demonstrated that the pipes exceeded the minimum requirements stated 

by AASHTO M252 and that strength is decreased as the number of levels increases. 

 In addition, field testing was conducted to study the behavior of bundle systems under 

the effects of dead and live loads. Three different cover configuration were studied ranging from 

18 inches to 43 inches of depth. Draw-wire sensors, a type of displacement sensors, were placed 

inside buried housing structures to monitor deformation values experienced by the pipe bundles 

during the test. Average deformations founds for the cover depths of 43 in, 30 in and 18 in were 

0.07 in, 0.32 in and 0.64 in, respectively. Based on these results, the field testing revealed that a 

minimum of 30 inches of cover is seemed to be appropriate if live loads are applicable. 
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CHAPTER 1: INTRODUCTION 

Problem Statement 

Water is used every day for an infinite amount of activities thanks to efficient water 

network systems that are often not noticed by the general population. There are several problems 

arising from the use of water, such as decrease in water quality, groundwater depletion and water 

scarcity. A sufficient supply of water is just as important as the functionality of the pipes 

delivering it. An evaluation of the integrity of pipes previously installed in the field have shown 

that great amount of them need to be replaced or maintained (Folkman and Moser 2002). Pipes 

buried underground are important to transport water wherever it is needed and a deep 

understanding of their structural properties is required in order to avoid failure.  

Certain places around the world are not privileged with a simple access to water or just 

do not have the right infrastructure to collect water. This serious problem needs investigation and 

efforts geared to minimize the problem as much as possible. Therefore, research on the problem 

is necessary to gain knowledge about possible solutions. In addition, the shortage of water is 

decreasing the accessibility of water in some circumstances. For example, the depth of water 

level in underground aquifers has been increasing throughout the years. The reason for this 

phenomenon is the overexploitation of this resource, extracting water from the aquifer at a much 

faster rate than it can be replenished. The depletion of the aquifer can be mitigated by reducing 

the amount of water extracted through an adequately designed stormwater harvesting system 

Nutrient loading from stormwater runoff negatively affects the quality of surface water 

body, which then creates a variety of negative consequences to the surrounding environment 

(Pinckney et al. 2001). The most common nutrients present in lakes are phosphorus (P) and 
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nitrogen (N) (Minnesota Pollution Control Agency 2008). Some of the events that lead to 

nutrient loading are deforestation, fertilizers, human and animal wastes. Multiples studies have 

concluded that nutrient loading is the main source for the increase algae bloom in a water body 

(Brookes and Carey 2011). Lee et al. (2001) stated that algae bloom causes detrimental effects 

on animals and the aquatic ecosystem because of their release of toxins and the greater effort 

needed while filtrating pollutants out of the water. Therefore, it is important to control the rate of 

nutrient loading in water bodies, and one possible solution is to limit the amount of water 

discharged from point and non-point sources.  

Water harvesting systems could minimize or eliminate problems related to the excessive 

water demand by capturing some of it during rainfall events. In addition, the reduction of the 

amount of water discharged leads to corresponding decrease in the transport of sediment, which 

eventually keep the water quality at acceptable standards. The applications of water harvesting 

systems can be implemented for a wide range of tasks as long as a proper designs are performed.  

An effective water harvesting systems needs also to be structurally sound. Therefore, 

another aspect that needs to be inspected, besides the water harvesting capabilities, are the 

structural properties of the pipes that form the water harvesting system. The structural properties 

of the pipes need to withstand the loads from overburden earth pressure and vehicular loading. 

 Polyethylene pipes are currently used for underground applications in the United States 

(Krishnaswamy 2005, Motahari and Abolmaali 2009). Polyethylene is a viscoelastic material, 

which means that its structural properties are dependent to time (Bilgin 2013). Plastic pipes often 

experience large deformations due to stress relaxation, a typical behavior for viscoelastic 

materials. These deformations are considered extreme once the size or shape of a pipe is severely 

altered. A study showed that 63% of the pipes used in the United States suffer greater degrees of 
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deformation compared to the allowable limit specified in AASHTO codes (Folkman and Moser 

2002, Barker and Puckett 2013). The study also showed that the maximum vertical deformations 

found in pipes were 22.5% with an average maximum vertical deformation of 7.2%. In order to 

avoid losses and/or failures, their structural performance needs to be well understood prior to the 

design stage.  

Objectives 

The reduction of water shortages in different fields can be accomplished by the use of 

reuse water applications. EPA defines this procedure as “reusing treated wastewater for 

beneficial purposes such as agricultural and landscape irrigation, industrial processes, toilet 

flushing, and replenishing a ground water basin (referred to as ground water recharge)” (EPA 

2013). Sophisticated water harvesting systems have been created to alleviate some of the demand 

and maximize its use. Different models related to a variety of applications have been done in the 

past to predict the performance of these systems (Dixon et al. 1999). In this study, the topics 

related to water harvesting and structural performance of pipes will be investigated. In order to 

do so, a model will be created to account for several parameters and predict its water harvesting 

efficiency. Regarding the model parameters, the ranges of variation includes data related to the 

physical size, location, type of soils, quantity of reuse water demand and so on. The other section 

of this study corresponds to laboratory and field testing needed to estimate the ability of the pipe 

to withstand loads from the earth pressure and vehicular loading. To accomplish the structural 

evaluation, results from loading tests performed on the pipe will be compared minimum 

requirements specified on AASHTO (2012). The specific objectives are: 

1. Create a model to simulate the water harvesting performance of PIPE-R System 
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2. Perform laboratory and field testing to predict the structural integrity of buried 

high-density polyethylene (HDPE) pipes. 

Scope of Work 

Plastic Tubing Industries, Inc. have crafted an underground water harvesting system 

called PIPE-R Model and the UCF Stormwater Management Academy has developed an EXCEL 

based model in order to simulate its performance to store and redistribute water for an average 

year for any location where hourly precipitation data exists. This model will also help the user 

adjust the characteristics of the system in order to achieve a particular efficiency desired. In 

addition to the model, laboratory and field testing will be conducted to predict the structural 

performance of the pipes under the loading conditions.  

Roadmap to Rest of the Thesis 

 The Chapter 1 of this thesis provides an introduction to some of the water related issues 

addressed by the implementation of the proposed system such as surface water quality, water 

scarcity and groundwater depletion. Another problem discussed is the structural integrity of 

underground HDPE pipes used for water harvesting. The main objective and scope of the work 

are located in this section, as well as roadmap of the thesis in order to help the reader. Chapter 2 

presents a compilation of studies evaluated prior to initiating this project. These studies include a 

range of concepts such, infiltration, evapotranspiration, water demands, load calculations and 

different structural properties regarding HDPE pipes. A hypothesis is also included in 

conjunction with the impact of the results. Chapter 3 is describes procedures and tools utilized to 

perform this study. Chapter 4 presents all the results of this study along with a discussion based 

on them. Chapter 5 offers conclusions from the results, a brief statement of the main points of the 

study and recommendations for upcoming work. 
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CHAPTER 2: LITERATURE REVIEW 

Introduction  

Water scarcity is one of the main problems experienced in several places around the 

world. One focus of this study is to analyze the water harvesting performance of an underground 

pipe system. Having a greater understanding of the pipe system will be useful to design more 

effective systems that would achieve the desired criteria. This chapter presents discussions on the 

stormwater harvesting as it relates to water quality, groundwater depletion and water shortage. 

Consequently, to minimize these issues this study will discuss the mass balance of water along 

with the multiple processes that water experiences. Processes of infiltration and 

evapotranspiration (ET) often occur due to the interaction of water with soils and changes in the 

temperature. This section will later explain how infiltration and ET are calculated along with the 

methods to evaluate water-harvesting operations. 

In addition, structural properties of the pipe system need to be adequate for serviceability 

purposes and to avoid failure. Thus, the second part of this section will address the issue of 

structural integrity of buried pipes. The study on the behavior of buried pipes requires the 

understanding of the material type and manufacturing process to determine the response to 

applied loads. This section discusses common methods for the calculation of dead and live loads, 

as well as the associated theories that describe structural behavior of buried pipes. 

 

Problem Statement 

Surface Water Quality 

Surface runoff is generated during rainfall events on surfaces that are saturated with 

water or consist of impervious layer that does not have any significant ability to absorb water. 
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Stormwater runoff, which transports soil particles and other materials, is considered a Nonpoint 

Source Pollution (Harbor 1999) and a primary source of contaminants in water bodies in the 

United States (Langeveld et al. 2012). One example of a contaminant is phosphorus, which 

controls the growth of plants in water bodies and excessive amounts of it could produce 

eutrophication (Hardin 2006). Other contaminants have the ability to affect the pH of water 

bodies which would acidify water and cause death to aquatic organisms (Leuven et al. 1986). 

There are particular ways to quantify the quality of discharged water such as alkalinity, 

biological oxygen demand (BOD), nitrogenous oxygen demand (NOD) and turbidity (Metcalf et 

al. 1972). 

Turbidity, which is a measure of water clarity, is increased by soil particles present in 

water bodies. According to Paaijmans et al. (2008), significant degree of turbidity present in 

water is linked to higher temperatures, which in turn increases the rate of reproduction of algae. 

Harmful algal blooms often decrease the dissolved oxygen demand that can be detrimental to 

fish and other aquatic species (Paaijmans et al. 2008). To control and minimize the presence of 

contaminants in water bodies, regulations such as the Clean Water Act have been implement by 

environmental agencies. 

Regulations: Clean Water Act 

In 1972, the amendment of the Federal Water Pollution Act was renamed as the Clean 

Water Act (CWA) and had the responsibility to control the discharge of pollutants and quality of 

surface waters discharged by construction projects, which disturbed one or more acres of land. A 

common benchmark of the quality of discharged water is known as Total Maximum Daily Load 

(TMDL), which is the maximum acceptable amount of specific pollutants that can enter a water 

body. The CWA also issues National Pollutant Discharge Elimination System (NPDES) permits 
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to construction sites as long as their stormwater effluents follow the Environmental Protection 

Agency’s (EPA) minimum standards for water quality (EPA 2011). The process for the provision 

of permits involves the evaluation of a Storm Water Pollution Prevention Plan (SWPPP), which 

explains the details of the specific erosion and sediment control plan utilized on a project site.  

Groundwater Depletion  

Aquifers are suitable sources of fresh water but the amount of water in them is finite and 

extraction rates that are higher than the aquifer’s recharge rates would end up in depletion 

(Gleeson et al. 2010). The study conducted by Gleeson et al. (2010) also stated that a decrease of 

water levels in an aquifer can have damaging consequences such as drastic changes in stream 

flows and ecosystems dependent of it. Another study conducted on the Ogallala Aquifer in 

United States and other major aquifers showed that depletion has been occurring and that yearly 

volumes of depletion in the U.S. are about 32 km3/acre (Gutentag 1984, Wada et al. 2010).  

Groundwater Quality 

Although many researchers have studied overexploitation of aquifers, only few studies 

have been done related to the quality of water within the aquifers. A study conducted by 

Chaudhuri and Ale (2014) was to understand patterns of water quality and salinization 

throughout different regions of the Ogallala aquifer from the year 1960 to 2010. The study 

concluded that salinization increased with time and the contributing factors were natural and 

anthropogenic processes. The study also found the water to be contaminated with particular 

nutrient concentration in different regions and depths.  

Water Shortage 

Water shortage has been considered as a major issue and the main causes are the growing 

population, increasing irrigation areas, economic growth and water management (Wada et al. 
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2010, Zarghami and Akbariyeh 2012). Lack of fresh water is directly related to several problems 

today such as health, poverty and water management (Rijsberman 2006). Rijsberman (2006) 

futher stated “when an individual does not have access to safe and affordable water to satisfy her 

or his needs for drinking, washing or their livelihoods we call that person water insecure”. 

Approximately 1.2 billion people suffer from water scarvity and an adittional 500 million are 

being directed to this condition (Watkins 2006). Increasing demands by growing populations 

have been attenuated by extracting water from aquifers and freshwater sources, but these 

approaches will eventually reach their limits.  

 

Infiltration 

Infiltration, has been studied by several researchers which has led to the existence of 

various models to predict the amount of water being infiltrated to the ground (Philip 1957, 

Morel‐Seytoux and Khanji 1974). Although much effort has been put to infiltration, most models 

are not successful in forecasting the magnitude of infiltration due to variations in the soil layers. 

Some methods regarding infiltration such as Holtan (1961), provide approximate results but have 

the problem of variables that possess no physical significance or calculations that do not provide 

all the results desired. Other infiltration models such as model from Philip (1957) required 

considerable effort in computing some of its variables. The equation created by Green and Ampt 

(1911), later modified by researchers (Chu 1978, Serrano 2001), has been one of the most 

effective models to predict infiltration due to simplicity and use of physical variables. The 

Green-Ampt equation is:  fp = K [1 + (MdSF )]      (1) 
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where: fp = infiltration capacity (in/hr); K = saturated hydraulic conductivity (in/hr); Md = initial 

moisture content deficit (|ϴf- ϴi|); ϴf:=  moisture content; ϴi = initial moisture content; S = 

capillary suction at the wetting front (in); F = cumulative infiltration (in). 

The Green-Ampt equation (see Equation (1) has been proven to produce accurate results, 

but it is important to consider the exact time when water starts to pond since it provides 

relationships between the infiltration rate and the infiltration capacity (Liu et al. 2010). Several 

methods were based from the Green-Ampt equation, for example, a common equation for the 

infiltration rate under a ponded surface as presented by Mein and Larson (1971) in Equation (2): fp = dFpdt = K + KSMFp      for t > tp    (2) 

where: Fp = Cumulative infiltration until ponding event (in); t = time (hr.); t = time duration until 

ponding event (hr.). 

However, a limitation of the Green-Ampt equation was that the equation was separated in 

stages: before and after ponding. Chu (1978) proposed an approach that could integrate the 

different stages, in other words, include the amount of water infiltrated before ponding. The 

author utilized methods developed by Mein and Larson (1971) for steady rainfall and extended it 

to successfully simulate unsteady rainfall events. The main concept about this method is to shift 

the time by a parameter called pseudotime (equivalent time to infiltrate Fp under ponded surface 

conditions). The same study compared the measurements between the approach suggested by 

Chu and actual values measured in the field, and confirmed that the use of the pseudotime 

provided accurate results. As long as the rainfall intensity is less that than the infiltration rate, 

there will be no ponding and all water is infiltrated. Once the top soil is ponded, the rainfall 

intensity does not affect the rate of infiltration, which increases up to a maximum value known 
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as the infiltration capacity of a particular soil. Since infiltration values are implicit in the 

formulas, several mathematical steps needed to be calculated before obtaining a solution.  

Consequently, Chu (1978) integrated equation (2) to obtain the value of cumulative 

infiltration. The corresponding equation can be seen below (See Equation (3): F/SM − ln(1 + F/SM) = K(t − tp − ts)/𝑆𝑀   (3) 

where: Sav = average capillary suction at the wetting front (in). 

 

Evapotranspiration (ET) 

Since irrigation accounts for the greatest amount of water use, understanding evaporation is 

fundamental for water resources planning. One equation widely used by professionals for 

assessing reference evapotranspiration (ET) is the Penman-Monteith. This method requires 

hourly or daily measurements of variables such as temperature, radiation, wind speed, and 

humidity. The need for the variables just mentioned will require lots of effort which can 

sometimes create a problem. Although the Penman-Monteith equation might be considered as 

the most accurate method, the Blaney-Criddle equation tends to be most widely used approach 

due to simplicity. The only weather data required by the Blaney-Criddle equation to estimate ET 

is air temperature measurements. The original form of the Blaney-Criddle equation was modified 

by Soil Conservation Service (SCS) (SCS 1970) and Food and Agriculture Organization (FAO) 

of the United Nations (J. Doorenbos and Pruitt 1984). 

The equation of Blaney-Criddle involves three variables: the crop consumptive use 

coefficient (k), the average monthly temperature (t) and the percent of daily daytime (p). The 

equation can be seen below (See Equation(4): u = ktp100       (4) 
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where: u = monthly evaporation (in.); k = monthly ET coefficient; t = mean monthly temp (˚F), p 

= monthly % annual daytime hours 

 

One limitation of this equation is the difficulty to predict accurate values of 

evapotranspiration in places with high elevation. Such high elevation locations exhibit lower 

temperature during the night and force the average daily temperature to drop even though the 

solar radiation remains stable. In order to increase accuracy, k values were established for 

different growing stages of the subjected crops. A study provided an alternative approach where 

available weather data can be used to obtain more accurate results with the Blaney-Criddle 

equation (Juday et al. 2011). 

 

Water Efficiency 

It has been proposed that wet ponds should reuse some of their water as an alternative for 

irrigation instead of discharging it downstream (Wanielista et al. 1991). The process of reusing 

water is beneficial since it can help reduce the volume of water, which will lead to a decrease in 

the local water loss and amount of discharged pollutants to water bodies. Numerous mass 

balance studies were conducted on ponds which incorporate reuse systems with rainfall data, and 

the outcomes were used to develop the rate-efficiency-volume (REV) curves (Wanielista et al. 

1991).  REV = 1 − Reuse Water Vol.EIA      (5) 

where: EIA = effective impervious area (ft2); EIA = CA; C = rational coefficient of watershed; A 

= total watershed of area (ft2).  
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Basically, the REV Curve values are the percent of water reused from the total amount of 

water introduced to the system. An example of a REV curve from a Tallahassee rainfall station 

was extracted  from the study by Wanielista et al. (1991), and is shown below :  

 

Figure 1. Example of REV Curve  (Wanielista et al. 1991) 

 

Reuse Water Systems 

 Hardin et al. (2012) conducted a study to understand the performance of green roofs that 

infiltrated stormwater runoff with the additional use of a cistern. The main goals of green roofs 

are to reduce the amount of pollutants in the incoming water and to hold water for longer 

periods. Increasing the detention time of water helps increase evapotranspiration and reduces the 

amount of water discharged. In order to determine how much water infiltrated from green roofs 
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including the use of a cistern, Hardin used a mass balance approach which involved the rates of 

evapotranspiration (ET), input water (I) and precipitation (P) the Media Storage (MS) .  

 

Figure 2. Green Roof System Boundaries  (Hardin 2006) 

 

Figure 2 shows the use of boundaries around the green roof media storage and then 

another around the overall system in order to calculate the efficiency of the system. The 

efficiency equation, slightly similar to the REV curves equation, were calculated by dividing the 

amount of water retained by the volume of rainfall and water input from the cistern (Wanielista 

et al. 1991, Hardin 2006). 

 

Computer Software 

There are some software programs created to provide a rapid and efficient way to 

determine the performance of certain systems through a set of automated calculations. Brief 

discussions on two BMPTRAINS and CUP+, software purposes and capabilities are presented. 
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BMPTRAINS 

This Excel based model was created to assess stormwater runoff nutrient loads and the 

removal performance of various BMPs (best management practices) based on recent research 

findings in the State of Florida (Harper and Baker 2007, Wanielista et al. 2014). A BMP is a 

control structural system that that serves as an economical element to reduce the pollution in 

water to meet water quality standards. There is a wide variety of BMPs and this program allows 

private and governmental agencies to have a good understanding of their functions and benefits 

of the BMP’s working together. Figure 3 shows an input worksheet screenshot of the 

BMPTRAINS model where the user can select target reduction efficiency for nutrients as 

nitrogen and phosphorus along with different treatment methods that can be implemented at the 

bottom of the worksheet page. 

 

Figure 3. Worksheet with different treatment analysis options  (Wanielista et al. 2014). 
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CUP+ 

Consumptive Use Program Plus, or CUP+, is an EXCEL based computer program 

published by the California Land and Water Use, Department of Water Resources and 

Department of Air, Land and Water Resources, University of California, Davis. The purpose of 

this program is to help professionals in the agricultural field and water management entities by 

modeling factors such as ET. The CUP+ model studies the crop coefficient (Kc), crop 

evapotranspiration (ETc), and evapotranspiration of applied water (ETaw) which will help predict 

the actual amount of water available for crops. The main function of CUP+ was to predict the 

soil water distribution in surfaces that experience rainfall, infiltration, fog, dew, and irrigation. 

The evapotranspiration was calculated through several factors such as maximum and minimum 

temperatures and wind velocity through the Penman-Monteith equation. Shown in Figure 4 is a 

screenshot that illustrates how information are inserted. 

 

Figure 4: Input page of the program CUP+  (Morteza 2010). 
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The method used by the program to determine some of such average climate values and 

other evaporation rates for monthly data is curve fitting, a method commonly used for this 

application (Cesaraccio et al. 2001). For general cases where a crop is present, a Kc value is 

selected based on the specific crop used. The value of Kc, along with the crop evapotranspiration 

varies throughout the growing period of the crop.  

Some of the variables that need to be inserted by the users in the program are crop type 

(field, deciduous, subtropical), the period duration, ET contribution from fog and dew and so on. 

Frequency of irrigation events, effective rooting depth, monthly and daily weather data are 

factors considered to make predictions about the water balance. The net water applied to crops 

(ETaw) is also important when growers need to plan their actions regarding their crops.  

 

Soil Properties 

 Understanding the amount of water that can be held by a soil is very important while 

managing tasks related to irrigation such as arrangement design, schedule, crop selection and 

magnitude. The water holding capacity is related to the field water capacity and there are various 

procedures utilized to determine their magnitude (Asgarzadeh et al. 2014). Methods used to 

determine field water capacity can be done by field measurements, laboratory testing or 

empirical methods based on soil properties. In a study done to compare the results found through 

laboratory testing versus field measurements, Gebregiorgis and Savage (2007) concluded that 

values found in the laboratory were quite different from the ones in the field. The authors 

explained that the differences could be due to a variety of reasons such as the sample being 

altered from the time it was taken in the field, the different nature of each method and soil 
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variability. Water demands for irrigation are sometimes estimated with water mass balance 

equations and an important factor is soil porosity.  

Porosity studies have shown that a rapid infiltration process increases directly with the 

degree of connection of pores in the soil column (McIntyre and Sleeman 1982). Helalia (1993) 

studied the relationship between different soil properties, such as textural and structural, and the 

in situ infiltration rate. At the end of the experiment, it was determined that effective porosity 

produces the strongest correlation with the infiltration and that the rest of the variables do not 

increase the accuracy.  

 

Structural performance of HDPE pipes 

Design Methodology 

Pipes are often classified as flexible or rigid material based on how they behave under a 

load. Rigid pipes obtain their strength from the material itself such as concrete of steel 

(Jeyapalan and Boldon 1986). Even though flexible pipes are made out of materials with lower 

stiffness than the rigid pipes, they are better at distributing the load to the surrounding soil. In 

addition, flexible pipes have the ability experience higher deformations than the rigid pipes 

without encountering failure.  

According to Kang et al. (2009), some benefits of flexible pipes are light weight, less 

amount of joints needed, much greater resistance to corrosion and less difficulty during 

construction stages. Flexible pipes have a greater contact area with the soil while transferring 

loads, unlike the rigid pipe that has a concentrated contact area where the interaction occurs. This 

interactions present an advantage for flexible pipes because it allows them to be used at much 

deeper locations than rigid pipes. 
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The earliest research projects conducted on buried pipes were by Marston and Anderson 

(1913), which served as a foundation for numerous researches. Some of Marston’s students, 

Spangler and Shafer (1938) published the Iowa formula which provided fundamental 

information in order to model the behavior regarding the deformation of buried flexible pipes. 

Concepts related to the elastic ring theory and hypothesis regarding fill loading helped create the 

Iowa formula. The three main assumptions are that the vertical load is distributed along the width 

of the pipe, the vertical reaction is equal to the applied load and it is also distributed throughout 

the pipe’s width, and the horizontal pressure applied to the pipe is distributed along an arc length 

of 100 degrees. Later, Watkins and Spangler (1958) presented the modified Iowa formula as: 

 (∆x/d)(%) = 100DL𝐾𝑃/[0.149(𝑃𝑆) + 0.061𝐸′]  (6) 

where: Δx = horizontal diameter change d = initial pipe diameter, P = vertical pressure on pipe, 

PS = Pipe Stiffness, E’ = Modulus of soil reaction, K = Bedding constant, 𝐷𝐿 = Lagging factor 

 

The modified Iowa formula signified a great accomplishment for civil engineering since 

it became the origin of analytical methods to study the behavior of flexible pipes. Researchers 

have used this formula extensively to develop other methods to quantify the parameters of pipes 

installed in the field. For example, Masada (2000) presented a method where once the variable 

Δx is calculated the vertical deflection can be estimated by: |∆y/∆x| ≈ 1 + 0.0094E′/(PS)    (7) 

 

According to Masada (2000), this value seems to be relatively accurate and that the value |∆𝑦∆𝑥| should be slightly higher for thermoplastic pipes “due to the fact that the circumferential 
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shortening of the pipe under loading tends to make the horizontal deflection smaller and the 

vertical deflection larger when compared to the deflections of a corrugated metal pipe with the 

same ring stiffness” (Masada 2000). Masada (2000) also stated that other methods proposed by 

Burns and Richard (1964) or Hoeg (1966) are more accurate but the Spangler equation is more 

widely used due to its simple calculations. 

 

AASHTO Design Method  

The AASHTO Design is commonly used to model the magnitude of dead and live loads 

applied to the pipe buried underground (AASHTO 2012). Once live and dead loads are 

determined, the thrust on the pipe can be calculated.  

Live and dead load equations are used to calculate the theoretical loads that will be 

applied to the pipes in the field. In an analysis, both the live and dead loads are factored to 

minimize potential errors in design. These load factors are multipliers that were calculated 

statistically with the purpose of accounting for any variability of loads and the possibilities of 

some miscalculations in the design. Brief explanations will be provided to explain dead and live 

loads. 

 

Dead Load 

Dead loads, or static loads, are typically non-dynamic weights supported by the structure 

itself and remain constant over a long period of time. In the case of a building or roadway 

structure, weights of their structural components and utilities are considered dead loads. For the 

case of a buried pipe, the dead load is the soil cover laying on top, which includes the pavement 

layer. The equation used to estimate the dead load is the soil-prism load expressed in Equation 7. 
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Psp = [H + 0.11(D0/12]γs/144    (8) 

 

where: PSP = soil prism pressure (EV), evaluated at pipe’s horizontal centerline (psi); H = depth 

of fill over top of pipe (ft.); D0 = outside diameter of pipe (in); γs = wet unit weight of soil (lbs. 

/ft.3 ). 

 

Live Loads 

Live loads are dynamic loads on the structure that, in relatively short period of times, can 

change locations or not be present in the structure. Examples of live loads can be human 

occupancy, furniture for buildings and vehicles for a bridge. A more concise procedure to 

calculate live load was adopted from the Report 647 (NCHRP 2010). The principal equation to 

determine the service live load applied to an underground pipe is: 

 WL = MPF(1 + IM)WLL      (9) 

where: WL = service live load (psi); WMPF = multiple presence factor (1.2); IM = impact factor 

(0.33); WLL = live load pressure (psi). 

 

General Factored Load Equation 

The general factored load equation that combines all forces applied on the buried 

structure is represented by the following equation: 

 Pf = ηEV(γEVVAF × PSP) + ηLLγLLCLWLL     (10) 
where: Pf = factored vertical crown pressure (psi); ηEV = load modifier for live loads, AASHTO 
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Art.1.3.2; VAF = Vertical arching factor; PSP = soil prism pressure (EV); ηLL = load modifier as 

specified in Article 1.3.2, as they apply to live loads on culverts; γLL = load factor for live load, 

as specified in Article 3.4.1; CL = live load distribution coefficient; WL = live load pressure (psi) 

 Once general factored load equation has been calculated, the thrust per unit length on the 

pipe can be calculated. In accordance to AASHTO (2012), the equation to calculate thrust is: 

 TL = 𝑃𝑓(𝐷𝑜2 )      (11)  

where: TL= factored thrust per unit length (lbf/ft), Do = outside diameter of pipe (ft), Pf= factored 

vertical crown pressure (lbf/ft2)  

 

 All equations recently shown above are needed to calculate the theoretical deflection on a 

single pipe. The equation to calculate deflection involves variables such as the diameter to 

centroid of pipe wall, thrust on the pipe, pipe wall area, fifty-year modulus of elasticity of the 

pipe’s material, maximum load factor for Vertical Earth pressure (EV) (AASHTO 2012). The 

formula to calculate the theoretical deflection can be found below:  

 ∆= 0.05D − TL𝐷𝐴𝑒𝑓𝑓𝐸50𝛾𝑝      (12)  

where: TL= factored thrust per unit length (lbf/ft); D = diameter to centroid of pipe wall (ft), Aeff 

= effective pipe wall area; E50= fifty-year modulus of elasticity; γp = maximum load factor for 

Vertical Earth pressure (EV) 
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Polyethylene Pipes 
Polyethylene pipes have been widely used to replace old pipe systems or build new ones 

(Bilgin 2013). Since polyethylene pipes behave as viscoelastic material, their behavior under 

stress reflect a combination of elastic and viscous. The relationship between stress and strain is 

non-linear and its properties vary depending on temperature, duration of load applied and the 

degree of stress inserted. A particular property exhibited by polyethylene pipes is creep and it 

represents the time-dependent permanent deformation which in the long-term can produce failure 

in the pipe (O'Connor 2011). Polyethylene pipes in general have a higher susceptibility to 

temperature changes related to loading stresses. In other words, these pipes will extract or 

contract at a higher degree and this can affect the integrity of the whole pipe system.  

Load Effects 

Plastic pipes often experience large deformations due to stress relaxation, a typical 

behavior for viscoelastic materials. According to Motahari and Abolmaali (2009), the 

deformations are considered extreme once the size or shape of a pipe is severely altered. The 

different cases are classified as: deformation in the x or y axis, ovality, crown flattening, inverse 

curvature and bucking. A study showed that 63% of the pipes used in the United States suffer 

greater degrees of deformation compared to the allowable one specified in the AASHTO codes 

(Barker and Puckett 2013). Furthermore, the maximum deformations found in pipes were 22.5% 

and the average maximum deformation was 7.2%. 

 Kang et al. (2009) studied the short-term and long-term effects of the HDPE pipes by 

using finite element method (FEM) and current design equations (AASHTO 2012). Some of the 

findings found in the study conducted by Kang et al. (2009) were that the earth loads on this type 

of structure greatly vary depending on the time related properties. This project also proposed that 
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observed reduction in the elastic modulus were related to decreased earth loads. Results found 

through a FEM software called ABAQUS were closely related to methods proposed by Burns 

and Richard (1964) but were significantly smaller than the ones produced by Spangler and 

Shafer (1938). Lately, HDPE pipes have been used for stormwater detention system therefor 

their behavior in this type of design needs to be understood. Some conducted experiments 

increasing the strength of the pipe by adding additional components to it (Shijian et al. 2002, 

Khatri et al. 2013). 

By combining the strength of plastic and steel, steel reinforced high-density polyethylene 

(SRHDPE) pipes should overcome the problem experienced by each material alone. The ribs of 

the pipe are formed by high strength steel that provides significant strength and stiffness. In order 

to have a deeper understanding of this component, Khatri et al. (2013) performed a study related 

to the compressive behavior of the pipes under static loads. Khatri et al. (2013) concluded that 

the pipes met the minimum requirement according to ASTM F2562 and that yielding was 

observed at about 6% vertical deflection and the maximum loads were experienced at 10% 

deflection. The last finding corresponded to a vertical deflection that was about 1.25 time greater 

than the horizontal deflection. The last few research projects consisted on studying behavior of 

pipes under dead loads but the effects of live loads are also critical for a proper design(Lay and 

Brachman 2013).  

Results of a study performed by Arockiasamy et al. (2006)demonstrated that additional 6 

inches of cover would reduce about 2 to 3 times the vertical pressure applied to the crown of pipe 

in HDPE pipes of large diameter compared to the smaller ones. The deformations measured in 

the field were compared with the Spangler equation, the modified Meyerhof formula and two 
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FEM software programs (CANDE and ANSYS). The results supported that ANSYS created the 

closest approximation to values found in the field. 

 Faragher et al. (2000) performed research studies related to the behavior of plastic pipes 

under repeated vehicular loads. The study consisted on passing trucks 1,000 rounds over a road 

that contained buried pipes. The findings showed that the stress in these pipes rapidly increase in 

the initial stages but later the effects decreased until the pipes reached a point where they became 

stable. The studies proposed curves that would help understand the long-term effects of plastic 

buried pipes. In addition to tests conducted on the field, researchers have studied the behavior of 

polyethylene pipes through the application of finite element methods. 

According to FEM study done by Bilgin (2013) with the use of polyethylene pipes suffer 

a much less thermal stress to the one designed in the field. In addition, the study found that 

performing an initial material characterization procedure can help determine the behavior of the 

buried pipes that experience thermal loading. The author also stated that finite element methods 

and other similar procedures can be used to gain knowledge about the behavior of this type of 

material. 

 

HDPE Pipes Systems 

Folkman and Moser (2002) conducted a study in the Utah State University to understand 

the structural performance of buried bundled HDPE. The system was buried to different depths 

and the deflection was constantly evaluated. In this test, three 36 in. pipes were placed side-by-

side and four 10 in. haunch pipes were placed between them in the upper and lower voids. This 

study showed geogrid helps support some of the load applied. In addition, laboratory testing was 

file:///C:/Users/mario_000/OneDrive/Research%20(PTI)-Mario/Writing/Thesis/Chapter%202/CHAPTER%202%20-%20A.docx%23_ENREF_4
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conducted on bundled and single pipes. Based on the results, Khatri et al. (2013) concluded that 

bundled pipes performed better. 

Sargand and Masada (2000) investigated the structural performance of HDPE pipes in a 

honeycomb design under 52 ft of backfill and found that that vertical deflection stabilized at -

10% which indicated the pipes did not fail.  

List of Expected Contributions 

Model 

By finalizing this research, potential users will have an opportunity to use a 

comprehensive computerized model of the PIPE-R System prior to actual installation. Current 

systems are being used without any kind of parameter that could affect their performance. One of 

the capabilities of this Microsoft EXCEL based model is to predict the water harvesting 

operations through by using a scientific approach. The model itself provides a great degree of 

variability since it allows the user to customize parameters such as size, soil cover depth, 

magnitude of water reuse demand, location of the system, types of the surrounding soils and so 

on. After running the model, the output page will display information regarding the average 

yearly water supplied, water reused, hydraulic efficiency and groundwater recharge. If these 

results do not satisfy the user’s minimum requirements, some parameters can be adjusted in 

order to accomplish the particular goals. 

 

Laboratory Testing  

The other contribution from this project is the validation of the structural properties of the 

system of being able to resist dead and live loads. If the pipes do show enough structural 
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integrity, then the PIPE-R System can be placed underneath parking lots, roads and any other 

trail where there are vehicular traffic, as long as sufficient cover exists.  
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CHAPTER 3: METHODOLOGY 

This section is divided in two parts: the PIPE-R Model to and the structural test 

conducted on the PIPE-R system. In addition, the structural test is divided into two components: 

the laboratory testing and the field-testing. Each section will be explained fully in this chapter. 

PIPE- R Model 

The PIPE-R model is a Microsoft EXCEL based model that predicts hydraulic efficiency 

for different PIPE-R system designs that incorporate groundwater recharge, harvesting, and gray 

water reuse. PTI developed the PIPE-R system, a novel approach to underground stormwater 

storage, which has been used throughout the country in a variety of climates and locations. The 

development of this model was driven by the desire to be able to estimate the hydraulic 

performance of this system, as well as to quantify the hydraulic benefit of reusing captured 

stormwater. The image below illustrates the main components of the system (See Figure 5).  

 

Figure 5. Diagram of the system 
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The overall system was divided into three main components and the main boundaries 

were identified as the top layer of soil directly above the reservoir, the reservoir and the 

drainfield (See Figure 6). 

 

Figure 6. System boundaries 

 

Reservoir 

The Reservoir is the main storage of the system and its volume can be customized 

through the Excel program. Maximum storage capacity of the reservoir is dictated by its volume 

specified in the program. A Control Box is often used to adjust the flow of water in the PIPE-R 

system and its dimensions such as height, width, and thickness need to be inserted to calculate its 

total storage volume. (NOTE: the storage volume of the control box that would hold the water 

until overflow occurred was incorporated with the volume of the Reservoir.) 
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The equation for the main general mass balance of PIPE-R System is: dSdt = DI + R − IR + Q − I − WD − OR 

dS = dt(DI + R − IR + Q − I − WD − OR) S2∗ − S1∗ = dt(DI + R − IR + Q − I − WD − OR) S1∗ + DI∗ + R∗ − IR∗ + Q∗ − I∗ − WD∗ − OR∗ = S2∗        (13) 

The diagram for the Reservoir can be seen in Figure 7. 

 

Figure 7. Mass balance diagram for the Reservoir 

 

Variables 

Direct Infiltration (DI): The value of Direct Infiltration is determined in the surface top layer. 

Runoff (R): This value is estimated by the Rational Method based on the volume of rainfall that 

fell in that hour, obtained through NOAA. The equation for this approach is: Q = CiA      (14) 

where: C = Runoff coefficient; i = rainfall intensity (in/hr.); A = Area of the watershed (ft2) 

 

The Runoff Coefficient (C) was setup in the model in a way that the user can select a 

particular C value or allow the model to auto calculate a weighted value based on the amount of 

pervious and impervious surface in the watershed. The equation used to calculate C was: 
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Average C = ∑(CimpAimp + CperAper)/Atot     (15) 

 

where: C = Runoff coefficient; Cimp = Runoff coefficient of impervious area; Aimp = Impervious 

area of the watershed (ft2); Cper = Runoff coefficient of pervious area; Aper = Pervious area of the 

watershed (ft2); Atot= total area of the watershed (ft2) 

 

Initial Storage (S1): this value for each interval was set to be equal to the Final Storage from the 

previous hour.  

Make up water (Q): represents the additional amount of water needed to meet the Irrigation 

Demand, if any.  

Reservoir Overflow (OR): amount of water that exceeds the main storage capacity of the PIPE-R 

System. This variable then breaks up into two components: Drainfield and System Overflow. 

The first one is the amount of water that enters the Control Box, overflows the dividing wall and 

exceeds the height of pipe that leads to the Drainfield. Once the Drainfield is completely filled 

with water, no more water will be able to enter the Drainfield and the height of water will build 

up inside the Control Box until it surpasses the height of the top outlet pipe. This fraction of 

water is referred as “Drainfield Overflow”. 

Infiltration (I): If the bottom of the reservoir and/or drainfield are permeable, then water will 

infiltrate into the ground. Infiltration from the reservoir is referred as I1 and for the drainfield I2 

was used. The equation used to calculate the rate at which water infiltrated into the ground was 

the proposed equation by Chu (1978) which takes into account the surface ponding condition and 

the expression is shown in Equation (16) F/SM − ln(1 + F/SM) = K(t − tp − ts)/𝑆𝑀    (16) 
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In order to produce a highly accurate set of results, additional calculations are needed to 

determine if there is surface ponding or not. These calculations consider the amount of storage of 

the soil and the amount of water that has been infiltrated, to then produce a value that indicates 

whether infiltration will occur at ponded conditions or not. This process was first used in the 

PIPE-R Model but caused the program to shut down several times since the amount of data being 

analyzed is significantly large. Unsteady state analysis would be beneficial for the simulation of 

rainfall events; however, in this case the water is drained to a local underground storage area that 

will mostly be ponded. Therefore, a permanent ponded condition was used in the PIPE-R Model 

to help the program run smoothly and minimize crashing due to excessive data processing. In 

addition, the assumption that the soil infiltrates only in ponded conditions will provide the 

system with some margin of error against extreme weather events and slight errors due to 

construction. The reason ponded conditions provide safety to the design is because the 

infiltration rate is assumed to be slower than when the surface is not ponded, which forces the 

design to utilize a bigger volume space for the water to be held. Another assumption related to 

infiltration is that no horizontal infiltration occurs, in any direction. 

 

Surface Layer 

The upper component is the top layer and its main factor is its permeability, because it 

will not let water through unless it is permeable. It can be seen in Figure 8 that the top layer is 

affected by how much water is introduced by rainfall (P), the rate at which water evaporates (ET) 

and the water available capacity (WAC). The diagram of the surface layer can be seen in Figure 

8. 
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Figure 8. Mass balance of top surface layer. 

 

The factors just mentioned help us to determine the rate at which water infiltrates into the 

ground. Another soil property that affects infiltration is the water available capacity (WAC), 

which describes the ability of soil to hold water typically based on feet of depth. The WAC value 

is multiplied by the volume of the layer to predict the storage capacity of the particular layer. 

Once the soil reaches the maximum holding capacity, it start releasing the excess water through 

the pores, which is referred as “Direct Infiltration” in this study. The WAC for each soil type is 

obtained through tables found in literature (Saxton and Rawls 2006).  

Other variables needed to complete the mass balance equation for the top surface layer 

are precipitation (P) and evapotranspiration (ET). The P values for each 1-hour interval were 

obtained from the NOAA website but it was required to make some adjustments to also include 

hours were rain did not occur. The ET values are calculated through the equation of Blaney-

Cridell, which evaluates evaporation rates based on a particular latitude, monthly % annual 

daytime hours and the crop type. The equation is as follows:  u = ktp/100       (17) 
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The monthly ET coefficient (k) is can be obtained from tables presented in the literature 

and they are based on the type of crop where is water is resting on (Maidment 1992).  For this 

case we have simplified the model and fixed the k to be 0.7 which belongs to grass and the 

variables t and p were established based on the location of the system. 

Two conditions are considered to determine the magnitude of Direct Infiltration. The first 

one occurs when the net amount of water is less than the maximum storage capacity of the layer, 

then the value of DI infiltration is zero. The second condition occurs when the net amount of 

water is greater than the layer’s storage capacity, which leads the excess water to be infiltrated to 

the Reservoir. The equations for the two conditions be seen below (NOTE: All values are based 

on unit area).  

 

If:  𝑆1 + 𝑃 − 𝐸𝑇 < 𝑆𝑚𝑎𝑥,  𝑡ℎ𝑒𝑛 𝐷𝐼 = 0     (18) 

If:  𝑆1 + 𝑃 − 𝐸𝑇 > 𝑆𝑚𝑎𝑥,  𝑡ℎ𝑒𝑛 𝐷𝐼 = 𝑆1 + 𝑃 − 𝐸𝑇 − 𝑆𝑚𝑎𝑥  (19) 

Where: S1 = Initial water storage of the top surface layer (ft); P = Magnitude of 

precipitation during the corresponding hourly interval (ft); ET = Evapotranspiration (ft); DI = 

Direct Infiltration (ft); Smax = Maximum storage capacity of the top surface layer 

 

Once the location is known, all the factors of the top layer can be determined. A mass 

balance equation for the top soil layer is presented as: dSdt = P − ET − DI 
dS = dt(P − ET − DI) S2∗ − S1∗ = dt(P − ET − DI) 
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S2∗ = S1∗ + P∗ − ET∗ − DI∗     (20) 

Drainfield 

The Drainfield is an optional additional storage than can be added to the Reservoir. Once 

water overflows from the Reservoir (OR) to the Drainfield, it accumulates until its storage 

capacity reaches the maximum volume and water cannot enter anymore. At this stage, any 

additional water builds up in the Control Box until it overflows to the outside, which is referred 

by Drainfield Overflow (OD in Figure 9). NOTE: The volume of the Control Box that 

corresponds to this storage was incorporated with the Drainfield, which explains why the control 

box is not shown on Figure 9. 

 

Figure 9. System boundary of the Drainfield 

 

Infiltration does occur as long as there is water in the drainfield and its quantification is 

done by the Green-Ampt equation. The conditions and equations used to determine the amount 

of water in the Drainfield are: If OR − ID <  DS         OD = 0    (21) If OR − ID >  Ds         OD = OR − ID −  DS   (22) 

where: OR =Reservoir Overflow (ft3); ID = Infiltration from the Drainfield (ft3); DS = Storage 

Volume of the Drainfield (ft3); OD = Drainfield Overflow (ft3) 
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Once the value of Drainfield Overflow is calculated, the next step is to quantify the 

hydraulic efficiency of the system. In other words, the relationship between how much water 

entered the system versus how much was discharged. The study by Wanielista et al. (1991) 

served as a guide to create this equation:  Efficiency = (1 − OR+P) 100%     (23) 

where: EIA = effective impervious area (ft2); EIA = CA; C = rational coefficient of watershed; A 

= total watershed of area (ft2); O = Overflow (ft3); R = Runoff (ft3); P = Precipitation (ft3). 

 

Strength Testing 

Laboratory Testing 

The ASTM D2412 − 11 “Determination of External Loading Characteristics of Plastic 

Pipe by Parallel-Plate Loading” was used to test for the structural performance of plastic pipes. 

The test procedure consists on establishing load-deflection relationship of a single pipe under 

parallel plate loading. This method helps evaluate the structural performance based on the pipe 

stiffness (PS) based on standard values stated by AASHTO M252. The units of PS are lbs./in/in. 

Setup 

Single Pipe 

Four different types of corrugated pipes were tested for PS at 5% deflection. All pipes 

had length of 12 inches and inner diameter of 4 inches. The first three pipes had the same design 

regarding corrugation style but slight different weight. The fourth pipe had a different 

corrugation design referred as “Old technology” and the weight was similar to the other pipes but 

unknown. In summary, the weights of the pipes are: 
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1. Pipe #1 - 5.3 oz/ft 

2. Pipe #2 - 5.2 oz/ft 

3. Pipe #3 - 5.0 oz/ft 

4. Pipe #4 - old technology (no assigned weight value) 

 

Equipment needed for the ASTM D2412 – 11 are a testing machine, loading plates and a 

deformation indicator. A universal testing machine (UTM) was used for the test and deformed 

the pipe at rate of 0.5 in/min as specified in the standard test. Steel plates were required in this 

test to help distribute the load evenly on the pipes. The size of the plates met the minimum 

parameters stated in the ASTM D2412 – 11. The actual length, width and thickness of the top 

plate were 15 in, 8 in and 1 in, respectively. In contrast, a platform of the UTM was used as the 

lower plate Figure 10. The deformation indicator was already installed with the UTM. Before the 

test, wall thickness and pipe’s lengths measurements are recorded to verify uniformity. The next 

step is to place the pipe in the UTM and confirm the contact between the pipe and plate is firm. 

A picture of the setup prior to testing can be seen below in and the progression can be seen 

below in Figure 10.a. In addition, Figure 10.b-d show progression of the test and illustrates the 

deformation experienced by the pipe. 
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Figure 10. a. Single pipe before testing; b. Pipe is slightly deformed; c. Pipe is significantly 
deformed; d. Pipe is severely deformed 

 

Once the test is conducted, information such as load and the corresponding deformation 

can be extracted for analysis purposes. PS is calculated by dividing the force applied per unit of 

length by the corresponding deformation. The equation can be seen in the Calculations to 

determine pipe stiffness (PS) section. The AASHTO M252 specifications states that corrugated 

polyethylene pipes used for drainage should have a minimum PS of 240 Newtons/meter/mm 

(34.1 lbf/in / in) at 5% deflection (AASHTO 2003). 

 

Calculations to determine pipe stiffness (PS) 

The equation for PS is: 𝑃𝑆 = F/∆𝑑       (24) 

where: F = force applied per linear length (lbs./in.); ∆d = deformation (in) at 5% of the pipe’s 

internal diameter 
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 Since the inner diameter of the pipe was 4 inches, a 5% vertical deflection of the pipe was 

0.2 inches. Consequently, the PS of the pipe was calculated by dividing the load (distributed per 

unit length of the pipe) by 0.2 inches. Increasing load was applied to all pipes until the specimens 

started deflecting without a load increase. Similarly, another reason to end the test occurred when 

the pipe reached failure, defined as experiencing a deflection 30%. 

Once the values of the PS for are known for each level, they will be checked against the 

minimum requirements specified by AASHTO M252 (34.1 lbf/in/in). The PS stiffness 

calculations were designed to analyze a single pipe, but this study also incorporated systems of 

bundled pipes. In the original equation the force applied (F) was only divided by the length of the 

single pipe. However, the bigger contact area of the system needs to be accounted to more 

accurately reflect the load-deflection relationship of the multiple pipes. The proposed changes in 

the value of F were to divide the load magnitude by the length of the specimen, but also by the 

number pipes in contact with the load. 

Another factor to be considered by evaluating multiple pipes under the ASTM D2412 − 

11 is the actual height of the pipe system. Since the original PS formula considers the internal 

diameter of a pipe, the proposed method consisted of treating the system as single pipe where the 

internal diameter was assumed to be the total height of the system minus the pipe’s thickness. 

Thus, 5% deflection were based on the new proposed internal diameter. In summary, the 

proposed pipe stiffness method for this study accounted for the number of pipes and the height of 

the overall pipe bundle system. Further details of the systems are explained in the next section. 𝑃𝑆 = (F/n) /∆ℎ        (25) 

where: n = number of pipes in contact with loading plate; Δh = deformation (in) at 5% of the 

BPU’s overall height. 
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Bundle Pipe Unit 

A bundle pipe unit (BPU) consists of five single pipes, tightly wrapped with a 

mechanically fabricated plastic stripe. For this study, single and multiples levels of 12 and 37 

inches long BPU’s will be studied. Also, whenever a level of BPU is added, the direction of it 

needed to perpendicular to the previous BPU. The purpose of the variations regarding levels and 

length is to understand if a different interaction among the pipes affects the structural 

performance of the system. One aspect this setup differs from the singles pipe is that it required a 

steel loading with a bigger size to have sufficient contact with the top of the PBU. The design of 

the top plate was based on the parameters stated in the ASTM D2412 – 11, while the platform 

was again used as the lower plate. The actual dimensions of the top plate were 12 in, 12 in and 

0.25 in. Lastly, in order to simulate the horizontal restriction applied on the pipes exerted by soil, 

the entire system was manually held together in both directions using a twisted polypropylene 

rope spaced 12-inch apart. A single BPU and a 2 level BPU with the top plate included can be 

seen below in Figure 11.a-b. 
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Figure 11.a. Single BPU before testing; b. Two-Level BPU before testing with top plate 

 

According to the ASTM D2412 – 11, failure point was reached when a pipe experienced 

a deformation that is equal in magnitude to 30% of the pipe’s inside diameter. Since this study 

deals with multiple pipes, the maximum allowable deformation was based on the height of the 

bundle minus the pipe’s wall thickness. Once the maximum allowable deformation was 

established by multiplying the height of the bundle minus the pipe’s wall thickness by 30%, 10 

intermediate deflections intervals were selected at which measurements were taken from 

particular sections of the pipes. The purpose of the intermediate measurements were to have a 

better understanding on how the pipe behaves during testing. 

The setup for the 37 in. long BPU had similarities and differences compared the testing of 

12 in. long BPU. The concept of establishing load-deflection relationship of the pipes under 

parallel plate loading is still the focus but calculations will change. The variations will be 
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explained in the Calculations to determine pipe stiffness (PS). The rate of load application was 

also 0.5 in/min and the method of obtaining measurements through the laser position sensor was 

also used. However, among some of the main differences are that three BPU’s are used in each 

level, bigger top and bottom steel plates are required and the use of a different testing machine 

that did not have a deformation indicator. The size of the plates were increased to satisfy the 

parameters stated in the ASTM D2412 – 11. The length, width and thickness of the plates were 

38 in., 38 in. and 0.25 in. respectively. In addition, steel toes were added to the perimeter of the 

plates to reduce bending during loading (See Figure 12 and Figure 13). To resolve the issue of 

not being able to automatically obtain load-deflection values through the testing machine, 

measurements were taken exclusively with laser position sensor and matched with the load 

values shown by the testing machine output window. 

 

Figure 12. One level system of the 37 in. long BPU’s 
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Figure 13. Three level system of the 37 in. long BPU’s 

 

Since the testing machine used to evaluate the longer BPU’s, a laser sensor was used at a 

reference point to record the elevation of the top pipe at certain periods throughout the test. 

Basically, the change of elevation of the top plate was assumed to be the deformation of the 

system. A picture of the sensor can be seen below 

 

Figure 14. Laser position sensor used for individual measurements 
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The laser sensor measures the distance until the next object in the direction it is directed, 

in this case the object was the bottom of the top plate. A long aluminum ruler and flat steel bar 

were used to mark the exact point and create a surface where the laser position sensor could 

obtain a measurement. A level was used to verify the tools were exactly horizontal and obtain 

more accurate values. An illustration of the setup can be seen in Figure 15 

BC

Top

pipe

Lower plate

goes down

Reference Point

Measurement

taken

 

Figure 15. Setup for individual measurements 
 

Field Testing 

Field testing was also conducted to study the structural integrity of the pipe bundles in the 

field under the effect of dead, live loads and the addition of pipe-soil interaction. Three systems 

of pipe bundles were buried under different cover depths, which will be illustrated later in this 

section. Loads applied to the systems were produced by the earth pressure and by vehicular load. 

The dimensions testing site were designed to accommodate three 20 ft by 10ft pipe bundle 
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systems. Also, sensors were placed on the edges of the systems to obtain deformation values due 

to the dead and live loads applied. One sensor was located at the front and back of each system 

for redundancy purposes. Conduits were built to guide and protect the power and output wires 

out of the sensors and to the Data Acquisition System (DAQ) and power source which were store 

in the junction boxes. A plan view of the overall testing site can be seen below in Figure 16. 

69ft

10ft

Junction Box

Direction of

the truck

Conduit

B

B

C

C

A

Sensor Locations

Detail A

Sensor Locations  

Figure 16. Plan view of the site 

 

 

Figure 17. Section A-A 

 The construction process consisted on excavating a whole of 69 ft long, 10 ft wide and a 

depth ranging approximately from 4.35ft to 6.35 ft based on the cover of the systems. This 
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difference in height lead to creation of steps in the surface of the excavation (See Figure 18.a). 

Once excavation process was over, compaction effort was conducted on the soil surface using a 

vibratory plate (See Figure 18.b). Next, the systems were put in place along with the geotextile 

which was customized based on the system dimensions. Additionally, structures located next to 

the system served as housing for the sensors (See Figure 18.c). After the system had been set in 

place, layers of sand, #57 stone and milling were placed according to the particular cover 

configuration for each system (details can be found in the Setup dimensions section). Also, PVC 

pipes were used as conduits for sensor wires. The finished testing site can be seen in Figure 18.d. 

 

Figure 18.a. Excavated holes; b. Vibratory machine used for compaction; c. System being put 
into the holes; d. View of finished testing site 

 

a b

c d
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Setup dimensions 

The systems were each 10.167 ft. wide, 20.334 ft. long and 2.886 ft. height. The cover for 

the first system was 43 in. height and it consisted of: 6 in. of asphalt pavement, 24 in. of #57 

stone and 13 in. of sand (See Figure 19). The cover for the second system was 30 in. height it 

consisted of: 6 in. of asphalt pavement and 24 in. of #57 stone (See Figure 20). The cover for the 

third system was 18 in. height and it consisted of: 6 in. of asphalt pavement, 12 in. of #57 stone 

(See Figure 21). In addition, all systems were wrapped around by a geotextile and a geogrid was 

placed in the middle of the #57 stone layer for strength, overlapping all sides of the systems by 3 

feet.  

 

Figure 19. Section view of system 1 
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Figure 20. Section view of system 2 

 

 

Figure 21. Section view of system 3 

Sensors were protected by a concrete structure and fixed to a cinder block that was placed 

at the bottom of the structure. The mechanism used to record the deflection in the systems was 

connecting the sensor’s wire to a metal bar, which was secured to the top level of the system’s 

top pipe (See Figure 22). 
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Figure 22. Concrete housing structure for the sensor 

 

Live Loads 

The truck utilized as a live load met the H20 specifications regarding the weight and axle 

configuration (NCHRP 2010, AASHTO 2012). The exact total gross weight of the truck was 

66,240 lbs. Each axle weighted approximately 22 kips. The front axle was 14 ft. apart from the 

first rear axle, which was spaced 4 ft. from the second rear axle, center to center. The truck did 

also had a dead axle but, which is used when load is high and weigh needs to be redistributed. 

(See Figure 23.a). The dead axle was not used in this case. It was important to know the 

configuration of the tires to pass as near as possible on top of the location that was directly 

above the sensor. Therefore, the theoretical path of the truck was directly above the sensor was 

clearly marked on the ground with blue lines as seen in Figure 23.b. The truck’s tires passed on 

top of the sensor’s location twice, the first was achieved by the truck driving in reverse and the 

second was completed by the truck driving in the forward direction. Once the truck passed on 
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top of the sensor twice, the truck drove away a small distance such 10 feet and then repeated the 

operation Figure 23.c. Pictures from the truck can be seen below: 

 

 

Figure 23.a. 2 rear axles and a dead axle; b. Two rear axles following the blue lines; c. Rear view 
of the truck driving away from the sensor’s location 

 

While the truck was in motion, draw-wire sensors were utilized to measure the deflection 

experience in each system. The location of the measuring devices are on both edges of the 

systems, directly underneath of the path of the truck’s tires (See Figure 24). 

10ft

Cover varies 18"-43"

Compacted

subgrade

layer
Sensor

2ft
dual wheel

Geotextile

 

Figure 24. Location of tires with respect to sensor 

 



50 

The approach used to connect the sensors to the systems was by connecting the sensor’s 

measuring wire to a steel bar that was attached to the top of the systems. Any movement 

experienced at the top pipe would be recorded by sensor (See Figure 25). Also, an opening was 

done on the geotextile in order to allow the steel bar to extend outside the system  

 

Figure 25. Connection between sensor and steel bar 

 

Instrumentation  

Draw-wire displacement sensors from the company Micro-Epsilon were utilized in this 

study to obtain deflections readings from the PIPE-R System. The model’s exact name was 

“WDS-1000-P60-SR-U Draw-wire displacement sensor”, the measuring range of the sensors 

were 1,000 mm and the output was in Volts (V), thus a conversions needed to be done based on 

the sensor parameters to convert the voltage reading into deflection values. An image of the 

sensor of the sensor can be seen below in Figure 26. (NOTE: The sensors measuring clip is 

attached to the steel bar that is connected to the pipe system.) 
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Figure 26. Sensor used for field test 

 

 Additional items purchased from Micro-Epsilon were needed to perform the testing. For 

example, mounting clamps were used to fix the sensor, a power supply (PS2020 Power Supply 

24 V) to provide power and a 24 ft long output cable. Finally, a computer with the LabVIEW 

software (Laboratory Virtual Instrument Engineering Workbench) and a Data Acquisition 

System (DAQ) with associated products were required to store the data. LabVIEW and all the 

devices just mentioned were manufactured by the company National Instrument.  

The DAQ specific name was “NI 9207”, operated with an input range of ±10 volts and it 

processed data with a resolution of 24 bit. The DAQ was able to hold up to 8 sensors but only a 

maximum of two sensors were used simultaneously. To connect the sensor, the cap of the 

sensors was removed. Pictures of the DAQ with and without the cap can be seen below: 
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Figure 27. Pictures of the DAQ with and without the cap 

 

Other items required were a terminal block (NI 9923) that simplified the overall 

connection effort between the DAQ and the rest of the devices. Also, a CompactDAQ Chassis 

(cDAQ-9191) was utilized to allow a wireless connection between the DAQ and the laptop. 

Pictures of both devices can be seen below:  

 

Figure 28. Pictures of the terminal block (left) and CompactDAQ Chassis connected to the DAQ 
(right) 
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Finally, the last product was a power supply with the specific name of Power Cord, AC, 

U.S., 120 VAC, 2.3 meters. The power supply was connected directly to the DAQ and it was 

used to power the system. A picture of the power supply can be seen below: 

 

Figure 29. Power supply 

 

LabVIEW is computer software that allows visual programming through the language 

“G”. A bug in the LabVIEW was found while activating the devices, thus a particular system 

configuration was designed manually in LabVIEW to obtain the data, convert it to a readable 

format and save it properly. The diagram to allow the proper reading from the sensors can be 

seen below in Figure 30: 
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Figure 30. Diagram of the connections in LabVIEW 

Readings from both sensors were observed in real time and simultaneously through a 

feature from LabVIEW. During the testing, the reading showed sensors had non-zero reference 

points and that they were different. The difference between reference points was due to the 

difference in height between the sensors and the steel bars they were attached to. An illustration 

of this concept can be seen below: 

 

Figure 31. Example of the sensor’s reading 
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Since the sensors were located underground, the output wires were a concern of the 

design. The solution to this problem was to use PVC pipes to guide and protect the wires from 

the sensor to the DAQ (See Figure 32). 

Sensor
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soil surface

Conduit

DAQ Laptop w/

Labview

 

Figure 32. Conduit from housing structure to DAQ  
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CHAPTER 4: RESULTS 

PIPE-R Model: Example Problem 

Part A 

The PIPE-R model was used for a project located in Orlando, Florida having a watershed 

area have of 110,000 ft2 and 80,000 ft2 of it was impervious. Default values and the auto 

calculated weighted runoff coefficient were utilized to determine runoff. The target efficiency 

was a minimum of 80%. 

The desired width, length and height of the reservoir were 35 ft, 30 ft and 4 ft, 

respectively. The soil type underneath the reservoir was “Sand”. Default values were used to 

determine the soil properties of interest. The infiltration rate was determined from this data. The 

surface layer above the system was 24 inches of “Sand”. Again, default values were used to 

determine storage and infiltration values required to run the model. Both the top surface layer 

above the reservoir and the bottom of the reservoir were permeable. This system was an 

underground exfiltration system, e.g. no water demand were used for this part of the problem. 

Procedure: 

1. Model was opened. 

2. Macros are enabled  

3. The manual calculation feature, located under the formulas tab, was selected (See Figure 

33). 
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Figure 33. Manual calculation feature was activated 

4. From the Introduction Page, “Next” button was pressed (See Figure 34). 

 

 

Figure 34. Introduction page worksheet 

“Manual” 
feature 

“Next” 
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5. From the General Instruction worksheet (See Figure 35), the “Next” button was pressed 

to proceed to the NOAA Website Instructions worksheet. 

 

Figure 35. General Instructions worksheet 

6. From the NOAA Website Instructions worksheet, the next steps were followed (See 

Figure 36). 

a. The following link was copied and pasted in a browser  

http://www.ncdc.noaa.gov/cdo-web/search?datasetid=PRECIP_HLY 

 

Figure 36: Instructions to obtain historical data from NOAA 

b. The “Precipitation Hourly” option was selected as the weather observation type. 

(See Figure 37) 

http://www.ncdc.noaa.gov/cdo-web/search?datasetid=PRECIP_HLY
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c. The most recent 15 consecutive years of hourly precipitation data were selected 

(See Figure 37) (Example: 01/01/1990 - 12/31/2004) 

d. In the search for option, "Stations" was selected (See Figure 37). 

e. For the "Enter a Search Term" option, the desired location was selected. Then the 

“Search” button was pressed (See Figure 37). 

 

Figure 37. NOAA website for requesting precipitation data 

 

7. The “Search” button was pressed and the procedure was taken to the next page. 

a. Different locations where shown on the left side of the screen (See Figure 38), the 

Orlando International Airport location was selected by clicking on the "Add" 

button. The orange "Cart (Free data)" icon on the right of the screen showed a "1" 

which was then clicked. 

Part b.  

Part c.  

Part e.  

Part d.  
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Figure 38. NOAA website showing the desired location 

b. "Hourly Precipitation CSV" was selected for output format as shown in Figure 

39). “Continue” button was pressed. 

 

Figure 39. NOAA website where the output format was selected 

c. The selected Date Range was verified to be available. If data was not available, an 

image such as (Figure 40) would have been shown on the page. 

 

Figure 40. NOAA website notice displayed if data selected was not available. 

“Add” Button  
Cart (Free 

Data)  

Hourly 

Precipitation 

CSV  
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d. On "Select data types for custom output", the Precipitation Box was checked and 

Continue was then clicked (See Figure 41). 

 

Figure 41. NOAA website station details 

e. All information was verified to be correct. Also, an email address was entered for 

the data to be sent. The “Submit Order” was then clicked. 

f. A confirmation email was immediately sent to the email provided. The file was 

saved. 

g. The file was received, please save it and the data looked like Figure 42 when 

opened in a new Microsoft Excel window.  

Check 

Precipitation  
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Figure 42. Example of precipitation data 

8. The file with the precipitation data was imported into the PIPE-R model  

a. Import Data was clicked (See Figure 44). A message with a question asked 

whether to proceed or not, “Yes” was clicked.  

 

Figure 43. Empty Historical Data worksheet 

Import Data 

button  



63 

b. A browser opened (See Figure 44), the previously saved file with precipitation of 

the city of Orlando was selected. Note: It took a minute to download. 

 

Figure 44. Browse for file 

c. Once opened, the Historical Data worksheet looked like Figure 45. 

 

Figure 45. Example of imported data 

d. When the data was done uploading, “Next” was clicked and the model proceeded 

to the Site Characteristics worksheet. 
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9. The model was directed to the Site Characteristics worksheet. Site information was filled 

out based on watershed size and permeability conditions (See Figure 46). 

a. The total contributing and impervious area of the site were inserted. 

b. “Yes” was selected to use the default runoff coefficient for the impervious area.  

c. “Yes” was selected to use the default runoff coefficient for the pervious area.  

d. “Yes” was selected to use the auto calculated runoff coefficient. 

e. “Yes” was selected for the bottom of the reservoir being impermeable. 

f. “Next” was clicked and the model continued to the Soil Properties worksheet. 

 

 

Figure 46. Site Characteristics worksheet 

10. The model was on the Soil Properties worksheet. “Sand” was selected for the type of soil 

and “Use Default Values” was also selected (See Figure 47). Notice the values were not 

visible since the model had not been evaluated yet. “Next” was clicked to be directed to 

the Typical Control Box worksheet 

Part a 

Part b 

Part c 

Part d 

Part e 
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NOTE: The values indicated for each soil type only appeared after the model has been 

calculated. 

 

 

Figure 47. Soil Properties worksheet 

11. The model was then in the Typical Control Box worksheet. It was indicated that the 

system did not have a control box (See Figure 48). 

 

Figure 48. Typical Control Box worksheet 

12. “Next” was clicked to proceed to the Reservoir System Dimensions worksheet. 

User’s selection 

Default values  

Insert “No”  
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13.  The model was then in the Reservoir System Dimensions sheet (See Figure 49), the “Size 

Reservoir” button was clicked.  

 

Figure 49. Empty Reservoir System Dimensions worksheet 

14. Data was filled out based on the site conditions and Reservoir System Dimensions 

desired. Next, then “Back to Reservoir System Dimensions worksheet.” was pressed (See 

Figure 50) 

 

 

Figure 50. Reservoir Size Calculator 

Size Reservoir 

button 
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15. In the Reservoir System Dimensions worksheet, the information was filled out according 

to the values information given in the problem statement as shown in 

 

Figure 51. “Next” was clicked to proceed to the Drainfield worksheet.  

 

 

Figure 51. Reservoir System Dimensions worksheet 

Fill out 

information 
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16. The model was then on the Drainfield worksheet. It was indicated that the system did not 

have a drainfield (See Figure 52). “Next” was clicked to proceed to the Irrigation 

Demand worksheet. 

 

Figure 52. Drainfield worksheet 

17. The model was then on the Irrigation Demand worksheet. Since no water demand was 

specified in the problem statement, Florida was simply selected from the drop down 

menu (See Figure 53). “Next” was clicked to continue to the Grey Water Demand 

worksheet. 

Insert “No” 
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Figure 53. Irrigation demand worksheet 

18. The model was then on the Grey Water Demand worksheet. No other water demand was 

specified in the problem statement, therefore “Calculate Results” was clicked (See Figure 

54). This step took several moments and then the model was directed to the Model Output 

worksheet. 

 

Figure 54: Grey water demand worksheet 

Select 

“Florida” 
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19. The model was then on the Model Output worksheet. The Model Output worksheet 

showed a summary of the relevant information about the PIPE-R system modeled. The 

average yearly rainfall for the project location was presented, along with the average 

yearly hydrologic efficiency and the average yearly groundwater recharge. The 

dimensions of the system were also summarized for convenience. Since the hydraulic 

efficiency was less than 80% some changes were made to the model (See Figure 55). 

 

Figure 55. Model Output worksheet 

Part B 

Part A of this example did not achieve the desired 80% average yearly hydrologic 

efficiency. To meet this objective, a few changes were made to the system in order to achieve the 

desired results. A drainfield, along with a control box, were added to the system. Additionally, 

water was harvested from the system to meet certain demands.  

The length of the pipes from the reservoir to the control box was 4 ft and the pipe’s inside 

diameter was 4 in. (0.33 ft). The length of the pipes from the control box to the drainfield were 
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10.5 ft and have an inside diameter of 4 in (0.33 ft). The length, width and height of the 

drainfield were 50 ft, 50 ft, and 4 ft, respectively. The amount of linear feet of pipes in the 

drainfield was 150 LF and the porosity of the filler stone was 0.3. 

An irrigation demand were added with seasonal factors for each season as follows: 1.25 

(Summer), 1.00 (Fall), 0.75 (Winter), 1.00 (Spring). The irrigation demand was 1 in/week and 

the irrigated area was 1 acre. There were 2 irrigation schedules, the main one consisted of 3 

irrigation events per week which were at 4:00 AM on Monday, Wednesday and Friday. The 

second was for winter season and consisted of 2 irrigation events per week which were at 4:00 

AM on Tuesday and Thursday. 

The width, depth and height of the control box were 24 in, 24 in and 108 in, respectively. 

The height of the weir inside the control box was 43.2 in and the thickness of that weir wall was 

1 in. The height of the bottom of the inlet pipe was 12 in and had an inside diameter of 4 in. The 

outlet pipe directing water to the drainfield had the same two dimensions. The elevation for the 

bottom of the overflow pipe had an elevation of 90 in and its internal diameter was also 4 in. The 

thickness of the outside walls was 1 in and the distance between the inner wall and the side of the 

inlet pipe was 11.5 in. 

 

Procedure: 

To make changes, the button “Return to Start Page” was clicked to navigate to the Site 

Characteristics worksheet. Since a drainfield was added, the bottom of the reservoir was 

changed to impermeable.  

1. The model was then in the Site Characteristics worksheet. “No” was selected to indicate 

the bottom of the reservoir was impermeable (See Figure 56). 
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Figure 56. Site Characteristics worksheet 

2. “Next” was pressed to continue to the Soil properties worksheet. 

3. No changes needed to be made in the Soil properties sheet. “Next” was clicked to 

continue to the Typical Control Box worksheet. 

4. In the Typical Control Box worksheet, it was indicated the system did have a control box 

(See Figure 57), all required dimensions were filled out based on the statement on Part B. 

“Next” was clicked to proceed to the next worksheet.  

Select “No”  
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Figure 57. Typical Control Box worksheet 

5. In the Reservoir System Dimensions worksheet, the length of 4 feet and a diameter size of 

0.33 feet to the pipe connecting the reservoir and control box were inserted (See Figure 

58). “Next” was clicked to proceed to the Drainfield worksheet. 

Select “Yes”  
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Figure 58. Reservoir System Dimensions worksheet 

6. The model was then in the Drainfield worksheet. “Yes” was indicated in Figure 59 

because a drainfield was incorporated. Also, the dimensions were filled out as specified 

in the problem statement and as shown in Figure 59. “Next” was clicked to proceed to the 

Irrigation Demand worksheet.  

 

Insert pipe 

information  
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Figure 59. Drainfield worksheet 

7.  In the Irrigation Demand worksheet, the irrigation demand data was specified based the 

dimensions desired in Part B (See Figure 60). 

 

 

Figure 60. Irrigation demand worksheet 

Select “Yes”  

Intensity 

and area 

Seasonal 

factors 

Time 

Schedule 
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8. The model was then in the Grey Water Demand worksheet, no grey water demands were 

specified in the statement of Part B.  

 

Figure 61. Grey Water Demand worksheet 

9.  “Calculate Results” button was pressed to proceed to the Model Output worksheet. 

In the Model Output worksheet, the average yearly rainfall for the project location was again 

presented, along with the average yearly hydrologic efficiency and the average yearly 

groundwater recharge. The dimensions of the system were also summarized for convenience. 

Since the hydraulic efficiency was above 80%, the performance criteria had been met 
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Figure 62. Model Output worksheet 

 

Structural Test 

Laboratory Testing 

 Laboratory testing was conducted on 12 inches long single pipes, 12 inches long pipe 

bundles and 37 inches long pipe bundles from to 1 to 4 bundles stacked on top of another. The 

results were presented in their corresponding section. 

Single pipes 

An understanding of the structural integrity of buried pipe is important in order to avoid 

structural failures. The method recommended by AASHTO M252 is ASTM D2412 − 11 

“Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading”. 

The purpose of this test is to obtain a load-deflection relationship of the pipe. AASHTO M252 

specifications states that corrugated plastic pipes with a diameter of approximately 4 inches 

should have a minimum pipe stiffness value of 34.1 lbf/in /in at 5% deflection of the pipe’s 

internal diameter. The pipe stiffness (PS) equation (24) was used since the equation is designed 
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to evaluate single pipes and this approach will be referred as PS 1 in tables throughout this 

document. The table below shows the pipe stiffness (PS) values for each type of pipe: 

 

Table 1: Summary of PS for single pipes 

Pipe #1 

(5.3 

oz/ft) 

PS 1 

(lbf/in/in) 

Pipe #2 

(5.2 

oz/ft) 

PS 1 

(lbf/in/in) 

Pipe #3 

(5.0 

oz/ft) 

PS 1 

(lbf/in/in) 

Pipe 

#4 

(old 

tech.) 

PS 1 

(lbf/in/in) 

1A 51.42 2A 38.78 3A 48.47 4A 54.39 

1B 34.86 2B 34.54 3B 54.97 4B 54.30 

1C 49.20 2C 56.97 3C 35.86 4C 54.68 

1D 55.21         4D 56.28 

1E 59.41         4E 47.80 

            4F 53.94 

Mean 50.02 Mean 43.43 Mean 46.43 Mean 53.49 
 

It was observed in Table 1 that individual and averaged PS values for all pipes exceeded 

the minimum value stated by AASHTO M252 (34.1 lbf/in/in). The average PS values for the 

four different type of pipes exceeded the requirement by a range of 27% to 56%. It can also be 

determined that Pipe #4 (Old technology) performed better than the other three pipes. The 

manufacturer of the pipe expressed that pipes #1, #2 and #3 had not been subjected to quality 

standards and that they were fabricated with a different mixture. The lack of quality testing and 

different mixture might be a reason why pipe #4 showed greater strength.  

The pipes also showed significant ability to rebound after a few minutes of been 

compressed fully. This behavior is typical from this material is caused due to the molecular 

properties (Kissin 2012). Kissin (2012) explained that polymer have fewer crystalline areas than 

rigid objects in their chemical composition, which allow greater movement of atoms and provide 

flexibility to the material. During the loading procedure, the pipe did not show signs of rupture 
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but experienced severe deformation such as compressing until became relatively flat (See Figure 

63.). However, the pipe returned almost entirely to its original shape where the vertical axis was 

measured to have a diameter that was 94% of the length of the original diameter. The final 

appearance of the pipe was an ellipse with the vertical axis being the shortest one (See Figure 

63).  

 

Figure 63. a. Severe deformation experience by the pipe; b. Pipe after a few minutes testing 

 

Short BPU’s (12 inches) 

Loading tests were conducted on the 12 in. long BPU’s and the results were averaged to 

produce individual graphs for each level. Four levels of bundles were tested and each one of 

them had a particular height. The 5% deformation was calculated by subtracting the wall 

thickness from the measured total height of the bundle system and multiplying that by 5%. The 

dots indicated on the plot show the 5% deformation at which the PS is evaluated and the 

corresponding load that caused that deformation. It can be determined from Figure 64 that level 1 
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showed greatest strength compared to the other levels. Also, the strength seemed to generally 

decrease as the numbers of levels increases. In other words, less force was required to produce 

the same amount of deformation in each bundle level. The graph below shows the behavior of 

each bundle level and also the 5% data points at which the Pipe Stiffness (PS) should be 

evaluated according to AASHTO. 

 

 

Figure 64. Load-deflection summary plot 

One of the reasons a single BPU showed greater strength than the other bundles was 

because it was tightly wrapped with a mechanically fabricated plastic stripe. The tight wrapping 

stripe provided greater horizontal restrictions which allowed a greater magnitude of load applied. 

On the contrary, bundles with two or more levels were manually held together in both directions 

using a twisted polypropylene rope spaced 12-inch apart. The process of manually tying the 

pipes in the system allows the pipes to rearrange themselves more freely and experience more 

deflection because the horizontal constrain is not as efficient. In addition, the strength decreases 
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with the increasing number of levels as shown in Figure 64, which is caused to the greater 

amount of flexible points in the system. 

 The next step after establishing the relationship of load-deflection was to calculate the PS 

for each bundle. An alternate formula was proposed to calculate the pipe stiffness of multiple 

pipes in Chapter 3. The two type of PS were calculated and referred as PS 1 and PS 2. 

 PS 1 was calculated by following the original formula (24), which neglected the number of 

pipes in contact with the loading plate. The method PS 2 is the proposed method to calculate PS 

including the number of pipes that were in contact with the loading plate. Once both PS values 

were calculated, the percentage of PS reduction from each level was determined. The table below 

presents the average value for each level and the PS reduction from each level (See Table 2). 

 

Table 2. Average values for each level and PS reduction 

Number 

of Levels 

5% 

Def. 

(in) 

Force at 

5% Def. 

(lbf) 

PS 1 

(lbf/in/in) 

PS 2 

(lbf/in2/in) 

PS 

Reduction 

(1) 

PS 

Reduction 

(2) 

1 0.43 218 60.7 30.4 0% 0% 
2 0.86 179 24.9 12.5 59% 59% 
3 1.28 159 14.9 7.4 75% 40% 
4 1.67 199 12.6 6.3 79% 15% 

 

NOTES: - PS 1 = 1 contact area (original formula) 

- PS 2 = 2 contact areas (2 pipes is contact with plate) 

PS Reduction (1) is the percent of Pipe Stiffness lost with the respect to the bundle with 1 Level. 

PS Reduction (2) is the percent of Pipe Stiffness lost with the respect to the previous level. 
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 Table 2 shows the 5% deflection for each bundle with the corresponding number of 

levels, the force required to cause that deflection, PS values calculated based on the particular 

approach, and two columns showing the strength reduction compared to the first level or the 

previous bundle level. Based on the findings, the bundle with only one level showed the greatest 

PS value. Also, the greatest PS reduction occurred when the first additional level was added. The 

reason for this outcome might be due to the rigidity of a single BPU, which is assembled tightly 

wrapped with a mechanically fabricated plastic stripe. Any additional bundle is manually held 

together in both directions using a twisted polypropylene rope spaced 12-inch apart, which 

makes the system significantly more flexible. The PS reduction itself also decreases with the 

addition of bundles. 

 In addition, a third method of PS was discussed. This method consisted on combining the 

total wall area of pipe bundle and establishing new single pipe with equal wall area. The original 

formula can now be considered appropriate since the only one line of contact is assumed. Since 

the area of multiple pipes was concentrated into one pipe, the new single pipe featured a greater 

diameter and wall thickness. Since the new deflection value is used, the average load-deflection 

curve for the corresponding level can be used to extrapolate the force needed to cause that 

deflection. The following table will provide the results for all three methods: 

Table 3. Comparison between PS methods 

Number 

of 

Levels 

PS 1 

(lb/in2/in) 

PS 2 

(lb/in/in) 

Equivalent 

Pipe Area 

(lb/in/in) 

1 61 31 61 
2 25 12 25 
3 15 7 25 
4 13 6 15 
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 From the table above, it can be concluded that PS 1 and the equivalent pipe area method 

revealed almost identical PS values. This similarity in values could be because the proportion 

between load and deflection remains constant. Even though the idealized pipe with bigger 

diameter has a greater value for the 5% deflection, the PS value is normalized because the 

corresponding load is also greater because it is extracted from the same curve. 

 

Long BPU’s (37 inches) 

 BPU’s with 37 inches of length were also tested under the AASHTO M252 is ASTM 

D2412 − 11 “Determination of External Loading Characteristics of Plastic Pipe by Parallel-

Plate Loading”. The procedure was similar to the short BPU’s except that three BPU’s are used 

in each level and only load values were provided by the testing equipment, not deformation. 

Thus, deformation of the pipe bundle was obtained by stopping the loading procedure and 

measuring the elevation of the top plate with the use of the laser position sensor. The other 

difference was that bigger materials were required for testing. For example, the loading plates 

had the same thickness but the length and width were 38 inches. Also, steel toes were welded to 

the outside perimeter of the plates to minimize bending of the plates. An image can be seen on 

Figure 65. 
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Figure 65. One level system of the 37 in. long BPU’s 

 

 Once testing was conducted, load-deflection relationship by matching the loads with the 

corresponding values measured. The testing procedure consisted on obtaining at least 10 

deformation values which helped to create a load-deflection curve. In addition, a minimum of 

three specimens were tested for each level and the results were averaged and plotted. Similarly to 

the short BPU’s graphs, the 5% deformation at critical points for the evaluation of PS, therefore 

their magnitudes were indicated for each pipe bundle level. The graph with the load-deformation 

curves can be seen below (See 
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Figure 66. Average load-deflection plots each level 

 

It can be determined that the bundle with only1 level demonstrated greater stiffness than 

the other bundles. The curve had a more vertical shape, meaning it was able to withstand more 

load and experience less deformation. However, it was observed that the 1 level started yielding 

as the loads increased to approximately 11 kips. The reason for this behavior could be that the 

mechanically fabricated plastic stripe received some of the load applied by the testing machine 

and, at one point, it started elongating. The elongation of the plastic stripe forced a relatively 

abrupt addition of load to the pipe bundle which increased the rate of deformation. In the same 

way as the short bundles performed, the strength of the bundles decreased as the levels of 

bundles increased. The same reasoning regarding the loss of strength was again proposed here. A 

twisted polypropylene rope was manually held together in both directions to add levels of 

bundles. The manual approach provided far less rigidity to the system and made it significantly 
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more susceptible to experience deformation. PS 1 and PS 2 values were calculated just as before 

for the long BPU’s and the values can be found below (See Table 4): 

 

Table 4. PS values for 37 inches long BPU’s 

Number 

of 

Levels 

5% 

Deformation 

(in) 

Force at 

5% Def. 

(kip) 

PS 1 

(lb/in/in) 

PS 2 

(lb/in2/in) 

PS 

Reduction 

(1) 

PS 

Reduction 

(2) 

1 0.466 2.420 206.878 29.554 0% 0% 

2 0.893 1.917 85.547 12.221 59% 59% 

3 1.306 1.951 59.504 8.501 71% 30% 

4 1.737 1.690 38.747 5.535 81% 35% 
 

NOTES: - PS 1 = 1 contact area (original formula) 

- PS 2 = 2 contact areas (2 pipes is contact with plate) 

PS Reduction (1) is the percent of Pipe Stiffness lost with the respect to the bundle with 1 Level. 

PS Reduction (2) is the percent of Pipe Stiffness lost with the respect to the previous level. 

It can be observed from Table 4 that again the system 1 demonstrated the highest PS 

value compared to the rest of the bundles. The other similarity to the short bundles was that the 

greatest drop in PS occurred after the first level of bundle was added. The reason for the 

magnitude of that drop was because was regarding the wrapping procedure as mentioned before. 

In addition, a greater difference between PS 1 and PS 2 was also observed. The greater 

difference in PS values was due to the greater number of pipes in contact with the plate 

accounted in the proposed method. The PS value calculated by considering a single pipe with an 

equal was also considered and the values can be found in Table 5: 
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Table 5. PS values for the long BPU’s 

Number 

of 

Levels 

PS 1 (lb/in2/in) PS 2 (lb/in/in) 

Equivalent 

Pipe Area 

(lb/in/in) 

1 206.88 29.55 231.01 

2 85.55 12.22 85.59 

3 59.50 8.50 46.19 

4 38.75 5.54 38.18 
 

Previously, it was found that the equivalent area approach was relatively close to the PS 1 

values. Subsequently, the PS 1 and the equivalent pipe area approach were again relatively 

similar for all levels of long BPU’s. The reason for the similarity might again be due to the linear 

behavior at the strain range evaluated. In other words, the proportion between load-deflection is 

constant and evaluating a single pipe with a lightly greater diameter would not cause much of a 

difference. 

Comparison of short vs long BPU’s 

 By comparing values for the short BPU’s (Table 4) and the long BPU’s (Table 5), it can 

be observed that PS 1 values are higher for the long BPU’s. The reasoning for this outcome 

might be that the pressure applied by the loading plate is distributed over a greater area on the 

long BPU’s. Since the equation does not consider the number of pipes, PS values would tend to 

be higher when the number of pipes used increases. On the other, PS 2 was observed to be 

relatively similar between the two bundle lengths. The reason for the similarity could be that the 

load applied is normalized by the proposed equation, which does account for the number of pipes 

in contact with the loading plate. Therefore, including the number of pipes while evaluating 

systems with multiple types might be an effective tool when strength comparison is desired. 
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Field testing 

Field testing was considered important to understand the effects of real loads such the 

ones exerted by earth pressure and vehicles. Also, the pipe-soil interaction experienced in the 

field might have a different effect on the system which could not have been observed in the 

laboratory. The setup of the field test included a range of cover depths and configurations and by 

keeping the system constant, the difference in the results showed mainly the effects of the cover 

characteristics. The truck used for testing had a total gross weight of 66,240 lbf. and each axle 

weighed approximately 22 kips. Both of the rear axles did 30 runs each in the forward and 

backward direction. Once testing was done on all systems, the data was extracted to Excel for the 

determination of the deformation. Plots were observed to have some noise that could had been 

produced from other devices connected, environmental effects and so on. Noise in the data could 

cause imprecise results which could lead to wrong conclusions and recommendations. One sign 

that suggested the presence of noise was the visible deformations recorded observed during times 

where the truck did not pass by, for example in the time interval between 600 seconds and 850 

seconds of the readings of sensor 2. A plot with raw data of sensor 2 is shown below. (See Figure 

67) 
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Figure 67. Plot of sensor 2 showing noise in the data 

 

The noise might have been misleading in sense that they would show a greater drop that 

the sensor really experienced. Thus, the noise in the data was also manually eliminated in Excel 

for illustration purposes and for a better understanding of deformation readings.  An example of 

the data corresponding to Sensor 1 can be seen on Figure 68. Plots for the rest of the sensors can 

be found in APPENDIX D. 
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Figure 68. Data extracted from Sensor 1 

 

 In order to gain a deeper understanding of the test output, it was helpful to analyze the 

plots on a closer view. In other words, the entire test was divided on smaller time segments of 

approximately 10 seconds or so. It was first noticed was that it was easy to observe the 

deformations occurred in pairs, which was caused by the two rear axles. Secondly, the sensor not 

only reported higher elevations after each run as mentioned earlier but it also reported an 

increase in elevation right before the compression values. Therefore, the steel bars seemed to be 

lifted right before the truck’s tires passed. Based on this fact, the deformations were measured 

from the peak of the measurements to the elevation where the elevation remained constant again 

(See Figure 69). 
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Figure 69. Method used to calculate net deformations 

 

As mentioned before, the truck did 30 runs forward and backward on top of the sensor’s 

location. Three systems were tested and each one had two sensors on each side. Sensors 1 and 2 

were attached to system 1, sensors 3 and 4 were attached to system 2 and sensors 5 and 6 were 

attached to system 3. Values for each sensor run and each sensor will first be shown but the 

results will then be averaged to reflect the average deformation in each system. Also, an 

additional set of runs were conducted on sensors 2 and 3 to study the deformation values once 

the soil layer gained some additional compaction due to the runs performed throughout the test. 

The second set of runs were referred as “S2 Re-run” and “S3 Re-run”. Tabulated values for all 

six sensors can be found below in Table 6, Table 7 and Table 8.  
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Table 6. Average deformations for each run in sensors 1 and 2 

Run 

Sensor 

1 

Sensor 

2 

S2 Re-

run 

1 0.055 0.071 0.055 

2 0.061 0.067 0.056 

3 0.063 0.081 0.054 

4 0.064 0.069 0.055 

5 0.063 0.063 0.054 

6 0.061 0.073 0.055 

7 0.069 0.070 0.054 

8 0.069 0.068 0.053 

9 0.070 0.070 - 

10 0.070 0.070 - 

11 0.073 0.067 - 

12 0.076 0.068 - 

13 0.074 0.067 - 

14 0.074 0.065 - 

15 0.076 0.062 - 

16 0.075 0.057 - 

17 0.074 0.060 - 

Run 

Sensor 

1 

Sensor 

2 

S2 Re-

run 

18 0.073 0.060 - 

19 0.073 0.059 - 

20 0.072 0.056 - 

21 0.071 0.056 - 

22 0.070 0.067 - 

23 0.072 0.059 - 

24 0.069 0.059 - 

25 0.070 0.061 - 

26 0.068 0.058 - 

27 0.070 0.060 - 

28 0.070 0.057 - 

29 0.071 0.057 - 

30 0.070 0.056 - 

Average 0.070 0.064 0.054 

MIN 0.055 0.056 0.053 

MAX 0.076 0.081 0.056 

Median 0.070 0.063 0.055 

 

Average deformation for system 1: 0.07 inches 

Difference between each sensor: 26% 
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Table 7. Average deformations for each run in sensors 3 and 4 

Run Sensor 3 S3: Re-run Sensor 4 

1 0.341 0.204 0.227 
2 0.449 0.178 0.337 
3 0.442 0.166 0.304 
4 0.354 0.154 0.283 
5 0.353 0.151 0.303 
6 0.336 0.147 0.298 
7 0.400 0.128 0.311 
8 0.423 0.124 0.323 
9 0.422 - 0.316 
10 0.413 - 0.318 
11 0.400 - 0.294 
12 0.397 - 0.297 
13 0.395 - 0.295 
14 0.443 - 0.292 
15 0.410 - 0.290 
16 0.380 - 0.243 
17 0.351 - 0.245 

Run Sensor 3 S3: Re-run Sensor 4 

18 0.330 - 0.243 
19 0.343 - 0.256 
20 0.303 - 0.205 
21 0.298 - 0.181 
22 0.320 - 0.221 
23 0.333 - 0.208 
24 0.330 - 0.250 
25 0.301 - 0.183 
26 0.300 - 0.272 
27 0.317 - 0.261 
28 0.332 - 0.264 
29 0.329 - 0.273 
30 0.316 - 0.267 

Average 0.362 0.157 0.269 
MIN 0.217 0.124 0.157 
MAX 0.514 0.204 0.396 

Median 0.342 0.153 0.265 

Average deformation for system 2: 0.32 inches 

Difference between each sensor: 26% 
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Table 8. Average deformations for each run in sensors 5 and 6 

Run Sensor 5 Sensor 6 
1 1.157 0.806 
2 1.256 0.851 
3 0.970 0.922 
4 0.715 0.944 
5 0.925 0.935 
6 0.745 0.893 
7 0.653 0.880 
8 0.714 0.940 
9 0.660 0.938 
10 0.661 0.982 
11 0.620 0.923 
12 0.567 0.938 
13 0.520 0.965 
14 0.505 0.947 
15 0.636 0.643 
16 0.507 0.571 
17 0.493 0.617 
18 0.471 0.565 

Run Sensor 5 Sensor 6 
19 0.415 0.578 
20 0.370 0.559 
21 0.364 0.548 
22 0.325 0.553 
23 0.285 0.540 
24 0.324 0.538 
25 0.310 0.528 
26 0.322 0.538 
27 0.196 0.528 
28 0.175 0.548 
29 0.216 0.543 
30 0.216 0.569 

Average 0.543 0.733 
MIN 0.109 0.518 
MAX 1.295 1.024 

Median 0.492 0.630 
 

 

Average deformation for system 3: 0.64 inches 

Difference between each sensor: 26% 
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It can be determined from the tables above that system 1 experienced the least 

deformation with a magnitude of 0.07 in., and system 3 experienced the highest deformation of 

0.64 in. The reason why the third system experiences the most deformation is due to the smaller 

cover depth (18 in.). A smaller cover depth mainly reduces the load distribution from the vehicle 

to the system. In other words, a smaller the cover forces to the system to support a greater 

fraction of the applied vehicle load. Additionally, if the vehicular load applied is constant and 

different cover depths are tested, the deformation should be relatively predictable. In fact, it can 

be observed when the deformation of the systems versus cover depth is plotted, the relationship 

is relatively linear and the trendline has an R2 of approximately 99%. 

 

Figure 70. Cover thickness vs. average deformation of the systems 

 

 Images of the of test site were useful to picture the actual deformation produced to the 

live load. As seen in Figure 71, some portions of the surface milling layer seemed to have poor 

level of compaction due to significant deformations observed. The compaction issues happened 

especially in areas surrounding the concrete housing structures because some locations were 
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difficult to operate the vibratory plate. Pictures were taken after the test to illustrate the 

deformations just discussed (See Figure 71). 

 

Figure 71. Deformation on milling surface 

  

During the testing procedure, additional milling was added to locations in order to reduce 

the deterioration of the milling layer. Most sensors demonstrated some decrease in the 

deformation after milling was added. The reason for deformation reduction and the improvement 

with number of runs. The additional material helps distribute the vehicle load and it compacts 

with every run, which increases the strength of the surface layer. The two clearer graphs are the 

ones for the system 3, which had the smaller cover. The dashed line indicates the run in which 

milling was added.  
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Figure 72. Average deformation in each run for sensor 5. 

 

Figure 73. Average deformation in each run for sensor 6. 

 

The reduction in deformation just mentioned indicates that an effective and consistent 

compaction effort is needed in order to avoid severe deformation of the pavement layers. 
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Nonetheless, conventional designs of the pipe systems will not have face the problems during the 

compaction process because no housing structure is required. 

Average values are considered for each cover depth but it was also important to analyze the 

variability in dataset. Thus, a boxplot was produced to help visualize the variability of the 

deformation for each sensor. A boxplot is a visual statistical approach which displays the 

minimum, first quartile, second quartile (or median), third quartile and maximum points in a data 

set (See Figure 74). 

 

Figure 74. Boxplot of deformations versus sensors. 

The figure above shows a boxplot of the deformations from each sensor. In this case, it 

can be determined that sensor 1 and sensor 2 showed no significant difference compared to the 

other measurements. Some difference is variability can be observed sensors 3 and 4, but the 

variability increases in sensors 5 and 6. The degree of variability might be explained by the 
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effect milling added to the surface layer. Deformation versus time plots of sensors 1 and 2 did 

not show much difference throughout the test, not producing any variability (Plots can be found 

in APPENDIX B). One outlier was seen at the bottom of the boxplot of sensor 1, but the fact that 

the first and third interquartile were reasonably close could suggest that outlier was irrelevant. 

Another statistical test used was the Mann-Whitney, which was used to determine if the 

median of the corresponding sensors were significantly different. The deformation values for 

both sensors of the same system were tested for significant difference with an alpha level of 

5%.The average deformation for sensors 1 and 2 were 0.07 in and 0.06 in. Even though the 

values seemed to be relatively similar, the statistical revealed the medians were significantly 

different with a p-value of 0.0001. 

In the same manner, sensors 3 and 4 were also classified as having different medians with 

a p-value of 0.0000. Lastly, sensors 5 and 6 were also classified as having different medians with 

a p-value of 0.0029. In conclusion, all pairs of sensors were determined to be different from each 

other. One possibility that could explain the difference between sensors is that the locations for 

each sensor were somewhat different due to construction factors. For example, the compaction 

effort might have been different on each location. Also, the rearrangement of the pipes might 

have not been exactly the same after the on all locations after each run. 

Based on the height of the systems used for field testing (2.868 ft.), the percent 

deflections for Sensors 1 through 6 are 0.2%, 0.2%, 1.0%, 0.7%, 1.6% and 2.1, respectively. All 

average deformation for all sensors were less than the 5% deflection limit stated by AASHTO 

and this signifies the PIPE-R System meets the minimum structural performance standards. 

Lastly, theoretical deflection were calculated through the use of equations recommended 

by AASHTO (2012) and presented in Chapter 2. Prior calculations were conducted to predict the 
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magnitude of dead loads and live loads acting on the system. Afterwards, the thrust on the pipe 

was utilized to calculate the theoretical deflection values. The estimated deflection was 

approximately 0.23 inches for all three systems. The reason a similar deflection was predicted for 

different cover properties was because the modulus of elasticity was a significant high value 

which reduced the impact of slight differences in the load. An important factor to consider was 

that the equations were designed for single pipes, and not a system of pipes such as the one 

evaluated in this study. Therefore, there is no direct comparison of this result and the 

deformations found in the field testing. 
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CHAPTER 5: CONCLUSION 

Water scarcity continues to be a problem that affects a significant fraction of the world’s 

population. Water harvesting is one approach that could help alleviate some of the effects of 

water related issues. This study evaluated the ability of the Microsoft Excel based model called 

PIPE-R Model to predict water harvesting operations of an underground pipe systems based on 

available hourly precipitation data. The PIPE-R Model will also help the user adjust properties 

and dimensions of the system in order to achieve a particular efficiency desired. From the results 

of the study in can be observed that the PIPE-R Model is an effective tool to forecast the average 

yearly values of a proposed system such hydrologic efficiency, water supplied and groundwater 

recharge. 

 The structural integrity of the pipes used for the water harvesting system was also 

evaluated. Laboratory and field testing were conducted on the pipes to study their behavior under 

load effects. Results from the laboratory revealed that single pipes met the minimum 

specifications specified by AASHTO M252 and that the pipes rebound ratio of about 96%. The 

pipes were also bundled in groups of five and tested for strength purposes. The results of these 

loading tests determined that a single bundle unit pipe (BPU) performs better than multilevel 

systems due to increasing flexibility in the system. Also, long BPU showed greater strength than 

short BPU based on the PS 1 equation and the reason is that the load was distributed over a 

greater number of pipes while the equation does not account for the number of pipes in contact. 

However, by considering the number of pipes in contact using the proposed formula PS 2, the PS 

values seemed to be relatively similar for both lengths. Subsequently, the proposed equation is an 

effective tool to analyze systems that use multiple pipes. Lastly, a third method to calculate PS 
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was proposed and the purpose was to translate systems of pipes to a single pipe with equivalent 

wall area which would allow the original PS equation to be more applicable. Once the single 

pipes were established and evaluated, the results were observed to be similar to PS 2 equation. 

 Field testing revealed that the height of cover has an effect on the deformation 

experienced by the pipes at each sensor location under dead and live load effects. The average 

deformations found for the cover depths of 43 in, 30 in and 18 in were 0.07 in, 0.32 in and 0.64 

in, respectively. The deformations found were all under the 5% deflection limit stated by 

AASHTO. Based on these results, it is recommended that a minimum of 30 inches of cover be 

provided if live loads are present. 
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APPENDIX A: SYSTEM AVERAGE DEFORMATION VERSUS NUMBER 

OF RUNS 
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APPENDIX B: SENSOR MEASUREMENTS 
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